UBICOMM 2018 : The Twelfth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Slicedup: A Tenant-Aware Memory Deduplication for Cloud Computing

Fernando Vand-Garcia, Hector Marco-Gisbert

School of Computing, Engineering and Physical Sciences
University of the West of Scotland
High St, Paisley PA1 2BE, UK
Email: {Fernando.Vano-Garcia, Hector.Marco}@Quws.ac.uk

Abstract—Memory deduplication allows cloud infrastructure
providers to increase the profit of memory resources by
taking advantage of the redundant nature of virtual machines
footprint. Although it is an important feature to manage the
memory resources of a cloud system efficiently, unfortunately,
it enables different types of side-channel attacks which, in
practice, means disabling memory deduplication. In this paper,
we present Slicedup, a tenant-aware memory deduplication
mechanism that prevents side-channel attacks. Our proposal
enables cloud providers to get the deduplication saving benefits
while preventing side-channel attacks among tenants. Since
Slicedup is a design-solution, it can be implemented in any
operating system, regardless of its version, architecture or any
other system dependence. Finally, we show how Slicedup prevents
side-channel attacks while providing similar memory savings
when the number of tenants per physical host is low.

Keywords—Cloud; Memory Deduplication; Information Security;
Memory Management; Virtualisation.

I. INTRODUCTION

Cloud computing has extraordinary importance in modern
society. It is a computing paradigm that allows users to
access external resources in an “on-demand” basis, without
having to bear the costs of infrastructure maintenance (physical
servers, electricity bills, etc.). Physical resources are owned
and maintained by a third party (cloud infrastructure provider),
and users can obtain the desired computing resources securely
and flexibly [1]. It is commonly believed that the concept
of cloud computing first appeared in the 90’s [2]. Since
then, its popularity has grown broadly. Nowadays, cloud
computing has been widely adopted in many sectors (e.g.,
telecommunications, content providers, etc.), mainly because it
reduces the cost of performing tasks in a scalable and reliable
way.

Despite the effort of many researchers to provide
protection mechanisms [3] [4], attackers always end up finding
new techniques to achieve their goals. Cloud infrastructure
providers desire efficient resource management as well as
to provide adequate levels of security for their customers.
Unfortunately, this is not always possible, and performance
mechanisms can compromise the system security. Memory
deduplication is an instance of this problem. On the one
hand, it offers the possibility of saving memory by eliminating
duplicate contents. On the other hand, memory deduplication
in a multi-tenant cloud environment can lead to serious security
issues, which could allow a malicious attacker to abuse it and
compromise other customer’s highly sensitive information. For
this reason, operating systems recently decided to deactivate
memory deduplication by default [5] [6].

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-676-7

The main contributions of this paper are the following:

e We provide a state-of-the-art review of the
known side-channel techniques related to memory
deduplication in cloud systems.

e We propose and discuss a suitable solution to enable
memory deduplication, avoiding side-channel attacks
in multi-tenant cloud systems.

In the following sections, we present the challenges of
memory deduplication concerning security in cloud systems.
Section III surveys the state-of-the-art of known problems
that memory deduplication introduces in virtualised systems.
Then, Section IV provides our proposed solution to solve
the memory deduplication side-channels in multi-tenant cloud
systems. Finally, in Section V, we discuss the advantages
and disadvantages of this approach in contrast with other
countermeasures, and Section VI concludes.

II. BACKGROUND

In this section, the memory deduplication
mechanism and cache memories are summarised.

saving

A. Memory Deduplication

Memory deduplication is a memory saving mechanism that
consists in detecting identical pages in memory and unify
them into one single copy, liberating the space occupied
by the redundant copies. This technique allows a cloud
infrastructure provider to reduce the consumption of physical
memory. Given the exceptional importance of efficient memory
resources utilisation on behalf of cloud computing providers,
deduplication is an important feature. It can reduce the memory
footprint across virtual machines, increasing the profit of
existing memory resources and decreasing the total cost of
managing and ownership.

When two pages are compared, and both contain identical
contents, they are mapped into a single physical page frame
in memory using Copy-On-Write (COW) semantics. The
COW mechanism allows a memory manager to share an object
among processes belonging to different virtual address spaces.
It is an optimisation heavily used by operating systems for
copy operations, for example when a new process is created.
A COWed object is write-protected, and when any of the
processes try to modify their own instance, a new copy is
generated in such a way as to ensure the integrity of the
contents.

