
Towards a Runtime Evolutionary Model of User Interface
Adaptation in a Ubiquitous Environment

Imen Ismail, Faouzi Moussa

CRISTAL Laboratory
National School of Computer Sciences
Manouba University 2011 Tunis, Tunisia

imen_ismail@yahoo.fr faouzimoussa@gmail.com

Abstract—Ubiquitous environments are often considered highly
dynamic environments and the contextual information can
change at runtime. User interface should provide the right
information for the right person at the right time. Certainly, such
objective can be achieved only when we deduce the realtime
user’s requirements in terms of information and present this
information to the user according to his current context of use.
The specific goal of our research is to improve the adaptation
process while improving models at runtime. A fixed model cannot
handle the high dynamic in such an environment. The model can
progress and change its structure to better deduce the user’s
requirements. The work reported in this paper introduces a
pertinent solution for representing the dynamic construction of a
Petri-nets based model. The solution applies the ontology of
service (OWL-S), given that the contextual information is defined
by the ontology written in OWL.

Keywords-Ubiquitous computing; User Interface Adaptation,
OWL; OWL-S; Ontology; Modeling; Petri-nets .

I. INTRODUCTION

User interface adaptation to the context of use is an area of
research that is rapidly expanding. The potential progress of
the fourth generation networks and technologies such as
wireless networks (LAN WiFi, UMTS, Bluetooth, GPRS and
RFID) as well as sophisticated, portable, computing, devices
such as PDAs, iPhone, iPod, Pocket PC, Wearable computers,
etc. are the challenge of researches in user interface adaptation
[1]. This area is becoming increasingly complex [2][3]. In a
pervasive environment, the user is in front of a wide range of
information and heterogeneous content. The aim of making
interface more “attentive” and aware of the user’s needs have
advanced applications. Models used for the user-device
interaction should be built with context-awareness capabilities,
so that they can properly adapt to the changing context of a
moving user. In fact, user interface must adapt the information
it provides by implicitly deriving the user’s requirement from
his context of use, whereas, the context tends to vary at
runtime in a highly dynamic environment. In this paper, we
are concerned with an approach for modeling the basic
components of ubiquitous computing system, i.e.: the user, the
user’s behavior and their activities. The specific goal of our
research is to enhance the adaptation process while improving
models at runtime. A fixed model cannot handle the very high
dynamic aspect of such an environment. The model should
progress and change its structure to better deduce the user

requirement. Selecting the appropriate model is not that easy.
To address this problem, adaptation strategies will be based on
evolutionary models. We will describe these models and how
they evolve over time. First, the paper introduces a method to
express the user’s behavior and therefore find functionalities
of user interface. The user’s activities were first modelled with
Petri-nets technology. User’s interaction with the interface was
modeled too and finally, we can deduce a user’s requirement
at every functional step of the ubiquitous computing system.
So, the question to be answered here is how can we improve
such models in order to perform better in a very dynamic
environment. This paper addresses these issues and proposes a
method to build realtime models. Note that ontology was used
to describe the ubiquitous environment in general and the
contextual information in particular, the ontology of service
has been passed in order to represent the model's building. In
the following sections we reviewed the technique for the user
interface modelling. Then, we outlined the solution for the
Petri-nets modelling using OWL-S properties. We presented a
very simple example developed using our approach. Finally,
the Section 4 summarizes this study.

II. MODEL-BASED USER INTERFACE ADAPTATION

Nowadays, one of the main key features of Human
Interaction Systems is the adaptation concept [1][4].
Adaptation is defined as a customization process which takes
into account all information and parameters. This is often
called the context of use, which could be useful and relevant to
improve interface usability model [3][5][6]. On the other hand,
model based user interface has received much interest.
Essentially it consists of an alternative paradigm for
constructing interfaces [7][8]. Developers must write a
specification in a specialized high level language, such as state
transition diagrams [9], grammars [10], or event-based
representations [11]. The specification is automatically
translated into an executable program; the specification can
also be interpreted to automatically generate the user interface.
The proposed approach focuses on realtime modeling of the
user interface in a ubiquitous environment.

