

SIP Server Implementation and Performance on a
Bare PC

A. Alexander, R. Yasinovskyy, A. L. Wijesinha, and R. Karne
Department of Computer & Information Sciences

Towson University
Towson, MD 21252

USA

Abstract—We describe the implementation and performance
of a bare PC SIP server that runs without the support of an
operating system (OS) or kernel. A bare PC SIP server provides
immunity against OS vulnerabilities and yields performance
gains due to the elimination of OS overhead. We discuss server
design focusing on its novel architectural features and illustrate
key implementation aspects by examining relevant task and
method invocations for SIP request processing. We also study
bare PC SIP server performance by comparing its latency and
throughput against two conventional OS-based SIP servers
running on equivalent hardware: OpenSER on Linux and
Brekeke on Windows. Furthermore, we measure internal bare
PC SIP server performance by providing internal timings for the
most significant operations associated with registration and
proxy services. Additionally, we study performance under
increasing server load by obtaining the execution time spent in
the bare PC SIP handler method and the total processing time
including network protocol processing overhead when processing
SIP requests and responses. The results show that the bare PC
server performs better than the OS-based servers in most cases
and that its internal processing times are small as would be
expected due to the elimination of OS overhead. The design and
implementation details of the bare PC SIP server presented here
give insight into understanding SIP server performance on a bare
machine.

Keywords-SIP server, implementation, performance, internal
timings, bare machine computing, operating systems.

I. INTRODUCTION

Bare PC or bare machine systems run on the hardware
without the need for an operating system (OS) or kernel. In [1],
the performance of a bare PC SIP server running on an
ordinary desktop was studied. It was shown that in most cases
the server performs better than two conventional (OS-based)
SIP servers running on identical non-server machines. This
paper is an extended version of [1] that gives details underlying
the implementation of the bare PC SIP server and new internal
timings for key server operations. Material relevant to server
design and implementation is taken from [2]. However, it is
supplemented with details concerning tasking and method
invocations that were omitted in [2]. Additionally, the new
internal timings under increasing server load given here are
more accurate than the approximate timings initially reported in
[1]. The implementation specifics and new timing results

provide further insight into bare PC SIP server operation and
performance.

Previous studies on bare PC email and Web servers show
that they significantly outperform their counterparts running on
conventional OS-based systems [3] [4]. Bare PC applications
and servers also have inherent immunity to attacks that target
vulnerabilities of a given OS. Many studies have dealt with the
design and performance of network and security protocols in a
bare PC. For example, the performance of SRTP for bare PC
VoIP is evaluated in [5], and peer-to-peer communication
among bare PC VoIP clients is discussed in [6]. However, there
have been no studies of SIP (Session Initiation Protocol) on a
bare PC. SIP is the most frequently used protocol today for
initiating VoIP calls and for media session support with a
variety of other applications including video streaming, instant
messaging, gaming, and IPTV. For example, most SIP servers
can provide voice, video, instant messaging, and presence
services.

In general, SIP servers locate and register clients, provide
proxy services for forwarding SIP messages, or redirect SIP
requests to other servers. An optimized SIP server can thus
help improve the overall performance of audio or video
applications by supporting audio or multimedia sessions
(although it is typically not directly involved in the actual
transmission of audio or video). The throughput and latency of
the SIP server when responding to requests from SIP user agent
clients and other SIP servers are often used as measures in
evaluating its performance.

We use a popular open source SIP workload generator to
evaluate the performance of the bare PC SIP server by
measuring its throughput and latency for registration, proxying,
and redirection, with and without authentication, for increasing
workloads. We compare performance of the bare PC server
with popular OS-based (Linux and Windows) servers for the
same workloads when running on compatible hardware. Our
results show that the bare PC SIP server has higher or equal
throughput to the Linux server and higher throughput than the
Windows server, except in case of redirection, when its
throughput is less than that of the Linux server. The latency
performance of the bare PC server is also shown in general to
be better than or equal to that of Linux server and better than
that of the Windows server, except for invite with
authentication and invite-not-found without authentication. We

82

International Journal on Advances in Telecommunications, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/telecommunications/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

also provide internal timings measured on the bare PC SIP
server.

The performance results of the server are better understood
by examining its design and implementation details. To this
end, we describe the bare PC SIP server components within the
self-supporting application object (AO) that runs directly on the
PC hardware. In particular, we examine SIP packet processing
for requests and their responses. In addition, tasking is
discussed and examples of method invocations are given to
highlight protocol intertwining and other novel implementation
characteristics in the bare PC SIP server.

Our contributions in this paper include: 1) results
characterizing the performance of a bare PC SIP server running
on an ordinary desktop; 2) internal timings for SIP-related
operations on a bare PC SIP server; 3) comparisons of the
throughput and latency for a bare PC SIP server, Linux and
Windows servers running on identical machines; and 4) design
and implementation details of the bare PC SIP server.

The rest of this paper is organized as follows. In Section II,
we summarize related work. In Section III, we describe the
design of the bare PC SIP server and relevant optimizations. In
Section IV, we provide implementation details of the server. In
Section V, we give the experimental setup and discuss the
results of the performance study. In Section V, we present the
conclusion.