In a virtualised environment, deduplication is commonly
applied to the entire memory region corresponding to the

15

UBICOMM 2018 : The Twelfth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

virtual machine (often called guest physical memory). Hence,
all those pages belonging to that memory region are candidates
for being shared.

B. Cache Memory

Cache memory is a small and high-speed Static Random
Access Memory (SRAM) located in the CPU, which stores
recently accessed data from the main memory. The purpose
is to speed up the access to program instructions and data,
exploiting the principle of locality [7]. As a consequence, the
processor can obtain the information directly from the cache
rather than from main memory, which has more access latency.
Modern processors contain different levels of cache in their
memory hierarchy. Typically they consist of three cache levels,
where the first and second are private for each execution core,
and the last level is shared by all the cores. The lower levels in
the memory hierarchy contain small and fast memories, while
the higher levels consist of big and slow memories.

There are different ways of organising a cache. The simpler
approach is a direct-mapped cache, where an address is always
associated with a single entry in the cache. This is cheap and
works fast, but it introduces problems of address collisions
(conflict miss). Another approach is a fully-associative cache,
where any address can be stored in any entry of the cache. It
is more expensive because a comparator is used to check the
existing tags in the cache for every access, along with the need
for an eviction policy (e.g., Least Recently Used). The n-way
set associative caches are a combination of both approaches.
The cache is divided into cache sets, each consisting of several
cache lines (or ways). Sets are indexed with addresses to map
specific memory locations (directly mapped), and the lines of
each set are fully associative.

III. THREATS OF MEMORY DEDUPLICATION

Memory deduplication is a significant mechanism to save
considerable amounts of memory in a cloud environment.
Nevertheless, it introduces weaknesses that can be exploited
by a malicious attacker and compromise the security of the
system. It allows guests to communicate through a covert
channel, which can be used by attackers to perform cross-VM
access driven attacks and leak sensitive information. In this
section, we present the state-of-the-art of side-channel attacks
where the attacker shares memory with the victim in a
virtualised environment.

A. Shared Memory Side-Channels

In a virtualised environment, memory deduplication is
applied to pages in the physical host. This includes the sharing
of pages belonging to different virtual machines that are
located in the same host. A covert channel can be made
because of the timing difference of the write operation to a
page that is being shared by deduplication. This operation can
be distinguished from a standard write to a page which is not
being shared because a private copy must be done, and it takes
more time. Therefore, an attacker can craft a page in their own
address space, and then check if it is deduplicated by the host.
In the affirmative case, at least another virtual machine holds
a page with those contents.

The first study that exploits memory deduplication to
perform a side-channel was carried out by Suzaki et al. [8].
They were able to check/detect the existence of specific

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-676-7

applications in a different virtual machine located in the same
physical host. Later, the same authors improved their work,
discussing more approaches and countermeasures, being able
to detect a specific virtual machine previously marked in a
multi-tenant cloud environment [9]. Concurrently, Owens and
Wang [10] were able to fingerprint guest operating systems
using the same technique.

Xiao et al. [11] [12] studied the security implications of
memory deduplication from the perspectives of both attackers
and defenders. They presented a method to detect virtualisation
and another to detect rootkits that modify kernel read-only
data, both using memory deduplication covert channels.
Suzaki et al. [13] continued their research on this topic,
presenting more memory disclosure attacks based on memory
deduplication that are able to detect the security level of
attacked operating systems, find vulnerable applications, and
confirm the status of attacked applications.

Two years later, Barresi et al. [14] developed an
attack using the same technique, leaking the address space
layouts [15] of the victim virtual machines, while Gruss et
al. [16] presented a memory-disclosure attack in sandboxed
JavaScript, without the need for the victim to execute any
program, merely visiting a remote website controlled by the
attacker. Rong et al. [17] even proposed a practical protocol
of Cloud Covert Channel based on Memory Deduplication
(CCCMD).

B. Shared Memory + Cache Side-Channels

In addition to the techniques presented in the previous
section, there is a rich literature of side-channel attacks that
combine memory deduplication with cache covert channels.
These techniques rely on memory sharing with the victim
virtual machine. When an attacker accesses to one of these
shared pages, she is accessing to the same physical page frame
that the victim is using. As a consequence, that page is located
in the same cache line for both attacker and victim, due to the
physically-indexed Last-Level-Cache (LLC).

