International Journal on Advances in Telecommunications, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/telecommunications/

82

SIP Server Implementation and Performance on a
Bare PC

A. Alexander, R. Yasinovskyy, A. L. Wijesinha, andi&irne

Department of Computer & Information Sciences
Towson University
Towson, MD 21252
USA

Abstract—We describe the implementation and performance
of a bare PC SIP server that runs without the suppa of an
operating system (OS) or kernel. A bare PC SIP seev provides
immunity against OS vulnerabilities and yields perbrmance
gains due to the elimination of OS overhead. We disss server
design focusing on its novel architectural featuresind illustrate
key implementation aspects by examining relevant & and
method invocations for SIP request processing. Welso study
bare PC SIP server performance by comparing its lancy and
throughput against two conventional OS-based SIP bseers
running on equivalent hardware: OpenSER on Linux aml
Brekeke on Windows. Furthermore, we measure internabare
PC SIP server performance by providing internal timings for the
most significant operations associated with regisation and
proxy services. Additionally, we study performance under
increasing server load by obtaining the executionirhe spent in
the bare PC SIP handler method and the total proceing time
including network protocol processing overhead wheiprocessing
SIP requests and responses. The results show th&etbare PC
server performs better than the OS-based servers imost cases
and that its internal processing times are small asvould be
expected due to the elimination of OS overhead. Thesign and
implementation details of the bare PC SIP server msented here
give insight into understanding SIP server performace on a bare
machine.

Keywords-SIP server, implementation, performance, internal
timings, bare machine computing, operating systems.

l. INTRODUCTION

Bare PC or bare machine systems run on the hardware

without the need for an operating system (OS) anéde In [1],
the performance of a bare PC SIP server runningaon
ordinary desktop was studied. It was shown thahast cases
the server performs better than two conventiond-f@sed)
SIP servers running on identical non-server mashifiéis
paper is an extended version of [1] that givesidetaderlying
the implementation of the bare PC SIP server amdinternal
timings for key server operations. Material relevem server
design and implementation is taken from [2]. Howevkis
supplemented with details concerning tasking andhoue
invocations that were omitted in [2]. Additionallthe new
internal timings under increasing server load giveme are
more accurate than the approximate timings injtisdported in
[1]. The implementation specifics and new timingsulés

provide further insight into bare PC SIP serverrafen and
performance.

Previous studies on bare PC email and Web serbens s
that they significantly outperform their countefgaiunning on
conventional OS-based systems [3] [4]. Bare PCicgmns
and servers also have inherent immunity to attdéiclstarget
vulnerabilities of a given OS. Many studies havaldeith the
design and performance of network and securityopm$ in a
bare PC. For example, the performance of SRTP doe PC
VoIP is evaluated in [5], and peer-to-peer commatine
among bare PC VoIP clients is discussed in [6]. e\, there
have been no studies of SIP (Session Initiatiorioead) on a
bare PC. SIP is the most frequently used protoathy for
initiating VolP calls and for media session suppeith a
variety of other applications including video stréag, instant
messaging, gaming, and IPTV. For example, mosts8tkers
can provide voice, video, instant messaging, aneseurce
services.

In general, SIP servers locate and register cligotsvide
proxy services for forwarding SIP messages, orreetiSIP
requests to other servers. An optimized SIP secaer thus
help improve the overall performance of audio odea
applications by supporting audio or multimedia BB®s
(although it is typically not directly involved ithe actual
transmission of audio or video). The throughput Eteincy of
the SIP server when responding to requests fronus¢Pagent
clients and other SIP servers are often used asuresain
evaluating its performance.

We use a popular open source SIP workload genet@tor
evaluate the performance of the bare PC SIP seoyer
measuring its throughput and latency for regisirgtproxying,
and redirection, with and without authenticatiaor, ihcreasing
workloads. We compare performance of the bare RGese
with popular OS-based (Linux and Windows) servensthe
same workloads when running on compatible hardware.
results show that the bare PC SIP server has hghegual
throughput to the Linux server and higher throughthan the
Windows server, except in case of redirection, whisn
throughput is less than that of the Linux servdre Tatency
performance of the bare PC server is also shovgeieral to
be better than or equal to that of Linux server batler than
that of the Windows server, except for invite with
authentication and invite-not-found without autheation. We

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

also provide internal timings measured on the H@eSIP
server.

The performance results of the server are bettéenstood
by examining its design and implementation detdlls. this
end, we describe the bare PC SIP server compowéhia the
self-supporting application object (AO) that rurmedtly on the
PC hardware. In particular, we examine SIP packatgssing
for requests and their responses. In addition, irigsks
discussed and examples of method invocations aren gio
highlight protocol intertwining and other novel ilementation
characteristics in the bare PC SIP server.

Our contributions in this paper include: 1) results
characterizing the performance of a bare PC SNRseunning
on an ordinary desktop; 2) internal timings for -®fated
operations on a bare PC SIP server; 3) comparisbrihe
throughput and latency for a bare PC SIP serventiand
Windows servers running on identical machines; @ndesign
and implementation details of the bare PC SIP serve

The rest of this paper is organized as followsSéation II,
we summarize related work. In Section Ill, we diéserthe
design of the bare PC SIP server and relevant gatfions. In
Section IV, we provide implementation details of gerver. In
Section V, we give the experimental setup and d&iscdihe
results of the performance study. In Section V,present the
conclusion.

Il RELATED WORK

International Journal on Advances in Telecommunications, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/telecommunications/

83

likely to be encountered in practice. Internal tigs for key
operations measured on the bare PC SIP server lsoe a
reported. We only consider SIP over UDP with sl
proxying, which is the most common configuration emh
setting up VolIP calls.

Previous work describing the design and implementaif
SIP servers that require an OS. For example, ih, [A6SIP
server is implemented on top of an existing SIRkstand in
[17], SIP servers are implemented on the Sola®S8 These
studies focus primarily on the high-level SIP impéntation
on a conventional system, whereas the design and
implementation of the bare PC SIP server is basedhe
underlying bare computing paradigm and architecture

This section describes key design details of thie B& SIP
server. We begin by briefly outlining bare applioat
characteristics in general and then give an overakthe bare
PC server.

