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Abstract—Mobile cyber-physical systems consist of possibly
moving heterogeneous execution units, which interact with their
environment through sensors and actuators. Programming such
systems without taking motion into account has already proven to
be error-prone and complex, as challenges like communication or
programming multiple different devices have to be considered by
the developer. Corresponding programming models abstract from
these challenges through the provision of transparencies. This
allows the programmer to focus on describing the behavior of
the system instead of managing its infrastructure. When mobility
is taken into account, the devices tasks may depend on their
positions in space. Therefore, location and motion awareness
have to be supplied. This impedes the provision of distribution
transparency, as the programmer has to consider the movement
and positioning of certain objects. In contrast to supporting
awareness, providing motion and location transparency allows to
maintain distribution transparency. In exchange, this limits the
developers ability to consider the positioning and movement of
the devices. Therefore, a programming model, which bridges the
gap between maintaining transparencies and providing awareness
is required to enable the developer to focus on describing
the behavior of the possibly mobile system as a whole. This
paper aims to show that there is a need for research on such
models. To achieve this goal, a systematic literature review is
performed. Its main target is the assessment of existing pro-
gramming models, regarding their provided types of awareness
and transparency. To classify on which aspects of the system the
considered programming models focus, an architectural model
for mobile cyber-physical systems is introduced. Additionally,
desired programming model properties are defined with respect
to the presented architectural model. This allows to determine, in
which way the considered approaches fail or succeed in handling
the described challenges. Therefore, a conclusion on the need of
programming models for mobile cyber-physical systems can be
drawn.

Keywords—cyber-physical systems; distribution; mobility; pro-
gramming models; context awareness.

I. INTRODUCTION

In the modern world, an increasing number of diverse com-
putational units are interconnected. Especially in the context of
the Internet of Things and Industry 4.0, this plays an important
role. These devices communicate with each other in order to
exchange data or coordinate their actions. An integration of
sensors and actuators leads to the emergence of Cyber-Physical
Systems (CPS), which consist of heterogeneous execution
units, interacting with their physical environment. Sensors
allow them to recognize the systems surroundings digitally.
Based on this information, the devices control actuators to
influence physical objects or phenomena. Therefore, a con-
trol loop is created, which incorporates the execution units

(including sensors and actuators) as well as their physical
environment.

CPS are used for a vast array of different tasks. Auto-
mated production lines [1], field fertilization by drones [2]
and warehouse logistics management by robots [3] are just
a few examples for this. In this context, considerations on
mobility become increasingly important, as execution units
(e.g., robots) and physical objects in their surroundings (e.g.,
goods being carried) may move.

In classic distributed systems, movements and locations of
the execution units are hidden from the programmer through
motion and location transparency, which are provided by the
operating system or middleware. The deployment of these
transparencies may become less beneficial, when the inter-
actions of moving devices with their physical surrounds are
considered. This makes maintaining distribution transparency
more difficult. Positions and movements of single execution
units and physical objects may have to be observed or even
controlled by the programmer to obtain the intended behavior
of the system. In this case, distribution transparency is still
desired, as error-prone tasks like inter-device communication
and coordination should be abstracted. This implies, that
approaches have to be considered, which maintain distribution
transparency, while providing support for motion and location
awareness.

Programming models allow to take an abstract view on how
these properties may be implemented. They describe the de-
velopers view on the system as well as its internal interactions.
These interactions depend on the systems architecture. For that
reason, we present an architectural model, which incorporates
classic properties of CPS as well as the mobility of devices and
physical events. This allows us to evaluate on which aspects of
the system current programming models focus. On the basis
of the architectural model, we define desired programming
model properties to assess how present proposals tackle the
mentioned challenges. We conduct this assessment through a
Systematic Literature Review (SLR). Therefore, we are able
to methodically inspect existing programming models with
respect to the proposed architectural model and the desired
programming model properties.

In Section II, the architectural model for mobile CPS is
described. The desired programming model properties are
presented in Section III. The methodology of the SLR is
described in Section IV. In Section V, its results are analyzed
and presented. Finally, a conclusion is drawn and topics for
future work are proposed in Section VI.
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II. ARCHITECTURAL MODEL

A layered architectural model for mobile CPS (see Figure
1) allows to view them in an abstract way. This is necessary, as
the system encompasses the interaction of various fundamen-
tally different entities, such as execution units, applications
and physical phenomena.

