UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Single-Handed Typing with Minimal Eye Commitment: A Text-Entry Study

Adrian Tarniceriu, Pierre Dillenbourg, Bixio Rimoldi
School of Computer and Communication Sciences
Ecole Polytechnique Federale de Lausanne
Lausanne, Switzerland
adrian.tarniceriu @epfl.ch, pierre.dillenbourg@epfl.ch, bixio.rimoldi@epfl.ch

Abstract—For most people, typing text on a mobile device
requires visual commitment to the input mechanism. As a
consequence, there are many situations in our daily life when
we have to refrain from using these devices as our vision is
already committed. An example is trying to text while walking
in a crowded place. Chording devices allow us to type without
looking at the input device but using them requires some
training. We present the results of a study that evaluates
the performance of a key-to-character mapping for a 5-key
chording device. The mapping is designed to minimize the
learning phase. After 45 minutes of training it was completely
learned, and after approximately 250 minutes the average entry
speed was 15.2 words per minute. A prototype that implements
this mapping was mounted on a bike and tested by the authors
who could comfortably ride and type while being focused on
the road.

Keywords-chording keyboard; text entry; key mapping; mobile
device

I. INTRODUCTION

Mobile computing devices such as smart phones or per-
sonal digital assistants play an ever increasing role in our
daily lives. More and more people appreciate their services
and want to have access to them at all times, but their input
methods are not suitable during activities for which vision
is partially or entirely required. For example, in a crowded
place most people need to stop walking in order to text via
today’s keypads or touchscreen keyboards.

Chording is a text-input method that utilizes a small
number of keys. A character is formed by pressing a key
combination, similarly to playing a chord on a musical
instrument. With five keys, one for each finger, we have 31
different combinations in which at least one key is pressed.
This is enough for the 26 letters of the English alphabet
and five punctuation signs. If we can keep our fingers on
the keys, then we can type with one hand and without
looking at the keys. Our vision (or auditive feedback) is still
needed occasionally to verify the output, but this requires
considerably less commitment than continuously looking at
the input device. Visual commitment can be further reduced
by displaying the output in the natural field of vision, for
instance on a windshield or on goggles.

The likely reason chording devices are not popular is
that users require some training before being able to type.
Compared to a QWERTY keyboard, where users can hunt

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-236-3

and peck from the beginning, the mapping between keys
and characters has to be learned for chording devices. The
overhead needed to do so depends on the keyboard type and
mapping and can vary by several hours. The main objective
of this paper is to present the results of a study on a mapping
designed to facilitate the learning task.

The paper is organized as follows. In Section II, we
present a brief overview of related work. In Section III,
we describe a key-to-character mapping for a 5-key key-
board designed to reduce the learning time. We denote this
mapping in the following as Skeys. In Sections IV and V,
we present two experiments that evaluate the learnability,
text-entry rates, typing accuracy and common error patterns.
In Section VI, we conclude the paper and discuss future
directions.

II. RELATED WORK

The first chording applications were used in stenotype ma-
chines (1830’s), telegraph communications, and the Braille
system that allows blind people to read and write.

Subsequent studies were performed by IBM [1], but
the results were considered inconclusive and research was
stopped in 1978. Douglas Engelbart, the inventor of the
computer mouse also proposed a 5-key keyset, but this was
not incorporated in any system [2], probably due to the
popularity of the standard QWERTY keyboard.

As mobile devices and wearable technologies evolve,
classic keyboards are no longer able to fulfill users’ needs for
mobility and ubiquitous access to computational resources.
Therefore, chording keyboards have re-emerged as a popular
research topic, leading to the appearance of several devices,
like DataEgg [3], GKOS [4], Twiddler [5], EkaPad [6]
and the chording glove [7]. Depending on the envisaged
application, these keyboards can have different number of
keys, mappings or shapes, each of these being a research
topic. In the following, we will focus on a 5-key keyboard
and a mapping designed to minimize the learning process.

III. CHARACTER MAPPING

An important aspect of designing a chording keyboard
is the mapping between key combinations and desired
characters. One possibility is to assign easier combinations
for more frequent letters, as in the Morse code, leading

117

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

to higher typing speeds. Even if these mappings are easy

to determine, the user must learn by heart the key-to-letter

correspondence as there is no intuitive link between them.

Another possibility is to use a semantically richer mapping,

which would be easier to learn.

