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Abstract—The provision of Quality-of-Service (QoS) in
packet-switched transmissions over highly mobile satellite ter-
minals presents challenges not solved by existing schemes like
Integrated Services and Differentiated Services. Such schemes
rely on stable link conditions, a requirement that cannot
be guaranteed in a mobile environment. To support robust
audio and video conferencing, an end-to-end reservation-based
approach is inevitable. This led to the development of the
MoSaKa QoS System, which combines a reservation-based QoS
scheme with the ability to deal with changing link conditions.
The main idea was to enable applications to degrade gracefully
if an unstable link deteriorates. Each router implements a cross-
layer QoS agent, which tracks the network-layer-based QoS
and takes the current status of the lower layers into account.
Certain flows can be suspended without canceling them if the
capacity of a link deteriorates. To select which flow has to be
suspended, an optimizer was implemented which examines the
flows for their priority and respective QoS requirements. To
depict how this optimizer works and how the system performs,
a testbed with an emulated satellite link was set up. The
obtained results show, that the presented system is able to
provide appropriate QoS over unstable links.

Keywords-quality of service; satellite communication; mobile
communication; IntServ; signaling

I. INTRODUCTION

This paper is an invited paper that is based on a previous
work published at the AICT 2012 conference [1]. At that
time, no evaluation results were available. These measurement
results are the additional contribution of this paper.

First of all, wire-based transmission systems such as
Ethernet provide stable links. In other words, the transmission
conditions such as the link capacity and error rate do not
change over time. In contrast, the transmission conditions
of wireless systems are considered unstable. For example,
if a laptop is carried around, it experiences different kinds
of fading effects. Similarly, mobile satellite terminals are
constantly affected by trees, clouds and other obstacles that
impair the line-of-sight transmission to the satellite.

Such links with changing conditions can not be avoided,
which leads to problems regarding support for Quality-of-
Service (QoS). Reservation-based schemes like Integrated
Services (IntServ [2]) depend on networks with stable links
for their capacity management, which fails if the available
capacity is a dynamic parameter. In contrast, Differentiated

Services (DiffServ [3]), an architecture that is based on the
differentiation of traffic into classes with specific properties,
does not offer reservations at all and thus is not able to offer
guarantees to the applications.

Having guarantees might be a requirement, depending
on the intended use case. In the research project Mobile
Satellite Communications in Ka-Band (MoSaKa, see [4] for
an introduction), a satellite-based communication system was
developed to support rescue teams in disaster scenarios. In
such a system, voice communication is one very important
application, ideally in combination with video. As satellite
resources are scarce, not all communication attempts can
be admitted. However, continuous communication streams
like voice conversations are not the only kind of traffic in
disaster communication systems. A multitude of data has
to be exchanged, such as digital maps, status reports, and
position information. Therefore, a packet-switched approach
that is based on the TCP/IP protocol suite is the most
flexible approach to build such a network. To serve important
applications like voice reliably, a reservation-based scheme
that assures QoS has to be implemented, causing the
aforementioned problem regarding the unstable characteristics
of the link to the satellite. The availability of a QoS system
coping with those limitations will be a key factor for being
able to use packet-based satellite communication systems as
backbones, especially in disaster scenarios.

In this paper, the MoSaKa QoS system, a novel reservation-
based QoS architecture that is able to cope with unstable
links, is presented. The focus is on satellite-based networks.
MoSaKa empowers rescue teams to communicate in environ-
ments without communication infrastructure, which is the
research area the MoSaKa project is looking at. However,
the algorithms shown in this paper could also be applied
to other QoS-enabled wireless transmission systems, such
as IEEE 802.11e. The whole QoS system was implemented
and is available for the GNU/Linux platform. A testbed was
set up, that allowed to perform extensive functional tests
and performance evaluations. The results of these tests are
presented in this paper.

The remainder of this paper is organized as follows:
Section II describes the scenario for which the proposed
architecture was designed. The requirements for this architec-
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Figure 1. Typical use cases for MoSaKa entities: fixed, nomadic and
mobile terminals

ture are derived in Section III. Section IV gives an overview
over the related work and highlights the shortcomings of
previous approaches. Section V depicts the final architecture
of the MoSaKa QoS system by presenting all its functional
components. The test environment is presented in Section VI.
There the results of multiple functional tests and perfor-
mance comparisons are provided. The paper is concluded in
Section VII with an overview about future work.

II. THE MOSAKA RESEARCH PROJECT

The MoSaKa project aims at developing a complete
satellite communication stack from the antennas up to the
QoS management, including antenna tracking systems and a
decentralized resource allocation scheme. In this paper, the
main focus is on the QoS system as it is seen by the higher
layers. Layer 2 and below are only mentioned insofar as they
are required to explain design decisions regarding the higher
layers.

Figure 1 shows a typical usage scenario: some nomadic and
mobile terminals deployed in a remote area use the satellite
link to communicate with their headquarter. Each terminal
uses a dynamic set of services resulting in individual traffic
demands. The communication link from each terminal to the
satellite is considered unstable: the link quality fluctuates
with the movement of the terminal and changing conditions
of the environment. Most of these fluctuations are short, but
some may persist for a longer span of time.

Large-scale disaster relief operations cause a significant
demand for communication. Satellite links are a – compar-
atively – scarce resource with only a small capacity and
long delays.1 These two effects have to be considered while
implementing a system-wide QoS infrastructure.

1For geostationary orbits at a height of ≈ 36 000 km the time-of-flight is
already longer than 100 ms for one direction.

III. REQUIREMENTS

Based on the scenario presented in Section II, a set of
requirements, that a QoS infrastructure has to fulfill, were
derived.

Hard QoS guarantees

Targeted applications, such as for audio and video confer-
encing, assume a transmission behavior as provided by circuit-
switched communication systems. This includes a guaranteed
data rate, a deterministic delay, and reasonable low error
rate. Providing hard guarantees in IP-based networks can be
achieved by end-to-end path reservation schemes. Supporting
dynamic reservations requires a signalization scheme, e.g.,
to setup and cancel paths.

