
* The work was realized as a part of MAYDAY EURO 2012 project, Operational Program Innovative Economy 2007-2013, Priority 2 „Infrastructure area R&D‖.

Network

Human

Robot

DIND
DIND

DIND

Intelligent Space

Physical

service

Information

control

Non physical

service

Monitoring,

Comprehension

A New Model for context-aware applications analysis and design*

Henryk Krawczyk, Sławomir Nasiadka

Faculty of Electronics, Telecommunications and Informatics,

Gdansk University of Technology

Gdańsk, Poland

hkrawk@eti.pg.gda.pl, slawomir.nasiadka@zak.eti.pg.gda.pl

Abstract — Context-aware applications that are working in

intelligent spaces are taken into account and their properties

are analysed. Based on this, the new approach to modelling

and analysis of such applications is proposed that provides a

separation between application logic regarding adaptation (to

the environment) and its implementation. MVC and transition

state models are considered. A quantitative measure of

context-awareness level and a method of assessment of the

adaptation time of the application is proposed. The relation

between size of the context and execution time of a sample

application is determined.

Keywords – context-aware; application model; interactive.

I. INTRODUCTION

Intelligent spaces (IS) [8] are human centric
computational environments [12] where applications and
people exist together and are supported in their everyday
tasks. They are realization of M. Weiser vision who defined
a concept of ubiquitous computing [13]. According to him,
the future of computer systems is a transparent integration
with human living space. Another concept that is related to
that vision is pervasive computing [17], which means a wide
access to information with the usage of mobile devices that
adapt to the space they exist in. As the purpose of the
intelligent space is to support its users in efficient work on
their tasks, applications working within such a space are user
– centered (opposite to the classical computer – centered
applications). Their main goal evolved from delivering
functionality anytime anywhere to delivering it all the time
everywhere. Hence, according to [12] the intelligent space
can be summarized as a scalable and adaptable space
designed for human and being aware of situations taking
place within it, to which it should react. According to that
description three main functions of the intelligent space are
considered: observation, understanding and reacting [7].

The main idea of an intelligent space is presented in
Figure 1 [9]. Users of the intelligent space (human or
application) are surrounded by sensors and actuators,
commonly named DIND (Distributed Intelligent Network
Device) [6]. They can be treated as physical (for instance
camera) or logical (service) objects that interact with the
user. Thanks to them the user’s behavior can be monitored
and the space can deliver him non-physical (for instance
information) or physical services – for example moving
heavy objects. Processing data that comes from sensors

Figure 1. The idea of intelligent space and DIND – distributed networks

of intelligent devices.

allows the space to understand what is happening inside it
and react accordingly. However, both understanding and
reacting is not performed by the space directly but through
applications and DINDs. Hence, the level of its intelligence
depends on DIND objects and applications deployed within
the space.

Intelligent space, thanks to sensors, can gather data about
its users. That data is creates the intelligent space state.
Ubiquitous applications, embedded in the space, can use that
state to appropriately modify their behavior and adapt it to
new conditions that appeared within a space – becoming
context-aware [9][10]. Such applications are called CAA
(Context-Aware Applications). Process of their adaptation is
iterative and takes place every time the state of the context
changes. Hence, there is a need for a uniform model for such
applications that emphasize their adaptability to the state of
the IS. Because those applications are very often used by
people that do not have programming knowledge the model
should allow to create the applications by such users. In this
article there has been proposed such a model. There is also
presented evaluation of execution time as the function of the
size of the context for the sample application built according
to that model. The rest of this paper is organized as follows.
Section 2 presents different approaches to create and model
context-aware applications. In Section 3 and Section 4 we
introduce a new model for CAA (MVC and more formal
transition state based respectively). In Section 5 we present
some early research on the usefulness of the model based on

211Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

the evaluation of the sample CAA executed in a prototype
implementation of the execution environment.