In 2014, Yarom et al. [18] [19] introduced the
Flush+Reload technique as an extension of a previous
study about cache side-channel attacks [20]. It consists in
measuring the access time of a specific cache line in the
LLC, instead of measuring the writing time to a COWed page.
The attacker flushes the monitored cache line and waits for
the victim to access the memory line. Given that the victim
page is shared with the attacker, they share the cache set for
that page, and the attacker can ensure that a specific memory
line is evicted from the entire cache hierarchy. Then, if the
victim accesses to the data while the attacker is waiting, the
monitored cache line will be filled again. In the last phase,
the attacker reloads the cache line and measures how much
time it takes. If the victim has accessed the memory line, the
time will be short. Otherwise, the cache line will be empty,
and the operation will be longer. Given that this technique is
using the LLC, the attacker and the victim can be running in a
different execution core of the physical machine and the attack
will still work. With this technique, the authors achieved a
successful extraction of GnuPG private encryption keys from a
victim, along with the exploitation of a vulnerability introduced
to elliptic curve cryptographic protocols, recovering OpenSSL
Elliptic Curve Digital Signature Algorithm (ECDSA) nonces.

16

UBICOMM 2018 : The Twelfth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

This technique has been used by several studies since then.
Irazoqui et al. [21] [22] retrieved an Advanced Encryption
Standard (AES) cryptographic key and private keys from
other cryptographic libraries in a cloud environment, using
Flush+Reload. Later, they presented another paper where
cryptographic libraries are detected across virtual machines,
along with their IP addresses. Gililmezoglu et al. [23] improved
the technique and presented a known-ciphertext only cache
side-channel attack against AES. Benger et al. [24] used
Flush+Reload to attack OpenSSL ECDSA signatures.

The Evict+Reload technique, introduced by Gruss et
al. [25], is a variation of Flush+Reload. It consists of two
phases. First, in the profiling phase, the attacker crafts a model
(a template [26] [27]) of signals and noise from the cache
side-channel traces, which is a matrix with the cache-hit ratio
of the address of a specific target event generated on a device
that the attacker controls. Secondly, in the exploitation phase,
the attacker uses the template matrix previously crafted to
deduce events in the system cache, based on the differences
of cache hits. After the attack is performed, a report is
generated in the attacker machine to be manually analysed.
Both phases use standard cache side-channel attack techniques
(e.g., Flush+Reload) to obtain the cache hit ratio. Nevertheless,
the authors noted that the technique can be adapted to evict a
cache line without using the flush cache line instruction, thus
invalidating a countermeasure proposed by other studies [18]
[19] [28]. The method they used to evict a cache line indirectly
is to access a physically congruent large array [25].

The Flush+Flush technique was presented by Gruss
et al. [29]. With it, they achieved a stealthy method
to perform cache side-channel attacks without access to
the data. Consequently, Flush+Flush does not generate
more cache misses than a benign program, avoiding some
countermeasures that relied on hardware performance counters
for detection [30]-[32]. Instead of measuring the access time of
a memory location, they measured the time that the flush cache
line instruction takes. If the data is cached, this instruction
takes more time than if the data is not cached, enabling the
side-channel. Furthermore, given that it can work at a higher
frequency, Flush+Flush is more efficient than other cache
side-channel techniques previously known, in terms of speed.

There is a study that introduces a different technique for
victim-memory shared side-channel attacks, which avoids the
measurement of time. Disselkoen et al. [33] proposed a method
to abuse last level cache in a virtualised system using the Intel
Transactional Synchronization Extensions (TSX) instruction
set [34] [35]. Intel TSX allows the programmer to specify
transactions of code, in a way that either all the code is
successfully executed (transaction completed) or, if anything
fails, all the changes made in memory during the transaction
are cancelled (transaction aborted). The authors are able to
determine if the cache state has been modified by the victim
or not, by means of the hardware callbacks provided by Intel
TSX. These callbacks are executed if the victim accesses
to the target data. As a consequence, there is no need for
timing measurement, given that the attacker gets a side-channel
through the state of the transactions (completed or aborted).

