
A new Strategy to Improve the Pathfinding in Wireless ad-hoc Networks

Andreas Redmer
Department of Computer Science

University of Rostock
Rostock, Germany

Email: andreas.redmer@uni-rostock.de

Andreas Heuer
Department of Computer Science

University of Rostock
Rostock, Germany

Email: heuer@informatik.uni-rostock.de

Abstract—In link-state computer networks it is usual that
every node knows the topology of the entire network and can
make the routing decisions based on that. One of the protocols
in use is OLSR. The OLSR routing protocol implements the
algorithm of Dijkstra to find the shortest paths from the
nodes to the gateways of the network. For that purpose,
Dijkstra’s algorithm has to be executed k times, while k is
the number of gateways. In this paper, we present a strategy
that generalizes all gateways to one gateway. We call this
the General Gateway Strategy. Using this, the Algorithm of
Dijkstra has to be executed only one time, which significantly
increases the performance of the overall algorithm to find the
shortest paths to the gateways.

Keywords-Wireless mesh networks; Ad hoc networks; Wi-Fi;
Shortest path problem.

I. INTRODUCTION

In link-state computer networks it is usual that every node
knows the topology of the entire network and can make
the routing decisions based on that. One of the common
protocols is OLSR (Optimized Link State Routing). It is
a protocol for link-state routing in ad-hoc networks and is
described in RFC 3626 [1].

The discovery of topology is specified in OLSR by
two kinds of messages: HELLO- and Topology-Control
(TC) Messages. The discovery of neighborhood is done
by HELLO-Messages, which contain the current direct
neighborhood of the sending node. TC-Messages contain
information of the entire network, encompassing all nodes
and routes to these nodes.

By the propagation of TC-Messages in the network, every
node can derive the network topology and can make routing
decisions using that knowledge. The quality of the link
between two nodes is described by two parameters: link
quality (LQ), which is the quality from the current node
to the neighbor and neighbor link quality (NLQ), which is
the reverse direction. These values are not necessarily equal
for the same link.

Some of the nodes in the network share their internet
connection and make it available to the rest of the network.
These nodes are called gateways. Every node must be able
to determine the shortest path to the nearest gateway.

OLSR uses the Algorithm of Dijkstra [2] to find the
shortest paths between the nodes. The general problem is,

that the Dijkstra Algorithm must always be executed k times,
where k is the number of gateways.

Originally Dijkstra’s Algorithm was described in [2] to
find the shortest path between two nodes in a graph (single-
pair shortest path). That means the algorithm will terminate
as soon as the shortest path is found. For that purpose
it is not necessary to explore the entire graph. In OLSR
the Algorithm of Dijkstra is used to determine the shortest
path from one gateway to all the other nodes (single-source
shortest path). So, the algorithm explores the entire graph
and can not be terminated sooner. This implies that the
algorithm will always have the runtime that is described by
the worst-case complexity. It is important to know that many
other improvements of the Dijkstra Algorithm (e.g., the A*-
Algorithm [3]) are only aiming on terminating sooner, by
finding the destination node faster. So, these improvements
are not applicable for the needs in ad-hoc wireless routing
protocols. The network-graph can be described as a weighted
directed graph (V,E) with

• V := {a set of nodes}
• E := {a set of edges}
• G(⊆ V ) := {a set of gateways}
• (a, b) ∈ E (with a ∈ V and b ∈ V ) describing an edge

from a to b
• f : E → R a function describing the asymmetric

distance between two nodes. Thereby the value LQ is
defined as f((a, b)) and NLQ as f((b, a)).

Modern implementations Dijkstra’s Algorithm use a
Fibonacci-Heap [4] to store the nodes, which reduces the
amortized complexity of the worst case to

O(|V | · log|V |+ |E|) (1)

Based on that, the complexity of the procedure to find all
the shortest path from all gateways to all nodes is

O(|G| · |V | · log|V |+ |E|) (2)

The strategy described in the following section removes the
factor |G| and so reduces the complexity significantly. After
that, we present the experimental results, that show the actual
enhancements of the new strategy. In the last section, a
conclusion and future work is given.

175Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-236-3

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies



II. A NEW STRATEGY

Figure 1 shows a network graph with four gateways (G1,
G2, G3 and G4) printed in blue. The red nodes are non-
gateway nodes. The labels of the edges represent examples
of the metric, which is used to describe the distance between
two nodes. In this case, a simple additive metric is applied.
So, higher numbers represent a higher distance and a worse
connection. Low values stand for a good connection. Dijk-
stra’s algorithm must be executed four times there. Each run
uses one of the gateways as initial node. In the end all four
paths that lead from a node to a gateway will be compared
and only the shortest one returned. Each run considers the
whole graph. In the example it would be determined four
times, that the shortest path from C to E is always across D
and has always the costs 2. So, calculations are repetitive.