II. RELATED WORK

There are many approaches to creating context-aware
applications and frameworks for their execution. In [18]
there has been proposed such a framework that uses three-
layer context model. Applications can use low and middle
layer to compute a context that is usable for them. In [15]
authors introduce a complete architecture for framework for
execution of context-aware applications. It uses a rich
context model (which consists of 4 main parts - user, device,
environment, service) and treats all the context data in a form
of individuals. Then the rule based engine operating on the
ontology is used to derive additional knowledge and decide
whether or not an appropriate context appeared in the
application environment. Some authors propose alternative
methods of designing applications that use context. The work
presented in [16] proposes a Model Driven Development ―to
promote reuse, adaptability and interoperability in context-
aware applications development. By concerns separation in
individual models and by transformation techniques context
can be provided, modeled and adapted independently of
business logic and platform details‖. Another example is [11]
where authors show how aspect oriented programming can
be used to introduce context-awareness. [3] discusses
differences between service oriented programming and
context oriented programming as two alternative approaches
to design, implement and maintain applications in general.
More theoretical view on context-aware applications has
been presented in [4] where authors describe such
applications using mathematic formulas and advise that
context-driven programming is the most suitable for context-
aware applications. However, neither of mentioned papers
combine formal model for context-aware applications with
their implementation and presents how that implementation
can be analyzed based on the model. That paper uses MVC
model to present context-aware applications interactive
nature as well as a graph state and automata base description
which allows to analyze several aspects of such applications.
Those aspects include execution time with regard to the
context-awareness and a level of context-awareness. A
proposed model does not focus on a particular context
representation (that allows to use it as a generic model) but
rather on a set of necessarily mechanisms and processes that
have to be implemented to be able to execute any context-
aware application.

III. MVC BASED MODEL

Context-awareness means that CAA have to adapt to
changes that are taking place in the IS. There are many
definitions of context but the most adequate has been
proposed by K. Dey in [1]. According to him the context is
any information that can be used to characterize the situation
of an entity. An entity is a person, place, or object that is
considered relevant to the interaction between a user and an
application, including the user and applications themselves.
In the following article the context, after that definition, is
understood as part of the intelligent space that is important

from the application point of view. Importance for the
application is further defined as usefulness, which means that
part of the space is somehow useful for the application
execution. The context can contain both physical (e.g. room,
user) and logical (e.g. sequential number of sensor’s read)
entities, each of which has a set of parameters describing it.

There are different users (people, machines and
applications) within the intelligent space that interact with it
(for instance, they change position of objects, switch on
devices and so on). Apart from them there are external
events occurring in the space. Those events, as well as IS
users, introduce some changes in the state of the space. A
context-aware application has to observe those changes as
they may be useful from its point of view (for its execution).
However, changes in the state of the context are usually
observed by applications indirectly, meaning that
applications rather analyze current state of the context and
based on it decide whether the adaptation action should take
place. That adaptation process is permanent, and as such can
be modeled as iterative, with the iteration step consisting of
analyzing the state of the context and performing an
adaptation action.

Let us consider a sample ubiquitous CAA, which controls
an intelligent car with embedded GPS system. The main
function of the car is always to provide a possibility to be
driven by a driver and present him instructions about how to
drive to a destination. However, depending on the driver and
the situation on the road, the car can behave differently.
Drivers prefer different methods of presentation of
instructions where to drive (some of them prefer visual
methods and some audio messages). When the car drives
into a city a system that recognizes people on the road is
enabled, and can automatically enable brakes when a person
is near in front of the car when its moving. Apart from that
all other systems that are used in the car are notified that it
drove into the city. Drivers drive more or less dynamically,
which in case of driving in the city should cause the usage of
a gas engine (instead of electric). Car drivers also have some
favorite music and a temperature level that they feel
comfortable with during driving (which is set through car air
conditioning system control), that the car should set
automatically when a particular driver is recognized.
Moreover, some of drivers are extrovert and emotional, and
because of that they may become quickly nervous because of
the situation on the road (for example traffic jam). Because
this can easily become dangerous, the car should react
playing some relaxing music. Taking into account all the
above aspects of the behavior of the car it is a typical
intelligent space (along with the road and its surroundings).
That space can have deployed a CAA that controls its
behavior by recognizing the current state of the space and
performing adaptation actions appropriately.

Adaptation actions are part of a whole application logic,
which also consists of actions independent from the state of
the context (context-unaware part of the application). Hence,
there can be distinguished two parts of the CAA: context-
aware part that includes application logic performed
according to the state of the context, and context-unaware
part. In the example the context-aware part consists of

212Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Intelligent space

state of the

context

adaptation

action’s influence

selecting an action

Adaptation action’s

execution

Context data gathering

and analysis

View Model

Controller adaptation

action's

invocation

space’s objects and

their parameters

DIND - sensors DIND - actuators

external events

changing presentation method of instructions from GPS
system, enabling a system recognizing people on the road,
switching between electric and gas engine, changing music
and temperature level and playing relaxing music. Context-
unaware part, that can be treated as application’s core
functionality, is to provide a possibility to be driven by a
driver, manually changing music and setting temperature
level. Both parts can be organized as interactive processes,
which means that any CAA works on two different kinds of
data: state of the context and user’s input data. There are two
main interactive processing flows, that are taking place in
CAA:

 users – input data – analysis – user action,

 events – state of the context – analysis – adaptation
action.

