
Case Study of the OMiSCID Middleware: Wizard of Oz Experiment in Smart
Environments

Rémi Barraquand, Dominique Vaufreydaz, Rémi Emonet and Jean-Pascal Mercier
PRIMA Team - INRIA

Zirst 655, avenue de l’Europe
38334 Saint Ismier cedex

{remi.barraquand,dominique.vaufreydaz,remi.emonet,jean-pascal.mercier,omiscid-info}@inrialpes.fr

Abstract—This paper presents a case study of the usage of
OMiSCID 2.0, the new version of a lightweight middleware for
ubiquitous computing and ambient intelligence. The objective
of this middleware is to bring Service Oriented Architectures
to all developers. After comparing to available solutions, we
show how it integrates in classical workflow without adding any
constraint on the development process. Developers only need to
use a library available in widely used programming languages
(C++, Java and Python). Then, the basics of OMiSCID and a
brief technical description are described as its User Friendly
API. This API makes it straightforward to expose, look for or
send messages between software components over a network.
The added value of the proposed middleware has already
been experienced in international research projects. This paper
demonstrates its effect in cutting down development time, im-
proving software reuse and easing redeployment in the context
of a Wizard of Oz experiments in intelligent environments.

Keywords-Service Oriented Architecture, Ubiquitous Com-
puting, Middleware, Wizard Of Oz, Smart Environments.

I. INTRODUCTION

Today’s vision of ubiquitous computing is only half way
achieved. The multiplication of low cost devices along with
the miniaturization of high performance computing units
technically allow the design of environment widespread by
cameras, motion detectors, automatic light controls, pressure
sensors or microphones. Those devices, given the apparition
of wireless networks, can communicate together with mobile
and personal equipments such as cellular phones, photo
frames or even personal assistants. On the other hand, the
quiet and peaceful aspect of this vision where computing
units can understand each others in order to collaborate is
yet a research problem.

Build upon this network of devices, ambient intelligence
tries to address the problem of making devices refer to user
in an appropriate way by making them aware of his activity:
current task, availability, focus of attention, etc. Such envi-
ronments that sense user activity and act according to it are
named ”intelligent environments” or ”smart environments”.

However, activity understanding is yet a complex problem
and relies on the ability to constantly aggregate information
from an ever changing medium where devices come and
go, break and evolve. Often used only to refer the access

to information or applications from occasionally-connected
devices, mobility is a key aspect of this vision.

For the user experience to be optimal anywhere anytime,
ambient intelligence should be mobile. The intelligence can
for example be embedded in a cell phone and dynami-
cally adapt to the current environment and what services it
provides. Ambient intelligence covers numerous fields and
poses many challenges. Among these, handling dynamicity
in software architecture is one that plays a central role.

This paper addresses the use of the OMiSCID [1] middle-
ware that fits between the network of devices and ambient
intelligence. It aims to ease the design of agile Service
Oriented Architecture (SOA) and to solve constraints of
pervasive computing and intelligent environments. OMiS-
CID orchestrates services in the environment, by providing
cross-platform/cross-language tools for easy description, dis-
covery and communication between software components.

The next section introduces the needs for such middle-
ware. In section III, we present our approach focusing on
key functionalities and concepts. Usage of OMiSCID is then
illustrated by the design of a Wizard of Oz experiment.
Finally, we draw some conclusions.

II. UBIQUITOUS COMPUTING REQUIREMENTS

The PRIMA team works on perception and perceptive
spaces (using multiple cameras, microphones, wireless tech-
nologies, etc.), context awareness and ambient intelligence.
In such research area, many services, developed by special-
ists using multiple techniques and languages, must inter-
connect in order to achieve a final goal. In the context of
international researches, like DARPA or EU project funding,
this problem is even more important because of different
habits and of historical technical backgrounds within the
involved research groups. In order to help non software-
architect researchers to interact, we need a simple and usable
solution that addresses a common problem: how to find,
interconnect and monitor services within the context of
cross-language cross-platform distributed applications?

To solve this problem, one can envision many different
approaches. The first one is to decide, a priori, what will
be the common way of programming. This solution can be

257

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

adopted in small groups and must be driven by underlying
technologies. It may make people learn a new language
or framework to interoperate and can changed every time
involved scientists are replaced by new ones. The second
possible scenario is to list all the software pieces and try
to find a common way to do networking. In ubiquitous
computing and ambient intelligence, this list will exhibit a
variety of criterions:

• programming languages: C++ for video/audio process-
ing, Java for lighter processing or user interfaces,
scripting language.

