
Exploring the Tradeoffs of Configurability and Heterogeneity in Multicore Embedded

Systems

Tosiron Adegbija and Ann Gordon-Ross*
Department of Electrical and Computer Engineering

University of Florida, Gainesville, Florida, USA

*Also with the Center for High Performance Reconfigurable Computing (CHREC) at the University of Florida

e-mail: tosironkbd@ufl.edu, ann@ece.ufl.edu

Abstract—Embedded systems, such as smartphones, have become

ubiquitous due to the versatility of these devices for various

applications, which have varying application resource

requirements. Due to these variances, system resources should be

specialized to the executing applications’ resource requirements

in order to adhere to design/optimization goals (e.g., reduced

energy consumption, improved performance, etc.). In multicore

systems, core heterogeneity and/or configurability affords

specialization, however, this design choice exacerbates design

challenges and complexity due to an embedded system’s stringent

design constraints. We evaluate the benefits and tradeoffs of

heterogeneous and configurable cores as compared to

homogeneous cores for design-constrained multicore embedded

systems. Our studies provide valuable insights and guidelines on

design choices and show that combining heterogeneity and

configurability provides unique opportunities for fine-grained

specialization.

Keywords-heterogeneous cores; homogeneous cores;
configurable architecture; low-power architecture; multicore

I. INTRODUCTION AND MOTIVATION

Multicore architectures are becoming prevalent in
ubiquitous embedded systems (e.g., automotive systems,
consumer electronics, smartphones, etc.) as an alternative to
single-core architectures for achieving design/optimization
goals, such as reducing cost, energy consumption, time to
market, and/or increasing performance. However, this single-
to multicore architecture shift significantly increases design
challenges and complexity when coupled with an embedded
system’s stringent design constraints and resource availability
(e.g., energy, power, area, real-time deadlines, size, etc.), which
affords challenging design decisions. Additionally, designers
must consider the applications’ varying resource requirements
during execution [12], thus necessitating specialization to the
applications’ unique requirements in order to adhere to design
goals, which is becoming increasingly difficult to achieve using
traditional homogeneous cores due to widely disparate
application requirements.

One method to achieve multicore system specialization is
by using disparate—heterogeneous—cores with varying
characteristics (e.g., processor family/version, performance, die
area, etc.). For example, the Open Multimedia Applications
Platform (OMAP) chip contains a microprocessor core
(ARM926) and a digital signal processor (DSP) coprocessor
core (TMS320C55X) [20]. Even though the designer can select

different cores to meet the varying applications’ requirements,
the design space is limited to the number of core combinations.

To increase adherence to design goals, configurable cores
have configurable parameters (e.g., cache size, core frequency
and/or voltage, etc.), whose values/configurations can be
determined statically at design time or dynamically during
runtime. In a configurable homogeneous core system [8], the
cores have identical characteristics, but the cores’
configurations are specialized to the applications’
requirements. Depending on the level of configurability, the
cores can have either the same or different configurations.
Configurable core systems have large design spaces that consist
of all combinations of parameter values, and thus provide more
fine-grained specialization.

However, fine-grained specialization exacerbates design
complexity, challenges, and decisions. Selecting between a
heterogeneous or configurable homogeneous core system
affects the level of design goal adherence, but this selection
affects competing design goals, including design complexity,
energy consumption, performance, runtime overhead, time to
market, etc. For example, in heterogeneous core systems,
designers have limited configuration options—lower design
complexity—but must carefully select the most appropriate
cores, and thus adherence to design goals may be limited due to
the coarse-grained design space.

Alternatively, configurable homogenous cores may adhere
more closely to design goals, but significantly increase design
complexity, and time to market, since the cores’ configurations
must be tuned. Tuning evaluates an application’s requirements
and determines the best configuration for design goal
adherence, but incurs overhead in terms of time, performance
and/or energy overhead.