A. Realtime Modeling of the User Interface in a Ubiquitous
Environment
In this section, we introduce briefly the model-based

approach proposed to support realtime adaptation of the user

193Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

interface in ubiquitous environment [12]. As first step, we are
concerned with the user’s activities because they provide
relevant information on what a user is doing. Consequently,
the system can deduce the suitable user’s requirements to
fulfill the current activity. To achieve this objective, this latter
concept must be analyzed and modeled. As formal modeling,
the Petri-nets technology was chosen, in particular the
Interpreted Petri-nets (IPN) [13][14]. This extension of Petri-
nets introduced the notion of events and conditions as well as
the notion of actions. We associated a passing condition (Cj), a
triggering event (Evj) and a possible action (Aj) to each
transition (Tj). A user’s activity is composed of a set of
elementary actions. The elementary actions were modeled by
elementary structures of IPN (Figure. 1.a).

 (a)

Figure 1. IPN modeling (a) Elementary activity modeling (b)

Having modeled an elementary activity with an IPN, the
user’s behavior which consists of a set of activities can be
modeled (Figure. 1.b). The places represent the user’s
behavior according to the system’s evolution and changes. The
validation of the condition i (transition T1) and the presence of
the event “End action” (transition T2) indicate that the action
has been executed and has come to end. The place P2
expresses a waiting state, while the places P1 and P3 model
the state of the user before and after the execution of the
action. Specifically, the place P3 indicates the end of the
action. A behavior can be described as a set of typical
compositions of actions, such as sequential, parallel, choice,
iteration, etc. Thus, a behavior model can be built by
composing all the elementary actions as depicted in the
following figures (Figures. 2, 3 and 4). We consider a
transition “Begin Action” in the user’s behavior model. We
associated the adequate parameter(s) to these transitions.
These parameters refer to the user’s requirements at this point
of functioning [12]. For example, at the state P2 (Figure.2), the
user has the relevant information to well perform his current
action, i.e. the Usual Glucose Rate (UGR). Once these
parameters have been identified, we can deduce the necessary
components and widgets of the user’s interface [12].

B. Case Study and Problem Identification
We proposed an application for monitoring diabetic

patients in a U-Hospital (i.e. Ubiquitous Hospital). We
describe a simple simulation of a medical intervention in a
diabetes service. In this example we show how the medical
treatment model should change to provide proper information
to paramedics, according to the patient’s glucose rate.
Monitoring the realtime evolution of patients’ state and

specifically their glucose rate (GR) is the main objective of
this ubiquitous system. Real-time monitoring of the patient
status can be achieved by using wired or wireless sensors and
actuators that periodically control the glucose rate. In the light
of those values, the system must verify and record the
evolution state of each patient. Therefore, the medical
intervention depends on patients’ recorded state. Generally,
this operation is based on a so-called “action plan”. An action
plan describes the necessary steps to treat a specific diabetic
patient’s case.

Figure 2. User’s behavior model within the user requirements (facing
conscious patient’s case)

Figure 3. Suitable model to be generated

P1
P2

P3

P4
P5

P6

If GR<= 4mmol/l

UGR

UM

P8

P7

P11

P12

P15

P13

P10 P14

P9

If GR > 4mmol/l

If GR<= 4mmol/l

WGHT

If WGHT > 20 kg If WGHT < 20 kg

QT=1
QT=1/2

P91

P81

PHN

P10
1

P1
P2

P3

P4
P5

P6

P7

P8

P9

P1
0

P1
1

P1
2

P1
3

P1
4

P1
5

P1
6

P1
7

P1
8

If GR<= 4mmol/l

UGR

UM

RT

PHN

If GR > 4mmol/l

If GR<= 4mmol/l

Pi

Tj Aj <Evj>, Cj

Pk

P1

(b)

