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Abstract—This paper studies the ergodic capacity for ubiquitous
cooperative networks employing amplify-and-forward relaying
in Rayleigh fading. A general asymmetric channel model is
considered, in which the average signal-to-noise ratios associated
with different wireless channels are generally unequal. We derive
an exact expression of the ergodic capacity in a single-integral-
form, which serves as a benchmark for ubiquitous cooperative
networks. To the best of our knowledge, this exact expression has
not been reported in the literature. To evaluate this integral more
efficiently, we develop a hybrid Gaussian quadrature expression
in closed-form, which has a high relative accuracy. Finally, it
is demonstrated that the obtained analytical results overlap the
simulation curves, while the existing bounds are loose in various
scenarios.

Keywords–Amplify-and-forward; ergodic capacity; Rayleigh fad-
ing; relaying.

I. INTRODUCTION

Cooperative networks for ubiquitous communications have
gained considerable attention in the last decade, due to their
great potential to combat fading impairments [1]–[4]. The
main idea of cooperative communications is that several geo-
graphically distributed wireless terminals, including the source
and relay(s), collaborate with one another to form a virtual
multi-antenna array, which enables distributed spatial diversity.
Amplify-and-Forward (AF) is one of the most popular relaying
protocols, in which the relay simply amplifies its received
signal and forwards it to the destination [4]–[6].

A. Ergodic Capacity

The fading environment manifests itself in ergodic fading
when the channel coherence time is (much) shorter than
the codeword length, due to the usage of sufficiently long
codewords and/or high mobility of wireless terminals [7]. In
an ergodic fading scenario, each codeword typically spans
many coherence time intervals, giving rise to rapid fading
fluctuations within each codeword. The codeword is long
enough to average out the randomness of fading, render-
ing Shannon capacity a deterministic constant independent
of the instantaneous fading state. Mathematically, Shannon
capacity of ergodic channels, a.k.a., ergodic capacity, is equal
to the maximum achievable rate averaged over the fading
distribution, which depends only on the fading statistics [7],
[8]. Ergodic capacity is a fundamental information-theoretic
performance measure, which captures the maximum rate of
reliable communications under ergodic fading [7].

B. Related Work

It is of paramount importance to characterize the ergodic
capacity, which serves as a benchmark for practical commu-
nication systems. However, due to the nonlinear expression of
the end-to-end Signal-to-Noise Ratio (SNR) in AF relaying,
only few works have studied the exact ergodic capacity for
AF networks [9][10]. Specifically, the exact analysis of the
ergodic capacity was limited only to a symmetric single-relay
network without the the direct source-destination link [9, eq.
(11)]. The major limitation of the symmetric channel setting is
that the average received SNRs of the first- and the second-hop
channels must be identical in Rayleigh fading. However, this
does not necessarily hold in practice due to large-scale path-
loss and shadowing effects. Furthermore, Fan et al. derived
an exact expression of the ergodic capacity for a multi-relay
network without the direct link where only a single-relay with
the maximum second-hop SNR is allowed to assist the commu-
nication. Since the selection of the relay in [10][11] neglects
the first-hop channel conditions, the achievable diversity order
is always equal to one in Rayleigh fading, irrespective of the
number of relays. That is, from a diversity point of view, the
relaying scheme in [10][11] achieves the same performance as
in a single-relay network with no direct link, which makes the
exact analysis by Fan et al. [10] valid only for a single-relay
network without the direct link.

In addition to the exact analysis, other works have been
devoted to finding bounds or approximations of the ergodic
capacity. Specifically, various upper bounds were obtained
using the geometric-mean [12, eq. (8)], harmonic-mean [13,
eq. (18)], and Jensen’s inequality [12, eq. (5)], [14, eq. (10)].
In addition, series expansions of the ergodic capacity were
developed in [9, eq. (4)], [12, eq. (17)], and [15, eq. (9)].
These bounds/approximations, unfortunately, suffer from low
accuracy and/or high computational complexity. To the best
of our knowledge, an exact expression of the ergodic capacity
has not been reported for a general asymmetric AF cooperative
network with the direct link, which motivates our work.