Concomitant to system specialization is application
scheduling, which determines the most appropriate core to
execute the application on [16]. Scheduling decisions, whether
made a priori or at runtime, must consider the cores’
characteristics and configurations since this information can
significantly affect the system’s adherence to design goals.
Heterogeneous cores offer less specialization, thus designers
must carefully select the cores to maximize the potential for
design goal adherence. Configurable homogenous cores
alleviate the core selection challenge and increase design goal
adherence potential, but complicate scheduling decisions due to
a larger design space.

 Previous research for general purpose systems showed that
heterogeneous and configurable homogeneous cores improve

75Copyright (c) IARIA, 2013. ISBN: 978-1-61208-289-9

UBICOMM 2013 : The Seventh International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

energy consumption and performance as compared to
homogeneous cores [11][12], however, there is little research
with respect to the unique, and highly constrained, embedded
system design goals. Prior scheduling and design space
exploration methods [10] for embedded systems did not
compare heterogeneity versus homogeneity. Furthermore, to
the best of our knowledge, no prior work studied the tradeoffs
(with respect to energy consumption, time to market, runtime
overhead, etc.) between using heterogeneous and configurable
homogeneous cores for achieving specialization, or whether
configurable homogeneous cores provide an appreciable
increase in design goal adherence to offset the increase in
design and scheduling complexity and tuning overhead (e.g.,
energy, power, performance, etc.).

In this paper, we present an empirical comparison of the
tradeoffs between heterogeneous and configurable
homogeneous core embedded systems with respect to the
energy delay product (EDP) and cache configuration and core
frequency specialization. We also evaluate the EDP savings
attained by using configurable heterogeneous cores, which
leverage the advantages of both heterogeneity and
configurability. Our evaluations provide valuable insights and
guidelines to assist designers with design challenges and
decisions.

The remainder of this paper is organized as follows. Section
II presents the related work, Section III identifies the design
challenges and studied architectures, Section IV discusses our
experimental methodology, and our results are presented in
Section V. Section VI posits multicore design suggestions and
Section VII concludes the paper and discusses future work
directions.

II. RELATED WORK

Kumar et al. [12] proposed a single-instruction set
architecture (ISA) heterogeneous multicore system to reduce
power in general purpose computers, where each core provided
different performance versus power tradeoffs. In [11], Kumar
et al. showed that heterogeneous core systems provided power
and throughput advantages for applications with varying
execution requirements. Balakrishnan et al. [3] investigated the
effects of data input size for recurring applications verses core
scheduling, and concluded that heterogeneous core systems
were beneficial for performance when core scheduling
decisions considered the input size/characteristics. Grochowski
et al. [9] studied heterogeneous cores with respect to energy
and throughput improvements. However, all of these works
focused on evaluating heterogeneity in general purpose
computers, where throughput typically outweighs energy
consumption.

Configurable core systems can be composed of any core
with any configurable parameter(s). Zhang et al. [28] showed
that applications have varying cache requirements and
proposed a configurable cache architecture that determined
Pareto optimal cache parameter values trading off energy
consumption and performance, showing average energy
savings of 40% as compared to a conventional, non-
configurable cache. Gordon-Ross et al. [8] showed that
configuring the cache to a particular application’s requirements
reduced memory access energy by 62% with performance
improvements in most cases. Semeraro et al. [25] showed that

dynamically scaling core voltage using multiple clock domains
resulted in EDP savings of 20%. Albonesi [2] presented
complexity-adaptive processors where the instruction per cycle
(IPC)/clock rate tradeoff could be dynamically altered to match
the application’s changing requirements, and reduced time per
instruction by an average of 9%.

Whereas prior works clearly motivate the benefits of
heterogeneous cores and configurable cores, to the best of our
knowledge, we are the first to investigate the tradeoffs between
heterogeneous and configurable core systems for fine-grained
specialization in embedded systems. Our studies and outcomes
provide designers with valuable insights into design decisions
when choosing an appropriate system configuration for
specialization to the applications’ requirements.

III. DESIGN CHALLENGES AND ARCHITECTURES

Since incorporating specialization into embedded system

design imposes many daunting design challenges, this section

details some of the challenges introduced when considering

heterogeneity and configurability, and illustrates our evaluated

system architectures.