End Action T2

Begin Action

P2

P3

T1

194Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

In this article, hypoglycemia is particularly studied. Both
two cases are considered here: the patient is either conscious
or unconscious and unable to swallow. Let us assume that, at
some point in time, the management system detects an
abnormal glucose rate of a given patient (e.g., GR<4mmol/l).
It presumes that this value indicates a hypoglycemia with a
conscious state. Consequently, the system initiates its
functioning based on the associated model (i.e. Figure. 2).
Now, suppose that at time “t” the patient lost consciousness.
At this moment, the current model is not suitable for a better
deducing of the nurse’s requirements in terms of information.
Hence, the system must generate the appropriate model
(Figure. 3) or readjust the current one (Figure. 4). The
following section describes the runtime architecture for
generating evolutionary models and where both the functional
components and the semantic representation are described.

Figure 4. User’s behavior model within the user requirements (facing

unconscious patient’s case)

III. TOWORDS DYNAMIC AND EVOLUTIONARY MODELING
FOR USER INTERFACE ADAPTATION

Our approach is specifically based on the variation of the
user’s activities according to the context. User is involved in a
variety of activities over the course of his work. These
activities can be routine activities, unexpected activities; they
can be also activities that change according to working
conditions, etc. In any case, the activity solicits specific
information in order to be accomplished. Thus, the models
should be built in proportion as runtime evolving of ubiquitous
system as well as according to available information. The
purpose of this work is to ameliorate the adaptation process
while improving these models at runtime. Hence, the model
can progress and change its structure in order to better match
the user’s requirements. In the following section we describe
in brief the functional architecture used to model the user’s
activity at realtime.

A. Functional Description of the Proposed Approach
The intended architecture, given in Figure 5 is mainly

based on the “Dynamic Model-developer” module. This is the
core architecture considered as the adaptation’s engine. It’s

responsible for assembling and providing the realtime models
of the user and then deduces his requirements.

In addition, the objectives of this module are: loading the
appropriate functional model for the given user according to
his current activity, changing models as required, interpreting
models at runtime and ameliorating models based on
adaptation strategies. These functions are accomplished with a
set of other modules. We cite the module of knowledge
storing: the “Database of user’s behavior models”. It includes
all information about the users i.e. their preferences, their
interests, their activities, and any data that characterizes users.
Its content will be increasingly enriched while memorizing
and learning the user’s interactions and behaviors, in particular
the achieved activity and the current one. Then, based on this
knowledge, the Dynamic Model-developer module loads or
synthesizes the suitable models by selecting the appropriate
one or combining others. This combination is based on the
“Control structures and rules” module. This module
encompasses rules and strategies for combining and
developing models from elementary models. The functionality
of this tool is mainly based on a method proposed by Moussa
et al. [14][15] within the context of the specification of human-
machine dialogue for interactive process control applications.

The “Meta-modeling structure” module is an abstraction of
a high level representation of the whole system, in particular
the users and their interactions. This module includes abstract
models based on formalism of Petri-nets modeling. For
example, the core architecture can generate a concrete model
of the user’s activity or change the state of the model related to
the activities. This module will be discussed with more details
in future papers.

Figure 5. Functional architecture of runtime user interface modeling

Contextual data processing

Meta-models

Models
Dynamic
Developer

Database of
user’s behavior

models

Real-time
Constructed models

Control Structures
and rules

User Interface Generator

User Interface

Current
context of

use

P1 P2

P3

P4
P5

P6

P8

P7

P11

P12

P15

P13

P10 P14

P9

If GR<= 4mmol/l

PHN

UGR

WGHT

If WGHT > 20 kg If WGHT < 20 kg

QT=1
QT=1/2

195Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

The “Current context of use” module is supposed to be the
data provider. It must perceive the users and their interaction
with the environment. It should also notify the core
architecture about any change in the entire environment, in
particular the users’ activities. This information is obtained
from the contextual data processing. This component is
responsible for processing information, making filters and
eventually deducing the context depending on its dynamic
execution.