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-676-7

C. Shared Memory + Rowhammer

Previous techniques exploit the fact that the attacker is
sharing memory with the victim in a read-only fashion, to
leak sensitive information of all kinds and bypass security
mechanisms like Address Space Layout Randomisation [15].
On the other hand, some studies combine this condition with
the Rowhammer technique [36] to not only read arbitrary
data in the victim system but also to write. Rowhammer is
a technique that exploits a hardware vulnerability present in
many modern Dynamic Random-Access Memory (DRAM)
modules. DRAM memory cells can leak their charges to nearby
memory rows if they are repeatedly activated in a short period
of time, modifying the contents of a row which was not
intended to be accessed. As a consequence, an attacker is
able to flip bits of arbitrary physical memory locations by
repeatedly activating one or both adjacent rows.

Bosman et al. [37] built a “weird machine” that is able
to perform a byte-by-byte disclosure of sensitive data of
neighbour virtual machines. In this paper, they also disclose
high-entropy randomised pointers, providing three different
approaches: memory alignment probing, partial reuse, and
birthday heap spray. After leaking and gathering all the needed
information of the victim using the previous methods, the
authors combine memory deduplication with Rowhammer to
attack the browser, performing a write operation in a physical
page belonging to the victim, without requiring any software
vulnerability to perform the attack.

Similarly, Razavi et al. [38] introduced a novel exploitation
technique called Flip Feng Shui (FFS). With it, an attacker is
able to exchange the physical location of a page that is shared
with the victim by using memory deduplication. Then, she
can trigger a Rowhammer attack and modify their contents,
inducing bit flips in a fully controlled way. As a consequence,
this technique allows an attacker to write into a page of the
victim virtual machine.

IV. PROPOSED SOLUTION

In this section, we present Slicedup, a memory
deduplication design for multi-tenant clouds, where each tenant
is the administrator of a group of trust that consists of multiple
virtual machines. The sharing is limited to a given group, and
thus the sharing of pages belonging to different tenants is
not allowed. This way, memory deduplication can be enabled,

side-channel

Tenant A Tenant A

_____\ With Mol ___ fvma]
o — Slicedup —_ —

vM2f ____dvm3 vM2p - _dvm3
M MELY e, ed €

Tenant B Tenant B

Physical Host/Hypervisor Physical Host/Hypervisor

Figure 1. Tenant-aware memory deduplication scheme.

17

UBICOMM 2018 : The Twelfth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

maintaining an equivalent level of security for each tenant,
given that pages are never shared across security boundaries.
In addition, the deduplication rates for the virtual machines of
a specific tenant are not affected.

Our proposed solution is to add tenancy awareness to
the deduplication algorithm, identifying every virtual machine
based on a Tenant ID. Then, when a page is being processed
before being shared with another one, the Tenant ID is
combined with the page contents in a way that other pages with
the same contents will only be shared with pages belonging
to virtual machines of the same tenant. This solution provides
a fair trade-off, where the isolation of virtual machines of a
tenant is kept along with the sharing effectiveness of memory
deduplication.

Figure 1 shows an example, where VM1 of the tenant A
is attacking to VM3 of the tenant B. Memory deduplication is
applied to all the virtual machines hosted in the same physical
machine. Therefore, the attack that VM1 was performing to
VM3 is prevented with Slicedup. As a trade-off, this action
has a price because the sharing is being limited, and there will
exist duplicates of pages from different tenants that would have
been merged otherwise.

We have calculated an estimate of the sharing rate based
on previous experiments [39] [40], fitting the points into the
log(x) function, using the least-squares fit technique. Figure 2
shows the resulting function, where the x-axis is the number
of virtual machines running at the same time. We can get
the amount of memory saved for a given number of virtual
machines.

100
90 | .
80 | .
< 70} 1
B 60
3
n 50
>
o 40
5
2 30
20
10 .
0 .

2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32
Virtual Machines

Figure 2. Estimated rate of memory saved by deduplication.

Table I shows the estimation of memory saved in a
physical host, comparing two cases: with standard memory
deduplication and with Slicedup. In the table, we are using
the approximation showed by Red Hat [39] assuming that the
virtual machines are Windows XP with 1 GiB of RAM. Then,
the number of virtual machines in each case is the maximum
we can run when memory deduplication is disabled.

