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Abstract—The dissemination of ubiquitous devices with data
analysis capabilities motivates the need for resource-aware
approaches able to learn in reoccurring concept scenarios with
memory constraints. The majority of the existing approaches
exploit recurrence by keeping in memory previously learned
models, thus avoiding relearning a previously seen concept
when it reappears. In real situations where memory is limited
it is not possible to keep every learned model in memory,
and some decision criteria to discard such models must be
defined. In this work, we propose a memory-aware method that
associates context information with stored decision models. We
establish several metrics to define the utility of such models.
Those metrics are used in a function that decides which model
to discard in situations of memory scarcity, enabling memory-
awareness into the learning process. The preliminary results
demonstrate the feasibility of the proposed approach for data
stream classification problems where concepts reappear and
memory constraints exist.

Keywords-Ubiquitous Knowledge Discovery, Data Stream
Mining, Concept Drift, Recurring Concepts, Context-
awareness, Resource-awareness

I. INTRODUCTION

Learning from data streams in ubiquitous devices where
the data distributions and target concepts may change over
time is a challenging problem, known as concept drift
[13]. In real world classification problems it is common for
previously seen concepts to reappear [14]. This represents
a particular type of concept drift [13], known as concept
recurrence [1], [5], [10], [14], [15].

Prediction models usually change over time, for exam-
ple in product recommendations where customer interests
change due to fashion, economy or other hidden context
[8], [14]. Several methods have been proposed to detect
and adapt to concept drift [6], [13]. The usual approach is
to use a forgetting mechanism and learn a new decision
model when drift is detected [6]. A possible solution to
exploit recurrence, is to store previously learned models
that represent observed concepts, thus avoiding relearning a
previously learned concept when it reappears [1], [5], [15].
The main drawback of this approach is associated with its
memory consumption cost. Depending on the capabilities
of the device where the learning algorithm is executed,
this can be a critical factor. Thus resource-awareness [2],

[3] should be considered in memory constrained scenar-
ios. Examples of ubiquitous applications that use resource-
constrained devices include intelligent vehicles, personal
digital assistants (PDA), wireless sensor networks (WSN)
or ambient intelligence systems to name a few.

Resource-awareness means monitoring the availability of
the required resources and adapt accordingly. This has been
addressed in [3] where a generic framework that uses the
mining algorithm granularity settings in order to change the
resource consumption patterns according to availability of
different resources. For example the parameter that controls
the number of clusters is defined as a function of the
available memory.

To address the problem of concept recurrence in resource-
constrained devices, we propose a method that adapts its
behaviour according to available memory. It extends existing
drift detection methods [6] by associating context informa-
tion with learned decision models, under the assumption that
recurring concepts are related with context [1]. Such context
information is used to improve the adaptation of the learning
process to drift. The method used to decide which models
to discard according to memory constraints constitutes the
new contribution of this paper. This method uses pre-defined
criteria to assess model utility in order to discard low utility
models, allowing the storage of new ones in situations of
memory scarcity.

This paper is organized as follows. Section II describes
the problem of concept recurrence with memory constraints,
with its assumptions and requirements, followed in Section
III by the proposed resource-aware solution. In Section IV
the preliminary experimental results obtained are presented
and discussed. Finally we provide some concluding remarks
and outline future research work in Section V.

II. RECURRING CONCEPTS LEARNING PROCESS

Let us assume a system learning from a stream of
records where concepts can change over time, based on an
incremental version of the Naive Bayes algorithm [4]. Note
that any other incremental classification algorithm can be
used instead without loss of generality. The performance of
the learning algorithm is monitored using a drift detection
mechanism [6] that triggers an event when drift is detected.
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To make this system resource-aware and able to handle
recurring concepts, the following requirements must be met:
• i) adapt the classification model to concept drift.
• ii) recognize and use past models from previously seen

concepts when these reappear.
• iii) use contextual information to improve adaptation to

drift.
• iv) adapt memory consumption according to availability

of resources.
We assume that:
• the target concepts are related to available context. This

is the main motivation behind storing models together
with context.

• the memory available in the device running the learning
process can be obtained anytime through a known
interface.

