
Multiwavelets in the Context of Hierarchical Stereo Correspondence Matching 

Techniques  

 

 

Pooneh Bagheri Zadeh and Cristian V. Serdean  

Department of Engineering, Faculty of Technology, 

De Montfort University 

Leicester, UK 

E-mail: pbz@dmu.ac.uk , cvs@dmu.ac.uk

 

 
Abstract—This paper presents an evaluation of different types and 

families of multiwavelets in stereo correspondence matching. First, 

the paper introduces two hierarchical stereo matching techniques 

based on balanced and respectively unbalanced multiwavelet 

transforms, which employ normalized cross correlation to search 

for disparities. Different multiwavelet families, with different 

properties and filter types are evaluated, such as balanced versus 

unbalanced multiwavelets and symmetric-symmetric versus 

symmetric-antisymmetric multiwavelets. Each approximation 

subband carries a different spectral content of the original image 

and the information in the basebands of the multiwavelet transform 

is less sensitive to the shift variability of the multiwavelet 

transform. This can be exploited in order to improve the accuracy 

of the initial disparity map. As this initial disparity map is 

estimated at the lowest resolution, it needs to be progressively 

propagated to higher resolution levels. As a result, the search at 

high resolution levels is significantly reduced, thereby reducing the 

computational cost of the overall process and improving the 

reliability of the final disparity map. The evaluation of different 

types and families of multiwavelets shows that unbalanced 

multiwavelets produce a smoother disparity map with less 

mismatch errors compared to balanced multiwavelets. Finally, the 

paper introduces a third technique, which replaces normalized 

cross correlation with a better performing global error energy 

minimization algorithm operating based on a similar hierarchical 

technique. The results show that the multiwavelet techniques 

produce a smoother disparity map with less mismatch errors 

compared to applying a similar matching algorithm in either the 

spatial and/or the wavelet domains. The performance of the 

proposed algorithms is also compared against several state-of-the-

art techniques from the Middlebury database. 

Keywords- Multiwavelets, Correspondence matching, 

Disparity estimation, Stereo vision. 

I.  INTRODUCTION 

Stereo correspondence is an issue of great importance in 
the field of computer vision and 3D reconstruction. It aims to 
find the closest possible match between the corresponding 
points of two images captured simultaneously by two 
cameras placed at slightly different spatial locations. The 
cameras are usually aligned in such a way that each scan line 
of the rectified images corresponds to the same line in the 

other image, hence searching for the best correspondence 
match is restricted to a horizontal search. A disparity map 
generated from the correspondence matching process, along 
with the stereo camera parameters are then used to calculate 
the depth map and produce a 3D view of the scene. Various 
constraints can be taken into account in order to improve the 
accuracy. Even so, the accuracy of the correspondence map, 
which is crucial in generating a precise 3D view of the scene, 
is limited due to a number of problems such as occlusion,   
ambiguity,   illumination variation and radial distortion [2]. 
Area-based (local) and energy-based (global) 

correspondence matching algorithms are the two most 
common types of algorithms used in the literature to generate 
disparity maps. In area-based methods a disparity vector for 
each pixel within a window search area is calculated using a 
matching algorithm, while in energy-based methods, the 
disparity vector is determined using a global cost function 
minimization technique. Area-based methods are fast but 
produce descent results, while the global methods are time 
consuming and generating more accurate results. 
Muhlman et al. [3] presented an area-based matching 

technique for RGB stereo images. This algorithm uses left to 
right consistency and uniqueness constrains to generate the 
initial disparity map. The resulting disparity map is then 
further smoothed by applying a median filter. Another area-
based scheme was proposed by Stefano et al. [4]. Stefano's 
algorithm is based on uniqueness and constraint, but it relies 
on a left to right matching phase. Yoon et al. [5] introduced a 
local correlation based correspondence matching technique, 
which uses a refined implementation of the Sum of Absolute 
Differences (SAD) criteria and a left to right consistency 
check. This algorithm uses a variable correlation window 
size to reduce the errors in the areas containing blurring or 
mismatch errors. Yoon and Kweon [6] proposed another 
local based algorithm, which uses different supporting 
weights based on the colour similarity and the geometric 
distances of each pixel in the search area in order to reduce 
the amount of ambiguity errors.  
Kim et al. [7] reported a global-based technique for 