The key-to-character mapping studied in this work was
designed with the primary goal of making it easy to re-
member. It was designed for a 5-key keyboard, where each
character is represented by a different key combination. In
this paper we will focus only on lowercase letters plus the
period, space and backspace, as they are the most used;
also because most typing studies consider only this set of
characters.

To create enough possibilities for assigning an intu-
itive key combination to each character, we conceived five
mnemonic categories.

1) Single-key category: remembering the map for the
characters in this category should be totally trivial.
Characters are produced by pressing a single finger
and the letter is the initial of the finger. So by pressing
the key under thumb, index, ring and pinky, we
obtain r’, and “p”, respectively. There is an

exception to the rule: since “m” fits well in another

category (see below), we have reserved the middle
finger for the period.

2) Fingers-down category: the most natural way to pro-
duce the shape of an “m” with the hand is to stretch
down the index, middle, and ring fingers (see Figure
1b). In a similar fashion we can produce the other
letters in this category, namely “n”, “u”, “y”, and “c”.

3) Fingers-up category: similarly, a natural way to pro-
duce the shape of a “w” is to stretch up the index,
middle, and ring fingers (Figure 1c). The associated
character is obtained by pressing the key(s) under the
remaining fingers. “v”, “1”, “e”, and “j”, follow the
same idea. We have included space and backspace in
this category as backspace can be associated with the
thumb pointing to the left and space with the pinky
pointing to the right.

4) Finger footprint category: usually, a character is pro-
duced faster with a 5-key device if the users first
think of the fingers pressing the keys and not of the
fingers that remain “up”. Considering this, for “h” we
can identify three landmark spots on the shape of the
letter and associate them to fingers according to the
following rule: the thumb is for spots that are left and
low, the index for left high, the ring for right high, and
the pinky for right low. The resulting mapping is given
in Figure 1d. With a little bit of imagination in this
category we can also fit “a”, “f”, “k”, “0”, “s”, “x”,
and “z”. For “0”, we imagine five dots spread around
a circle, and we obtain it by pressing all buttons.

5) Associative category: the letters “b” and “d” may be
seen as an “0” with a vertical bar on the left and right,

“t” (T332 T3
E

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-236-3

(a) (b) () (d)

Figure 1. Examples for letter mappings. (a) Single-key mnemonics for
“t”and “i”. (b) Fingers-down mnemonics for “m” and “y”. (c) Fingers-up
mnemonics for “w” and “backspace”. (d) Finger footprint mnemonics for

Prc

“h” and “0”. (e) Associative mnemonics for “b” and “g

respectively. We use the index and the ring fingers to
represent these bars. “g” was inspired from “y” (they
look alike in handwriting) and in turn “g”
(the tail ends left and right respectively, so for

use the thumb and for “q” the pinky).

inspires “q”
(=i

g’ we

Two examples from each category are given in Figure 1.

Some of the above mnemonics are easier to remember
than others. With five keys, however, there are only 31 usable
combinations and we use them all to map the 26 characters
plus the space, backspace, period, enter and comma. Hence
any change aimed at improving one mnemonic implies at
least one other change.

The effectiveness of the proposed mapping is assessed
through two experiments described in the next sections. The
first compares this mapping to two others from a learnability
point of view, or, in other words, how easy users can
remember the key-to-character correspondences. The second
experiment estimates the usability of the mapping (typing
speed, accuracy [8] and most common mistakes).

IV. LEARNABILITY STUDY
A. Experimental Setup

This first experiment compares, from a learnability point
of view, the proposed mapping (5keys) to two others. The
references are the Microwriter mapping [9], also based on
intuitive mnemonics, and the Baudot code [10] that is based
on letter frequency and assigns easier key combinations to
most common characters. All three mappings are designed
for 5-key keyboards.

A Java application was designed to simulate the chording
keyboard on a regular QWERTY desktop keyboard. It only
allows the use of five keys, each representing a key of the
chording keyboard. Each of these keys correspond to a finger
of the right hand. A typical choice was the spacebar for the
thumb, and the keys for f, t, y and u for the index, middle
finger, ring and pinky, respectively.