II. RELATED WORK

There are many commercial and open source servers
implementing SIP and its companion protocol SDP. While a
SIP server usually runs over UDP and in some cases over TCP,
the use of SCTP as a transport protocol for SIP has also been
studied [7]. An early study on SIP server performance [8]
found that the overhead on a Java SIP server due to security
mechanisms such as authentication and TLS was negligible.
However, the study in [9], which measured throughput and
latency in a dedicated gigabit Ethernet for stateless and stateful
proxies over UDP and TCP, showed that authentication, TCP,
or the operation/server configuration can significantly change
SIP server performance. Their experiments were conducted
using a 3.06 GHz server class machine, and only the
performance of a single SIP server (OpenSER on Linux) was
evaluated. In [10], SIP server performance for several stateful
SIP proxies over UDP was evaluated. The authors concluded
that the overhead due to string processing operations and
memory management could consume significant processing
time and that performance varied considerably depending on
the proxy. Recent work on SIP servers has dealt with
performance under overload conditions [11], scalability issues
[12] [13], load balancing [14], and the impact of transport
protocols on performance [15].

The main difference between previous performance studies
and the performance studies in this paper is that we study the
performance of a bare PC SIP server and compare it with the
performance of two OS-based SIP servers using ordinary
desktop (non-server) machines. Also, in addition to evaluating
performance for the usual register, invite, and redirect
operations, we also evaluate SIP server performance for the
register update, register logout, and invite-not-found operations

likely to be encountered in practice. Internal timings for key
operations measured on the bare PC SIP server are also
reported. We only consider SIP over UDP with stateless
proxying, which is the most common configuration when
setting up VoIP calls.

Previous work describing the design and implementation of
SIP servers that require an OS. For example, in [16], a SIP
server is implemented on top of an existing SIP stack, and in
[17], SIP servers are implemented on the Solaris 8 OS. These
studies focus primarily on the high-level SIP implementation
on a conventional system, whereas the design and
implementation of the bare PC SIP server is based on the
underlying bare computing paradigm and architecture.

III. DESIGN

This section describes key design details of the bare PC SIP
server. We begin by briefly outlining bare application
characteristics in general and then give an overview of the bare
PC server.

A. Bare PC Applications

Any bare PC or bare machine computing application,
including the bare PC SIP server, is encapsulated in an
application object (AO) [18]. Since there is no OS, minimal
code for the application to directly run on the PC hardware is
contained in the AO. This means that the AO contains the code
for the bootable self-executing application itself, any required
network interface drivers, handlers for protocols used by the
application, and memory and task management mechanisms to
facilitate concurrency and scheduling [19]. Real memory is
used since there is no hard disk, and application code is
intertwined with protocol code to eliminate redundancy and
improve efficiency as in the case of bare PC Web and email
servers [4] [20].

B. SIP Server Overview

The bare PC SIP server AO implements a lean version of
SIP that provides essential functionality only. Additional
features such as those needed to support load balancing and
media stream security are not included. Although a bare PC
SIP server that can operate over TCP or UDP has been
implemented, this paper only considers SIP over UDP since the
majority of SIP servers employed in practice use UDP.

The SIP server AO consists of several objects. In addition
to the Ethernet, IP, UDP, and SIP objects, the DHCP and trivial
FTP (TFTP) objects provide lean implementations of these
protocols and are used as needed (for example, at server start-
up) as described in the next section. An MD5 object is used to
provide support for user authentication via standard SIP
authentication (i.e., HTTP-Authentication) when authentication
is enabled for registration and proxying.

An incoming UDP packet containing a SIP message is
placed in the Ethernet buffer, where the bare PC SIP
application can directly access it i.e., real mode is used and
there is no notion of user space or kernel space since there is no
OS. The Ethernet handler processes the packet, determines that
the packet is for IP, and the IP handler in turn processes the

83

International Journal on Advances in Telecommunications, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/telecommunications/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

packet and invokes the UDP handler, which verifies the UDP
checksum (if this feature is enabled) and the port number. In
case of the SIP server, the port number is 5060 and the packet
is finally processed by the SIP handler. To send a response, the
SIP, the UDP, IP and Ethernet handlers add the respective
headers before the packet is transmitted by the network
interface hardware. Data copying is minimized in the bare PC
SIP server since there is a single copy of the message and
headers are added and removed as in a conventional system by
manipulating pointers.

In addition to the usual Main and Receive (Rcv) CPU
tasks, which are used in all bare PC systems, the bare PC SIP
server has a SIP task to handle each SIP request. This task
design strategy simplifies task management, minimizes
context (task) switching, and increases efficiency. The Main
task runs upon start-up and whenever the Rcv task or a SIP
task terminates. It activates the Rcv task whenever a packet
arrives in the Ethernet buffer. It also activates a SIP task for
processing after it is determined that the packet is for SIP. This
SIP task runs until SIP processing is complete and the
response is sent. Once the SIP task terminates, the Main task
runs again. Thus, when the SIP Server AO’s Rcv task is
activated by the Main task upon the arrival of a SIP request in
the Ethernet buffer, a single thread of execution handles the
request all the way from the Ethernet level through the IP and
UDP handlers. Then the SIP task runs as described above.
This simple task design approach reduces the processing
overhead.