Its lowest layer represents the execution units. Sensors allow
them to continuously gather data about physical objects and
phenomena in their proximity. Actuators enable them to influ-
ence their environment corresponding to the collected infor-
mation. Heterogeneity is of utter importance in this context, as
the devices possess different capabilities and therefore might
have to cooperate to solve a given problem. Additionally, the
gathered data of different execution units may correspond to
the same observed physical object or phenomenon, but differs
due to varying sensors being available on the physical nodes.

The environmental data layer abstracts from this hetero-
geneous view of the single execution unit. This is achieved
by aggregating the gathered data based on its location and
the corresponding physical phenomenon. Therefore, logical
representations of multiple phenomena may be created, which
leads to a global, more precise view on the physical world.
This makes it possible to coordinate different devices to
react to physical phenomena, even if they do not possess the
capabilities to observe them.

The systems reaction to its observations is described in the
application layer. It represents applications being executed on
the different physical nodes. Those use the environmental data
layer as a foundation for their calculations. The main goal of
an application is to control the devices actuators to influence
the environment. This is done according to the existing virtual
image of the physical surroundings. Therefore, coordination
and considerations on the heterogeneity of execution units are
essential on this layer, as multiple different nodes might have
to act synchronously to solve a common problem.

III. PROGRAMMING MODEL PROPERTIES

The described architectural model (see Section II) allows to
view CPS in an abstract way. Programming models describe
the interactions between the different architectural layers in an
implementation-independent way. These models may be used
as a basis for implementing a corresponding middleware or
operating system and therefore, are well suited to be used as
a first step towards further considerations.

Applications
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Middleware/OS
control

inject

influence
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Figure 1. Overview of the architectural model.
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Figure 2. Relations of the relevant programming model properties.

As already stated in Section I, the focus of this work lies
on mobility and distribution in CPS. Programming models
may view both properties in different ways (i.e., through
transparency or awareness). The provided architecture allows
to consider them separately on the distinct layers of the system.
Thus, the conflict of providing distribution transparency as
well as location and motion awareness to the programmer (see
Section I) can be circumvented.

When considering the discussed architecture, different kinds
of motion have to be regarded for physical phenomena,
execution units and applications. Through the implemented
programming model, the programmer may not recognize the
movement of some of these entities at all through motion
transparency. Motion awareness contrasts this. It allows the
developer to either observe the movement of these entities
through passive motion awareness or to influence it through
active motion awareness. When considering motion, location
awareness has to be given, as motion is a change of location
over time.

When regarding the different architectural layers, support
of motion awareness (actively or passively) on the execution
unit and environmental data layers has to be provided. This
has to be considered to ensure correct interaction between
possibly moving physical phenomena and execution units. On
the application layer, motion and location transparency have to
be deployed to provide distribution transparency. The program-
mer should not have to address execution units based on their
locations and motion but rather on their properties and whether
they are located close to physical phenomena of interest.
This is achieved through allowing the developer to create one
application, which is distributed to the corresponding nodes
at run-time, depending on their capabilities and information
gathered in the environmental data layer. Distribution trans-
parency is required on the environmental data layer as well,
as data has to be aggregated to a digital representation of the
physical world. This allows all nodes to have an identical view
on the observed entities. Therefore, a collective decision on
which execution units tackle the corresponding tasks can be
made. Location and motion awareness are necessary on this
layer to differentiate between multiple different phenomena
taking place simultaneously at different locations. Figure 2
illustrates the described programming model properties and
their relationship to each other.
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IV. RESEARCH METHODOLOGY

In this section, the approach for planning and conducting
the SLR is presented. The SLR is based on the proposals
of Kitchenham [4] as well as Biolchini, Mian, Natali and
Travassos [5]. Its main goal is to inspect, whether there
is a need for research on programming models for mobile
CPS with respect to the presented challenges (see Section
I). Therefore, contributions focusing on properties regarding
distribution, location and motion awareness or transparency
are examined as a first step. Figure 3 gives an overview of
the research methodology. The need for a SLR is discussed in
Section I. Additionally, a search for existing reviews on the
presented topic is performed on Google Scholar. The search
query encompasses keywords to identify SLRs on program-
ming models for mobile distributed systems with regard to
motion and location awareness as well as transparency.

None of the found articles are related to the presented
topic. Therefore, the conduction of a SLR is needed. The
research questions, defined in Table I, lay the foundation for
finding, selecting and analyzing relevant contributions. They
directly refer to the presented properties of programming
models in correspondence to our architectural model (see
Sections II and III). These research questions allow us to
decide, whether the inspected approaches sufficiently tackle
the described challenges. Thus, we can determine whether a
need for research exists on programming models for mobile
CPS.