As a conclusion, it should be apparent from our
architecture that the system could have, at runtime, a suitable
representation of the user in a particular situation. Hence, it
can deduce the suitable model or build a realtime model
according to the analysis of the user-system’s interaction and
the context of use. The dynamic models can be created while
integrating progressively a range of elementary actions.

B. Towards a Runtime and Evolutionary model Construction
Based on Interpreted Petri-nets Technology and Using
OWL-S
As already mentioned, the problem lies in the realtime

construction, or rather a composition, of the user interaction
model on the assumption that the sequence of actions cannot
be known in advance. The ultimate purpose is to find a
pertinent solution for representing a dynamic Petri-nets based
model and a dynamic composition of Petri-nets based
modeling. Taking into account that in our context
specification, the contextual information is defined by the
ontology written in OWL (Ontology Web Language); the
plausible solution expected to fulfill our requirements seems to
be the OWL-S technology [16][17]. In fact, this technology
implements the concept of services and provides a
representation of services through a process mechanism. If the
process is a non-decomposable service, then it is an atomic
process. Otherwise, it’s considered a composite service when
it includes a set of processes within some control structures.
When it deals with a service abstraction, a process is called
simple process. In this paper, our aim is to adopt this
technology to represent a Petri-nets based activity. An atomic
process is used to model the elementary action and a
composite process models a user activity. The following
section gives a brief representation of the OWL-S features and
properties. Then, with OWL-S as starting point, we give a
description of dynamic and evolutionary model’s construction
based on interpreted Petri-nets technology followed by an
illustration with a simple example.

1) The OWL-S Description Language: OWL-S is an

OWL-based web service ontology. It supplies a core set of
markup language constructs for describing web service in
computer-interpretable form [16][17]. Each service is
characterized by three main concepts: Profile, Process and
Grounding (see Figure.6).

Figure 6. Representation of the service ontology

The profile feature describes the semantic properties and
capabilities of a service. It represents a specification of what
functionality is provided by the service through a certain
number of parameters. The process represents the current
composition and gives a detailed description of a service’s
operation [17]. Finally, the grounding property provides
details on how to interoperate with a service via messages
[18]. As for functionality description, we quote some
properties such as hasInput (resp. hasOutput) property which
ranges over instances of inputs (resp. outputs) as defined in the
process ontology. Inputs are information required for the
execution of the service, whereas outputs are information that
the process returns to the requester. The hasPrecondition
property specifies one of the preconditions of the service and
ranges over a precondition instance according to the schema in
the process ontology. The preconditions are determining
factors imposed over the inputs and that must hold for the
process to be successfully invoked. The hasResult property
specifies one of the results of the service as defined by the
result class in the process ontology [16][17].

Depending on the complexity of the interaction with a
service, two classes of services can be identified: Atomic
Service and Composite Service [16]. With the former type, a
single program, sensor or device is invoked by a request
message. Then it performs its task and produces a single
response to the requester. Thus, there is no ongoing interaction
between the user and the service. Whereas the latter type is
composed of more multiple primitive services and may require
an extended interaction or conversation between the requester
and the set of services that are being utilized.

2) Modeling Services as Processes: A service model

exposes how a service works and identifies how to interact
with it [16]. Thus, the model views interaction of the service
as a process. In other words, a process is a specification of the
ways a client may interact with a service. As mentioned
previously, the atomic process is a description of an atomic
service, i.e. it involves a single interaction to be executed. It’s
directly called by passing to it the appropriate messages. It
takes an input message, does something and returns output
messages. The composite processes are decomposable into
other processes (atomic processes or composite ones). Their
decomposition can be specified by using control constructs:
Sequence, Split, Choice, Any-Order, Condition, If-Then-Else,
Iterate, Repeat-While, and Repeat-Until. Each control
construct is associated with an additional property
called components to indicate the nested control constructs
from which it is composed, and their ordering.