• operating systems: Windows (for device support for
instance), Linux, Mac OSX (cross-platform);

• data to exchange: simple texts, data structures or huge
data like audio/video flows (messages or stream flows);

• configuration: peer to peer connection (IP address/port)
or more complex interconnection scripts using service
description and recruitment (dynamic service discov-
ery);

• maintainability and sustainability.
Their are three main available solutions, the two most widely
used are compared in the Table I. OSGi [2] is the first
typical solutions to provide most of the requirements listed
formerly. It permits construction of Java applications locally
by recruiting components. Using iPOJO [3], it is possible to
describe services and requirements in order to avoid writing
dedicated code. Using specific adapters, like in R-OSGi [4] it
is also possible to search for non local services. H-OMEGA
[5] proposes also an alternative using UPnP for device
discovery and a centralized server for code management.
Nevertheless, even if it is always possible to use JNI for
C/C++ application, OSGi is dedicated to Java. We do not
retain this solution.

Web Services [6] are also a widely used solution for
distributed applications. They permit using web technologies
to construct distributed applications. Services are described
with the Web Services Description Language (WSDL) and
can be discovered using WS-Discovery. As said in Table I,
Web Services are not designed for huge stream flows. More-
over, event if there are several alternatives to WSDL, like
BPEL4WS1 [7] or OWL-S2 [8], they all provide service
descriptions that are not easy to handle for a non specialist.
We do not retain this solution.

The last possible solution is to use one of the specialized
middlewares usually dedicated to a specific task and/or
environment. We can illustrate them by focusing on Smart
Flow II [9]. This middleware is very efficient in managing
the data flow from many multimedia sources at the same
time on several computers. But its force is also its weakness:
it is difficult to configure and to manage other type of data.

From the previous sections, we can see that none of

1Business Process Execution Language for Web Services
2Web Ontology Language for Services.

these solutions fulfills all the identified requirements. This
assumption was the start of the OMiSCID middleware
development. In the following sections, we will present the
underlying concept and philosophy behind OMiSCID mid-
dleware solution.

III. OMISCID BASICS

OMiSCID stands for Opensource Middleware for Ser-
vice Communication Inspection and Discovery [1]. It was
designed and built to answer the problem of integration
and capitalization of heterogeneous code inside augmented
environment. OMiSCID is distributed with a non sticky MIT-
like license, fully open source and available on a dedicated
website: http://omiscid.gforge.inria.fr/.

A. Concepts

The OMiSCID middleware is built around 3 main con-
cepts: services, connectors and variables. A service is a
piece of software with a well defined way to access its
provided functionalities. Services are composed of connec-
tors and variables. At least, a service has the following
read only variables: a name, a class, a unique service id
and login/hostname information. Connectors are used to
transfer data between services and are either input, output
or both. Variables describe the service or its state. They may
have local or remote write protection. Aggregating all these
information, we obtain a service description that can be used
to search and interconnect services.

B. Communications

Messages are atomic elements of all communications in
OMiSCID. They are sent using a connector to a specific
peer or to all listening services at once. The receiver will be
notified that a new message is ready when it is fully avail-
able. Each message is provided with contextual information
such as the service and connector it comes from. There are
2 main kinds of workflow for messages that can be mixed:

• A peer to peer approach. After receiving a message
from a service and processing it, a response message
is sent back to it;

• A data flow approach. After receiving a message on a
connector and processing it, a message with the result is
broadcasted on another connector in order to continue
the processing chain.

Message can be sent as raw binary chunk or as text, which
allows lot of flexibility for developers. Binary messages are
often used to stream real time data such as video or audio.
Text communication can be enhanced by the JSON format
and allows for more advanced operation and extensions (see
Section III-D).

C. Service discovery in dynamic context

Also known as service discovery, the ability to browse,
find and dynamically bind running services, is one of the
most important features of SOA moreover in ubiquitous

258

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

http://omiscid.gforge.inria.fr/

Table I
COMPARISON OF WIDELY USED SOLUTIONS

Description cross-language cross-platform Messages Huge data flows Service discovery over the network

OSGI approach No (Java) Yes Yes Possible Using R-OSGi for instance

Web Services Yes Yes Yes Not designed for Using WS-Discovery

environments. It is common to filter services based on their
current state, description or functionalities. OMiSCID pro-
vides the basic logical combination of predefined search
criteria (variable value/name, connector properties, etc.) and
since they are implemented as functor (function object), it
is easy to extend it with user defined filters. Filters can be
used in two different ways:

• An ask-and-wait approach asking for the list of services
that match a certain criterion. This procedure will wait
until at least one service match or that a timeout is
reached rising an exception.