DESIGN

A Bare PC Applications

Any bare PC or bare machine computing application,
including the bare PC SIP server, is encapsulatedan
application object (AO) [18]. Since there is no Of8ipimal
code for the application to directly run on the R&dware is
contained in the AO. This means that the AO cost#ie code
for the bootable self-executing application itselfiy required
network interface drivers, handlers for protocoted by the

There are many commercial and open source Servefyplication, and memory and task management mestharto

implementing SIP and its companion protocol SDP.il§vVa
SIP server usually runs over UDP and in some aagasTCP,
the use of SCTP as a transport protocol for SIPales been
studied [7]. An early study on SIP server perforoeif8]
found that the overhead on a Java SIP server dsedority
mechanisms such as authentication and TLS wasgitdgli
However, the study in [9], which measured throughand
latency in a dedicated gigabit Ethernet for stateknd stateful
proxies over UDP and TCP, showed that authenticai€P,
or the operation/server configuration can signifibachange
SIP server performance. Their experiments were wded

facilitate concurrency and scheduling [19]. Realmuegy is
used since there is no hard disk, and applicatiode cis
intertwined with protocol code to eliminate reduncia and
improve efficiency as in the case of bare PC Weth email
servers [4] [20].

B. SP Server Overview

The bare PC SIP server AO implements a lean vexsion
SIP that provides essential functionality only. Auchal
features such as those needed to support loadcbejaand

using a 3.06 GHz server class machine, and only th@edia stream security are not included. Althougbaee PC

performance of a single SIP server (OpenSER onx)imas
evaluated. In [10], SIP server performance for sdvatateful
SIP proxies over UDP was evaluated. The authorsleded
that the overhead due to string processing opesat@nd
memory management could consume significant prowess
time and that performance varied considerably déipgnon
the proxy. Recent work on SIP servers has dealh wit
performance under overload conditions [11], scétghssues
[12] [13], load balancing [14], and the impact o&rtsport
protocols on performance [15].

The main difference between previous performanggies
and the performance studies in this paper is tlastudy the
performance of a bare PC SIP server and compavihtthe
performance of two OS-based SIP servers using amgin
desktop (non-server) machines. Also, in additioevaluating
performance for the usual register, invite, and ireet
operations, we also evaluate SIP server performéorcéhe
register update, register logout, and invite-natAf operations

2011, © Copyright by authors, Published und

SIP server that can operate over TCP or UDP ha®s bee
implemented, this paper only considers SIP over WiDEe the
majority of SIP servers employed in practice usePUD

The SIP server AO consists of several objects.dlit@n
to the Ethernet, IP, UDP, and SIP objects, the DidadPtrivial
FTP (TFTP) objects provide lean implementationsttadse
protocols and are used as needed (for examplenarsstart-
up) as described in the next section. An MD5 ohigctsed to
provide support for user authentication via stadd&iP
authentication (i.e., HTTP-Authentication) whentaarttication
is enabled for registration and proxying.

An incoming UDP packet containing a SIP message is
placed in the Ethernet buffer, where the bare P® SI
application can directly access it i.e., real miaised and
there is no notion of user space or kernel spae $here is no
OS. The Ethernet handler processes the packetpdeés that
the packet is for IP, and the IP handler in turacpsses the

er agreement with IARIA - www.iaria.org

International Journal on Advances in Telecommunications, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/telecommunications/

packet and invokes the UDP handler, which verifres UDP

checksum (if this feature is enabled) and the parhber. In

case of the SIP server, the port number is 506Qtlamgacket
is finally processed by the SIP handler. To senesponse, the
SIP, the UDP, IP and Ethernet handlers add theectisp

headers before the packet is transmitted by thevamkt
interface hardware. Data copying is minimized ie bare PC
SIP server since there is a single copy of the agessand
headers are added and removed as in a convergigstaim by
manipulating pointers.

In addition to the usual Main and Receive (Rcv) CP

tasks, which are used in all bare PC systems, dhe BC SIP
server has a SIP task to handle each SIP requbist.tdsk
design strategy simplifies task management,
context (task) switching, and increases efficieritlye Main
task runs upon start-up and whenever the Rcv task SIP
task terminates. It activates the Rcv task whenaveacket
arrives in the Ethernet buffer. It also activateSIBR task for
processing after it is determined that the packétr SIP. This
SIP task runs until SIP processing is complete #mal
response is sent. Once the SIP task terminatesvidie task

runs again. Thus, when the SIP Server AO’s Rcv fask

activated by the Main task upon the arrival of B 8quest in
the Ethernet buffer, a single thread of executiandies the
request all the way from the Ethernet level throtlgh IP and
UDP handlers. Then the SIP task runs as describetea

This simple task design approach reduces the psices

overhead.

E I
==

Figure 1. SIP server protocol/task relationships.

As described in [2] and shown in Figure 1, it isgible to
use only two CPU tasks in the SIP server AO: aivecgRcv)
task that processes a received packet all the way fts
arrival in the Ethernet buffer until a responsesént, and a
Main task that runs whenever a Rcv task completed @lso
when the system is booted or the system is idla) elkample,
for a register message, the Rcv task itself coudshage the
lookup and update operations and send the respongiee
client. However, it is more convenient and effitiéas in the
present version of the SIP server) to use a sep&i& task for
each request as discussed above. In case of tive iIngssage
for example, a new SIP task is activated to hatitderequest.
Since there may be a delay in contacting the pzsieg), the
SIP task could be suspended and resumed whenspense
arrives. In general, since a typical workload ives a mix of
requests for different services,
performance is improved by the concurrent handliofy
requests. This strategy of allowing a CPU task ua to
completion unless it has to wait for an event sasha

miremiz

bare PC SIP server

84

response enables the CPU to be kept busy doinglusefk.

Simple task management and the disabling of timiriupts
on bare PC servers also reduce context switchimgered to
conventional OS-based servers) and improve perfocsna

V.

