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Abstract— We investigate the effect of non idealities in the 
diagonalizing precoder vectoring technique used for 
cancellation of the far-end crosstalk in downstream VDSL 
networks. By using analytical formulas, we estimate the 
average bit rate achievable as a function of both relative and 
absolute estimation errors. Several numerical examples are 
provided, in different scenarios and operation conditions. 
Results are presented covering an important aspect for 
practical applications: the transmitted power required to 
achieve a target bit rate, as a function of the line length. 
Finally, we provide some results on the impact of a smart 
quantization law, which limits the performance loss. 

Keywords-VDSL; vectoring; channel estimation errors; 
quantization errors 

I.  INTRODUCTION 
A great amount of work has been done to improve the 

features of digital subscriber line (DSL) systems. Several 
papers appeared in past and recent literature for 
performance evaluation of such systems (see [1], [2], and 
the references therein). In this paper, our goal is to study 
and quantify the impact of some practical impairment 
parameters on the achievable bit rate and the other 
performance figures, under realistic scenarios. We mainly 
focus on the solutions adopted for overcoming the 
limitations imposed by far-end crosstalk (FEXT), which is 
a major problem in very high speed networks [3], [4]. 
Most of these solutions adopt user coordination techniques 
[5]; in particular, in the downstream direction, that will be 
considered in this paper, coordination is possible as the 
transmitting modems are co-located at the central office. 
So, FEXT can be completely canceled, at least in principle, 
through a pre-distortion to apply, tone by tone, at each 
modem’s signal before its transmission. Using these 
discrete multi-tone (DMT) vectored transmission 
techniques, the achievable bit rates can be significantly 
increased with respect to non-vectored solutions. As a 
matter of fact, the recently issued ITU-T G.vector 

(G.993.5) [6] allows expanded use of 100 Mbps DSL. 
Additionally, a distinctive feature of the vectored VDSL 
systems is that its steady-state performance is more 
predictable than non-vectored systems [7]. In essence, the 
vectored systems become more stable, and this should 
encourage the adoption of analytical models for 
performance analysis and evaluation. Actually, such 
models are already available, and allow to forecasting 
easily the best performance achievable. 

However, some problems exist, that can make difficult 
to reach this optimal behavior. The first problem is the 
effect of estimation errors. Pre-distortion requires the 
knowledge of the channel transfer function; this is rather 
easy to obtain for the direct channels, but becomes more 
difficult for the crosstalk channels. The latter are not yet 
completely described and, although suitable models have 
been proposed, they require in depth verification. As 
regards the coordination technique, in this paper we 
consider the adoption of the diagonalizing precoder (DP) 
proposed in [8], that has the advantage of an easy 
implementation and does not require modifications of the 
customer premise equipment. In [9] some analytical and 
simulation results were provided to study this technique in 
a low complexity implementation. In [1], [2] we developed 
a theoretical approach that permits to analytically 
determine the average bit rate achievable, as a function of 
the relative or the absolute estimation error. In this paper, 
we extend that theoretical analysis and we further support 
it by a number of simulations, that allow a more complete 
characterization of the random variables involved, for 
example by evaluation of the probability density function 
(p.d.f.). Moreover, we present new results characterizing 
the target bit rate and the transmitted power necessary to 
achieve it, that are two aspects of key importance for 
practical applications. 

Another significant aspect concerns the need to take 
into account the effect of finite word length in the 
representation of the precoder variables, i.e., to measure 
the impact of quantization errors. This issue is extremely 
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important, due to its influence on the performance 
complexity trade-off: on one hand, coarse quantization can 
imply intolerable rate loss but, on the other hand, a large 
number of quantization bits can yield high hardware 
complexity and a great amount of memory needed for the 
precoding process. In [10], it has been shown that to obtain 
a limited capacity loss, due to quantization errors, a 14 bits 
representation of the precoder entries may be necessary. 
On the other hand, in [2] we showed that, by adopting a 
suitable quantization law, the same loss can be ensured by 
using only 10 bits. A further study on such quantization 
technique is presented in this paper, focusing on different 
practical scenarios and confirming the performance gain. 

In essence, the main contributions of this paper consist 
in facing the issues described above both in (simple) 
analytical terms and through an extensive numerical 
evaluation. Various realistic examples are considered. The 
statistical character of the variables involved is taken into 
account, which is not very common in previous literature. 
The results of the analysis are also used to discuss relevant 
aspects, like evaluation of the power required for 
achieving a target bit rate, which are of great importance in 
practical applications. 

The organization of the paper is as follows. In Section 
II we introduce the system and its relevant performance 
parameters in ideal conditions. In Section III we describe 
the channel model adopted and the statistical issues it 
involves. In Section IV we discuss the effect of the 
estimation errors, through theoretical arguments and 
simulations. Section V describes the simulation 
environments and gives several numerical examples. In 
Section VI we present the impact of the quantization 
errors, and we discuss the quantization law that allows to 
reduce the number of quantization bits. Finally, Section 
VII concludes the paper. 

II. IDEAL BEHAVIOR 
We consider the VDSL 998 17 standard [11], 

characterized by 4096 tones with frequency separation Δ = 
4312.5 Hz. For downstream, the Power Spectral Density 
(PSD) cannot exceed the mask described in Table I and 
depicted in Fig. 1 [11]. 

