
CloudFlow - An Infrastructure for Engineering Workflows in the Cloud

Håvard Heitlo Holm∗, Jon M. Hjelmervik∗ and Volkan Gezer†
∗Heterogeneous Computing Group

SINTEF ICT
Oslo, Norway

Emails: havard.heitlo.holm@sintef.no
and jon.m.hjelmervik@sintef.no
†Innovative Factory Systems (IFS)

German Research Center for Artificial Intelligence (DFKI)
Kaiserslautern, Germany

Email: volkan.gezer@dfki.de

Abstract—In this paper, we present a framework for easy in-
tegration of existing software solutions in a cloud environment.
We aim to allow software providers to offer their products in the
Cloud through a common web portal. Central in the framework is
workflows, where independent software solutions can be chained
together to solve the users tasks in a unified way. One of
the main challenges addressed here, is facilitating workflows
spanning multiple software vendors and cloud solutions. The
framework is validated by a range of experiments, consisting
of both software vendors and end users, from the context of
manufacturing industries, and offer unique and ubiquitous access
to integrated workflows.

Keywords–Workflows; Cloud computing; HPC; Semantic de-
scriptions; One-stop-shop.

I. INTRODUCTION
Cloud computing is now a natural part of the daily life,

both professionally and for consumers. Users are expecting to
have access to all their software and data independent of which
computer they are using, which have revolutionized how data
is consumed and shared.

Cloud providers are continuously extending and improving
their tools to make it easier to deploy software in their
solutions. These developments have made cloud computing
attractive for software vendors, and many companies offer
cloud integration throughout their product range. However, it
can also be very tempting to make the cloud integration very
tight, which in turn locks the software vendor into the cloud
provider’s ecosystem. New solutions, including UberCloud [1]
and Cloud Modelling Language (CloudML) [2], target this
challenge by offering platforms that are neutral to cloud
providers, while aiming at making it as easy as possible to
offer cloud based solutions for their costumers’ software.

Not all tasks can be completed using a single application,
but are best solved using a workflow where data is transferred
from one application to another. The ideal workflow may
consist of software from different vendors, which should
seamlessly work together. To achieve this, it is not sufficient to
give access to software in a cloud solution, the interoperability
between the different applications and software suits must also
be targeted. This paper proposes to add semantic descriptions
to the available software, as well as their input and outputs. The
semantic descriptions are used to chain compatible services
into complete workflows. Furthermore, data formats should be
based on open standards, or come with conversion tools to and
from standard formats. In this paper, we present the CloudFlow

Infrastructure, aiming at providing the technology platform for
a one-stop-shop for cloud based workflows. This work builds
upon the initial results by Stahl et al. [3].

The infrastructure described here can be applied to any
business area, however, data formats and descriptions must
be adapted to the application domain. However, currently the
focus is on manufacturing industries, with a special focus on
the needs of small businesses. The examples used in this paper
therefore come from this domain, though the technology is
neutral to application domain. In manufacturing industries,
different software suits are used across the lifetime of their
products, from design through numerical analysis through
quality assurance and maintenance. Small companies in this
market often find it too expensive to install the different solu-
tions locally, due to hardware costs, installation overhead and
license costs. This may cause loss in quality of their products
due to insufficient analysis, and overly expensive design phases
due to inefficient work procedures. For such companies, having
access to a cloud solution that spans over different clouds
and software providers, all integrated in tailored workflows,
will not only save time and cost, but also improve their final
product.

Larger companies may already have a server infrastructure
and prefer to store their data within their control. These
companies may still benefit from the integrated workflows
and access from everywhere inside the secure network. It
is therefore important that private cloud solutions also are
supported to host the CloudFlow Infrastructure.

End users that are familiar with a software solution may
be reluctant to shift providers when moving from a desktop
application to a cloud based approach. The platform must
therefore not only be attractive for end users, but also for
software providers. This means that it must be flexible enough
to support the wide range of software solutions desired and
have a good user experience, while keeping the costs low.

The goal is to provide ubiquitous availability of compute
resources, software and data. In contrast to other approaches,
the aim here is to integrate existing software solutions into
one common platform, combining them to work together and
make them accessible through a web portal. Furthermore, the
proposed solution supports installation in private clouds as well
as access to multiple cloud and High Performance Computing
(HPC) providers through one common portal installation. To
facilitate a broad selection of existing software solutions, we
target cloud solutions offering Infrastructure as a Service,

158Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

where software providers can install their own operating sys-
tem and fully control the virtual machines.

