
GeCSen – A Generic and Cross-Platform
Sensor Framework for LocON

Mitch De Coster and Steven Mattheussen
Dept. of Applied Engineering

Artesis University College
Antwerp, Belgium

mitch.decoster@student.artesis.be
steven.mattheussen@student.artesis.be

Martin Klepal
Centre for Adaptive Wireless Systems

Cork Institute of Technology
Cork, Ireland

martin.klepal@cit.ie

Maarten Weyn and Glenn Ergeerts
Dept. of Applied Engineering

Artesis University College
Antwerp, Belgium

maarten.weyn@artesis.be
glenn.ergeerts@artesis.be

Abstract—In this paper, we present a generic and cross-
platform sensor framework for the LocON location and sensor
middleware. This framework is developed using C++/Qt. Sen-
sor information is rapidly gaining importance in automating
processes and ubiquitous computing, and so it is for projects
like FP7 LocON where the main goal is to integrate embedded
location systems and embedded wireless communication in or-
der to manage and secure large scale environments. Accessing
sensor information mostly requires platform specific code, but
for merging this information and sending it over the internet or
displaying it on a device, Qt provides cross-platform libraries.
Our sensor framework, called GeCSen, also comes in the form
of a library that can load platform specific sensor plugins
and is able to communicate with the LocON middleware. The
framework acts as a cross-platform layer which sends the
sensor information to the LocON middleware. This framework
enables all kinds of sensors on a wide range of devices to be
used by the LocON platform and thereby adds substantial
value to the FP7 LocON project.

Keywords-monitoring, localisation, embedded devices, smart-
phone, sensors, locon, cross-platform

I. INTRODUCTION

Nowadays, sensor data is widely used for many appli-
cations, for example, monitoring patients, personnel and
equipment in hospitals, monitoring athletes to optimise
training methods, etc. To do monitoring we need a selection
of sensors such as location sensors, temperature sensors,
accelerometers, heartbeat sensors, etc. and some basic logic
to parse the sensor data. This data is used to follow someone
or something and draw conclusions on which certain actions
can be based, for instance, calling an ambulance and auto-
matically give GPS coordinates when someone is having a
heart failure. There are different kinds of monitoring but
in general we can conclude that there is environmental
monitoring to control an area, object monitoring to track
a person or object and process monitoring to monitor the
proceedings of a process. All situations require different
approaches. We are mostly focused on monitoring moving
objects.

Currently, monitoring is mainly done by what are called
wireless sensor networks [1]; these networks typically con-

sist of a variety of sensor nodes with a small battery, micro-
controller and radio transmitter that collects, processes and
communicates sensor data. All sensor nodes work together
to monitor an environment whereby all collected sensor data
reaches a central sink. The sink acts as a link between
the sensors and the application. With GeCSen we aim to
use computers, embedded systems and smartphones. Many
of these devices already have the means of communica-
tion and are equipped with various onboard sensors, for
instance, most smartphones have a subset of the following:
GSM/UMTS, Wi-Fi, GPS, accelerometers, Bluetooth, etc.
and can also be extended with various other sensors to suit
your needs. Using these kinds of devices comes at the cost
of considerably higher power requirements, but also gives
enormous processing power in the node itself.

Most applications of sensor usage today are custom devel-
oped with industrial usage as target, thus they are specifically
built for their needs and only work with specific hardware.
Some commercial applications, for example for athletes, are
also available, but they are mostly device specific and all use
different approaches of which practically none are generic.
Notwithstanding, there are already some efforts in making
generic sensor frameworks, for example the S60 Sensor
Framework of Nokia, the Moblin sensor framework and
mSense [2]. Unfortunately they are mostly platform specific,
and no more than merely an API for sensors, thus there is
an urgent need for a generic way to access sensors used for
monitoring.

This paper describes a generic and cross-platform sensor
framework, developed in C++/Qt which is easily extendible
with plugins to support all kinds of sensors on the majority
of platforms and architectures. It thus provides a consistent
method of accessing sensor hardware by adding a cross-
platform abstraction layer above the APIs described in the
previous paragraph, so the plugins are a platform specific
wrapper around the APIs which can be loaded in the
sensor framework. We also send the sensor data to the
middleware of the FP7 LocON project [3], thus we are
able to use the LocON data collection and data mining

21

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

abilities, together with its localisation fusion engine. Using
the LocON platform gives us the opportunity to thrive with
the success of the FP7 LocON project, but GeCSen itself
also provides substantial value to LocON as it makes it very
easy to enable all kinds of sensors on various devices for
the LocON platform. We provide the framework itself as a
library which can be used statically or dynamically in a host
application. The host is able to control GeCSen and use the
collected sensor information to, for example display it in a
GUI.