stereo correspondence matching. This algorithm first 
generates a dense disparity map using a region dividing 
technique based on Canny edge detection. It then further 
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refines the disparity map by minimizing the energy function 
using a Lagrangian optimization algorithm. Ogale and 
Aloimonos [8] proposed another global-based 
correspondence matching algorithm, which is independent of 
the contrast variation of the stereo images. This algorithm 
relies on multiple spatial frequency channels for local 
matching and a fast non-iterative left/right diffusion process 
for the global solution. An energy-based algorithm for stereo 
matching, which uses a belief propagation algorithm, was 
presented in [9].  This algorithm uses hierarchical belief 
propagation to iteratively optimize the smoothness of the 
disparity map. It delivers fast convergence by removing 
redundant computations. Choi and Jeong [10] proposed an 
energy-based stereo matching technique, which models the 
intensity differences between the two stereo images using a 
uniform local bias assumption. This local bias assumption is 
less sensitive to the intensity dissimilarity between the stereo 
images when using normalized crosscorrelation matching 
cost functions. The resulting information from the cost 
function is used in conjunction with a fast belief propagation 
algorithm to generate a smooth disparity map. 
Over the past years much research has been done to 

improve the performance of the correspondence matching 
techniques. Multiresolution based stereo matching 
algorithms have received much attention due to the 
hierarchical and scale-space localization properties of the 
wavelets [11][13]. This allows for correspondence matching 
to be performed on a coarse-to-fine basis, resulting in 
decreased computational costs. Jiang and et al. proposed a 
wavelet based stereo image pair coding algorithm [14]. A 
wavelet transform decomposes the images into low and high 
frequency subbands and the disparity map is estimated using 
both the approximation and edge information. This is 
followed by a disparity compensation and subspace 
projection technique to improve the disparity map estimation.  
Caspary and Zeevi [15] presented another wavelet based 
stereo matching technique. This algorithm employs a 
differential operator in the wavelet domain to iteratively 
minimize a defined cost function. Sarkar and Bansal [13] 
presented a multiresolution based correspondence matching 
technique using a mutual information algorithm. They 
showed that the multiresolution technique produces 
significantly more accurate matching results compared to 
correlation based algorithms at much lower computational 
cost.  
Research has shown that unlike scalar wavelets, 

multiwavelets can possess orthogonality (preserving length), 
symmetry (good performance at the boundaries via linear-
phase), and a high approximation order at the same time [12], 
which could potentially increase the accuracy of 
correspondence matching techniques. Bhatti and Nahavandi 
[16] proposed a multiwavelet based stereo correspondence 
matching algorithm which makes use of the wavelet 
transform modulus maxima to generate a disparity map at the 
coarsest level. This is then followed by the coarse-to-fine 
strategy to refine the disparity map up to the finest level. 
Bagheri Zadeh and Serdean [1] proposed another 
multiwavelet based stereo correspondence matching 
technique. They used a global error energy minimization 

technique to find the best correspondence points between the 
same multiwavelet's lowest frequency subbands of the stereo 
pair, followed by a fuzzy algorithm to form a dense disparity 
map.  
In spite of their highly desirable properties compared to 

scalar wavelets, literature surveys show that the application 
of multiwavelets in stereo correspondence matching has 
received relatively little attention so far.  
This paper, investigates the application of different types 