Figure 1. SIP server protocol/task relationships.

As described in [2] and shown in Figure 1, it is possible to
use only two CPU tasks in the SIP server AO: a receive (Rcv)
task that processes a received packet all the way from its
arrival in the Ethernet buffer until a response is sent, and a
Main task that runs whenever a Rcv task completes (and also
when the system is booted or the system is idle). For example,
for a register message, the Rcv task itself could manage the
lookup and update operations and send the response to the
client. However, it is more convenient and efficient (as in the
present version of the SIP server) to use a separate SIP task for
each request as discussed above. In case of the invite message
for example, a new SIP task is activated to handle the request.
Since there may be a delay in contacting the peer (callee), the
SIP task could be suspended and resumed when the response
arrives. In general, since a typical workload involves a mix of
requests for different services, bare PC SIP server
performance is improved by the concurrent handling of
requests. This strategy of allowing a CPU task to run to
completion unless it has to wait for an event such as a

response enables the CPU to be kept busy doing useful work.
Simple task management and the disabling of timer interrupts
on bare PC servers also reduce context switching (compared to
conventional OS-based servers) and improve performance.

IV. IMPLEMENTATION

The section examines the key aspects of bare PC SIP server
implementation. Details of processing steps and method
invocations are included to illustrate novel characteristics of
the implementation. The current implementation supports
registrar, redirector, and proxy modes with or without
authentication. Since the bare PC SIP server implementation is
lean, only specific content from an incoming SIP packet is
parsed. Although the server code consists of a single
monolithic executable, the implementation itself is modular
allowing for updates and implementation of new features. The
bare PC SIP server AO contains about 2000 lines of code.

A. Boot Sequence

The bare PC SIP server is booted by directly loading its AO
from a USB flash drive. The bare PC SIP Server boot sequence
begins when the Main task invokes the DHCP handler to send a
DHCP request for an IP address (unless the server has been
preconfigured to use a specific IP address). When a response
arrives, the Rcv task is activated to process it. Next, a file
containing username and password combinations of authorized
users is transferred from another host on the network using an
adaptation of trivial FTP. As discussed later, multiple data
structures to facilitate server operations such as user lookup,
username and password lookup, and state lookup are then
created in memory. The last step in the boot process is to
display the user interface for administering the server.

B. User Database Lookup

After the usernames and passwords from the file are read
into memory, the bare PC SIP server runs the sipservergetdb()
function to store them in the USER_DATABASE structure:
Struct USER_DATABASE {
char username [20];
int username_size;
int username_hash;
char Password [20];
int Password_size;
};

The data structures HASH_TABLE and
SORTED_TABLE shown below are also used.
Struct HASH_TABLE {
int hash_hit;
int hash_reg_db_loc[HASH_REG_DB_SIZE];
int hash_hit_size
};
Struct SORTED_TABLE {
int hash;
int hash_link;
};

In essence, the hash of each username serves as an index
into HASH_TABLE, which is used together with
SORTED_TABLE to facilitate looking up the user in the
USER_DATABASE structure, and to retrieve information

84

International Journal on Advances in Telecommunications, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/telecommunications/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

when making or receiving calls, or registering a user. The
HASH_TABLE structure links back to the SORTED_TABLE
and USER_DATABASE structures. The details are as follows.
First, the hash values are stored in a SORTED_TABLE array
(which allows for efficient searching for a given hash value),
and each position in the sorted array is linked to the specific
HASH_TABLE array corresponding to that hash value. In
turn, each position in the HASH_TABLE array corresponds to
a user that hashed to that value and contains a link back to the
USER_DATABASE entry for that user. The HASH_TABLE
structure links the index in the USER_DATABASE structure
to the hash value of the SORTED_TABLE as shown in Figure
2.

Figure 2. Database and hash table relationships.

Figure 3. User lookup process.

The user lookup process in Figure 3 is done by using two
functions: the find_hash_hit() function, which is based on a
particular hash value, and the find_user() function that is based
on the username and size. In performance tests, this search
operation was found to be a likely bottleneck because of the
username comparisons triggered by collisions on a single hash
value. The find_user() function takes a username and

username size as input. It then hashes the username and passes
the value to the find_hash_hit() function, which finds the
corresponding hash table containing all the users with that
same hash value. The hash table is passed back to the
find_user() function, which calls the lookup_user() function.
The latter goes through each user in that specific hash table
and first compares the sizes of the usernames; if they match, it
looks for a second match on the full username. If the user is
found, the location containing the user’s information in the
database, including the IP Address and port, is returned. To
improve performance, future bare PC SIP server
implementations will use adaptations of data structures and
search techniques used by popular Linux SIP servers.