Service

Profile Process Grounding

196Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

A process has two sorts of purposes. First, it can generate
and return some new information based on information it is
given, as well as the world state. Such information production
is described by the inputs and outputs of the process.
Secondly, it can produce a change in the world. This transition
is described by the preconditions and effects of the process. In
fact, effects are changes in the state of the world. Moreover,
when an inCondition property is satisfied, there are properties
associated to this event that specify the corresponding output
with output property. For additional details, the reader is
invited to refer to the OWL-S documentation [16][17].

3) Interpreted Petri-nets Modeling Using OWL-S

Properties: This subsection exposes a method proposed in
order to match a Petri-nets based model to OWL-S
representation. Specifically, the key idea of the intended
method is to formulate a Petri-nets based elementary action by
using an OWL-S atomic process. And then, to formulate a
Petri-nets based activity while composing progressively a set
of elementary actions. The idea is based on the hypothesis that
the elementary action is a non-decomposable action. The
activity is composed of other elementary or other composite
actions through the use of compositions rules. These rules
dictate the order and conditional execution of the action in the
model.

a) Elementary Action Representation: Considering a

general representation of the elementary action (Ai) in an
activity (Figure.7), the place Pai expresses the input place; the
place Pci expresses the output one. Pbi represents the action’s
place. Once the transition (T1) is firing and the associated
condition (Condition i) is verified, the elementary action will
arise. Note that the place Pbi models the action’s execution.
The firing of the transition (T2) allowed moving up from the
execution state (Pbi) into the next step: the end execution state
(Pci). Thus, to characterize an elementary action the above-
cited parameters must be identified. In this situation, we
distinguish two types of parameters: those that characterize the
beginning of the action (considered as inputs) and those that
characterize the end of the action (considered as outputs).
Hence, analogously the elementary action can be represented
through the atomic service description.

Figure 7. General Elementary Action

The input parameters are necessary information for the
successful accomplishment of the action (Figure. 8). They are
mainly:

• Condition i: a passing condition that must be verified
to start the action.

• BeginAi: is the triggering of the transition, in
consequence starting the action Ai.

• Eventi: the presence of this event expresses that the
action has been executed and has come to end.

• Pai: models the state of the user before the execution of
the action (input place).

The output parameters constitute the information extracted and
generated by the action which was performed (Figure. 8):

• EndAi: indicates the end of the action Ai.
• Pci: models the state of the user after the execution of

the action (output place)
• Requirements: a set of contextual parameters that

constitute the appropriate set of informational
parameters for each transition.

Other relevant information can characterize an action such as:
• ActionName: Indicates the name of the action
• ActionGoal: Denotes what functionality will be

provided by this elementary action.
• S : situation (of the execution of the action)
• t : time (of the execution of the action)
• Pbi: The place Pbi indicates a waiting state.

Figure 8. OWL-S based representation of the elementary

actions as atomic processes

Table1summarizes a representation of the listed properties
while taking full advantage of the OWL-S atomic service
description.

TABLE 1. IPN BASED ELEMENTARY ACTION AS OWL-S ATOMIC SERVICE
DESCRIPTION

IPN based
elementary action

OWL-S atomic service description

Condition i hasPrecondition

BeginAi hasInput

Event i hasInput

Requirements hasOutput, hasResult

EndAi hasOutput

PAi hasInput

PCi hasOutput

ActionName ServiceName

ActionGoal hasLocal

S, t and Pbi serviceParameter (Local parameters)

b) Activity representation: an activity is a set of

elementary actions arranged to typical compositions as

Atomic
Process (Ai)