In the rest of this paper, we give a short overview of
the related work in Section II. The CloudFlow Infrastructure
is then presented in Section III, where the focus is on the
aspects and infrastructure components related to workflow
orchestration and execution, resource monitoring, data storage,
authentication, and utilization of HPC clusters. In order to
validate the infrastructure and demonstrate the usefulness of
CloudFlow, the experimental setup applied through the Cloud-
Flow project is described in Section IV, along with an example
workflow. Finally, we conclude and describe some plans for
future work in Section V.

II. RELATED WORK
Cloud computing and cloud-based engineering is delivered

by multiple providers. One dedicated software vendor deliv-
ering such a solution is SimScale [4], offering simulators for
computational fluid dynamics, finite element analysis and ther-
modynamics in the cloud. Based on these simulation tools and
web-based visual pre- and post-processing, Simscale targets
end users only. Combining their cloud solution with software
developed by other vendors is therefore not straight forward.

The cloudSME project [5] combines a business model tar-
geting both end users and software vendors. Software vendors
are offered a Platform as a Service solution, where they offer
Software as a Service for their existing and new end users.
This approach also makes it possible for end users to combine
software from different software vendors to perform more
complex engineering tasks. CloudSME does however not use
any semantic information to orchestrate how to combine the
different software, and lacks the use of HPC.

There are several initiatives to simplify cloud deployment
and avoid vendor lock-in. Bergmayr et al. [2] propose a
modelling approach, where the cloud deployment is described
by a vendor independent language CloudML. The deployment
model is implemented in this language, which sets up virtual
machines, network communication and deploys services ac-
cordingly.

Stahl et al. [3] proposed the initial work and the main
concepts of the CloudFlow Infrastructure. Among the newly
introduced concepts are a unified way to access HPC resources,
functionality to use external cloud providers, resource moni-
toring and a graphical tool to define workflows.

Semantic Markup for Web Services (OWL-S) and Business
Process Execution Language (BPEL) are two technologies
that allow web service execution as processes. BPEL is a
language to execute business processes with web services as
stated by Mendling [6]. According to its specifications, BPEL
executes web services defined using Web Service Description
Language (WSDL). It supports orchestration of actions within
services, by structuring them as sequences and supporting
branches and loops. The structure is described using a syntax
based on Extensible Markup Language (XML). OWL-S is a
markup that is built on top of Web Ontology Language (OWL)
and describes web services semantically introducing an XML-
based syntax. It also supports orchestration and due to semantic
technologies, structuring the sequences using OWL-S is both
machine and human understandable. OWL-S and WSDL are
usually used to describe services based on the Simple Object
Access Protocol (SOAP) specification. It allows web services
to send requests in a predefined structure encoded in a XML
format.

Figure 1. Simplified diagram of the system layers with their main
components.

BPEL is similar to OWL-S in terms of orchestration and
XML-based syntax, but it lacks utilizing semantic technolo-
gies. Therefore, making web services machine-understandable
and automating them without user interaction is a non-trivial
task using BPEL [7].

The process execution is usually performed by designing
an execution order and monitoring it with an execution engine.
There are several execution engines designed for this purpose.
Execution engines, or managers, introduce an editor or a syntax
to specify the order and then track the progress. Depending on
the implementations, they can also provide user interface.

One of the available execution engines for BPEL is Process
Manager by Oracle. It provides a graphical interface to man-
age cross-application business processes in a service oriented
architecture (SOA) [8]. It also allows designing workflow steps
and connecting external systems into the workflow. However,
lack of semantic technologies inside BPEL prevents automa-
tion of these design steps. Involving semantic technologies
would therefore increase the productivity by reducing the time
needed to design the task steps, and is hence quite important.

To achieve the goal of CloudFlow, a manager which
can facilitate semantic technologies, integrate web services
from different providers and locations, and provide automation
during the design and execution phase was necessary.

III. ARCHITECTURE OVERVIEW
The components in the CloudFlow Infrastructure can be

described as a multilayer architecture to separate functionali-
ties. It consists of six main layers as depicted in Fig. 1. The
natural entry point for both end users and software vendors
is through the CloudFlow Portal, or just the Portal, found in
the user layer of the infrastructure. This section presents key
components and concepts of the CloudFlow Infrastructure.