and families of multiwavelets in the context of stereo 
correspondence matching. For this purpose, a multiwavelet is 
first applied to the input stereo images to decompose them   
into a number of subbands. Normalized cross correlation is 
used to generate a disparity map   at   the   coarsest   level.   
In   the   case   of   balanced multiwavelets, as the four low 
frequency subbands have similar spectral content, they can 
be shuffled to generate a single baseband, while in the case 
of unbalanced multiwavelets, the resulting basebands are 
used to form four disparity maps and then a Fuzzy algorithm 
is used to combine the four maps and generate a single 
disparity map. Furthermore, the paper also presents a novel 
hierarchical, multiwavelet based stereo correspondence 
matching algorithm, which employs a global error energy 
minimization algorithm to generate a disparity map for each 
of the four approximation subbands of the multiwavelet 
transformed input stereo pair. Again, a Fuzzy algorithm is 
used to combine the four disparity maps and generate an 
initial disparity map. As in the previous techniques, the 
initial estimated disparity map is then refined at higher 
resolution levels, taking advantage of the hierarchical, 
multiresolution nature of the multiwavelets to efficiently 
generate a more accurate final disparity map. This map is 
further smoothed with the aid of a median filter.  
The rest of the paper is organized as it follows. Section II 

presents a brief review of the multiwavelet transform. An 
evaluation of different types and families of multiwavelets in 
the context of stereo correspondence matching is presented 
in Section III. The proposed hierarchical stereo matching 
technique based on global error energy minimization is 
introduced in Section IV. Experimental results are presented 
and discussed in Section V, while Section VI is dedicated to 
the conclusions. 

II. MULTIWAVELET TRANSFORM 

Multiwavelet transforms are in many ways similar to 
scalar wavelet transforms. Classical wavelet theory is based 
on the following refinement equations: 
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where ( )tφ  is a scaling function, ( )tψ  is a wavelet function, 

kh and kg  are scalar filters and m represents the subband 

number.   In contrast  to  wavelet   transforms,  multiwavelets  
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Figure 1.  Multiwavelets basis functions, a) balanced, b) unbalanced. 

have two or more scaling and respectively wavelet functions. 
The set of scaling and wavelet functions of a 

multiwavelet in vector notation can be defined as: 
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where ( )tΦ and ( )tΨ  are the multiscaling and respectively 

multiwavelet functions, with r scaling- and wavelet 
functions. In the case of scalar wavelets 1=r , while 
multiwavelets support 2≥r . To date, most multiwavelets are 
restricted to 2=r . Such multiwavelets possess two scaling 
and two wavelet functions and can be represented as [17]: 
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Figure 2.  Analysis/synthesis stage of one level multiwavelet transform. 

 

Figure 3.  One level of 2D Multiwavelet decomposition. 
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where kH  and kG are rr × matrix filters and m is the 

subband number. Figure 1 shows an example of balanced 
and unbalanced multiwavelet basis functions. 
Similar to wavelet transforms, multiwavelets can be 

implemented using Mallat's filter bank theory [11]. Figure 2 
shows one level of analysis/synthesis for a 1D multiwavelet 
transform, where blocks G  and H  are low- and high-pass 

analysis filters and ~G and ~H are low- and high-pass 

synthesis filters. Due to its separability property, a 2D 
multiwavelet   transform   can   be   implemented via two 1D 
transforms. Therefore, for one level of decomposition, a 2D 
multiwavelet with multiplicity 2=r generates sixteen 

subbands, as shown in Figure 3. In Figure 3, yxLL represent 

the approximation subbands while yxHL , yxLH and yxHH  

are the detail subbands, with 2,1=x  and 2,1=y .  