A. Heterogeneity

In heterogeneous core systems, the cores’ non-uniformity
enables designers to statically select different cores that are
suitable for different application requirements. If the
applications are scheduled to the most suitable cores,
performance and energy improvements are possible as
compared to a homogenous core system. To provide a wide
variety of suitability for diverse application requirements, most
traditional heterogeneous core systems contain disparate cores
[20]. However, large core disparity can introduce additional
overheads and design challenges, especially if the cores have
different ISAs, necessitating additional design time, area
overheads, more complex scheduling, multiple binaries for
each application, etc. Since leveraging cores with the same
ISA, but different characteristics, eases system design while
still offering specialization, we evaluate single-ISA systems,
however, our fundamental tradeoff analysis is applicable to any
heterogeneous core system with diverse core ISAs.

Since embedded systems typically have a large design
space and several options for heterogeneity (e.g., ISA, core
interconnect, memory hierarchy, etc.) one of the major
challenges of heterogeneity is determining the key core
characteristics that should differ in order to most closely adhere
to design goals. The designer must evaluate the system and
anticipated applications to select the appropriate cores, which
places pressure on the time to market. Oftentimes this process
is not straightforward at design time for general purpose
embedded systems that execute a wide variety of applications
(e.g., smartphones, tablets, etc.), and may require lengthy
application evaluation/pre-analysis and design space
exploration when the application(s) (or application domain(s))
is/are known a priori. Ideally, the cores would have enough
diversity such that there exists a core that would be suitable for
any application that could potentially execute on the system.

Scheduling further compounds the core selection challenge
since the benefits of core diversity can only be exploited if the
scheduler is aware of the cores’ tradeoffs with respect to the
applications’ requirements. We evaluated the scheduling

76Copyright (c) IARIA, 2013. ISBN: 978-1-61208-289-9

UBICOMM 2013 : The Seventh International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

policy’s criticality on EDP (Section V) and observed that naïve
scheduling decisions (e.g., the scheduler does not consider core
tradeoffs, and randomly schedules applications to arbitrary
cores) can severely degrade EDP, even resulting in higher EDP
than a simple homogeneous core system. Whereas the
scheduler must effectively analyze application versus core
tradeoffs, this analysis and scheduling must not impose
excessive overhead [4]. Prior works showed that effective
scheduling can be integrated into the operating system, thus
avoiding hardware overhead [7].

A simple, yet effective, approach to scheduling is the
sampling-based method [4][12], which samples different
application-to-core mappings at runtime and selects the best
schedule based on design goals. This method introduces
performance overhead due to periodic application migration
across cores for application-to-core mapping evaluation,
especially for systems with a large number of cores, and can
incur significant overhead when executing an application on an
unsuitable core. This overhead is less significant for
heterogeneous core systems with replicated cores and in
systems with persistent applications (e.g., smartphones), since
the best schedule only needs to be determined once and can be
reused for each subsequent application execution. Other prior
works proposed more complex scheduling methods [4][7][10],
however, due to sampling’s simplicity, effectiveness, and ease
of implementation, and thus appropriateness for embedded
systems, we leverage sampling-based scheduling in our
experiments, however, our fundamental tradeoff analysis could
evaluate any scheduling method.

B. Configurability

System configurability is key to adhering to design goals,
thus much research has explored configurability with respect to
instruction set extensions [14], core voltage [25], issue queue
[6], reorder buffer [21], etc. Since research shows large
potential EDP savings when combining dynamically
configurable caches and core frequency [18], in this work we
focus on these parameters, however our fundamental tradeoff
analysis is applicable to any configurable parameters.

When using multiple configurable parameters, the design
space increases rapidly, especially for interdependent
parameters, thus exacerbating design challenges due to
potentially intractable design spaces and large tuning overhead.
One major challenge when leveraging configurability is
specialization granularity, which determines how often the
configuration changes. Application-based tuning [28] uses a
single configuration that represents the best configuration for
the average run of the entire application. Phase-based tuning
[8] achieves finer-grained specialization by changing the
configuration during application execution based on the
application’s varying runtime requirements. Whereas phase-
based tuning increases design goal adherence potential, phase-
based tuning requires identifying phase changes (changes in
requirements) and determining the best configuration for each
phase, thus increasing tuning overhead.