The experiment consisted of three sessions of three rounds
each. For each round, the subjects had 5 minutes to look

118

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

[.YeXe)
Practice

mno

Next

m|

Next character is: n 4

Figure 2. Typing application screenshot

at a printed version of the mappings and try to remember
them. Afterwards, they used the Java application to warm
up by typing each letter of the alphabet. A help image
showing the key combination for the letter to be typed was
shown to the participants. A screenshot of the application is
visible in Figure 2. The top-left window contains the target
characters to be typed. The bottom-left window represents
the typing area and the help image is displayed on the
right. In the next step, the help image was not available
any more and the participants had to type the alphabet three
times. The order of the letters was random, but the same
for all participants. The subjects had five seconds and only
one attempt to type each target character. The correct key
combination was displayed when the user typed a character
(right or wrong) or when the five seconds expired.

30 participants, 10 for each of the three mappings, were
recruited from the students of our university (undergraduate,
master and PhD programs). They were between 19 and
30 years old, and four were female. For each session of
the experiment (approximately 30 minutes) they received
a fixed monetary compensation. None of the subjects had
used a chording keyboard before. As the participants who
know how to play a musical instrument could have had an
advantage, they were equally distributed among the three
experiment groups. We also tried to equally distribute them
based on gender and study level. Two participants abandoned
the experiment after the first session, one testing the Skeys
and one the Microwriter mapping.

B. Experiment Results

To determine which of the mappings is easier to learn we
compared the number of errors (wrongly typed or not typed
characters) for each round. Exponential regressions [11]
were derived to fit these error values. The average values
for each mapping and for each round and the exponential
regressions are presented in Figure 3a.

After two sessions (six rounds of approximately five
minutes of typing each), the total number of errors was
considerably lower for the mnemonic based mappings (Skeys
and Microwriter) compared to the mapping based on letter
frequency. Therefore, we conclude that mnemonic based
mappings are learned faster. The goal of the study was to
evaluate which mapping is easier to learn and the Baudot

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-236-3

total errors

-

Skeys b
v o Microwriter
¢ Baudot .t
Skeys reg
- = = Microwriter reg
30 N - = Baudot reg

Skeys
Microwriter
Baudot
Skeys reg

@

- - - Microwriter reg
Sel - - Baudot reg

total errors
s

Figure 3. (a) Average number of errors (for each mapping and for each
round) and regression curves. (b) Average number of character errors (for
each mapping and for each round) and regression curves

mapping is clearly more difficult. Hence, in the third session
we only analyzed the Skeys and Microwriter mappings. By
checking only the average values, no significant difference
between these two was noticed. An advantage of 5keys can
be observed from the analysis of the regression curves as the
curve for Skeys is slightly below the curve for Microwriter.

Besides the total number of errors, we also compared the
number of wrong characters per round. For example, if “a”
was typed incorrectly two times, this counts only as one
character error. The results are shown in Figure 3b. In this
case the difference between Skeys and Microwriter mappings
is more visible and, as expected, both lead to considerably
less errors than the Baudot mapping.

At the end of the third typing session (after nine rounds or
approximately 45 minutes of actual typing), the participants
were asked how confident they feel about their knowledge of
the mappings and if they could use the presented method as
a text input mechanism. All of them answered affirmatively
and most also mentioned that they completely learned the
mappings. This is confirmed by a low error rate (3.16%
after 6 rounds and 2.14% after 9 rounds for the proposed
mapping).

From this experiment, we draw the conclusion that a
mnemonic-based mapping facilitates the process of learning
the code. We also conclude that the proposed Skeys map-
ping outperforms the Microwriter mapping, also mnemonic-
based, in terms of average error rate.

The mnemonic set was designed based on the finger
positions of the right hand. Two of the participants (one for
the Skeys and one for the Microwriter) were left-handed. Yet
they also typed with their right hand and, interestingly, their
error rates were actually lower than the average.

V. USABILITY STUDY

The first experiment, aimed at evaluating the learning pro-
cess, was followed by an independent experiment aimed at
determining achievable typing rates, accuracy, and common
error patterns for the Skeys mapping.

119

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

A. Experimental Setup

The second experiment was based on a similar Java
application. This time, the subjects were asked to type full
sentences, not just isolated letters. The experiment consisted
of 11 sessions. For each of them, the subjects started by
typing each letter from each category and continued with real
sentences chosen from a set considered representative for the
English language [12]. The first four sessions, of 25 minutes
each, were for the participants to learn the mapping and
to familiarize themselves with the keyboard. During these
sessions the help image was always displayed. During the
following sessions (5 to 10), each lasting 20 minutes, the
help image was no longer available. Session 11 was similar,
but only lasted for 10 minutes. For the first 10 sessions, the
participants received a fixed monetary compensation. As an
incentive, for the last one the reward was proportional to the
subject’s performance, measured by the number of correctly
typed words. We recruited a new set of six students for this
study. The number of participants is lower than for the first
experiment due to the significant time commitment required.

