
Detecting Equivalent Mutants by Means of Constraint Systems

Simona Nica, Mihai Nica and Franz Wotawa

Technical University of Graz, Institute for Software Technology
Inffeldgasse 16B/II, A-8010 Graz, Austria
{snica, mnica, wotawa}@ist.tugraz.at

Abstract—Mutation testing has been used along the research
community as an efficient method to evaluate the process
of software testing, i.e., the quality of the test suite. One
major drawback is represented by the equivalent mutant
problem. Through this current research we aim to come with
a reliable solution to this problem and improve the available
test suite pool. We do this by combining the mutation testing
procedure together with a constraint satisfaction paradigm and
the concept of distinguishing test cases. Mutation testing has
been seen, in most of the cases, as a measure for evaluating the
quality of a user’s test suite. But, also mutation testing can be
of great help in the test case generation process. By means of a
constraint system we generate test scenarios able to distinguish
between two different versions of a program. We start from the
hypothesis that when our constraint system is not able to find
any solution it might be the case that two equivalent mutants
were encountered. The first empirical results, i.e. an increased
mutation score, encourage us to further apply the strategy on
medium size applications.

Keywords-Mutation Testing; Equivalent Mutants; Mutation
Score; Constraint Satisfaction Problem; Distinguishing Test
Case.

I. INTRODUCTION

Mutation testing has been intensively used in a large
number of experiments as an efficient way to detect the
quality of a program’s test suite [1]. It is a fault based
technique that makes use of a well determined set of faults
for measuring the efficiency of the test suite. In mutation
testing the original program is slightly changed using mu-
tation operators and the resulting mutant is executed using
the test suite. If there is at least one failing test run, the
mutant is said to be detected or killed. In mutation testing
mutants that are not killed are alive. A test suite is said to be
more effective if it has the capability to detect more mutants.
The efficiency of a test suite in mutation testing is measured
using the mutation score. The mutation score is equivalent
to the number of mutants detected divided by the overall
number of of non equivalent mutants (a mutant is said to be
equivalent if there is not a test case which can distinguish

The research herein is partially conducted within the competence network
Softnet Austria (www.soft-net.at) and funded by the Austrian Federal
Ministry of Economics (bm:wa), the province of Styria, the Steirische
Wirtschaftsförderungsgesellschaft mbH. (SFG), and the city of Vienna in
terms of the center for innovation and technology (ZIT) and the Austrian
Science Fund (FWF).

Authors are listed in alphabetical order.

the output of the mutant from the output of the original
program). In the ideal case the mutation score is 1 and all
mutants are successfully detected. Mutation analysis is a
good metric for measuring the coverage levels achieved [2].
In the work presented in this paper, we are using mutations
not only for measuring the efficiency but also for improving
the quality of the test suite. The idea is to generate new
test cases in case of mutants that cannot be detected. The
proposed technique is based on the constraint representation
of programs [3], [4] and on the concept of distinguishing test
cases [5]. We convert both the program and its alive-mutants
to a constraint satisfaction problem (CSP) [6] and ask the
constraint solver to search for an input such that the two
programs differ by at least one output value (computation
of a distinguishing test case). When receiving such an input
we are able to discriminate the mutant and the original
program using the generated test case. An input that allows
to discriminate two programs is called a distinguishing test
case.

However, sometimes it might happen that a mutation over
the original program will not change the semantics of the
program, making thus hard to detect the change by a test
case. This is one important issue which must be considered
when generating the mutants. In the literature this is
denoted as the equivalent mutant problem. Although several
techniques are available in order to solve this problem [7],
[8], we do not have a general solution. Therefore, in the
first phase, we propose an algorithm to detect and reduce
the equivalent mutants and then apply the distinguishing test
cases algorithm in order to improve the test suite of a given
application, i.e. improve the mutation score.

The goal is to clarify the research question whether it
is always possible to increase the mutation score of a test
suite from x%, e.g., 70%, to 100%, based on the method
of computing distinguishing test cases from alive-mutants
and eliminating the equivalent ones. Our hypothesis in
this respect is that a mutation score close to 100% can be
achieved when using our proposed technique. In some initial
experiments we observed increases of the mutation score
even from 42% to 100%. However, in these experiments
we only used small-size programs for testing the algorithm.
Hence, the initial experiments confirmed our hypothesis and
further more sophisticated experiments have to be carried

21

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

out.
In what follows, we will give the basic definitions and

then describe the proposed algorithm.

II. BASIC DEFINITIONS

In order to have an accurate understanding of the algo-
rithms described later in the paper, we present the basic
definitions which we will use throughout our paper. We
will explain what a mutation is, what we understand by
equivalent mutant and what a constraint system is.