The remainder of the paper is organized as follows. In
Section 2, we discuss cross-platform aspect of GeCSen and
why it is important. The architecture of the framework is de-
scribed in Section 3. Section 4 goes deeper into the features
of GeCSen. In Section 5 we discuss the test cases used to
demonstrate the usefulness of the framework, followed by
a comparison in Section 6 which shows the advantage of
using GeCSen. Future work is discussed in Section 7 and
finally, section 8 concludes the paper.

II. CROSS-PLATFORM

GeCSen has a broad target group, thus it needs to be able
to run on as much platforms as possible. It is not a trivial task
to develop a truly cross-platform application, because every
platform uses its own libraries and has its own platform
definitions. Writing cross-platform applications, basically
means having to choose between two major programming
languages, C++/Qt and Java. Java is a platform independent
language which uses a virtual machine to run Java programs.
Qt, on the other hand, is a toolkit written in C++ that uses
the same APIs for different platforms. Choosing one over the
other essentially means choosing a subset of platforms that
you want to support. The main advantage of C++ over Java
is a more efficient use of processor cycles and memory and
it allows us to program closer to the hardware[4],[5]. The
main disadvantage of C++ is that you have to cross-compile
for each platform while with Java you do not.

Applications that use GeCSen are mainly focused on
mobile and embedded platforms. The market for embedded
devices is relatively stable; the two mostly used operating
systems are Windows CE and various embedded Linux
distributions. The mobile market, on the other hand, is
constantly fluctuating; software platforms come and go. As
Canalys [6] concludes the most used operating systems
currently are Symbian and Blackberry but they also conclude
that both Apple iPhone and Google Android are growing
very fast, mostly at the cost of Symbian and Windows
Mobile. On top of that, every mobile OS has its own set
of APIs and most of them are very restricted. This makes
developing an application that works on every one of them
nearly impossible.

There is also some research going on about cross-platform
mobile development which results in a number of very
different approaches. Cha, Bernd and Du [7] propose a

comprehensive mobile application framework to support
interoperability and mobility of mobile application devel-
opment and operation. Choi, Yang and Jeong [8] suggest
an application framework for writing cross-platform mobile
applications in Java. PhoneGap [9] is a project that provides
a framework in which you can develop programs using
simple HTML, CSS and JavaScript. It supports iPhone,
Android and Blackberry. MoSync [10] , another project,
provides a codebase with which you can program cross-
platform in C/C++ for Java ME, Symbian S60, Windows
Mobile and Moblin and they are working on Android,
iPhone and Maemo. Unfortunately these methods are still
too restricted for us to use and don’t allow us to program
for desktops and laptops, as well as mobile devices.

We have chosen C++/Qt, because although Java is sup-
ported by more smartphones than C++/Qt, most smartphone
manufacturers have their own restricted APIs. By using
C++/Qt a significant part of the smartphone market will still
be supported. In addition, Qt is fully open-source; thereby
it has a large developer community that thrives to port Qt
to every possible platform. It is also gaining more and
more attention since Intel and Nokia announced that they
are strongly working together to make Qt the default in
cross-platform development. GeCSen is tested and works
on various x86/x64 and ARM architectures in combination
with the following platforms: Windows, Windows Mobile,
Windows CE, Android and various Linux distributions,
including Ubuntu and a number of OpenEmbedded variants.