A

G1 G2

G3G4

B

C

D

E

FH

K

M

10

1 2

2

1

1

3

3

6

7

7

8

2

13

1

1

Figure 1. An example for an unmodified network graph

We developed an idea to solve this problem of executing
the same calculations multiple times on the same graph. The
basic principle for this, is the fact, that a shortest path to
a gateway never crosses another gateway. The theoretical
perfection would be a graph, where all the gateways are
centralized in the network, there are no nodes between the
gateways and all the gateways can reach each other with
the costs 0. In this case it would be possible to combine all
gateways to one gateway. So it would only be necessary to
find the shortest paths to this generalized gateway.

In practice that is not the case, because the gateways are
spread all over the network and have always costs (> 0) to
reach each other. But the direct edges between the gateway
are not relevant for our problem, since we have already
noticed that a shortest path to a gateway, never crosses
another gateway. It is also not necessary to find a path from
a gateway to another gateway. So, all the irrelevant edges
can be substituted by 0-Edges1 and so all gateways will
be connected by 0-Edges. It does not matter if there has
been an edge existing between these gateways before, or
not. That also means, that the entire graph does not have

1Exact would be ”identity-element-edges”, which means that always the
identity element of the metric should be used. In additive metrics 0, in
multiplicative metrics 1, etc.

A

G1 G2

G3G4

B

C

D

E

FH

K

M
0

0

0

0

1 2

2

1

1

3

3

6

7

7

8

2

13

1

2

Figure 2. A network graph with generalized gateway

to be connected. It is also possible to apply this technique
to separated sub-graphs, whereat each sub-graph contains at
least one gateway. It also does not matter how many 0-Edges
are inserted. It only must be ensured, that every gateway can
reach each other gateway with the cost 0. In Figure 2 these
0-Edges are added and the generalized gateway is marked
with a dashed line.

For the newly created graph, the following procedure will
be applied:

1) Select a random gateway as initial node.
2) Execute Dijkstra’s Algorithm one time.
3) Remove the 0-Edges from the result2.
For instance, one uses G1 as initial node in Figure 2.

Firstly, Dijkstra’s algorithm returns shortest paths from every
node to G1. Amongst others the route:

G1 ← G2 ← C ← D

will be returned for node D. In the beginning of each route
there can be several gateways now. All the 0-Edges and the
leading gateways have to be removed in the final result e.g.,
it would be the route:

G2 ← C ← D

for the node D. This is the shortest path to any available
gateway. We called this method General-Gateway-Strategy
(GGS). This strategy returns the same result as the multiple
execution of Dijkstra’s algorithm and the additional selection
of the closest gateway (the shortest of all the shortest paths).

III. RESULTS

To evaluate the performance of the GGS we generated
one million weighted directed graphs randomly. Each graph
was connected and had the characteristics

• 100 ≤ |V | ≤ 1000000 and
• |G| ∈ {1, 2, 4, 8}.
We implemented the Dijkstra Algorithm using a Fibonacci

Heap in Java. For this purpose, a desktop PC was equipped

2All 0-Edges in the beginning of a route between two gateways.

176Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-236-3

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies



Sheet1

Page 1

100 1000 10000 100000 1000000
0,06

0,6

6

60

600

6000

60000

1

2

4

8

number of nodes

ru
n

tim
e

 in
 m

ill
is

e
co

n
d

s number of 
gateways

Figure 3. Runtimes without General Gateway Strategy

with a 64 bit dual core 2.2 GHz CPU, 128 kB L1 CPU
cache, 512 kB L2 CPU cache and 4 GB DDR II RAM (800
MHz). We ran the Java Virtual Machine OpenJDK 1.9.9 [5]
on the operating system Ubuntu Linux 10.04.3 LTS [6] with
the 2.6.32-32 Linux Kernel [7].

To measure the runtime we used the Java API Method
System.nanoTime() [8] directly before and after our
algorithm execution. The algorithm was executed several
times to avoid deviation due to caching or just-in-time-
compilation. The measured times in milliseconds of the
endpoints of the test-interval are presented in Table I.

The results of all test runs are plotted in Figure 3. To
plot the runtimes (y-axis), a logarithmic axis was chosen
in order to provide a better scalability in the plot. The
x-axis shows the number of nodes used in the graph.
There are four lines representing the number of gateways
in the graph (|G| ∈ {1, 2, 4, 8}). Based on the complexity
of Dijkstra’s Algorithm (Formula 1) the results grow as
expected exponentially by increasing the number of nodes.
Increasing the number of gateways adds a factor growth to
the runtimes.

Figure 4 shows the same kind of diagram as Figure 3, but
here are the results of the GGS plotted. As expected, all the
lines are now very close to the blue line in Figure 3, which
represents only one execution of the Dijkstra Algorithm.
There is only a very small increment resulting from the
raising amount of gateways, which is due to the last step
of the GGS. This last step is the removal of the 0-Edges in
the final result. In efficient implementations this step might
be included in the post-processing of the result and so it
might not be noticeable anymore.

