
Optimal Activation of Intrusion Detection Agents for Wireless Sensor Networks  
 

Yulia Ponomarchuk and Dae-Wha Seo 
Department of Electrical Engineering and Computer Science 

Kyungpook National University 
Daegu, Republic of Korea 

rus_flash@hotmail.com, dwseo@ee.knu.ac.kr  
 
 

Abstract—Recent technological advancements and low price of 
deployment and maintenance of wireless sensor networks 
(WSNs) allow their use in numerous applications in industry, 
research, and commerce, in order to gather environmental 
data in an unattended manner. Since WSNs usually function in 
open environments, they may become a target of attacks or 
malicious activities aiming to gain access to data, manipulate 
aggregation result, or disrupt the network service. Therefore, 
intrusion detection becomes crucial for WSNs as a second line 
of defense. In order to detect “smart” attacks of colluding 
devices, active monitoring of behaviors of neighboring nodes 
was proposed, but it is too energy expensive for resource-
constrained WSN nodes, making an adaptive technique for 
activation of intrusion detection system (IDS) agents extremely 
important. This paper proposed a model for optimal activation 
of IDS agents for WSNs on the basis of the Ising model. 
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I.  INTRODUCTION 
WSNs have become one of the most interesting areas of 

research owing to the recent advancements of technology, 
low price and easiness of deployment and maintenance, and 
application flexibility. A common WSN includes a large 
number of static sensor nodes and one or several base 
stations (BSs). Sensor nodes are very simple and cheap 
devices with constrained resources of memory and power, 
poor processing and communication capabilities. They 
monitor environment parameters (e.g., temperature, pressure, 
humidity) and transmit the sensed data in a hop-by-hop 
manner towards the BS. BSs or sink nodes are usually more 
powerful and secure, capable of maintaining WSN topology, 
collecting data from nodes, storing, preprocessing, and 
sending them to a user or another network, such as Internet. 

Commonly, WSNs function in an unattended manner in 
open environments with easy access. WSN devices 
communicate via open radio channel and they are prone to 
occasional network failures, such as HW/SW faults, loss of 
connectivity, natural disasters [1-4]. Moreover, WSN nodes 
are vulnerable to a large variety of attacks that may target 
physical integrity of devices, as well as routing protocols and 
data, transmitted within the network. Traditional security 
schemes can not be applied to WSNs directly because of 
severe resource constraints of nodes and absence of central 
authority, therefore, new simple, lightweight and efficient 
algorithms are needed [1, 2, 4]. Moreover, since no security 

scheme can guarantee that an attacker will not succeed 
eventually, an IDS is required as a second line of defense. It 
may detect nodes’ anomalous behavior and activate response 
measures to avoid an assault or minimize its effect on WSN 
performance. An IDS has to include global agents, 
responsible for constant monitoring of behaviors of 
neighboring devices ([5-13]) and node cooperation, because 
detection of complex attacks of colluding nodes may not be 
reliable by means of traffic analysis alone. However, this 
method incurs significant increase of power consumption at 
a monitoring node, which makes the problem of IDS’s self-
organization and adaptation extremely important. 

In this paper, a model for distributed and adaptive 
activation of global IDS (GIDS) agents is proposed. It is 
based on statistical mechanical approach and the Ising 
ferromagnetic spin model [14-15]. It incurs insignificant 
computation overheads and small communication costs, 
since the decision on activation of IDS agents is done locally 
and there is no need to send all relevant data to the BS. 
Combined with a reliable traffic analysis technique for local 
intrusion detection, it is capable of detecting “smart” attacks 
of colluding devices. 

The paper is organized as follows. Section 2 provides 
description of the problem and brief background information. 
Section 3 presents the Ising model for activation of GIDS 
agents. In Section 4, an algorithm for activation of IDS 
agents is proposed. Section 5, finally, concludes the paper. 

II. BACKGROUND 
The problem of design of a distributed, lightweight, and 

efficient IDS for WSNs has been drawing attention of 
researchers in recent years. Traditional IDSs are classified 
into network-based (NIDS) and host-based (HIDS) [16]. 
While HIDS analyzes incoming and outgoing traffic from 
individual hosts, NIDS is placed at strategic points of the 
network to analyze the traffic from all devices.  