The first flow represents context-unaware part of the
applications (interaction with users as in the classical
interactive application). In the example the user is a driver,
input data is e.g., pressing an accelerator and brake pedal.
Analysis of that input data is then made and the car behaves
appropriately (e.g., turns, changes level of temperature, plays
music) – which is a user action. The second class of
processing flows regard context-aware part. In that case,
sources of the data are events occurring in the intelligent
space (indirectly, as data is read from the space by sensors).
Those events can be generated by externals to the intelligent
space (e.g., a traffic jam on the road makes the driver
nervous) or internal factors (e.g., the space user’s actions,
like the driver entering the car). Because context can be
treated as part of the intelligent space, data from those
sources create the state of the context of CAA (e.g., driver is
nervous, driver is John Smith), which is further analyzed,
and if necessary the adaptation action can take place. That
adaptation action can be executed in the same way as the
context-unaware part of an application (as for example an
interactive process), but the main difference is that it
additionally uses context data. For the sample application the
part of the adaptation process (context-aware part of the
application) can be described as follows (see Table 1):

TABLE I. CONTEXT-AWARE PART OF THE SAMPLE CAA

Event
State of the

context
Analysis

Adaptation

action

Driver John

Smiths entered

the car.

Current driver
is John

Smiths,

engine is not
started.

Engine should
be started.

Start the engine.

Engine has

started.

Current driver

is John
Smiths,

Engine is

started.

John Smiths has

his favorite
music and

temperature

level.

Start playing

John Smith’s
favorite music

and set

appropriate level
of temperature in

the air

conditioning
system.

Car’s position

changed.

Current

position of

the car is
―E30ºN30º‖,

Position of the

car has changed

and there is a
need to generate

Play new

messages about

further
directions about

Event
State of the

context
Analysis

Adaptation

action

Driver is John

Smiths.

new GPS

instructions to
the driver John

Smiths. The car

is in the city
now.

the path to the

destination. Set
the car’s location

type to the city,

and a enable
system

recognizing

people on the
road.

Driver started

to drive more

dynamically.

Current

driving style

is dynamic.
Car’s location

type is city.

More dynamic

style of driving

requires more
power, which

can be provided
by the gas

engine.

Start using the

gas engine.

Traffic jam

appeared on
the road and

the driver is

becoming
nervous.

Driver John

Smiths is
becoming

nervous.

The driver John

Smiths is less
nervous when

he listens to a

special kind of
music.

Start playing

music that
makes John

Smith less

nervous.

As can be seen, the adaptation process changes behavior of
the CAA controlling the car. Depending on the current state
of its context there are different actions performed. Hence,
the execution of the CAA corresponds to the interactive
process, and as such can be modeled using MVC model (see
Figure 2). The CAA reacts to the appearance of the particular
state of the context (modified by external events and read by
sensors), which meets so-called expected conditions of an
action invocation. When those conditions are met the
appropriate action is invoked (and further executed).
Checking whether conditions are met corresponds to the
functionality of the View from the MVC model. The effect
of the conditions met is a determination, of which action
should be invoked. Here is another analogy to the MVC as,
in that model, analysis of input data from the View is
performed by the Controller. Hence, the choice of the action
should also be performed by the Controller. The Model
represents a logic contained in the actions that are invoked

Figure 2. CAA presented using MVC model

213Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Intelligent space

Application context

Action context

Actions

a1

a2

a3

Action invocation context

by the Controller. The influence on their execution is
determined by the state of the context that comes from the
View and can be passed to actions during their invocation.
Actions can also change objects in the intelligent space
(values of their parameters), which influences the View.
Changes in the Controller cause direct changes in the View
(when expected conditions of an action invocation change).
Also, actions are very often interactive as they are
responsible for performing some change in the application
behavior, which can consist of interaction with users or
another application. Hence, for their design the MVC model
can be used as well.