Decentralized resource allocation

A centralized resource management entity is a single point
of failure, causes additional signaling traffic towards this
entity, and may provide an outdated view of the resources
of the whole network especially if the signaling messages
are affected by considerable delays. To avoid these effects,
a decentralized resource management scheme is preferred.

Efficient handshakes

The main issue in designing an efficient signalization
scheme the long transmission delay introduced by the
satellite link. With a round trip time of ≈ 400 ms, complex
handshakes with multiple messages traveling back and forth
are imposing an unacceptable overall delay.

Efficient handling of link instability

Today’s QoS systems assume stable links with static re-
sources that can be utilized for reservations. This assumption
is no longer valid in mobile, satellite-based communication
systems or even in mobile communication systems in general.
Over the time, the propagation conditions are subject to
change. The QoS infrastructure presented in this paper must
be able to cope with such unstable link conditions.

Cross-layer link usage optimization

Satellite-based communication with multiple terminals
takes place on a shared broadcast medium. To enable parallel
transmissions via one single satellite, the MoSaKa physical
and MAC layers have to assign the available link spectrum to
all terminals that compete for resources. This happens with
respect to the individual resource demands of each terminal.
These resource demands are derived from higher-layer QoS
requirements that originate from the applications.

Due to the long delay of the broadcast medium, the
resource assignment procedure takes place in a distributed
manner without central coordination and without any point-
to-point negotiation. If the link share of a terminal decreases,
the higher layer reservations may not fit into the remaining
capacity anymore. In that case, the QoS system has to evaluate
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all admitted reservations based on their properties to keep
as many of them active as possible.

A resource management system suitable for mobile satellite
communication has to address these requirements. Existing
solutions fall short in one or the other aspect prompting the
development of a new architecture for the MoSaKa project.

IV. RELATED WORK

QoS architectures such as IntServ [2], [5], [6] or Diff-
Serv [3], [7] are well known and have a wide range of
acceptance. Nevertheless, they have a variety of issues
regarding unstable link conditions.

IntServ

IntServ is an architecture that offers hard guarantees
regarding QoS parameters. Applications request reservations
via a signaling protocol such as the Resource Reservation
Protocol (RSVP) [8] or Next Steps in Signaling (NSIS) [9],
[10], [11] to announce their individual traffic requirements.
On each node along the transmission path, an IntServ entity
manages and monitors the traffic, taking the amount of
permitted resources into account.

Applying IntServ upon an unstable link leads to problems
if the link capacity decreases. This results in a situation
where the sum of all accepted reservations does not fit into
the link budget anymore and reservations are violated. As no
feedback mechanism is available, the system has to withdraw
reservations. Affected applications can only deal with this
situation by reserving a new path with different parameters
or ceasing communication altogether. Signaling new paths
causes additional message load on the already limited link,
contributing further to the congestion.

DiffServ

One of the problems of IntServ in large-scale networks is
its bad scalability. Due to the state kept in each intermediate
node, IntServ installations do not scale to Internet-sized
networks. This prompted the development of DiffServ, a
system based on differentiation of traffic into classes, which
are treated differently by the network. This allows the
assignment of transmission priorities to distinguish different
types of traffic.

As DiffServ does not support the reservation of a commu-
nication path, it does not offer guarantees. Excessive traffic
in a single class is able to exceed the link capacity, causing
packet loss for all affected applications.

Specialized QoS systems

In addition to the IntServ and DiffServ models, a whole
body of research for networks with non-standard conditions
exists. Some of these approaches served as an inspiration for
a solution to the problem at hand.

INSIGNIA: The INSIGNIA QoS system [12] is designed
to work in highly dynamic, mobile ad-hoc networks. The
in-band signaling approach provides guaranteed data rates
by reserving paths, and is able to adapt fastly to changing
conditions of the network. The receiver-based adaption
mechanism performs well in highly meshed networks, but
is not suited for networks with a single bottleneck in the
backbone, such as a satellite link. Furthermore, the reservation
model lacks expressiveness, as it does not incorporate QoS
parameters like delay and error rate, which are parameters
that offer room for optimization in satellite transmission
systems.

DARWIN: DARWIN [13] is an approach implementing an
IntServ-like model based on a global resource broker. This
enables the system to optimize resource utilization among
the whole network. Regarding satellite-based communication
systems, QoS requests as well as network status notifications
towards the broker are affected by high transmission delays,
potentially causing instability.

DVB-RCS2: Digital Video Broadcasting; Second Genera-
tion DVB Interactive Satellite System (DVB-RCS2) [14] is
an ETSI standard to implement an interactive return channel
using the standard DVB-S satellite transmission system. The
system implements DiffServ as its QoS approach on the
layers 2 and 3. Due to the lack of a reservation system, it
does not offer hard transmission guarantees.

Inmarsat BGAN: The BGAN service provided by In-
marsat [15] is one of a few high data rate, bidirectional
satellite services offering QoS with hard guarantees. Here,
access terminals are able to request predefined channels with
a fixed bandwidth from the system. Flexible signalization or
end-to-end reservations are not possible.

For use in mobile satellite environments, all aforemen-
tioned approaches lack certain desirable features. This
prompted the development of a new reservation-based ap-
proach similar to IntServ. Whereas the scalability of IntServ
in large networks is a problem, it is not an issue in the system
at hand. The typical satellite communication system for the
disaster scenario will contain only a limited number of users.
This makes stateful systems in the backbone feasible. Even
more, the guaranteed reservation of communication paths as
offered by a reservation-based system is crucial for rescue
teams in disaster scenarios. MoSaKa aims to create such a
reservation-based QoS system and to tackle the challenges
arising from unstable links.

V. THE QOS ARCHITECTURE OF MOSAKA

An IntServ-like architecture such as MoSaKa introduces
management entities on each intermediate node as well as on
each end system. These entities are aware of all reservations
that pass the respective node. In the depicted scenario, static
routing in the backhaul is assumed, which ensures that each
packet of a flow always takes the same route through the
network.
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Figure 2. The network of a scenario where the MoSaKa QoS architecture
is deployed.
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Figure 3. Two kinds of nodes exists in the MoSaKa network: clients and
routers. At least, each node requires a QoS Agent running on it. Additional
software components are required for clients.