Slicedup offers a compromise solution between
performance and security, allowing memory sharing without
compromising the system security. With it, customers of
cloud infrastructure providers can run more virtual machines
than if memory deduplication is disabled. For example, when

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-676-7

TABLE I. MEMORY SAVED WITH STANDARD AND SLICEDUP.

Physical ~ Num. of Memory Deduplication
Memory Tenants Standard Slicedup
2 3.76 GiB (47.00%) 2.94 GiB (36.75%)
8 GiB 4 3.76 GiB (47.00%) 2.11 GiB (26.37%)
8 3.76 GiB (47.00%) 1.29 GiB (16.12%)
2 9.17 GiB (57.31%) 7.52 GiB (47.00%)
16 GiB 4 9.17 GiB (57.31%) 5.90 GiB (36.87%)
8 9.17 GiB (57.31%) 4.20 GiB (26.25%)
2 21.6 GiB (67.50%) 18.30 GiB (57.18%)
32 GiB 4 21.6 GiB (67.50%) 15.00 GiB (46.87%)
8 21.6 GiB (67.50%) 11.70 GiB (36.56%)

the host has 32 GiB of RAM and 8 tenants, each tenant is
allowed to run two more virtual machines.

V. SOLUTION DISCUSSION

Memory deduplication was designed as a performance
technique to increase the memory savings of a system. It has
been proved [41]-[44] that it offers an effective and efficient
improvement of the physical memory resources management
when it is enabled. However, the side-channel produced by
memory deduplication is a security problem for the clients
of cloud infrastructure providers. Although several studies
proposed different possible countermeasures to avoid this
issue, there is no consolidated solution which offers similar
performance than the original implementations and provides a
defence to all the possible attacks without adding complexity.

For example, Payer [32] proposed HexPADS as an anomaly
detection system. It is a signature-based Attack Detection
System that relies on performance counters. HexPADS
analyses running processes, measuring their performance and
checking a set of signatures. It is able to detect long running
side-channel attacks with low overhead. Nevertheless, it is
prone to false positives and false negatives. Besides, as a
signature-based system, it doesn’t detect new attacks (unknown
signature). Furthermore, given that it is based on performance
counters, other advanced and stealthy cache attacks can bypass
the detection, such as Flush+Flush.

Oliverio et al. [45] proposed VUsion as a new design
of memory deduplication that cuts information leaks and
Rowhammer attacks based on memory deduplication. It hides
the ability of the attackers to distinguish between shared pages
and non-shared pages, thus reducing the attack surface. To
achieve this, the authors follow a fundamental principle that
they call Same Behavior (SB), which means that the attacker
will obtain the same results whether the page being tested is
merged or not. VUsion allows page sharing among different
tenants with an acceptable memory sharing rate. On the other
hand, the Same Behavior principle reduces the pages that can
be candidates to be merged (only idle pages). Unfortunately,
VUsion is intricate to implement. Author’s proof of concept
implementation relies on using reserved bits of the Page Table
Entry (PTE) as an alternative to avoid the use of the present
bit, which would need intrusive changes to the Linux kernel.

Other solutions were proposed, for example, to encrypt the
memory of a given process to avoid deduplication [9] [18],
software diversification to detect anomalies [18], to share
only pages containing zeros [37], or to completely disable

18

UBICOMM 2018 : The Twelfth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

memory deduplication [28]. However, those ideas didn’t get
to consolidate a suitable solution that would provide secure
memory sharing.

Slicedup achieves its purpose with a straightforward and
simple but effective approach. It merges not only idle pages
but also the active ones (as standard deduplication). There are
also a few drawbacks to this approach. The memory sharing
efficiency is tied to the number of tenants present in a physical
host. Given that sharing pages among different tenants is
not allowed, the set of pages that can be potentially shared
decreases when more tenants are located in the same physical
host. Besides, although Slicedup is providing protection among
different tenants, it can not protect virtual machines residing
in the same tenant. In that scenario, information disclosure and
physical memory massaging [38] are still feasible. However,
Slicedup offers strong protection on systems where all virtual
machines in a particular tenant trust each other. Consequently,
attacks from distrusting tenants are ineffective.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented Slicedup, a memory
deduplication design for multi-tenant cloud systems. Slicedup
offers a trade-off between sharing pages of all the virtual
machines, which weakens the system, and disabling entirely
memory deduplication, which means loss of memory savings.