The key point in the CAA is to identify which states of the
context of the application have to trigger an adaptation
action. Because changes in the state of the context also
represent changes in the state of the application (application
performs some action), the CAA can also be described using
transition state models, for which more precise definition of
context is necessary.

IV. TRANSITION STATE MODEL

For each CAA application there can be distinguished

three different types of context that have been taken into

account during its execution. They are presented in Figure 3.
The first one is an application context. According to the
definition (from the Section 3) it can be any information that
is useful from an application point of view. This means that
this context represents a part of the intelligent space that is
used by the application (processes its state or interacts with
during execution of actions). For the sample application its
context includes car’s position, location type (in the city, or
outside of the city), engine status, the driver and his
emotional state (whether he is nervous) and style of driving
(more or less dynamic). However, different actions need
different data and are invoked under different conditions.
The overall set of objects and parameters necessary to invoke
the action and pass appropriate data is called an action
context and part of it, responsible only for triggering the
action, is called an action invocation context. The action
context for the action of providing to the driver new
instructions from the GPS system is a driver (who has
preferences regarding graphical or audio presentation
method) and the position of the car. However, action
invocation context for the same action includes only the car’s

Figure 3. Different types of context in CAA

position. Those two are not the same because a change in the
position of the car should lead to presentation of new
instructions, but the information about the driver (necessary
for choosing the method of the presentation) does not play a
part in the determination of whether those instructions should
be presented. In spite of which context is currently
considered, it is always a part of the intelligent space, which
consists of some objects and parameters describing them. For
that reason the context can be formally described as a set of
objects and associated parameters:

where OK is a set of objects from the space, PK is a set of

parameters of those objects and is a function that assigns
parameters to objects. For the sample application its context,
and a context that corresponds to the action of presenting to
the driver of new instructions from the GPS system (action’s
invocation and action context) can be presented as follows
(Table 2):

TABLE II. TYPES OF CONTEXT FOR THE SAMPLE CAA

Type of

context

Application

car,

engine,

driver,

position,

has driver

entered,

location type,

status,
name,

emotional

state,
style of

driving

(car) = {position,

location type, has driver

entered},

(engine) = {status},

(driver) = {name,
emotional state, style of

driving}

Action
car,
driver

position,
name

(car) = {position},

(driver) = {name},

Action’s

invocation

car position (car) = {position}

With every type of the context there can be associated a
corresponding state: state of an application’s context, state of
an action’s context and state of an action’s invocation
context. State of the context is defined as values assigned to
parameters of objects (from context):

 SK KT WK

where KT is a context, WK is a set of values that can be
assigned to the parameters of objects belonging to the

context, and is a function that assigns a value to the

parameter of the object (WK). Example of the
state of the application context (regarding the first line from
Table 2) for the sample application is presented in Table 3.
However, not every state of an action invocation context
triggers an action. Those that trigger are called expected state
of an action invocation context. In practice it is impossible to
define all those states separately (for example describe all
possible positions of a car). For that reason we will introduce

214Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

so-called expected conditions of an action invocation (oz),
that define which conditions have to be met to trigger an

TABLE III. STATE OF THE CONTEXT FOR THE SAMPLE CAA

Type of

context
KT WK

Application

Defined
in the

Table 2

(first
line)

―E30ºN30º‖,
―city‖,

―yes‖

―started‖
―John

Smiths‖,

―nervous‖,
―dynamic‖

(car, position)
=―W30ºN30º‖,

(car, location type)

=―city‖,

(car, has driver entered)

=―yes‖,

(engine, status)
=―started‖,

(driver, name) =―John

Smiths‖,

(driver, emotional state)

= ―nervous‖,

(driver, style of driving)
= ―dynamic‖

action. They use objects and parameters from an action
invocation context. For the action, regarding presentation of
new directions from GPS system, the expected conditions of
an action invocation consist of checking whether the position
of the car has changed. Finally, the application can be
defined as a set of such conditions (oz) and associated
actions (a) that should be invoked when those conditions are
met.