Denoting by mask
ks  the value of the PSD at the kth tone, 

the power transmitted on line n at tone k must satisfy the 
constraint  On each line we consider a total 

power 
1

 equal to 14.5 dBm (a typical value 
for cabinet transmission), distributed by the water-filling 
algorithm (see [12], for example) on the M = 2454 tones 
allocated for downstream. 

.n mask
k kP s≤ ⋅Δ

n
kPMn

T k
P

=
= ∑

Let us consider Fig. 2, that refers to the kth 
downstream tone fk. In the figure, Xk = [Xk

1, Xk
2, … , Xk

L]T 
is an L-component vector collecting the symbols 
transmitted by L users on as many lines. Hk is the L×L 
channel matrix; its (i, j)th element, ij

kH , represents the 
channel from transmitter j to receiver i. 

 

TABLE I.  PSD MASK FOR VDSL 998 17 DOWNSTREAM 

tone PSD [dBm/Hz] 
from to from to 
32 256 −36.5 −36.5 
256 376 −36.5 −46.5 
376 512 −46.5 −48.0 
512 870 −48.0 −51.2 
1026 1971 −52.7 −54.8 
3246 4096 −56.5 −56.5 
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Figure 1.  Graphic representation of the PSD mask for VDSL 998 17 

downstream. 

Xk Hk

Nk
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Zk

Channel

 
Figure 2.  Schematic representation of the VDSL system. 

The matrix Hk is row-wise diagonal dominant 
(RWDD); this means that, on each row of Hk, the diagonal 
element has typically much larger magnitude than the off-
diagonal elements (i.e., ii ij

k kH H , ). Also shown 
in Fig. 2, Nk is the L-component vector describing the 
additive thermal noise. 

j i∀ ≠

If all the L lines of the binder are controlled by the 
same operator, and the line drivers are co-located (in the 
same cabinet or central office) then the vector of symbols 
Xk can be made available to an apparatus able to 
coordinate the L lines. Ideally, this knowledge can be used 
to completely eliminate the FEXT interference by applying 
a proper precoder. This idea was first presented in [5], 
where vectored DMT was introduced. 

In the simplest form of precoding (from a conceptual 
viewpoint), the vector Xk is pre-multiplied by a matrix 

{ },ij
k kp=P  such that  which is able to 

completely remove the FEXT interference. This method 
requires: 

1,k k k
−= αP H
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Figure 3.  Schematic representation of the vectored system based on DP. 

- The exact knowledge of the channel matrix Hk at the 
transmitter side. 

- The use of a scaling factor αk for not exceeding the 
PSD mask. The Tomlinson precoder was proposed to 
solve this problem in [5], but has a quite large 
complexity.. 
To overcome the complexity of the Tomlinson 

precoder, some alternative schemes have been considered. 
Among them, one of the most promising is the 
Diagonalizing Precoder (DP) [8]. The DP system at tone k 
is shown in Fig. 3; the precoding matrix Pk is now defined 
as: 

 , (1) 1 1 diag( )k k k k
− −= β ⋅P H H

with 1

row 
max diag( )−⎡β ⋅⎣H Hk k k ii

⎤⎦ . In (1), diag(Hk) is 

the diagonal matrix having elements Hk
11, … , Hk

LL. 
In ideal conditions (i.e., perfectly compensated FEXT), 

the signal-to-noise ratio at the nth receiver and the kth tone 
is: 

 

2

2

n nn
k kn

k
N

P H
SNR =

σ
 (2) 

where  is the transmitted power and  is the variance 
of the thermal noise, that is independent of k and n. 

n
kP 2

Nσ

By using the well-known gap approximation, the 
number of bit/symbol of user n at tone k is given by: 

 2log 1
n

n k
k

SNR
c

⎧ ⎫
= +⎨ ⎬

Γ⎩ ⎭
, (3) 

where Γ is the transmission gap, and the achievable bit rate 
is: 

 , (4) 
1

M
n n

S k
k

C R c
=

= ∑
where RS = 4000 symbol/s is the net symbol rate (which 
differs from Δ because of the cyclic prefix). Actually, in 
(3) and (4), the integer part of  must be assumed. To 

simplify the notation, however, this will be not explicitly 
indicated afterward (but will be used in the numerical 
evaluations).  

n
kc

III. CHANNEL MODEL 
We describe the diagonal elements of matrix Hk (direct 

channel) through the well-known Marconi (MAR1) model 
[13]. As regards the FEXT, such model can be extended 
by using the following expression, that takes into account 
the statistical coupling dispersion with respect to the 1% 
worst case [14]. 

 / 20( , ) ( , ) 10 X i
FEXTH f d H f d f d e− Φ= χ . (5) 

In (5), H(f, d) is the direct channel at frequency f (in 
MHz) and distance d (in km), χ = 10−2.25 is a coupling 
coefficient, X is a Gaussian random variable with mean 
value (in dB) μX and standard deviation (in dB) σX, Φ is a 
uniform random variable ∈[0, 2π). For the subsequent 
analysis, it will be useful to compute the square modulus 
of (5). Because of the assumption on X, 10−X/10 is a log-
normal variable whose mean value and variance are well 
known and can be expressed as functions of μX and σX. 
These expressions will be used in Section V, where several 
numerical examples will be discussed. 