In order to monitor the evolution of the experiment
and to gather statistics about the subjects’ activities and
performances, for each session and for each participant the
application generated several log files. These files recorded
the typed text, the number of occurrences for each character,
the corresponding key combination, the total number of
errors, the number of corrected errors and the total time
spent writing each character. When a typing error occurred,
we checked what character was typed in lieu of the correct
one.

B. Text-Entry Speed

We used the wpm (words-per-minute) measure to describe
the text entry speed. This is defined as
ey

wpm = —— —
P t 5

where L is the total number of typed characters and ¢t is
the typing time in seconds. The scaling factor of 1/5 is
based on the fact that the average English word length is
approximately 5 characters. As the average word length for
the typed text differed from one session to another, the use
of the above formula provides a more reliable estimate than
actually counting the words.

The average entry rate for the first session was 4.2 wpm
and reached 15.2 by the end of the experiment (after approx-
imately 250 minutes of typing). Even though these values
were obtained using five keys from a classic keyboard, they
do give an estimate of what can be achieved using a real
implementation of the device (the shape of the hand when
the fingers are placed on the buttons is almost the same for a
flat surface, bike handlebar, or around a mobile phone case).

Figure 4 presents the entry rates (for each subject, average
and exponential regression) for each session. We observe

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-236-3

»—\
®

o +
o »
[

average
g | = = —regression

session

Figure 4. Typing rates per session for each user, average and regression

that the typing rates significantly improved from the 10th to
the 11th session. This could be explained by the fact that
for the last session the subjects were stimulated by a reward
proportional to the number of correctly typed words.

As a reference, the typing rates achieved after 250 minutes
of practice are 12.4 wpm for multi-tap mobile phones [13]
and 20.6 wpm for Twiddler [5]. Rates of 20.36 wpm were
reached by expert T9 users [14]. We should point out that the
experimental conditions were not the same for all devices.
Hence, the above typing rates are only of indicative nature.
For both multi-tap and T9 techniques visual attention is
essential for most users. For the Skeys device it makes
essentially no difference if the user has visual contact with
the keys or not. It should also be taken into consideration that
Twiddler uses 12 keys, whereas our mapping only requires
5 keys, thus providing a clear space advantage and more
design flexibility. If placed in a position which is naturally
under the fingertips (for example on the handlebar of a bike),
the users will have continuous access to the keys.

C. Error Analysis

Starting with session 5 (when the help image was no
longer displayed) we evaluated the accuracy based on the
corrected and uncorrected errors. The error percentages are
defined as

back
corrected% = Ml 0, 2)

F#characters

F#incorrect_characters

uncorrected% =

4characters 100.)
The errors could have two main causes: the subject does
not recall the correct key combination or, alternatively,
a coordination mistake is produced during execution. We
call these error types cognitive and sensorimotor errors,
respectively. We expect the cognitive errors to decrease
faster, as a function of training, because it is easier to learn
the code than to improve motor skills. This is confirmed by
the statements of the participants in both experiments: they
said that they had learned the mapping by the end of the
training, and errors were due to lack of attention or finger
combinations that seemed difficult.

120

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Table I
ERROR RATES PER SESSION

Session number 5 6 7 8 9 10
Corrected errors % |8.04|6.07|7.35|7.51(7.59]6.21
Uncorrected errors % | 0.520.47(0.19{0.36]0.21 | 0.22

20| I uncorrected
[—Jcorrected
I letter frequency

error percentage

3]

b G

abcdefghijkImnopgrstuvwxy zsp
letter

Figure 5. Error rates per character

Table I presents the error rates for sessions 5 to 10. For
session 10 the uncorrected error rate is 0.2% as the subjects
tended to correct most errors. The low uncorrected-error
rate shows that the mapping was learned already by the
end of session 4, as expected given the results of the first
experiment.

Figure 5 presents the percentage of corrected and un-
corrected errors per character for all users for the whole
experiment. The figure also shows the scaled occurrence
ratio for each character. Error rates are higher for less
frequent letters (for example “j” and “q”), probably because
the subjects had fewer opportunities to practice on them.
Non-negligible error rates can also be observed for high-
frequency characters, as users probably try to type faster as
they gain more experience.