C. SIP Message Processing

The siphandler() function manages the processing of
received SIP messages. This function, which is called directly
by the udp_handler() function after verifying the SIP port in
the UDP header, is the key element in the bare PC SIP server.
The siphandler() function calls the parse_headers() function.
The latter goes through the SIP packet and parses out specific
identifiers to identify the type of message (for example,
REGISTER, INVITE, ACK, BYE, 180 Ringing, 200 OK and
100 Trying). Within the parse_headers() function are specific
functions built to handle the following SIP tags: Header, Via,
From, To, Expires, Authorization, Proxy Authorization,
CallId, CSeq, Contact, and Content Length. In keeping with
the lean SIP implementation, only the indicated tags are parsed
to expedite the processing of SIP packets (other tags are
bypassed). Once the tags are parsed and the relevant data from
the packet is stored, control returns to the siphandler()
function. Further processing is determined according to the
request_type returned. Only the following SIP messages are
processed by the Bare PC SIP Server: Register Invite, 100
Trying, 180 Ringing, 200 OK, Ack, Bye, and Unsupported.
When the siphandler function has decided what to do with the
SIP request, processing is carried out to forward the SIP
message, or a reply is sent to the SIP User Agent (UA) by
utilizing the generate_sip_response() function. This function
generates the SIP reply (or 100 Trying response) based on the
values retrieved earlier by parsing the SIP request. It then calls
the sipsenddata() function, which calls the relevant protocol
handlers to format the headers in the SIP reply.

Register Message: To process a Register message, the bare
PC SIP server parses the Via (IP address:port), From and To
(usernames@domain/IP), and Contact tags. It then calls the
function check_registered_users(). A process similar to that
described earlier is used to determine if the user is already
registered (i.e., is found in the Registered_Users_Database). If
so, only the relevant information is updated; otherwise, the
system stores all necessary information parsed from the SIP
request including the username, IP address and port number.
This information is used to generate replies back to the UA on
future requests until the UA re-registers or one of the
parameters is updated. After the information is stored or
updated, the server generates a 200 OK message and sends the
reply back to the SIP UA.

Invite Message: For an Invite message, the bare PC SIP
server parses almost all of the same fields as for the Register
message. The server then sends messages to the caller and
callee. A 100 Trying message is sent back to the caller letting

85

International Journal on Advances in Telecommunications, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/telecommunications/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the UA know that the SIP Server is processing the request. To
send this message, the server looks up the IP address of the
caller using the process described earlier. It also looks up the
registration information for the callee and forwards the Invite
message to its UA.

SIP Authentication: The Message format for an Invite
request with authentication is shown in Figure 4. SIP
authentication is done by challenging the initial request (Invite
or Register) sent by the SIP UA. SIP uses HTTP
authentication techniques. The bare PC SIP Server is designed
so that each request is not authorized unless it receives the
proper response for a given challenge. The server can be
configured at start-up to operate with or without
authentication. An authorization flag indicates if a particular
request is approved or denied based on authentication. The
bare PC SIP server processes the initial request, and then
sends a challenge response back to the requesting SIP UA.
The SIP server generates a challenge response that depends on
the values of realm and nonce. The realm is typically set to the
domain of the SIP server (for example, barepc.towson.edu or
the IP address). The nonce is a string that is randomly
generated by the server. Once the server receives the reply to
the challenge, the fields in the authorization request are parsed
from the SIP packet. Then the response value is computed
using the MD5 algorithm and matched against the response
value sent by the SIP UA. The response value is a hash that
depends on the concatenation of all values in the authorization
request. If the computed response matches the response sent
by the SIP UA, the request is approved (authorized) and
normal SIP call flow processing is allowed.

Figure 4. SIP invite with authentication.

D. User Interface

The bare PC SIP Server has a simple user interface that
displays its basic configuration and state information when the
interface function sipserverstate() is called. The displayed

information includes the number of users added to the
username and password database, and the server’s
configuration mode (proxy, redirector, authentication, stateless,
or stateful). The server can also show the username, ip address,
and port for each user logged into the system. An administrator
can toggle through the list of users, or configure the server so
that the display is triggered every time a user is added or
removed from the Registered_User_Database by calling
sipserverstate() from the Main task.

E. SIP Server Internals

The objects needed by the SIP server application such as
apptask (for task implementation), SIPS (for SIP processing),
DHCP, TFTP, UDP, IP, and Ethernet (for network protocol
processing) or MD5 (for authentication) are implemented as
C++ classes with associated .cpp and .h files as usual. Each
object contains the data structures and methods for the object.
Some assembly code may be used at lower levels. We do not
discuss the code common to all bare PC applications such as
USB boot code, Ethernet driver code, interfaces to hardware,
and code to support other functionality needed by applications.
The IP object is used in all bare PC applications and servers
requiring network communication. The MainTask (Main task),
RcvTask (Rcv or Receive task), and SipsTask (SIP task) are
implemented as methods within apptask, while SIP server
functionality is provided by sipsobj.