Condition i

BeginAi

Eventi
Requirements

Pci

Pai

EndAi

Pai

<Eventi>

 BeginAi

Condition i

Pbi

Pci

EndAi

197Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

sequential, parallel, choice, iteration, etc. [19]. Developing the
overall model of the user’s activity is based on operational
compositions of elementary actions models and on a well-
defined composition’s rules. Analogously with the elementary
action that can be specified with the atomic process, an
activity can be represented by the composite process. In fact,
we notice that it fits nicely with the composite process and a
Petri-nets based activity. This is made possible thanks to many
features of the OWL-S description, such as the control
constructs that can ensure the composition of elementary
actions. The following is an example that illustrates the
description of these action’s properties through some of OWL-
S concepts.

c) Case Study Illustration: As an example, we present

the sequential composition of elementary actions. Generally,
the sequential composition of N elementary actions is done by
merging the output places of the action i, and the input places
of the action i+1 (Figure.9). Suppose that a user’s activity
(ActivityK) is composed by the sequencing of two elementary
actions Ai and Aj. Considering the actions A1 and A2 from the
action plan [12]:

• Elementary action A1: GlucoseRateMeasure
• Elementary action A2: FirstEmergencyProceeding

A description of inputs and outputs for each of the atomic
processes is required (Figure.10&11). A1 and A2 are instances
of the elementary action process.

Figure 9. Sequential composition of elementary actions

Figure 10. Inputs and Outputs of GlucoseRateMeasure atomic process

Figure 11. Inputs and Outputs of FirstEmergencyProceeding atomic process

The expressions written in brown represent the type of the
inputs and outputs of the elementary actions. We now proceed
in describing the construction of the composite process which
consists, in general, of the created atomic processes. We
consider the whole activity that represents the composite
process. We call this activity unconsciousPatient-
InterventionActivity and the associated process unconscious-
PatientIntervention, which is a composite processes that
consists of A1, A2, ..., A5 actions. We are considering solely
the A1 and A2 processes, which are sequential processes. In
this case the control construct used is Sequence. The sequence
control construct dictates that a list of processes is done
successively. Then, a composite process must have a
composedOf property by which is indicated the control
structure of the composite, using a ControlConstruct. Then,
the data flow specification must be defined. In fact, in many
cases when a process is performed as a step in a larger process,
there must be a description of where the inputs to the
performed process come from and where the outputs go
[16][20].

As described previously, the global model of an activity is
elaborated using the different elementary actions composed
through the control constructs. For this reason, we are going in
one hand, to assemble together A1 and A2 by merging the
output place of the action A1 (i.e. Pc1) and the input place of
the action A2 (i.e. Pa2) in one place Pd1. In the other hand, the
possible parameters that must pass from their source to the
destination action must be specified. In our example, UG and
UGR are the principal parameters that must be transmitted.
The following step consists in the grounding stage. Generally
speaking, the grounding is considered as a mapping from an
abstract to a concrete specification of the service description
elements [20][21]. The Web Services Description Language
(WSDL) is used as an initial grounding mechanism for OWL-
S [20][21][22]. At this point we create an instance of
wsdlAtomicProcessGrounding for each atomic process that
was created before. In order to link the profile, process and
grounding we have to assign those instances to the appropriate
properties (see Figure.12).

In the light of these inputs and outputs parameters passing,
the system can infer the list of user requirements at each point
of functioning. Special emphasis is given in this paper for the
graphical and functional representation of an elementary
action and user’s activity. Formal description of these models,
then, the theoretical representation of the dynamic
composition rules will be given in next papers.