III. ARCHITECTURE

The GeCSen architecture, which is shown in Figure 1,
shows a generic way to enable sensors on a device to
communicate with the LocON platform. Previously for every
different type of device which had to be connected with
LocON, or for adding an extra sensor to the LocON client
application, it had to be partially, if not completely rewritten.
Using this sensor framework the same code can be reused,
one only has to compile it for the specific device and develop
plugins to use the sensors. As a result, it becomes very easy
to add extra sensor devices to the LocON platform. The
plugins form a hardware and platform specific layer between
the cross-platform framework and the sensors, thus they are
responsible for managing the sensors and sending the sensor
data to the sensor framework in a uniform way. LocON is
working on the standardisation of the data protocol; there-
fore, the framework has to translate the sensor information,
obtained by the plugins, into LocON compatible messages.
This is done by using the LocON protocol library [11].
These messages, which can be extended data messages or
position messages, are then sent over the network to the
LocON platform. This sensor information is very useful to
help achieving the main goal of the LocON project, namely
securing large scale environments, but also gives endless
other possibilities to LocON.

22

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

Figure 1. Architecture of the sensor framework

The architecture is in essence a client-server architecture.
GeCSen is a client which runs on a device such as a
computer, an embedded device or a smartphone. The goal
of the GeCSen client is to manage sensor plugins, to collect
sensor data from them, to process that data and to send it to
the LocON platform. The LocON platform is the server; it is
responsible for collecting and processing the sensor data and
for seamlessly combining position data. The application on
top of the LocON platform is essentially another client that
queries the platform for sensor data and position updates so
it can be represented in a graphical and useful way or it can
be used for further processing.

Figure 2 shows how GeCSen, its plugins and its host
applications fit in the OS architecture. It runs on top of the
Qt framework and is able to access the system hardware
trough the APIs, services and libraries.

IV. FEATURES

A. Plugin System

The plugin system is based upon the Qt Plugins API.
The plugins are in essence dynamic libraries that are loaded
by the GeCSen framework using a declared interface. This
interface is a class containing solely virtual functions that
are then used to communicate with the plugins. Every plugin
has to have an initialisation and configuration function. The
initialisation function, which is the first call to the plugin, is
used to initialize the necessary steps, for example, initialise
the sensor and start a timer for reading its information. The
configuration function is used to configure the plugin and

Figure 2. GeCSen on top of OS Architecture

is invoked by GeCSen whenever it receives configuration
messages from LocON that are destined for the plugin.

1) Pushing mechanism: Generally plugins are called by
the application, accordingly, in our case the framework has
to poll the sensors for data. Following the fact that the plugin
has to send the sensor information when it is appropriate,
for example when a button is pressed, a pushing mechanism
had to be developed. When the framework has loaded the
plugin and calls the initialisation function, two pointers to
functions in GeCSen are given as arguments to the plugin.
These two functions can be used to send position messages
or extended data messages to the GeCSen framework.

2) Configuration messages: One of the features of Lo-
cON is sending configuration messages which can be used
for various purposes, GeCSen also supports these configura-
tion messages. By defining and linking them to a sensor in
the GeCSen configuration XML, this defined message will
be sent to the sensor plugin by using the virtual configu-
ration function in the plugin interface. These configuration
messages can be used to set the update rate of a sensor or
to manage an actuator for example.

B. Sensor Data Collection

After the plugins are loaded and initialised, they start
sending sensor data to the framework by using the func-
tion pointers we discussed in the previous paragraph. For
extended data messages there are a number of data types
available that can be sent which are defined by the LocON
protocol and specified for each sensor in the configuration
XML. All sensor data is sent as a list of generic pointers,
so there is no need for conversion to a certain data type.
By using a list we enable the plugin to send multiple
values within the same message, for instance multiple MAC
addresses of visible Bluetooth devices. Together with these
data, the name of the sensor and the plugin is also sent.

23

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

Subsequently the data is processed by the sensor handler
which checks if the sensor that is sending is allowed to
send data and then converts the data into the right format
for further processing by the LocON communicator or for
usage in the GeCSen host application.

C. LocON Communicator

The LocON communicator uses the LocON protocol and
security libraries together with the Qt network libraries to
make a connection with the LocON platform and send the
right packets accordingly. GeCSen needs to authenticate it-
self to the LocON platform before it can send any packages.
Therefore the communicator sends a handshaking message
to the LocON platform. This handshaking message contains
a LocON packet with only the subsystem id in it. With
this message GeCSen asks to initiate the authentication
process. In return LocON sends an open authentication
message containing an encrypted blob and a signature blob.
Thereafter the paths to the public LocON key and private
device key together with the subsystem id are stored in an
internal security structure. This structure is used to process
the open authentication message received from LocON.
When this message is valid an acknowledge message is sent
back to LocON to complete the authentication process. After
this process GeCSen is able to send signed, and in the future
encrypted, messages to LocON. When the connection is lost
the communicator will automatically retry to establish a new
connection every ten seconds.