The section examines the key aspects of bare PGe3ier
implementation. Details of processing steps andhatet
invocations are included to illustrate novel chéegstics of
the implementation. The current implementation susp

IMPLEMENTATION

Uregistrar, redirector, and proxy modes with or with

authentication. Since the bare PC SIP server imghtation is
lean, only specific content from an incoming SIRCk® is
parsed. Although the server code consists of alesing
monolithic executable, the implementation itselfnidular
allowing for updates and implementation of new dees. The
bare PC SIP server AO contains about 2000 linesdé.

A Boot Sequence

The bare PC SIP server is booted by directly lGpasAO
from a USB flash drive. The bare PC SIP Server Bequence
begins when the Main task invokes the DHCP hardlsend a
DHCP request for an IP address (unless the sema&rbben
preconfigured to use a specific IP address). Wheesponse
arrives, the Rcv task is activated to process @xtNa file
containing username and password combinationstbhbeamed
users is transferred from another host on the métwsing an
adaptation of trivial FTP. As discussed later, iplédt data
structures to facilitate server operations suchuses lookup,
username and password lookup, and state lookupthame
created in memory. The last step in the boot psdgssto
display the user interface for administering therese

B. User Database Lookup

After the usernames and passwords from the fileread
into memory, the bare PC SIP server runs the sipsgetdb()
function to store them in the USER_DATABASE struetu
Struct USER_DATABASE {
char username [20];
int username_size;
int username_hash;
char Password [20];
int Password_size;

2
The data structures HASH_TABLE
SORTED_TABLE shown below are also used.
Struct HASH_TABLE {
int hash_hit;
int hash_reg_db_loc[HASH_REG_DB_SIZE];
int hash_hit_size
I3
Struct SORTED_TABLE {
int hash;
int hash_link;
h

and

In essence, the hash of each username servesiadean
into HASH_TABLE, which is used together with
SORTED_TABLE to facilitate looking up the user ihet
USER_DATABASE structure, and to retrieve informatio

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

when making or receiving calls, or registering arusThe

International Journal on Advances in Telecommunications, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/telecommunications/

85

username size as input. It then hashes the usermagngasses

HASH_TABLE structure links back to the SORTED_TABLE the value to the find_hash_hit() function, whicmd$ the

and USER_DATABASE structures. The details are Hevis.
First, the hash values are stored in a SORTED_TABLRY
(which allows for efficient searching for a giveash value),
and each position in the sorted array is linkedh specific
HASH_TABLE array corresponding to that hash valure.
turn, each position in the HASH_TABLE array corresgs to
a user that hashed to that value and containkdé&nok to the
USER_DATABASE entry for that user. The HASH_TABLE
structure links the index in the USER_DATABASE sture
to the hash value of the SORTED_TABLE as shownigufe

2.

[UBLR DATABASE] [HASHTABLE DB] [SORTEC TABLE DB]

-a.aleander Hash (330)

A1 inkte users -Hash Tzble DB Index

530 < With 530 hash A

'bi‘]FCpC1234 -number of -Hash (430)

10 3 users with 330 -Hash Tzblc DB Index 60)
hash U—

-rkamne L Hash (470)

7 50 -Hash Tahle DB Index (77)

540 -Usor DB Index Hash (530)

-barepc1234 [2: 50, 60, 80)

-Hash (530]

-Hash Tehle DB Index (90)

-10 80 1 9

o -Hash (540)
-awijcsinha 550 -Hash Table DB Index (95)
1 -Uscr DB Index
-250 . (90, 440, 1, 1/, Hash (550)
-harepe 9 -Hash Tablc DB Index (99)
0 5) e

99

Figure 2. Database and hash table relationships.

1) USER VALUES
2) HASH USER VALUES
3] USER HASH VALUE
4) LOCATE HASH TABLE
5) CHAR COMPARISON
©) RETURN USER INDEX OR TAIL

End
~ Hauh
Process

Figure 3. User lookup process.

The user lookup process in Figure 3 is done bygusiro
functions: the find_hash_hit() function, which iased on a
particular hash value, and the find_user() functiat is based
on the username and size. In performance tests,starch
operation was found to be a likely bottleneck bseaaf the
username comparisons triggered by collisions angleshash

corresponding hash table containing all the usdth that
same hash value. The hash table is passed backeto t
find_user() function, which calls the lookup_usefifhction.
The latter goes through each user in that spebdigh table
and first compares the sizes of the usernamelseyf match, it
looks for a second match on the full usernamehdf wser is
found, the location containing the user’s inforroatiin the
database, including the IP Address and port, isrmed. To
improve performance, future bare PC SIP server
implementations will use adaptations of data stmes and
search techniques used by popular Linux SIP servers

C. SIP Message Processing

The siphandler() function manages the processing of
received SIP messages. This function, which isedadlirectly
by the udp_handler() function after verifying th#® $ort in
the UDP header, is the key element in the bare PG&ver.
The siphandler() function calls the parse_headdts{gtion.
The latter goes through the SIP packet and panstespecific
identifiers to identify the type of message (forample,
REGISTER, INVITE, ACK, BYE, 180 Ringing, 200 OK and
100 Trying). Within the parse_headers() functioa specific
functions built to handle the following SIP tagseaddler, Via,
From, To, Expires, Authorization, Proxy Authorizatj
Callld, CSeq, Contact, and Content Length. In kegpvith
the lean SIP implementation, only the indicated taig parsed
to expedite the processing of SIP packets (othgs t@re
bypassed). Once the tags are parsed and the retiatanfrom
the packet is stored, control returns to the sigha()
function. Further processing is determined accgdim the
request_type returned. Only the following SIP mgsesaare
processed by the Bare PC SIP Server: Registerelnti®0
Trying, 180 Ringing, 200 OK, Ack, Bye, and Unsuppdt
When the siphandler function has decided what tovitlo the
SIP request, processing is carried out to forwdre SIP
message, or a reply is sent to the SIP User AdeA) py
utilizing the generate_sip_response() function.sThinction
generates the SIP reply (or 100 Trying responss¢dan the
values retrieved earlier by parsing the SIP requesten calls
the sipsenddata() function, which calls the relévamotocol
handlers to format the headers in the SIP reply.