With Slicedup, the virtual machines belonging to the same
tenant are sharing their memory because they are part of a
group of trust, but not among tenants. As we showed, this
is preventing side-channel attacks among machines belonging
to different tenants and, at the same time, it provides good
memory savings. Our analysis showed that Slicedup prevents
side-channels attacks while offering similar memory savings
when the number of tenants per physical host is low, and
around a 50% of memory savings when the number of tenants
is higher.

In future work, a proper evaluation of this approach using
benchmarks needs to be done, comparing it with existing
solutions and measuring performance and memory saving
rates.

REFERENCES

[11 M. Armbrust et al., “A view of cloud computing,” Communications of
the ACM, vol. 53, no. 4, 2010, pp. 50-58.

[2] Compaq Computer Corporation. Internet solution division
strategy for cloud computing. [Retrieved: Sep, 2018]. [Online].
Available: http://www.technologyreview.com/sites/default/files/legacy/
compaq_cst_1996_0.pdf [retrieved: November, 1996]

[3]1 H. Marco-Gisbert and I. Ripoll, “Preventing brute force attacks against
stack canary protection on networking servers,” in Network Computing
and Applications (NCA), 2013 12th IEEE International Symposium on.
IEEE, 2013, pp. 243-250.

[4] K. Braden et al., “Leakage-resilient layout randomization for mobile
devices.” in NDSS, 2016.

[5] Red Hat. Disabling ksm service to avoid memory deduplication
as an advanced exploitation vector. [Online]. Available: https:
/faccess.redhat.com/solutions/2356551 [retrieved: Sep, 2018]

[6] C. Huffman. Memory combining in windows
8 and windows server 2012. [Online].
Available: https://blogs.technet.microsoft.com/clinth/2012/11/
29/memory-combining-in-windows-8-and-windows-server-2012/

[retrieved: Sep, 2018]

[71 P. J. Denning, “The locality principle,” in Communication Networks
And Computer Systems: A Tribute to Professor Erol Gelenbe. World
Scientific, 2006, pp. 43-67.

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-676-7

(8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

K. Suzaki, K. Iijima, T. Yagi, and C. Artho, “Memory deduplication
as a threat to the guest os,” in Proceedings of the Fourth
European Workshop on System Security, ser. EUROSEC ’11. New
York, NY, USA: ACM, 2011, pp. 1:1-1:6. [Online]. Available:
http://doi.acm.org/10.1145/1972551.1972552

——, “Software side channel attack on memory deduplication,” in ACM
Symposium on Operating Systems Principles (SOSP 2011), Poster
session, 2011.

R. Owens and W. Wang, “Non-interactive os fingerprinting through
memory de-duplication technique in virtual machines,” in Proceedings
of the 30th IEEE IPCCC, ser. PCCC ’11. Washington, DC,
USA: IEEE Computer Society, 2011, pp. 1-8. [Online]. Available:
http://dx.doi.org/10.1109/PCCC.2011.6108094

J. Xiao, Z. Xu, H. Huang, and H. Wang, “A covert channel
construction in a virtualized environment,” in Proceedings of the
2012 ACM Conference on Computer and Communications Security,
ser. CCS ’12. New York, NY, USA: ACM, 2012, pp. 1040-1042.
[Online]. Available: http://doi.acm.org/10.1145/2382196.2382318

——, “Security implications of memory deduplication in a virtualized
environment,” in Proceedings of the 2013 43rd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
ser. DSN ’13. Washington, DC, USA: IEEE Computer Society,
2013, pp. 1-12. [Online]. Available: http://dx.doi.org/10.1109/DSN.
2013.6575349

K. Suzaki, K. Iijima, T. Yagi, and C. Artho, “Implementation of
a memory disclosure attack on memory deduplication of virtual
machines,” IEICE Transactions on Fundamentals of Electronics
Communications and Computer Sciences, vol. E96-A, no. 1, 2013, pp.
215-224, qC 20170104.