Using the data received from the sensor handler a LocON
packet is being build. This packet will be filled until the
update time interval has passed or when the maximum
package size is reached. Thereafter, it is sent to the LocON
middleware and the framework starts filling up a new packet.

D. Host Application

Our sensor framework is provided as a library, meaning
that it needs a host application to be loaded and initialised.
For this purpose GeCSen provides some functions. The
most important function is the constructor with parameters
to tell GeCSen the location of the configuration file, the
plugins directory, the ssl keys for authenticating with LocON
and where the log file should be placed. The constructor
initialises and starts GeCSen. Some other functions are pro-
vided to start and stop GeCSen and to start and stop logging.
Qt host applications can also use the signals, of the Qt
signal/slot mechanism, we provided for when new extended
data, position data or configuration messages arrive. This
allows host applications to use sensor data, for example in
a GUI on the device itself. Host applications can also be
implemented as a console application or even as a service.

E. Configuration

GeCSen can be configured with a XML file similar to
the SubsystemDefinitions.xml file used in LocON [?]. The

GeCSen XML configuration first defines some configuration
parameters like server IP and port, whether or not it needs
authentication and the update interval in milliseconds. Then
a single subsystem is defined which describes a subsystem in
which configuration messages and extended data items are
defined by a name and data type, exactly the same as in one
of the subsystems in the SubsystemDefinitions.xml file of the
LocON configuration. The last part of the GeCSen config-
uration file defines the plugins with their name and sensors
that are coupled with extended data items and configuration
messages. This allows us to enable or disable plugins and
sensors using the configuration file. The configuration file is
of great importance to GeCSen and is an agreement between
LocON and GeCSen.

V. TEST CASES

Various test cases have been developed to test the frame-
work and demonstrate its usefulness. Similar applications
already exist in various non-generic, non cross-platform
implementations, thereby these test cases prove that we can
achieve the same by using our sensor framework. Some test
cases we describe here were developed as bachelor theses
within our master’s thesis, we supported their development
and provided the necessary tools and documentation.

A. Remote Athlete Monitoring Application

The first test case is an application for monitoring sporting
athletes [13]. GPS data from a HTC Touch Cruise smart-
phone is combined with the Zephyr HxM [14] external heart
rate sensor connected via Bluetooth. Therefore two plugins
are written, one to access the GPS sensor and collect the
GPS coordinates and another to access the Bluetooth sensor
and collect the heart rate values. This data is being presented
in GUI applications on the smartphone itself and on top of
the LocON platform. This test case should also work on
other mobile phones that support Qt and have a GPS and
Bluetooth chip, as long as the right plugins are provided.

B. Opportunistic Seamless Localisation Client

Another test case was to build an OSL client using
GeCSen [16]. OSL uses the LocON protocol, but with-
out authentication. We have developed a number of OSL
compatible plugins such as a Wi-Fi plugin that measures
the signal strength (RSSI) of all visible access points, a
Bluetooth plugin that detects all Bluetooth devices in the
vicinity and a standard GPS plugin. Other possible plugins
that we did not provide are a plugin for GSM, an activity
plugin that measures the time since your last keystroke and
one for step detection with accelerometers. GeCSen, together
with a set of OSL plugins is able to act as an OSL client. All
these plugins are developed for Windows, Windows Mobile,
Linux and Embedded Linux.

24

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

C. Internal Social Networking Application

This test case is a social networking application for Win-
dows [17], developed in C#. With this application, friends
can locate each other using Wi-Fi based localisation. This
application is meant for internal use at our campus to allow
students to check if teachers are in their office. To make
this possible the application uses GeCSen to send the RSSI
values and MAC addresses received from a Wi-Fi plugin
to the OSL server using the OSL client implementation
described earlier. The OSL server in turn calculates the
position of the device sending the Wi-Fi information. For
this test case a C# wrapper for GeCSen was developed.