The major advantage of multiwavelets over scalar 
wavelets is their ability to possess symmetry, orthogonality 
and higher order of approximation simultaneously, which is 
impossible for scalar wavelets. Furthermore, the 
multichannel structure of the multiwavelet transform is a 
closer approximation of the human visual system than what 
wavelets offer. In the case of unbalanced multiwavelets, the  
resulting  approximation subbands  carry different spectral 
content of the original image (both high- and low-
frequencies), while for balanced multiwavelets, the 
approximation subbands contain similar spectral content of 
the original image [19]. This feature of unbalanced 
multiwavelets has the  potential to  increase  the  accuracy  of  
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(a)

(b)

(c)
 

Figure 4.  Single level decomposition of Lena test image (a) Antonini 9/7 
wavelet transform,  (b) balanced bat01 multiwavelet transform and (c) 

unbalanced GHM multiwavelet transform. 

the calculated disparity maps and reduce the number of 
erroneous     matches     compared    to    that    of    balanced 
multiwavelets.  
A visual comparison of the resulting subbands for a 2D 

wavelet, balanced and respectively unbalanced multiwavelet 
decomposition is shown in Figure 4. Antonini 9/7 wavelet 
and, balanced bat01 and unbalanced GHM multiwavelets 
were applied to Lena test image and results are illustrated in 
Figures 4(a) to 4(c), respectively. As it can be seen from 
Figure 4, multiwavelets generate four subbands instead of 
each subband that wavelets create. The resulting unbalanced 
multiwavelet subbands carry different spectral content of the 
original Lena test image, while the balanced multiwavelet 
subbands produce similar spectral content of the original 
image. More information about the generation of 
multiwavelets, their properties and their applications can be 
found in [12], [17] and [18]. 

III. EVALUATION OF MULTIWAVELET FAMILIES IN 
STEREO CORRESPONDENCE MATCHING 

The proposed stereo correspondence matching evaluation 
system is based on multiwavelets and normalized cross 
correlation. Figures 5(a) and 5(b) show the block diagrams of 
the proposed system for both balanced and respectively 
unbalanced multiwavelets. A pair of stereo images is input to 
the stereo matching system. The images are first rectified to 
suppress vertical displacement. A multiwavelet transform is 
then applied to each input stereo image. Different types and 
families of multiwavelets are evaluated. Since the 
information in the approximation subbands is less sensitive 
to the shift variability of the multiwavelets, these subbands 
are used in the correspondence matching process. In the case 
of balanced multiwavelets (Figure 5(a)), as their basebands 
contain similar spectral information, it is possible to use the 
shuffling technique proposed in [27] to rearrange the 
multiwavelet coefficients and generate a single low 
frequency subband. Figure 6 shows how four multiwavelet 
basebands are reshuffled to form a single baseband. Figure 
6(a) shows the four multiwavelet basebands with eight pixels 
(two from each baseband) highlighted and given a unique 
numeric label. Figure 6(b) shows the same set of pixels after 
reshuffling, where coefficients corresponding to the same 
spatial locations in different basebands are placed together to 
generate a single baseband. Normalized cross correlation is 
then employed to find the best correspondence points 
between the two basebands of the stereo image pairs and a 
disparity map is generated. 
Figure 5(b) shows the block diagram of the unbalanced 

multiwavelet based stereo matching system. While the 
shuffling technique works very well for balanced 
multiwavelets, it is not suitable for unbalanced multiwavelets 
due to the different spatio-frequency content of the four 
approximation subbands. The unbalanced multiwavelet 
basebands contain both high and low frequency information 
with L1L1  (top left baseband)  containing  most  of  the  
image energy. For correspondence matching purposes, the 
same basebands from the two views are input to the 
normalized cross correlation block, generating four   
disparity    maps    as    a    result.    A    Fuzzy   algorithm   is  
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Figure 5.  Block diagram of multiwavelet based stereo matching 
technique, for (a) balanced- and (b) unbalanced-multiwavelets. 

employed to combine the four disparity maps. This algorithm 
gives a higher weight to the disparity values resulting from 
the L1L1 subbands.  The disparity values in the other three 
disparity maps are used to refine the initial disparity map. 