Register Message: To process a Register messageata
PC SIP server parses the Via (IP address:portmFmod To
(usernames@domain/IP), and Contact tags. It th#s tee
function check_registered_users(). A process simiathat
described earlier is used to determine if the useslready
registered (i.e., is found in the Registered_Udeasabase). If
so, only the relevant information is updated; othise, the
system stores all necessary information parsed ttemSIP
request including the username, IP address andnponber.
This information is used to generate replies badhé UA on
future requests until the UA re-registers or one tbé
parameters is updated. After the information isrestoor
updated, the server generates a 200 OK messageeads the
reply back to the SIP UA.

Invite Message: For an Invite message, the bareSHEC
server parses almost all of the same fields ashiRegister
message. The server then sends messages to the aadl

value. The find_user() function takes a username ancallee. A 100 Trying message is sent back to tlierdatting

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the UA know that the SIP Server is processing dugiest. To
send this message, the server looks up the IP ssldfethe
caller using the process described earlier. It bis&s up the
registration information for the callee and forwaittie Invite
message to its UA.

SIP Authentication: The Message format for an kvit
request with authentication is shown in Figure 4P S
authentication is done by challenging the initequest (Invite
or Register) sent
authentication techniques. The bare PC SIP Sesw#esigned
so that each request is not authorized unlesscédives the
proper response for a given challenge. The seraer ke
configured at start-up to operate with or without
authentication. An authorization flag indicatesaifparticular
request is approved or denied based on authepticaiihe
bare PC SIP server processes the initial request, ten
sends a challenge response back to the requestihdg)s.
The SIP server generates a challenge responseepands on
the values of realm and nonce. The realm is tylyicat to the
domain of the SIP server (for example, barepc.tovestu or
the IP address). The nonce is a string that is arahgd
generated by the server. Once the server recdigeseply to
the challenge, the fields in the authorization esjare parsed
from the SIP packet. Then the response value ispoted
using the MD5 algorithm and matched against theaese
value sent by the SIP UA. The response value iash lthat
depends on the concatenation of all values in titieogization
request. If the computed response matches the nespent
by the SIP UA, the request is approved (authorizaal
normal SIP call flow processing is allowed.

INVITE sip:67890111@barepc.towson.edu:5060 SIP/2.0
Via:SIP/2.0/UDP192.168.1.56:5060;brach=0320
From:<sip:0123456@ barepc.towson.edu>;tag=0

To: <sip: 67890111@ barepc.towson.edu>

Max-Forwards: 70

Call-1D: 0010-0003-DA76506F-0@AAE2A42DF82D1D0AA
CSeq: 297386 INVITE

Contact: <sip:123456@192.168.1.56:5060>

Content-Type: application/sdp

Proxy-Authorization:Digest
username="8000",realm="BAREPC”,nonce="3bd76584",
uri="sip:123456@192.168.2.81" ,response="6e91de676&€97
s

User-Agent: BarePC SIP UA v1.0
Content-Length: 276

v=0

0=Vega400 4 1 IN IP4 192.168.1.56
s=Bare PC Sip Call

t=00

m=audio 10006 RTP/AVP 4 18 8 0 96
c=IN IP4 192.168.1.56

a=rtpmap:8 PCMA/8000
a=rtpmap:0 PCMU/8000
a=rtpmap:96 telephone-event/8000
a=fmtp:96 0-15,16

a=—candram

Figure 4. SIP invite with authentication.

D. User Interface

The bare PC SIP Server has a simple user intetfete
displays its basic configuration and state inforaratvhen the
interface function sipserverstate() is called. Tdisplayed

International Journal on Advances in Telecommunications, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/telecommunications/

86

information includes the number of users added he t
username and password database, and the server's
configuration mode (proxy, redirector, authenticatistateless,

or stateful). The server can also show the userngnaeldress,

and port for each user logged into the system. dmimistrator

can toggle through the list of users, or configime server so

that the display is triggered every time a userdsled or
removed from the Registered _User Database by gallin

by the SIP UA. SIP uses HTTRsipserverstate() from the Main task.

E. SP Server Internals

The objects needed by the SIP server applicatich sg
apptask (for task implementation), SIPS (for SIBcpssing),
DHCP, TFTP, UDP, IP, and Ethernet (for network pcot
processing) or MD5 (for authentication) are impletee as
C++ classes with associated .cpp and .h files aslug&ach
object contains the data structures and methodthéopbject.
Some assembly code may be used at lower levelsdd\eot
discuss the code common to all bare PC applicatioct as
USB boot code, Ethernet driver code, interfacebamware,
and code to support other functionality neededpplieations.
The IP object is used in all bare PC applicationd servers
requiring network communication. The MainTask (M&ask),
RcvTask (Rcv or Receive task), and SipsTask (S$R)tare
implemented as methods within apptask, while SlIP/ese
functionality is provided by sipsob;.

The methods in SIPS include processSIPSRequest(),
sipserverinit(), sipserverget_db(), parse_authtdrg),
authenticate_user(), generate_sip_response()erslgata(),
format_sip_response(), siphandler(), register_}serénd
parse_headers() as well as many others neededptenirant
lean SIP server functionality. We have omitted rodth
parameters and do not discuss the specific furadttgrof all
these methods, as we have seen the use of somesefdabove,
and since method names suggest their functionality.