D. Demo Application

During our master’s thesis some other simple plugins
were developed in order to test GeCSen. This includes a
dummy plugin which has two sensors that send dummy
values at different intervals, this dummy plugin works on all
supported platforms; a CPU plugin that measures CPU usage
for Windows, Linux and Embedded Linux and a battery
plugin that measures remaining battery life in percent for
Windows, Linux and Embedded Linux (ACPI and APM).
These plugins are then used together with the other plugins
that were previously discussed. For this test case a simple
test GUI for the device and an interactive application on
top of LocON where you can collect and visualise all the
information from the connected devices were developed to
demonstrate the advantages of GeCSen in an interactive
demo.

VI. COMPARISON: GECSEN VERSUS OSL CLIENT

There are already some systems developed that commu-
nicate with and use the LocON platform. For example, the
Opportunistic Seamless Localisation System (OSL) client,
this is the client that communicates with the OSL server,
which uses the LocON protocol. This server combines all
sensor data to do opportunistic localisation and in turn sends
the location data to the LocON platform [16]. There are
a number of OSL clients developed for various platforms
including Windows, Windows Mobile and embedded Linux.
These clients consist of different implementations to talk to
the hardware and to communicate with the OSL server. The
OSL client for Windows is developed using C# whereas the
version for embedded Linux is using Qt Extended and there
is both a C++/Qt as a C# version for Windows Mobile. As
you see these are four totally different implementations for
achieving the same purpose.

However, the underlying principle is the same for all
implementations. When the sensors are being read their data,
such as access point information and accelerometer data, is
sent to the client controller in a non-generic manner. When
new sensors need to be added to the OSL client the client
needs to be partly rewritten and compiled. GeCSen is able to
do the same job as the OSL client but in a generic manner,

adding a new sensor is as easy as developing a small new
plugin and adding it to the configuration. The plugin is
then loaded by the framework the next time GeCSen starts.
This is done without doing any changes to the framework.
We believe that GeCSen adds tremendous value for both
developers and users of such applications like opportunistic
localisation.

VII. FUTURE WORK

GeCSen still has to be tested thoroughly with a stress
test over a long period of time on various devices as some
optimisation of our code might be needed. For example, the
device id is currently generated by scanning for network
interfaces, chosing the best MAC address and storing it in a
file for later usage. In the future when every device has
its own certificate, it seems better to use a hash of that
certificate as device id, because this is much more difficult
to spoof compared to a MAC address. Improvements can
also be made to the parser of the configuration XML file.
We previously used XML schema validation but it added too
much overhead to GeCSen because the Qt library for XML
schema validation is too large. This means that our current
parser is not completely fail-safe.

The sensor framework should also be tested on more
platforms and devices that Qt is ought to work on. For
example, the Symbian S60 platform on which we started,
but did not succeed within the time that was anticipated.
This was mainly because of the fact that we did not have
a S60 smartphone to develop on and the standard emulator
from the Symbian S60 SDK did not fulfill our needs. Some
other mobile platforms on which GeCSen should also work,
but are not yet tested include Maemo 5, MeeGo and Symbian
3. The Qt community is currently also working on the Qt
Mobility project [18], this is a set of APIs that make it easier
for developers to take advantage of mobile features such as
using sensors. When this project is completed it could add
tremendous value to the future of our project.

Another test case currently is in development as a bachelor
thesis, called Smart Environment for Indoor Localisation and
Evaluation [15]. The scope of this thesis is to solve the
problem where patients who are in need for help still have
to wait too long for treatment. Using this system doctors
will be automatically warned when patients health conditions
are abnormal. GeCSen will be used on a gateway to send
sensor and localisation data to the LocON or OSL server
for further processing. The GeCSen framework is expected
to be included in the following up master thesis next year.

In order to keep GeCSen practically useful, a provisioning
system would also be a valuable addition. We intended
starting with the development of such a system, but due to
time limitations we suspended the project. At last GeCSen
should be promoted because of its simplicity and user
friendliness. That is why we want to keep it alive by starting
up a LocON alliance which recommends GeCSen to be used

25

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

as a standard way to connect devices with their sensors to
the LocON platform.