LL

L1L1
L1L2

L2L1 L2L2

 
 

Figure 6.  Shuffling method for multiwavelet baseband coefficients; 
selected pixels are numbered to indicate correspondence (a) before 

shuffling and (b) after shuffling. 

These initial disparities generated at the lowest resolution for 
both unbalanced and balanced multiwavelets are passed on 
to higher resolution levels. This process is detailed in Section 
IV sub-section B. Finally a median filter is applied to the 
resulting disparity map to further smooth the resulting 
disparities and generate the final disparity map. 

IV. HIERARCHICAL MULTIWAVELET-BASED STEREO 
CORRESPONDENCE MATCHNING  

Figure 7 shows a block diagram of the proposed 
hierarchical multiwavelet-based stereo matching technique 
which employs a global error energy minimization 
algorithm. A pair of rectified stereo images is input to the 
system. An unbalanced multiwavelet transform is then 
applied to the stereo images to decorrelate them into their 
subbands. In this paper, an unbalanced multiwavelet with a 
multiplicity order r=2 is used, and as such the multiwavelet 
transform of each input image contains four basebands. The 
basebands of the unbalanced multiwavelets contain both high 
and low frequencies information, with L1L1 (top left 
baseband) containing most of the image energy. For 
correspondence matching purposes, the same basebands 
from the two views are input to a regional-based stereo 
matching block generating four disparity maps as a result 
[20]. This global error energy minimization technique is 
briefly described in sub-section A. The Fuzzy algorithm, 
which was discussed in Section III, is then employed to 
combine the four disparity maps. The initial disparity is 
estimated at the lowest resolution and the information needs 
to be progressively passed on to higher resolution levels. 
Hence, the search at high resolution levels is significantly 
reduced, thereby reducing the computational cost of the 
overall algorithm. This process is detailed in sub-section B. 
Finally a median filter is applied to the last processed 
disparity map to further smooth the final disparity map. 

A. Global Error Energy Minimization technique 

The Global Error Energy Minimization (GEEM) 
technique [20] employed in this paper calculates a disparity 
vector for each pixel. It searches for the best match for each 
pixel in the correspondence search area of the other image 
using   an  error  minimization  criterion.   For  RGB  images, 
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the  error  energy criteria can be defined as: 
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where 1I and 2I  are the two input images,  

),,,( yxen wwjiEr is the energy difference of the pixel 

),(2 jiI and pixel ),(1 yx wjwiI ++ , xd is the maximum 

displacement around the pixel in the x  direction, yd is the 

maximum displacement around the pixel in the y  direction,   

m and n represent the image size and k  represents the three 

components of an RGB image. 
In order for the GEEM algorithm to determine the 

disparity vector for each pixel in the current view, it first 

calculates enEr of each pixel with all the pixels from its 

search area in the corresponding image. For every disparity 

vector ),( yx ww  in the disparity search area, the energy of 

the error is calculated using Equation 4 and placed into a 
matrix.  Each of the resulting error energy matrices is first 
filtered using an average filter to decrease the number of 
incorrect matches [21]. The disparity index of each pixel is 
then determined by finding the disparity index from the 
matrix, which contains the minimum error energy for that 
pixel. In order to increase the reliability of the disparity 
vectors around the object boundaries, which is the result of 
object occlusion in images, the generated disparity map 
undergoes a thresholding procedure as it follows:  
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where ),(
~

jid  is the processed disparity map, ),( jid  is the 

original disparity map, α  is a tolerance reliability factor and 
),( jiEren  is the minimum error energy of the pixel ),( ji  

calculated and selected in the previous stage. Finally a 
median filter is applied to the processed disparity map 

),,(
~

jid to further smooth the resulting final disparity map. 