Drift Detection method - When the records distribution
is stationary the classifier error-rate decreases as the number
of training records grows. This assumption is shared by
most approaches dealing with drift [13], as it is a natural
property in real world problems where periods of stable
concepts are observed followed by change to a new period
of stability (with a different target concept). Proposed in [6]
a method for drift detection uses this assumption to find drift
events. This method stores the probability of misclassifying
pi = (F/i) and the standard deviation si =

√
pi(1− pi)/i,

where i is the number of trials and F is the number of false
predictions. These values are updated incrementally. Two
levels are defined, a warning level and a drift level. Each of
them is reached according to pre-defined conditions based
on pi and si and its minimum values pimin

and simin
. Note

that it is possible to observe an increase in the error-rate
reaching the warning level, followed by a decrease. This is
considered a false alarm.

The continuous learning process consists of the following
steps, as presented in [1]:

1) process the incoming records from the data stream
using an incremental learning algorithm (base learner)
to obtain a decision model capable of representing the
underlying concept.

2) the drift detection method monitors the error-rate of
the learning algorithm.

3) when the error-rate goes up the drift detection mech-
anism indicates,
• warning level: store the incoming records into

a warning window and prepare a new learner
that processes incoming records while the warning
level is signaled.

• drift level: store the current model and its as-
sociated context into a model repository; use the
model repository to find a past model with a con-
text similar to the occurring context that performs
well with the new data records (i.e., represents the

current concept, this was presented by the authors
in[1]). Reuse the model from the repository as
base learner to continue the learning process as
in point 1. If no model is found use the learner
that was initiated during warning level period as
base learner.

• false alarm (normal level after warning): the
warning window is cleared and the learner used
during the warning period is discarded. The learn-
ing process continues as in point 1, which is also
the normal level in terms of drift detection.

III. PROPOSED MEMORY-AWARE APPROACH

Adaptation to concept recurrence depends on storing past
models. In memory constrained situations, the challenge
consists in assessing model utility and adapt the learning
process to memory availability. Having a decision function
will enable to decide which model to discard in such
situations, freeing memory for a new model.

A. Preliminaries

1) Context: Context information depends on the data
mining problem and is accessed through a known interface.
We assume context modeling to be based on the Context
Spaces model [11] where a context is represented as an
object in a multidimensional Euclidean space. A context
state Ci is defined as a tuple of N attribute-values,

Ci = (ai
1, ..., a

i
n)

ai
n represents the value of attribute n for context state Ci.

A context space defines the regions of acceptable values
for these attributes. In this work, we use numerical context
attributes and the Euclidean distance as the measure to
compare context states formulated as:

|Ci − Cj | =

√√√√ N∑
K=1

dist(ai
k − a

j
k)2

ai
k represents the kth attribute-value in a context state i. For

numerical attributes distance is defined as:

dist(ai
k, a

j
k) =

(ai
k − a

j
k)2

s2

where s is the estimated standard deviation for ak. For
nominal attributes distance is defined as:

dist(ai
k, a

j
k) =

{
0 if ai

k = aj
k

1 otherwise

We define comparison of contexts using the following
formulation:

similarContext(Ci, Cj) =
{
true if |Ci − Cj | ≤ ε
false if |Ci − Cj | > ε

ε is a pre-defined threshold (using zero as threshold means
that the contexts are equal).
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2) Model Storage: In the Naive Bayes learning algorithm,
PC is the table storing P (C) which represents the observed
frequency for each class C, and PA is the vector that stores
P(An|C) that represents the frequency table of each feature
An given class C. This can be expressed as:

PC = P (C) and PA =< P (A1|C), ..., P (An|C) >

In our proposed approach, storing a decision model M using
this learning algorithm also requires storing:
• The most frequent context state observed during model
M learning period as freqC=(a1, ..., an), where each
attribute value of freqC is the most frequent value that
each attribute takes in that learning period.

• The accuracy Acck of M is the accuracy value obtained
during the learning period k, with numCRecordsk

being the number of correctly classified records by M
and numRecordsk being the total number of records
processed during k. The accuracy value is updated if
M is reused. This is formulated as:

Acck =
numCRecordsk

numRecordsk

• T is the timestamp that records the time when the
model M was stored.