FirstEmergencyProceeding

BeginA2
(Transition)

Event2
(Boolean)

Pa2
(Place)

EndA2
(Transition)

Pc2
(Place)

{UM}
(List of requirements) « If GR<=4mmol/l »

(Condition)

GlucoseRateMeasure

BeginA1
(Transition)

Event1
(Boolean)

Pa1
(Place)

EndA1
(Transition)

Pc1
(Place)

{UGR, GR}
(List of requirements)

Pa

<Eventi>

 BeginAi

Condition i

Pb

Pc

EndAi

Pa

<Eventj>

 BeginAj

Condition j

Pb

Pc

EndAj

Pa

<Eventi>

 BeginAi

Condition i

Pb

Pd

EndAi

 BeginAj

Pb

Pc

EndAj

198Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Figure 12. Activity representation expressed in OWL-S

IV. CONCLUSION AND FUTURE WORK

The fundamental goal of the interface adaptation to
dynamic context of use in ubiquitous environments is to
provide the relevant information to the user at the appropriate
moment. Deducing the user’s requirements in terms of
information at runtime can arguably contribute to improve the
suppleness of the user interfaces. This paper introduced a
realtime modeling approach of the user’s interface. Petri-nets
technology was used to formulate the user’s behavior and
therefore infer the list of user’s requirements at each point of
functioning. The central goal of our work is to give an
innovative approach for a better deduction of the user’s
requirements in a ubiquitous environment. In fact, a fixed
model cannot adequately reach such objectives. To address
this problem the presented approach enhances the adaptation
process while improving models at runtime; we deal with
evolutionary and dynamic models. Such models can be created
while integrating progressively a range of elementary actions
or undergo modifications and changes as the result of
interactions with the user and through reinterpretations of
existing models stored by the acquisition of preceding
knowledge. Our approach takes advantage of OWL-S’s
properties in order to describe the dynamic functioning of
Petri-nets models. We formulate a Petri-nets based elementary
action by using an OWL-S atomic process. And then, we
progressively compose a set of elementary actions to
formulate a Petri-nets based activity. The presented method
lays a sound foundation for dynamic composition of Petri-nets
based modeling. As future work, a formal specification of the
dynamic composition rules will be studied.

REFERENCES
[1] Víctor López-Jaquero, Jean Vanderdonckt, Francisco Montero and

Pascual González. Towards an Extended Model of User Interface
Adaptation: The Isatine Framework. Computer Science, 2008, Volume
4940/2008, pp 374-392.

[2] John Krumm (2010).Ubiquitous Computing Fundamentals. Redmond,
Washington, U.S.A. 2010 by Taylor and Francis Group, LLC.ISBN 978-
1-4200-9360-5.

[3] Grzegorz Lehmann. Runtime Models for Ubiquitous User Interfaces.
W3C Workshop on Future Standards for Model-Based User Interfaces,
May 13-14th, 2010, Rome, Italy.

[4] Sina Golesorkhi. Context Aware Dynamic Adaptation and Optimization
of Web User Interfaces. Thesis's memory. November 2010. Rheinische
Friedrich-Wilhelms-Universität Bonn - Institut für Informatik III.

[5] Nezhad, Hamid Reza Motahari, Xu, Guang Yuan and Benatallah,
Boualem (2010): Protocol-aware matching of web service interfaces for
adapter development. In: Proceedings of the 2010 International
Conference on the World Wide Web 2010. pp. 731-740

[6] Víctor López-Jaquero, Jean Vanderdonckt, Francisco Montero and
Pascual González. Towards an Extended Model of User Interface
Adaptation: The Isatine Framework. Computer Science, 2008, Volume
4940/2008, pp 374-392.

[7] Myers B.A. (1995). User interface software tools. ACM Transactions on
Computer-Human Interaction, 2 (1), pp. 64-103, March.

[8] Javier Criado, Cristina Vicente-Chicote, Nicolas Padilla and Luis
Iribarne. A Model-Driven Approach to Graphical User Interface
Runtime Adaptation. 5th Workshop on Models@run.time at MODELS
2010.

[9] Jacob R.J.K. (1986). A specification language for direct-manipulation
user interfaces. ACM Transactions on Graphics, 5 (4), pp. 283-317,
October.

[10] Olsen D.R. (1983). MIKE: the Menu Interaction Kontrol Environment.
ACM Transactions on Information systems, 5 (4), pp. 318-344.