A. Workflow Management
A workflow is an orchestrated and repeatable pattern of

several activities enabled by the systematic organization of
resources into processes that transform materials, provide
services, or process information. Workflows may be as trivial
as browsing a file structure or visualizing a Computer-Aided
Design (CAD) model, or they can be more complex, including
describing the full set of operations used to design, analyse

159Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

and prepare for manufacturing of a product. Utilizing seman-
tic technologies such as OWL-S makes it possible to reuse
existing workflows as building blocks in more complex ones.

As described in Section I, the main goal of CloudFlow
is to host software from different software providers and
chain appropriate parts of them to perform end user tasks
in workflows within one common platform. In the following,
we will describe how web services are integrated into the
CloudFlow Infrastructure, and how workflows are designed
and executed.

1) Services: A set of complementary reusable functional-
ities that are provided by a software for different purposes is
called ”service.” More particularly, a web service is a software
system designed to support interoperable machine-to-machine
interaction over a network [9]. A web service invocation
consists of a single request/response pair and is expected to
execute in a short time.

The CloudFlow Infrastructure defines some Application
Programming Interface (API) requirements to services to be
integrated into workflows. The simplest web service that
follows those requirements is called a synchronous service.
These services are useful when the operation ends relatively
quickly, and the user does not need progress update during its
execution. In contrast, asynchronous services do not have any
restrictions when it comes to runtime, and they are also allowed
to present the user with progress information. Common for the
service types are that they represent an operation that takes
predefined input parameters and generates output parameters
without a user interaction. All communication with the services
are performed through SOAP requests which are sent to their
endpoints defined through their WSDL files. In addition to
services, also applications which allow user interaction are
supported. The most common application types are web forms
for selecting parameters for the following service and visu-
alization applications for inspecting the output. Throughout
this paper, the term CloudFlow service denotes services and
applications compatible with the CloudFlow API.

2) Workflow Definition: In order to define a web service
as a CloudFlow service, and then to create workflows from
a chain of CloudFlow services, the web services need to be
integrated into the infrastructure. This is performed using a
graphical tool named Workflow Editor.

Workflow Editor (WFE) was mentioned as future work
in [3] as an implementation of a workflow modelling tool and it
is currently available for use. The developed WFE is based on
XML, SOAP, and WSDL standards, and inserts web services
into a semantic database by adding semantic descriptions based
on their WSDL. The server side functionality of WFE is
implemented as web services hence it also provides a SOAP
API that can be used directly from 3rd party tools.

In order to make a web service available as a CloudFlow
service, the service provider supplies the endpoint for the
service’s WSDL to WFE, where semantic descriptions of
the service itself and its input and output parameters are
defined. Based on these semantic descriptions, semi-automatic
orchestration of workflows can be made by letting the system
suggest services which are compatible with respect to their
inputs and outputs. After these parameters are converted into
semantic descriptions for the given service, the service is
integrated into the infrastructure and can be used as a step
in a workflow.

The WFE is also used to chain services into workflows. The
creation is offered through both a textual and a graphical editor,
combined as a single web page. Using the graphical editor, the
CloudFlow services are selected using a dropdown menu and
appended to a workflow. The data flow between the services
is defined by dragging and dropping outputs of services and
connecting them with inputs of others. The execution order is
represented using dotted arrows and the data flow is shown
using solid lines as shown in Fig. 2. Each action performed
using the graphical editor is synchronized with an XML-based
meta-formatted textual editor. The XML format contains all
information stored in the semantic database, and can be used
also for later updates of the workflow.

Even though each CloudFlow service typically represents
an individual operation with dedicated input and output pa-
rameters, some services naturally belong together. Instead of
having to connect the same sequence of services repeatedly
for multiple different workflows, such services are modelled
as a smaller workflow of their own called sub-workflows.
Sub-workflows are yet again available to be added into any
other workflow as a single component, similar to a regular
CloudFlow service. The changes made within a sub-workflow
are applied to all workflows using it, reducing time and effort
for the workflow designer through avoiding a repetitive task.

3) Workflow Manager: The semantic descriptions created
by WFE only contain meta-data and describe how the data
is bound. The component Workflow Manager (WFM) acts as
an execution engine acting on the semantic descriptions. It
executes and monitors all services in a workflow providing
the input parameters as defined in WFE, either as constant
values or outputs from previous steps. The status of each
asynchronous service is checked at regular intervals in order
to determine if it is finished as well as to present the service’s
status to the user.