CAA

where OZ is a set of expected conditions of an action

invocation, A is a set of actions and is a function that
associates actions with conditions. If conditions are empty
then actions are not context-aware, that means they are to be
executed no matter what is the state of the context. That
corresponds to the context-unaware part of the application.
Hence, the application presented in Table 1 can be described
as follows (see Table 4):

TABLE IV. DEFINITION OF THE SAMPLE CAA (CONTEXT-AWARE

PART)

Expected conditions of

an action’s invocation

(oz)

Adaptation action (a)

oz1 - Whether a driver

entered the car.

a1 - Start the engine.

oz2 - Whether the engine
has started.

a2 - Start playing driver’s favorite music

and set the appropriate level of the
temperature in the air conditioning

system.

oz3 - Whether the car’s
position has changed.

a3 – Present new instructions to the the
driver about further directions about the

path to the destination. Set car’s location

type to the city, and enable system

recognizing people on the road.

Expected conditions of

an action’s invocation

(oz)

Adaptation action (a)

oz4 - Whether the car is in

the city and the driver
started to drive more

dynamically.

a4 - Start using the gas engine.

oz5 - Whether the driver is

nervous.

a5 - Start playing music that makes the

driver less nervous.

Using the above definition of CAA it is possible to measure
its level of context-awareness which is a number of pairs: oz
– a. The more such pairs an application includes (throughout
its whole execution), the more context-aware it is. That is a
quantitative measure that allows you to compare
applications.

On the one hand, expected conditions of an action
invocation allow you to shortly describe an application
(rather than explicitly point-out all expected states of the
context), and on the other hand they group expected states of
an action invocation. By definition expected conditions are
associated with a particular action. Comparing that structure
to the classical iterative application [2] it can be seen that
they are both very similar. The classical application can be
described using some algorithm, in which every line has
some label and performs some operations on a set of objects.
Values of those objects create a state of the application in a
particular line. In the CAA lines can be interpreted as pairs
of expected conditions of an action invocation and associated
action (each line is one pair). Further, within each line (pair)
the operation is an action and objects (used by the operation)
comes from the context. Expected conditions are unique for
each line so they represent labels that identify a line. The
state of the application can then be treated as the state of the
intelligent space (part of it corresponding to the context).
That further allows one to tie the state of the space with the
state of the application. Example of a state transition graph
for the sample CAA is presented in Figure 4. Nodes
represent a set of expected state of an action invocation
context that are grouped into expected conditions of an
action invocation (oz). Each of expected conditions has
assigned an action (a). Arcs represent transitions in the state,
that can be a result of an action (bold line), external events
(dashed line) or both (bold dashed line). Thin lines represent
potential transitions. In Figure 4 there has been introduced an
additional pair oz6-a6 that represents all potential pairs from
the application definition that are not triggered during
execution of the application (their conditions have never
been met). What is typical for the CAA is that their state
transition graph is always complete, which means every
transition is possible. This is caused by external events that
can occur every time during execution of the application
(whether it performs an action or not). As a result the path
that represents the actual application execution may vary

215Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

oz1

oz5 - a5

oz2 - a2

oz3

oz4 - a4

oz6 - a6

a3

a1

ozf or ozb

ozb, cIAI := 0ozf, cIAI := 0

ε, |cIAI| ≤ tIAI

ε, |cIAI| ≤ tIAI

oz conditions’

met

change of

alphabet

invocation of action

connected with ozf

invocation of action

connected with ozb

intelligent

space

Figure 4. State transition graph for the sample CAA

between executions even when the same input data was
passed from other users of the space to the application.

The state transition graph shows that CAA is actually a
highly interactive application, whose execution consists of
steps of recognizing whether expected conditions of an
action invocation are met, and if yes, invoking (and further
executing) an action. As such, CAA have to be real-time
applications concerning the time of reaction on a change in
the state of the context. Hence, CAA can be modeled using
automata presented in Figure 5, which is based on the timed
automata (TA) [14]. The CAA invoke an adaptation action
when the current state of application context meets expected
conditions of an action invocation (oz). For the automata that
actually means infinite input alphabet because during
application execution the new expected conditions can be
added (e.g., by the user). To be able to use an approach based
on the TA it is necessary to use transformation of input
alphabet (known from data automata). That transformation is
performed by a transducer, which associates with every
symbol from infinite alphabet a symbol from a finite
alphabet. That approach can be used because for CAA
(regarding adaptation process), the exact state of the context
or expected conditions are not important. The only important
information is whether any expected conditions has been met
(and associated action should be invoked). Function

 represents a transducer behavior that changes

Figure 5. Automata describing CAA

expected conditions of an action invocation (oz) to a symbol

from a finite set ={ozb, ozf}. For each oz that equals the
end conditions of the application the symbol ozf is assigned
and for all other conditions the symbol ozb is used. When the
latter symbol appears on the input of the TA based automata
it moves into the state of action invocation. During that
transition the clock c is reset (its value is set to 0). That clock
is used to ensure that invocation of an action is done in real-
time, which is represented by a condition |c| < t. The t is the
amount of time, before which the automata has to move into
the state of waiting for another symbol on the input (the
transition has to be made without reading a symbol from the
input). At the same time, when the action is invoked the
automata has to be ready to read further symbols from the
input. That is why it concurrently moves to the state of
reading the symbols along with moving to the invocation
state. In the case of the ozf symbol the automata behaves
similarly, however, after the action has been invoked the
automata moves to the final state.

We have assumed that the transducer works on the already
recognized expected conditions. That is because the
automata models the application that consists of conditions
and actions. Recognition of whether conditions have been
met has to be done by the CAA execution environment.
Similarly, the automata models only action invocation (not
its execution). However, this is enough to assess the whole
adaptation time of the application. Its upper boundary is a
sum throughout all the pairs from application definition of
recognition time whether expected condition of an action
invocation has been met, t and time of execution of an
action. That expresses the time of adaptation in the worst
case – where all the pairs are executed sequentially.
Computed value of adaptation time can change during
application execution, because the application can change its
definition by introducing new or deleting old pairs (e.g. as a
result of one of its actions).

V. EVALUATION RESULTS

One of the interesting characteristics of the CAA

applications is how the size of the context impacts their

execution time. Size of the context can be expressed by a

number of parameters of objects that have been used in the

expected conditions of an action’s invocation (for example

oz1 uses one parameters, but oz4 uses two parameters). For

the sample application the total number of all parameters

used in all conditions (size of the context) is 7. Execution

time is computed as a sum of processing times of gathering

context data delivered by sensors, checking whether state of

the context meets expected conditions from the application

definition, and choosing an action. Time of an action

invocation and execution has not been measured as actions

are often external to the application (for example delivered

by external suppliers). To be able to perform necessary

measurement the CAA execution environment has been

created. For processing state of the context there was used

an engine described in [5]. The research has been made for

different values of context size ranging from 10 to 200 with

steps of 10, and all of them have been set at one time

216Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Figure 6. Execution time of the sample CAA

(appropriately to meet expected conditions). To be able to

perform measurement for those sizes we have assumed that

the emotional state of the driver (indicating whether he is

nervous) is described using a set of objects (each of which

contains a single parameter). To achieve repeatable results

the CAA application has been constructed as a single pair

(based on oz5-a5) in such a way that only a full context state

(appropriate values of all parameters from all objects)

triggered the adaptation action. The results are presented in

Figure 6. As can be seen, the execution time is increasing

(almost linearly) along with the increasing size of the

context. Thanks to that, the processing time of the

application can be easily estimated based only on its

definition.

VI. CONCLUSION AND FUTURE WORK

The proposed model for CAA shows that this kind of

applications are highly interactive and allows one to

separate the application logic concerning adaptation to the

current state of the application context, from an application

implementation. Thanks to this, the model systematizes and

supports a way of design and the implementation process of

such applications. The definition of the CAA can be made

by users that do not have programming knowledge. They

only have to express rules about how the application should

react to changes in the IS – define expected conditions and

actions, for which some natural language processing can be

used. Based on the model we have introduced a quantitative

measure of context-awareness level for the CAA

applications and present a method of assessing application

adaptation time.
Future work will be focused on introducing reliability

and quality mechanisms into the implemented execution
environment. Some applications may have to be executed
within a specified (by the user) time. As the adaptation time
of the CAA can be assessed before its execution, the
environment can choose appropriate trusted services (for
both context state analysis and action execution).

REFERENCES

[1] Anind K. Dey and Gregory D. Abowd, ―Towards a better
understanding of context and context- Intelligent Space, Its Past and
Future awareness‖, Technical Report GIT-GVU-99-22, Georgia
Institute of Technology, College of Computing, 1999.

[2] Antoni Mazurkiewicz, ―Problems of information processing‖ , WNT,
Poland, 1974.