C. Contribution

To the best of our knowledge, the exact analytical expres-
sion of the ergodic capacity for a single-relay network with
the direct link has not been reported in the literature, which
motivates this work. In this paper, we carry out exact analysis
under the general asymmetric channel setting where different
channels have generally unequal average SNRs. The exact

263Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-353-7

UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies



expression of the ergodic capacity is derived in a single integral
form for the single-relay network with the direct link. To nu-
merically evaluate this expression, we further develop a hybrid
Gaussian quadrature rule in closed-form, which achieves a high
relative accuracy of 10−6, and thus, is very suitable for real-
time evaluations. These obtained expressions serve as a useful
tool to analytically evaluate the performance limits of piratical
AF relaying systems.

The remainder of the paper is organized as follows. Section
II introduces the system model. Section III conducts the
ergodic capacity analysis. Section IV validates the capacity
analysis by simulations. Finally, Section V concludes the paper.

Notation: We use x ∆
= y to denote that x, by definition,

equals y. E(·), ln(·), and log2(·) denote the expectation, natural
logarithm, and base-2 logarithm, respectively. For a random
variable X , fX(·) and FX(·) are the probability density
function (PDF) and cumulative distribution function (CDF),
respectively. Finally, X ∼ CN (µ, σ2) means that X is a
circularly symmetric complex Gaussian random variable with
mean µ and variance σ2.

II. SYSTEM MODEL

Consider a cooperative network composed of three single-
antenna terminals: a source S, a relay R, and a destination
D, where the direct S-D link exists. Let hsd, hsr, and hrd
denote flat fading gains for the S-D, S-R, and R-D links,
respectively. The fading gains are assumed independent and
modeled as hij ∼ CN (0,Ωij), ij ∈ {sd, sr, rd}. The additive
white Gaussian noises (AWGNs) associated with hij’s follow
the distribution of CN (0, σ2

ij), ij ∈ {sd, sr, rd}. Let Es
and Er denote the transmit powers at S and R, respectively.
The instantaneous SNRs of the S-D, S-R, and R-D links are
respectively denoted γsd

∆
= Es|hsd|2

σ2
sd

, γsr
∆
= Es|hsr|2

σ2
sr

, and

γrd
∆
= Er|hrd|2

σ2
rd

, and the corresponding average SNRs are

γ̄sd
∆
= EsΩsd

σ2
sd

, γ̄sr
∆
= EsΩsr

σ2
sr

, and γ̄rd
∆
= ErΩrd

σ2
rd

. We focus on
a general asymmetric channel setting where γ̄sd, γ̄sr, and γ̄rd
are unequal in general, which makes our analysis practical.

III. EXACT ANALYSIS OF ERGODIC CAPACITY

We consider the CSI-assisted orthogonal AF relaying with
a maximum ratio combiner at the destination, yielding the end-
to-end received SNR at the destination as follows [1], [2], [4]

γAF
∆
= γsd +

γsrγrd
γsr + γrd + 1

. (1)

The ergodic capacity is thus given by

CAF
∆
=

1

2
E
{

log2(1 + γAF)
}
, (2)

where the pre-log factor 1/2 accounts for the orthogonal
relaying.