[11] Singh G. & Green M. (1991). Automating the lexical and syntactic
design of graphical user interfaces: the Uofa* UIMS. ACM Transactions
on Graphics, 10 (3), pp. 213-254, July.

[12] Ismail I. and Moussa F. « User Requirements Deduction in a Pervasive
Environment». NGMAST: IEEE International Conference on Next
Generation Mobile Application, Services and Technologies. Juillet 2010.

[13] F. Moussa, M. Riahi, C. Kolski and M. Moalla. Interpreted Petri Nets
used for Human-Machine Dialogue Specification in Process Control:
principles and application to the Ergo-Conceptor+ tool. Integrated
Computer-Aided Engineering, 9, pp. 87-98, 2002.

[14] Riahi, M., & Moussa, F., (2001). Contribution of the Petri Nets and the
multi Agent system in HCI Specification. 9th International Conference
on Human-Computer Interaction. New Orleans Fairmont. Louisiane.

[15] Moussa, F., Kolski, C., Riahi, M. A model based approach to
semiautomated user interface generation for process control interactive
applications. Interacting with Computers, 12, pp. 279-292, 2000.

[16] OWL-S: Semantic Markup for Web Services, available at:
http://www.w3.org/Submission/OWL-S/. Last update 22 November
2004. Last consultation May 2011.

[17] PHAN Quang Trung Tien. Ontologies et Web Services. Activity Report.
Institut de la Francophonie pour l'Informatique. Hanoï, juillet 2005.

[18] Web Services Description Language (WSDL) 1.1 W3C Note 15 March
2001 Latest version: http://www.w3.org/TR/wsdl Erik Christensen,
Francisco Curbera, Greg Meredith and Sanjiva Weerawarana
Heidelberg. Last consultation May 2011.

[19] N. Khelil. Man-Machine Interface modeling. Master’s memory,
University of Tunis, october, 2001.

[20] R. Akkiraju, J. Farrell, J.Miller, M. Nagarajan, M. Schmidt, A. Sheth, K.
Verma, "Web Service Semantics - WSDL-S," UGA-IBM Technical
Note, version 1.0, April 18, 2005. http://lsdis.cs.uga.edu/
projects/METEOR-S/WSDL-S. Last consultation May 2011.

[21] Nezhad, Hamid Reza Motahari, Xu, Guang Yuan and Benatallah,
Boualem (2010): Protocol-aware matching of web service interfaces for
adapter development. In: Proceedings of the 2010 International
Conference on the World Wide Web 2010. pp. 731-740

[22] Duy-Ngan Le; Van-Quoc Nguyen; Goh, A.; Matching WSDL and
OWL-S Web Services. IEEE International Conference on Semantic
Computing, 2009. ICSC '09. 14-16 Sept. 2009.Berkeley, CA.

unconsciousPatientInterventionActiv
ity

unconsciousPatientIntervent
ion_Profile

unconsciousPatientInte
rvention

unconsciousPatientInterve
ntion_Grounding

GlucoseRateMeasure

FirstEmergencyProcee
ding

Supports

DescribedBy
Presents

(has)AtomicProcessGrounding

(has) AtomicProcessGrounding

199Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

	I. Introduction
	II. Model-based User Interface Adaptation
	Realtime Modeling of the User Interface in a Ubiquitous Environment
	Case Study and Problem Identification

	III. Towords dynamic and evolutionary modeling for User Interface Adaptation
	Functional Description of the Proposed Approach
	Towards a Runtime and Evolutionary model Construction Based on Interpreted Petri-nets Technology and Using OWL-S
	1) The OWL-S Description Language: OWL-S is an OWL-based web service ontology. It supplies a core set of markup language const
	2) Modeling Services as Processes: A service model exposes how a service works and identifies how to interact with it [16]. Th
	3) Interpreted Petri-nets Modeling Using OWL-S Properties: This subsection exposes a method proposed in order to match a Petri

	IV. Conclusion and future work
	References