[3] Hen-I Yang, Erwin Jansen, and Sumi Helal, ―A Comparison of Two
Programming Models for Pervasive Computing‖, International
Symposium on Applications and the Internet Workshops, 2006.
SAINT Workshops, 2006, doi: 10.1109/SAINT-W.2006.1.

[4] Hen-I Yang, Jeffrey King, Abdelsalam (Sumi) Helal, and Erwin
Jansen, ―A Context-Driven Programming Model for Pervasive
Spaces‖, Pervasive Computing for Quality of Life Enhancement
Lecture Notes in Computer Science, 2007, pp. 31-43 vol. 4541/2007,
doi: 10.1007/978-3-540-73035-4_4.

[5] Henryk Krawczyk and Sławomir Nasiadka, „A method for context
determination for event driven applications‖, Metody Informatyki
Stosowanej, PAN, Szczecin, Poland, 2008.

[6] Hideki Hashimoto, ―Intelligent space - how to make spaces intelligent
by using DIND?‖, IEEE International Conference on Systems, Man
and Cybernetics, pp. 14-19, 2003, doi:
10.1109/ICSMC.2002.1167940.

[7] Joo-Ho Lee and Hideki Hashimoto, ―Intelligent space,‖ Proc.
IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 1358-1363 vol. 2, 2000, doi:
10.1109/IROS.2000.893210.

[8] Joo-Ho Lee and Hideki Hashimoto, ―Intelligent Space, Its Past and
Future‖, The 25th Annual Conference of the IEEE Industrial
Electronics Society, pp. 126-131 vol. 1, San Jose, CA, USA, 1999,
pp. 126–131.

[9] Kouhei Kawaji, Mihoko Niitsuma, Akio Kosaka, and Hideki
Hashimoto, ―Acquisition of objects' properties in Intelligent Space‖,
SICE, 2007 Annual Conference, pp. 259-263, 2008, doi:
10.1109/SICE.2007.4420987.

[10] Matthias Baldauf and Schahram Dustdar, ―A Survey on Context-
aware systems‖, International Journal of Ad Hoc and Ubiquitous
Computing, pp. 263-277 vol. 2 no. 4, 2004.

[11] Lidia Fuentes and Nadia Gámez, ―Modeling the Context-Awareness
Service in an Aspect-Oriented Middleware for AmI‖, Advances in
Soft Computing, pp. 159-167 vol. 51/2009, 2009, doi: 10.1007/978-3-
540-85867-6_19.

[12] Mohan M. Trivedi, Kohsia S. Huang, and Ivana Mikic, ―Dynamic
context capture and distributed video arrays for intelligent spaces‖,
IEEE Transactions on Systems, Man and Cybernetics, Part A:
Systems and Humans, pp. 145-163 vol. 35 Issue 1, 2005, doi:
10.1109/TSMCA.2004.838480.

[13] Päivi Kallio and Juhani Latvakoski, ―Challenges and requirements of
ubiquitous computing‖, WSEAS Transactions on Information Science
and Applications, pp. 234-239 vol. 1 Issue 1, 2004.

[14] Rajeev Alur and David L. Dill, ―A theory of timed automata‖, Journal
Theoretical Computer Science, pp. 183-235 vol. 126 Issue 2, Elsevier
Science Publishers Ltd. Essex, UK, 1994.

[15] Ramón Hervás and José Bravo, ―COIVA: context-aware and
ontology-powered information visualization architecture‖,
Software—Practice & Experience, pp. 403-426 vol. 41 Issue 4, 2011,
doi: 10.1002/spe.1011.

[16] Samyr Vale and Slimane Hammoudi, ―Context-aware Model Driven
Development by Parameterized Transformation‖, Architecture, pp.1-
10, 2008.

[17] Stan Kurkovsky, ―Pervasive computing: Past, Present and Future‖,
ITI 5th International Conference on Information and Communications
Technology, pp.65-71, 2008, doi: 10.1109/ITICT.2007.4475619.

[18] Thomas Pederson, Carmelo Ardito, Paolo Bottoni, and Maria F.
Costabile, ―A General-Purpose Context Modeling Architecture for
Adaptive Mobile Services‖, ER '08 Proceedings of the ER 2008
Workshops on Advances in Conceptual Modeling: Challenges and
Opportunities, pp. 208-217, 2008, doi: 10.1007/978-3-540-87991-
6_26.

217Copyright (c) IARIA, 2011. ISBN: 978-1-61208-171-7

UBICOMM 2011 : The Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