 

B. Hierarchical disparity propagation 

The information in the initial disparity map, generated at 
the coarsest level, needs to be refined by propagating it to the 
higher resolutions. Based on the wavelet theory, one point 

),( yx of a coarse subband in the decomposition level 1+i  

corresponds to four points )2,2( yx , )2,12( yx + , 

)12,2( +yx   and  )12,12( ++ yx  of  its  finer  subband  at 

the  decomposition  level  i .  If  ),( yx   in   the   left   image 
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Figure 7.  Block diagram of the hierarchical multiwavelet-based stereo 
matching technique using the global error energy minimization algorithm. 

corresponds to ),( '' yx  in the right image at level 1+i , 

)2,2( yx corresponds to one of the four points )2,2( '' yx , 

)2,12( '' yx + , )12,2( '' +yx and )12,12( '' ++ yx  from level 

i . Hence, the disparity in level 1+i can be propagated to the 

next finer level i  by: 

 

dyxDyxD ii ∆+= + ),(2)2,2( 1                      (6) 

 

where d∆  is one of  )0,0( , )0,1( , )1,0(  and )1,1( , which 

minimizes the error of the matching metric. Disparities at the 

remaining points are interpolated from )2,2( yxDi . A 

similar method has been employed in [13]. 

V. SIMULATION RESULTS 

The performance of the proposed algorithms discussed in 
this paper has been assessed against the 'Cones', 'Tsukuba',  
'Teddy'  and 'Venus' standard stereo test images from the 
Middlebury stereo database [22]. Figure 8 shows the left 
image and the ground truth for these test images. The 
performance of different types and families of multiwavelets 
in the context of stereo correspondence matching has been 
evaluated  using  the 'Teddy'  and  'Cones' stereo  test  images  
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(a) ‘Cones’

(b) ‘Teddy’

(c) ‘Tsukuba’

(d) ‘Venus’
 

Figure 8.  The left image and the ground truth of the (a) 'Cones', (b) 
'Tsukuba', (c) 'Teddy' and (d) 'Venus' stereo test images. 

based on the evaluation system discussed in Section III. 
Figures 9(a) to 9(h) give a visual comparison of the 
generated disparity maps for multiwavelet 

subbands 11LL , 21LL , 12LL  and 22LL of the 'Teddy' and 

'Cones' stereo test images. The experimental results were 
generated using a number of multiwavelet types, i.e., 
balanced versus unbalanced, and symmetric-symmetric 
(SYM - SYM)  versus    symmetric - antisymmetric  ( SYM - 
ASYM) multiwavelets (as listed   in   Table I).   Table  I   
shows  the percentage  of  "bad pixels"  at  which  the  
disparity  error is larger than 1, for all regions (all). As it can 
be seen from the results presented in Table I, generally 
unbalanced multiwavelets give better results compared to the 
balanced multiwavelets. Furthermore, the symmetric-
symmetric multiwavelets seem to produce slightly better 
results compared to symmetric-antisymmetric multiwavelets 
such   as   SA4.   However,  the  symmetric - symmetric   and  

( a ) ( b )

( c ) ( d )

( e ) ( f )

( g ) ( h )  
Figure 9.  Disparity maps obtained by using the multiwavelet basebands of  

the 'Teddy' stereo test image for subbands: a) 11LL , b) 21LL , c) 12LL  

and d) 22LL  and respectively 'Cones' stereo test image for subbands: 

e) 11LL , f) 21LL , g) 12LL  and h) 22LL . 

symmetric-antisymmetric filter nature of multiwavelets 
doesn't seem to have a significant effect on the resulting 
disparity maps. The resulting disparity  maps for balanced 
GHM and unbalanced BIGHM multiwavelets, applied to the 
'Cones' and 'Teddy' test images are shown in Figures 10(a) 
and 10(b). From these figures, it is clear that the unbalanced 
multiwavelet based algorithm produces more accurate and 
smoother disparity maps compared to the balanced 
multiwavelet. This can be explained by the fact that the 
approximation subbands of the unbalanced multiwavelet 
carry different spectral content of  the  input  images,  
which  in turn enables  the  matching  algorithm to generate 
more reliable matches. 
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TABLE I.  EVALUATION RESULTS OF DIFFERENT MULTIWAVELETS IN 
STEREO CORRESPONDENCE MATCHING. 