The methods in SIPS include processSIPSRequest(),
sipserverinit(), sipserverget_db(), parse_authorization(),
authenticate_user(), generate_sip_response(), sipsenddata(),
format_sip_response(), siphandler(), register_user(), and
parse_headers() as well as many others needed to implement
lean SIP server functionality. We have omitted method
parameters and do not discuss the specific functionality of all
these methods, as we have seen the use of some of these above,
and since method names suggest their functionality.

When a UDP packet containing a SIP request arrives,
apptask calls insertSIPSTask() to insert a SIP task into the task
queue and calls sipsobj.processSIPSRequest(), which serves as
an entry point to the task and links to an entry in a table (known
as the TCB table) that points to the entire packet and headers.
This method in turn invokes siphandler(), which passes the
packet to parseheaders() to parse the SIP packet as discussed
previously. After the packet is parsed, the request is processed
according to the request type. For example, in case of a register
request, methods to check and register the user are called by the
SIP handler, followed by a call to generate_sip_response() to
form the appropriate response packet as seen earlier.

V. PERFORMANCE

In this section, we present the results obtained from our
performance studies. We compare throughput and latency for
the bare PC and OS-based SIP servers using register, register
update, register logout, invite, invite-not-found, and redirect
operations. We also report internal timings for the bare PC SIP
server for the register operation under maximum load.

INVITE sip:67890111@barepc.towson.edu:5060 SIP/2.0
Via:SIP/2.0/UDP192.168.1.56:5060;brach=0320
From:<sip:0123456@ barepc.towson.edu>;tag=0
To: <sip: 67890111@ barepc.towson.edu>
Max-Forwards: 70
Call-ID: 0010-0003-DA76506F-0@AAE2A42DF82D1D0AA
 CSeq: 297386 INVITE
Contact: <sip:123456@192.168.1.56:5060>

Content-Type: application/sdp
Proxy-Authorization:Digest
username=“8000”,realm=“BAREPC”,nonce=“3bd76584”,
uri=“sip:123456@192.168.2.81”,response=“6e91de67ad976997
ff”
User-Agent: BarePC SIP UA v1.0
Content-Length: 276
v=0
 o=Vega400 4 1 IN IP4 192.168.1.56
 s=Bare PC Sip Call
 t=0 0
 m=audio 10006 RTP/AVP 4 18 8 0 96
 c=IN IP4 192.168.1.56
 a=rtpmap:8 PCMA/8000
 a=rtpmap:0 PCMU/8000
 a=rtpmap:96 telephone-event/8000
 a=fmtp:96 0-15,16
 a=sendrecv

86

International Journal on Advances in Telecommunications, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/telecommunications/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Experimental Set Up

The test network consists of a 100 Mbps Ethernet to which
each SIP server and the client machines running SIPp are
connected. In addition to the bare PC SIP server, the details of
the systems and software used are as follows: OS-based SIP
servers: OpenSer SIP Server ver 1.3.2–notls (Linux) OpenSer
(KAMILIO/OpenSIPS) [21] and Brekeke SIP Server ver
2.1.6.6 (Windows) utilizing the Jakarta Web Server and Java
platform [22]; machines: Dell GX260’s with Intel Pentium 4
(2.4 GHz), 1.0 GB of RAM and 3COM Ethernet 10/100 PCI
network cards; OSs: Microsoft Windows XP Professional ver.
2002 Service Pack 2 and Linux Ubuntu 8.04 Kernel 2.6.24-16;
workload generator: SIPp [23].

For register updates, the SIP Server searches its user
database for a match and then updates the corresponding user’s
location data and registration expiration time; and in the
register logout operation, it removes the user from the database.
The invite operation requires the server to lookup the callee's
contact details in its database, forward the request to the callee,
and send the response back to the caller. The invite-not-found
operation is similar to invite except that the callee is not found
in the database. For redirect, the server receives an invite
message, but instead of forwarding the response to the callee, it
forwards a temporarily moved message back to the caller.

For the register, register update, and register logout
operations, latency measures the delay at the user agent
between sending the register message and receiving the “200
OK” message. Latency for the invite operation measures the
sum of two delays: the time between the invite message and
“200 OK” messages; and the time between the “bye” and “200
OK” messages. Each of these operations was also tested with
authentication enabled, which adds processing overhead due to
verifying the MD5 hash, and extra message overhead due to the
“unauthorized” message for registration and “407 proxy
authentication” message for invite (and their responses).
Latency for registration with authentication measures the sum
of two delays: the time between the register request and the
“unauthorized message”; and the time between the new register
message with authentication credentials and the “200 OK”
message. Latency for invite with authentication measures the
sum of three delays: the time between the invite and “407
proxy authentication” messages; the time between the “invite
with authentication” message and the “200 OK” messages; and
the time between the “bye” and “200 OK” messages. For
invite-not-found and redirect operations, the latency is similarly
measured using the “404 not found” and “302 moved
temporarily” messages.

(a) Register

(b) Register update

(c) Register logout

Figure 5. Throughput for register without authentication

We measured the throughput and latency of a server
associated with each SIP call flow. The latency for a given
operation is computed by adding the respective delays between
sending the relevant messages to the server and receiving their
responses as described above. The throughput is the number of
calls per second successfully handled with respect to the
offered load, which is the number of calls per second that are
generated and sent to the server. The peak throughput is the
highest throughput achieved under overload while the server
remains stable (and produces consistent results). To conduct
the experiments, the servers were configured to operate in three
configuration modes with and without authentication: registrar,
proxy, and redirector. In addition, internal timings were
measured by inserting timing points within the bare SIP server.
Each SIP server was pre-loaded with 10,000 unique SIP
username and password pairs. The call flows for register,
invite-not-found, and redirect were run for a maximum of
10000 unique users, measuring the performance of each call
flow with rates varying from 10 to 1000 calls/sec. The invite
test call flows were run for a maximum of 5000 users with rates
varying from 50 to 100 calls/sec. Each experiment was
repeated a minimum of three times to ensure that the results
were consistent.

(a) Invite

87

International Journal on Advances in Telecommunications, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/telecommunications/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(b) Invite-not-found

(c) Invite redirect

Figure 6. Throughput for invite without authentication

(a) Register

(b) Register update

(c) Register logout

Figure 7. Throughput for register with authentication

(a) Invite

(b) Invite-not-found

(c) Invite redirect

Figure 8. Throughput for invite with authentication

B. Throughput

The throughput for the register and invite operations
respectively, without authentication, is shown in Figures 5 and
6. It can be seen that the peak throughput of the bare PC SIP
server is always higher than that of the OS-based servers except
in the case of invite redirect. The peak throughput of the bare
PC server typically exceeds that of the Linux server by 50-125
calls/sec depending on the operation, although it is only 10
calls/sec more for invite and 150 calls/sec less than that of the
Linux server for invite redirect. For example, the bare PC SIP
server has a peak throughput of 700 calls/sec for register
operations (without authentication), which is better than the
peak throughput of Linux (650 calls/sec); the Windows server
has a much lower peak throughput (around 200 calls/sec).

The peak throughput performance of the bare PC SIP server
should be better than that of the OS-based servers, due to its
simple design and the elimination of OS overhead. However,
this performance advantage may be reduced or lost in certain
cases due to inefficient algorithms or the lack of concurrency.
The latter situation arises with the invite operation. The peak
throughput of the bare PC server is only marginally higher than
Linux in this case, but introducing a separate SIP task to handle
an invite operation may improve performance. The apparent

88

International Journal on Advances in Telecommunications, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/telecommunications/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

drop in performance of the bare PC server for invite redirect is
due to a significant improvement in the performance of the
Linux server in this case. Implementing Linux’s search
algorithm on the bare PC SIP server should improve its
performance. A more efficient search algorithm should also
improve the performance for the invite-not-found operation.
The peak throughput of a given server does not vary much
across the three register operations since the work performed in
each case is essentially the same. The increase in the peak
throughput of the Windows server for register update compared
to that for the other two register operations is possibly due to
caching.

The results in Figures 7 and 8 show that peak throughput of
all servers is reduced as expected for both register and invite
operations when authentication is added. This reduction in
performance is due to the extra message overhead noted
previously, and the overhead of computing and verifying the
additional information needed for authentication with a
message digest [8]. The negative impact of authentication on
performance was also noted in [9]. There are no throughput
values for the Windows server for invite-not-found with
authentication since its message flow in this case could not be
compared with that of the other two servers. It is evident that
the peak throughput of the bare PC server with authentication
shows a greater reduction versus its peak throughput without
authentication compared to the OS-based servers. Adapting the
approach used for authentication by Linux for the bare PC
server could improve its performance.

C. Latency

Figures 9 and 10 compare the latencies for bare PC and OS-
based SIP servers for the register and invite operations
respectively, with and without authentication. In most cases,
the bare PC server performs better than the OS-based servers.
As seen in the figures, the highest latency percentages for the
bare PC server are usually in the 0-30 ms range, and it rarely
has latencies that exceed 150 ms.

For register and register logout without authentication in
Figure 9, bare PC server latency performance is better than that
of the Linux server, but for register update without
authentication it is the same. For example, in case of register
logout without authentication, the latency performance of the
bare PC server is much better than that of the Linux server:
bare PC server latencies are less than 60 ms and most are less
than 30 ms, whereas some Linux server latencies are in the
121-150 ms range and only a few are in the 31-60 ms range
(none are less than 30 ms). In contrast, the performance of the
Windows server is far worse than both of them with a large
percentage of latencies exceeding 150 ms. For all register
operations with authentication, the latency performance of the
bare PC and Linux servers is the same.

It can be seen in Figure 10 that the latency performance of
the bare PC server is better than that of the Linux server for
invite and redirect without authentication, but worse for invite-
not-found without authentication. Latency performance for
both servers in case of redirect with authentication is the same.
For invite with authentication, the latency of the bare PC server
sometimes exceeds 150 ms.

As noted above, improving concurrency and use of a more
efficient search algorithm may help to improve bare PC server
latency performance without authentication. Further studies are
needed to determine if the techniques used to implement
authentication in the Linux server will improve latency
performance of the bare PC server with authentication.

(a) Register

(b) Register update

(c) Register logout

Figure 9. Latency for register with and without authentication

(a) Invite

89

International Journal on Advances in Telecommunications, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/telecommunications/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(b) Invite redirect

(c) Invite-not-found

Figure 10. Latency for invite with and without authentication

D. Internal Timings

Figure 11 compares average values of internal timings for
the bare PC SIP server collected during the register operation
under maximum load conditions. It is seen that FindUser,
which searches for a given user, and ParseSIPHeaders, which
processes the SIP header are the most expensive operations,
although the former is twice as expensive as the latter. The
least expensive operation is AddUser, which simply adds the
information for a new user, and thus takes an insignificant
amount of time as would be expected. The AuthenticateUser
and FormatSIPResponse operations have approximately the
same cost, which is about half that of ParseSIPHeaders. We
conducted tests on the OpenSER server using OProfile 0.9.5
[24], which showed that the timings for the AddUser and
ParseSIPHeaders operations exceed the corresponding timings
on the bare PC by factors of 4 and 7 respectively.

We also used SIPp to increase the load on the server and
obtain better estimates of internal timings when processing
requests. Specifically, we varied the registration request rate
from 100-800 requests/sec in increments of 100 requests/sec.
We then measured the execution time spent in the siphandler()
method that invokes all the other methods needed to process
each request and generate the response as discussed previously.
We also obtained the total internal processing time to register a
user with authentication, which involved processing 2 packets
sent to the server and processing two responses to be sent to the
SIP UA. Thus, the total processing time includes the network
delay and delay due to addition and removal of the various
protocol headers.

The results are shown in Figure 12. It can be seen that the
execution time spent in the siphandler() method is very small
(approximately 180 microsecs) regardless of the registration
request rate as would be expected due to its low overhead in
processing SIP requests and responses. Likewise, while the

total processing time spent per SIP request is larger due to
network overheads, it drops in accordance with the increased
request rate until the server reaches its capacity and then shows
a slower rate of decrease. This is because the server has less
ability to meet the offered load when its peak capacity is
reached.

Figure 11. Internal timings for server operations

(a) Execution time spent in the SIP handler() method

(b) Total processing time per SIP request

Figure 12. Internal timings under increasing load

E. Throughput Analysis

Further insight into the results on throughput may be
obtained by considering sustainable throughput, which is
defined as the maximum rate of calls for which the processed
call rate matches the offered call rate. Sustainable throughput
reflects the extent to which a server can cope with the offered
load, and it can be determined from the preceding Figures 1-4.

90

International Journal on Advances in Telecommunications, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/telecommunications/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

For example, the sustainable throughput of the bare PC server
for the register, register update, and register logout operations
without authentication is respectively 400, 600, and 700
calls/sec (the peak throughput for all three register operations
without authentication is 700 calls/sec). It can be seen that the
sustainable throughput of the bare PC server exceeds that of the
Linux server for all operations without authentication except
for invite-not-found when it is the same. In contrast, the
sustainable throughput for the two servers for all operations
with authentication is the same (or differs by a small amount).
As noted earlier, in the case of peak throughput with and
without authentication, the bare PC server’s values are higher
than those for the Linux server except for invite redirect. Thus,
both sustainable and peak throughput values should be used to
estimate server capacity with and without authentication.

VI. CONCLUSION

We described the design, implementation, and performance
of a bare PC SIP server. Design details provided included an
overview of bare PC SIP server tasking, server operation, and
protocol intertwining. We also gave internal implementation
details to illustrate bare PC SIP server functionality. In
particular, we described the boot sequence, user lookup and
database tables, and SIP message processing. In addition, we
examined the relationship between tasks and method
invocation in the server when processing SIP requests and
responses.

Performance of the server was studied by measuring its
throughput and latency for registration, proxying and
redirection, with and without authentication. We also compared
bare PC SIP server performance with that of the OpenSER
server running on Linux and the Brekeke server running on
Windows. The results show that the bare PC server has better
performance than the Windows server and better or equal
performance to the Linux server in most cases. The exceptions
are throughput performance for invite redirect with or without
authentication, and latency performance for invite-not-found
without authentication for which the Linux server is better.
Latency performance for the invite operation with
authentication was poor for all servers.

We also provided internal timings measured on the bare PC
SIP server when processing registration requests with
authentication under increasing server load. It was found that
Find User is the most expensive operation, Parse SIP Headers
is moderately expensive, whereas Format SIP Response and
Authenticate User are less expensive.

The observed performance results reflect the simple server
design, efficient tasking strategy, and low implementation
overhead due to absence of an OS. It is expected that the
performance of the bare PC server can be improved by
improving concurrency and using more efficient algorithms.
The bare PC SIP server implementation could also be modified
based on internal timings to reduce the cost of the most
expensive operations. Our results serve as a baseline to assess
the minimal overhead associated with basic SIP server
operations for both OS-based and bare PC servers, and to help
improve the performance of bare PC SIP servers.