Dynamically determining the best configurations without
incurring significant tuning overhead is especially challenging
for large design spaces and fine-grained specialization.
Heuristics [8] significantly prune the design space and
analytical models/methods [1] can directly determine the best
configuration sans design space exploration, thus significantly

reducing tuning overhead. Despite the overheads, dynamic
configurability alleviates costly system/application pre-analysis
by the designer, thus resulting in a shorter time to market as
compared to heterogeneous core systems [24].

C. Illustrative System Architectures

Fig. 1 illustrates our evaluated dual-core system
architectures, however, our evaluation methodology is
applicable to any system with any arbitrary number of cores
and any configurable parameters. Figure 1 (a) depicts a
heterogeneous dual-core system with the following on-chip
components: two processing cores with different clock
frequencies and private level one (L1) instruction and data
caches (iCache and dCache, respectively) with different cache
configurations for each core. The clock frequencies and cache
configurations are tuned at design time and remain static
throughout the system’s lifetime. Figure 1 (b) depicts a
configurable homogeneous dual-core system with the
following on-chip components: two identical processing cores
with private configurable L1 instruction and data caches, and
lightweight, low-overhead tuning hardware—a cache tuner and
a DC-DC converter [18][28]. The cache tuner orchestrates
dynamic cache tuning by changing the caches’ configurations,
evaluating and determining the best configurations, and fixing
the system to run in those configurations. The DC-DC
converter dynamically tunes the core frequency based on
power measurements from the power monitor.

IV. EVALUATION METHODOLOGY AND EXPERIMENTAL SETUP

To quantify the EDP variances for heterogeneous,
configurable homogeneous, and homogenous core systems, we
modeled cache and core frequency configurations common to
consumer embedded systems [10] (e.g., the Tegra 2 [26]) and
evaluated dual-core systems, which are common in general
purpose consumer embedded systems. Even though our
experiments in this paper represent state-of-the-art embedded
systems [26], our fundamental tradeoff analysis is applicable to
future and/or more complex systems (e.g., n-core systems with
multi-level caches) because the fundamental design goals and
challenges are independent of these characteristics.

ARM

Main
Memory

Instruction cache

Data cache
L1

DSP
Instruction cache

Data cache
L1

(a)

Processing core 2

Main
Memory

Instruction cache

Data cache
L1

Cache tuner

Processing core 1
Instruction cache

Data cache
L1

Power monitor

D
C-

D
C

co
nv

e
rt

er

(b)

Figure 1. Layout of a sample (a) heterogeneous dual-core system and

(b) configurable homogeneous dual-core system

77Copyright (c) IARIA, 2013. ISBN: 978-1-61208-289-9

UBICOMM 2013 : The Seventh International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Table 1 depicts our experimental dual-core systems and the
systems’ configurations, which represent actual embedded
systems (e.g., Nokia Lumina 620 [19] and Motorola’s Atrix 4G
smartphones [17]). All cores had separate, private L1
instruction and data caches connected directly to off-chip main
memory. Even though our evaluated systems could include a
level two (L2) cache, our work evaluates the effects of L1
cache specialization, therefore we do not need to model the L2
cache, however, our work could be easily extended to include
an L2 cache. The homogeneous core system served as our base
system for comparison purposes. The configurable system
represented the configurable homogeneous and configurable
heterogeneous core systems, and offered cores with varying
cache parameter values and operating frequencies (denoted as
ranges). The configurable homogeneous core system’s cores
were tuned simultaneously to a single, homogenous
configuration (the cores had the same configurations), resulting
in a design space of 108 core configurations. The configurable
heterogeneous core system’s cores were tuned independently to
heterogeneous configurations (the cores could have different
configurations), resulting in a design space of 108

n

configurations, where n is the number of cores.
In order to compare to static designer-selected cores, we

evaluated three different heterogeneous core systems, denoted
as Heterogeneous-1, -2, and -3. Based on empirical analysis,
Heterogeneous-1 represented the best average configuration for
all workloads (Section V), and thus served as the base
heterogeneous core system. Heterogeneous-2 and -3 offer
different core selection options for situations where designers
cannot perform extensive design time analysis, and therefore
the designer must make a “best guess” of the applications’
requirements.