A. Search Strategy

The selection of an initial set of papers is performed on basis
of the following search strategy. Multiple trial searches are
carried out on Google Scholar to identify, whether the results
contain relevant articles. The research questions are taken as
a basis for the keywords, used in the corresponding search
string. If not enough relevant papers are included in the results,
the search string is altered accordingly. Additionally, negative
keywords are added to exclude articles regarding other do-
mains, which may use identical technical terms with meanings

TABLE I
RESEARCH QUESTIONS FOR PERFORMING THE SLR.

ID Research Question Target

RQ 1 What are the used
abstractions to provide
distribution, location and/or
motion transparency on the
different architectural layers?

To get an overview over the
used abstractions for choosing
one or more of them for an
incorporation into a new or
existing programming model.

RQ 2 What approaches are used to
provide location and/or
motion awareness on the
different architectural layers?

To get insight into the means
to provide location and
motion awareness for an
incorporation into a new or
existing programming model.

RQ 3 What kind of problems are
solved by the programming
models?

To identify, whether the
solved problems are
correlated to the challenges
discussed in this work.

Start

Need for a systematic review

Definition of research questions

Source Selection

Literature Selection Process

Literature Selection

Information extraction

End

Planning

Execution

Figure 3. Approach for conducting the SLR [4], [5].

differing from the presented definitions. The following search
string is the final result of the trial searches and alterations:

("programming model" AND ("distributed computing"
OR "distributed systems") AND ("mobility" OR "mo-
bile systems") AND "computer science" -android -ios
-"artificial intelligence" -"high performance computing"
-multimedia -web -openmp -mpi -energy)
The initial set of articles, obtained through the use of this

search string on Google Scholar, is used for the conduction
of the SLR.

B. Review Protocol

The review protocol is constituted of the following aspects:
• Google Scholar is selected as a resource, as in a com-

parison with searches on IEEE Xplore, Springer Link,
ACM Digital Library and Science Direct, Google Scholar
provided the same results in addition to articles only being
available in smaller digital libraries.

• The search method is based on a keyword search through
the provided web search engine of Google Scholar.

• Papers focusing on programming models for mobile dis-
tributed systems constitute the population.

• Goal of the intervention is the comparison of existing
programming models with respect to the presented ar-
chitectural model and the desired programming model
properties (see Sections II and III).

The article inclusion criteria are shown in Table II. They
are directly connected to the research questions, presented in
Table I. Articles are excluded, if they focus on optimization,
energy efficiency, latency or other topics not directly related to
the programming model, regarding distribution, location and
motion.

C. Article Selection Procedure

The initial set of papers is filtered on the basis of the
presented inclusion and exclusion criteria. First, all titles are
read and it is decided, if the articles match the described
domain (see Section I). For the remaining papers the abstract
is read. If it is obvious, that the article matches the presented
criteria, it is kept for the final set of papers. Otherwise, the
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TABLE II
DEFINITION OF LITERATURE INCLUSION CRITERIA.

ID Inclusion criteria

IC 1 The article describes the used abstractions of a programming
model or middleware for mobile distributed systems.

IC 2 The article considers abstracting from or being aware of location.

IC 3 The article considers abstracting from or being aware of motion.

IC 4 The article considers distribution transparency.

introduction and conclusion are examined. If no clear decision
can be deduced from the introduction and conclusion, the
whole article is read and kept for or removed from the final
list accordingly.

The initial set of papers is constituted of 452 articles, which
is reduced by 236 through reading their titles and removing
duplicates. The remaining results are reduced to a quantity
of 19 articles by examining their abstracts and possibly their
introductions and conclusions. Three more papers are removed
by reading the whole text. Therefore, 16 articles remain in the
final set of contributions to be reviewed.

D. Information Extraction

The information inclusion and exclusion criteria (see Table
II) directly correspond to the presented research questions.
Thus, the papers are examined for approaches to distribution
transparency, location transparency and awareness, and motion
transparency and awareness. This is done with respect to
the presented architectural model (see Section II), as varying
properties may be regarded on different architectural layers.
Additionally, the discussed problems are inspected to decide
in which way the contributions are related to the proposed
challenges of our paper. The following paragraphs elaborate
on the articles and the programming model properties.