The resulting topology is shown in Figure 2. The central
component is the satellite-based communication system with
a geostationary satellite and multiple terminals as ground
stations. The satellite link is considered to be a bottleneck
with a high transmission delay. The terminals act as IP
routers and connect local networks to the satellite network.
The architecture of the MoSaKa QoS system has no central
coordinator.

This approach inherits two issues of IntServ: it has
scalability problems and might fail if the links are unstable.
The former can be neglected with the depicted use case in
mind, and the latter is solved by the architecture presented
in this paper.

A. Software components

The software components introduced by the MoSaKa QoS
architecture are depicted in Figure 3. There are two main
components: the QoS Agent and the Dispatcher.

1) The QoS Agent: The QoS Agent is a management entity
that exists on each node of the network including routers

and clients. This entity is aware of all ongoing reservations
that pass the node and has an overview of the transmission
resources of each interface that the node possesses. This
allows the QoS Agent to decide whether a subsequent
reservation can be admitted or has to be rejected. For the
purpose of transmitting reservation requests, a signaling
protocol such as RSVP or NSIS is required. The QoS Agent
intercepts protocol messages and interprets them as necessary.
On the satellite terminal, it also communicates with the lower
layers to obtain status information regarding the link. This
way, it detects link deteriorations.

Furthermore, QoS components like traffic metering and
shaping depend highly on the underlying operating system of
each node. It is the task of the QoS Agent to adapt the high-
level reservations to the QoS primitives available on the node
to allow a deployment of the architecture in heterogeneous
networks. Each agent consists of a generic part handling the
signaling and admission control, and a system-specific part
configuring the underlying operating system services.

2) The Dispatcher: The Dispatcher is a component that
is only required if a given node has applications running on
it, making it a client. A Dispatcher acts as a broker between
the applications running on the client and the QoS system in
the network. The applications talk to the Dispatcher using
interprocess communication (IPC). The Dispatcher handles
all QoS-related interaction with the network relieving the
applications from doing so. Additionally, it serves as an
entry point for requests and notifications from the network,
decoupling the local application structure and the state saved
along the communication path. From the network point of
view, the Dispatcher is the entity that holds a reservation and
renews it as necessary.

Reservations are always triggered by applications. The
Dispatcher merely acts as a proxy. Therefore, applications
are part of the MoSaKa QoS architecture and need to be
modified to take full advantage of the system. One has to
distinguish QoS-enabled applications, legacy applications and
translator applications.

QoS-enabled applications: As shown in Figure 4 a, a
QoS-enabled architecture includes the MoSaKa QoS library.
This library offers an high-level API to interact with the
QoS architecture and allows the programmer to request
transmission resources or to be notified if an active reservation
fails or is suspended due to link deterioration. Such an
application is aware of its traffic demands and is able
to request the appropriate amount of resources before it
starts transmitting. Additionally, it is prepared for incoming
feedback messages that indicate that the reservation is
currently affected.

Legacy applications: All IP-based applications that exist
today are considered as legacy applications. They are not
aware of an API to request transmission resources, resulting
in traffic that is not known to the QoS infrastructure. Two
approaches are possible: this traffic can be considered as best
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Figure 4. Three kinds of applications are distinguished in the MoSaKa
QoS system: Native, legacy and translator applications.

effort traffic, which may or may not pass a bottleneck in the
network, or it can be reserved with the help of a wrapper
application (Figure 4 b).

Such a wrapper application loads a predefined set of
QoS requirements from a configuration file, initiates the
reservation process and then, if successful, executes the
legacy application. In that case, the application does not
need to know anything about the QoS system, but benefits
from it nevertheless, as the required resources are reserved.

The reservation is held all the time even if the legacy
application does not emit any traffic. Even worse, to initiate
a reservation, the endpoint must be named, which limits the
application to a given set of predefined peers. However, such
a wrapper can be seen as an intermediate solution until the
affected applications implement the QoS scheme.

Translator applications: Translator applications act as
a gateway to other kinds of reservation schemes or networks,
e.g. circuit-switched telephony systems. Such an entity is a
special case of a QoS-enabled application (Figure 4 c).

In disaster scenarios, connections with other network
types such as Terrestrial Trunked Radio (TETRA [16]) may
be required. A dedicated gateway node with a TETRA
base station and a translator application installed on it can
interconnect both networks, allowing TETRA terminals to
make telephone calls to the headquarter via the satellite. The
translator application is aware of the required resources of a
TETRA channel, as the traffic requirements of the codecs
are known. This allows the translator application to create
suitable reservation requests for the MoSaKa network.

B. The QoS-enabled MoSaKa network

The MoSaKa network consists of two kinds of nodes:
intermediate nodes are referred to as routers, and end systems
are referred to as clients.

As routers have no applications running on them, the only
entity required here is the QoS Agent. The routers that are
connected to the satellite system are referred to as terminals.

On such a terminal the QoS Agent is equipped with additional
capabilities to manage the link to the satellite.

Clients, as they are considered as user equipment, have
applications running on them. Here, the Dispatcher software
is required, to logically connect the QoS-enabled applications
with the MoSaKa network.

On each network node the QoS Agent has to configure
the local packet forwarding entity of the operating system to
stop misbehaving applications from congesting the outgoing
interfaces. Above all, it must be impossible that traffic, that
exceeds the capacity of the outgoing link, causes packet loss
for flows that have been negotiated before. This is achieved
by relying on platform specific mechanisms to control traffic
flows like Traffic Control (tc) and Netfilter on Linux. On
terminals, this includes parameterizing the MoSaKa MAC
scheduler on the data link layer of the satellite link.