Before executing a workflow, the billing component is
asked to verify that the user has the valid licenses for all
involved services. Therefore, requests to initiate services that
do not originate from the WFM should be rejected, preferably
on a network level, e.g., by strict firewall settings. The WFM
also tracks execution times by utilizing resource monitoring
components which are explained in Section III-B. Usually, the
user interacts with the Portal to initiate and monitor workflows.
However, this is just one possible way and the Portal is not
needed during the execution of workflows. Both synchronous
and asynchronous services can be executed even after the user
has left the client that initiated the workflow. This is also
true for applications, though they will wait for user interaction
before the workflow can be continued. Independently on how
a workflow is initiated, the Portal can be used to inspect
the status of workflows and interact with them during their
execution.

B. Resource Monitoring and Billing
To facilitate that CloudFlow becomes a one-stop-shop

where software vendors integrate and offer their software for
new customers, functionality to monitor the resource usage
by each workflow and service is needed. Based on different
requirements, the software vendors are able to use different
business models, such as offering their software as pay-per-
use, or for a fixed monthly or annual fee. For computationally
intensive software, that require exclusive access to a hardware
resource, there will also be a cost related to the CPU hours

160Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Figure 2. The graphical user interface of WFE, where dotted lines represent flow of services, while solid lines connect parameters from outputs to inputs.

Figure 3. Communication between billing-related components inside
infrastructure.

spent. Each service is tagged with which software package it
belongs to. All license costs related to the software package
is described in the Resource Catalog component, either as a
time based license requirement, runtime cost, or a combination
of both. The Resource Catalog also holds information about
hardware costs and which vendors the costs belong to. Fig. 3
illustrates how the different components are connected.

As a workflow is executed, the resources consumed through
this workflow is gathered, and the related cost for running
the workflow is calculated. Collection of this information and
cost calculation is performed within the resource monitoring
and billing components of the CloudFlow Infrastructure. When
an end-user starts a workflow, the WFM lists all software
packages within the workflow and checks with Accounting
service whether the user has the required licences to run them.
Later, if the user is allowed to execute the workflow, the
Counter service is used to track the execution times delivered
by the WFM. This service passes these data back to the
Accounting service to calculate the bill for CPU usage, as
well as the software costs within the workflow.

The Resource Catalog holds a list of software and hard-
ware/data centers, whereas the User Catalog keeps a list of
organizations or users. The calculations and usage information
at the end of each workflow are gathered by the Billing

component. This component issues bills to the end users and
is the only component which users interact with in order to
get their usage and cost reports.

C. Cloud Storage
In order to follow the loosely-coupled layered architec-

ture design of the CloudFlow Infrastructure (see Fig. 1), the
interaction with the cloud storage is designed to be vendor
independent. As different cloud storage solutions have different
APIs for accessing files, a set of services with a unified API
is required. Further, in order to avoid unnecessary network
cost and to avoid potential security issues, the files need
to be transferred directly between the cloud storage and the
client, and not via an intermediate server. To support these
requirements, the Generic Storage Services (GSS) have been
developed within CloudFlow.

The GSS exposes an API consisting of both SOAP and
REpresentational State Transfer (REST) web services, and
offers functionality for interacting with the cloud storage so-
lutions available in CloudFlow. In contrast to SOAP, RESTful
web services come with a smaller overhead and are better
suited for transferring large amounts of data. Each available
storage solution is added as a back-end to GSS, where in-
formation is provided through SOAP services on how to use
the native REST interface. The client transfers files directly
to and from the cloud storage, with no added overhead. In
this way, GSS acts like a look up service telling how to make
requests toward the different back-ends, where each back-end
is treated as an object storage. Beside transferring files, other
functionality such as listing folder content, checking existence
of files, creating folders etc., are made directly through the
SOAP API.

Files are uniquely defined by file IDs, which includes a
prefix indicating which storage back-end the file belongs to.
The file ID combined with a valid authentication token is
sufficient for downloading any file. As long as all CloudFlow
services are implemented using this API, interoperability and
vendor independent file access is obtained within CloudFlow
workflows. Further, any cloud storage solution with a RESTful
API can be made available in CloudFlow by adding an

161Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

additional back-end in GSS. Existing services can then im-
mediately use the new cloud storage solution without making
any changes to their implementation. A cloud storage can also
use external authentication solutions, as it is not a requirement
that the authentication token used towards the cloud storage is
a valid CloudFlow token.

A web-based file browser application is available for all
workflows. It is configurable through WFE to tailor its be-
haviour for each workflow, and has a user friendly interface
with a context dependent right-click menu. Here, end users
can upload and download files between their computers and
the cloud.

