
Wireframe Mockups to ConcurTaskTrees

A WYSIWYG User Interface Modeling Approach

Miroslav Sili & Christopher Mayer

Health & Environment Department

AIT Austrian Institute of Technology GmbH

Vienna, Austria

e-mail: miroslav.sili@ait.ac.at, christopher.mayer@ait.ac.at

Daniel Pahr

Student at the TU Wien

Vienna, Austria

e-mail: e0906438@student.tuwien.ac.at

Abstract— Nowadays, we use a variety of devices to interact

with local and cloud-based systems and services and are used to

aesthetic and tailored user interfaces. This fact induces

challenges for user interface designers regarding additional

efforts for the development of multiple user interfaces for (all)

available devices. Model-based user interface design tackles this

challenge by creating abstract models for a transformation to

various devices, but with the disadvantage of additional efforts

for using and learning these techniques. Thus, we propose a

transformation process deriving an abstract model on the basis of

an integrated mockup and wireframe design tool. This allows

combining the advantages of model-based user interface design

with the world of the classical user interface design process. The

engine transfers sketches to an abstract task model in

ConcurTaskTrees notation. The model is the input for a separate

model interpretation layer generating concrete user interfaces for

various device types. The prototype delivers promising results

and future research has to focus on extending its applicability by

addressing structural constraints and limitations.

Keywords— Wireframe; Mockup; Sketches; User Interface

Design; WYSIWYG; ConcurTaskTrees; CTT; UI Model;

Adaptivity; Transformation; XSLT

I. INTRODUCTION

The last two decades have seen a growing trend towards
mobile and ubiquitous computing. This trend changed the way
of Human Computer Interaction (HCI). Nowadays, we use a
variety of devices to interact with local and cloud-based
systems and services. We also become accustomed to use
aesthetic and tailored user interfaces (UI) on different device
types. This variety provides some advantages for end-users, but
also some significant disadvantages for UI designers.
Additional efforts are needed to design and develop multiple
UIs for different device types. Considering the number of
potential UIs, the classical design approach is not appropriate
anymore. At this point, the model-based UI design approach
can help to save design resources in terms of time and money.
Besides its advantages, it has also some disadvantages. To
name a few: the design process is not intuitive enough,
additional resources during the learning and training phase are
needed and the continuous testing routines require additional
efforts. The proposed mixed approach aims to minimize these
negative aspects. The idea is to integrate mockup and
wireframe design tools, which are common in the classical UI
design process, into the model-based UI design process. This
What You See Is What You Get (WYSIWYG) - like design

helps designers to manifest their vision of concrete UIs without
the need to spend too much efforts on specific model-based
techniques and language notations.

The remainder of this paper is structured as follows: In
Section 2, one finds a short overview of related work. Section 3
provides an introduction to the model-based UI design process,
the concept of task models in ConcurTaskTrees (CTT)
notation, the evaluation of Wireframe and Sketch-based tools
as well as an overview of the chosen tool. Section 4 describes
in detail the transformation engine, which is able to transform
wireframe mockup output data into abstract UI CTT models. In
Section 5, the results are summarized and discussed.

II. RELATED WORK

In the past, similar approaches for the generation of abstract
user interface models have been proposed. Those approaches
share the employment of WYSIWYG-like editors with our
proposed solution and use different abstract models for the
representation of the interface.

In [18], the concept of model-driven development is
examined with the goal to propose a solution for the automatic
generation of user-interfaces. To achieve this, CTT models are
introduced into the model driven approach to capture
interaction requirements of user interfaces. The proposed tool
allows developers to create user interfaces by using sketch-
based drawings. However, designers need to provide additional
context to UI elements in order to identify them distinctly. This
process enables the creation of verifiable, explicit CTT models
for a user interface. Using those components a model compiler
could automatically create the code for a platform specific user
interface.

Gummy [6] uses a WYSIWYG user interface editor to
produce an abstract representation in User Interface Markup
Language (UIML) format [19]. It offers a live representation of
multiple different user interfaces for different platforms while
editing. UIML specifications of user interface are very similar
to concrete user interface specifications as opposed to the
highly abstract nature of CTT used in our proposed solution.

SketchiXML [20] offers an editor more focused on drawing
and gesture based interaction than graphical user interfaces. A
user can draw its prototype on a canvas and assign a context to
the different parts of the sketch to create a user interface model,
which in turn, can be viewed on multiple fidelity levels.
SketchyXML supports UIML as the main export format but an
export to UsiXML [21] is also possible.

120Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

III. MODEL-BASED USER INTERFACE DESIGN PROCESS

In contrast to the classical UI design process, model-based
design divides the UI generation process into at least two steps.
The first step is related to the modeling of an abstract UI,
followed by two or more steps related to the generation of
concrete UIs. The abstract and declarative model of the first
step is composed of components like a user-task model, a user
model, a dialog model, a presentation model and a domain
model. These models provide a formal representation of the UI
design [1]. In the second step, this formal representation can be
automatically transformed into concrete UIs by using a
separate model interpretation layer, e.g., AALuis [2]-[5]. This
(at least) two-step approach offers the opportunity to specify
the UI only once, which facilitates the process of changing and
editing [6].

Model-based user interface design had its origin in the mid-
late 1990s [7]-[9]. Researchers and developers have
investigated different model-based techniques in order to
structure and automate the user interface design process since
then. Some approaches rely, e.g., on State chart XML
(SCXML) models [10][11], some on the Business Process
Model and Notation (BPMN) models [12][13] and some on
CTT models [14][15].

In general, the model-based UI design cannot be declared
as an easy and intuitive process. Designers need time to get
familiar with the indirect design concept and to learn these
model-based techniques and language notations. Furthermore,
they also require additional time to test their UI models
continuously and to compare the intended output with the
automatically generated output. Our proposed transformation
engine aims to minimize some of these challenges. Instead of
using abstract design elements to model abstract UIs, designers
may use existing sketch-based tools to design concrete UI
representations. The transformation engine transforms these
representations, into abstract UI models. These UI models, in
turn, are used in the second phase as input for an automatic
transformation into concrete UIs. On the occasion of our
current running research and development project YouDo
[16][17], which uses abstract UI models in CTT notation, the
developed transformation engine also focuses on CTT notation.
Nevertheless, the underlying architecture generally allows also
transformations into other notations like SCXML notation or
BPMN.

A. Interaction Models in CTT notation

This paragraph helps to comprehend the main
transformation steps by providing a briefly overview about
different CTT tasks and temporal operators used in the CTT
notation. The CTT notation distinguishes between four task
categories, namely interaction, system, user and abstract tasks
[14]. Interaction tasks are related to concrete user interactions.
These tasks are represented in the final UI, e.g., as control
elements or text input elements. System tasks are responsible to
receive data from the system and to provide information to the
user. User tasks represent internal cognitive or physical
activities and abstract tasks are used for complex actions,
which need sub-tasks of different categories [23]. Next to these
categories, tasks are also classified into different types. Just to
mention some, interaction tasks may be of type control, edit or
selection. Regarding the proposed transformation engine

especially these task types are particularly relevant. As an
example, an edit interaction tasks specifies an object which can
be manually edited by the user. Depending on the concrete
transformation such an edit interaction task may be
represented, e.g., by a graphical text field. Next to different
task categories and task types the CTT notation specifies also
eight temporal operators. Temporal operators are able to
describe the relationship between single tasks. [24] provides a
detail explanation of the eight temporal operators.

B. Evaluation of Wireframe and Sketch-based Tools

Based on a detailed evaluation of existing wireframe and
sketch-based tools for user interfaces design, we decide to use
the Balsamiq mockup tool [22]. Our evaluation included in
total 11 tools and the following set of evaluation criteria:
a) the price, b) supported output formats, c) required learning
efforts and the tool usability, d) supported platforms,
d) available feature set and finally d) the project/tool activity in
terms of development and maintenance status. Table I
summarizes the list of evaluated tools and some of the
mentioned evaluation criteria.

TABLE I. LISTING OF EVALUATED WIREFRAME AND SKETCH-BASED

TOOLS AND SOME OF THE EVALUATION CRITERIA

Tool Pricea
Supported

output
formats

Supported
platforms

Feat
ure
setb

Acti
vityb

Gummy
[26]

/ UIML Windows - -

Glade
Interface
Designer

[27]

/
Libglade,

GtkBuilder

Linux,
Windows,

Mac
+ +

softandG
UI [28]

£99
PNG, Word,

HTML, XML
Windows + +

Wirefram
eSketcher

[29]
$99

PNG, PDF,
HTML

Linux,
Windows,

Mac,
Eclipse
plugin

+ +

iPLOTZ
[30]

$99/yr.
JPG, PNG,
PDF, iPotz
File, XML

Windows &
Mac, Web

+ +

Evolus
Pencil
[31]

/
PNG, HTML,
PDF, SVG,

ODT

Linux,
Windows,
Mac, Web

+ +

Mockup-
designer

[32]
n/a JSON, PNG Web - n/a

Balsamiq
Mockups

[22]
$89

BMML
(XML-Bas)

Windows,
Mac, Web

+ +

Maqetta
[33]

/ HTML
Linux,

Windows,
Mac,

+ -

draw.io
[34]

/ XML Web + +

Moqups
[35]

19€/mo. PDF, PNG Web + +

a. Price for the single- user license. The slash symbol </> represents GPL, GPL2 or open source

licenses. b. The plus symbol <+> represents positive evaluated criteria whereas the minus

symbol <-> represents the opposite.

Balsamiq's easy to use export format Balsamiq Mockups
Markup Language (BMML), the cross platform application, or
the comprehensive feature list are just some of the positive
criteria which influenced our decision. Balsamiq features a
very simple, yet powerful, drag and drop-based mockup editor.

121Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

A navigation bar presents the user with multiple common user
interface elements which can simply be dragged to the canvas.
One can then arrange those elements to create a full sketch of a
user interface and by using very few basic functions, even
create linked user interface prototypes. Such prototypes
normally serve to present the look and feel of a finished
software product to test it on a specific group of users, or
simply to try out the design for developers.

Balsamiq's BMMF file features an XML format. As such, a
whole mockup can be viewed like a tree structure with a root
node, which has child nodes representing the components of
the mockups. Multiple attributes and property nodes can be
assigned to the components to mirror the design of the mockup.
Furthermore, a grouping function is available, which actually
serves to create groups of interface elements and enables the
user to move them as a whole. However, in the scope of
transformation this function will be more of use to assign
identifying objects to UI elements that are inherently without a
concrete description, such as text boxes or check boxes. The
linking of mockups is also resembled in a simple property node
that can be attached to UI elements like buttons.

IV. WIREFRAME TO CTT TRANSFORMATION ENGINE

With Balsamiq mockup files, serving as the input for the
transformation engine, the next step was to design mapping
rules and to create a concrete transformations from Balsamiq’
export file format BMML into the CTT format. Due to the fact
that both file formats use an XML structure the Extensible
Stylesheet Language Transformation (XSLT) [25] was used to
carry out the transformation. XSLT requires a stylesheet
template to establish transformation rules which are able to
convert a document from one specific XML structure into
another XML structure. The transformation itself is carried out
by an XSLT processor. For this purpose, we implemented a
small Java application.

Fig. 1. Illustration of the two-step transformation from Balsamiqs’ specific

BMML file format into the UI model in CTT notation.

The two underlying XML structures involved in this
transformation are fundamentally different. BMML represents
the concrete graphic user interface, whereas CTT describes a
task model representing a succession of interactions that need
to be performed in order to achieve a certain goal. In order to
extract sufficient semantic information from a user interface
mockup and to limit the number of possible CTT
interpretations, the following structural limitations have been
introduced:

 Each mockup contains exactly one window, which
represents a single static user interface.

 The transformation supports just user interfaces, which
can be represented as a set of linked windows.

 The interface must have a designated start point,
symbolized by the first window that is presented to the
user.

 Each window expresses a so called Presentation Task
Set (PTS). A PTS is a set of user interactions,
respectively tasks, needed to perform one distinct
action. Example: to perform a login action the user
needs to fill in the username, the password and to
operate the login button within a single window.

 The user input order within a single window is
irrelevant.

 One window has at least one control button, which ends
users’ interaction on that window and forces the system
to start the processing of the entered data.

 The system outcome, in turn, is represented by a single
window.

Furthermore, due to its complexity the transformation itself
takes place in two separate steps: (Step 1) UI content
transformation into CTT tasks and their grouping and (Step 2)
rearrangement of tasks and the generation of the intended
interaction flow using CTTs temporal operators. Fig. 1
illustrates the two-step transformation approach.

1) Step 1 - UI Content Transformation: The UI content

transformation consists of two substeps: (substep 1.1) the

mapping of Balsamiq UI elements into CTT tasks and (substep

1.2) the grouping of CTT tasks into subtrees, which represent

single PTS.

a) Substep 1.1: In this substep, UI elements are

translated into semantically corresponding CTT tasks. Table II

illustrates the basic set of implemented mapping rules. This

approach is also applicable for more complex UI elements like

tables, menu groups or street maps. The CTT notation offers

the possibility to define interaction tasks of custom type. Thus,

one can define an interaction tak e.g., of type table within the

XLS transformation. Once implemented, every Balsamiq’s

table UI element will result in a corresponding table

interaction task. Like for any other interaction tasks the CTT

interpretation layer is responsible to render these custom

interaction tasks accordingly. Additionally due to the

possibility to link multiple mockups, a hierarchical structure

can be extracted. In this step, single window elements are

transformed into CTT subtrees and each UI element nested

within the UI window is transformed into a single CTT task.

b) Substep 1.2: In this substep, CTT tasks are grouped

into subtrees representing separate PTS. Additionally, each

subtree is supplemented by an initial system task (required by

the model interpretation layer). The following design patterns

are used during the grouping process:

 Each subtree is supplemented by an initial system task.
The initial system task is required by the model
interpretation layer. The system task causes the layer to
pull concrete data values from the backend system.
These data values, if present, are used by the layer to
perform an auto fill in on the rendered UI elements.

 Each subtree contains one or more interaction tasks of a
type unlike control. These interaction tasks are gained
from the substep 1.1 using the window UI element and
its child UI elements.

122Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

 Each subtree contains one or more abstract tasks gained
from substep 1.1 using the button UI element. As
described in Table II, a button UI element is
transformed into a composition of the following three
CTT tasks:
o A single interaction task of type control. This

interaction task causes the model interpretation layer
to render the concrete final UI element, e.g., a
graphical button.

o A single system task. Like the initial system task,
this task is required by the model interpretation
layer. In contrast to the initial system task, which
pulls data values, this task pushes user input values
towards the backend system.

o If present, an abstract task containing the next PTS
in form of a separate subtree. This step applies the
design patterns recursively.

2) Step 2 - Rearrangement of PTS tasks and generation of

the interaction flow: As already mentioned, after the first step

of the transformation, a semi-complete CTT model is

produced. The second step consists as well of two substeps in

order to complete the CTT model: (substep 2.1) the

rearrangement of PTS tasks and (substep 2.2) the generation

of the intended interaction flow using CTTs temporal

operators.

TABLE II. MAPPING BETWEEN BASIC INTERACTION ELEMENTS IN

BALSAMIQ AND CTT TASKS

Balsamiq CTT Note

Text field Interaction task of type edit

Combo box

or Radio
button

Interaction task of type

single choice

Radio buttons belonging

to the same choice need to
be grouped together

Check box Interaction task of type
Multiple Choice

Check boxes belonging to
the same choice need to be

grouped together

Label Interaction task without
explicit task type

Button Subgroup of one interaction
task of type control, one

system task and if present,

one abstract task containing
the next PTS

Buttons represent the
navigations through

different PTS

Window Abstract task containing the
current PTS

The title attribute is used
to name the abstract task

a) Substep 2.1: Using the complete set of grouped CTT

tasks produced in substep 1.2, this substep is responsible to

rearrange all tasks within every subtree. The following three

ordering rules are used during this process (see for an example

Fig. 3):

 Firstly, the initial system task is the first task in the
subtree.

 Secondly, all interaction tasks with a type different than
"control" follow the initial system task.

 Thirdly, all interaction task of type "control" are
arranged lastly in the subtree.

b) Substep 2.2: This is the last processing step

performed by the transformation engine. This substep

generates the intended interaction flow using CTTs temporal

operators. The following rules are applied (see for an example

Fig. 3):

 The initial system task is connected to the first
interaction tasks with the sequential enabling
information processing operator.

 Due to the fact that user inputs do not rely on a specific
input order (compare to limitations introduced above),
all following interaction tasks with a type different than
"control" are connected to the order independence
operator.

 The last interaction task with a type different than
"control" is connected to the first abstract task (resulting
from the UI button element) to the disabling operator.

 Possible following abstract tasks (resulting from the UI
button element) are connected to the choice operator.

V. RESULTS

Fig. 2 illustrates an example for a sequence of two simple
mockups. The link between the two windows is symbolized by
the arrow, leading from the Login-button to the Welcome
window.

Fig. 2. Illustration of sequence of two simple mockups designed by means of

the Balsamiq Mockup Tool

In Fig. 3, one can see the output of the transformation
engine when processing the mockups from Fig. 2. Moreover,
Fig. 3 provides a comparison of the intermediate semi-
complete tree, obtained from the first transformation step and
the final task tree, obtained from the second transformation

123Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

step. The intermediate tree features no temporal operators and
the order of the components is not correct. The mockup UI
windows “Login” and “Welcome” have been transformed into
the corresponding abstract tasks named “Login” and
“Welcome”. The UI input elements “User Name” and
“Password” have been translated to corresponding interaction
tasks of type edit. The UI button “Login” has been transformed
into an abstract task named “Control_Group_Login”. This, in

turn, is composed by an interaction task of type control named
“Button_Login”, a system task named “Finalization_Login”
and finally the already transformed abstract task named
“Welcome”, which represents the second mockup window. In
the final tree, the CTT is complete and all temporal operators
have been placed between tasks.

Fig. 3. Illustration of the intermediate semi-complete CTT tree (left) and the complete CTT (right).

The prototype for the proposed transformation tool delivers
promising results for the use in combination with an
appropriate CTT model interpretation layer, e.g., the AALuis
layer. The transformation can be applied to any sequence of
mockups following the specified conventions specified. In the
moment however, the application of the tool is limited to
sequential links that do not contain loops. Such a loop is
created when a mockup links to another that has previously
appeared on the same path. In future work, the transformations
have to be modified to support such interfaces. An idea for
further research is the development of a direct presentation of
the final user interface, when developing the mockups, thus not
only displaying the CTT model as the abstract user interface
representation, but as well the transformed user interface.

VI. LIMITATIONS

As mentioned initially, in the model-based UI design
process developers are requested to investigate some efforts
and practice in order to benefit from model-based generated
UIs. The aim of this work is to illustrate one potential solution
to minimize these efforts and thus to increase the acceptance of
model-based UI development. In our literature review we have
been focused on similar practicable and easy to use state-of-
the-art solutions and approaches. However, the scope of this
work is not on an exhausting listing and detailed comparison of
these solutions and approaches, but rather on the description of
the proposed solution from a technical and methodological
point of view. Moreover, this work tackles the generation of
interaction models in CTT notation but not the concrete
interpretation of these models. Interpretations concepts have
been published previously [2]-[5]. The proposed solution is still
under development and requires a detailed validation and
evaluation in the scope of performance, acceptance and
usability.

ACKNOWLEDGMENT

The project YouDo is co-funded by the AAL Joint
Programme (REF. AAL-2012-5-155) and the following
National Authorities and R&D programs in Austria, Germany
and Switzerland: BMVIT, program benefit, FFG (AT), BMBF
(DE) and SERI (CH).

REFERENCES

[1] A. R. Puerta, “A model-based interface development environment,”
IEEE Software 14.4, pp. 40-47, 1997, doi: 10.1109/52.595902

[2] C. Mayer, M. Morandell, M. Gira, M. Sili, M. Petzold, S. Fagel, S.
Schmehl, “User interfaces for older adults,” Universal Access in
Human-Computer Interaction User and Context Diversity, vol. 8010,
Springer Berlin Heidelberg, Jul. 2013, pp. 142-150, doi: 10.1007/978-3-
642-39191-0_16

[3] M. Sili, C. Mayer, M. Morandell, M. Gira, M. Petzold, “A Practical
Solution for the Automatic Generation of User Interfaces–What Are the
Benefits of a Practical Solution for the Automatic Generation of User
Interfaces?” Human-Computer Interaction. Theories, Methods, and
Tools, vol. 8510, pp. 445-456, Jun. 2014, doi: 10.1007/978-3-319-
07233-3_41

[4] C. Mayer, G. Zimmermann, A. Grguric, J. Alexandersson, M. Sili, C.
Strobbe, “A comparative study of systems for the design of flexible user
interfaces,” Journal of Ambient Intelligence and Smart Environments,
vol. 8, pp. 125-148, Mar. 2016, doi: 10.3233/AIS-160370

[5] C. Mayer, M. Morandell, M. Gira, K. Hackbarth, M. Petzold, S. Fagel,
“AALuis, a User Inter-face Layer That Brings Device Independence to
Users of AAL Systems," Computers Helping People with Special Needs,
vol. 7382, pp. 650-657, Jul. 2012, doi: 10.1007/978-3-642-31522-0_98

[6] J. Meskens, J. Vermeulen, K. Luyten, K. Coninx,”Gummy for multi-
platform user interface designs: shape me, multiply me, fix me, use me,”
Proceedings of the working conference on Advanced visual interfaces,
pp. 233-240, 2008, doi: 10.1145/1385569.1385607

[7] C. Janssen, A. Weisbecker, J. Ziegler, “Generating user interfaces from
data models and dialogue net specifications,” Proceedings of the
INTERACT'93 and CHI'93 conference on human factors in computing
systems, pp. 418-423, 1993, doi: 10.1145/169059.169335

124Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

[8] A. R. Puerta, H. Eriksson, J. H. Gennari, M. A. Musen, “Model-based
automated generation of user interfaces, “ AAAI, pp. 471-477, Okt.
1994,

[9] A. R. Puerta, J. Eisenstein, “Towards a general computational
framework for model-based interface development systems,“
Knowledge-Based Systems, vol. 12, pp. 433-442, 1999

[10] J. Barnett, et al. “State chart XML (SCXML): State machine notation for
control abstraction.” W3C Recommendation, [Online] Available from:
https://www.w3.org/TR/scxml retrieved: Jul. 2016

[11] A. Nuno, S. Samuel, T. Antonio, “Multimodal Multi-Device Application
Supported by an SCXML State Chart Machine,“ Proceedings of EICS
Workshop on Engineering Interactive Systems with SCXML, 2014

[12] M., Zur Muehlen, J. Recker, “How much language is enough?
Theoretical and practical use of the business process modeling notation,”
InInternational Conference on Advanced Information Systems
Engineering, pp. 465-479, Jun. 2008, doi: 10.1007/978-3-540-69534-
9_35

[13] H. Trætteberg, “UI design without a task modeling language–using
BPMN and Diamodl for task modeling and dialog design,“ Engineering
Interactive Systems, pp. 110-117, 2008, doi: 10.1007/978-3-540-85992-
5_9

[14] F. Paternò, C. Mancini, S. Meniconi, “ConcurTaskTrees: A
diagrammatic notation for specifying task models,” Human-Computer
Interaction INTERACT’97, pp. 362-369, 1997, doi: 10.1007/978-0-387-
35175-9_58