Theorem 1: The ergodic capacity for a single-relay AF
network with the direct link is given by

CAF =
1

2 ln(2)

{
e

1
γ̄sdE1

(
1

γ̄sd

)
+

√
γ̄srγ̄rd
2γ̄sd

I

}
, (3)

where

I
∆
=

∫ ∞
0

φ(x)dx. (4)

The integrand of (4), φ(x), is defined as follows:

φ(x)
∆
= exp

(√
γ̄srγ̄rd
2γ̄sd

x+
1

γ̄sd

)
E1

(√
γ̄srγ̄rd
2γ̄sd

x+
1

γ̄sd

)
×

√
x

(
x+

2√
γ̄srγ̄rd

)
K1

(√
x

(
x+

2√
γ̄srγ̄rd

))

× exp

(
− γ̄sr + γ̄rd

2
√
γ̄srγ̄rd

x

)
, (5)

where E1(·) and K1(·) denote the exponential integral function
[16, eq. (15.1.1)] and the first-order modified Bessel function
of the second kind [16, eq. (9.6.11)], respectively.

Proof: See Appendix A.

At the first glance, the exact expression of ergodic capacity
in (3) involving the single-integral of (4) is complicated. In
fact, the integrand of (5), φ(x), is a well-behaved function for
x > 0. First of all, exp

(√γ̄sr γ̄rd
2γ̄sd

x+ 1
γ̄sd

)
E1

(√γ̄sr γ̄rd
2γ̄sd

x+ 1
γ̄sd

)
and

√
x(x+ 2/

√
γ̄srγ̄rd)K1

(√
x(x+ 2/

√
γ̄srγ̄rd)

)
in φ(x)

are both monotonically decreasing for x > 0. This is easily
justified as follows. For x > 0, we have

[
exE1(x)

]′
=

xexE1(x)−1
x < 1

x

(
x+1
x+2 − 1

)
< 0 [17, eq. (6.8.2)] and

[xK1(x)]′ = −xK0(x) < 0 [18, eq. (8.486.14)]. Thus,
exE1(x) and xK1(x) are monotonically decreasing functions
for x > 0. Furthermore, exp

(
− γ̄sr+γ̄rd

2
√
γ̄sr γ̄rd

x
)

in φ(x) decays
exponentially fast for x > 0. Therefore, the multiplication of
these terms, namely φ(x) in (5), is a monotonically decreasing
and exponentially decaying function of x for x > 0. Further-
more, φ(x) is a smooth function of x, which has derivatives
of any order. These properties enables efficient numerical
calculation of (3), detailed as follows.

It is well-known that the Gaussian-Laguerre quadrature is
extremely accurate for large x > 0 with integrand of the form
e−xg(x) for some function g(·), and the composite Gaussian-
Legendre quadrature is very effective for finite integrals [19,
Ch. 3]. To exploit the benefits of both quadrature rules, we
rewrite the integral of (3) into two sub-integrals

I =

∫ τ

0

φ(x)dx+

∫ ∞
τ

φ(x)dx, (6)

where the first (finite) integral over [0, τ ], τ > 0, is readily
computed using the composite Gaussian-Legendre quadrature
[19, eq. (3.3.1)], and the second (semi-infinite) integral over
[τ,∞) can be accurately evaluated by the Gaussian-Laguerre
quadrature [16, eq. (25.4.45)]. As a result, we propose a hybrid
Gaussian quadrature to compute the integral (3) as follows:

I =
τ

2M

M∑
j=1

N1∑
i=1

w1,iφ
[ τ

2M
(t1,i + 2j − 1)

]
+

N2∑
i=1

w2,ie
t2,iφ(t2,i + τ) +R, (7)

where τ > 0 is the integral limit chosen for Gaussian-Legendre
quadrature, M represents the number of subintervals con-
sidered in the composite Gaussian-Legendre quadrature [19],
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Figure 1. Relative error tolerance, |R/I|, versus M for dr = 0.5 and
γ = 0, 10, 20 dB, where τ = 1, N1 = N2 = 15.
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Figure 2. Ergodic capacity of single-relay AF network with the direct link
under asymmetric channel setting where dr = 0.6.

and R is the remainder. Also, w1,i and t1,i, i = 1, · · · , N1,
are, respectively, the weights and zeros of the Legendre
polynomial of order N1 [16, Table 25.4], and w2,i and t2,i,
i = 1, · · · , N2, are, respectively, the weights and zeros of
the Laguerre polynomial of order N2 [16, Table 25.9]. It is
obvious that the accuracy of (7) is dependent on τ , M , N1,
and N2. In general, any specific accuracy can be achieved by
simultaneously increasing M , N1, and N2 [19], for any τ . In
practice, however, using small M , N1, and N2 to achieve the
target accuracy for a specific τ is desirable. The choice of
parameters are discussed in detail in the next section.