The values of μX and σX depend on the type of cable 
adopted. In the next numerical examples, we will set σX = 
7.8 dB and μX = 2.33×σX = 18.174 dB. 

Eq. (5) is self-consistent in the case of lines with equal 
length and permits us to obtain the off-diagonal elements 

,nj
kH  with n j≠ . In a more practical scenario, where the 

lines within the cable have different lengths, say dn and dj, 
nj
kH  can be obtained through the following expression: 

 ( ) / 20min , 10nj nn X i
k k k j nH H f d d e− Φ= χ , (6) 

as the FEXT contribution is limited to the common length, 
while it is further attenuated in the longest loop. 

In previous literature, (5) has been often used 
neglecting the statistical issues and considering the 
maximum nj

kH  value, that is obtained by setting X = 0. 
This represents a worst case situation, that rarely occurs in 
practice. Instead, by following the approach presented in 
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[1] and [2], we can face the problem in statistical terms, so 
deriving more significant values for the quantities 
involved. Examples will be given in Section IV. 

Even assuming the worst case situation, the crosstalk 
channel nj

kH  from a disturber j into a victim n is always 
much weaker than .nn

kH  As mentioned above, this yields 
the RWDD character of the downstream VDSL channel 
matrix, that is known to be a key issue for the efficiency of 
the vectored system. 

IV. EFFECT OF ESTIMATION ERRORS 
An analytical approach to quantify the impact of 

estimation errors was developed in [2] and is reported here 
for paper completeness. In Section V, this approach will be 
used to produce a set of results, matched to practical 
applications, much more extended with respect to the 
scenarios considered in [2]. 

Let  be the estimated channel matrix. If an 
estimation error is present, it is modeled through a matrix 
Ek such that: 

Ĥk

 . (7) ˆ
k k= +H H Ek

It is reasonable to assume that the direct channels are 
estimated correctly, so that  has zero diagonal 
elements. Moreover, for a given error percentage e, 
assumed constant for all the off-diagonal elements, we 
have . 

kE

ˆ (1 )ij ij
k kH H e= +

Matrix  must replace, in (1), the actual matrix  
and, looking at Fig. 3, through simple algebra, we find [2]: 

ˆ
kH kH

( ) ( ) ( ){
( ) ( ) ( )

( )

1
1

1
1 1

1

ˆ ˆ ˆdiag diag diag

ˆ ˆ ˆ ˆdiag diag diag

ˆdiag .

k k k k k

k k k k k k

k k k

−
−

−
− −

−

⎡ ⎤= − ⋅ ⋅ ⋅ ⋅⎣ ⎦
⎡ ⎤ ⎡ ⎤− ⋅ ⋅ − ⋅ ⋅⎣ ⎦ ⎣ ⎦

⎡ ⎤+β ⋅⎣ ⎦

Z I H E H H X

H E H E H H

H N

} k

k⋅ X

I

  (8) 

Taking into account the RWDD character of the 
channel matrix, it is possible to verify that βk ≈ 1, 

 and ( )1ˆ ˆdiagk k
− ⋅ ≈H H ( )1ˆdiag 0k k

−⋅ ≈E H . Then, (8) 
becomes: 

( ) ( )1 1ˆ ˆdiag diag .k k k k k k k

− −
⎡ ⎤ ⎡ ⎤≈ − ⋅ ⋅ + ⋅⎣ ⎦ ⎣ ⎦Z X H E X H N  

  (9) 

So, by elaborating (9) to obtain the signal-to-noise ratio, 
the number of bit/symbol (3) results in: 

 

2

2
22 2

1

1log 1
n nn

k kn
k L

nj j
k k N

j
j n

P H
c

e H P
=
≠

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪= + ⋅⎨ ⎬

Γ⎪ ⎪+ σ⎪ ⎪
⎪ ⎪⎩ ⎭

∑
. (10) 

Because of the presence of the random variables ,nj
kH  

 is a random variable as well. In this paper, we consider 
two different approaches for estimating its mean 

n
kc

n
kc ; 

they are described next. From the knowledge of n
kc , the 

mean of  can be derived as well, by using (4). nC
Approximation 1: A first coarse approximation consists 

in replacing, in (10), the mean of 
2

,nj
kH  so that: 

 

2

21 22 2

1

1log 1
n nn

k kn
k L

nj j
k k N

j
j n

P H
c

e H P
=
≠

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪= + ⋅⎨ ⎬

Γ⎪ ⎪+ σ⎪ ⎪
⎪ ⎪⎩ ⎭

∑
. (11) 

Based on the channel model described in Section III, it is 
possible to verify that: 

( ) 2 22 2 ln(10) /10 [ln(10) /10] / 22 2min , e X Xnj nn
k k k j nH H f d d − μ + σ= χ . 

 (12) 

Approximation 2: A more accurate analysis should 
consider  as a function of the random variable: n

kc

  (13) ( ) /10

1 1

min , 10 ,j

L L
Xj

j k j n
j j
j n j n

Y Y P d d −

= =
≠ ≠

= =∑ ∑

and then obtain n
kc  accordingly. Once having fixed the 

scenario,  and j
kP ( )min ,j nd d  are known, so that Y is the 

sum of properly scaled log-normal variables. With simple 
algebra we have (details are given in the Appendix): 

( )
( )

22 2 2

2 22 1 2 2

2

log

         1 ,

Y N Yn n
k k

Y N

Y N

b b
c c

b a b

a
b

⎡ μ + σ + σ⎢= + ⎢ 2
Yμ + + σ + σ⎢⎣

⎤⎛ ⎞
⋅ + ⎥⎜ ⎟μ + σ ⎥⎝ ⎠⎦

 (14) 

27

International Journal on Advances in Telecommunications, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/telecommunications/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



where μY and σY
2 are the mean value and variance of Y, 

and 

 

2
22 2 2     ,      

n nn
k k nn

k k

P H
a b e H= =

Γ
f χ

,k j n ⎤⎦

N

. (15) 

Some analytical methods are known for computing the 
statistical averages of Y, as required in (14). Among them: 
1) Wilkinson’s method is particularly simple and provides 
an explicit solution [15]; 2) Schwartz & Yeh’s method is 
more accurate but requires a recursive approach [16]. 

By applying Wilkinson’s method, we find the 
following expressions: 

( )

( )

( ) ( )

2 2

2 2 2 2

ln10 /10 (ln10 /10) / 2

1

22 ln10 /10 (ln10 /10) (ln10 /10)2

1

2

1 1
,

e min , ,

e e min

     + min , min , .

X X

X X X

L
j

Y k j n
j
j n

L
j

Y
j
j n

L L
j m

k j n k m n Y
j m
j n m j n

P d d

P d d

P d d P d d

− μ + σ

=
≠

− μ + σ σ

=
≠

= =
≠ ≠

μ =

⎧
⎪ ⎡σ = ⎨ ⎣
⎪⎩

⎫
⎪⎡ ⎤ ⎡ ⎤ − μ⎬⎣ ⎦⎣ ⎦
⎪⎭

∑

∑

∑∑
  (16) 

Channel estimation is typically realized through Least 
Squares (LS) or Recursive Least Squares (RLS) algorithms 
[17] and it is based on the transmission of S training 
symbols with constant power level. The goodness of the 
estimate depends on the value of S and on the ratio 

 [10]. Following an analytical procedure similar to 
that reported in [18], it is easy to verify that the average 
number of bit/symbol for user n at tone k, in the case of 
using the LS algorithm, can be written as [2]: 

2/n
kP σ

 

2

2
2

1log 1
1 1

n nn
k kn

k

N

P H
c

L
S

⎧ ⎫
⎪ ⎪⎪ ⎪= + ⋅⎨ ⎬− Γ⎛ ⎞⎪ ⎪+ σ⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

. (17) 

Whilst (10), (11) and (14) refer to a fixed relative error 
percentage, (17) takes into account the variance of the 
estimation error, on the basis of the actual algorithm used 
for channel estimation. It also suggests the main method to 
limit the impact of the error, that consists, as obvious, in 
increasing the value of S. Numerical examples will be 
given in the following section. 

V. NUMERICAL EXAMPLES AND SIMULATIONS 
In our numerical examples we have used the PSD 

mask of the VDSL2 998 bandplan, up to 17 MHz, 
described in Section II. σN

2 has been computed on the 
basis of a background spectral density of −140 dBm/Hz. 

Moreover, we have assumed Γ = 9.75 dB and a maximum 
number of bit/carrier (bit clipping) equal to 15. 

A. Considered scenarios 
By varying the number and length of the interfering 

lines, a huge number of different scenarios can be 
analyzed. Among them, just for explicative purposes, we 
have focused on the following three scenarios, that extend 
a first series of cases already presented in [2]. 

Scenario 1: In the first scenario, we assume that the lines 
have four different lengths, all multiple of a minimum 
value Δd. The situation is schematically shown in Fig. 4 
(where DSLAM means Digital Subscriber Line Access 
Multiplexer and CPE denotes the Customer-Premises 
Equipment). For each length we have L/4 lines, with L = 8 
(Case 1.1) or L = 16 (Case 1.2). In the simulations that will 
be discussed next, we have considered Δd = 0.3 km. 

Scenario 2: In the second scenario, the L/4 lines in the first 
group have length d, while those in the ith group, with i = 
2, 3, 4, have length d + (i – 1) Δd. This scenario is 
schematically shown in Fig. 5. For each length we have L 
= 8 (Case 2.1) or L = 16 (Case 2.2). In the simulations that 
will be discussed next, in particular, we have assumed d = 
0.9 km and Δd = 0.1 km. A case that this scenario is well 
suited to model is the one plotted in Fig. 6, in which a first 
long span arrives up to the cellar of a building and, from 
that, at regular intervals, L/4 lines are separated to cover 
different building floors. 

Scenario 3: In the third scenario, we have L = 8 (Case 3.1) 
or L = 16 (Case 3.2) lines with equal length. This can be 
seen as a special case of Scenario 2, when Δd = 0 is 
assumed. 
 