Since the CloudFlow services have SOAP interfaces, their
parameters should consist of short messages rather than entire
files. Because of this, the file browser gives the file ID of the
chosen files as output instead of the content of it. This rule
illustrate best practice and applies to all CloudFlow services.

Currently, four cloud storage solutions are made available
in the CloudFlow Infrastructure through GSS. There are two
OpenStack Swift installations (one internal and one external),
a product lifecycle management (PLM) system, and a native
storage at one of CloudFlow’s HPC providers.

D. Authentication and Multi-Cloud
Several of the CloudFlow Infrastructure components need

to be available from outside the infrastructure itself. This
includes design and execution of workflows, interaction with
the cloud storage, and viewing how much resources a user
has spent. Since only registered users should be allowed to
issue such requests, and since a user should only have access
to their own files and resource usage, all web services within
the CloudFlow Infrastructure need an authentication parameter
representing the user. For this, a token based authentication
system is used. Users obtain a token at login which repre-
sents them throughout the session, and which contains their
appropriate permissions.

As a security measure, tokens have limited life spans,
meaning that requests containing old tokens will be unsuc-
cessful. However, workflows (and perhaps especially within
manufacturing industries) can consist of services lasting longer
than any lifespan given to tokens. Since an expired token can
not be used for, e.g., uploading results to the cloud storage,
CloudFlow needs an authentication scheme that both invali-
dates tokens after a certain time while allowing workflows of
arbitrary lengths to have access to infrastructure components.

In order to support these requirements, the Authentication
services are introduced to CloudFlow. These services build
on top of OpenStack’s Keystone component [10], and extend
its with functionality to handle the challenge related to long
lasting workflows. In addition, vendor lock-in towards Open-
Stack is avoided through these services. Changing the com-
munication with Keystone, or exchanging Keystone itself, will
require changes in the implementation of the Authentication
services only, while the API, and all components relying on
the authentication, are kept unchanged.

The problem consisting of tokens expiring during workflow
executions are solved by issuing and storing special workflow
tokens from the Authentication services. Each time a work-
flow is started, such a token is created from combining the
regular token with the ID of the workflow execution. This
workflow token is stored in a database, and is passed to all
services within the workflow. During validation, the regular

Figure 4. An application specific sub-workflow encapsulating an HPC job.

token is checked normally first, but if it has expired and the
combination with the execution ID is recognized, the token
is still marked as valid. A new regular and valid token can
then be generated with the same permissions as the existing
token based on the now invalid one. When the workflow later
is finished or aborted, the special workflow token is deleted
from the database, and is then invalidated.

1) Multi-Cloud: As CloudFlow is not tied to any one cloud,
it is possible to use multiple clouds for hosting CloudFlow
services. One reason for doing this might be that customers
are physically too far away from the main CloudFlow cloud,
making a local cloud more attractive in terms of network costs
and delays. Other reasons might be that alternative clouds
might be cheaper, or equipped with hardware not available in
the CloudFlow cloud, for example by offering more powerful
processing resources.

The main challenge related to such solutions is authentica-
tion across the different clouds. While the external clouds have
their authentication methods, they are not necessarily compati-
ble with those used in CloudFlow. Services that are written for
multi-cloud settings should therefore be implemented with an
additional external token parameter. The semantic information
can then describe what cloud the external token should be
authenticated against, and external authentication services can
be added to such workflows. Such a service will provide a
web form where the user can login to the external cloud, and
where the external token is passed to the next steps in the
workflow. The external token can also be stored in a cookie
in the browser, so that if a valid token is already present, this
token will be used and the users are spared from typing their
username and password more than necessary.

E. HPC Access
Computationally intensive tasks that benefit from running

on HPC clusters are common in many engineering workflows.
Because of this, the CloudFlow Infrastructure is required to
facilitate seamless and secure integration of such tasks, making
it easy for software vendors to run their applications on an HPC
cluster as part of a CloudFlow workflow. The solution for this
is the design and concept of HPC application sub-workflows,
with the generic HPC service as the central component.

An HPC application sub-workflow is built from three
CloudFlow services as shown in Fig. 4; an application specific
pre-processing service, the generic HPC service, and an ap-
plication specific post-processing service. The HPC service is

162Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

designed to be generic with respect to both the application and
the type of job scheduling system used by the HPC provider.
This way, the HPC providers can make changes to their queu-
ing systems, or CloudFlow can expand to more HPC centers
without requiring the software vendors to make changes to
their services or workflows. Even though the HPC service is
generic, the application that is executed through it will be part
of a software package (as mentioned in Section III-B). The
name of the software package it is part of will therefore be
hardcoded as input to the HPC service within the application
sub-workflow. This information is then used by the service
to check with the Resource monitoring component that the
user has a license to run the application, and to ensure that
the software vendor receives the correct license fees. Other
resource management tasks, such as reporting CPU hours spent
on the computation, are also reported from within the generic
HPC service.

In order to separate the service from the HPC center
specific details, the HPC service communicates internally with
an HPC back-end. Since user credentials defined in CloudFlow
are not necessarily compatible with the user definitions in the
HPC cluster, the back-end may perform a mapping between
the two sets of user definitions through a method seen fit by
the HPC provider. For security reasons, different CloudFlow
users should not be assigned the same user on the cluster. The
two HPC providers within CloudFlow currently use different
approaches to solve this challenge. One provider has set up
a pool of HPC users reserved for CloudFlow, where each
execution of the HPC service is assigned an arbitrary user
from the pool, which is then reserved until that execution
has completed. To ensure security, the home directory of
each such HPC user is deleted between executions of jobs.
The other provider assigns a one-to-one mapping between
the two types of users, so that a CloudFlow user is assigned
a dedicated HPC user. This second approach is particularly
suitable to private cloud installations of CloudFlow, where
the same system administrators control both the cloud and
compute cluster environments.

The input and output parameters for the HPC service
is highly generic, and should support the vast majority of
applications that will be run on the compute cluster. As input,
the service takes a string containing the set of command
lines that will execute the application with its correct input
parameters. Additional inputs to the service are the number of
cores and nodes to use, as well as a maximum execution time
used to limit cost and stop non-converging simulations.

The output from the HPC service is a string which is read
from a result file, written by the application. As this output
parameter will be sent in a SOAP message, output files should
not be written in the result file, but rather uploaded to the
cloud storage. The file ID of the uploaded file should instead
be written as the result.

During the execution of the application, the end user will
often appreciate some feedback in the form of a progress re-
port. What kind of progress report that makes sense to provide
highly depends on the application, as some applications are
only able to provide a progress bar, while others might create
a status report including images and text. A reserved status file
is being monitored by the HPC service, and any content of this
file is interpreted as HTML and displayed in the browser for
the user. The software vendor can therefore fill this file with
any meaningful information seen fit, either directly from the

application, or through a background process parsing the log
file of the application into the status file.

In order to create the string with the set of command
lines, an application specific pre-processing service is required
in front of the HPC service. This service is implemented
by the software vendor providing the application itself, and
takes the same input parameters as the application. Similarly,
in order to interpret the output from the HPC service and
add semantic descriptions to it, an application specific post-
processing service is called. It parses the output from the
HPC service, which is the information written in the result
file, into application specific output parameters. Since both
these operations in most cases are basic string manipulations
which finish immediately, both the pre- and post-processing
services are usually implemented as synchronous services.
In some cases however, it is natural to let the end-user
choose how many nodes the application should use. It is then
natural to either implement the pre-processing service as a
web application instead, or have a web application where this
choice is made before the pre-processing.

When the number of nodes is hardcoded within the appli-
cation specific sub-workflow, all details concerning the HPC
is hidden from whoever uses the sub-workflow in a larger
workflow. The sub-workflow will have nothing but application
specific inputs and outputs, and will therefore have the same
interface in WFE as a single CloudFlow service running the
same application in the cloud environment. The usage of the
compute resources is therefore transparent for the user, and
does not require that the end user (or workflow creator) knows
the difference between cloud and HPC environments.

IV. RESULTS
The development of the CloudFlow Infrastructure is orga-

nized to meet the requirements from end users in manufac-
turing industries and their software providers. This has given
opportunity to validate our choices and arrange validations,
where the end users test the platform and the deployed
software.

A. Validation results
To facilitate the development and validation, three waves of

experiments have been set up. In the first wave of experiments,
all workflows were tailored towards the needs of hydropower
engineers. Software from 6 different independent software
vendors (ISVs) were integrated with the infrastructure and
accessible through the cloud solution, and validated with one
common end user. For the second and third wave, European
software vendors and end users were invited to test the
infrastructure and develop new workflows based on the needs
of the end user. In total 14 new experiments were selected,
each with one new end user.

The motivation to use the CloudFlow Infrastructure varies
among the experiments, including attracting new customers,
reducing license cost, reducing time spent to create a new
product and improving the design of new products. The overall
common goal is to enhance availability of easy to use software
and computational resources through

• User friendly interfaces
• Easy access to cloud computing resources

For each experiment, the user requirement group of the project
helped the end user to define usability criteria requirements.
In parallel, the software vendors developed business plans for

163Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Figure 5. A workflow for quality assurance where a 3D scan of a produced
product is compared with the initial CAD model.

how to realize the economical potential benefiting both the end
user and software vendors. This way, not only the theoretical
potential of the software platform is verified, but also that the
final solution can sustain as an attractive option.

At several stages the end users were invited to perform
daily tasks using the CloudFlow Infrastructure, validating the
success, not only of the experiment but also the infrastructure
as a whole.

The end users have demonstrated how to use the software
solutions in a daily task. The demonstrations are monitored
by the user requirements group to assess the user experience
and recommend future improvements. The conclusion from
the 13 already finished experiments have been processed and
shows that the main goals of all experiments have been
reached. Furthermore, the experiments reported that the end
users would benefit economically from using more compute
resources than today, and that the CloudFlow Infrastructure can
make it economically feasible. The validation revealed that the
concept is functional and makes it more attractive to use Cloud
computing both for software vendors, consultancy companies
and end users.

B. Quality Assurance in the Cloud
As an example of a workflow using the components

and concepts mentioned in Section III, a quality assurance
application will be considered. This workflow will compare

a CAD model to a 3D scan of the produced product, for this
application: a turbine blade. The goal is to confirm that the
turbine blade is manufactured according to its design within
given tolerances, and later to control wear on the blade after
it has been in production for some time.

The quality assurance process consists mainly of three
steps, where each step contains one or several CloudFlow
services. The main challenge is to properly align the 3D
scan data to the CAD model, which usually is a tedious
manual process. A fully automated alignment is not necessarily
feasible, especially if the CAD model has symmetries or the
3D scan is partial. The first step is therefore a coarse manual
alignment, which is performed before an automated alignment
process, where an optimization process iterates to make the
point cloud fit as close as possible to the surfaces of the CAD
model. Thereafter, the result of the registration needs to be
reported to the user in an informative and user friendly manner.
The entire workflow and the four software packages within it,
is shown in Fig. 5.

1) Quality assurance pre-processing: The workflow starts
of by letting the user choose the CAD model, 3D point cloud
and where to store the results from the registration. This
functionality is covered by the File Browser, mentioned in
Section III-C.

Since CAD models can be stored in different file formats,
and since the services later in the workflow are designed
expecting a pre-defined file format, a file conversion might
be needed at this point. If so, a conversion service accesses
a dedicate virtual machine in the Cloud which runs the
conversion. The conversion service is not guaranteed to finish
within a HTTP time out, and is therefore implemented as an
asynchronous service. The service launches the conversion as a
background process, and WFM polls on the service to check if
the process is finished or not. Before the conversion finishes, it
provides a progress bar along with a text describing the current
status. Note that this conversion requires no interaction from
the user, allowing the WFM to automatically proceed to the
next step of the workflow after the conversion is completed.

The manual alignment step, where the initial guess to the
registration is made, is a web application. Here, the CAD
model and the point cloud are shown in separate canvases and
the user is expected to match corresponding points from the
two models. Since the models can be quite large, a hybrid
rendering is done through the Tinia framework [11]. The
models are rendered server side, generating 3D images that are
sent to the web client. The user can freely interact with the
local model for an interactive experience, without transferring
the CAD model. Similarly to the file browser, WFM awaits a
message from the client to proceed in the workflow, and this
signal is sent when the user accepts the initial guess.

2) Registration: The registration application is imple-
mented to take advantage of parallel execution, and in order
to integrate the application in the CloudFlow Infrastructure,
the HPC service along with its design pattern described in
Section III-E is used. A registration pre-processing service is
implemented to generate the set of command lines required to
run the registration based on the file IDs obtained in the file
chooser applications, converter and initial guess application. A
post-processing service for the registration is also implemented
in order to enable semantic descriptions to the result from the
HPC service. In this case, it will be the file ID holding the
registration results. These three services are then stored as an

164Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

HPC registration sub-workflow, before it is modelled into the
rest of the quality assurance workflow.

The registration has also been implemented as a single
asynchronous service where the registration is run in the
cloud environment instead of on the HPC cluster. Since the
registration HPC sub-workflow has application specific inputs
and outputs, the sub-workflow can be exchanged with the
single cloud service directly. This can be useful as a cheaper
alternative for users who do not prioritize performance. The
service or the HPC block could potentially also be chosen dy-
namically. If the appropriate HPC queue is filled the execution
in the virtual environment can be faster as it does not have to
wait in the queue, even though execution itself is slower.

3) Quality assurance post-processing: The results of the
registration is visualized by a WebGL application showing both
the CAD model and the aligned point cloud in the same view.
The distance between the models are illustrated both trough
statistical information and color coding of the point cloud.
The user will typically view and inspect these results for an
unspecified time. The viewer is therefore implemented as a
web application, where the user presses a ”finish” button to
tell WFM that the workflow should move to the next step. As
there are no more next steps, the workflow is completed with
a list of workflow output parameters. This list can be accessed
later through the user’s list of finished workflows.

V. CONCLUSION AND FUTURE WORK
In this paper, the concept and the realization of a cloud-

based platform is explained. The platform allows seamless
integration and combination of engineering services, controlled
execution, and monitoring of the used resources. The infras-
tructure components which build the platform utilize standards
such as WSDL and SOAP in order to make the integration
process simple. Additionally, employment of semantic descrip-
tions allows discovery of compatible services and assists to
chain services to form workflows. This type of assistance,
semi-automatic orchestration, makes the services aware of each
other improving interoperability.

The proposed solution has been validated by a wide range
of end users solving different tasks from the manufacturing
industries. Software providers will be able to offer their
services in a common web portal. Software providers as well
as consultancy companies can then combine available soft-
ware solutions into potential workflows tailored to solve tasks
provided by end users. The access to such efficient software
solutions together with remote computational resources can
dramatically reduce labor intensive tasks while improving the
final product.

In the future, these semantic descriptions can be enhanced
by expanding the semantic vocabulary so that WFE can
orchestrate the creation of workflows fully automated, meaning
without a user interaction provided that intermediary services
exist. By intelligently orchestration any user can create their
own tailored workflows consisting of their favorite software
tools. So far, the solution is validated within the manufacturing
industries. The technological choices are to little extent based
on this choice, but validation in other segments will be needed
to fully validate the solution.

ACKNOWLEDGEMENT
This research was conducted in the context of the Cloud-

Flow project, which is co-funded by the 7th Framework
Program of the European Union, project number 609100. More

information and news about CloudFlow can be found on the
project website at http://eu-cloudflow.eu/.

REFERENCES
[1] “UberCloud,” https://www.theubercloud.com/, retrieved: August 2016.
[2] A. Bergmayr et al., “The evolution of CloudML and its manifestations,”

in Proceedings of the 3rd International Workshop on Model-Driven
Engineering on and for the Cloud (CloudMDE), pp. 1–6, 2015.

[3] C. Stahl, E. Bellos, C. Altenhofen, and J. Hjelmervik, “Flexible integra-
tion of cloud-based engineering services using semantic technologies,”
in Industrial Technology (ICIT), 2015 IEEE International Conference on,
pp. 1520–1525, 2015.

[4] “SimScale,” https://www.simscale.com/, retrieved: August 2016.
[5] “cloudSME, simulation for manufacturing & engineering,”

http://cloudsme.eu/, Seventh Framework Programme (FP7) under
grant agreement number 608886, retrieved: August 2016.

[6] J. Mendling, “Business Process Execution Language for
Web Service (BPEL),” [Online]. Available: https://www.uni-
ulm.de/fileadmin/website uni ulm/iui.emisa/Downloads/emisaforum06.pdf,
retrieved: August 2016.

[7] M. Aslam, S. Auer, and J. Shen, “From BPEL4WS process model
to full OWL-S ontology.” [Online]. Available: http://bis.informatik.uni-
leipzig.de/files/bpel 2 owls short paper.pdf, retrieved: August 2016.

[8] Oracle, “Oracle BPEL process manager datasheet,”. [Online]. Avail-
able: http://www.oracle.com/technetwork/middleware/bpel/overview/ds-
bpel-11gr1-1-134826.pdf, retrieved: August 2016

[9] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris,
and D. Orchard, “Web Services Architecture,” W3C Working Group
Note, 2004. [Online]. Available: https://www.w3.org/TR/2004/NOTE-
ws-arch-20040211/, retrieved: August 2016.

[10] “Openstack Keystone,” http://docs.openstack.org/developer/keystone/,
retrieved: August 2016.

[11] C. Dyken et al., “A framework for OpenGL client-server rendering,”
in 4th IEEE International Conference on Cloud Computing Technology
and Science Proceedings, CloudCom 2012, Taipei, Taiwan, pp. 729–734,
2012.

165Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