When a UDP packet containing a SIP request arrives,
apptask calls insertSIPSTask() to insert a SIP it#tskthe task
gueue and calls sipsobj.processSIPSRequest(), \skitles as
an entry point to the task and links to an entrg table (known
as the TCB table) that points to the entire paeket headers.
This method in turn invokes siphandler(), which gess the
packet to parseheaders() to parse the SIP pacldis@asssed
previously. After the packet is parsed, the reqiggrocessed
according to the request type. For example, in oaseregister
request, methods to check and register the usealeel by the
SIP handler, followed by a call to generate_sigpaase() to
form the appropriate response packet as seenrearlie

V. PERFORMANCE

In this section, we present the results obtainedfour
performance studies. We compare throughput anddwatéor
the bare PC and OS-based SIP servers using regestgster
update, register logout, invite, invite-not-fourahd redirect
operations. We also report internal timings for llaee PC SIP
server for the register operation under maximurd.loa

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Experimental Set Up

The test network consists of a 100 Mbps Ethernethich
each SIP server and the client machines running Sif
connected. In addition to the bare PC SIP serhierdetails of
the systems and software used are as follows: G&dbSIP
servers: OpenSer SIP Server ver 1.3.2—notls (Li@pgnSer
(KAMILIO/OpenSIPS) [21] and Brekeke SIP Server ver
2.1.6.6 (Windows) utilizing the Jakarta Web Seraad Java
platform [22]; machines: Dell GX260's with Intel Reum 4
(2.4 GHz), 1.0 GB of RAM and 3COM Ethernet 10/1001 P
network cards; OSs: Microsoft Windows XP Profesalorer.
2002 Service Pack 2 and Linux Ubuntu 8.04 Kerng@l22-16;
workload generator: SIPp [23].

For register updates, the SIP Server searchessis u
database for a match and then updates the cordisgamser’s
location data and registration expiration time; aindthe
register logout operation, it removes the user ftbendatabase.
The invite operation requires the server to lookup callee's
contact details in its database, forward the retqoethe callee,
and send the response back to the caller. Thesinat-found
operation is similar to invite except that the ealis not found
in the database. For redirect, the server recearesnvite
message, but instead of forwarding the respontetoallee, it
forwards a temporarily moved message back to therca

For the register, register update, and registerodbg
operations, latency measures the delay at the agent
between sending the register message and recdiin{R00
OK” message. Latency for the invite operation measuhe
sum of two delays: the time between the invite mgesand
“200 OK” messages; and the time between the “byel’ ‘200
OK” messages. Each of these operations was altedtesth
authentication enabled, which adds processing eagrldue to
verifying the MD5 hash, and extra message overdeado the
“unauthorized” message for registration and “407oxgr
authentication” message for invite (and their reses).
Latency for registration with authentication measuthe sum
of two delays: the time between the register regaesd the
“unauthorized message”; and the time between theragister
message with authentication credentials and theé “@K”
message. Latency for invite with authentication snees the
sum of three delays: the time between the invitd &07
proxy authentication” messages; the time between‘itivite
with authentication” message and the “200 OK” mgesaand
the time between the “bye” and “200 OK” messagest F
invite-not-found and redirect operations, the lajeis similarly
measured using the “404 not found” and “302 move
temporarily” messages.

REGISTER
request performance

800
700
600
500
400
300

—e—Bare
—=— L
Windaws

)
=]
=]

alls Processed/sec

[+
=
=

L

o

100 200 300 400 500 600

Calls Offered/sec

700 8O0 900 1000

(a) Register

International Journal on Advances in Telecommunications, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/telecommunications/

87

REGISTER UPDATE
request performance

800
700
600
500
400
300
200
100

P e
=
T
v —

—+—Bare

—a— Linux

Windows

Calls Processed/sec

100 200 300 400 500 GO0 700 8OO 800 1000
Calls Offered'sec

(b) Register update

REGISTER LOGOUT
request performance

a00
700
600
500
400
300

—e—Bare
—=— Linux
Windows

alls Processed/sec

=]
o
8

[
=1
=}

o

100 200 300 400 500 600 700 800 900 1000
Calls Offered’'sec

(c) Register logout

Figure 5. Throughput for register without authentication

We measured the throughput and latency of a server

associated with each SIP call flow. The latency dogiven
operation is computed by adding the respectiveyddiatween
sending the relevant messages to the server aairgrtheir
responses as described above. The throughput ruthber of
calls per second successfully handled with respecthe
offered load, which is the number of calls per secthat are
generated and sent to the server. The peak thratghghe
highest throughput achieved under overload whike ghrver
remains stable (and produces consistent results)cohduct
the experiments, the servers were configured toabgén three
configuration modes with and without authenticatiayistrar,
proxy, and redirector. In addition, internal timingvere
measured by inserting timing points within the b8 server.
Each SIP server was pre-loaded with 10,000 uniglie
username and password pairs. The call flows foistegy
invite-not-found, and redirect were run for a mapim of
10000 unique users, measuring the performance af eall
flow with rates varying from 10 to 1000 calls/sé&te invite
test call flows were run for a maximum of 5000 s3&ith rates
varying from 50 to 100 calls/sec. Each experimerdsw

d’epeated a minimum of three times to ensure thatrésults

were consistent.

INVITE
request performance

140

e
=]
1=

100

——Bare
= Linux

o
=}

o
=}

Windows

(SR
==

Calls Processed/sec

o

50 B0 70 BO 90 100 110 120 130 140 150 160 170 180 190 200
Calls Offered’'sec

(a) Invite

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Telecommunications, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/telecommunications/

ed/sec

400

@
&
=

300

INVITE NOT FOUND
request performance

200
100

-

100 200 300 400 500 600 VOO 8OO
Calles Offered/sec

900 1000

& 280 —+—Bare
g 200 —a— L
o 190 Windows
2 100 —
5
© a0
1)
00 200 300 400 500 600 70O BOO 800 1000
Calls Offered/sec
(b) Invite-not-found
INVITE REDIRECT
request performance
600
@ 500
»
@
g 400 —+—Bare
g a0 =L
e T Windows
=
o

(c) Invite redirect

Figure 6. Throughput for invite without authentication

400
390
300

REGISTER AUTH
request performance

100

100 200 300 400 00 600 700 800
Calls Offered/sec

°
8
@
2 250 ——Bare
¢ 200 —a—Lirux
8
o 150 Pl Windows
ERL
S @
0
100 200 300 400 S00 600 700 800
Calls Offered/sec
(a) Register
REGISTER UPDATE AUTH
request perfomance
400
$ 350
@ *
5 300
250 i —+—Bare
g 200 = Linue
& 180 wWindows
2 1m
s
o a0
0
100 200 300 400 £00 600 700 800
Calls Offered/sec
(b) Register update
REGISTER LOGOUT AUTH
request performance
400
$ 350
@ -
5 300
250 sl —+—Bare
g
o 200 —m Linux
8
&£ 150 S S S Windows
w
=
o

(c) Register logout

Figure 7. Throughput for register with authentication

INVITE AUTH
request performance
120
2
% 100 ———
s & - —e— Bare
g &0 = —m Linux
& o4 - Windows
$
T @™
o
o
a0 60 70 80 20 100
Calles Offerad/sec
(a) Invite
INVITE NOT FOUND AUTH
request perfromance
280
E 200
E-d
% 150 / ——Bare
H I N — —=— Linux
t 100 ¥ Windaws
2 o
o
o
100 200 300 400 500 600 F00 800
Calles Offered/sec
(b) Invite-not-found
INVITE REDIRECT AUTH
request performance
300
& om z
=
E 200 —+—Bare
g 180 /./ —=— Linux
o« o Windows
Y
o
100 200 300 400 S00 600 700 800 900 1000
Calls Offered'sec
(c) Invite redirect
Figure 8. Throughput for invite with authentication
B. Throughput
The throughput for the register and invite opersatio

respectively, without authentication, is shown igufes 5 and
6. It can be seen that the peak throughput of #re BC SIP
server is always higher than that of the OS-baseckss except
in the case of invite redirect. The peak throughgfuthe bare
PC server typically exceeds that of the Linux sebxe50-125
calls/sec depending on the operation, althougls ibrily 10
calls/sec more for invite and 150 calls/sec less tthat of the
Linux server for invite redirect. For example, there PC SIP
server has a peak throughput of 700 calls/sec égister
operations (without authentication), which is bettean the
peak throughput of Linux (650 calls/sec); the Wiwdcserver
has a much lower peak throughput (around 200 set}/

The peak throughput performance of the bare PG&Mrer
should be better than that of the OS-based serdagesto its
simple design and the elimination of OS overheaolwéver,
this performance advantage may be reduced or rioseritain
cases due to inefficient algorithms or the laclcaficurrency.
The latter situation arises with the invite operatiThe peak
throughput of the bare PC server is only marginaiggher than
Linux in this case, but introducing a separate t88R to handle
an invite operation may improve performance. Thpaagnt

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

drop in performance of the bare PC server for énxédirect is
due to a significant improvement in the performanfehe
Linux server in this case. Implementing Linux's reda
algorithm on the bare PC SIP server should imprise
performance. A more efficient search algorithm s$thoaiso
improve the performance for the invite-not-foundeigtion.
The peak throughput of a given server does not vaingh
across the three register operations since the penformed in
each case is essentially the same. The increasieeipeak
throughput of the Windows server for register updaimpared
to that for the other two register operations isgigy due to
caching.

The results in Figures 7 and 8 show that peak girput of
all servers is reduced as expected for both registd invite
operations when authentication is added. This itémludn
performance is due to the extra message overhe&st no
previously, and the overhead of computing and yiewf the
additional information needed for authenticationthwia
message digest [8]. The negative impact of autbatidin on
performance was also noted in [9]. There are noutjnput
values for the Windows server for invite-not-fournvdth
authentication since its message flow in this aaséd not be
compared with that of the other two servers. levient that
the peak throughput of the bare PC server witheaiitation
shows a greater reduction versus its peak througijibout
authentication compared to the OS-based serveeptid) the
approach used for authentication by Linux for theeebPC
server could improve its performance.

C. Latency

Figures 9 and 10 compare the latencies for barariGOS-
based SIP servers for the register and invite tpesa
respectively, with and without authentication. losh cases,
the bare PC server performs better than the OSilsmwers.
As seen in the figures, the highest latency peaga# for the
bare PC server are usually in the 0-30 ms rangg jtaiarely
has latencies that exceed 150 ms.

For register and register logout without authemiticain
Figure 9, bare PC server latency performance teibitan that
of the Linux server, but for register update withou
authentication it is the same. For example, in cdsegister
logout without authentication, the latency perfonte of the
bare PC server is much better than that of the Xiserver:
bare PC server latencies are less than 60 ms astlar®less
than 30 ms, whereas some Linux server latenciesnatee
121-150 ms range and only a few are in the 31-6Qange
(none are less than 30 ms). In contrast, the peeoce of the
Windows server is far worse than both of them veitharge
percentage of latencies exceeding 150 ms. For egjister
operations with authentication, the latency perfamoe of the
bare PC and Linux servers is the same.

It can be seen in Figure 10 that the latency perémice of
the bare PC server is better than that of the Liserver for
invite and redirect without authentication, but sefor invite-
not-found without authentication. Latency performanfor
both servers in case of redirect with authenticaisothe same.
For invite with authentication, the latency of thexe PC server
sometimes exceeds 150 ms.

International Journal on Advances in Telecommunications, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/telecommunications/

89

As noted above, improving concurrency and use robee
efficient search algorithm may help to improve bBfe server
latency performance without authentication. Furitadies are
needed to determine if the techniques used to mmmghé
authentication in the Linux server will improve daty
performance of the bare PC server with authentioati

REGISTER
Latency Performance

120
100

@150 or more (ms)
m121-150 (ms)
031-120 (ms)
o61-90 (ms)
m31-60 (ms)
m0-30(ms)

80
60
40
20

Percentage

Bare Linux Wincows Bare Line Windows

without Authentication with Authentication

(a) Register

REGISTER Update
Latency Performance

120
100

@150 or mare (ms)
m121-150 (ms)
091-120 (ms)
o61-90 (ms)
m31-60 (ms)
m0-30 (ms)