Another approach to IDS classification is based on 
detection technique: signature or misuse detection, anomaly 
detection, or specification-based detection [16-17]. Misuse 
detection-based IDSs rely on a priori knowledge of attacks. 
Therefore, they detect the majority of known intrusions and 
have rather low false positive rate (number of false alarms). 
However, new types of assaults can be missed and signature 
database may require large memory resources. Anomaly-
based IDSs detect intrusions by comparison of newly 
acquired traffic profiles to previously created normal profiles. 
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They are capable of detection of new attacks, but have higher 
false positive rate, since random network failures are 
confused with intended assaults. Specification-based IDSs 
use a set of rules or constraints, specific for running 
protocols and applications. They are considered to be the 
most suitable for WSNs, since they are able to detect new 
types of intrusions, have low false positive rate, and require 
less memory to store specification database.  

Significant number of the previously proposed IDSs 
relies on analysis of incoming and outgoing traffic of a node 
and monitoring neighbors’ behaviors (watchdogs technique) 
[5-13]. While the former is not energy consuming and can be 
performed constantly by a local IDS (LIDS) agent, the latter 
is expensive in terms of energy and memory resources and it 
is done by a GIDS agent [5, 7-8, 12]. LIDS module detects 
intrusions against traffic flow in the nearest vicinity, but it is 
not capable of reliable detection of complex assaults initiated 
by collaborating malicious devices, which makes GIDS 
desirable to operate at least on a portion of nodes. Moreover, 
since any WSN node may be compromised, the network 
must defend itself from false accusations and GIDS modules 
may take responsibility for nodes’ cooperation and protect a 
WSN more efficiently. Recent papers on IDS design take 
this into account and propose algorithms to optimize GIDS 
deployment and activation [6-8, 12, 18-19]. However, the 
suggested schemes still require too many nodes to perform 
overhearing in normal conditions and lack of adaptability.  

Techateerawat and Jennings [18] proposed an adaptive 
activation of IDS agents. When a WSN is not suffering from 
an attack, the IDS agents are activated according to core, 
boundary, or distributed defense strategy. As soon as an 
intrusion is detected, alarm messages are broadcast to 
activate IDS agents on nodes in the vicinity of an intruder. 
This results in isolation of the malicious device and 
limitation of its effect on network performance. This paper 
proposes an approach to GIDS agents activation, based on 
the Ising’s ferromagnetic spin model [14-15] of statistical 
mechanics. The Ising model has been used to study critical 
phenomena in various systems in diverse disciplines, e.g., 
finance, biology and sociophysics [20]. It is used to describe 
the collective behavior of an ensemble of interacting 
components of a complex system, represented by a lattice 
[15], where each component has a magnetic dipole (spin), 
e.g., 1± . It enables modeling local and global influences on 
constituting components. In [20], the authors proposed to use 
the Ising model to provide self-organization of a sensor 
network in detection of pervasive faults. However, the 
proposed scheme is centralized: the BS aggregates and stores 
all relevant information and decides, which nodes to activate. 
This incurs extra communication costs, results in significant 
time delay, and may lead to problems with scheduling and 
node synchronization. In this paper, we suggest to use the 
Ising model to design a distributed and lightweight scheme 
for optimal and adaptive GIDS agents activation in WSNs. 

III. ISING MODEL FORMULATION FOR AN IDS 
The Ising model deals with systems, which can be 

represented as graphs with vertices as interacting 
components. A common WSN may be considered as a 

weighted graph with nodes as vertices and links between 
nodes as edges. Let ( )WEVG ,,=  denote a weighted graph 

of a WSN, where { }NivV i ,1, ==  is the set of components 

(sensor nodes), ( ){ }jiNjiVvvvvE jiji ≠=∈= ,,1,,,,  is 
the set of edges or possible links between any two nodes, 
representing interdependences between a pair of components 
(there are no self-loops), and 

{ }jiNjiwwW ijij ≠=≥= ,,1,,0  is a set of weights 

assigned to edges ( ) Njivv ji ,1,,, =  and representing the 

strength of interaction between nodes iv  and jv . Thus, each 
interaction in G  is defined by an edge (communication link) 
and its weight (link quality or trust value). Though G  may 
be a directed graph, in common WSNs nodes change their 
roles in time course, as well as routing paths. In general, ijw  
are time dependent, but they are assumed to be constant 
within a given time interval. Each node Nivi ,1, = , is 
assigned a spin iσ , representing the state of its GIDS agent: 

1−=iσ  - GIDS agent is inactive and the node performs 
only analysis of incoming traffic from neighbors, 1+=iσ  - 
GIDS module is active, monitoring and analyzing 
communication within the radio range. 