• An ask-and-listen approach notifying the application by
the means of callback or listener whenever a service
that matches the criterions appears or disappears.

Figure 2 and Section V-C gives clues about OMiSCID ser-
vice discovery capabilities.

D. Serialization and remote procedure call

The philosophy of OMiSCID is to exchange information
between services using either binary or textual messages
without any standard on the format of those messages.
OMiSCID 2.0 provides a simple way to marshal and unmar-
shal any object. This allow for easy communication between
services without paying attention to serialization issues.

An OMiSCID service can expose some of its function-
alities by the means of remote callable methods. Such
distant calls can be done either in a synchronous or in an
asynchronous manner.

E. OMiSCID Gui

OMiSCID provides a simple solution to declare, to dis-
cover and to interconnect services. Nevertheless, it needs,
for maintainability and sustainability, an interface to visu-
alize and to debug distributed services. OMiSCID Gui is
a powerful tool built over the Netbeans platform and pro-
vides the developer with a graphical interface for multiple
management tasks. It inherits many of the advantages from
the Netbeans platform: portability, modularity, advanced
window management, etc... OMiSCID Gui comes with light
core modules and is extensible at infinite (see [10] for
details). One of the core modules is a service browser that
displays all the services present within the environment as
well as their connectors and variables. This module also
provides many contextual and extensible operations to be
applied on the listed services and their variables/connectors.
Among all the extensions available and easily installed using
the Netbeans Plugin interface, one can find:

• A simple variable plotter than can dynamically create
and display graphics of remote service variables.

• A family of plugins that allow displaying 2D informa-
tion such as video stream or custom shapes representing
for instance regions of interest of a 3D tracker.

• A plugin that displays a graph of the services in the
environment along with their interconnections.

• A lot of other plugins such as: real time audio stream
player, 3D visualization tools, cameras controls etc...

OMiSCID Gui comes with a public plugin repository already
packed with visualization, controls, debugging plugins and
can be extended by developers. All Netbeans platform plugin
can also be integrated to our platform. Its ease of use make it
a must-have tool for OMiSCID development, demonstration
or service oriented application development.

IV. BRIEF TECHNICAL DESCRIPTION

One crucial requirement when designing a middleware
for such heterogeneous research area is to make it usable by
most of the people involved.

A. Multiplatform/Cross-Language

OMiSCID was designed with cross-platform/cross-
language capabilities in mind. There are actually 3 sup-
ported implementation of OMiSCID: C++, Java and Python3

(PyMiSCID). Moreover, the Java version can be used from
Matlab and any other language running on the Java virtual
machine (JavaFX, scala, groovy, javascript, etc.) We also
provide an OSGI abstraction layer that exposes OMiS-
CID with standard OSGI paradigm. OMiSCID was devel-
oped more as a set of guideline rather than a specification, all
the implementations are fully written in the target language,
thus ensuring speed, reliability, close integration with data
structure and programming paradigm.

All versions are fully cross-platform and works on Linux,
Windows and OS X both 32 bits and 64 bits. The C++
version uses an abstraction layer that provide common
system objects like sockets, threads, mutexes, etc. The Java
version can be used on portable device like PDA. All
implementations on all supported platforms can interoperate
with each other.

B. User Friendly API

In order to simplify interpersonal communications be-
tween OMiSCID users, we developed a common User

3Formerly, Python version was a simple wrapper to the C++ source code.

259

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

Friendly API. It was defined to be easy to learn, easy to
use and portable in several languages. Indeed, concepts,
methods, parameters follow the same API in C++, Java and
Python. However each implementation takes advantage of
the language specificities and design patterns.

The API also provides simple callback/listener mecha-
nisms. Thus, one can be notified of many different events:
a new connection from a service, a disconnection, a new
message, a remote variable changed, etc.

C. Performance and scalability using OMiSCID

For the discovery process, registering 100 services over
the networks from 3 differents computer takes less than 1
seconde. Searching for a service among hundreds using a
simple variable value is less than 20 ms long. More specific
searches using user-defined search filter (processing video
stream to select a camera for instance) can obviously spend
much more time. Latency for sending messages is around
4 ms in average comparing to usual TCP/IP connections.
Detailed tests and explanations can be found in [10] and on
the OMiSCID Web site.