Four proposals focus on the application layer. They mainly
differ in their approach to providing distribution transparency.
In [9] and [10], the developer takes the view of programming
a given spatial region itself, instead of different nodes. In [9],
this is achieved through creating an automaton for a static

programming
models
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centered
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unit centered

data
centered

communication and
synchronization in

a mobile region
[6]

programming
nodes in

spatial regions
[7],[8]

programming a
spatial region
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[17],[18]
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Figure 4. Categorization of the different research articles.

spatial region, which is emulated round-robin wise by the
execution units, residing in it. Location awareness is provided
on the application layer as well, as the programmer decides,
in which spatial region a program executes. This implies,
that location awareness is deployed on the execution unit
level as well, as devices have to decide in which region they
are situated. As they may move arbitrarily between regions
(i.e., without control of the programmer), passive motion
awareness is supported on this layer as well. In [10], swarm-
like behavior in a static given region is employed, as one
program is distributed over the corresponding physical nodes.
Those perform calculations, based on their own state and
the state of neighboring devices. Therefore, the execution
of the different program instances converges. Distribution
transparency and location awareness are provided on the
application and execution unit layers for the same reasons as
in [9]. Motion transparency is deployed on the application and
execution unit layer, as movement of devices is not considered
to be impactful. In [10], the environmental data layer is also
regarded. Data is spreading from device to device through
their neighborhood-based calculations. Therefore, distribution
transparency, location transparency and motion transparency
are maintained on this level. In [8] and [7], an application
is created, which migrates between devices, based on their
positions in space and their capabilities. Therefore, distribution
transparency, location awareness and active motion awareness
are provided on the application layer. On the execution unit
layer active location awareness and passive motion awareness
are deployed, as devices may move arbitrarily but have to
exchange information about their positioning to decide, which
computational unit executes the application.

Eleven approaches focus directly on the environmental data
layer. In [13] and [12], the gathering of data from spatial
regions is discussed. In [13], an application is executed dis-
tributively on spatially distributed execution units with the
goal of aggregating data, situated on them. This implies the
provision of distribution transparency on the application and
environmental data layer. The information is accumulated
depending on the positioning of devices. Therefore, location
awareness is deployed on all layers. As positions of execution
units are viewed as static information, motion transparency
is maintained on every architectural level. In [12], an ap-
proach to represent data from spatially distributed devices
as data streams is presented. As data is not aggregated, and
distribution of it is maintained, no distribution transparency is
provided on the environmental data layer. Location awareness
is supported on the environmental data and the execution unit
layers, as information is accessed based on its location and
the point in time it was gathered. Since devices may move
arbitrarily and the corresponding motion of information can
be seen as a change of its location over time, passive motion
awareness is maintained on both lower layers as well.

In [11], an approach to bind data to regions, instead of
devices, is presented. Information corresponds to physical
phenomena, which are sensed by surrounding execution units.
The data is aggregated to create a more precise virtual im-
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age of the corresponding phenomena. Therefore, distribution
transparency is maintained on the environmental data layer.
Devices may move arbitrarily and spread the aggregated data
according to the locations of the observed phenomena and
agendas provided by the programmer. Therefore, location
awareness and active motion awareness are deployed on the
environmental data layer. The former is also provided on the
execution unit level to enable the devices to decide, where
physical phenomena are located. Passive motion awareness
is maintained on this layer, as devices may move arbitrarily
without the influence of the programmer.

Eight suggestions focus on the exchange of information
inside spatial regions. They can be divided into approaches,
based on the publish/subscribe paradigm or tuple spaces. In
[20], [19] and [21], the publish/subscribe paradigm is extended
to allow to constrain publishers and subscribers to only ex-
change data, if they are in a given proximity to each other.
As no information about the location of information itself is
given, location and motion transparency are supported on the
environmental data layer. On the execution unit layer, location
and passive motion awareness are deployed, as devices have
to decide, whether they are in proximity to each other. Motion
can be observed, but not influenced by the devices through the
change of their locations and subscriptions to given topics.

Five approaches use tuple spaces to exchange information
in spatial regions. In [14] and [15], each device hosts a tuple
space and tuples may spread to other execution units based on
given rules concerning directions and distances in space. As
data is viewed in the form of single distributed tuples, spread
across all devices, no distribution transparency is maintained
on the environmental data layer. Location and active motion
awareness are provided on this level, as the spread of infor-
mation can be controlled, based on the positioning of devices.
Therefore, location awareness is deployed on the execution
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Figure 5. Discussed programming model properties in the reviewed papers.