As it can be seen in Table I, there are no considerable
differences between the runtimes, in networks with only

Table I
RUNTIMES OF ENDPOINTS OF THE INTERVAL IN MILLISECONDS

without GGS with GGS
nodes 1 gateway 8 gateways 1 gateway 8 gateways

100 0,47 3,86 0,48 0,66

1000000 14022,50 108703,70 13934,73 18494,70

Sheet1

Page 2

100 1000 10000 100000 1000000
0,06

0,6

6

60

600

6000

60000

1

2

4

8

number of nodes

ru
n

tim
e

 in
 m

ill
is

e
co

n
d

s number of 
gateways

Figure 4. Runtimes with General Gateway Strategy

one gateway. But in the case of one million nodes and
eight gateways, the GGS takes practically only around 17%
(theoretically 12.5%) of the runtime compared with the
conventional method that executes the Dijkstra Algorithm
eight times. That makes it 5.9 times faster than before.
Generally, there is always a small overhead, which results
from the postprocessing of the final result. The theoretically
possible improvements by the factor k (= |G|) can not be
reached.

IV. CONCLUSION AND FUTURE WORK

We have presented a strategy that generalizes all gateways
in an ad-hoc wireless network to one gateway. We call this
the General Gateway Strategy. Using this, the Algorithm of
Dijkstra has to be executed only one time, which signifi-
cantly increases the performance of the overall algorithm to
find the shortest paths to the gateways.

Our new strategy improves the overall complexity by
the factor k (number of gateways). This value can be very
high for larger scaled mesh networks. Our measurements
showed, that even for small scaled networks (not more than
eight gateways), there are improvements in the performance
of more around 600%. For larger mesh networks a higher
enhancements can be expected. This highly depends on the
degree of connectivity of the network graph and on the
amount of gateways.

In the future, the GGS can be practically used in data
analysis algorithms. In one of our research projects we have
captured the topology data over more than one year in the
wireless mesh-network. For that purpose one of our nodes
in the networks saved the topology data one time per minute
into a relational database. To analyze this data it is always
the first step to use the Dijkstra Algorithm to calculate the
current routes at a particular instant of time. This enables
the analyst to perform a risk analysis, a bottleneck analysis,
evaluate the existence and quality of alternative routes and
more. This information can be used for further network
planning, to find measures for the importance of nodes and
edges and to enhance the network quality. In the past, we
passed other tries to increase the performance of the data
analysis, e.g., by using cloud computing [9]. The approach

177Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-236-3

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies



presented in this work, brings an additional performance
boost to the data analysis.

Furthermore, the GGS can directly be implemented on
devices, which implement the OLSR routing protocol. Since
it is fully compatible to the conventional implementations
of OLSR, updated devices can be used in existing networks
without any restrictions. This will lead to reduced CPU load
on the routing node and so a higher throughput of user data.

REFERENCES

[1] T. Clausen, P. Jacquet, C. Adjih, A. Laouiti, P. Minet, P. Muh-
lethaler, A. Qayyum, and L. Viennot, “Optimized Link State
Routing Protocol (OLSR),” Network Working Group Request
for Comments : 3626 Category : Experimental, 2003.

[2] E. W. Dijkstra, “A note on two problems in connexion with
graphs,” Numerische Mathematik, vol. 1, pp. 269–271, 1959.

[3] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis
for the heuristic determination of minimum cost paths,” IEEE
Transactions on Systems Science and Cybernetics SSC, vol. 4,
no. 2, pp. 100–107, 1968.

[4] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and
their uses in improved network optimization algorithms,” J.
ACM, vol. 34, pp. 596–615, July 1987. [Online]. Available:
http://doi.acm.org/10.1145/28869.28874

[5] OpenJDK, “Openjdk website,” 2012. [Online]. Available:
http://openjdk.java.net/ [retrieved: July, 2012]

[6] Canonical, “Official ubuntu linux 10.04.3 download page,”
Canonical Group Limited, 2012. [Online]. Available:
http://mirror.eftel.com/ubuntu-dvd/10.04.3/ [retrieved: July,
2012]

[7] L. Torvalds, “The linux kernel archives,” 2012. [Online].
Available: http://www.kernel.org/ [retrieved: July, 2012]

[8] Oracle, “Java api online documentation
of the class system,” 2011. [Online].
Available: http://docs.oracle.com/javase/1.5.0/docs/api/java/
lang/System.html [retrieved: July, 2012]

[9] T. Mundt and J. Vetterick, “Network topology analysis in the
cloud,” in ICOMP’11 - The 2011 International Conference on
Internet Computing, July 2011.

178Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-236-3

UBICOMM 2012 : The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies


