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Abstract—Location–based services (LBS) shall typically only
be provided within an authorized zone. This is enforced by
location–based access control (LBAC) and affected by occurring
positioning errors. Recent research has brought up different
approaches for LBAC strategies. However, up to now it is unclear
which strategy should be chosen for a given LBS and positioning
system under realistic boundary conditions. In detail, the false
authorization decision may cause severe additional costs when
operating the underlying LBS. Hence, this paper presents a
methodology to analyze the expected costs of LBAC strategies
under the occurrence of positioning errors. The correlation to the
practical costs occurring under realistic conditions is evaluated
in an extensive case study. It is shown that in certain situations
risk–based authorization is easily mislead by imprecise position
error estimates and thus games away its theoretical superiority.
In such situations, ignoring estimated errors may even yield lower
expected costs of operating the LBS. The presented methodology
contributes to finding the most suitable authorization strategy
when deploying a LBS. This finally helps to reduce costs occurring
from false authorization decisions when operating the LBS.

Keywords—Location–based Access Control; Risk–aware Autho-
rization; Positioning Errors

I. INTRODUCTION

Mobile devices with their integrated positioning capabili-
ties enabled LBS, which nowadays are of substantial impor-
tance for most users and service providers [1]. A subclass of
LBS are zone–based. Here, a user is granted the authorization
to use a LBS if he resides within a predefined authorized
zone. For example, imagine a museum that provides an audio
guide for mobile devices. The guide’s explanations for an
exhibition room shall only be audible if the user payed the
room’s entrance fee and is inside. In order to enforce such
authorization semantics, LBAC systems have been developed.
Those systems employ the user’s current location measurement
to decide about the permission to use a given LBS. Such LBS
require precise location measurements, which are unfortunately
inherently affected by a varying degree of uncertainty, for ex-
ample due to changing environmental influences or imprecise
sensors. Thus, the most precise formalization of the real user
location is done by adhering an according probability density
function (pdf) as the position estimate, which is finally derived
from measurements.

An appropriate LBAC strategy is crucial, as false authoriza-
tion decisions typically cause costs for false negatives and false
positives. Early approaches to LBAC focused on extending the
expressiveness of existing access control policies with spatial
information. In those approaches, possibly occurring errors are
ignored and only the most likely geographical point is used as
location estimate. Here, authorization decisions are derived by
checking whether the punctual location estimate is contained

within the polygon of the authorized zone. Those approaches
ignore possibly occurring positioning uncertainty and costs and
are thus called risk–ignoring for the rest of this paper. The sec-
ond category comprises threshold–based approaches to LBAC.
Here, the position estimate pdf is employed to derive the
probability that the user resides within the authorized zone. A
threshold is predefined by the policy designer as the minimum
required probability in order to be authorized for using the
LBS. Here, costs are not considered and often, the derivation
of an appropriate threshold is left unspecified. Even risk–based
LBAC strategies were developed. Here, authorization decisions
are finally derived based on cost functions and the probability
that the user resides within the authorized zone. In detail, such
LBAC systems only grant the authorization if the expected
costs of a false positive undershoot the expected cost of a
false negative. This method is theoretically optimal [2].

However, up to now it is unclear which LBAC strategy
should be chosen in practice. Furthermore, it has not been
studied how the superiority of the risk–based approach depends
on the cost functions for false authorization decisions and the
accuracy of the positioning system. In detail, there is urgent
need to clarify the effect of statistically imperfect position
estimates on the superiority of the risk–based approach. A
methodology for choosing that LBAC strategy with the lowest
expected cost of false authorization decisions when operating
the LBS is non–existent. Nevertheless, such a methodology is
urgently needed in order to avoid costly wrong decisions when
choosing the authorization strategy for a LBS.

In order to solve this problem, this paper presents a novel
approach to analyze the expected costs of false authorization
decisions in the forefront of a LBS’s deployment. In detail, a
methodology for computing the expected costs when operat-
ing the risk–ignoring, threshold–based and risk–based LBAC
strategy is proposed. Given the error characteristics of the
underlying positioning system, this facilitates the computation
of expected savings when operating the theoretically optimal
risk–based strategy compared to the risk–ignoring strategy.
This allows to illustrate the LBS’s sensitivity to statistically
imprecise position estimates of the positioning system. The
need for such analysis is demonstrated for an indoor–LBS in a
typical office environment with WiFi fingerprinting as location
provider. The theoretical optimality of the risk–based approach
is shown to be highly dependent on the LBS’s parameters
and the quality of the reported position estimates. The rest of
the paper is structured as follows: Section II gives a detailed
view on related work. Next, Section III presents the theoretical
approach to analyze the superiority of the risk–based LBAC
strategy. Section IV presents a case study to illustrate the
urgent necessity of a detailed analysis before choosing a LBAC
strategy. Finally, Section V concludes the paper.
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II. RELATED WORK

Location information has been widely used for spatial au-
thorization systems and provisioning of LBS in particular. Of-
ten, these methods are called LBAC or spatial access control.
One important subset of LBAC systems employs the estimated
location in order to determine if the user resides within a
prescribed authorized zone. If true, the access right is granted.
Important approaches provide sophisticated spatial extensions
to role–based access control (RBAC) [3]–[5]. However, even
recently published work, for example from Abdunabi et al.
uses the reported user location without any consideration of
measurement uncertainty [6]. Unfortunately, these approaches
do not show the effectiveness of this strategy when applied to
realistic and error–prone location providers. It is left unclear,
if this strategy is suitable for a given authorized zone and
a concrete location provider. Ardagna et al. proposed an
approach which employs a confidence value for the probability
that the user resides within a predefined authorized zone [7].
If this value overshoots a predefined threshold, the access
right is granted. Thresholds are derived empirically based on
estimates about the positioning system’s sensitivity to changing
weather and environmental conditions. Also, the number of
sensors is mentioned as an important factor when defining a
threshold. However, no concrete methodology to provide any
justification of derived thresholds is given. Shin et al. define
an authorization policy, which also grants access if the user
resides within an authorized zone with a confidence value
larger than a predefined threshold [8]. Here, the uncertainty
of a position fix is modeled as a probability distribution. The
confidence value is derived by integrating the probability dis-
tribution over the authorized zone. The thresholds are derived
for each access rule individually depending on whether the
authorized zone demands high security or is an area of low
sensitivity. Again, only very abstract and vague statements
about deriving a suitable threshold are mentioned. Krautsevich
et al. consider costs when making authorization decisions
based on the values of discrete attributes with uncertain values
[2]. A threshold–based authorization strategy is shown to be
cost–optimal in their scenario for a certain threshold based
on cost functions. However, the approach does not show
the influence of the uncertainty estimates’ quality on the
cost–effectiveness of their strategy. Marcus et al. proposed a
risk–aware approach for trajectory–based authorization using
probabilistic trajectories derived from an adapted particle filter
in combination with WiFi fingerprinting [9]. Here, expected
costs and the corresponding risk are minimized by adhering
assigned cost functions of false authorization decisions and the
probability that the user’s trajectory satisfies the authorization
condition.

Error estimators of positioning systems are needed to oper-
ate threshold–based and risk–based LBAC strategies. Basically,
given an estimated location µ, an error estimate is a probability
distribution P(µ|x) describing the likelihood to observe an
estimated location of µ when standing at position x in the
real–world. Hightower et al. [10] use a commercial infrared
badge system and an ultrasound time–of–flight badge system.
The infrared error estimates are a static bivariate Gaussian with
a covariance matrix Σ =

(
2.3 m 0

0 2.3 m

)
. The values are derived

from the vendor specification of the system’s range. The error
estimates of the ultrasound system are retrieved from a lookup
table built from previously recorded measurement errors within

the test lab. Zandbergen et al. observed GPS errors with a
root mean square error of 9-11 m for modern Smartphones,
which highly increase in urban areas [11]. Zandbergen et al.
also found that the positioning errors of GPS are not perfectly
approximated by Gaussian distributions and hence, outliers
need to be expected [12]. The error distribution of GPS is
found to be approximate to a Rayleigh distribution. Marcus
et al. proposed an error estimator for SMARTPOS, an indoor
positioning system based on WiFi fingerprinting [13]. Here, the
errors were shown to be approximately normally distributed
with a mean of 1.2 m.

III. LOCATION–BASED AUTHORIZATION UNDER
POSITIONING ERRORS

This section first discusses the characteristics of positioning
systems and subsequently describes the methodology to theo-
retically derive the expected costs for each LBAC strategy. The
expected savings of uncertainty–aware strategies are compared
to the risk–ignoring strategy.

A. Positioning Systems and Error Estimators

The key technology for LBS are positioning systems, which
determine the user’s location either terminal- or infrastruc-
ture based. In outdoor scenarios, GPS emerged as the most
important positioning technique, while in indoor scenarios
WiFi fingerprinting showed very promising results [12] [13].
In the following, the returned position measurements are
called position fixes and noted as µ with µ ∈ R2. In all
cases, position fixes are subject to physical perturbations due
to interference, reflections, multipath propagation, humidity,
imprecise sensors, and so on [1]. Consequently, all position
fixes are inherently affected by an error of varying degree as
discussed in Section II. The user’s ground truth position around
the returned position fix µ can be modeled as a probability
density function (pdf), which is derived by error estimators.

In all cases, such error estimates are derived from singu-
larities of the underlying measurement by an according error
estimator. For example, in case of WiFi fingerprinting, the
distribution of the k nearest neighbors around µ was shown
to be a good indicator for the occurring error [13]. Given a
position measurement with an estimated position of µ, the error
estimator finally derives a scale parameter Σ which defines a
pdf around µ in order to describe the ground truth location. In
case of WiFi Fingerprinting, the scale parameter represents the
covariance matrix of the underlying bivariate normal pdf. For
the rest of this paper, position fixes µ are reported with a scale
parameter Σ of an appropriate error estimate pdf and finally
written as (µ,Σ). The larger the estimated scale parameter Σ,
the more uncertainty exists with the position fix (µ,Σ). In the
following, the accuracy of positioning systems is described by
a distribution Ferr of reported scale parameters Σ. Practical
experiments have shown that inverse Gaussian distributions
give a very good fit for Ferr in case of WiFi fingerprinting.
However, the distribution of Ferr is finally needed to analyze
the suitability of single LBAC strategies for a concrete scenario
and needs to be known for the employed positioning system.

B. Risk–ignoring, threshold– and risk–based LBAC strategies

The task of a LBAC strategy is to derive an authorization
decision auth ∈ {true,false} based on a position fix
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(µ,Σ). The most basic LBAC strategy is the risk–ignoring
authorization strategy as employed in [3]–[6]. Here, only the
estimated position µ is considered, when deriving the autho-
rization decision. In detail, this strategy performs a simple
point in polygon test to determine, if the estimated position
µ is contained within the authorized zone Z:

auth⇔ µ ∈ Z (1)

The main advantage of such systems is the low computational
overhead and the efficiency of point in polygon tests. In
detail, no error estimate needs to be derived and no complex
numerical operations need to be performed.

In order to consider the occurring uncertainty of a position
fix (µ,Σ), the threshold–based LBAC strategy derives its
authorization decision based on the probability pZ that the user
resides within the authorized zone Z , [2,7,8]. This probability
is derived from the estimated position µ and the error estimate
Σ and needs to overshoot the threshold:

auth⇔ pZ (µ,Σ) > threshold (2)

A drawback of this strategy is the dependence on reliable
error estimators and the computational overhead of computing
pZ (µ,Σ). Furthermore, it is not clear, which threshold makes
sense for a given LBS.

A more sophisticated strategy is the risk–based strategy
[2] [9]. Here, the expected costs of granting or denying the
authorization request are compared. In particular, the autho-
rization request is only granted, if the expected cost cfp of
a false positive undershoot the expected cost cfn of a false
negative. The expected cost can also be interpreted as the risk
of each outcome:

auth⇔ (1− pZ (µ,Σ)) · cfp < pZ (µ,Σ) · cfn (3)

This has the same computational complexity as the threshold–
based strategy. Its main advantage is its decision–theoretical
optimality given statistically perfect error estimates Σ, which
will be discussed in detail later in Section IV.

The risk–based strategy is a real generalization of the
threshold–based strategy. Obviously, according to (3), the risk–
based strategy depends on the static costs cfp and cfn and the
ratio cfp

cfn
in detail. For each ratio cfp

cfn
, there exists exactly one

value of threshold such that a threshold–based strategy with
threshold behaves exactly like a risk–based strategy with cfp

cfn
.

This easily follows from resolving (3) to pZ , which finally
represents the corresponding value of threshold:

threshold =

cfp

cfn

1 +
cfp

cfn

(4)

This correspondence is depicted in Figure 1. Clearly, the higher
the cost of a false positive compared to the cost of a false
negative, the higher the corresponding value of threshold,
which converges to 1. The knowledge of this correspondence
has two positive effects. On the one hand, existing LBAC
policies based on the threshold–based strategy can be assigned
comprehensible thresholds given the cost functions of the
underlying service or resource to be granted. This correspon-
dence finally allows to derive such values of threshold that
the threshold–based strategy also yields risk–optimal decisions
given the specific cost functions for the LBS to be deployed.
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Fig. 1. Correspondence of a risk–based LBAC strategy with a given value of
cfp
cfn

to a threshold–based LBAC strategy with a predefined value of threshold.

On the other hand, analysis of a risk–based strategy deployed
for a LBS also allows to assess a threshold–based strategy
with a corresponding threshold. However, in real situations,
both strategies are subject to the quality of the underlying
error estimator. Statistically imperfect error estimators may
under- or overestimate the real error, which is a severe weak
point compared to the risk–ignoring strategy. In order to finally
derive the most suitable LBAC strategy for a given LBS, first,
the theoretically expected costs for each LBAC strategy are
derived in the next section.

C. The Expected Costs of LBAC strategies

In this section, a methodology is derived to compare the
LBAC strategies w.r.t. the expected costs of false authorization
decisions. These expected costs are highly dependent on cfp
and cfn and the uncertainty of underlying position fixes. In
order to decide about the authorization of a requesting user to
use a given LBS, the underlying LBAC strategy is provided
a position fix (µ,Σ) to check the authorization conditions
according to the aforementioned methods. Given this position
fix, the statistical distribution of the user’s ground truth position
x around µ is denoted as the probability density function
Fµ,Σ(x). Note, the distribution of error estimation scale pa-
rameters Σ is denoted as Ferr in the following.

In the next step, a methodology is presented, which allows
to assess the expected costs E(costsi) for each LBAC strat-
egy i ∈ {risk–ignoring, risk–based, threshold–based}. This is
achieved by employing a function costsi(µ,Σ) denoting the
expected costs arising from a possibly false decision when
authorizing a user with position fix (µ,Σ) with LBAC strategy
i. Therefore, for each LBAC strategy i, the expectation of
occurring costs is derived w.r.t. the set R ⊆ R2 of possible
estimated locations µ ∈ R and the distribution of occurring
error estimates Ferr(Σ):

E(costsi) =
1

|R|

∫
µ∈R

∫ ∞

0

costsi(µ,Σ) · Ferr(Σ) dΣ dµ (5)

The rest of this section focuses on deriving the function
costsi (µ,Σ) for each LBAC strategy i in order to finally derive
its expected overall costs E(costsi) according to (5).

In order to derive E(costsi) for each LBAC strategy i,
the function costsi(µ,Σ) needs to be specified first. Here, a
prerequisite is the computation of the probability pZ (µ,Σ) that
a user with position fix (µ,Σ) resides within the authorized
zone Z:

pZ (µ,Σ) =

∫
x∈Z

Fµ,Σ(x) dx (6)
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In the following, p is used as an abbreviation for pZ (µ,Σ) if
no ambiguities exist. Finally, this allows to derive the expected
costs for each LBAC strategy given a position fix (µ,Σ).

1) Deriving Expected Costs of Risk–ignoring Approaches:
Given a position fix (µ,Σ), the risk–ignoring approach simply
checks if µ ∈ Z . Nevertheless, the user’s ground truth position
x is distributed according to the position fix’ pdf Fµ,Σ(x) and
consequently lies outside of Z with probability of (1− p).
Thus, if the authorization request with the estimated location
µ is denied, the probability of a false negative is p. Contrary,
if the authorization is granted, the decision is a false positive
with probability (1− p). Assume both cases to cause costs cfn
and cfp, respectively. This finally allows to derive the expected
costs:

costsrisk–ignoring (µ,Σ) =

{
(1− p) · cfp, iff µ ∈ Z
p · cfn, else (7)

Note, that given a position fix µ, the risk–ignoring strategy
unfortunately may even choose that authorization decision with
higher expected cost.

2) Expected Costs of Threshold–based Approaches: Given
a position fix (µ,Σ), the threshold–based strategy derives its
authorization decision based on checking whether probability
p that the user resides within Z exceeds a predefined threshold.
The probability is derived according to (6). Finally, this allows
to compute the expected costs for the threshold–based strategy
for each possible position fix (µ,Σ):

coststhreshold–based (µ,Σ) =

{
(1− p) · cfp, iff p ≥ threshold
p · cfn, else

(8)
Again, despite the expected cost of an authorization decision,
only the satisfaction of the threshold is considered.

3) Expected Costs of Risk–based Approaches: The risk–
based LBAC strategy first computes the expected costs of
either granting or denying an issued authorization request.
Clearly, this results from multiplying the cost of cfp and cfn
with their individual probability of occurrence (1− p) and p.
Finally, that authorization decision is taken, which promises
lower expected costs. Formally, the expected costs for granting
or denying the authorization request compute as:

costsrisk–based (µ,Σ) = min ((1− p) · cfp, p · cfn) (9)

Clearly, the risk–based approach always derives that authoriza-
tion decision with the minimal expected costs. Thus, when-
ever the risk–ignoring or threshold–based strategy choose that
authorization decision with lower expected costs by chance,
the risk–based strategy will consequently also choose that
decision. This implies, that the expected costs of the risk–based
strategy theoretically are a lower bound for the expected cost
of any other LBAC strategy.

D. Analyzing the Expected Costs of LBAC strategies

As seen above, the expected costs of the risk–based
LBAC strategy are a theoretical lower ound for the expected
costs of the risk–ignoring and threshold–based strategy. The
percentaged savings E(S) w.r.t. any LBAC strategy j ∈
{risk–ignoring, threshold–based} compute as:

E (S) =
E (costsj)− E (costsrisk–based)

E (costsj)
(10)

The theoretically expected savings E (S) from fewer false
authorization decisions are laying the foundation for deciding
about the overall most cost–effective authorization strategy.
Given the boundary conditions Z , Ferr and R of a LBS,
the expected savings E (S) strongly depend on the ratio cfp

cfn

of the LBS’s costs for false authorization decisions. Hence,
the theoretically expected savings E (S) for a ratio of cfp

cfn
will

finally play a major role when choosing the practically most
cost–effective LBAC strategy. This will be explained later in
Section IV in detail.

The dependence of E (S) on cfp

cfn
is exemplary depicted in

Figure 2 for five theoretical examples with increasingly more
inaccurate positioning systems and an authorized zone of 5×
5 m. Note, µ is the mean of Ferr in this figure. The curves are
derived using (5). Clearly, the expected savings E (S) show
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Fig. 2. Theoretically computed expected savings E (S) for five different
distributions of inverse Gaussian distributions of Ferr.

a minimum for each distribution of errors Ferr. The valleys
around the minima of the graph E(S) spread with increasing
accuracy of the positioning system. This coincides with the
intuition, that the expected savings from operating the risk–
based strategy are higher if the positioning system is more
inaccurate.

The dependence of the expected savings on the ratio
of costs cfp

cfn
is a direct consequence of the dependence of

costsrisk–based(µ,Σ) on cfp

cfn
. Given a fixed value of Σ, savings

can only arise for such estimated locations µ where the risk–
based approach takes a different authorization decision than
the risk–ignoring approach. Clearly, the larger the set of such
estimated locations µ, the larger the expected savings. This
correlation is depicted in Figure 3 in 1D for a authorized
zone of 5 m, and Gaussian error estimates with a fixed
value of Σ = 3.5 m. The difference of cost functions for
the risk–based and risk–ignoring LBAC strategy is marked
green. Here, cost functions cfp = cfn = 1 were chosen, i.e.,
the risk–based LBAC strategy only authorizes a request with
position fix (µ,Σ) if p > 0.5 according to (4). As the risk–
ignoring strategy authorizes all µ ∈ Z , the risk–based approach
only derives a more cost–effective decision for such µ with
p(µ, 3.5 m) < 0.5.

If the ratio of costs was increased, the shape of cost
functions in Figure 3 changes accordingly. In detail, the
threshold required by the risk–based LBAC strategy rises
according to (4), which increases the set of µ ∈ Z where
the risk–based approach denies the authorization and thus
has lower expected costs. However, if the threshold implied
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Fig. 3. A 1D example of an authorized zone Z showing the expected costs
for the risk–ignoring and risk–based strategy for a fixed value Σ and cost
functions cfp = cfn = 1. The green area marks difference of costs.

by the ratio of costs finally overshoots the maximum of p
within Z , all authorization requests will be denied by the risk–
based strategy. Equally, if the ratio is decreased, the threshold
required by the risk–based strategy decreases according to (4).
If the required threshold undershoots the value of p on the
boundary of Z , the set of location estimates authorized by
the risk–based strategy also includes µ 6∈ Z . If the ratio of
costs converges to 0, the set of authorized µ and the expected
savings converge to infinity. Both authorization strategies yield
the same expected costs if the threshold implied by the ratio
of costs according to (4) corresponds to the value of p on the
boundaries of Z . In that case, the risk–based and the risk–
ignoring approach show identical behavior. If the distribution
of Ferr shows a high probability for such Σ which cause an
identical or nearly identical behavior of the risk–based and
risk–ignoring strategy, the expected savings E(S) will finally
have a lower minimum. Intuitively, the lower the value of
this minimum and the wider the valley around it, the more
sensitive is the risk–based strategy to statistically imprecise
error estimates Σ. In detail, the risk–based strategy might
be mislead by wrong error estimates and game away the
theoretically small benefit. Thus, the next section evaluates
the weakness of the risk–based strategy when deployed with
realistic error estimators.

IV. USE CASE: DEPLOYING A ZONE–BASED LBS IN AN
OFFICE ENVIRONMENT

The expected savings of the risk–based strategy are now ex-
emplary evaluated in a use case in a typical office environment.
Here, WiFi fingerprinting is used as the underlying positioning
system. A radiomap of 206 fingerprints was recorded within
an area of 1400 m2 as depicted in Figure 4. An overall set
of 1500 test fingerprints was recorded, each labeled with the
room where it was recorded. All areas outside the labeled
rooms shown in Figure 4 were assigned the label outside.
Positioning is performed according to prior work, where a
kNN approach with k = 4 is used [13]. The position estimate
is derived as the weighted mean of the nearest neighbors.
Two error estimators, a Laplace and Gaussian error estimator,
were used in order to compare the impact of the statistical
quality of returned error estimates on the expected savings
E(S). The Gaussian error estimator returns bivariate normal
distributions and is defined according to prior work [13]. In
detail, the aforementioned scale parameter Σ corresponds to

02
01

0304

06 05

07

09

08

10

Fig. 4. The recorded radiomap of fingerprints (points) used for WiFi
fingerprinting, installed access points (diamonds) and labeled offices.

the covariance matrix of the returned Gaussian and is defined
as Σ =

(
σ 0
0 σ

)
. Here, σ is derived as the weighted average of

the kNNs’ distances to the position fix. In contrast, the Laplace
error estimator returns rotational symmetric bivariate Laplace
distributions with a mean of µ and a diversity b of Σ = b.
Again, the scale parameter is derived as the weighted average
of the kNNs’ distances to the position fix µ.

The distribution of estimated scale parameters Σ is shown
in Figure 5 and mainly follows an inverse Gaussian with
parameters µ = 0.8 and λ = 9.5. In the evaluation, the scale
parameter is estimated for a derived position estimate µ and
used twice as the variance for a Gaussian and accordingly as
the diversity for the Laplace distribution. A set of authorized
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Fig. 5. The distribution Ferr of scale parameters estimated on the recorded
WiFi fingerprinting testset approximately follows an inverse Gaussian.

zones was defined as the labeled rooms shown in Figure 4.
In order to compare the effects of the error estimators, the
recorded testset was applied to each of the authorized zones,
once using the Laplace error estimator and once using the
Gaussian error estimator. In order to identify the impact of the
authorized zones’ size, a second run was performed, where the
authorized zones consisted of all possible unions of labeled
neighbored rooms from Figure 4. The results are depicted in
Figure 6. All runs approximate the theoretically derived shape
with a single minimum. For both runs, with single or aggre-
gated rooms, the percentaged expected savings E(S) obtained
by employing the Laplace error estimator clearly overshoot
the value of E(S) obtained when applying a Gaussian error
estimator. However, the theoretical optimality of the risk–based
strategy is not given in all cases here. All runs except for
the one with a Laplace error estimator and non–aggregated
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Fig. 6. In our experiment, the Gaussian error estimator clearly compromises
the theoretical optimality of the risk–based approach under realistic conditions.

rooms have a negative minimum. For both, the Laplace and
the Gaussian error estimator, the expected savings for the
run with aggregated rooms are slightly lower than for the
single, non–aggregated rooms. This stems from the intuitive
fact, that the application of the risk-based strategy is more
promising if the rooms are small compared to the estimated
errors. Consequently, for aggregated rooms, the minimum for
the theoretically expected savings is lower than for non–
aggregated rooms and hence, the small superiority is gamed
away more easily by imprecise error estimates. Finally, the
evaluation results show several important implications. First,
the optimality of the risk–based strategy strongly depends on
the statistical correctness of the underlying error estimator.
The extent of its statistical error compared to the authorized
zone also shows a negative effect on the expected savings of
the risk–based LBAC strategy. Hence, the cost–optimal LBAC
strategy can only be determined by recording a set of test data
around the authorized zone of the LBS in the forefront of its
deployment. This test data needs to be evaluated with a suitable
error estimator for the underlying positioning system. If the
expected savings E(S) are negative or near 0 for the LBS’s
ratio of costs cfp

cfn
, the application of the risk–based strategy

is most likely inferior to the risk–ignoring strategy. However,
when such evaluations are performed in order to decide about
the most suitable LBAC strategy, a large number of test data
is necessary in order to obtain statistically sound results.

V. CONCLUSION AND FUTURE WORK

This paper examined the problem of choosing an appropri-
ate location–based authorization strategy, for example needed
for LBS, under the occurrence of positioning errors. First,
expected costs of operation were theoretically derived for three
distinct authorization strategies. The risk–ignoring, threshold–
based and risk–aware strategy. It was shown that the superiority
of the risk–aware to the risk–ignoring strategy strongly de-
pends on the ratio of costs of false positive and false negative
decisions and is minimal for a specific ratio of these costs.
In a practical evaluation, the risk–aware policy was shown
to be easily mislead to suboptimal decisions when operated
with statistically imperfect error estimators. This clearly shows
that in practice the widely accepted theoretical superiority
of risk–based authorization strongly depends on the ratio of
costs and the quality of the error estimator. Furthermore, it is

shown that the superiority of the risk–based approach needs
to be empirically asserted if the LBS’s ratio of costs is near
the theoretical minimum of expected savings. Clearly, when
deploying a LBS, choosing the right authorization strategy is
crucial in order to minimize the expected costs arising from
false authorization decisions. Regardless of the importance of
the correct choice, this question has not been studied under
realistic assumptions up to now. Thus, the results presented in
this paper show that the theoretically optimal strategy is not
the most effective strategy in all cases under realistic boundary
conditions. A methodology to assess the theoretically expected
savings of the risk–based and threshold–based strategy is
presented. This finally allows to analyze if the risk–aware
strategy shows only little improvement given a specific LBS
and finally indicates if its application needs to be empirically
justified. Finally, the presented approach helps to deploy LBS
more cost–efficiently and thus supports their acceptance and
efficiency. Future work is seen in developing quality of service
metrics for LBS based on the expected costs of their operation.
In detail, the effects of imprecise position estimates on LBS
require further research.
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