unit layer as well. Additionally, passive motion awareness is
provided, as execution units perceive their change of location
without having influence on it. In [17], every device hosts
a tuple space, similar to [14] and [15]. Additionally, tuples
and reading operations are associated with geometric shapes.
Only if the shape of the reading operation and the shape of the
corresponding tuple intersect, information may be exchanged.
Thus, location awareness is provided on the environmental
data layer. Motion transparency is maintained on this level, as
information may only be read from devices with the required
relative positioning. Since devices may move in formation, the
motion of data cannot be observed. On the execution unit layer,
location and passive motion awareness are provided, as devices
have to perceive their location in order to decide whether the
geometric shapes of reading operations and tuples intersect.
Additionally, they perceive their motion as a change of loca-
tion, without having influence on it. In [18], tuple spaces are
attached to logical mobile units, which may migrate between
devices. Tuples may be exchanged between them, based on
tuple space operation annotations regarding the logical units
identities, regardless of their location. Therefore, location and
motion transparency are provided on all layers. In [16], the
developer creates multiple logical mobile units (i.e., agents),
which perceive their environment through views. Each view
contains data from other devices in a given radius around the
current execution unit of the corresponding agent. Therefore,
location and motion transparency are given on the application
layer, as agents move with their devices or migrate between
them arbitrarily and do not perceive their own location. On the
environmental data layer distribution transparency is provided,
as data from different devices is accessed similarly through the
described views. Through the view constraints, regarding the
positioning of devices, location awareness is maintained as
well. Motion transparency is provided, as agents may migrate
between devices, taking their views with them. Therefore, the
set of data in its proximity changes, without actual information
on whether the device moved, the agent migrated or other
execution units or logical mobile units in its proximity moved.

One approach focuses directly on the execution unit layer.
In [6], the programmer determines a region in space, whose
extend and location may change, based on given functions.
Inside the region devices may exchange messages. Programs
are executed step-wise on the execution units. Whenever an
according message is received, the execution of a step is
triggered. Based on this, active motion awareness is provided
on the application layer, as the programmer influences the
movement of the region. Devices perceive their location to
decide, whether they are located in a given region, hence
location awareness is deployed on the execution unit layer.
Additionally, passive motion transparency is provided, as
execution units move arbitrarily between regions.

Figure 5 shows the final results of the information extrac-
tion. It illustrates the number of papers focusing on the given
programming model properties for each architectural layer.
The considered problems and which architectural level the
proposal directly concentrates on are illustrated in Figure 4.
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V. ANALYSIS

As already described in Section IV-D, the reviewed pro-
gramming models focus on different layers of the presented ar-
chitectural model (see Section II). None of them is concerned
with the interaction across all levels of the system, according
to the given requirements (see Section III). Therefore, a
composition of programming models or the creation of a
new model is required. It is evident, that most approaches
do not suite the presented needs, as they provide motion or
location transparency on the execution unit or environmental
data layers, or do not support distribution transparency on
these layers.

On the execution unit layer Autonomous Virtual Mobile
Nodes by Dolev, Gilbert, Schiller, Shvartsman and Welch
[6] fulfills all requirements, as it supports location aware
communication and synchronization between devices, residing
in a mobile region. Therefore, it provides a first building
block for further considerations on the higher layers. On the
environmental data layer Hovering Data Clouds by Ebers
et al. [11] fits the described needs. It provides distribution
transparency through location aware data aggregation, re-
garding mobile physical events or phenomena. This directly
corresponds to the described programming model properties
for this layer. No programming model fulfills the requirements
for the application layer, as they only support the programming
of devices in static spatial regions. Therefore, if physical
objects or phenomena leave the region, devices stop interacting
with them according to the developers intentions. This implies,
that alterations regarding mobile spatial regions have to be
performed or a new model considering the application layer
has to be created.

VI. CONCLUSION AND FUTURE WORK

An architectural model for mobile CPS was presented
in this paper. On its basis programming model properties
regarding distribution, location and motion of physical phe-
nomena, execution units and applications were defined. These
considerations laid the foundation for the inspection of ex-
isting contributions, regarding the provision of the mentioned
programming model properties. The examination of current
approaches was performed through the conduction of an SLR.

The obtained results provide evidence, that existing pro-
gramming models do not bridge the gap between providing
distribution transparency to the programmer and supporting
the motion and location aware execution of applications.
Therefore, a need for research exists on how to incorporate
these properties into one programming model.

As a next step, the results of this paper will be used to
create an architecture in which further research will be applied.
Topics for future work include considerations on the composi-
tion of existing models or the creation of a new programming
model, as this may provide a more complete view on CPS
to the developer. Further inspections on the formalization of
such models are required to ensure the correct behavior of the
system under any circumstances. In the context of CPS, the
heterogeneity of devices in combination with concurrency is

another subject for future work, as multiple different execution
units might have to cooperate synchronously to interact with
their physical environment to reach a common goal.
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