C. The signaling scheme

On each client, the QoS-enabled applications communicate
with the local Dispatcher via an API offered by the MoSaKa
QoS library. By accessing this API, an application informs the
QoS System about the amount of resources it requires for a
transmission to a well-defined peer. The Dispatcher creates a
reservation request signaling message that it sends to its peer
entity, the Dispatcher residing on the destination node. All
signaling messages are intercepted by each QoS Agent along
the path, allowing them to decide whether to accept or to deny
this reservation request. If such a reservation has to be denied
because of insufficient remaining link resources, a negative
acknowledgment is sent back to the initiating Dispatcher.
This results in a deletion of the pending reservation on all
intermediate nodes and leads to a negative acknowledgment
to the application via the API of the QoS Library.

If no node fails along the path, the signaling message
reaches the Dispatcher at the destination node. This Dis-
patcher may be aware of local applications, as they are
allowed to register to it beforehand. It offers the opportunity
for the applications to modify the incoming request (e.g., to
change a data rate of a request to better match the expected
traffic). After the local handling is done, the Dispatcher
sends back an acknowledgment to the originator. Again, this
message is intercepted by all QoS Agents and results in an
orderly created reservation along the whole path.

D. Feedback mechanism

To tackle changing link conditions, the signaling protocol
was equipped with a feedback mechanism. Feedback mes-
sages originate from a QoS Agent in the network, after it
detected that one of its observed links deteriorates. This QoS
Agent sends a feedback message to all applications that hold
reservations affected by this degradation.

On each node, the network interface is monitored by the
local QoS Agent. Additionally, it is aware of all active
reservations that involve this link. Moreover, it allows to
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decide whether the remaining capacity is still high enough
to serve all reservations. If the capacity falls below the
amount of resources assigned to reservations, the QoS
Agent starts to optimize. Optimization is done by building
a set of allowed reservations starting from the one with
the highest priority. Reservations are incrementally added
to this set if there is still capacity available. This simple
optimization algorithm is suited well for highly hierarchical
communication environments, such as those present during
disaster relief operations.

After optimization, the QoS Agent has a list of reservations
that still have enough link resources. In addition, it has a
list of reservations that do not fit into the link anymore.
Instead of canceling these reservations, as architectures such
as IntServ would have to do, the QoS Agent of MoSaKa is
able to set affected reservations on hold. Such a suspended
reservation is still known to the whole path, but without any
active transmission guarantees. Later, if the link recovers,
the reservation is resumed by another feedback message.

In the MoSaKa scenario, it is assumed that link degra-
dations are short in nature. Hence, this approach allows a
reservation scheme with a low amount of signaling messages.
Applications do not need to actively poll the network for
free resources, which otherwise would cause an additional
signaling load. Furthermore, the data transmission is resumed
faster if the network sends resume messages. Such a message
can be sent immediately after the link recovered, instead
of relying on the applications that would have to poll the
network for a new reservation. Needless to say, even if such
a subsequent reservation request would be granted, it would
be necessary to complete the full handshaking sequence.

Nevertheless, if the link stays degraded for a longer span
of time, the QoS Agent may cancel reservations to prevent
congesting the network with reservations that cannot be
served anyway.

In the MoSaKa QoS architecture, signaling messages are
usually exchanged between Dispatchers on two peer nodes,
and are intercepted by all QoS Agents on each intermediate
node including the end nodes that run the Dispatchers. If a
given reservation has to be suspended, the QoS Agent creates
signaling messages and sends them to both Dispatchers,
allowing all QoS Agents on the path to notice that this
reservation is currently on hold.

If a signaling message arrives at a Dispatcher, it passes
it to the respective application. Here, it triggers a trap in
the QoS library informing the application about an accepted,
suspended, resumed or canceled reservation.

This feedback scheme is new and allows a graceful
degradation of communication. To underline this, one of
the most important applications of the MoSaKa scenario is
analyzed: Video chat.

E. Impact on Video chat

If a user starts a video chat session with the headquarter,
the video chat application tries to reserve resources for the
video data and for the audio data separately. As a video chat
session is bidirectional, the reservation message contains
resource requests for both directions at the same time. For
this reason, the signaling handshake completes fully after
just one round trip. If the reservation handshake is completed
without a rejection from intermediate systems, the path is
considered active and can be utilized by both peers.

If the satellite link deteriorates, this is noticed by the
QoS Agents on the satellite terminals. Without sufficient
transmission resources, they start the optimization process
that results in the less important video streams to be set on
hold to keep the audio streams active. A feedback message is
sent to the Dispatchers at both ends of the path, resulting in
the deactivation of the video stream in the application. If the
link recovers, another feedback allows the video stream to be
resumed. This allows applications to provide an indication
based on the network state, increasing user satisfaction by
making the process transparent. Otherwise, if the link fails
to recover, the reservation is canceled by the network.

The on hold state enables the system to bridge short
link degradations. Degradations are common in mobile
satellite communication systems, and dealing with such
situations without canceling paths avoids significant signaling
effort. More important, the feedback mechanism allows
applications to intelligently react to those changes in the
network. Especially for satellite links with long delays and
a low capacity, such a scheme is essential.

F. MoSaKa Satellite Terminals

To check whether all active reservations fit into the current
link capacity, the QoS Agent has to obtain information
regarding the link. For that purpose, technology-dependent
functionality is required to interact with Ethernet, IEEE
802.11e or the MAC and PHY layers of the MoSaKa satellite
terminals.

The MoSaKa satellite link offers QoS-enabled lower layers.
From the point of view of the physical layer the satellite link
is a shared medium. Each terminal can be received by every
other terminal via the satellite. Therefore, it is necessary to
allocate and assign parts of the link spectrum to specific
sender terminals to prevent collisions. To accommodate
changing link conditions, this allocation is not static but
takes place every 250 ms. Each active terminal is assigned a
short time slot on the lower layer (L2) signaling channel. In
this time slot, it broadcasts its resource request to all other
terminals. Based on this information, each terminal applies
the same resource assignment procedure and comes up with
the same resource allocation vector for the next 250 ms data
transmission frame. A reservation on the lower layers is valid
for only one slot, and has to be renewed continuously by
using the L2 signaling channel.
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Figure 5. The MoSaKa evaluation testbed comprises two client machines
and two virtual satellite terminals connected by an emulated satellite link.

If the link between one terminal and the satellite deterio-
rates, the QoS Agent on this terminal gets informed about a
lower amount of transmission resources that this terminal got
assigned for the next data transmission frame. This allows the
QoS Agent to check whether all active high-level reservations
still fit into the link share, and to take appropriate actions if
they do not.

VI. EVALUATION

For the purpose of evaluation, the MoSaKa QoS system
was implemented and the testbed depicted in Figure 5 was
set up. It incorporates two laptops that act as clients with
traffic sources and sinks. A central server is hosting the
emulated satellite network components, consisting of two
virtualized satellite terminals and an emulated satellite link.
For the virtualization, Kernel-based Virtual Machine based
on Qemu (Qemu/KVM [17]) was chosen as a hypervisor, as
it supports hardware virtualization promising performance
gains. The host system as well as all guests run a Linux-based
operating system with a 3.2.21 kernel. The two guest systems
implement the MoSaKa terminal functionality. In addition
to the Qemu/KVM hypervisor, Virtual Square wirefilter and
the VDE-Switch [18] are used to connect the guest systems.
These components emulate the latency and capacity of a
geostationary satellite link. The link parameters are controlled
with predefined profiles to emulate arbitrary scenarios in
reproducible way.

The measurements were taken using traffic generators
adapted to the specific needs of the project. The traffic sources
interact with the MoSaKa system to reserve paths. The traffic
sinks are able to report received data rate, packet loss rate
and transmission delay.

MoSaKa implements a cross-layer approach which tightly
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Figure 6. The capacity of the emulated satellite link over time

integrates the functionalities provided by the layers 1 to 3,
whereas the lower layers had to be emulated to some extend.
Each satellite terminal runs a MAC layer emulation which
controls the forwarding of packets on the VDE-Switch link.
This way, a real system behavior is emulated as closely as
possible.

A. Emulation of changing link conditions

The testbed runs predefined profiles to make reproducible
tests possible. The emulated channel adds a fixed delay of
250 ms, but has a variable capacity between 50 kbit/s and
3000 kbit/s.

Figure 6 shows the capacity curve that was used throughout
all tests. It starts with a maximum link capacity of 3000 kbit/s.
After 10 s the link starts deteriorating linearly and reaches a
minimum capacity of 50 kbit/s at 160 s. At 170 s the link
starts to recover linearly and reaches its maximum again at
after another 150 s. This basic scenario is sufficient to test
the behavior of QoS systems. It could be enhanced to model
the behavior of satellite links in a more realistic way, e.g., by
incorporating weather conditions. However, this would make
it harder to highlight the functionality of the MoSaKa QoS
system. Thus, we postponed this for future tests, which will
also incorporate transmissions over a real satellite system.

B. Functional tests

Two functional tests were performed to show that the basic
QoS functions of the MoSaKa QoS system were working
correctly. They reflect the goals of the MoSaKa QoS system,
especially:

• The QoS system is dealing with changing link condi-
tions.

• Best effort traffic and reserved traffic are isolated.
• Different priorities are distinguished.
• The performance of UDP and TCP is usable.
1) UDP-only test: In the first test, three independent UDP

flows were sent over the emulated satellite link. All were
directed in the same direction, to render the satellite link
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Table I
QOS REQUIREMENTS FOR ALL PATHS OF THE UDP-ONLY TEST

reservation@source emission@source
flow priority data rate data rate packet rate
UDP 1 low 849.6 kBit/s 100 kbyte/s 100 p/s
UDP 2 high 1,699.2 kBit/s 200 kbyte/s 200 p/s
Best Effort (none) (2,124 kBit/s) 250 kbyte/s 250 p/s

a bottleneck. All UDP packets carried a payload of 1,000
bytes, whereas each packet was extended by an overhead of
62 bytes. This overhead consisted of 8 bytes for the UDPv6
header, 40 bytes for the IPv6 header and 14 bytes for the
header and trailer of the Ethernet frame. For an exemplary
flow of 100 UDP packets per second with 1000 bytes payload
each, the expected data rate on the medium was 849600 bit/s
(see Equation 1).

100 p/s ∗ 1062 byte/p ∗ 8 bit/byte = 849600 bit/s (1)

For each flow, table I lists the expected data rate on the
medium. This is exactly the data rate that was also reserved
for the path, if a reservation for that particular flow was
required. Here, the “Best Effort” flow had no reservations,
but the flows “UDP 1” and “UDP 2” had requirements
regarding their data rate. Furthermore, flow “UDP 2” had a
higher data rate and a higher priority than flow “UDP 1”.

The MoSaKa QoS system was configured to respect
priorities and to use feedback messages to indicate that
reservations were suspended or resumed. However, the UDP
sources ignored these messages and kept on transmitting UDP
packets. As a consequence, if a reservation was suspended,
the affected UDP packets were transmitted nevertheless, but
as best effort traffic. They then shared the remaining link
capacity with all other best effort traffic.

The UDP sources emitted UDP packets of a fixed size.
Each packet contained a time stamp and a sequence number,
allowing the UDP sinks to calculate the received data rate,
the transmission delay and the amount of lost packets.

Measurement results: Figure 7 depicts the sum of the
data rates of all three UDP flows at the receiver. It is shown
very clear that the added data rate at the receiver matched
the capacity of the emulated satellite link (Figure 6). The
maximum data rate was at about 350 kbyte/s, which equals
– all overhead included – the maximum link capacity of
3000 kbit/s. Furthermore, the figure shows that the reservation
for flow “UDP 2” (200 kbyte/s, high priority) was active
as long as it fitted into the capacity of satellite link. It was
suspended after 75 s, resulting in its UDP packets being
transmitted as best effort traffic. This resulted in a decreasing
data rate at the receiver, as the traffic was no longer isolated.
After 253 s, the satellite link recovered and had enough
capacity to resume the reservation for flow “UDP 2”. The
protection schemes regarding this flow were reactivated, and
the reserved data rate was claimed until the test ended.
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Figure 7. Overall receive data rate during the UDP-only functional test
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Figure 8. Receive data rate per flow during the UDP-only functional test

Figure 8 visualizes the same set of data, but shows the
received data rate of each flow individually. Here, it is very
interesting to have a look at flow “UDP 1”. This flow was
reserved as well, with a lower data rate than flow “UDP 2”,
but also with a lower priority. As a consequence, when the
capacity of the link decreased, flow “UDP 1” was suspended
in favor of “UDP 2”. This happened the first time at 32 s.
Interestingly, after “UDP 2” was suspended at time 75 s, the
link had enough capacity to schedule “UDP 1” again, which
was resumed immediately. Flow “UDP 1” had protection
schemes applied until 118 s, as the capacity became so low
that no reservation fitted anymore and only best effort traffic
was possible.

During the following phase of link recovery, the same
behavior was visible again, with the reservation of “UDP
1” being resumed, suspended, and resumed again. Even if
this behavior looks odd, it reflects the expected behavior of
a priority-enabled reservation-based QoS system that deals
with changing capacities.

As the UDP sinks tracked the sequence number of the
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Figure 9. Packet loss rate per UDP flow
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Figure 10. Transmission delay per UDP flow

received packets, they were able to count lost packets.
Figure 9 depicts the packet loss rates of all three flows. Flow
“UDP 2”, which had the highest priority, showed not a single
packet loss before 75 s, but underwent a considerable and
increasing packet loss afterwards. Flow “UDP 1”, that was
suspended but resumed later as the link capacity decreased,
underwent no packet loss while its reservation was active,
but suffered from packet loss while it was suspended. The
“Best Effort” flow showed packet loss during the whole test.
However, the only purpose of this flow was to create enough
traffic to stress the link, in order to check if the isolation
schemes regarding reserved flows were working correctly.

For each received UDP packet, the UDP sink calculated the
respective transmission delay. All clocks were synchronized
and each UDP packet contained a time stamp created by the
UDP source. Figure 10 shows the transmission delay of each
of the three UDP flows, over the time. UDP packets of flows
with an active reservation underwent a transmission delay
of ≈ 250 ms, which was equal to the delay emulated by
wirefilter. Interestingly, this delay was constant, showing that

Table II
QOS REQUIREMENTS FOR ALL PATHS OF THE TCP/UDP-MIXED TEST

reservation@source emission@source
flow priority data rate data rate packet rate
TCP 1 low 849.6 kBit/s not applicable
TCP 2 high 1,699.2 kBit/s not applicable
Best Effort (none) (2,124 kBit/s) 250 kbyte/s 250 p/s

the Hierarchical Fair Service Curve (HFSC) packet scheduler
of the Linux Kernel did not run out of link capacity. Best
Effort traffic, which included traffic of flows that have a
suspended reservation, experienced an increasing delay. The
increasing delay was caused by buffering, as the packet
scheduler had to process a UDP packet rate that did not fit
into the capacity of the outgoing link anymore. In addition to
that, this effect was also caused by the decreased link capacity
itself: decreasing the data rate resulted in an increasing
amount of time required to send an Ethernet frame.

2) TCP and UDP coexistence test: In the second func-
tional test, the behavior of TCP (CUBIC) was investigated. A
consideration of TCP is very interesting, as the slow start and
congestion control functions of TCP are prone to misbehavior
if running over high delay links. Furthermore, if TCP and
UDP coexist on the same link, UDP is able to block TCP
as TCP has intrinsic congestion control functions that UDP
does not have.

This test was similar to the first functional test: three flows
were sent in the same direction via the satellite link. One
flow was a best effort UDP flow carrying 250 kbyte/s, while
the other two flows had QoS requirements that were reserved.
In terms of data rate and priority, both reservations were
similar to the reservations of the UDP-only test. However, the
traffic originated from two TCP connections (see table II).
Unfortunately, it is challenging to calculate the data rate
for the process of reservation, if only the desired data rate
regarding the payload of a TCP connection is given. The
slow start algorithm of TCP, a variable segment size, and
retransmissions due to packet loss are only three examples
why TCP might increase the amount of traffic silently.

Instead of calculating the data rate regarding Ethernet, the
reservations of the UDP-only test were applied again. As in
the first test, the data rates were measured at the socket level,
reflecting the effective data rate an application can achieve if
TCP is used. From the point of view of the applications, the
reserved paths should behave like two exclusively assigned
long delay paths with a fixed capacity, until the respective
reservation is suspended.

Like in the first functional test, the TCP traffic sources
ignored feedback messages. Instead, they kept on feeding
their socket with user data, even if the respective reservation
was suspended. Due to the flow- and congestion control
functions of TCP and the limited size of the send buffers
in the TCP stack, the applications were throttled if the data
could not be transmitted across the network.
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Figure 11. Received data rate per TCP connection

Measurement results: Figure 11 shows the data rates of
both TCP connections, which reflect the amount of user
data read from the TCP sockets at the sink, over time. The
best effort UDP traffic is not depicted anymore, as its only
purpose was to saturate the emulated satellite link. Each
TCP connection is represented by two lines. Lighter colored
lines show the received amount of data on a per-second
basis, while the darker lines show an averaged versions of
the same data, with a sliding window of 10 seconds applied.
Filtering was required, as the effective data rates of payload
were fluctuating heavily. This was caused by TCP, which
guarantees ordered delivery. Received data has to be delayed
if gaps exist, which leads to burst of delivered data if these
gaps are closed later.

Both TCP connections were able to saturate their paths,
as long as their respective reservation were active. At 40 s,
the overall link capacity dropped below the sum of both
reserved paths, and “TCP 2” was suspended due to its lower
priority. The data rate of “TCP 2” dropped to zero, as it had
to compete with the traffic of the best effort UDP flow. At
81 s, the link capacity fell below the limit of holding the
reservation of “TCP 1”, and its path was suspended too. Thus,
the reservation of “TCP 2” fitted again, and its path was
resumed. Interestingly, “TCP 2” was not able to immediately
reclaim this capacity, but required nearly 30 seconds to start
delivering data to the sink application again. This may be
due to the intrinsic retransmission timers and the slow start
mechanisms of TCP. Future work will have to look deeper
into this topic.

At 121 s, the reservation of “TCP 2” was suspended again
due to lacking resources, and both TCP connections were
blocked by the best effort UDP flow. As the reservation of
“TCP 2” was resumed at 207 s, the delivery of data started
within a short amount of time. If compared to 81 s, different
recovery behaviors of “TCP 2” were observed. The authors
suspect, that these differences were caused by synchronization
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Figure 12. Overall receive data rate of both TCP connections and the best
effort UDP flow

issues regarding the retransmission timers of TCP. Different
TCP implementations for satellite systems or unstable links
may show an improved performance.

Figure 12 depicts an interesting artifact of the testbed that
was caused by the emulated satellite link. Here, the overall
data rate of all three flows is shown over time. At 81 s, the
reservation of “TCP 1” was suspended and the reservation
of “TCP 2” was resumed. As discussed, the data rate of the
first connection dropped to zero, while the data rate of the
second connection did not recover. Thus, the reservation of
“TCP 2” was active, but its resources laid idle. The expected
behavior of a QoS system would be that idle resources are
assigned to best effort traffic, but Figure 12 shows a different
behavior. Here, best effort traffic did not claim idle resources
of active reservations, resulting in a fall-off between 81 s
and 95 s. Future research will have to look into the behavior
of the real MoSaKa layer 2 system.

3) Concluding the functional tests: Both functional tests
showed that the MoSaKa QoS system provided end-to-end
guarantees. The UDP-only test revealed a perfect match of
the reserved and the delivered data rate. Reserved paths did
not influence each other and were protected against best
effort traffic. When the link capacity decreased, paths were
suspended in the order of their priority. As the affected
UDP sources did not react to the feedback messages, their
respective traffic was treated as best effort traffic.

Due to the perfect isolation of paths, reserved TCP
connections were able to utilize the capacity offered by their
respective reservation. However, the tests indicated that the
path suspension mechanism may collide with TCP’s intrinsic
slow start and retransmission timers. TCP connections were
not able to take advantage of short intervals of activated
reservations. As TCP is the most important transport pro-
tocol in IP-based networks, future work should look into
possibilities to fully understand and possibly mitigate this
issue by either evaluating feedback messages directly inside
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Figure 13. Example of the error analysis according to the MoSaKa QoS
system

the TCP protocol entity or by taking network-layer path
stability requirements into account.

C. Performance evaluation

In order to evaluate the improvement provided by using
the MoSaKa QoS system, it was compared to other methods.

Measurement setup: All comparisons were performed
using random sets of 32 reserved UDP-based flows with
a total reserved data rate of 3000 kbit/s. Each UDP source
emitted a stream of packets with 1000 bytes payload and
a constant data rate. The data rate matched the reserved
capacity. While the sources involved the MoSaKa QoS system
to reserve paths, they did not evaluate any feedback messages.
Thus, they did not adapt their output rate in case of a
suspended reservation. On the peer node, the UDP sinks
reported the received data rate, the packet loss rate and the
delay. The link conditions were emulated as described in
Section VI-A.

Each test series was evaluated against an independent
implementation, checking three rules for each time slot:

1) Paths must be prioritized correctly. A path with a higher
priority must never be blocked by one with a lower
priority.

2) If a path still fits into the remaining capacity, it must
be enabled.

3) Enabled paths must not lose any packets.
Figure 13 illustrates a synthetic example of the analysis

process. It comprises two reserved paths, with “Reservation
1” having a high priority and “Reservation 2” having a low
priority. Each path has a specific part of the capacity reserved.
When the available link capacity falls below the sum of the
two reservations at 33 s, “Reservation 2” is suspended. The
respective traffic loses its guarantees, and the data rate at
the sink falls below its reservation. This is not counted as
an error, as this is the specified system behavior in case of a
degrading link.

On the other hand, the time slots at 35 s and 36 s are
counted as errors regarding “Reservation 1”, and the time
slot at 31 s shows an error regarding “Reservation 2”. For
each time slot, one can calculate which reservations should
be activated and which reservations should be suspended.
While flows with a suspended reservation are allowed to
undergo packet loss, flows with active reservations must not.
If one sink reports packet loss nevertheless, this is counted
as an erroneous time slot.

Besides this, the independent implementation of the
analysis software does not reason about the source of the
errors, but merely implements a black box test with regard
to the network. This opens up the opportunity to test against
network configurations which support less extensive QoS
models than MoSaKa does, or no QoS at all.

Four different QoS models are compared in this paper:
Without QoS: This QoS model served as the baseline

representing the current Internet without any QoS guarantees.
While individual flows still had an assumed priority and an
expected data rate, the network did not obey this information.

This scenario was expected to perform the worst. Usually,
routers try to assign available resources fairly, leading to a
dropping of packets distributed over all flows.

Without priorities, cancel only: This simple QoS
model assumed end-to-end guarantees for reserved flows.
The network was able to cancel paths if link conditions
deteriorated. However, canceled paths were never resumed.
Having different priorities was not supported. This model
corresponds to a simple IntServ system that does not offer
having priorities.

Even without having priorities and without allowing
suspended paths to recover, this model was expected to
perform significantly better than the first model. At least
for paths that still have an active reservation, the error level
should decrease significantly.

With priorities, cancel only: This advanced QoS model
allowed having priorities, but it still lacked the ability to re-
enable a canceled path after the condition of a link recovered.

Having the ability to obey priorities, such a system should
show an even lower error level. The reservations of high
priority flows should be kept active longer, leading to less
erroneous time slots.

MoSaKa QoS: The MoSaKa QoS model supported
both path suspension and obeys priorities. It represents the
contribution of the authors.

With both mechanisms in place, MoSaKa should be able
to perfectly match the expected behavior, resulting in an
error level of zero.

Measurement results: For each of the four QoS models,
20 test series were performed and evaluated, using the same
setup as described earlier. The number of erroneous time slots
of all 32 flows were averaged, and these averaged error levels
were averaged again among all 20 test series. The resulting
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Figure 14. Average error levels of different QoS models

four error levels and their respective standard deviation are
shown in Figure 14.

As expected, the first model without any QoS performed
worst. If the link capacity dropped below the sum of all
flows, the network started dropping packets of all flows. This
affected all paths in the same way with no regard to priorities.

Only flows with a low priority showed low error levels, as
the analyzer expected these flows to be suspended early. For
flows with higher priorities, the error levels increased. On
average, in approximately 40% of the time slots of a path’s
lifetime, the system was not able to provide the desired QoS.

Introducing a QoS model, at first a simple one, improved
the situation. Even without obeying priorities or providing
path suspension, the error levels dropped to 18% on average.
If a path was canceled, its resources were freed. These free
resources helped keeping the remaining reservations active
for a longer time.

Interestingly, testing an advanced QoS model that respects
priorities showed only a slight improvement. The average
error levels dropped to approximately 16%. With the given
link capacity curve as depicted in Figure 6, the most
erroneous time slots happened in the second half of each
test series. Once a path was canceled, it never recovered.
Therefore, its traffic had to compete in the best effort class.
This lead to a similar situation as in the first model (without
QoS), where packet loss affected all paths uniformly.

Having the full feature set of the MoSaKa QoS system,
error level dropped to 1.4%. This was not a perfect result,
but most of the errors can be attributed to imperfections in
the measurement setup. Having time slots of a given duration
leads to false negatives when paths switch state within a slot.
Decreasing slot durations would help, but that would lead to
other problems: introducing shorter slot times complicates
the assessment of flows, especially if they have a low packet
rate. Then, many of the slots are empty, and the system
starts to detect scheduling effects which might move packets
between slots, wrongly leading to errors again.

As expected, MoSaKa performed nearly perfect under the

given scenario. Paths were suspended in the correct order
and returned to service once the conditions improved.

VII. CONCLUSION AND FUTURE WORK

In this paper, a novel QoS architecture called “MoSaKa
QoS” was presented. It was designed for networks that
involve mobile satellite-based communication links. Previous
reservation-based approaches like IntServ are not suited,
as the link to the satellite is considered unstable, i.e.,
provides a varying data rate. In MoSaKa QoS, this problem
was circumvented by the introduction of a novel feedback
mechanism, that suspends reservations without canceling
them. The applications are informed that their reservation was
suspended, allowing them to degrade gracefully. To provide
an example, a video conferencing software was equipped
with these features.

Furthermore, a testbed was set up, containing all compo-
nents of the MoSaKa QoS system, besides “real” MoSaKa
terminals that communicate via a satellite. Instead of a
transmission via a satellite, the respective link was emulated
with respect to delay and a capacity that changes over
time. Extensive measurements were obtained, showing that
the reservation-based QoS system of MoSaKa is working
correctly. Additionally, it was shown that TCP is able to
saturate the path despite the high delay of the link. Apart
from that, the performance of TCP went down if no respective
reservation was active, and the TCP connection had to share
transmission resources with other best effort traffic. Hence,
the MoSaKa QoS system enables TCP to be used over
congested bottlenecks, even if the end-to-end connection
has a high delay.

Besides that, the MoSaKa QoS system was compared to
similar approaches. It was shown that the combination of
a feedback mechanism and different priorities for reserva-
tions offer the best compliance regarding individual QoS
requirements. Without feedback, applications have to poll
for resources or stop communication altogether. Without
distinguishing priorities, the network may suspend flows that
are important to the user.

In brief, the MoSaKa QoS system combines the versatility
of packet-switched networks with QoS parameters offered
by circuit-switched systems. Thus, it allows the coexistence
of high-priority voice communication and other low-priority
traffic, which is an essential feature of a communication
network designed for rescue teams in disaster relief missions.

The components of the MoSaKa QoS system were imple-
mented and are available for GNU/Linux-based systems.
Moreover, a testbed for system-wide tests was set up.
However, the “real” MoSaKa satellite terminals with their
own L2 and L1 components were not operational yet.
Thus, as a first step, the satellite link was emulated by
using the Qemu/KVM and VDE-tool packages. The results
were as expected. Furthermore, it is interesting to check
whether the same tests, applied on a testbed involving a
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real satellite link, lead to similar results. Besides that, future
tests will incorporate sophisticated models regarding terminal
movement and weather conditions, providing a more realistic
model of the capacity of the emulated satellite link.

From the point of view of the architecture, further research
might look into alternative QoS models based on probability
distributions instead of hard thresholds. This includes novel
reservation models, which provide sophisticated ways of
expressing requirements. This enables the system to adapt
better to changing link conditions without consulting the
applications.

Regarding the network topology, the current MoSaKa
system was designed to have a static IPv6-based routing
setup. In the future, the system should adapt to various
routing protocols, to enable mobility at the network level.
In addition, it is beneficial to add support for QoS-enabled
multicast traffic, which is currently not supported by our
signaling protocol.

Future research should also investigate the possibilities
opened up by the MoSaKa feedback mechanism. Currently
available audio and video codecs offer various output profiles
with different data rates and quality settings. An integration
with the MoSaKa QoS system, with the possibility to specify
multiple possible data rates per reservation, promises an
advanced scheme for graceful degradation.

Moreover, it is not clear yet how the MoSaKa QoS
system should interact with non-MoSaKa end systems, such
as web servers in the Internet. Currently, as there is no
Dispatcher on the peer node, the signaling handshake does
not complete. Thus, there is no reservation on the satellite link,
rendering TCP unusable if most of the resources are occupied.
Possibly, these issues can be solved by introducing translator
applications such as proxies, or DiffServ-like classification
approaches.
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