As in Section V-B, we compare the uncorrected error rates
with those for multi-tap (5%) and Twiddler (3%) after 250
minutes of practice, and also with expert T9 users (0.52%).
Even if the T9 entry method and Twiddler allow for higher
typing rates, the error rates are also higher (by one order
of magnitude for Twiddler). Again, these values are only
indicative, due to different experimental conditions.

We also determined the dependency of the average error
rate on the character category and on the number of keys
that need to be pressed to compose a character. We observed
that the error rates increase for characters that involve a
larger number of keys, but the differences are not statistically
significant (anova test p-values higher than 0.05). Letters
from the single-key category have the lowest error rates and
those from the associative category have the highest, but
again, these results are not statistically significant.

D. Common Errors

To understand the error patterns that appear most fre-
quently, we computed the confusion matrix [15] correspond-

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-236-3

ing to the typed text. This is a square matrix with rows and
columns labeled with all possible characters. The value at
position ij shows the frequency of character j being typed
when i was intended. The values are given as percentages
from the total number of occurrences for character i.

It is useful to represent a key combination by a 5-bit
codeword in which the first digit represents the key under
the thumb, the second digit the key under the index, etc. The
value of a position is 1 if the corresponding key is pressed.
So, for instance, 11011 is the codeword for “x”, for which all
fingers except the middle one press the keys. By analyzing
the 5-bit code for the 10 most common substitutions, we
notice that in 9 of the 10 cases the errors appear between
characters that differ only by one bit (for example “x”, code
11011 and “h”, code 11001). In the other case, two single-
key characters are substituted (“t” and “i”).

If we check word by word and consider only substitution
errors, i.e., errors that arise from substituting individual char-
acters, 84% of the erroneous words contain one substitution,
13% contain two substitutions and 2% three substitutions.
From a bit-error point of view, 51% of the erroneous words
contain a one-bit error, 33% a two-bit error and 14% a three-
bit error. One-bit errors occur when the user does not press
one of the required keys (31% of the total errors) or presses
an extra key (20% of the total errors). Most two-bit errors
are substitutions, when a wrong key is pressed and a correct
key not pressed. These values can be used to implement an
error correcting mechanism that relies both on a dictionary
and on the probability that a character be substituted for
another.

E. Character Typing Duration

As the coordination effort is not the same for all key
combinations, we expect that different characters require
more time than others to be typed. Figure 6 shows the
average time per key combination for sessions 5 and 10. The
time needed to form a key combination, called composition
time, is measured from the moment the first key of a
combination is pressed until a key is released. It is when
a key of the combination is released that the corresponding
character is produced. From that moment on, the pressing
of a key indicates the start of a new character. Instead of
ordering the letters alphabetically, in Figure 6 we order them
in increasing number of pressed keys (single-key letters are
first and “o0”, for which all keys are pressed, is last). The
letters containing the same number of keys are ordered in
ascending composition time for session 10.

As expected, the composition time increases with the
number of pressed keys, the dependence being statistically
significant (anova test p-values lower than 0.05). We also
notice that letters requiring key combinations perceived as
more difficult (for example “q”, code 01101 or “d”, code
11101 for which the middle finger and the pinky are down
while the ring finger is up) require more time than others.

121

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

500

[_Isession5
I scssion10| 7

400

w
=3
=]

time [ms]

n
=3
=)

jll

rtipnfaweuzcymlgkhjvsqgspxbdo
letter

o

Figure 6. Average composition time per character for sessions 5 and 10

As subjects gained more experience, they were able to
type faster and the average letter duration decreased from
273.9 milliseconds in session 5 to 234.5 in session 10, or by
14%. During the same period, text entry rates increased from
8.6 to 12.2 wpm, or by 41%. The difference is explained by
the fact that the idle time between the end of one character
and the beginning of the next also decreased.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented the results of a study
evaluating the mapping for a chording input device. The
overhead needed to learn the mapping was reduced by
choosing easy-to-remember key combinations. A first ex-
periment showed that the mapping was learned after less
than 45 minutes of actual typing. Moreover, the total num-
ber of errors was considerably smaller than for a letter-
frequency based mapping and slightly smaller than for
another mnemonic based mapping.