[15] F. Paternò, C. Mancini, “Developing task models from informal
scenarios,“ CHI'99 Extended Abstracts on Human Factors in Computing
Systems, pp. 228-229, 1999, doi: 10.1145/632716.632858

[16] M. Sili, D. Bolliger, J. Morak, M. Gira, K. Wessig, D. Brunmeir, H.
Tellioğlu, “YouDo-we help! - An Open Information and Training
Platform for Informal Caregivers,” Studies in health technology and
informatics, vol. 217, pp. 873-877, 2014, doi: 10.3233/978-1-61499-
566-1-873

[17] YouDo – we help! [Online] Available from: http://youdoproject.eu
Retrieved: Jul. 2016

[18] O. Pastor, S. España, J. I. Panach, N. Aquino, “Model-driven
development,” Informatik-Spektrum, vol. 31(5), pp. 394-407, 2008, doi:
10.1007/s00287-008-0275-8

[19] M. Abrams, C. Phanouriou, A. L. Batongbacal, S. M. Williams, J. E.
Shuster, “UIML: an appliance-independent XML user interface
language,” Computer Networks, vol. 31(11), pp. 1695-1708, 1999, doi:
10.1016/S1389-1286(99)00044-4

[20] A. Coyette, S. Kieffer, J. Vanderdonckt, “Multi-fidelity prototyping of
user interfaces,” IFIP Conference on Human-Computer Interaction, pp.
150-164, 2007, doi: 10.1007/978-3-540-74796-3_16

[21] Q. Limbourg, J. Vanderdonckt, B. Michotte, L. Bouillon, V. López-
Jaquero, “USIXML: a language supporting multi-path development of
user interfaces,” International Workshop on Design, Specification, and
Verification of Interactive Systems, pp. 200-220, Jul. 2007, doi:
10.1007/11431879_12

[22] Balsmaiq. Rapid, effective and fun wireframing software. | Balsamiq
[Online] Available from: https://balsamiq.com Retrieved: Jul. 2016

[23] M. Sili, C. Mayer, M. Morandell, M. Petzold, “A framework for the
automatic adaptation of user interfaces,” Assistive Technology Research
Series, vol. 33, pp. 1298-1303, 2013, doi: 10.3233/978-1-61499-304-9-
1298

[24] Concur Task Trees (CTT), W3C Working Group Submission 2 February
[Online] Available from http://www.w3.org/2012/02/ctt Retrieved: Jul.
2016

[25] XSL Transformations (XSLT) Version 1.0, W3C Recommendation 16
November 1999, [Online] Available from: http://www.w3.org/TR/xslt
Retrieved: Jul. 2016

[26] Gummy-live [Online] Available from:
http://research.edm.uhasselt.be/~gummy Retrieved: Aug. 2016

[27] Glade – A User interface Designer [Online] Available from:
https://glade.gnome.org Retrieved: Aug. 2016

[28] Wireframing Tools, Application Prototyping, softandGUI - UXToolbox
[Online] Available from: http://www.softandgui.co.uk Retrieved: Aug.
2016

[29] Wireframing Tool for Professionals – WireframeSketcher [Online]
Available from: http://wireframesketcher.com Retrieved: Aug. 2016

[30] iPotz: wireframing, mockups and prototyping for websites and
applications [Online] Available from: http://pencil.evolus.vn Retrieved:
Aug. 2016

[31] Home – Pencil Project [Online] Available from: http://pencil.evolus.vn
Retrieved: Aug. 2016

[32] Mockup Designer [Online] Available from:
http://fatiherikli.github.io/mockup-designer Retrieved: Aug. 2016

[33] Maquetta [Online] Available from: http://maqetta.org Retrieved: Aug.
2016

[34] Flowchart Maker & Online Diagram Software [Online] Available from:
https://www.draw.io Retrieved: Aug. 2016

[35] Onine Mockup, Wireframe & UI Prototyping Tool – Moqups [Online]
Available from: https://app.moqups.com Retrieved: Aug. 2016

125Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