IV. NUMERICAL RESULTS

Consider a line S-R-D model in which R is located in
the straight line between S and D. Let dr denote the distance
between S and R. The path loss model for typical urban
environments is adopted, i.e., Ωsd = 1, Ωsr = d−4

r , and
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Figure 3. Ergodic capacity of single-relay AF network with the direct link
under symmetric channel setting where dr = 0.5.

Ωrd = (1 − dr)
−4 [8]. We set Es = Er = E

2 , where
E is the total power consumed in the whole network. The
variances of AWGNs are set to be identical, i.e., σ2

ij = σ2

for ij ∈ {sd, sk, kd}Kk=1. By varying the source-relay distance
dr, the link SNRs γ̄sd, γ̄sr, and γ̄rd are unequal in general,
constituting a general asymmetric network. The ratio of the
total transmission power E to the AWGN variance, γ ∆

= E/σ2,
is referred to as the network SNR.

A. Choice of Parameters in (7)

The parameters τ , M , N1, and N2 in (7) need to be chosen
appropriately to achieve a desirable accuracy. In practice, τ
is chosen such that φ(x) < 0.1 for x ≥ τ , and thus, the
approximation error of the (second) integral over [τ,∞) in (6)
can be made negligible by using a reasonably small value of
N2, e.g., N2 = 15 [19]. Since φ(x) < 0.0249 for all x ≥ 1, we
choose τ = 1 and N2 = 15. Then, the overall accuracy of (7)
mainly depends on the first (finite) integral over [0, τ ] in (6). It
is possible to increase the accuracy of this integral by simply
increasing M for any fixed value of N1. Thus, by setting τ = 1
and N1 = N2 = 15, the overall accuracy of (7) is solely
dependent on the parameter M . The relative error tolerance,
i.e., |R/I|, versus M is illustrated in Fig. 1 for γ = 0, 10, 20
dB, where dr = 0.5. As a benchmark, we compute the integral
I of (4) using MATLAB quadgk function at a relative error
tolerance of 10−10, which is considered as the “exact” value.
The difference between this exact value and that computed
using (7) is the absolute error tolerance R. It is clearly seen
that for τ = 1, N1 = N2 = 15, and M = 20, the relative error
tolerance, |R/I|, is smaller than 10−6. Therefore, we suggest
that τ = 1, N1 = N2 = 15, and M = 20 constitutes a suitable
choice in (7) to yield an accurate and efficient approximation
for (4).

B. Ergodic Capacity Evaluation

For a single-relay AF network with the direct link, the
following results are compared: i) proposed “exact” result
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A =
2

γ̄sd
e

1
γ̄sd

{∫ ∞
0

E1

(1 + z

γ̄sd

)
e

( 1
γ̄sd
− 1
γ̄sr
− 1
γ̄rd

)z

√
z(z + 1)

γ̄srγ̄rd
K1

(
2

√
z(z + 1)

γ̄srγ̄rd

)
dz

−

[
E1

(1 + z

γ̄sd

)∫ z

0

e
( 1
γ̄sd
− 1
γ̄sr
− 1
γ̄rd

)x

√
x(x+ 1)

γ̄srγ̄rd
K1

(
2

√
x(x+ 1)

γ̄srγ̄rd

)
dx︸ ︷︷ ︸

∆
=B(z)

]∞
z=0

}
(A.4)