We exhaustively modeled and evaluated all configurations
using GEM5 [5], which we modified to support heterogeneous
cores, and McPAT [15] to calculate the systems’ cores' EDPs
in Joule seconds:

EDP = core_power * running_time
2

 = core_power * (total_cycles/core_frequency)
2
 (1)

where core_power includes the core’s components, such as the
network interface units (NIUs), peripheral component
interconnect (PCI) controllers, etc., and the cache, and
total_cycles is the number of cycles for a single workload
execution.

In order to reduce the sensitivity of the results to a
particular set of simulated workloads and model real-world
embedded system applications, we created twenty-four
multiprogrammed workload sets by selecting two random
single-threaded benchmarks from seventeen EEMBC [22]
Automotive benchmarks (the entire EEMBC Automotive
benchmark suite could not be evaluated due to compilation
errors) and six random MediaBench [13] benchmarks for
image, video, and audio processing. To ensure that both cores
executed the same number of cycles and both benchmarks
executed at least once to completion, we looped the faster
benchmark in each set. The benchmarks were always scheduled
to a separate core during execution, such that both cores were
active throughout execution. Since embedded systems typically
execute small applications with relatively stable characteristics
throughout execution, we leveraged application-based tuning in
our experiments.

Table 2 depicts our test scenarios. We determined optimal
scheduling using sampling such that the lowest EDP schedule
represented the best case. Since naïve scheduling randomly
schedules applications to cores, we used the highest EDP
schedule in order to compare with the worst case schedule. In
practice, naïve scheduling would not necessarily achieve the
worst case EDP, but comparing to the worse case provides a
clearer picture of core selection tradeoffs. We determined the
best configurations for the configurable homogeneous and
configurable heterogeneous cores using exhaustive search for
all of the workloads.

V. RESULTS

Fig. 2 depicts the EDP for the test scenarios in Table 2
normalized to the homogeneous core system (baseline of one)
for all experimental workloads, denoted as the x-axis
benchmark combinations, and the average and standard

Figure 2. EDP normalized to the homogeneous core system (baseline of one) for the test scenarios in Table 2

TABLE 1. DUAL-CORE SYSTEMS AND CONFIGURATIONS. THE CONFIGURABLE SYSTEM’S

PARAMETER VALUES REPRESENT RANGES. THE HETEROGENEOUS SYSTEMS’ PARAMETER

VALUES REPRESENT CORES’ VALUES AS CORE1/CORE2.

System Cache size Associativity Line size Clock frequency

Homogeneous 32 Kbyte 4 way 64 byte 2 GHz

Configurable 16 – 32 Kbyte 1 – 4 way 16 – 64 byte 1 – 2 GHz

Heterogeneous-1 16/32 Kbyte 4 way 64 byte 1/2 GHz

Heterogeneous-2 8/16 Kbyte 4 way 64 byte 800 MHz/1 GHz

Heterogeneous-3 8/32 Kbyte 4 way 64 byte 800 MHz/2 GHz

TABLE 2. TEST SCENARIOS

Name Core descriptions

Test scenario 1 Naively-scheduled Heterogeneous-1

Test scenario 2 Optimally-scheduled Heterogeneous-1

Test scenario 3 Configurable homogeneous

Test scenario 4 Configurable heterogeneous

78Copyright (c) IARIA, 2013. ISBN: 978-1-61208-289-9

UBICOMM 2013 : The Seventh International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

deviation across all workloads. For brevity, we show
comparisons with only the base heterogeneous core system,
Heterogeneous-1.

Test scenarios 1 and 2: Compared to the homogeneous core
system, the naively-scheduled Heterogeneous-1 system
achieved similar EDP savings for most workloads, averaging
15% over all workloads, ranging from 9% for djpeg-bitmnp01
and 69% for canrdr01-aifftr01, with a standard deviation of
12%.

The optimally-scheduled Heterogeneous-1 system achieved
average EDP savings of 16% over the homogeneous core
system, with savings increasing to 13% and 70% for djpeg-
bitmap and canrdr01-aifftr01, respectively. This optimally-
scheduled system performed only marginally better than the
naïvely-scheduled system, 1% on average over all of the
workloads, with differences as high as 4%, but all workloads
benefited from heterogeneity regardless of scheduling. The
EDP savings for these systems were similar because both
cores’ configurations represented good average configurations
for all of the benchmarks (i.e., the cores were averagely-suited
for all of the benchmarks), thus neither core resulted in
prohibitively high EDP. However, we point out that we
exhaustively evaluated our benchmark suite to determine the
best average heterogeneous cores’ configurations, and in
practice, a designer would have to expend considerable design
time effort to replicate these results. This comparison shows
that scheduling decisions have little effect if the cores’
configurations are carefully selected to match the applications’
requirements.

Therefore, given limited time to market and potentially
unknown applications, we evaluated heterogeneous core
systems more representative of actual designer-selected cores.
Figure 3 depicts the EDP of the optimally-scheduled
Heterogeneous-1, -2, and -3 systems (Table 1) normalized to
the homogeneous core system. Heterogeneous-2 increased the
EDP by 7% on average as compared to the homogeneous core
system, and Heterogeneous-3 and -1 decreased the EDP by
19% and 16% on average, respectively. Additional results, not
shown for brevity, also showed that scheduling had a
significant impact on EDP for these systems, with
Heterogeneous-2 and -3 showing EDP increases of 65% and
26% on average as compared to the homogeneous core system,
respectively, as compared to Heterogeneous-1’s 15% decrease
in EDP.

Test scenario 3: The configurable homogeneous core
system revealed similar EDP savings as the optimally-
scheduled Heterogeneous-1 system, with average EDP savings

of 16%, ranging from no savings for some workloads to 66%
for canrdr01-aifftr01, as compared to the homogeneous core
system. Even though the configurable homogeneous cores
afforded a larger design space, and potentially finer-grained
specialization than Heterogeneous-1, since the cores could only
select a single (same) average best configuration for all the
benchmarks, the specialization granularity and EDP savings
were reduced.

Test scenario 4: The configurable heterogeneous core
system achieved the highest overall average EDP savings of
29% over the homogeneous core system, ranging from 27% to
75% for djpeg-bitmnp01 and canrdr01-aifftr01, respectively,
with a standard deviation of 10%. Compared to the
configurable homogeneous core system and the optimally-
scheduled Heterogeneous-1, -2, and -3 systems, the
configurable heterogeneous core system achieved average EDP
savings of 11%, 16%, 34%, and 13%, respectively. The
configurable heterogeneous core system achieved the
maximum EDP savings because each core was tuned
independently for each application’s requirements, thus
affording the finest-grained specialization and the largest EDP
savings. We note that these results do not include runtime
tuning overhead, but prior work showed that these overheads
can be minimal [23].

VI. MULTICORE SPECIALIZATION GUIDELINES

Previous work established that two cores introduce
sufficient heterogeneity to attain appreciable EDP reductions
[12]. In this paper, we significantly extend prior evaluations by
studying the tradeoffs between core diversity and scheduling,
and the benefits of incorporating configurability into
heterogeneous core systems. Based on our findings, we suggest
practical multicore specialization design guidelines intended to
aid embedded system designers in selecting appropriate core
characteristic and configuration diversity to meet design goals.

Our findings revealed a clear tradeoff between scheduling
efficiency/effort and core diversity. Increased core diversity
with a good balance of characteristics/configurations (e.g.,
Heterogeneous-2, as opposed to Heterogeneous-1 or
Heterogeneous-3) enhances the benefits of heterogeneity by
reducing the EDP, however, to realize these benefits, the
scheduling policy must be very effective. With a less effective
(i.e., naïve) scheduling policy, less core diversity is
advantageous, such as using Heterogeneous-1, which contained
good average configurations for the executing applications,
such that either core will reveal good average savings, but
neither core will reveal the largest savings. Therefore,
designers can adjust their core selection efforts based on the
system’s scheduling policy

Maximum EDP savings is achieved using configurable
heterogeneous cores where the cores can be independently
tuned and the larger design space reveals greater EDP savings
potential. Based on previous work [27], we conjecture that the
design space can be significantly reduced with similar EDP
savings by using cores with different configuration subsets.
Each subset would be specialized to a different application
domain’s requirements, and applications from a particular
domain would be scheduled to the appropriate core. Tuning
would therefore only evaluate the reduced design space
available on that core, which may be a fraction of the total,

Figure 3. EDP of the heterogeneous systems in Table 1 normalized to the

homogeneous core system (baseline of one)

79Copyright (c) IARIA, 2013. ISBN: 978-1-61208-289-9

UBICOMM 2013 : The Seventh International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

unsubsetted design space (only three/four in [27]), thus
significantly reducing tuning overhead, however, the tradeoff is
extensive design time analysis.

VII. CONCLUSIONS AND FUTURE WORK

Configurable and/or heterogeneous cores specialize a
system’s configurations to the applications’ execution resource
requirements to adhere to design goals, however, this
specialization exacerbates design complexity, challenges, and
decisions. System core selection (e.g., homogenous,
heterogeneous, or configurable homogeneous/heterogeneous
cores) affects the level of design goal adherence and affects
competing design goals. In order to assist designers in core
selection, we evaluated and empirically quantified the benefits
and tradeoffs of heterogeneous and configurable core systems
as compared to homogeneous core systems with respect to
cache configuration and core frequency specialization. We
provided insights and guidelines for designers and showed that
the best energy delay product (EDP) savings can be achieved
by using configurable heterogeneous cores, which leverage the
advantages of both configurability and heterogeneity.
However, since configurable heterogeneous cores result in
exponentially large design spaces, our future work will explore
and evaluate the impact of reducing the configurable
heterogeneous cores’ design space by designing heterogeneous
core systems with different configuration subsets in each core,
where each subset is specialized to a different application
domain.

ACKNOWLEDGMENT

This work was supported by the National Science
Foundation (CNS-0953447). Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of
the National Science Foundation.

REFERENCES

[1] T. Adegbija, A. Gordon-Ross, and A. Munir, “Dynamic phase-based
tuning for embedded systems using phase distance mapping,”
International Conference on Computer Design, October 2012, pp.
284-290.

[2] D. Albonesi, “Dynamic IPC/clock rate optimization,” Internation
Symposium on Computer Architecture, July 1998, pp. 282-292.

[3] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai, “The impact of
performance asymmetry in emerging multicore architectures,”
International Symposium on Computer Architecture, June 2005, pp.
506-517.

[4] M. Becchi and P. Crowley, “Dynamic thread assignment on
heterogeneous multiprocessor architectures,” Computing Frontiers,
2006, pp. 29-40.

[5] N. Binkert, B. Beckmann, G. Black, S. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. Hill, and D. Wood, “The gem5 simulator,”
Computer Architecture News, May 2011, pp. 1-7.

[6] D. Folegnani and A. Gonzalez, “Energy-efficient issue logic,”
Internation Symposium on Computer Architecture, July 2001, pp.
230-239.

[7] S. Ghiasi, T. Keller, and F. Rawsom, “Scheduling for heterogeneous
processors in server systems,” Proc. Computing Frontiers, ACM
Press, 2005, pp. 199-210.

[8] A. Gordon-Ross and F. Vahid, “A self-tuning configurable cache,”
Design Automation Conference, July 2007, pp. 234-237.

[9] E. Grochowski, R. Ronen, J. Shen, and W. Wang, “Best of both
latency and throughput,” International Conference on Computer
Design, October 2004, pp. 236-243.

[10] K. Kim, D. Kim, C. Park, “Real-time scheduling in heterogeneous
dual-core architectures,” International Conference on Parallel and
Distributed Systems, 2006, pp. 91-96.

[11] R. Kumar, D. Tullsen, N. Jouppi, P. Ranganathan, “Heterogeneous
chip multiprocessors,” Computer, November 2005, pp. 32-38.

[12] R. Kumar, D. Tullsen, P. Ranganathan, N. Jouppi, and K. Farkas.,
“Single-ISA heterogeneous multi-core architectures: the potential
for processor power reduction,” International Symposium on
Microarchitecture, December 2003, pp. 81-92.

[13] C. Lee, M. Potkonjak, and W. Mangione-Smith, “MediaBench: a
tool for evaluating and synthesizing multimedia and
communications systems,” International Symposium on
Microarchitecture, December 1997, pp. 330-335.

[14] R. Leupers, K. Karuri, S. Kraemer, and M. Pandey, “A design flow
for configurable embedded processors based on optimized
instruction set extension synthesis,” Design, Automation and Test in
Europe, 2006.

[15] S. Li, J. Ahn, R. Strong, J. Brockman, and D. Tullsen, N. Jouppi,
“McPAT: an integrated power, area, and timing modeling
framework for multicore and manycore architectures,” International
Symposium on Microarchitecture, December 2009, pp. 469-480.

[16] J. Luo and N. Jha, “Battery-aware static scheduling for distributed
real-time embedded systems,” Design Automation Conference,
2001, pp. 444-449.

[17] Motorola Atrix 4G.
http://www.motorola.com/us/consumers/Motorola-ATRIX-
4G/72112,en_US,pd.html [retrieved: April, 2013]

[18] A. Nacul and T. Givargis, “Dynamic voltage and cache
reconfiguration for low power,” Design, Automation, and Test in
Europe, February 2004, pp. 1376-1377.

[19] Nokia Lumina 620.
http://www.nokia.com/global/products/phone/lumia620/ [retrieved:
April, 2013]

[20] OMAP1710 processor architecture and features:
http://focus.ti.com/general/docs/wtbu/wtbuproductcontent.tsp?templ
ateId=6123&navigationId=11991&path=templatedata/cm/product/d
ata/omap_1710 [retrieved: April, 2013]

[21] D Ponomarev, G. Kucuk, and K. Ghose, “Reducing power
requirements of instruction scheduling through dynamic allocation
of multiple datapath resources,” International Symposium on
Microarchitecture, December 2001, pp. 90-101.

[22] J. Poovey, M. Levy, and S. Gal-On, “A benchmark characterization
of the EEMBC benchmark suite,” International Symposium on
Microarchitecture, December 2009, pp. 18-29.

[23] M. Rawlins and A. Gordon-Ross, “An application classification
guided cache tuning heuristic for multi-core architectures,” Asia
South Pacific Design Automation Cconference, 2012, pp. 23-28.

[24] B. Ristau, T. Limberg, and G. Fettweis, “A mapping framework for
guided design space exploration of heterogeneous MP-SoCs,”
Design, Automation and Test in Europe, March 2008, pp. 780-783.

[25] G. Semeraro, G. Magklis, R. Balasubramonian, D. Albonesi, S.
Dwarkadas, H. Dwarkadas, and M. Scott, “Energy-efficient
processor design using multiple clock domains with dynamic
voltage and frequency scaling,” High Performance Computer
Architecture, February 2002, pp. 29-40.

[26] Tegra 2 super chip processors. http://www.nvidia.com/object/tegra-
superchip.html [retrieved: April, 2013]

[27] P. Viana, A. Gordon-Ross, E. Keogh, E. Barros, and F. Vahid,
“Configurable cache subsetting for fast cache tuning,” Design
Automation Conference, July 2006, pp. 695-700.

[28] C. Zhang, F. Vahid and W. Najjar, “A highly-configurable cache
architecture for embedded systems,” 30th Annual International
Symposium on Computer Architecture, May 2003, pp. 136-146.

80Copyright (c) IARIA, 2013. ISBN: 978-1-61208-289-9

UBICOMM 2013 : The Seventh International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