V. CASE STUDY

For the past few years OMiSCID middleware has been
used in different research projects [11], [12], [10], [13].
In [10], OMiSCID is used to redesign a complete 3D
Tracking system as well as an automatic cameraman. The
redesign reduces the number of software components and
has the advantage to provide shared and reusable services.
For instance, both architectures use the same video grabbing
services. This service provides real time streaming of camera
images, that is simultaneously accessible by multiple remote
services such as visualization services or image processing
ones: movement detector, person detector, posture estimator.
OMiSCID middleware allows robustness for service discov-
ery, reliable communication, connection and disconnection
but also ease the federation of services. In [13], [12],
OMiSCID is used for the realization of a smart agent. The
perception of the agent is provided by services dynamically
discovered in the environment allowing the agent to con-
struct a situation model [14] of the current situation. The
agent is yet another service and, according to its perception,
it is able to perform actions in the environment by sending
orders to actuator services. In [13], the knowledge of the
agent is distributed and can be stored on remote database
using a combination of OSGi and OMiSCID. Each service
developed is a reusable piece of software that ensures a
decrease of development time along the years. The Wizard of
Oz (WOz) experiment we conducted is the perfect example.
A. Requirements for Wizard of Oz

WOz experiment is a research experiment, in which
subjects interact with a computer system (fake mobile phone,
remote controlled robot, etc.) that subjects believe to be
autonomous, but which is actually being operated or partially

operated by an unseen human: the wizard. The goal of such
experiments is to evaluate system’s functionalities without
actually implementing them for real. The functionalities
validated by the experiments can then be implemented
while reconsidering others, saving money and time. In most
settings, subjects are located in a room along with the system
to evaluate while the wizard operates in another room. Both
rooms can be separated by a beam splitter allowing the
wizard to observe and react accordingly to the subject(s)
actions.

Setting up a WOz experiment requires an important
preparation, even more if the settings have to be mobile and
re-deployable: to be carried in different places. The wizard
must have access to a multitude of information in order to
control the system as best as possible. Without the presence
of a beam splitter, the environment must be equipped with
cameras, microphones and speakers to record and stream
the scene in real time. Among those devices, the wizard
also needs the proper controllers to remotely manipulate the
system, which requires an extensive use of wireless or wired
communication between software components: controllers
and controllees. In addition, the coupling between software
components has to be able to change and to be easy to
achieve. Allowing for instance to deploy debuggers, loggers
or visualization tools at runtime.

B. Experimental Settings

On an ongoing research project we sought to evaluate the
behavior of subjects immersed in a ubiquitous environment
while asked to teach a smart agent how to control the space.
Among few, the objectives were to validate hypothesis about
human-machine interaction as well as to collect constructive
outcomes that will help future design of ambient systems.
Four kinds of actor are to be considered in this experiment:
the subjects, the smart agent, the environment and the
wizards.

The subjects by group of 2 or 3, were asked to teach the
agent how to control the environment in order to organize a
small meeting. For instance a common task is to teach the
agent to switch on the light when people enter the room and
to switch it back off when everybody is leaving.

The agent is embodied by a personal mobile phone with
wireless capabilities, on which we deployed a learning
software and a simple user interface. This interface allows
collecting real-time feedbacks from the subjects (good, bad)
during the session. The agent connects through the wireless
network to a situation modeler service that provides a
situation model [12] of the current situation. When requested
by the subjects the agent takes action in the environment
by sending orders to actuator services. Subjects can reward
the agent whenever they agree or disagree with its action.
Doing so the agent learns to control the environment using
dynamically discovered services and feedbacks provided by
users.

260

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

The environment is an office (Figure1) spread with many
actuators and sensors. OMiSCID allows each of them to be
accessible and controllable by services all-over the network
(Figure2). Among those sensors we find cameras, micro-
phones, thermometer and weather station. All the actuators
are controllable by OMiSCID connectors and their states
can be queried by those connectors or are exposed through
variables. Among the actuator we list: a steerable projector,
x10 controller, speaker or even shutter. For this experiment
we needed two wizards.

The first wizard was in charge of simulating certain
actuators in the environment such as pressure detectors under
the chairs and sofas. Indeed, we didn’t dispose of such
device in our environmental facility, thus we emulated those
actuators using a user interface plugged into OMiSCID Gui.
The simulating interface was seen as yet another service that
can be used by the situation modeler to build up a better
situation model.