Consequently each decision model M stored in the model
repository is defined as the tuple:

M = {PC , PA, freqC,Acck, T}

3) Model utility metrics: The definition of model utility
metrics is needed so that the mechanism can decide which
models to keep or discard in situations of memory scarcity.

We propose the following metrics to define a selection
function that chooses which model to remove from the
repository,
• Model Accuracy - This metric represents the accuracy

of the decision model for the period it was used.
• Mean Square Error - This metric measures the error

of the decision model for a set of records (we use the
records available in the warning window). The error
prediction of model Mi, using the window Wn of n
records in the form of (x, c), where c is the true class
label for that record. The error of Mi on record (x, c)
is 1 - f i

c(x), where f i
c(x) is the probability given by

Mi that x is an instance of class c. The MSIi metric
can be expressed as:

MSEi =
1
|Wn|

∑
(x,c)∈Wn

(1− f i
c(x))

2

• Context Similarity - We exploit the context stored
within the decision models by using the similarity
between contexts as a metric. This is used to maxi-
mize context heterogeneity between the models in the
repository.

• Timestamp - The timestamp that is stored along with
models can be used as a metric of model utility in cases
where all the other metrics give the same value. Thus
this metric can be used to break ties where the oldest
model receives lowest utility according to the situation.

In situations of memory scarcity we make use of a
function that selects from the model repository, using the
proposed metrics, the model to be discarded. This function
searches the model repository for the models with the
lowest context distance, in order to maximize the context
heterogeneity in the repository. From this subset the ones
with highest mean square error are selected. If more than
one model remains after this step, the model with lowest
accuracy is returned. If still more than one model exists
(i.e., the MSE and Accuracy metrics have the same value)
the model with lowest timestamp is selected. In algorithm 1
the pseudo-code of this function is presented.

Algorithm 1 Model Selection Function: Selects the model
to discard
Require: ModelRepository MR → M :(PC ,PA,C,Acc,T )

1: For each Mi, Mj ∈ MR with i 6= j , compute
distance(Ci, Cj);

2: Let Contextmin ⊂ MR, where min(distance(Ci,
Cj));

3: Let Errormax ⊂ Contextmin, where max(MSIi);
4: Let CandidateSet ⊂ Errormax, where min(Acci);
5: return Mi ∈ CandidateSet, where min(Ti);

B. Proposed Extension of the Drift Detection Mechanism

We propose as an adaptation strategy to discard a stored
model when the memory limit is reached and it is not
possible to store further models. This simple strategy enables
us to handle the problem of concept recurrence in scenarios
with different memory constraints, which limits how many
models can be kept for reuse. We are able to test and measure
the accuracy loss in such scenarios.

The sufficient memory condition is defined as: if (usedMemory + storageCost ≤MemoryLimit)
then true
otherwise false

The used memory is accessed through an interface with
the device as assumed in Section II, storageCost depends
on the mining schema of the data records. Since all the
stored models share the same data schema this value is a
constant. This is a consequence of using the Naive Bayes
algorithm as the size of the frequency tables that are stored
(see Section III-A2) is determined by the mining schema.
The MemoryLimit value depends on the ubiquitous device
memory given to run the learning process algorithm.

The proposed learning process is extended in the drift
level case with the condition:
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• if (not sufficient memory): discard the decision model
returned by function (algorithm 1);

IV. EXPERIMENTAL RESULTS

In order to test the proposed learning process, an im-
plementation was developed in Java, using the MOA [9]
environment as a test-bed. The available evaluation features
have been used and the SingleClassifierDrift class that
implements the drift detection method [6] has been extended
into our proposed approach. We used artificial and real world
datasets to evaluate the proposed method.

A. Datasets

1) Artificial Dataset: As artificial dataset, the SEA Con-
cepts [12] with MOA [9] as the stream generator was used.
SEA Concepts is a benchmark data stream that uses different
functions to simulate concept drift, allowing control over the
target concepts and its recurrence in our experiment. The
SEA Concepts dataset has two classes {class0, class1} and
three features with values between 0 and 10 but only the
first two features are relevant. The target concept function
classifies a record as class1 if f1 + f2 ≤ θ and otherwise as
class0, f1 and f2 are the two relevant features and θ is the
threshold value between the two classes. Four target concept
functions are defined with threshold values 8, 9, 7 and 9.5
as proposed in the original paper [12].