 
Figure 4.  Schematic description of Scenario 1. 

 

 
Figure 5.  Schematic description of Scenario 2. 
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Figure 6.  Example of application of the Scenario 2. 

B. Examples of average bit rates 
Tables II-V report some examples of computation of 

the average bit rates, for the Scenarios 1 and 2 introduced 
in Section V.A, by assuming the presence of an error 
percentage e in the evaluation of the channel matrix. Both 
the analytical approximations discussed in Section III have 
been considered. 

TABLE II.  EXAMPLES OF AVERAGE BIT RATES FOR CASE 1.1 

Line 
length 
(km) 

Simulation 
based on (9) 

(Mbps) 

Simulation 
based on (8) 

(Mbps) 
1

nC  

(Mbps) 
2

nC  
(Mbps) 

e = 0.1 
0.3 140.56 140.53 136.29 140.44 
0.6 99.93 99.86 100.05 100.41 
0.9 63.25 63.24 63.25 63.28 
1.2 40.91 40.91 40.90 40.90 

e = 0.5 
0.3 115.00 114.95 105.29 114.03 
0.6 89.05 88.94 87.21 92.38 
0.9 60.02 60.01 59.16 61.21 
1.2 40.11 40.11 39.58 40.26 

 

TABLE III.  EXAMPLES OF AVERAGE BIT RATES FOR CASE 1.2 

Line 
length 
(km) 

Simulation 
based on (9) 

(Mbps) 

Simulation 
based on (8) 

(Mbps) 
1

nC  

(Mbps) 
2

nC  
(Mbps) 

e = 0.1 
0.3 135.99 135.92 130.22 135.02 
0.6 98.70 98.52 98.82 99.38 
0.9 63.00 62.98 62.99 63.06 
1.2 40.86 40.85 40.82 40.83 

e = 0.5 
0.3 102.28 102.19 95.76 101.19 
0.6 82.25 82.01 80.83 84.68 
0.9 57.20 57.16 56.16 58.10 
1.2 39.13 39.12 38.27 39.08 

 

TABLE IV.  EXAMPLES OF AVERAGE BIT RATES FOR CASE 2.1 

Line 
length 
(km) 

Simulation 
based on (9) 

(Mbps) 

Simulation 
based on (8) 

(Mbps) 
1

nC  

(Mbps) 
2

nC  
(Mbps) 

e = 0.1 
0.9 63.13 63.12 63.17 63.22 
1.0 54.33 54.32 54.36 54.38 
1.1 46.49 46.48 46.49 46.50 
1.2 40.89 40.88 40.86 40.87 

e = 0.5 
0.9 58.65 58.62 58.06 60.28 
1.0 51.22 51.20 50.90 52.52 
1.1 44.44 44.42 43.99 45.19 
1.2 39.59 39.58 39.01 39.89 

 

TABLE V.  EXAMPLES OF AVERAGE BIT RATES FOR CASE 2.2 

Line 
length 
(km) 

Simulation 
based on (9) 

(Mbps) 

Simulation 
based on (8) 

(Mbps) 
1

nC  

(Mbps) 
2

nC  
(Mbps) 

e = 0.1 
0.9 62.77 62.72 62.83 62.93 
1.0 54.10 54.06 54.14 54.19 
1.1 46.35 46.33 46.34 46.37 
1.2 40.80 40.79 40.76 40.78 

e = 0.5 
0.9 55.33 55.27 54.80 56.69 
1.0 48.73 48.67 48.41 49.92 
1.1 42.59 42.55 41.98 43.16 
1.2 38.28 38.26 37.44 38.36 
 
The reliability of the approximated average bit rates 

has been tested also through a comparison with the 
simulation results. For this purpose, the samples of 

2nj
kH  

have been generated, according to their statistics, and used 
in (10). The confidence of the estimation can be made high 
by increasing the number of random extractions. The 
numerical elaboration has been managed through simple 
programs written in Matlab© and C++. 

Simulations have been performed by considering either 
the exact expression (8) or the approximate expression (9). 
The results confirm that the use of (9) is quite acceptable, 
being related to the RWDD character of matrix Hk. 

We also observe that Approximation 2 is generally 
better for the case of short lengths, while, for longer 
lengths, the gap between the two approximations becomes 
less pronounced. In all the considered cases, the agreement 
between the simulated and the analytical results is good, 
thus proving the effectiveness of the proposed model. 

On the other hand, simulations permit us to derive any 
statistical description of the random variable . In Fig. 7, 
for example, we have plotted the estimated p.d.f. for d = 
0.6 km and e = 0.5, in Case 1.1. Coherent with Table II, 
the calculated mean value of the p.d.f. is 88.94 Mbps; it is 
also noticeable the fact that the curve is very narrow 
around the mean, thus demonstrating a small variance of 
the achievable bit rates, that is another recognized property 
of the vectored systems [7], even in the presence of 
estimation errors. 

n
kc

 

88 88.5 89 89.5 90
0

0.5

1

1.5

2

2.5

3

3.5

4 x 10-6

Bit rate [Mbps]

p.
d.

f.