 

'TEDDY' (ALL) 
Balanced Multiwavelets Unbalanced Multiwavelets 

CARDBAL2 9.78 BIH32S 8.82 

CARDBAL 3 9.54 BIH52S (SYM-SYM) 9.06 

BAT 01 9.98 BIH34N 8.82 
BAT02 9.69 BIH54N (SYM-SYM) 9.24 

GHM (SYM-SYM) 10.35 BIGHM 8.91 

  SA4 (SYM-ASYM) 10.01 

'CONES' (ALL) 
Balanced Multiwavelets Unbalanced Multiwavelets 

CARDBAL2 9.82 BIH32S 9.65 

CARDBAL 3 9.40 BIH52S (SYM-SYM) 9.73 

BAT 01 10.23 BIH34N 9.65 

BAT02 9.77 BIH54N (SYM-SYM) 9.76 

GHM (SYM-SYM) 10.59 BIGHM 9.45 

  SA4 (SYM-ASYM) 9.73 

 
 
The performance of the proposed multiwavelet based 

GEEM technique has been evaluated   against   the  'Cones',  
'Tsukuba',  'Teddy'  and 'Venus' stereo test images. The 
performance of the proposed multiwavelet based GEEM 
algorithm is first benchmarked against similar GEEM 
algorithms operating in the spatial domain and respectively 
in the wavelet domain. A visual comparison of their 
performance is presented in Figure 11. The experimental 
results were generated using the GHM multiwavelet and the 
Antonini 9/7 scalar wavelet. The resulting disparity maps 
obtained using the proposed multiwavelet based algorithm, 
the wavelet based algorithm and respectively the GEEM 
technique applied to the original stereo   views   for   the   
'Teddy'  and  'Cones'   stereo   pairs,  are illustrated in Figures 
11(a), 11(b) and 11(c) respectively.  In these figures, areas 
with intensity zero represent occluded and unreliable 
disparities. As Figure 11 shows, the proposed multiwavelet 
based algorithm produces significantly more accurate and 
smoother disparity maps compared to both wavelet and 
spatial domain GEEM based algorithms. This can be 
explained by the multichannel structure of the multiwavelet 
transform, where the four resulting subbands carrying 
different spectral content of the input images, enable the 
global error energy minimization algorithm to generate more 
reliable matches. Operating on multiple channels with a 
narrower, more adaptive frequency spectrum split is certainly 
consistent with the structure of the human visual system 
itself, and from this point of view multiwavelets can be seen 
as a closer approximation of the human visual system than 
wavelets. 
In order to give an objective quality comparison, the 

proposed algorithm is also evaluated against some well 
known techniques from the Middlebury database [22]. The 
results are presented in Table II. The chosen algorithms used 
for comparison are: AdaptingBP [23] (ranked second in the 
Middlebury database), DoubleBP [24] (ranked fourth in the 
Middlebury database), Graph Cut [25] and DP [26]. Table II 
shows the percentage of "bad pixels" at which the disparity 
error is bigger than 1. For each pair of images, the results in 
non-occluded regions (nonoc.), all regions (all) and depth 
discontinuity regions (disc.) are presented.   From Table II, it  

( a )

( b )  
Figure 10.  Disparity maps for  'Cones' and 'Teddy' stereo test image (a) 

unbalanced BIGHM and (b) balanced  GHM multiwavelets.   

can be seen that the multiwavelet based algorithm produces 

the second best results for 'Cones' and 'Teddy'  stereo  test  

images,   while   for   'Tsukuba'  and  'Venus'  it  ranks  third, 

and respectively third  relative to the other four algorithms 

used for this comparison.  