2) Real World Dataset: As real world dataset we used the
Electricity Market Dataset [7]. The data was collected from
the Australian New South Wales Electricity Market, where
the electricity prices are not stationary and are affected
by the market supply and demand. The market demand is
influenced by context such as season, weather, time of the
day and central business district population density. The
supply is influenced primarily by the number of on-line
generators. An influencing factor for the price evolution
of the electricity market is time. During the time period
described in the dataset the electricity market was expanded
with the inclusion of adjacent areas (Victoria state), which
lead to more elaborated management of the supply as
oversupply in one area could be sold interstate. The ELEC2
dataset contains 45312 records obtained from 7 May 1996 to
5 December 1998, with one record for each half hour (i.e.,
there are 48 instances for each time period of one day). Each
record has 5 attributes, the day of week, the time period, the
NSW demand, the Victoria demand, the scheduled electricity
transfer between states and the class label. The class label
identifies the change of the price related to a moving average
of the last 24 hours. The class level only reflects deviations
of the price on a one day average and removes the impact
of longer term price trends. As shown in [7] the dataset
exhibits substantial seasonality and is influenced by changes
in context. This motivates its use as a real world dataset in
our experiments.

B. Context and recurrent concepts definition

As context for the SEA dataset we used a numerical
context feature space with two features a1 and a2 with values
between 1 and 4. It was generated independently as a context
stream where the context attribute a1 is equal to the target
concept function number, and a2 value equals the target
concept function 9 in 10 times, which introduces noise in the
context stream. We generated 250000 records and changed
the underlying concept every 15000 records. The test was
executed with a 10% noise value as in the original paper
[12], this means the class value of the training record is
wrong in 10% of the records, testing how sensitive is the
approach to noise.

For the Electricity Market dataset we have considered
the classification problem to predict the changes in prices
relative to the next half hour, using as predictive attributes,
the time period, the NSW demand, the Victoria demand
and the scheduled electricity transfer. As context we used
the day of week attribute, as in [7] experiments using it
lead to 10 different contextual clusters. We expect that the
association of this context with the stored models achieves
good accuracy results. However, one drawback of a real
world dataset is that we do not know for sure what the
actual hidden context is and when such changes occur, which
makes it more difficult to evaluate the obtained results. This
dataset was also used in [6] to test the drift detection method
in real world problems, achieving good performance results.

C. Experiments

1) Reference experiment: For both datasets the approach
proposed in this paper is compared in terms of accuracy
with the SingleClassifierDrift implemented in MOA[9]. This
represents a scenario without memory constrains to be used
as reference for the two boundary cases (i.e., case where it
is possible to store all the required models vs no models
stored). The SingleClassifierDrift approach also uses the
Naive Bayes algorithm and detects drift using the drift
detection method [6]. When it occurs, the system learns a
new model by forgetting the old one (i.e., it represents the
case where the memory available to store additional models
is zero). In the real world dataset we also compare results
with an incremental Naive Bayes algorithm [4] (without any
mechanism to adapt to drift), again to be used as reference.

2) Experiment with memory constraints: We compared
the memory-aware approach in situations with memory
constraints, with 7KBytes and 5KBytes and 3KBbytes of
available memory. This allowed to test different scenarios,
ranging from ones where it is possible to store enough
models to represent different target functions and others
where due to the strong memory constraints only a reduced
number of models can be stored. Note that in the SEA
of concepts dataset, this means being forced to store less
models than existing target functions. This allowed us to
observe and measure how the accuracy declines as the
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Figure 1. Comparison of accuracy with Proposed approach(black) vs
SingleClassifierDrift(red) using the SEA concepts dataset. Black lines show
when drift occurs

Figure 2. Comparison of accuracy with of the proposed approach with
NoConstraints(black) vs Memory-constrained(red) using the SEA concepts
dataset. Black lines show when drift occurs.

memory available is reduced and fewer models can be kept.
Also it is important to understand the impact of discarding
models and the utility of the stored models in the adaptation
to recurrence in such memory constrained scenarios.

D. Results with SEA of Concepts Dataset

As can be seen in Figure 1 our approach leads to better
accuracy than SingleClassifierDrift. In general our approach
adapted to drift faster and the models selected using context
integration were able to represent the target concepts. This
is not observed in the SingleClassifierDrift approach that
always has to relearn the underlying concept from scratch
after drift is detected. It is also noticeable that our approach
achieves a more stable accuracy over time, as it recovers
much faster from drift than the approach without stored
models. The proposed approach obtained 2046 more correct
predictions. The integration of context enables to exploit the
associations between recurrent concepts and context as a
way to track concept recurrence. In situations where this
association exists it is possible to achieve better results.

In Figure 2, the memory-aware approach is compared
in scenarios with different available memory values. As
expected, when memory is reduced, the accuracy is reduced.

Figure 3. Above(No memory contraints): Comparison of accuracy be-
tween the proposed approach(Context), single classifier drift (Single) and
incremental NaiveBayes(NB). Bellow: Comparison of accuracy using the
proposed approach with different memory values.

In the test scenario with 7Kbytes it is possible to store 7
models, which allow us to keep more than one model for
each concept. As a result the performance was very close
(with only more 278 misclassified records) to the scenario
without memory constraints where 10 models are stored.
In the scenario with 5Kbytes, the reduction in accuracy is
more significant, with more than 1656 misclassified records
and the accuracy curve starts to resemble the SingleClas-
sifierDrift seen in 1 especially around records 120000 and
165000 (where the concept with θ=8 is the target concept).
Finally in the scenario with 3Kbytes only 3 models can be
kept in memory and as a result the performance is further
reduced, with more 2881 misclassified records.

E. Results with Electricity Market Dataset

As can be seen in Figure 3, the proposed approach ob-
tained better accuracy results (i.e., 73,4%), which represents
a gain of 3,7% and 11% when compared with SingleClas-
sifierDrift and incremental NaiveBayes respectively. We can
also observe that the proposed approach achieves a more
stable accuracy and recovers faster from changes. This can
be seen clearly around record 35000.

In relation to the experiments with memory constraints the
results show that the overall accuracy is similar between the
experiments, in the order of 71% correctly classifier records.
For all the tested scenarios the proposed approach still
obtains better overall results than the memoryless approach
(i.e., SingleClassifierDrift) but the accuracy over specific
periods depends on the model that is reused and which ones
were previously discarded in situations of memory scarcity.
This is a direct result of the proposed decision function,
and again such difference can be seen around record 35000,
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where the tests that kept the adequate model (i.e., 7K and
3K) are able to show improved adaptation.

V. CONCLUSIONS AND FUTURE WORK

In this work, we have proposed a memory-aware approach
for the problem of data stream classification that integrates
context information with learned models, improving adapta-
tion to drift and exploiting concept recurrence.

Several metrics to define model utility for the challenge of
memory adaptation were presented. These were developed in
order for the proposed adaptation strategy to suffer minimal
loss in accuracy and adaptation to drift when compared to
approaches where resources are unbounded and more models
can be kept in memory.

We have also tested our approach with the artificial
benchmark dataset SEA Concepts and the real world dataset
Electricity Market. The experimental results show the ad-
vantages of the proposed approach for situations with mem-
ory constraints. This is a consequence of minimizing the
accuracy loss. As the available memory is reduced while
keeping the more relevant models, these are available when
the concepts they represent reoccur. We should also note
that this is a general approach and better adaptations are
expected when using domain sensitive metrics and context.
Despite the promising results, we are not exactly sure when
drift occurs in the Electricity Market dataset and what
really affects change. This limits the depth to which we
can evaluate such results. However, such drawbacks are a
consequence of learning from real world data.

As future work we plan to test the current approach
in a real ubiquitous device with real world problem, and
further develop the idea presented in this paper using domain
sensitive criteria and context along with more sophisticated
adaptation strategies.
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