A. Barresi, K. Razavi, M. Payer, and T. R. Gross, “CAIN: Silently
breaking ASLR in the cloud,” in 9th USENIX Workshop on Offensive
Technologies (WOOT 15). Washington, D.C.: USENIX Association,
2015. [Online]. Available: https://www.usenix.org/conference/woot15/
workshop-program/presentation/barresi

Pax address space layout randomization (aslr). [Retrieved: Sep, 2018].
[Online]. Available: https://pax.grsecurity.net/docs/aslr.txt

D. Gruss, D. Bidner, and S. Mangard, “Practical memory deduplication
attacks inZsandboxed javascript,” in Proceedings, Part I, of the
20th European Symposium on Computer Security — ESORICS
2015 - Volume 9326. New York, NY, USA: Springer-Verlag
New York, Inc., 2015, pp. 108-122. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-319-24174-6_6

H. Rong, H. Wang, J. Liu, X. Zhang, and M. Xian, “Windtalker: An
efficient and robust protocol of cloud covert channel based on memory
deduplication,” in 2015 IEEE Fifth International Conference on Big
Data and Cloud Computing, Aug 2015, pp. 68-75.

Y. Yarom and K. Falkner, “Flush+reload: A high resolution, low noise,
13 cache side-channel attack,” in Proceedings of the 23rd USENIX
Conference on Security Symposium, ser. SEC’14. Berkeley, CA,
USA: USENIX Association, 2014, pp. 719-732. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2671225.2671271

Y. Yarom and N. Benger, “Recovering openssl ecdsa nonces using
the flush+reload cache side-channel attack,” IACR Cryptology ePrint
Archive, vol. 2014, 2014, p. 140.

D. Gullasch, E. Bangerter, and S. Krenn, “Cache games — bringing
access-based cache attacks on aes to practice,” in Proceedings of
the 2011 IEEE Symposium on Security and Privacy, ser. SP ’11.
Washington, DC, USA: IEEE Computer Society, 2011, pp. 490-505.
[Online]. Available: http://dx.doi.org/10.1109/SP.2011.22

G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar, Wait a
Minute! A fast, Cross-VM Attack on AES. Cham: Springer
International Publishing, 2014, pp. 299-319. [Online]. Available:
https://doi.org/10.1007/978-3-319-11379-1_15

——, “Lucky 13 strikes back,” in Proceedings of the 10th ACM
Symposium on Information, Computer and Communications Security,
ser. ASIA CCS ’15. New York, NY, USA: ACM, 2015, pp. 85-96.
[Online]. Available: http://doi.acm.org/10.1145/2714576.2714625

B. Giilmezoglu, M. S. inci, G. Irazoqui, T. Eisenbarth, and B. Sunar, “A
faster and more realistic flush+reload attack on aes,” in Revised Selected
Papers of the 6th International Workshop on Constructive Side-Channel
Analysis and Secure Design - Volume 9064, ser. COSADE 2015. New

19

UBICOMM 2018 : The Twelfth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Copyright (c) IARIA, 2018.

York, NY, USA: Springer-Verlag New York, Inc., 2015, pp. 111-126.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-21476-4_8

N. Benger, J. van de Pol, N. P. Smart, and Y. Yarom, ““ooh aah... just
a little bit” : A small amount of side channel can go a long way,”
in Cryptographic Hardware and Embedded Systems — CHES 2014,
L. Batina and M. Robshaw, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2014, pp. 75-92.

D. Gruss, R. Spreitzer, and S. Mangard, “Cache template attacks:
Automating attacks on inclusive last-level caches,” in Proceedings of
the 24th USENIX Conference on Security Symposium, ser. SEC’15.
Berkeley, CA, USA: USENIX Association, 2015, pp. 897-912.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2831143.2831200

S. Chari, J. R. Rao, and P. Rohatgi, “Template attacks,” in Cryptographic
Hardware and Embedded Systems - CHES 2002, B. S. Kaliski, ¢. K.
Kog, and C. Paar, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2003, pp. 13-28.

B. B. Brumley and R. M. Hakala, “Cache-timing template attacks,” in
Advances in Cryptology — ASIACRYPT 2009, M. Matsui, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 667-684.

Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-tenant
side-channel attacks in paas clouds,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’14. New York, NY, USA: ACM, 2014, pp. 990-1003. [Online].
Available: http://doi.acm.org/10.1145/2660267.2660356

D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+flush: A
fast and stealthy cache attack,” in Detection of Intrusions and Malware,
and Vulnerability Assessment, J. Caballero, U. Zurutuza, and R. J.
Rodriguez, Eds. Cham: Springer International Publishing, 2016, pp.
279-299.