The second wizard was controlling the overall experiment
using a master interface. This interface allowed writing real-
time observations through an annotator service, as well as
taking control over all the services in the environment.
Such a master control for instance let the wizard speed
up the experiment by helping the agent to guess better
actions (when subjects got exhausted), or by putting back
the environment settings in an appropriate state.

C. OMiSCID At Glance

For this experiment we deployed more that 20 services
spread on 5 computers running different operating systems
(Linux, Windows, MacOSX). Figure 2 presents some of
the devices present in the environment as well as the
interconnection of services. Due to the complexity of the
schema some services have been removed. In the following
we review some of the advantages of using OMiSCID in
this experiments:

1) Multi-platform: 5 computers have been used during
the experiments, two of them by the wizards. One of the
wizards was using MacOS, on which we deployed the master
control. Due to driver issue the sound recording system was
using a Microsoft powered computer. The video streaming
as well as all the other services (archiver, x10, etc) were
running on Linux hosts.

2) Multi-language: To design the services we made use
of different languages. C++ was used for performance reason
such as for the video and sound processing/capture services.
Python is a really powerful language for the rapid prototyp-
ing of application, we used python to quickly develop the
x10 controllers or the PanTilt controller. Java has been used
to develop the OMiSCID Gui modules but also to access the
different web services present in the environment such as
the weather service. JavaFX was used to develop the wizard
control’s interface, its script language make it easy to use
for inexpensive user interface design.

3) Service Discovery: The simple but powerful service
discovery system provided by OMiSCID has been used to
dynamically connect services together. The best examples
are the situation modeler and archiver. Using a service
repository they were able to filter services present in the
environment in order to connect to them. For instance
the situation modeler was looking for all services having
connector or variable exposing state information. Using that
state information, it was able to provide a situation model
on an output connector. The archiver was responsible to
backup any information transmitted between services on a
hard drive. The archiver was looking for all services having
output connector. Thus it was easy for instance to deploy or
shutdown services on the fly during the experiment.

4) Communication: Communication between services
was achieved using different format. For video and sound
services, data were raw binary information tagged with time
stamps. Web services such as the weather provider were
communicating information using XML on their connector.
The PanTilt controller exposed its commands by the means
of remote callable methods, and presented its internal state
using readable variable.

5) OMiSCID Gui: OMiSCID Gui was used by the wizard
for different purpose. Firstly, the streamed sound and video
were played by the embedded player. Indeed, we have
developed OMiSCID Gui modules to play video and listen to
audio stream in real-time. Those modules were used to have
a feedback of what was happening into the experimental
facility disposed into another building. Secondly, OMiSCID
Gui was used to control the archiver and other services.

6) Reusability: Each of the service used in this exper-
iment is a reusable piece of software that can be carried
and deployed easily. For a wizard of Oz experiment only
the hardware and the equipments (cameras, microphones)
have to be transported and reinstalled. Everything else is
deployable instantly and can adapt to the configuration:
number of computers, operating systems, number and nature
of devices, etc...

VI. CONCLUSION

OMiSCID provides a complete but simple solution to de-
clare, describe, discover and interconnect services as well as
to manage their inter-communication. OMiSCID offers to re-
searchers several facilities for ubiquitous computing with its
multi-platform and cross-language capabilities. The underly-
ing concepts as well as the API are user friendly and directed
toward usability. Along with this middleware, OMiSCID
Gui provides developers with an extensible, portable and
modular platform that ease development and debugging, and
improve maintainability of OMiSCID demonstrations and
applications.

OMiSCID has successfully been used in several academic
research projects and more recently in a wizard of Oz ex-
periment. Such an experiment requires an important amount

261

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

Camera
Camera

Cameras

Microphones

Steerable
Camera
ProjectorX10

X10
X10

X10

X10

Figure 1. PRIMA’s Smartroom.

Video
Streamer

Camera

Video
Streamer

Camera

Situation
Modeler

Mobile Phone

Agent

Hard Drive

Archiver

Steerable
Projector

Content
Controller

Pan/Tilt
Controller

Light Light

...

X10
Controller

Presence
Provider

Pressure
ProviderWizard

Interface

OMiSCID
GUI

Annotator

Global
Controller

OMiSCID
GUI

Wizard
Interface

Music
Controller

Speaker

Sound
Streamer

Microphone

Temperature
Controller

Weather

Weather
Provider

Temperature
Provider

Termometer
shutter

Shutter
Controller

heat

Figure 2. Wizard of Oz Services.

of resources and preparations, particulary when realized in
smart environments. We have presented how the use of
OMiSCID and OMiSCID Gui greatly reduces development
time, maximizes reusability and eases redeployment. Fur-
thermore, this solution does not rely on the number of
computers, operating systems or network configuration.

REFERENCES

[1] R. Emonet, D. Vaufreydaz, P. Reignier, and J. Letessier,
“O3miscid: an object oriented opensource middleware for
service connection, introspection and discovery,” in 1st IEEE
International Workshop on Services Integration in Pervasive
Environments, Lyon (France), jun 2006.

[2] D. Marples and P. Kriens, “The open services gateway
initiative: an introductory overview,” IEEE Communications
Magazine, vol. 39, no. 12, pp. 110–114, Dec. 2001.

[3] C. Escoffier, R. S. Hall, and P. Lalanda, “ipojo: an extensible
service-oriented component framework,” Services Computing,
IEEE International Conference on, vol. 0, pp. 474–481, 2007.

[4] D. Wang, L. Huang, J. Wu, and X. Xu, “Dynamic software
upgrading for distributed system based on r-osgi,” in CSSE
’08: Proceedings of the 2008 International Conference on
Computer Science and Software Engineering. Washington,
DC, USA: IEEE Computer Society, 2008, pp. 227–231.

[5] C. Escoffier, J. Bardin, J. Bourcier, and P. Lalanda, “Devel-
oping User-Centric Applications with H-Omega,” in Mobile
Wireless Middleware, Operating Systems, and Applications
- Workshops. Springer Berlin Heidelberg, April 2009, pp.
118–123.

[6] M. Papazoglou, Web Services: Principles and Technology.
Prentice Hall, September 2007.

[7] R. Khalaf, N. Mukhi, and S. Weerawarana, “Service-oriented
composition in bpel4ws.” in WWW (Alternate Paper Tracks),
2003.

[8] D. Martin, M. Paolucci, S. Mcilraith, M. Burstein, D. Mc-
dermott, D. Mcguinness, B. Parsia, T. Payne, M. Sabou,
M. Solanki, N. Srinivasan, and K. Sycara, “Bringing se-
mantics to web services: The owl-s approach,” in SWSWPC
2004, ser. LNCS, J. Cardoso and A. Sheth, Eds., vol. 3387.
Springer, 2004, pp. 26–42.

[9] A. Fillinger, L. Diduch, I. Hamchi, M. Hoarau, S. Degre, and
V. Stanford, “The nist data flow system ii: A standardized
interface for distributed multimedia applications,” in World of
Wireless, Mobile and Multimedia Networks, 2008. WoWMoM
2008. 2008 International Symposium on a, 23-26 2008, pp.
1 –3.

[10] R. Emonet, “Semantic description of services and service fac-
tories for ambient intelligence,” Ph.D. dissertation, Grenoble
INP, sep 2009.

[11] J. L. Crowley, D. Hall, and R. Emonet, “Autonomic computer
vision systems,” in Advanced Concepts for Intelligent Vision
Systems, ICIVS 2007, J. Blanc-Talon, Ed. IEEE, Eurasip,,
Aug 2007.

[12] R. Barraquand and J. L. Crowley, “Learning polite behavior
with situation models,” in HRI ’08: Proceedings of the 3rd
ACM/IEEE international conference on Human robot inter-
action. New York, NY, USA: ACM, 2008, pp. 209–216.

[13] S. Zaidenberg, P. Reignier, and J. L. Crowley, “An architec-
ture for ubiquitous applications,” Ubiquitous Computing and
Communication Journal (UBiCC), vol. 4, no. 2, jan 2009.

[14] J. L. Crowley, P. Reignier, and R. Barraquand, “Situation
models: A tool for observing and understanding activity,” in
in Workshop People Detection and Tracking, held in IEEE
International Conference on Robotics and Automation, Kobe,
Japan, 2009.

262

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

	Introduction
	Ubiquitous Computing Requirements
	OMiSCID Basics
	Concepts
	Communications
	Service discovery in dynamic context
	Serialization and remote procedure call
	OMiSCID Gui

	Brief Technical Description
	Multiplatform/Cross-Language
	User Friendly API
	Performance and scalability using OMiSCID

	Case Study
	Requirements for Wizard of Oz
	Experimental Settings
	OMiSCID At Glance
	Multi-platform
	Multi-language
	Service Discovery
	Communication
	OMiSCID Gui
	Reusability

	Conclusion
	References