80
&0
40
20

Percentage

Bare Linus Wincows Bare Linec Windows

Wwith Authentication

Wwithout Authentication

(b) Register update

REGISTER Logout
Latency Performance

120
100

150 ar mare (ms)
m121-150 (n3)
91120 (ms)
o61-90 (ms)
m31-60 (ms)
m0-30(ms)

80
60
40
20

Percentage

Bare Linux Wincows Bare Line Windows

without Authentication with Authentication

(c) Register logout

Figure 9. Latency for register with and without authenticatio

INVITE
Latency Performance

@150 or mare (ms)
m 121-150 (ms)
091-120 (ms)
061-90 (ms)
m31-60 (ms)
m0-30{ms)

Percentage

Bare Linux — Wincdows Bare Linu Windows

without Authentication with Authentication

(a) Invite

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REDIRECT
Latency Performance

100 @150 or mare (ms)
m121-150(ms)
091-120 (ms)
O61-90 (ms)
m31-60 {ms)
@0-30 (ims)

Percentage
@
3

Bare Linux Windows

without Authentication

Bare Linux Windows

with Authentication

(b) Invite redirect

INVITE NOT FOUND
Latency Performance

100 @180 or more (ms)
a0 m121-150(ms)
091-120 (ms)
061-90 (ms)

W 31-60 (ms)

20 mo-30(ns)

Percentage
@
3

Bare Linwe Windows

without Authentication

Bare Linu Wincows

with Authentication

(c) Invite-not-found

Figure 10.Latency for invite with and without authentication

D. Internal Timings

Figure 11 compares average values of internal gmiior
the bare PC SIP server collected during the ragtgieration
under maximum load conditions. It is seen that Bset,
which searches for a given user, and ParseSIPHgadhbich
processes the SIP header are the most expensivatiops,
although the former is twice as expensive as thterlaThe
least expensive operation is AddUser, which singalgds the
information for a new user, and thus takes an miggnt
amount of time as would be expected. The Autheetidser
and FormatSIPResponse operations have approximdtely
same cost, which is about half that of ParseSIPétsadVe
conducted tests on the OpenSER server using OP1@8l.5
[24], which showed that the timings for the AddUserd
ParseSIPHeaders operations exceed the correspaitdings
on the bare PC by factors of 4 and 7 respectively.

We also used SIPp to increase the load on the rsange
obtain better estimates of internal timings whencpssing
requests. Specifically, we varied the registratiequest rate
from 100-800 requests/sec in increments of 100 estgisec.
We then measured the execution time spent in titesiler()
method that invokes all the other methods needegrdoess
each request and generate the response as dispussgiedisly.
We also obtained the total internal processing tionegister a
user with authentication, which involved processthpackets
sent to the server and processing two respondesgent to the
SIP UA. Thus, the total processing time includes tietwork
delay and delay due to addition and removal of whgous
protocol headers.

The results are shown in Figure 12. It can be seanthe
execution time spent in the siphandler() methodeiy small
(approximately 180 microsecs) regardless of théstegion
request rate as would be expected due to its evhead in
processing SIP requests and responses. Likewisie wite

International Journal on Advances in Telecommunications, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/telecommunications/

90

total processing time spent per SIP request isefadyie to
network overheads, it drops in accordance withiticeeased
request rate until the server reaches its capaaiythen shows
a slower rate of decrease. This is because thershas less
ability to meet the offered load when its peak cipais
reached.

Bare PC SIP Server Application Process Timings

£ 025

= 02+

015 4
LK 1

0.5 1
o L

Parse SIP
Headers

=

Fomat SIP
Response

Find User Autherticate

User

Add User

Process Under Test

Figure 11.Internal timings for server operations

SIP Handler Execution Time

200
180
160
140
120
100

T ——

Time {microsec)

60
40
20

100 200 300 400 500 600 700 800

Requests/sec

(a) Execution time spent in the SIP handler() m&tho

Total Processing Time per SIP Request

L\

NN

. .

1 \

100

Time {millsec)

—_—

200 300 400 500 600 700 800

Requests/sec

(b) Total processing time per SIP request

Figure 12.Internal timings under increasing load

E. Throughput Analysis

Further insight into the results on throughput mag
obtained by considering sustainable throughput, clvhis
defined as the maximum rate of calls for which pinecessed
call rate matches the offered call rate. Sustamétoughput
reflects the extent to which a server can cope tighoffered
load, and it can be determined from the precediggrés 1-4.

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

For example, the sustainable throughput of the P&eserver
for the register, register update, and registeolb@perations
without authentication is respectively 400, 600,d ar00

calls/sec (the peak throughput for all three regisperations
without authentication is 700 calls/sec). It cansken that the
sustainable throughput of the bare PC server exabedl of the
Linux server for all operations without authenticat except
for invite-not-found when it is the same. In costrathe

sustainable throughput for the two servers foroglérations
with authentication is the same (or differs by aabramount).

As noted earlier, in the case of peak throughpuh veind

without authentication, the bare PC server's valareshigher
than those for the Linux server except for inviedirect. Thus,
both sustainable and peak throughput values shmulgsed to
estimate server capacity with and without authetibo.

VI.

We described the design, implementation, and pedace
of a bare PC SIP server. Design details providetuded an
overview of bare PC SIP server tasking, server aijmer, and
protocol intertwining. We also gave internal impkmation
details to illustrate bare PC SIP server functiynalln
particular, we described the boot sequence, ussufo and
database tables, and SIP message processing. itiomdde
examined the relationship between
invocation in the server when processing SIP regquesd
responses.

CONCLUSION

Performance of the server was studied by meastiring

(1]

(2]

(3]

(4]

(5]

6]

(71
(8]

tasks and method

(9]

throughput and latency for registration, proxyingnda (10]
redirection, with and without authentication. Wecatompared
bare PC SIP server performance with that of thenSp& (11
server running on Linux and the Brekeke server ingiron
Windows. The results show that the bare PC serasrbletter 1
performance than the Windows server and better quale
performance to the Linux server in most cases. eXoeptions
are throughput performance for invite redirect wathwithout
authentication, and latency performance for inmoefound [13]
without authentication for which the Linux server better.
Latency performance for the invite operation with (14]
authentication was poor for all servers. [15]

We also provided internal timings measured on tire IPC
SIP server when processing registration requestth wi
authentication under increasing server load. It foamd that (16l
Find User is the most expensive operation, ParBeHgladers
is moderately expensive, whereas Format SIP Respand [17]
Authenticate User are less expensive.

[18]

The observed performance results reflect the sirspteer
design, efficient tasking strategy, and low implata&on
overhead due to absence of an OS. It is expectad thie

performance of the bare PC server can be improved Rg

improving concurrency and using more efficient alhms.
The bare PC SIP server implementation could alsmdified
based on internal timings to reduce the cost of st
expensive operations. Our results serve as a hadeliassess
the minimal
operations for both OS-based and bare PC servatgoahelp
improve the performance of bare PC SIP servers.

overhead associated with basic SIP eserv

[20]

(21]

International Journal on Advances in Telecommunications, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/telecommunications/

91

REFERENCES

A. Alexander, A. L. Wijesinha, and R. Karne, “A 8fuof Bare PC SIP
Server Performance,” ™S International Conference on Systems and
Network Communications (ICSNC), pp. 392-397, 2010.

A. Alexander, A. L. Wijesinha, and R. Karne, “Impienting a VolP
SIP Server and User Agent on a Bare PC* Iternational Conference
on Future Computational Technologies and Applicetio(Future
Computing), 2010.

G. Ford, R. Karne, A. L. Wijesinha, and P. Appiahkk The
Performance of a Bare Machine Email Server, 21sermational
Symposium on Computer Architecture and High Peréorce
Computing (SBAC-PAD), pp. 143-150, 2009.

L. He, R. Karne, and A. Wijesinha, "The Design d&etformance of a
Bare PC Web Server", International Journal of Coezuand Their
Applications, vol. 15, pp. 100-112, June 2008.

A. L. Alexander, A. L. Wijesinha, and R. Karne, "Agvaluation of
Secure Real-Time Transport Protocol (SRTP) Perfoomdor VolP,"
Third International Conference on Network and Sysecurity (NSS),
pp. 95-101, 2009.

G. H. Khaksari, A. L. Wijesinha, R. K. Karne, L. Hend S. Girumala,
“A Peer-to-Peer bare PC VolP Application,” Proceedi of the |IEEE
Consumer and Communications and Networking Conterd@CNC),
pp. 803-807, IEEE Press, Las Vegas, NV, 2007.

K. Ono and H. Schulzrinne, The Impact of SCTP of Server
Scalability and Performance, GLOBECOM, pp. 14215,4008.

S. Salsano, L. Veltri, and D. Papalilo, SIP seguistsues: The SIP
authentication procedure and its processing IHaEE Network, pp. 38-
44,2002.

E. M. Nahum, J. M. Tracey, and C. P. Wright, Eviih@ SIP server
performance, in: 17th International Workshop on videgk and
Operating System Support for Digital Audio and \Gd@NOSSDAV),
Urbana-Champaign, lllinois, June 2007.

M. Cortes, J. R. Ensor, and J. O. Esteban, On &Hifhance Bell
Labs Technical Journal, 9(3), pp. 155-173, 2004.

C. Shen, H. Schulzrinne, and E. M. Nahum, Sesgidiation Protocol
(SIP) Server Overload Control: Design and Evalugti®TComm, pp.
149-173, 2008.

V. A. Balasubramaniyan, A. Acharya, M. Ahamad, Miv&sa, .

Dacosta, and C. P. Wright, SERvartuka: Dynamic ribistion of State
to Improve SIP Server Scalability, ICDCS, pp. 562-5lEEE Computer
Society, 2008.

K. Ono and H. Schulzrinne, One Server Per CityngsiCP for Very
Large SIP Servers, IPTComm, pp. 133-148, 2008.

H. Jiang, A. lyengar, E. M. Nahum, W. Segmuller,Tantawi, and C. P.
Wright, Load Balancing for SIP Server Clusters, ONFEOM 2009.

K. K. Ram, I. C. Fedeli, A. L. Cox, and S. RixnExplaining the Impact
of Network Transport Protocols on SIP Proxy Perfamge, ISPASS, pp.
75-84, 2008.

L. Chen, and C. Li, “Design and Implementation toé tNetwork Server
Based on SIP Communication Protocol,” World AcadeshyScience,
Engineering and Technology 31, pp. 138-141, 2007.

S. Zeadally and F. Siddiqui, “Design and Implemgataof a SIP-based
VolIP Architecture,” AINA 2004.

R. K. Karne, K. V. Jaganathan, N. Rosa, and T. Ahm®OSC:
Dispersed Operating System Computing”, OOPSLA 28th Annual
ACM Conference on Object Oriented Programming, &wst
Languages, and Applications, Onward Track, pp. 352605.

R. K. Karne, K. V. Jaganathan, and T. Ahmed, “HawRun C++
Applications on a Bare PC?™@nternational Conference on Software
Engineering, Artificial Intelligence, Networking driParallel/Distributed
Computing (SNPD), pp. 50-55, 2005.

G. Ford, R. Karne, A. L. Wijesinha, and P. Appiatl The Design
and Implementation of a Bare PC Email Server, 38mhual |IEEE
International Computer Software and Applications nfecence
(COMPSAC), pp. 480-485, 2009.

Kamailio (OpenSER) SIP server, [Online]. Available
http://sourceforge.net/projects/openAecessed: December 10, 2010.

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Telecommunications, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/telecommunications/

[22] Brekeke SIP Server, [Online]. Availablettp://www.brekeke.com/sip/
Accessed: May 28, 2010.

[23] SIPp, [Online]. Availablehttp://sipp.sourceforge.net/doc/reference.html
Accessed: December 10, 2010.

[24] Oprofile-A System Profiler for Linux, [Online]. Aviable:
http://oprofile.sourceforge.net/news/. Accessedy 2@, 2010.

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

92