 
Figure 7.  Estimated p.d.f. for d = 0.6 km and e = 0.5 in Case 1.1. 
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From the tables we see that, just by using S = 100 
training symbols, the average bit rate is very close to the 
ideal result, thus providing the expected high gain with 
respect to the non-vectored system (also shown in the table 
for the sake of reference). We have developed a number of 
similar comparisons for different scenarios; when longer 
loops are considered, the requirement on S can become 
more stringent. Moreover, as clearly shown by (17), for an 
increasing number of lines, the value of S has to be 
increased as well. However, assuming S = 1000 symbols 
should guarantee a limited impact of the estimation errors 
for any VDSL2 scenario of practical interest. 

As stressed above, (17) also permits us to evaluate the 
impact of the estimation error induced by a limited 
number of training symbols. The achievable bit rate for 
different values of S, by considering the Scenarios 1 and 2 
described in Section V.A, are reported in Tables VI-IX. 
For the non-vectored system, the results have been 
obtained by adopting the Approximation 2. 

 

TABLE VI.  AVERAGE BIT RATES AS A FUNCTION OF THE NUMBER 
OF TRAINING SYMBOLS FOR CASE 1.1 

Line 
length 
(km) 

Non- 
vector. 
 (Mbps) 

Vector. 
S = 1 

(Mbps) 

Vector. 
S = 10 
(Mbps) 

Vector. 
.S = 100 
(Mbps) 

Vector. 
S = 1000 
(Mbps) 

Vector. 
Ideal 

(Mbps) 
0.3 96.79 133.88 141.97 144.41 144.66 144.69 
0.6 82.14 79.32 95.86 100.23 100.88 100.96 
0.9 57.11 48.08 59.71 63.01 63.41 63.46 
1.2 38.80 30.95 38.31 40.60 40.92 40.96 

From a different viewpoint, the designer can be 
interested to fix a value of the bit rate and to determine the 
maximum line length that is compatible with it, for a 
suitable total power. Obviously, this length depends on the 
number and length of the interfering lines. Some examples 
are shown in Table X, for “target” bit rates of 50, 75 and 
100 Mbps. The Case 3.1 has been analyzed, and therefore 
the system consists of L = 8 lines of equal length; the value 
of S has been assumed high enough to make the impact of 
the absolute estimation errors negligible. The table shows 
the total power required for reaching the specified bit rates, 
as a function of the line length. Where the label “n.r.” 
appears, this means that the target bit rate cannot be 
reached within a total power of 14.5 dBm that, in Section 
II, has been assumed as a typical value. Focusing attention 
on the bit rate of 100 Mbps, that is the expected value in 
the G.993.5 Standard, we see that the non-vectored system 
is unable to reach it even for the shortest lengths. On the 
contrary, by introducing vectored transmission, the 100 
Mbps target can be reached up to distances longer than 600 
m. Obviously, this conclusion holds for the specific 
scenario here considered (note, in particular, that the 
tagged line and all the interfering ones have the same 
length) but it can be easily extended, updating the limits, to 
other scenarios. 

 

TABLE VII.  AVERAGE BIT RATES AS A FUNCTION OF THE NUMBER 
OF TRAINING SYMBOLS FOR CASE 1.2 

Line 
length 
(km) 

Non- 
vector. 
 (Mbps) 

Vector. 
S = 1 

(Mbps) 

Vector. 
S = 10 
(Mbps) 

Vector. 
S = 100 
(Mbps) 

Vector. 
S = 1000 
(Mbps) 

Vector. 
Ideal 

(Mbps) 
0.3 83.10 127.90 139.91 143.96 144.63 144.69 
0.6 71.77 71.92 91.96 99.58 100.80 100.96 
0.9 51.82 42.82 56.84 62.49 63.36 63.46 
1.2 36.07 27.78 36.42 40.24 40.88 40.96 

 

TABLE VIII.  AVERAGE BIT RATES AS A FUNCTION OF THE NUMBER 
OF TRAINING SYMBOLS FOR CASE 2.1 

Line 
length 
(km) 

Non- 
vector. 
 (Mbps) 

Vector. 
S = 1 

(Mbps) 

Vector. 
S = 10 
(Mbps) 

Vector. 
S = 100 
(Mbps) 

Vector. 
S = 1000 
(Mbps) 

Vector. 
Ideal 

(Mbps) 
0.9 55.32 48.08 59.71 63.01 63.41 63.46 
1.0 48.86 39.87 50.82 54.08 54.50 54.54 
1.1 42.41 34.58 43.43 46.20 46.57 46.62 
1.2 37.80 30.95 38.31 40.60 40.92 40.96 

 

Another relevant aspect that results from the numerical 
analysis is that, depending on the line length, the desired 
bit rate can often be reached by using a total power  
that is significantly smaller than the typical value of 14.5 
dBm. This power saving is another merit of the vectored 
system, and it is seen with particular interest by the 
vendors, for the technological advantages it provides. 

n
TP

TABLE IX.  AVERAGE BIT RATES AS A FUNCTION OF THE NUMBER 
OF TRAINING SYMBOLS FOR CASE 2.2 

Line 
length 
(km) 

Non- 
vector. 
 (Mbps) 

Vector. 
S = 1 

(Mbps) 

Vector. 
S = 10 
(Mbps) 

Vector. 
S = 100 
(Mbps) 

Vector. 
S = 1000 
(Mbps) 

Vector. 
Ideal 

(Mbps) 
0.9 49.68 42.82 56.84 62.49 63.36 63.46 
1.0 44.39 35.37 48.12 53.58 54.44 54.54 
1.1 38.76 30.91 41.15 45.78 46.53 46.62 
1.2 34.74 27.78 36.42 40.24 40.88 40.96 

 

TABLE X.  TOTAL POWER (IN dBm) REQUIRED FOR ACHIEVING THE TARGET BIT RATE IN CASE OF L = 8 LINES OF EQUAL LENGTH 

Line length d (km) Bit rate 
(Mbps) 

Technique 
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 

Vectored −35.2 −28.8 −22.8 −17.9 −13.2 −8.3 −3.3 1.9 7 12.2 n.r. 50 
Non-vectored −30.2 −23.5 −17.1 −11.4 −6.3 −0.4 5.9 12.6 n.r. n.r. n.r. 
Vectored −27.3 −20.9 −14.4 −7.8 −1 5.6 11.6 n.r. n.r. n.r. n.r. 75 
Non-vectored −20.5 −13.4 −5.3 4.9 n.r. n.r. n.r. n.r. n.r. n.r n.r. 
Vectored −19.7 −13.1 −6.2 1.1 9 n.r. n.r. n.r. n.r. n.r n.r. 100 
Non-vectored n.r. n.r. n.r. n.r. n.r. n.r n.r n.r n.r n.r. n.r. 
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VI. EFFECT OF QUANTIZATION ERRORS 
The effect of quantization errors can be modeled in a 

way similar to that discussed in Section IV for the 
estimation errors. This analysis has been reported in [2], 
and is here repeated for the sake of completeness. 

Let us suppose that matrix Pk is represented, in finite 
precision, as a matrix , such that:  ˆ

kP

 , (18) ˆ
k k k= +P P E

where matrix Ek now expresses the quantization errors. 
The latter, in turn, can be related to a matrix Δk as follows: 

 . (19) 1
k k

−= ⋅Δ P Ek

In ideal conditions, we have Δk = Ek = 0. Through simple 
algebra, the signal-to-noise ratio at the nth receiver and the 
kth tone, in the presence of quantization errors, is [10]: 

 

2 2

2 2 2

1

1nn nn n
k k kn

k L
nn nj j
k k k

j
j n

H P
SNR

H P
=
≠

+ Δ
=

Δ + σ∑ N

, (20) 

being  the (n, j)th element of Δk. Eq. (20) can be used 
to replace  in (3), thus reducing the achievable bit 
rate with respect to the ideal condition. By investigating 
the statistical properties of  in presence of quantization 
errors, it is possible to find the number of quantization bits 
needed to have a penalty smaller than a prefixed 
percentage. In this view, an important analytical work was 
done in [10], where a number of bounds were determined, 
and their reliability tested through simulations.  

nj
kΔ

n
kSNR

n
kc

In that paper, however, the elements of Ek were 
modeled as random variables uniformly distributed in the 
range [−2−v, 2−v], where v is the number of quantization 
bits. No specific quantization law was considered. 

Noting by n
kc  the number of bit/symbol for user n at 

tone k in presence of quantization errors, and using (3) and 
(4), the effect on the bit rate is measured by the following 
parameter: 

 1100 100

M
n

n k
k

n n

L
L

C C
=⋅ = ⋅

∑
, (21) 

where 
1

2 1

1
log

1

n
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k k k n

k

SNR
L c c

SNR

−

−

⎧ ⎫+ Γ
= − = ⎨

+ Γ⎩ ⎭
⎬  has the meaning 

of transmission rate loss for the nth receiver at the kth tone 
[10]. Taking into account that the modulus of the diagonal 
elements of matrix Pk is about 1, a first choice consists in 

assuming a midtread quantization law between −1 and 1. 
Because of the RWDD property of matrix Hk, however, 
the off-diagonal elements are very small. So, following 
this quantization law, most of the off-diagonal elements 
become zero after quantization, particularly in the case of 
small v and low frequencies. 

Explicitly, this means that the vectoring procedure is 
made ineffective by quantization. In spite of this, for small 
values of v, the error due to the quantization is, on average, 
smaller than that resulting from the assumption of a 
uniform error. Tables XI and XII show the values of 

/ 100n nL C ⋅ , in Case 3.2 (i.e., with L = 16 lines of equal 
length) as obtained by the model in [10] and by the 
midtread quantization law here considered, for various line 
lengths, namely: d = 0.3 km, d = 0.6 km, d = 0.9 km and d 
= 1.2 km. The difference between the two groups of results 
is evident for small v, while it almost disappears for large 
v. Both tables confirm that, wishing to have a rate loss 
below 4% for line lengths ≥ 0.3 km, v = 14 bits is almost 
always required. Though this value could be implemented 
on the basis of the current technology, it seems 
exaggeratedly high, and, in fact, it can be reduced by using 
a smarter quantization law. 