VI. CONCLUSIONS 

This paper presented an investigation into the application 
of different types and families of multiwavelets in the 
context of stereo correspondence matching. The paper 
introduced a new multiwavelet-based stereo matching 
technique which employs a global error energy minimization 
algorithm. For evaluation purposes, two correspondence 
matching algorithms were designed to deal with both 
balanced and unbalanced multiwavelets. In the case of 
balanced multiwavelets, due to the similar frequency content 
of the four multiwavelet approximation subbands, they were 
re-shuffled to generate one baseband and then normalized 
cross correlation was employed to generate a disparity map. 
In the case of unbalanced multiwavelets, normalized cross 
correlation was applied to the four resulting basebands 
leading to four   disparity   maps.   These   maps   were then 
combined using a Fuzzy algorithm to form a single disparity 
map. The initial disparity map was then refined by 
hierarchically propagating it to the finer levels. The results 
generated using Middlebury stereo test images show that 
unbalanced multiwavelets work better than balanced ones for 
stereo correspondence matching, while the symmetric-
symmetric and symmetric-antisymmetric nature of the 
multiwavelets doesn't have a significant effect in reducing 
erroneous matches. 
This paper also introduced a hierarchical stereo matching 

technique based on multiwavelet transform and global error 
energy minimization algorithms. For one level of 
decomposition, a multiwavelet transform with multiplicity of 
2, decomposes the input stereo images into 16 subbands. The 
resulting four approximation subbands of the two views were  
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TABLE II.  EVALUATION RESULTS BASED ON THE ONLINE 
MIDDLEBURY STEREO BENCHMARK SYSTEM. 

ALGORITHM 
'TSUKUBA' 

NONOC. ALL DISC. 

PROPOSED METHOD 0.89 1.39 5.9 

ADAPTINGBP 1.11 1.37 5.79 

DOUBLE BP 0.88 1.29 4.76 

GRAPH CUT 1.27 1.99 6.48 

DP 4.12 5.04 12 

 'VENUS' 
PROPOSED METHOD 2.59 2.61 2.02 

ADAPTINGBP 0.1 0.21 1.44 

DOUBLE BP 0.13 0.45 1.87 

GRAPH CUT 2.79 3.13 3.6 

DP 10.1 11 21 

 'TEDDY' 
PROPOSED METHOD 6.45 7.12 9.31 

ADAPTINGBP 4.22 7.06 11.8 

DOUBLE BP 5.53 8.30 9.63 

GRAPH CUT 12 17.6 22 

DP 14 21.6 20.6 

 'CONES' 
PROPOSED METHOD  7.25 8.09 10.66 
ADAPTINGBP 2.48 7.92 7.37 

DOUBLE BP 2.90 8.78 7.79 

GRAPH CUT 4.89 11.8 12.1 

DP 10.5 19.1 21.1 

 
then used to generate a set of four disparity maps using a 
global error energy minimization algorithm. The resulting 
four disparity maps were then combined using a Fuzzy 
algorithm. The output of the Fuzzy combination algorithm 
constitutes the initial disparity map, which was then refined 
by hierarchically propagating it to the finer levels.  Results 
show that the proposed technique produces a disparity map 
with significantly less mismatch errors compared to the same 
global error energy minimization algorithm applied to the 
original image data or to the wavelet transformed image data. 
The performance of the proposed multiwavelet based 
algorithm has been compared to other well-known 
techniques benchmarked and published in the Middlebury 
database. The results show that the proposed multiwavelet 
based algorithm fares well against many well established 
algorithms ranked at top positions in the Middlebury 
database. The multichannel nature of the multiwavelets and 
the different spectral content of the resulting subbands allow 
for greater correspondence matching flexibility than in the 
case of wavelets, and explain why the multiwavelet based 
technique performs better than when similar global error 
energy algorithms were applied in the wavelet and 
respectively the spatial domain. 
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