M. Chiappetta, E. Savas, and C. Yilmaz, “Real time detection
of cache-based side-channel attacks using hardware performance
counters,” Cryptology ePrint Archive, Report 2015/1034, 2015, https:
/leprint.iacr.org/2015/1034.

N. Herath and A. Fogh, “These are not your grand daddys cpu
performance counters—cpu hardware performance counters for security,”
Black Hat Briefings, 2015.

M. Payer, “Hexpads: A platform to detect “stealth” attacks,” in
Engineering Secure Software and Systems, J. Caballero, E. Bodden,
and E. Athanasopoulos, Eds. Cham: Springer International Publishing,
2016, pp. 138-154.

C. Disselkoen, D. Kohlbrenner, L. Porter, and D. Tullsen,
“Prime+abort: A timer-free high-precision 13 cache attack using
intel TSX,” in 26th USENIX Security Symposium (USENIX
Security 17). Vancouver, BC: USENIX Association, 2017,
pp. 51-67. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity 1 7/technical-sessions/presentation/disselkoen

P. Hammarlund et al., “Haswell: The fourth-generation intel core
processor,” IEEE Micro, vol. 34, no. 2, 2014, pp. 6-20.

P. Guide, “Intel® 64 and ia-32 architectures software developer’s
manual,” Volume 3B: System programming Guide, Part, vol. 2, 2011.

Kim et al.,, “Flipping bits in memory without accessing them: An
experimental study of dram disturbance errors,” SIGARCH Comput.
Archit. News, vol. 42, no. 3, Jun. 2014, pp. 361-372. [Online].
Available: http://doi.acm.org/10.1145/2678373.2665726

E. Bosman, K. Razavi, H. Bos, and C. Giuffrida, “Dedup est
machina: Memory deduplication as an advanced exploitation vector,”
in IEEE Symposium on Security and Privacy, SP 2016, San Jose,
CA, USA, May 22-26, 2016, 2016, pp. 987-1004. [Online]. Available:
https://doi.org/10.1109/SP.2016.63

K. Razavi et al, “Flip feng shui: Hammering a needle in
the software stack,” in 25th USENIX Security Symposium
(USENIX Security 16). Austin, TX: USENIX Association, 2016,
pp. 1-18. [Online]. Available: https://www.usenix.org/conference/

usenixsecurity 1 6/technical-sessions/presentation/razavi
“Linux 2.6.32 release announcement,” Dec 2009, [Retrieved: Sep,
2018]. [Online]. Available: https://kernelnewbies.org/Linux_2_6_32

K. Suzaki, K. Iijima, T. Yagi, and C. Artho, “Effects of memory
randomization, sanitization and page cache on memory deduplication,”
in Proc. European Workshop on System Security (EuroSec 2012) :,
2012, qC 20170104.

ISBN: 978-1-61208-676-7

[41]

[42]

[43]

[44]

[45]

D. Gupta et al., “Difference engine: Harnessing memory redundancy
in virtual machines,” in Proceedings of the 8th USENIX Conference
on Operating Systems Design and Implementation, ser. OSDI’08.
Berkeley, CA, USA: USENIX Association, 2008, pp. 309-322.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1855741.1855763
A. Arcangeli, I. Eidus, and C. Wright, “Increasing memory density by
using ksm,” in In OLS, 2009.

N. Rauschmayr and A. Streit, “Reducing the memory footprint of
parallel applications with ksm,” in Facing the Multicore-Challenge III.
Springer, 2013, pp. 48-59.

Y. Deng, X. Huang, L. Song, Y. Zhou, and F. Wang, “Memory
deduplication: An effective approach to improve the memory system,”

Journal of Information Science and Engineering, vol. 33, no. 5, 2017,
pp. 1103-1120.

M. Oliverio, K. Razavi, H. Bos, and C. Giuffrida, “Secure page
fusion with vusion,” in Proceedings of the 26th Symposium
on Operating Systems Principles, ser. SOSP ’17. New York,
NY, USA: ACM, 2017, pp. 531-545. [Online]. Available: http:
/ldoi.acm.org/10.1145/3132747.3132781

20