The key point is the need to distinguish between the 
dynamics of the diagonal elements of Pk, that are close to 
1, and that of the off-diagonal elements, that are much 
smaller than 1. So, in [2] we proposed to adapt the 
midtread quantization law to such dynamics, by assuming 
different quantization thresholds for the two classes of 
data. This approach is further developed and assessed in 
the following. In practice, the 2v quantization levels are 
distributed between −Th1 and Th1 for the diagonal elements, 
and between −Th2 and Th2 for the off-diagonal elements. 
The assumption of Th1 equal to 1 seems a natural choice. 
On the contrary, the choice of Th2 should take into account 
the dynamics of the off-diagonal elements. Fig. 8 shows an 
example of max and average values of ij

kP , with i ≠ j , for 
L = 16 and line length d = 0.3 km or d = 1.2 km. 

While the maximum of ij
kP  can be locally rather high, 

the average value is very small, and the assumption of Th2 
= 0.05 is a reasonable choice, particularly for the short line 
lengths. So, our quantization law assumes a uniform 
distribution in the range [−1, +1], for the diagonal 
elements, and in the range [−0.05, +0.05], for the off-
diagonal elements. It should be noted that the 
implementation of this quantization scheme does not 
require any additional processing, but only a selective 
management of the elements of the precoding matrix. 

The results obtained by using the midtread quantization 
law with different thresholds are shown in Table XIII. In 
comparison with Tables XI and XII, we see a significant 
improvement for any value of v. In particular, the target of 
capacity loss below 4%, for d ≥ 0.3 km, can now be 
achieved by using only v = 10 bits (or even v = 8 bits, for 
the longest lines), with a significant saving with respect to 
the case of equal thresholds. 
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TABLE XI.  / 100n nL C ⋅  WITH UNIFORM GENERATION OF THE 

QUANTIZATION ERRORS FOR CASE 3.2 

d (km) v = 6 v = 8 v = 10 v = 12 v = 14 
0.3 86.28 59.33 33.75 13.79 3.34 
0.6 64.99 37.95 17.73 5.88 1.08 
0.9 60.15 33.40 14.90 4.53 0.71 
1.2 61.23 33.13 14.02 4.11 0.60 

 

TABLE XII.  / 100n nL C ⋅  WITH MIDTREAD QUANTIZATION FOR 

CASE 3.2 

d (km) v = 6 v = 8 v = 10 v = 12 v = 14 
0.3 61.69 50.84 31.85 13.59 3.37 
0.6 38.56 29.24 16.00 5.77 1.13 
0.9 28.76 22.85 12.75 4.36 0.72 
1.2 24.27 20.03 11.37 3.92 0.61 

 
Similar conclusions were drawn in [2], by considering 

different scenarios and parameter values, thus proving the 
effectiveness of the proposed quantization law under rather 
general conditions. 
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Figure 8.  Simulated dynamics for the off-diagonal elements of the 
precoding matrix: (a) d = 0.3 km, (b) d = 1.2 km, in Case 3.2. 

TABLE XIII.  / 100n nL C ⋅  WITH MIDTREAD QUANTIZATION 

ADOPTING DIFFERENT THRESHOLDS FOR CASE 3.2 

d (km) v = 6 v = 8 v = 10 v = 12 v = 14 
0.3 29.79 12.66 3.85 1.65 1.48 
0.6 15.03 5.17 1.21 0.54 0.49 
0.9 11.41 3.58 0.59 0.11 0.07 
1.2 10.17 3.14 0.45 0.05 0.03 

 

VII. CONCLUSION 
Estimation errors and quantization errors can severely 

limit the performance of vectored VDSL systems. The 
analysis of their effects must be performed by taking into 
account the statistical nature of the FEXT. In this paper, 
we have considered the case of a downstream VDSL link, 
where crosstalk is nominally canceled by using a 
diagonalizing precoder. Starting from analytical formulas 
for quantifying the effect of such impairments, we have 
performed a study on practical VDSL scenarios. We have 
verified that the impact of the estimation errors can be 
made negligible by using a number of training symbols in 
the order of S = 1000. Additionally, only 10 bits or fewer 
are required to maintain the capacity loss below 4% in the 
presence of quantization errors in the precoding matrix 
representation. The presented approach also allows to 
analytically determine the transmitted power that is 
necessary to achieve a target bit rate at a given distance, 
that is a key parameter for the design of VDSL systems. 

The analysis has been focused on the VDSL2 17 MHz 
profiles, but it can be extended, for example, to the 
VDSL2 30 MHz profiles, whose adoption is planned for 
the near future. 
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APPENDIX 

Derivation of Approximation 2 
Let us define: 
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the signal-to-noise ratio in the presence of the error 
percentage e. With the positions (13) and (15), we have: 
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Let us define: 

 
2 2

1 2,Na
W Y W Y

b b
+ σ σ
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Both W1 and W2 are log-normal variables, with mean value 
and variance: 
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  (26) 
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Consequently, 

  (27) 1 2 1 2 2log , logWΠ = Π =

are Gaussian variables, with mean value 
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So, through simple algebra, we obtain: 
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where 2
iW , i =1, 2, is the average square value of Wi. 

Finally, by using the expressions above, (14) is derived. 
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