A second experiment showed that after approximately 250
minutes of typing, the average text entry rate was 15.2 wpm
and the uncorrected error rate 0.2%. We also analyzed which
characters are perceived as more difficult to type and the
most common errors. This data will be used to develop
an error correction mechanism specifically designed for a
chording keyboard using the proposed mapping. It will take
into account a language model, as well as the probability
that one character is typed for another.

During the experiments, the subjects sat at a desk. To go
one step further, we designed, built and tested a prototype for
a bike. We easily fit the five keys under the natural position
of the fingers on the handlebar. Two of the authors tested
the device and found that they could effortlessly ride and
type while staying focused on the road. The position of
the keys allowed them to control the bike with both hands
while typing. Moreover, as the keys were directly under the
fingers, they could also type accurately on a bumpy road.
Though encouraging, these results are exploratory and a
more accurate study should be performed.

There are numerous potential applications for a 5-key
input device. For instance, with the buttons around a phone

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-236-3

one can input a text message while walking (a stop to proof-
read before sending should suffice). By means of a wrapper
application that captures the text, a user can control the
operation of a smartphone: in the test on the bike, the authors
could control the music, write a short note, interact with the
map, etc. We can easily envision the potential benefit of a
5-key input device on the handlebar of a shopping cart. It
could be used to browse or edit a shopping list on a PDA
placed in the middle of the handlebar or to interact with the
store’s web site to check the availability and the location of
an item. Another interesting application could be to have the
keys on the side of a TV remote control. Although modern
TV sets allow for Internet navigation, typing a URL and
doing searches with a standard remote control can still be
quite clumsy.

REFERENCES

[1] E C. Bequaert and N. Rochester , “Teaching typing on a
chord keyboard,” tech. rep., IBM Technical Report, 1977.

[2] D.C. Engelbart, “Design considerations for knowledge work-
shop terminals,” in Proceedings of the June 4-8, 1973,
national computer conference and exposition, AFIPS °73,
pp. 221-227, ACM, 1973.

[3] http://www.xaphoon.com/dataegg/, July, 2012.

[4] http://gkos.com/, July, 2012.

[5] K. Lyons, T. Starner, D. Plaisted, J. Fusia, A. Lyons, A. Drew,
and E. W. Looney, “Twiddler typing: one-handed chording
text entry for mobile phones,” in Proceedings of the SIGCHI
conference on Human factors in computing systems, CHI *04,
(Vienna, Austria), pp. 671-678, ACM, 2004.

[6] http://www.ekatetra.com/products/ekapad.html, July, 2012.

[71 R. Rosenberg and M. Slater, “The chording glove: a glove-
based text input device,” IEEE Trans Syst, Man and Cyber-
netics, Part C: Applic and Rev, pp. 186-191, 1999.

[8] R. W. Soukoreff, “Text entry for mobile systems: Models,
measures, and analyses for text entry research,” Master’s
thesis, York University, 2002.

[9] http://www.ericlindsay.com/palmtop/mwrite.htm, July, 2012.
[10] A. Ralston and E. D. Reilly, eds., Encyclopedia of computer
science (3rd ed.). Van Nostrand Reinhold Co., 1993.

W. K. Estes, “A statistical theory of learning,” Psychological
Review, vol 57, pp. 94-107, 1950.

I. S. Mackenzie and nd R. W. Soukoreff, “Phrase sets for
evaluating text entry techniques,” in Extended Abstracts of the
ACM Conference on Human Factors in Computing Systems
CHI ’03, (Fort Lauderdale, Florida, United States), pp. 766—
767, ACM, 2003.

I. S. MacKenzie, H. Kober, D. Smith, T. Jones, and E. Skep-
ner, “Letterwise: prefix-based disambiguation for mobile text
input,” in Proceedings of the 14th annual ACM symposium on
User interface software and technology, UIST *01, (Orlando,
Florida, United States), pp. 111-120, ACM, 2001.

C. L. James and K. M. Reischel, “Text input for mobile
devices: comparing model prediction to actual performance,”
in Proceedings of the SIGCHI conference on Human factors
in computing systems, CHI *01, (Seattle, Washington, United
States), pp. 365-371, ACM, 2001.

K. Kukich, “Techniques for automatically correcting words
in text,” ACM Comput. Surv., vol. 24, pp. 377-439, December

1992.

[11]

[12]

[13]

[14]

[15]

122