Given a weighted graph G , a time-dependent 
Hamiltonian τΗ  is constructed; it represents the energy in 
terms of the Ising model: 

∑∑ Β−−=Η
i

i
ji

jiijw σσσ ττ

,
,  (1) 

where ji,  denotes pairs of spins ji σσ ,  of nearest 

neighbors ji vv , ; ijw  and τΒ  represent local interactions 
and external time-dependent field respectively. Since 

0≥ijw , nodes tend to have the same state as their neighbors, 

unless affected by τΒ . The assumptions, provided above, 
correspond to a multicomponent system, where neighbors 
with anomalous behavior, make a node more likely to 
change its state from -1 to +1 under similar external 
influences, which is analogous to ferromagnetic influences of 
the magnetization model. It should be noted that while the 
Ising model deals only with binary states of a spin, there are 
general models, i.e., the Potts model (where a spin may take 
integer values qi ,1=σ ) and the continuous spin models (the 
XY model and the Heisenberg model) [15], which are 
considered for further research. 

As it was mentioned earlier, external influence of 
environment is represented by τΒ . According to (1), spins 
tend to line up in the same direction as the external field. In 
other words, they want to be positive if 0>Βτ  and negative 
if 0<Βτ . The value τΒ  at node iv  in time τ  can be 
written as follows: 
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( ) ( )∑
=

⎟
⎠
⎞

⎜
⎝
⎛

⎭⎬
⎫

⎩⎨
⎧=Β

N

k
kkkk iBi

j1
, δμμ τττ , (2) 

where ⎟
⎠
⎞

⎜
⎝
⎛

⎭⎬
⎫

⎩⎨
⎧ ττ μμ

jkkkB ,  is a function that represents external 

field in the neighborhood of node kv  and depends on the 

scalar anomaly measure τμk  at node kv  and the set of 

anomaly measures 
⎭⎬
⎫

⎩⎨
⎧ τμ

jk  of its nearest neighbors 
jkv ; 

( )ikδ  is the Kronecker delta, i.e., ( ) 1=ikδ  if ik =  and 

( ) 0=ikδ  if ik ≠ . The functional form of ⎟
⎠
⎞

⎜
⎝
⎛

⎭⎬
⎫

⎩⎨
⎧ ττ μμ

jkkkB ,  

is taken identical for all nodes kv , following [20]: 

( )⎟⎟
⎠

⎞

⎜
⎜

⎝

⎛
−−⋅+=⎟

⎠
⎞

⎜
⎝
⎛

⎭⎬
⎫

⎩⎨
⎧ ∑

j
jj k

jkkkk kkBB αμμμμ ττττ exp, 0 , (3) 

where jkk −  represents the distance from node kv  to its 

neighbor 
jkv , α  is a weight coefficient for the distance 

measure, 0B  is a parameter of the function. The value of the 

anomaly measure τμk  is a result of LIDS agent’s monitoring 
of incoming traffic from other devices at node kv  and the set 

⎭⎬
⎫

⎩⎨
⎧ τμ

jk represents alerts from its neighbors 
jkv . 

Given the spin states of nodes and anomaly measures at a 
given time instant, the problem of self-organization of IDS 
agents in a WSN is reduced to the estimation of probabilities 
of the possible subsequent states of the Ising system. Since 
each spin can take two values, there are N2  states in total 
for a graph with N  vertices [15]. In order to compute the 
probabilities of subsequent states, a statistical mechanical 
approach is used. It is described in the next section. 

IV. OPTIMAL ACTIVATION OF IDS AGENTS IN WSNS 
In this section we apply a statistical mechanical approach 

[14-15] to activation of an IDS, specifically activation and 
switching off GIDS agents in WSNs. Unlike a typical 
problem of statistical mechanics, the goal of the proposed 
model is to estimate probabilities of future thermodynamic 
states of the system, provided a particular state at time 
instant τ , not to compute macroscopic parameters (internal 
energy, the entropy, the specific heat, etc.). The model 
addresses two problems: it measures the degree of anomaly 
of traffic flow, using the enhanced version of traffic analysis 
method [21], and defines the distribution of nodes with 
active GIDS agents in a WSN. 

In terms of statistical mechanics, a thermodynamic state 
of a system, represented by graph G , is given by the spin 
states of graph’s vertices. The probability IP  of the system 
being in state I  is defined by the Gibbs distribution [14-15]: 

( ) IE
NI e

Z
P βσσ −=

1...,,1 ,  (3) 

where the energy of the state IE  is defined by Hamiltonian 
Η  (1), β  is proportional to the inverse temperature, and 
Z is the partition function of the model, defined as the sum: 

{ }
∑ Η−=

i

eZ
σ

β .   (4) 

The partition function may be difficult to compute for 
systems with an irregular lattice and large number of 
interacting nodes. However, computations are tractable if the 
simplifying assumptions are made [15]. 

• The system follows Markov dynamics, i.e., the future 
state depends only on the present state. 

• The system has quasi-static equilibrium at all time 
instants, i.e., the probability of transitions between 
states, having large energy difference is infinitesimal, 
the system follows single-spin-flip dynamics. 

• The system follows the condition of detailed balance, 
i.e., probabilities IP  and JP  of the system being in 
states I  and J  respectively and transition 
probabilities IJp  and JIp  are related as: 

IJ

JI

J

I
JIJIJI p

p
P
PpPpP =⇔= ,  (5) 

where ( )IJ EE
JIIJ epp −−⋅= β  from (3) and all transition 

probabilities should satisfy the constraint: 
1: =∀ ∑

J
IJpI .   (6) 

Requirements (5-6) allow to break the transition 
probability into two parts and apply the Metropolis algorithm, 
the most efficient and widely used for the Ising model [15]:  

IJIJIJ Agp = ,  (7) 
where IJg is the probability that given an initial state I , a 
new target state J  will be generated (selection probability) 
and IJA  is the acceptance ratio, showing that if the system 
starts off from state I  and the algorithm generates state J  
from it, the transition will be accepted. In the Metropolis 
algorithm, selection probabilities are chosen to be equal, 
resulting in: 

( )IJ EE

JI

IJ

JI

IJ
JIIJ e

A
A

p
p

N
ggJI −−==⇒==≠∀ β1, . (8) 

According to [15], the optimal algorithm is chosen when 
( )

⎪⎩

⎪
⎨
⎧ >−=

−−

.,1
,0,

otherwise
EEifeA IJ

EE
IJ

IJβ
(9) 

In other words, if the algorithm selects a state, which has the 
energy lower than or equal to the present one, such a 
transition will be always accepted. If a selected state has 
higher energy, then it may be accepted with the probability, 
defined by (9). Since each IJA  is strictly positive, the state 
transition matrix [ ]IJA  is irreducible. 

The change in energy iEΔ  due to a single-spin-flip (from 
+1 to -1 or vice versa) at a node iv  is defined by (1) and may 
be rewritten as: 
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Algorithm 1: Self-Organization of IDS agents
while (1) do 

Collect traffic data 

Compute local anomaly measure τμi  at current time instant τ  and 
broadcast it to the one-hop neighbors 

Compute the external field τ
iB  using (2-3) 

Compute the change of energy iEΔ  (10) and flip
ip  (11) 

Change the spin state with probability flip
ip  

end 

i
ji

jiiji wE σσσ τΒ−=Δ ∑
,

2 ,  (10) 

where ji,  denotes the set of the nearest neighbors jv  of 
node iv . Expression (10) shows that areas with traffic 
anomalies will have higher energy and ensures that more 
nodes will be able to detect an intrusion. As soon as an 
anomaly is eliminated, iEΔ  decreases and nodes tend to stop 
constant monitoring. The flip probability is computed for iv  
using (9): 

⎪⎩

⎪
⎨
⎧ >Δ=

Δ−

.,1
,0,

otherwise
Eifep i

E
flip

i
iβ

 (11) 

The value flip
ip  shows the likelihood of event that node 

iv  changes its spin ii σσ −→  under the influence of its 
neighbors and external field. Initially, all nodes may have the 
spin 1−=iσ  and switch to the active GIDS state ( 1+=iσ ) 
with probability 0p , defined by the minimal number of 
active GIDS agents over the whole network. 

The algorithm for optimal activation of GIDS agents is 
summarized in Fig. 1. Each node performs it periodically and 
is able to switch on/off its GIDS agent in dependence on the 
information from its close neighbors and traffic intensity. 
There is no need to transmit anomaly measure values to the 
BS. The weight coefficients are stored at each node. 

 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Algorithm for GIDS agents activation, performed by each node. 

V. CONCLUSIONS 
The paper proposes a model for adaptive optimal 

activation of GIDS agents for intrusion detection in WSNs. 
The model is based on the principles of graph theory and 
statistical mechanics. Given estimations of traffic anomalies, 
a small fraction of nodes is activated to monitor neighbors 
behavior, only when it is necessary. Thus, the scheme 
reduces power consumption due to overhearing and prolongs 
network’s lifetime. The proposed scheme is distributed and 
lightweight in terms of computation and communication 
overheads and may be applied in large WSNs, since BSs are 
not required to gather and store information about all nodes’ 
behaviors. Further research will be devoted to the 
performance evaluation via simulations and comparison with 
other strategies for GIDS agents’ deployment and activation. 
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