=
2

γ̄sd
e

1
γ̄sd

∫ ∞
0

E1

(1 + z

γ̄sd

)
e

( 1
γ̄sd
− 1
γ̄sr
− 1
γ̄rd

)z

√
z(z + 1)

γ̄srγ̄rd
K1

(
2

√
z(z + 1)

γ̄srγ̄rd

)
dz. (A.5)

by (3) and (4), where (4) is computed using quadgk at a
relative error tolerance of 10−10; ii) proposed hybrid Gaussian
quadrature using (7) in (3), where τ = 1, N1 = N2 = 15,
and M = 20; iii) Jensen’s upper bound [14, eq. (10)]; and
iv) “Min-UB” which refers to the widely-used upper bound
using the minimum of the two-hop SNRs, i.e., γsrγrd

γsr+γrd+1 ≤
min(γsr, γrd). The comparison is performed for an asymmetric
network with dr = 0.6 in Fig. 2 and a symmetric network
with dr = 0.5 in Fig. 3. We observe that the ergodic
capacity computed using the hybrid Gaussian quadrature in
(7) is in excellent agreement with the exact value of (3).
This validates once again the accuracy and efficiency of the
proposed hybrid Gaussian quadrature. Furthermore, it is clearly
seen that Jensen’s upper bound and the Min-UB are loose
upper bounds, throughout the whole SNR range. Indeed, the
loose bounds/approximations highlight the usefulness of the
obtained exact expression.

V. CONCLUSION

We analyzed the ergodic capacity of AF relaying for
ubiquitous cooperative networks in Rayleigh fading where
the average SNRs of different wireless channels are unequal
in general. For the single-relay case with the direct link,
we derived the ergodic capacity in an exact single-integral-
form, which serves as a benchmark for AF relaying systems.
To facilitate evaluation of this exact expression, we derived
a hybrid Gaussian quadrature rule in closed-form, which is
extremely accurate and easy to compute.

An interesting extension of this work is to study the exact
ergodic capacity for general multi-relay AF networks, which
will be addressed in our further work.

APPENDIX A
PROOF OF THEOREM 1

Let γr
∆
= γsrγrd

γsr+γrd+1 , and thus, γAF = γsd + γr. It follows
from [20, eq. (11)] that the CDF of γr is

Fγr (z) = 1− 2e
−
(

1
γ̄sr

+ 1
γ̄rd

)
z

√
z(z + 1)

γ̄srγ̄rd
K1

(
2

√
z(z + 1)

γ̄srγ̄rd

)
,

for z > 0. For independent Rayleigh fading channels, γsd,
γsr, and γrd are independent exponential random variables
with means γ̄sd, γ̄sr, and γ̄rd, respectively, implying that γsd
and γr are also independent. Thus, the CDF of γAF, FγAF(z) =

∫ z
0
Fγr (x)fγsd(z − x)dx, is evaluated to

FγAF(z) = 1− e−
z
γ̄sd − 2

γ̄sd
e
− z
γ̄sd

∫ z

0

e

(
1
γ̄sd
− 1
γ̄sr
− 1
γ̄rd

)
x

×

√
x(x+ 1)

γ̄srγ̄rd
K1

(
2

√
x(x+ 1)

γ̄srγ̄rd

)
dx. (A.1)

Since IAF = 1
2 log2(1 + γAF) > 0 , we have

E{IAF} =

∫ ∞
0

[
1− FIAF(z)

]
dz

=
1

2 ln(2)

∫ ∞
0

1− FγAF(z)

1 + z
dz, (A.2)

where (A.2) follows from FIAF(z) = FγAF(2
2z − 1) and the

change of variable 22z − 1→ z. Substituting (A.1) into (A.2)
and using [18, eq. (3.352.4)], we obtain

E{IAF} =
1

2 ln(2)

{
A+ e

1
γ̄sdE1

( 1

γ̄sd

)}
, (A.3)

where A ∆
= 2

γ̄sd

∫∞
0

e
− z
γ̄sd

1+z

∫ z
0
e

(
1
γ̄sd
− 1
γ̄sr
− 1
γ̄rd

)
x
K1

(
2
√

x(x+1)
γ̄sr γ̄rd

)√
x(x+1)
γ̄sr γ̄rd

dxdz. Using [16, eq. (5.1.24)] and [16, eq. (5.1.26)],

we have
[
E1

(
1+z
γ̄sd

)]′
= − 1

1+z exp
(
− 1+z

γ̄sd

)
. Thus, A is

evaluated in (A.4) and (A.5) at the top of this page, where
(A.5) follows by the following property

lim
z→z0

B(z) = 0, for z0 = 0,∞. (A.6)

This equality holds for z0 = 0 because limz→0E1

(
1+z
γ̄sd

)
=

E1

(
1
γ̄sd

)
< ∞. To prove the equality of (A.6) for z0 = ∞,

we first obtain a trivial lower bound Bl(z) = 0 and an upper
bound Bu(z) for B(z) as follows:

B(z) ≤ e
z
γ̄sdE1

(1 + z

γ̄sd

)∫ z

0

e
−( 1

γ̄sr
+ 1
γ̄rd

)x

×

√
x(x+ 1)

γ̄srγ̄rd
K1

(
2

√
x(x+ 1)

γ̄srγ̄rd

)
dx

=
1

2
e
− 1
γ̄sd E{γr} lim

z→∞

{
e

1+z
γ̄sd E1

(1 + z

γ̄sd

)}
(A.7)

∆
= Bu(z),

where (A.7) follows by the fact that E{γr} =
∫∞

0
[1 −

Fγr (x)]dx. Since 1
2 ln(1 + 2

x ) < exE1(x) < ln(1 +
1
x ) [16, eq. (5.1.20)], limx→∞{ 1

2 ln(1 + 2
x )} = 0, and
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limx→∞{ln(1 + 1
x )} = 0, using Squeeze Theorem [21],

we have limx→∞{exE1(x)} = 0. This implies that
limz→∞

{
e

1+z
γ̄sd E1

(
1+z
γ̄sd

)}
= 0. Since 0 < γr < min(γsr, γrd),

we have 0 < E{γr} < E{min(γsr, γrd)} < min(γ̄sr, γ̄rd) <
∞. By definition of (A.7), we have limz→∞Bu(z) = 0.
Thus, for z ≥ 0 we have Bl(z) ≤ B(z) ≤ Bu(z), where
limz→∞Bl(z) = limz→∞Bu(z) = 0. Using the Squeeze
Theorem [21], we have limz→∞B(z) = 0, which conse-
quently proves (A.5). Applying change of variable 2z√

γ̄sr γ̄rd
→

x in (A.5), we have

A =

√
γ̄srγ̄rd
2γ̄sd

∫ ∞
0

exp

(√
γ̄srγ̄rd
2γ̄sd

x+
1

γ̄sd

)
× E1

(√
γ̄srγ̄rd
2γ̄sd

x+
1

γ̄sd

)
exp

(
− γ̄sr + γ̄rd

2
√
γ̄srγ̄rd

x

)
×

√
x

(
x+

2√
γ̄srγ̄rd

)
K1

(√
x

(
x+

2√
γ̄srγ̄rd

))
dx.

Finally, substituting the above A into (A.3) yields (3).

REFERENCES

[1] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity,
part I: system description,” IEEE Trans. Commun., vol. 51, Nov. 2003,
pp. 1927–1938.

[2] ——, “User cooperation diversity, part II: implementation aspects and
performance analysis,” IEEE Trans. Commun., vol. 51, Nov. 2003, pp.
1939–1948.

[3] F. Sun, T. M. Kim, A. Paulraj, E. de Carvalho, and P. Popovski,
“Cell-edge multi-user relaying with overhearing,” IEEE Commun. Lett.,
vol. 17, June 2013, pp. 1160–1163.

[4] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity
in wireless networks: efficient protocols and outage behavior,” IEEE
Trans. Inf. Theory, vol. 50, Dec. 2004, pp. 3062–3080.

[5] P. Liu and I.-M. Kim, “Optimum/sub-optimum detectors for multi-
branch dual-hop amplify-and-forward cooperative diversity networks
with limited CSI,” IEEE Trans. Wireless Commun., vol. 9, Jan. 2010,
pp. 78–85.

[6] F. Sun, E. De Carvalho, P. Popovski, and C. D. T. Thai, “Coordinated
direct and relay transmission with linear non-regenerative relay beam-
forming,” IEEE Signal Process. Lett., vol. 19, Oct. 2012, pp. 680–683.

[7] D. N. C. Tse and P. Viswanath, Fundamentals of Wireless Communi-
cations. Cambridge, MA: Cambridge Univ. Press, 2005.

[8] A. Goldsmith, Wireless Communications. Cambridge, U.K.: Cam-
bridge Univ. Press, 2005.

[9] O. Waqar, D. C. McLernon, and M. Ghogho, “Exact evaluation of
ergodic capacity for multihop variable-gain relay networks: a unified
framework for generalized fading channels,” IEEE Trans. Veh. Technol.,
vol. 59, Oct. 2010, pp. 4181–4187.

[10] L. Fan, X. Lei, and W. Li, “Exact closed-form expression for ergodic
capacity of amplify-and-forward relaying in channel-noise-assisted co-
operative networks with relay selection,” IEEE Commun. Lett., vol. 15,
Mar. 2011, pp. 332–333.

[11] D. B. da Costa and S. Aissa, “Amplify-and-forward relaying in channel-
noise-assisted cooperative networks with relay selection,” IEEE Com-
mun. Lett., vol. 14, July 2010, pp. 608–610.

[12] G. Farhadi and N. C. Beaulieu, “On the ergodic capacity of multi-hop
wireless relaying systems,” IEEE Trans. Wireless Commun., vol. 8, May
2009, pp. 2286–2291.

[13] F. Yilmaz, O. Kucur, and M.-S. Alouini, “Exact capacity analysis of
multihop transmission over amplify-and-forward relay fading channels,”
in Proc. IEEE Int. Symp. Personal, Indoor Mobile Radio Commun.
(PIMRC), Sept. 2010, pp. 2293–2298.

[14] G. Farhadi and N. Beaulieu, “On the ergodic capacity of wireless
relaying systems over Rayleigh fading channels,” IEEE Trans. Wireless
Commun., vol. 7, Nov. 2008, pp. 4462–4467.

[15] S. Chen, W. Wang, and X. Zhang, “Ergodic and outage capacity analysis
of cooperative diversity systems under Rayleigh fading channels,” in
Proc. IEEE Int. Conf. Commun. (ICC), June 2009, pp. 1–5.

[16] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables. New York: Dover
publications, 1964.

[17] F. W. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST
Handbook of Mathematical Functions. New York: Cambridge Univ.
Press, 2010.

[18] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and
Products, 6th ed. San Diego, CA: Academic Press, 2000.

[19] J. Pachner, Handbook of Numerical Analysis Applications with Pro-
grams for Engineers and Scientists. New York: McGraw-Hill, 1984.

[20] R. H. Y. Louie, Y. Li, and B. Vucetic, “Performance analysis of
beamforming in two hop amplify and forward relay networks,” in Proc.
IEEE Int. Conf. Commun. (ICC), May 2008, pp. 4311–4315.

[21] S. M. Nikolsky, A Course of Mathematical Analysis 1, 5th ed.
Moscow: MIR Publisher, 1977.

267Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-353-7

UBICOMM 2014 : The Eighth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies


