
Memguard: A Memory Bandwidth Management in Mixed Criticality Virtualized
Systems

Memguard KVM Scheduling

Nicolas Dagieu, Alexander Spyridakis, Daniel Raho

Virtual Open Systems
Grenoble - France

Email: {n.dagieu,a.spyridakis,s.raho}@virtualopensystems.com

Abstract—Memory bandwidth in standard computing architec-
tures using DRAM (Dynamic Random Access Memory) is one
of the most critical parts of the system, mainly responsible
for performance degradation in memory bandwidth demanding
computations. Memguard is a kernel module designed to solve
this issue, created with the goal to schedule memory bandwidth
at the CPU (Central Processing Unit) core level and enabling
bandwidth regulation functionalities. In this paper we propose
a new implementation of Memguard that can also be utilized
in mixed-criticality virtualized computing environments. This
involves the regulation of memory bandwidth at the guest level
and forwarding memory bandwidth needs to the host, where the
requests are enforced. Introduced changes include modifications
to the CFS (Completely Faire Scheduler) Linux scheduler to
work with the modified Memguard kernel module. The original
kernel module and the proposed implementation have been tested
on an ARMv8 platform to demonstrate the performance and
viability of such extensions on future embedded systems. A
specific benchmark suite was used to stay as close as possible
to common scenarios, measuring the memory bandwidth and the
performance gain when scheduling at this level is introduced.

Keywords–Memguard; memory bandwidth scheduling; CFS;
virtualization; KVM/ARM.

I. INTRODUCTION

Nowadays, computers and embedded systems are based
on a multi-component architecture, which requires at least a
microprocessor, some RAM (Random Access Memory) and
other optional peripherals and storage devices. Over the last
decades the performance of CPUs (Central Processing Unit)
has been increasing steadily but memory, on the other hand,
has not followed this trend, as such, computer systems are
facing the Memory Wall problem [1][2]. Even if new solutions
like HBM (High Bandwidth Memory) or stacked memory
are attempts to solve this problem [3], most actual platforms
are based on standard DRAM (Dynamic Random Access
Memory). In this context, it is difficult to provide a guaranteed
bandwidth to an application, especially real-time (i.e., soft or
hard real-time) applications executed together with other tasks,
as such, memory-bandwidth remains the most critical part of
the system, especially on multicore systems (where memory
is shared).

The performance bottleneck of memory bandwidth has
been extensively studied, and several solutions [4] have been
implemented. Most of them are hardware solutions [5][6], at
the memory controller level. Few solutions have been proposed
at the software level [7][8][9], mostly for server distributed

large scale systems [10]. In this paper, memory bandwidth
management has been considered as a solution to regulate
virtualized environments.

A. Contribution of this paper

The existence of memory bottlenecks in actual computing
systems is highlighted which results in degraded performance.
In a mixed criticality and virtualized system, it also decreases
the interactivity (interrupts processing can be slowed down).
There is a need to implement a memory bandwidth reservation
service to solve this issue.

A solution, called memguard was chosen as the memory
bandwidth reservation system. The need to experiment with
memory bandwidth regulation features on an embedded sys-
tem, resulted in porting Memguard from x86 to the ARMv8
architecture and benchmarks demonstrate that even on ARMv8
Memguard can be beneficial as a memory bandwidth reserva-
tion system.

In the context of virtualization and embedded mixed-
criticality systems, a communication interface between guests
and the host was designed which forwards memory bandwidth
requests to the Memguard kernel module. This new design
also makes use of CFS [11] to sync the memory bandwidth
reservation of tasks with the default scheduler of Linux.

An ARMv8 platform [12] was used to run experimental
tests, which represents actual high-end embedded computer
systems. This platform was selected to demonstrate that actual
systems can optimally run mixed-criticality workloads by
utilizing a memory bandwidth mechanism with virtualization
in mind. Qemu/KVM (Kernel-base Virtual Machine) [13] was
used as the virtualization solution to run experiments, as it is
the most popular embedded virtualization solution.

B. Organization of the paper

The rest of this paper is organized as follows. Section II
describes the state of the art of Memguard. Then, Section III
lists the problems with virtualized mixed-criticality systems.
Methods and benchmarks are explained and detailed in Section
IV while initial results are reported in Section V. Possible
implementations and solutions are detailed in Section VI and
experimental results in Section VII. Finally, Section VIII
summarizes the findings and directions for future work.

21Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

II. MEMGUARD KERNEL MODULE

Memguard [14][15] is a memory bandwidth aware sched-
uler, it distinguishes memory bandwidth in two parts, guar-
anteed and best-effort. It provides guaranteed bandwidth for
temporal isolation and best-effort bandwidth to use as much as
possible available bandwidth [16] (after all cores are satisfied).
Memguard is designed to be used on actual systems using
DRAM as main memory.

The common DRAM architecture consists of banks with
different rows/columns [17]. Maximum memory bandwidth
can be achieved in the case where data are located in different
banks [18], in other cases the memory bandwidth can be
limited and in such cases, Memguard can improve performance
by scheduling the memory bandwidth to provide the desired
Quality of Service.

A. Memguard architecture
Memguard is implemented as a linux kernel module, which

is based on the use of the Performance Monitor Unit (PMU).
It captures the memory usage of each core by reading the
Performance Counter Monitor (reading memory request if used
with PCM lower than 2.4 and memory reads and writes if PCM
upper than 2.4).

The module architecture is based on two parts, the first
being the Reclaim Manager which stores and provides band-
width allocation to all per-core B/W regulators, while the other
part is the per-core B/W regulator that monitors (thanks to the
PCM) and regulates the memory bandwidth usage of each core.
Memguard is linked to physical cores, the regulation process
works only at the core level. Due to this architecture, regulating
a process running on several cores at once is not easily feasible.

We can summarize the Memguard architecture components
as follows:

The global budget manager aka Reclaim manager, which
handles the memory budget on each core of the CPU. Every
scheduler tick (1 ms), if the predicted budget of each core
is under the assigned (fixed) budget of the overall system, a
memory budget tank is set to give more bandwidth during the
future time slice for tasks that need to access more B/W than
required (and some B/W is available in the reclaim manager).

The per core bandwidth regulator, handles the memory
management for each core, updating the actual used budget
with the PCM (Performance Counter Unit) value, and con-
figuring the PCM to generate an overflow when all memory
budget is used. Additionally it requests more bandwidth from
the reclaim manager if needed.

B. Memguard functionalities and use-cases
Beside this architecture, Memguard has different features.

Its major functionality is the bandwidth limiting management,
allowing users to set a limit (in MB/s, weight or in percent).
Another feature is the per-task mode, where it uses task
priority as the core’s memory weight. The last major feature is
the reclaim bandwidth functionality, distributing any leftover
bandwidth that was not consumed, enabling the most effective
use of memory bandwidth. When not in use, the available
bandwidth is equal to the max-bandwidth setting set at start
(or updated later).

The simplest use case for Memguard is to balance work-
loads, reducing the memory bandwidth of a task to preserve
memory bandwidth for others. Memguard usage is linked to
the physical cores of the CPU, consequently application level
use is complicated and must be done manually. Memguard
usage requires to set the bandwidth manually, thus users must
be aware of application B/W needs and on which core they
are being executed.

III. MEMORY MANAGEMENT IN EMBEDDED VIRTUALIZED
ENVIRONMENTS

A. Context of use
In the past most actual embedded systems were designed to

handle standalone actions within simple scenarios. Nowadays,
more and more autonomous and network related tasks are uti-
lized for embedded systems, as well as multimedia applications
and database analysis workloads. At the same time embedded
systems are designed with several small micro-controllers to
communicate with each other (and/or with a master), resulting
in increasing costs and decreasing the MTBF (mean time
before failure).

As more demanding usage patterns emerge, most actual
multi-chip embedded systems are being replaced by a central
unit, performing most of the computation and networking
related workloads. This paradigm shift raises the problem of
mixed-criticality which is at the heart of the system, if a single
platform is used to run different criticality software, additional
resource and safety constraints are created.

Mixed-criticality is essentially the concurrent execution
of hard real-time application together with soft real-time
or standard applications [13] on the same processing unit.
As such, this kind of system needs to provide spatial and
temporal isolation of system resources, and in addition proper
scheduling between hard and soft real time processes, as well
as Quality of Service.

Virtualization is the last component of a future unified
embedded system architecture. Virtual Machines give the pos-
sibility to ensure the security and resource isolation between
tasks. Each task, for example a video processing task (capture
video from a sensor and proceeding the image to find particular
patterns) could run at the same time as a video playback
workload and/or additional critical tasks. Each task can then
be executed in a separate VM with all the software needed and
the correct amount of processing/memory bandwidth reserved.

B. Requirements
In this context, the memory bandwidth management be-

comes the bottleneck of the system not only because all cores
use the same memory but also because all different VMs are
running simultaneously. Each VM handles its own software
environment, with a specific priority and memory bandwidth.
The priority of the guest is already solved with a priority
scheduling mechanism[14], but for memory bandwidth this
is not the case and it must be managed to reduce memory
performance degredation.

As Memguard was designed to be used at the core level, its
use at the Guest level in a virtualized environment involves to
utilize Memguard in a different manner and to modify/extend
parts of it. For now Memguard is restricted to be used

22Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

with cores, and can’t be linked to a program executed on
different cores (scheduler balancing activated). As a result it’s
impossible to set a memory bandwidth policy on a guest to
restrict its bandwidth and allow other guests make use of the
remaining available bandwidth.

The primary target of this paper is to suggest a solution
which enables a guest to set its memory bandwidth require-
ments. This would allow to set manually or automatically
memory bandwidth in order to use it as efficiently as possible.
The second target is to produce a tool which schedules the
bandwidth between guests in order to limit some of them
while letting others to maximize their usage. The possibility
to schedule in that way, would allow to preserve some tasks
(guests), making sure that they always have the correct amount
of bandwidth. This would create a temporal memory separation
and provide even more security between guests.

IV. METHODS AND BENCHMARKS

This paper uses a specific benchmark suite, composed by
a virtualized environment and various software benchmarks.
The experimental environment is based on the Linux 4.3.0
kernel with an open-embedded file-system, while Qemu/KVM
is the selected virtualization solution. The actual benchmark
platform is a Juno r0 development board with 2 Cortex-A57
and 4 Cortex-A53 cores. Only A57 cores are used to run the
needed number of guests, as the memory bandwidth difference
between A57 and A53 cores is too large to include both
types of cores (from 2500MB/s to 1500MB/s). The taskset
utility is used to set guests on specific cores, which they are
based on 4.3.0 Linux and a minimal file-system, including the
benchmark software suite.

The first benchmark used is a program used by the original
author of memguard, this program is used to get a point of
comparison between our platform and the author’s one. It
consists of a simple buffer copy-process application which
utilizes a large amount of memory bandwidth, while provid-
ing a number of processed frames per second. The second
program is the well-known Mplayer video suite. Mplayer was
chosen to represent multimedia use-case in a mixed-criticality
environment and is used with the benchmark option to see
if a high-bitrate video decoding (two videos are used, 5Mb/s
and 1Mb/s) process is runnable in the benchmark environment.
The last benchmark is an FFT program, simulating a capture
and process workload in soft real-time constraints. The FFT
benchmark is called periodically and allocates a memory buffer
for FFT computations, the output is a number of buffers
processed per second.

V. EXPERIMENTAL RESULTS

A. Memory bandwidth limitation
The first test (Fig. 1) highlights the memory bandwidth

limitation mechanism. For this purpose, four different tasks
will be launched at the same time. A different memory
bandwidth weight will be associated to each core/task. Each
task is running on a specific core (one core = one task).

During the first 120 seconds, Memguard is not loaded. Af-
ter 220 seconds, Memguard is working with different weights
to highlight the memory bandwidth limitation on each task.
Task 1 has the maximum weight while task 4 has the lowest

Figure 1. Memory bandwidth reservation on different cores

(tasks 2 and 3 have the same weight). The results are equivalent
to the author ones, and show that Memguard is regulating the
memory bandwidth of each task.

B. Memory bandwidth reclaim feature
The second experiment (Fig. 2) highlights the reclaim

feature, a simple task is used to test if Memguard can release
more bandwidth than the applied limit.

Figure 2. Memory bandwidth reclaim feature

The task is running between 0 to 15 seconds with an
under-estimated memory bandwidth limit. The limit was set
to 240MB/s, and when the reclaim feature is enabled the
memory bandwidth reaches 590MB/s. This experiment shows
that the reclaim feature can provide more than twice the
original memory bandwidth limitation if more bandwidth is
available.

C. Memguard’s overhead
The CPU overhead of Memguard was measured to under-

stand how to efficiently use Memguard in order to reduce this
overhead as much as possible. The experiment uses Memguard
with the reclaim feature activated.

23Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Figure 3. Relation of memory bandwidth allocation and CPU utilization

Depending on the memory reservation policy set by the
user, Memguard can introduce a significant overhead to the
system, in terms of CPU utilization. Fig. 3 shows the relation
between CPU utilization and memory bandwidth allocation
of an application. In cases where a large memory bandwidth
is allocated, CPU utilization remains low, but when memory
bandwidth for an application is underestimated, Memguard
produces a large overhead due to the reclaim feature. This
feature throttles the core and reallocates a fixed memory
bandwidth amount, if the available bandwidth is too high, the
produced overhead can reach up to 78 percent of CPU usage.

D. Example of use
In order to understand the way Memguard can be used in

real-life computation, an experiment with video playback has
been done (Table I).

TABLE I. VIDEO DECODING BENCHMARK

Environment of execution Processing time
Plain linux 2 cores running same video task Core 1 : 60.318s (decoding time)
(mplayer) Core 2 : 60.320s (decoding time)
Memguard with under estimated bandwidth : Core 1 : 313.313s (decoding time)
20 MB/s on all cores Core 2 : 311.306s (decoding time)
Memguard with correct estimated b/w Core 1 : 58.836s (decoding time)
core 1 (250 20 20 20) Core 2 : 276.001s (decoding time)
Memguard with correct estimated b/w Core 1 : 59.881s (decoding time)
core 1 and best-effort policy activated Core 2 : 95.619s (decoding time)

This experiment highlights the memory-bandwidth reser-
vation capabilities of Memguard. When standalone Linux
is executed, 60s (approx.) are needed to decode the video,
whereas when Memguard is enabled, decoding lasts 58s.
The interest of Memguard resides in the memory-bandwidth
temporal reservation. A core can be limited to let other cores
to use as much as possible the remaining memory-bandwidth
(last case).

E. Memory bottleneck
Memory bottleneck conditions are highlighted in the first

experiment (Fig. 1). Executed applications are all performing
with similar results at the start of the test, where the bandwidth

is divided equally to the guests. When Memguard is enabled,
task number 1 reaches more than twice of the original memory
bandwidth usage. The memory bottleneck is obvious, and if
the user wants to prioritize a task due to its criticality, it’s
impossible to do so without Memguard. As such, memory
bandwidth is the limiting parameter of the whole system,
introducing increased latency and overall reduced performance.

F. Embedded virtualization problems
Since with QEMU/KVM a virtual machine is just another

task to be scheduled by the host, memory bandwidth can have a
significant role in performance. Every guests is using the same
memory bandwidth and no hierarchy is implemented (like in
a CPU scheduler) between guests. This memory-bandwidth
bottleneck can eventually affect the performance of guests in
scenarios where memory is aggressively utilized.

When Memguard is used to regulate guests, the user must
launch each guest on one specific core (or several but, at least
one core must be reserved to each guest), reducing the interest
of using Linux with KVM, with the load balancing between
cores. From the host’s viewpoint, VMs are highly dynamic
processes with varying workloads that may need different
amounts of memory bandwidth. This results in the need for
Memguard to be more flexible and be able to regulate on a
process granularity instead of cores.

VI. SOLUTION

The aforementioned problem in virtualized environments
can be solved using a memory bandwidth scheduler.

A. Architecture and implementation
The solution is based on a new architecture involving all

layers of the virtualized computing chain (from the guest to
the host kernel), which can deliver messages and regulate the
memory bandwidth dynamically.

Figure 4. Proposed extensions to Memguard’s architecture

The architecture of the solution is split in three main parts,
the guest level API, the host message exchange mechanism and
parts of Memguard linked to CFS. The selected architecture
helps to keep a simple yet flexible mechanism. The first part
is composed of a simple debugfs interface, enabling the user

24Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

memguard_guest_update(cpu_number){
if next_task = a_guest_in_the_list

callback_to_memguard()
}

Figure 5. Pseudo code to call memguard from CFS

to write/read from a simple file to set the needed memory
bandwidth value, which also allows to set the bandwidth from
other applications (e.g., a local resource manager).

Every call is made with the following:
ID of request: Host is aware that this call is a guest request
Request type: Host is notified if a guest wants to update
bandwidth or be removed from the guest reservation process
Value: A general purpose 64bit variable to send information
(e.g., bandwidth need: 70 percent of total BW)

The second part is the HyperCall module, which is pro-
cessed by KVM in the host; every HyperCall is trapped, filtered
and processed by the hypervisor. The HyperCall process has
been described in detail previously[4], it traps the guest mem-
ory bandwidth request and stores it in the GlobalKernelLink.

The GlobalKernelLink is the bridge between the frontend
(guest’s API) and the backend, which is a hidden mechanism
regulating the guest’s memory bandwidth. A structure com-
posed of several variables, exported across the host kernel
called the GlobalkernelLink is responsible for handling all
needed information for the solution, composed of
Memguard sched guests: number of guests running with
memguard reservation enabled
Memguard sched PID: Tab to store guests PID
Memguard sched BW: Tab to store Bandwidth need of guests
Memguard update bandwidth: pointer to memguard callback
function

The third part is the mechanism which regulates the band-
width, applying the requested memory-bandwidth that was
previously stored. This part is composed of two components,
CFS, the Linux scheduler and Memguard, the kernel module,
regulating memory-bandwidth at core level. CFS was selected
because it is the main Linux scheduler and is fair between
tasks. We implemented a method to call Memguard when
guests are running.

When CFS has scheduled the next task, a callback to Mem-
guard is executed which then enforces the memory bandwidth
regulation. It is also worth mentioning that Memguard had
to be also modified in order for it to handle the callback
from CFS. This function in Memguard updates the memory
bandwidth of the core corresponding to the linked guest.

CFS is an asynchronous scheduler, no fixed length schedul-
ing clock is used during the scheduling (except the minimum
execution time 4ms). Contrariwise Memguard has a fixed
length scheduling clock (1ms), this scheduling mechanism
difference raises a problem when merging both parts of the
proposed solution. In order to address this issue, Memguard
was modified to start a new scheduling period when CFS is

update-budget-sched(int cpu-n, long bw-n){
convert-bandwidth-to-cache-event()
set-the-core-budget()
initialize-the-memguard-statistics()

}

Figure 6. Pseudo code to update the per-core budget, called from CFS

calling-back Memguard. The resulting solution synchronizes
both parts, CFS is unchanged and Memguard’s scheduling tick
is synchonized with CFS. Changes made in CFS introduce a
small slowdown due to the processing time needed to check
tasks’ membership.

B. Benefits
The actual implementation has several benefits. The first

one is the limited overhead due to a change in the memory-
bandwidth requested by the guest, as a HyperCall is performed
only when needed, reducing the total time spent when adjust-
ing the value. The second benefit relates to the use of the
CFS scheduler. This significantly reduces the complexity of
integrating the solution, and the overhead is kept to a min-
imum. The last benefit comes from the Memguard callback,
which provides memory bandwidth reservation and limitation
functionalities.

C. Mixed criticality enhancement
As discussed previously, the target of the actual paper is

to define a virtualized mixed-criticality solution to regulate
memory-bandwidth. The solution provides a global answer in
order to schedule dynamically memory-bandwidth, as the guest
user can either set the needed bandwidth manually or let an
automatic system take care of it. This results in the possibility
to dynamically adjust the memory bandwidth and to regulate
tasks between them, reducing the bandwidth of a task to let
others use the remaining.

VII. EXPERIMENTAL RESULTS WITH NEW MEMGUARD
ARCHITECTURE

In this section, experiments and benchmarks are presented
in order to highlight how Memguard extensions can be used
in a mixed-criticality virtualized system.

The first benchmark (Fig. 7) shows the problem of the
memory bottleneck. When two guests are running on the same
core, the memory bottleneck limits the memory-bandwidth of
both tasks. As in the first experiment (Fig. 1), in a virtualized
environment, the bottleneck is the same.

This second experiment (Fig. 8) shows the interest of
Memguard solution, at first both tasks are memory-bandwidth
scheduled, the first curve (top one) at 70 of the guaranteed
bandwidth and second curve (bottom one) at 20 of the memory
bandwidth. When Memguard is disabled (around 13 seconds to
20 seconds) the first guest can reach the maximum bandwidth;
after 20 seconds the second guest increases its memory-
bandwidth reservation, resulting in less bandwidth available
for the first guest. The interest is that both guests are running

25Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Figure 7. Memory bandwidth degradation between two guests

Figure 8. Guest memory bandwidth separation with Memguard

at different memory-bandwidth limits enabling a memory-
bandwidth hierarchy between them.

Figure 9. Guest memory bandwidth separation with Memguard (1 core of
execution)

The third benchmark (Fig. 9) demonstrates the memory
separation between guests. The first guest (top curve) is
running unregulated at start, after 17 seconds, a limit is set,
and a second guest (bottom curve) is launched after 33 seconds
with a limited bandwidth. The reduction of bandwidth is due
to the CPU time shared between both guests (running on the
same core), when both guests are running, each has a specific
memory bandwidth allocation which highlight the memory
separation of guests running on the same core.

TABLE II. Video decoding benchmark

Environment of execution Processing time
Plain linux 2 cores running same video task Guest 1 : 62.112s (decoding time)
(mplayer) Guest 2 : 67.968s (decoding time)
Memguard with under estimated bandwidth : Guest 1 : 386.893s (decoding time)
20 MB/s on all cores Guest 2 : 384.655s (decoding time)
Memguard with correct estimated b/w Guest 1 : 57.947s (decoding time)
core 1 (250 20 20 20) Guest 2 : 312.014s (decoding time)
Memguard with correct estimated b/w Guest 1 : 60.911s (decoding time)
core 1 and best-effort policy activated Guest 2 : 97.665s (decoding time)

The Mplayer benchmark (Table II) was accomplished with
an Mplayer decoding process running on two Guests. The
results are following the ones done with no Virtualized envi-
ronment and it demonstrates that the solution is not reducing
the performance of the overall system.

TABLE III. FFT ”real time” benchmark

Process used Processing speed
FFT 78 033 sec/frame
FFT 148207 sec/frame
Database 1450 MB/s
FFT (high priority) 81014 sec/frame
Database (BW reduced) 800 MB/s

The last Benchmark (Table III) involves two guests, one
is a camera capture-process VM and the second one is a
memory intensive program (equivalent to a database explore
task). Overall we can see that with Memguard plus the virtual-
ization extensions, the performance of mixed-criticality use
cases can improve significantly due to the additional QoS
features implemented. When Memguard is not used, the FFT
task has a large slowdown due to a lack of available memory-
bandwidth, where if Memguard keeps the database task to a
certain level of memory-bandwidth usage (800 MB/s), the FFT
task can almost reach its full performance.

VIII. CONCLUSION AND FUTURE WORKS

In this paper, we highlighted the memory bottleneck on
multi-core CPUs and the need to use a memory bandwidth
reservation mechanism. In answer Memguard has been tested
and extended for its use on ARM platforms. Due to the
pervasive nature of virtualization even on embedded systems,
Memguard has been adapted to fit this need.

A new architecture forwarding guests’ memory require-
ments to Memguard has been implemented, working with CFS,
Memguard has been modified to be synced with the scheduler.
In result we obtained a memory reservation service which can
throttle memory-bond tasks in favor of high criticality tasks.
The actual implementation has several benefits and allows
to increase the performance of tasks in mixed-criticality use

26Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

cases. The overhead is kept to a minimum and the commu-
nication mechanism is easy to use from user space or other
applications.

The proposed extensions to Memguard are still a proof
of concept, and some improvements can be achieved when
several guests are running on the same core to improve the
tasks’ memory separation.

ACKNOWLEDGMENT

This project has received from the European Unions FP7
research and innovation programme, Dreams, under grant
agreement N 610640. This work reflects only authors view
and the EC is not responsible for any use that may be made
of the information it contains

REFERENCES

[1] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens,
Memory access scheduling. ACM, 2000, vol. 28, no. 2.

[2] D. Field, D. Johnson, D. Mize, and R. Stober, “Scheduling to overcome
the multi-core memory bandwidth bottleneck,” Hewlett Packard and
Platform Computing White Paper, 2007.

[3] S. H. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian, V. Srinivasan,
A. Buyuktosunoglu, A. Davis, and F. Li, “Ndc: Analyzing the impact
of 3d-stacked memory+ logic devices on mapreduce workloads,” in
Performance Analysis of Systems and Software (ISPASS), 2014 IEEE
International Symposium on. IEEE, 2014, pp. 190–200.

[4] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “Atlas: A scalable
and high-performance scheduling algorithm for multiple memory con-
trollers,” in High Performance Computer Architecture (HPCA), 2010
IEEE 16th International Symposium on. IEEE, 2010, pp. 1–12.

[5] K. Srinivasan, “Optimizing Memory Bandwidth in Systems-
on-Chip,” ESC conference, 2011, http://sonicsinc.com/wp-
content/uploads/2012/09/Presentation Multicore final.pdf.

[6] E. Ipek, O. Mutlu, J. F. Martı́nez, and R. Caruana, “Self-optimizing
memory controllers: A reinforcement learning approach,” in Computer
Architecture, 2008. ISCA’08. 35th International Symposium on. IEEE,
2008, pp. 39–50.

[7] K. W. Batcher and R. A. Walker, “Dynamic round-robin task scheduling
to reduce cache misses for embedded systems,” in Proceedings of the
conference on Design, automation and test in Europe. ACM, 2008,
pp. 260–263.

[8] E. Ebrahimi, R. Miftakhutdinov, C. Fallin, C. J. Lee, J. A. Joao,
O. Mutlu, and Y. N. Patt, “Parallel application memory scheduling,” in
Proceedings of the 44th Annual IEEE/ACM International Symposium
on Microarchitecture. ACM, 2011, pp. 362–373.

[9] W. Jing, “Performance isolation for mixed criticality real-time system
on multicore with xen hypervisor,” 2013.

[10] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter, “Thread
cluster memory scheduling: Exploiting differences in memory ac-
cess behavior,” in Microarchitecture (MICRO), 2010 43rd Annual
IEEE/ACM International Symposium on. IEEE, 2010, pp. 65–76.

[11] J.-P. Lozi, B. Lepers, J. Funston, F. Gaud, V. Quéma, and A. Fedorova,
“The linux scheduler: a decade of wasted cores,” in Proceedings of the
Eleventh European Conference on Computer Systems. ACM, 2016,
p. 1.

[12] ARM, “Technology Preview: The ARMv8 Architecture,” ARM white
paper, https://www.arm.com/files/downloads/ARMv8 white paper v5.pdf.

[13] Qumranet, “KVM: Kernel-based Virtualization Driver,” White paper,
http://www.linuxinsight.com/files/kvm whitepaper.pdf.

[14] H. Yun, “Memguard: Memory bandwidth reservation system for ef-
ficient performance isolation in multi-core platforms,” in Real-Time
and Embedded Technology and Applications Symposium (RTAS), 2013
IEEE 19th. IEEE, 2013, pp. 55–64.

[15] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memory
bandwidth management for efficient performance isolation in multi-core
platforms,” 2013.

[16] H. Yun, “Improving real-time performance on multicore platforms using
memguard,” 2013.

[17] V. Cuppu, B. Jacob, B. Davis, and T. Mudge, “A performance compari-
son of contemporary dram architectures,” in ACM SIGARCH Computer
Architecture News, vol. 27, no. 2. IEEE Computer Society, 1999, pp.
222–233.

[18] IBM, “Understanding DRAM Operation,” Application note,
https://www.ece.cmu.edu/ ece548/localcpy/dramop.pdf.

27Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