VIII. CONCLUSION

Sensor readings add substantial value to projects like
FP7 LocON. Nowadays, there is no generic and cross-
platform tool for using sensors. GeCSen is a solution to
this ever growing problem that occurs today. Combining
various sensors as GSM/UMTS, Wi-Fi, GPS, Bluetooth,
RFID and UWB can result in more accurate localisation
systems. Other sensors as presence detection sensors can
result in more secure environments. Whereas yet other
sensors as heart rate sensors and temperature sensors can
provide useful applications, for example to monitor sporting
athletes or patients. We tried to port GeCSen to as many
platforms and architectures we could get our hands on, and
we reached even beyond our initial goal. Unlike existing
sensor frameworks which are platform specific, GeCSen
allows to expose generic sensor information from a broad
range of platforms and devices to middleware like LocON,
in an easy and uniform way.

REFERENCES

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“A survey on sensor networks,” IEEE Communications mag-
azine, vol. 40, no. 8, pp. 102–114, 2002.

[2] J. Krösche, A. Jakl, D. Gusenbauer, D. Rothbauer, and
B. Ehringer, “Managing Context on a Sensor Enabled Mobile
Device-The mSense Approach,” in 2009 IEEE International
Conference on Wireless and Mobile Computing, Networking
and Communications. IEEE, 2009, pp. 135–140.

[3] S. Couronné, N. Hadaschik, M. Faßbinder, T. von der Grün,
M. Weyn, and T. Denis, “LocON–a Platform for an Inter-
Working of Embedded Localisation and Communication Sys-
tems,” Proceeding of 6th Annnual IEEE SECON, 2009.

[4] M. Kalle Dalheimer, “A comparison of qt and java for
large-scale, industrial-strength gui development,” Klarlv-
dalens Datakonsult AB, Tech. Rep., 2005.

[5] L. Prechelt, “An empirical comparison of c, c++, java, perl,
python, rexx, and tcl,” University of Karlsruhe, Tech. Rep.,
2000.

[6] Canalys. (2010, May) Smartphone market analysis. [Online].
Available: http://www.canalys.com/pr/2009/r2009112.html

[7] S. Cha, J. Bernd, and W. Du, “Toward a Unified Framework
for Mobile Applications,” in Proceedings of the 2009 Sev-
enth Annual Communication Networks and Services Research
Conference-Volume 00. IEEE Computer Society Washington,
DC, USA, 2009, pp. 209–216.

[8] Y. Choi, J.-S. Yang, and J. Jeong, “Application framework for
multi platform mobile application software development,” in
11th International Conference on Advanced Communication
Technology. ICACT, 2009, pp. 208–213.

[9] PhoneGap. (2010, May) Cross platform mobile framework.
[Online]. Available: http://phonegap.com/

[10] MoSync. (2010, May) the open source standard tool
for cross-platform mobile applications. [Online]. Available:
http://www.mosync.com/

[11] H. Millner, P. Gulden, M. Weyn, M. Fabinder, and A. Casaca,
“Description of the locon protocols. deliverable 4.2 of the
fp7 locon project,” Symeo, CIT, CEA-LETI, INOV, Artesis,
Fraunhofer IIS, Tech. Rep., 2009.

[12] A. Chambron, M. Fabinder, N. Hadaschik, S. Wibowo,
P. Gulden, K. Willame, and G. Pestana, “Concept of an inter-
operable interface. deliverable 4.3 of the fp7 locon project,”
ANA, perLocus, Symeo, CEA/LETI, INOV, CIT, Tech. Rep.,
2009.

[13] D. Pauwels, K. Fierens, G. Ergeerts, and M. Weyn, “Remote
Athlete Monitoring Application for LocON,” 2010.

[14] Zephyr. (2010, May) Zephyr hxm — heart rate
and accelerometer data analysis. [Online]. Available:
http://www.zephyr-technology.com/hxm.html

[15] M. Weyn and M. Klepal, “Adaptive Motion Model for a Smart
Phone Based Opportunistic Localization System,” Mobile
Entity Localization and Tracking in GPS-less Environnments,
pp. 50–65, 2009.

[16] Y. Budts, G. Ergeerts, and M. Weyn, “Internal Social Net-
working Application using LocON,” 2010.

[17] Q. Labs. (2010, May) Qt mobility project. [Online].
Available: http://labs.trolltech.com/page/Projects/QtMobility

[18] B. Pauwels, D. Lacko, D. Vermeiren, G. Ergeerts, M. Weyn,
and R. Steurs, “Smart Environment: Indoor Localization and
Evaluation (SEnILE),” 2010.

26

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