REFERENCES
[1] A. Alexander, A. L. Wijesinha, and R. Karne, “A Study of Bare PC SIP

Server Performance,” 5th International Conference on Systems and
Network Communications (ICSNC), pp. 392-397, 2010.

[2] A. Alexander, A. L. Wijesinha, and R. Karne, “Implementing a VoIP
SIP Server and User Agent on a Bare PC”, 2nd International Conference
on Future Computational Technologies and Applications (Future
Computing), 2010.

[3] G. Ford, R. Karne, A. L. Wijesinha, and P. Appiah-Kubi, The
Performance of a Bare Machine Email Server, 21st International
Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD), pp. 143-150, 2009.

[4] L. He, R. Karne, and A. Wijesinha, "The Design and Performance of a
Bare PC Web Server", International Journal of Computers and Their
Applications, vol. 15, pp. 100-112, June 2008.

[5] A. L. Alexander, A. L. Wijesinha, and R. Karne, "An Evaluation of
Secure Real-Time Transport Protocol (SRTP) Performance for VoIP,"
Third International Conference on Network and System Security (NSS),
pp. 95-101, 2009.

[6] G. H. Khaksari, A. L. Wijesinha, R. K. Karne, L. He, and S. Girumala,
“A Peer-to-Peer bare PC VoIP Application,” Proceedings of the IEEE
Consumer and Communications and Networking Conference (CCNC),
pp. 803-807, IEEE Press, Las Vegas, NV, 2007.

[7] K. Ono and H. Schulzrinne, The Impact of SCTP on SIP Server
Scalability and Performance, GLOBECOM, pp. 1421-1425, 2008.

[8] S. Salsano, L. Veltri, and D. Papalilo, SIP security issues: The SIP
authentication procedure and its processing load, IEEE Network, pp. 38-
44, 2002.

[9] E. M. Nahum, J. M. Tracey, and C. P. Wright, Evaluating SIP server
performance, in: 17th International Workshop on Network and
Operating System Support for Digital Audio and Video (NOSSDAV),
Urbana-Champaign, Illinois, June 2007.

[10] M. Cortes, J. R. Ensor, and J. O. Esteban, On SIP Performance. Bell
Labs Technical Journal, 9(3), pp. 155-173, 2004.

[11] C. Shen, H. Schulzrinne, and E. M. Nahum, Session Initiation Protocol
(SIP) Server Overload Control: Design and Evaluation, IPTComm, pp.
149-173, 2008.

[12] V. A. Balasubramaniyan, A. Acharya, M. Ahamad, M. Srivatsa, I.
Dacosta, and C. P. Wright, SERvartuka: Dynamic Distribution of State
to Improve SIP Server Scalability, ICDCS, pp. 562-572, IEEE Computer
Society, 2008.

[13] K. Ono and H. Schulzrinne, One Server Per City: Using TCP for Very
Large SIP Servers, IPTComm, pp. 133-148, 2008.

[14] H. Jiang, A. Iyengar, E. M. Nahum, W. Segmuller, A. Tantawi, and C. P.
Wright, Load Balancing for SIP Server Clusters, INFOCOM 2009.

[15] K. K. Ram, I. C. Fedeli, A. L. Cox, and S. Rixner, Explaining the Impact
of Network Transport Protocols on SIP Proxy Performance, ISPASS, pp.
75-84, 2008.

[16] L. Chen, and C. Li, “Design and Implementation of the Network Server
Based on SIP Communication Protocol,” World Academy of Science,
Engineering and Technology 31, pp. 138-141, 2007.

[17] S. Zeadally and F. Siddiqui, “Design and Implementation of a SIP-based
VoIP Architecture,” AINA 2004.

[18] R. K. Karne, K. V. Jaganathan, N. Rosa, and T. Ahmed, “DOSC:
Dispersed Operating System Computing”, OOPSLA ’05, 20th Annual
ACM Conference on Object Oriented Programming, Systems,
Languages, and Applications, Onward Track, pp. 55-62, 2005.

[19] R. K. Karne, K. V. Jaganathan, and T. Ahmed, “How to Run C++
Applications on a Bare PC?” 6th International Conference on Software
Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing (SNPD), pp. 50-55, 2005.

[20] G. Ford, R. Karne, A. L. Wijesinha, and P. Appiah-Kubi, The Design
and Implementation of a Bare PC Email Server, 33rd Annual IEEE
International Computer Software and Applications Conference
(COMPSAC), pp. 480-485, 2009.

[21] Kamailio (OpenSER) SIP server, [Online]. Available:
http://sourceforge.net/projects/openser Accessed: December 10, 2010.

91

International Journal on Advances in Telecommunications, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/telecommunications/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[22] Brekeke SIP Server, [Online]. Available: http://www.brekeke.com/sip/
Accessed: May 28, 2010.

[23] SIPp, [Online]. Available: http://sipp.sourceforge.net/doc/reference.html
Accessed: December 10, 2010.

[24] Oprofile-A System Profiler for Linux, [Online]. Available:
http://oprofile.sourceforge.net/news/. Accessed: May 28, 2010.

92

International Journal on Advances in Telecommunications, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/telecommunications/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