Definition 1: [Test Case] A test case for a program Π
is a set (I,O) where I is the input variable environment
specifying the values of all input variables used in Π, and O
the output variable environment, which does not necessarily
specifies the values for all output variables.

A test case is a failing test case if and only if the output
environment computed from the program Π when executed
on input I is not consistent with the expected environment
O. Otherwise, we say that the test case is a passing test
case. If a test case is a failing (passing) test case, we also
say that the program fails (passes) executing the test case.

Definition 2: [Test Suite] A test suite TS for a program
Π is a set of test cases of Π.

Definition 3: [Constraint Satisfaction Problem (CSP)]
A constraint satisfaction problem is a tuple (V,D,CO)
where V is a set of variables defined over a set of domains
D connected to each other by a set of arithmetic and
boolean relations, called constraints CO. A solution for a
CSP represents a valid instantiation of the variables V with
values from D such that none of the constraints from CO
is violated.

The variables from the CSP system do not necessarily
need to be the variables used in the program.

Definition 4: [Mutant] Given a program Π and a state-
ment SΠ ∈ Π. Further let S′

Π be a statement that results from
SΠ when applying changes like modifying the operator or
a variable. We call the program Π′, which we obtain when
replacing SΠ with S′

Π , the mutant of program Π with respect
to statement SΠ.

Definition 5: [Equivalent Mutant] Given a program
Π ∈ L and one of its mutant Π′, we say that Π′ is an
equivalent mutant if the mutation that differentiates Π from
Π′ does not change the semantic of Π.

For a better understanding, we illustrate our definition
with the example from Figures 1 and 2. Over the original
version of the program from 1 we apply the relational
operator replacement ≥.

Definition 6: [Distinguishing Test Case] Given a pro-
gram Π and one of its mutant Π′, a distinguishing test case
for program Π and its mutant Π′ is a tuple (I, ∅) such that
for the input value I the output value of program Π differs
from the output value of program Π′.

int a, b;
int compute;
if (a == b)
compute = a;

else
compute = (a + b)/2;

System.out.println(compute);

Figure 1. Original Program

int a, b;
int compute;
if (a >= b)
compute = a;
else
compute = (a + b)/2;

System.out.println(compute);

Figure 2. Equivalent Mutant for ROR

III. RESEARCH STRATEGY

Mutation testing is used mainly to determine the effective-
ness of the given test suite by making use of the mutation
score metric [9]. The idea of using mutation testing also
for test case generation is not new. In [10], the authors use
model based mutation testing in order to obtain distinguish-
ing test cases from contract mutations. In [5], there are used
distinguishing test cases obtained from mutants to reduce the
number of diagnoses in case of fault localization. Mutation
can also be used to indicate possible fixes of faulty programs
as suggested in [11]. Moreover, the use of constraints for
test case generation is also not new. In [12], the authors
propose a method that makes use of the constraint systems
to generate test cases. What distinguishes our work from
the previous one is the combination of program mutation
and constraint solving techniques in order to improve the
mutation score of the test suites and, moreover, to help
detecting the equivalent mutants [13].

Moreover, we try to determine an efficient method for
eliminating the equivalent mutants. In what follows, we will
describe first the algorithm we use to detect and remove the
equivalent mutants from the set of generated mutants, and
then the algorithm for improving the mutation score of test
suite.

In our research, we make use of an extended version
of the MuJava tool [14], [15] for computing the mutants
and the MINION constraint solver [16] for obtaining the
distinguishing test cases.

First, we define an algorithm which will translate the
original program into a constraint system. We will call

22

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

this algorithm along the research experiment. It receives
as input the original program and it gives as output the
constraint system.

Algorithm Transform To CSP (Π)

1) Eliminate all loops from the original program by
replacing them with a bounded number of nested
conditional statements,

2) Convert Π to its equivalent SSA (static single assign-
ment form) representation,

3) Convert SSAΠ into its corresponding constraint rep-
resentation system.

For the elimination phase, the algorithm receives
as input the original program Π and the set of generated
mutants MΠ and offers at the output the new set of mutants.

Algorithm Eliminate Equivalent Mutants (Π,MΠ)

1) Call Transform To CSP (Π) and obtain the constraint
system CONΠ

2) For each Πi from MΠ

a) Call Transform To CSP (Πi) and get the mu-
tant constraint system CONΠi

b) Create the constraint system CS, corresponding
to CONΠ ∧ CONΠi , in order to apply the
distinguishing test case restriction to the entire
constraint system;

c) Add the same inputs - different outputs con-
straints, i.e., I(CONΠi

) = I(CONΠ) and
O(CONΠi) 6= O(CONΠ) to the set of con-
straints CS.

d) Solve the constraint system CS.
e) if no solution is found, then do:

i) Equivalent mutant detected
ii) Remove mutant Πi from MΠ

The above algorithm will always end either when one or
several solutions are found or when the constraint system is
not able to detect any solution. The condition same input -
different outputs is first used in our research in order to help
us detect an equivalent mutant. The experiments conducted
have demonstrated that when the constraint solver is not able
to offer at least one solution, the two programs taken into
consideration are semantically equivalent.

Now, we present the method for improving the test
suite of a given program. The algorithm takes as input the
program Π and the test suite TS, and delivers as output a
test suite that must have a higher mutation score than the
original one.

Algorithm Generate Test Cases (Π, TS)

1) For the program Π generate the finite set of mutants
MΠ.

2) MΠ = Eliminate Equivalent Mutants (Π,MΠ)

3) Run the original test suite TS against the set of
mutants MΠ and, compute the mutation score µ =
MutantsKilled

MutantsTotal
where MutantsKilled is the number of

killed mutants, and MutantsTotal represents the total
number of mutants.

4) If the mutation score µ is larger than a predefined
value, return TS as result. In this case no improve-
ment is necessary.

5) Otherwise, for each Πi from MΠ

a) Call Transform To CSP (Πi) in order to convert
the original program and the alive mutants into
their CSP representation (for more information
concerning program conversion to its constraint
representation we refer the interested reader to
[4])

6) Let CONΠ be the constraint representation of the
original, bug-free, program.

7) For every constraint representation ΠDSi of the avail-
able set of mutants ΠDS , i = 1, ..., |ΠDS | do:

a) Let CS be the set of constraints comprising the
constraints from CONΠ and ΠDSi .

b) Add the same inputs - different outputs con-
straints, i.e., I(ΠDSi

) = I(CONΠ) and
O(ΠDSi

) 6= O(CONΠ) to the set of constraints
CS.

c) Solve the constraint system CS.
d) if a solution is found, then do:

i) Let T
′

denote the valid test case that kills
mutant ΠDSi

.
ii) Add T

′
to the test suite TS;

iii) Run T
′

against the set of mutants ΠDS of
program Π and eliminate Π

′

DSi
from ΠDS if

Π
′

DSi
fails on T

′
.

8) Compute the mutation score µ and return TS as result.
Our research experiment was run over a small set of

simple Java programs (no more than 200 lines of code), e.g,
bubble sort, arithmetic operations, and some of the classes
belonging to HTML Parser project [17] - a Java library used
to parse HTML. Only small deviations, i.e., mutants that are
close to the original program, were taken into consideration.
Up do now we did not benefit from a significant test pool,
but we were able to obtain a higher mutation score with
a small number of generated distinguishing test cases and
a smaller number of mutants. In order to demonstrate the
practicability of our approach, we intend to substantially
extend the empirical results based on larger programs with
a variety of test suites.

In Table I, we summarize the first empirical results of
our approach. By LOC we denote the lines of code, by
LineCov we show the line coverage. For each class we
record the initial mutation score, MSInit, resulted from
the normal mutation testing procedure, and then, after
applying our algorithm, we compute the new mutation score

23

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

Class LOC LineCov MSInit MSDTC

tagTests.AppletTagTest 96 52.00% 27.41% 65.00%
tagTests.BaseHrefTagTest 13 23.00% 18.10% 54.13%

tagTests.BodyTagTest 7 86.00% 79.00% 84.30%
tagTests.CompositeTagTest 156 27.00% 17.56% 51.12%

tagTests.FormTagTest 46 11.00% 6.18% 19.23%
tagTests.LinkTagTest 58 43.00% 31.33% 65.34%

DivATC 21 100.00% 67.66% 100.00%
SumATC 18 100.00% 41.87% 100.00%

BubbleSort 43 99.97% 56.40% 79.10%

Table I
MUTATION SCORE WITH DISTINGUISHING TEST CASES

MSDTC, not taking into account the equivalent mutants.
The strategy is prone to some limitations, connected to the

mutation testing tool and the constraint solver we use. The
MINION solver does not support object-oriented constructs.
Concerning the mutations we produce, we are not able to
mutate constant values, nor to add or remove statements.

IV. CONCLUSION

In this paper, we aim at improving the quality (given as
the mutation score) of a program’s test suite. We achieve
this by generating distinguishing test cases for extending
the available test suite, and also by reducing the number of
equivalent mutants. A distinguishing test cases is a test case
that allows for distinguishing a program from its mutant
using the same input. When adding this test case to the
test suite, the mutation score of the new test suite has to
increase, assuming a mutant that is not equivalent to the
original program.

Up to now, the obtained empirical results support the
claim that our approach improves test suites. However, we
further strengthen the empirical results and aim to test our
algorithm on medium scale applications.

REFERENCES

[1] Y. Jia and M. Harman, “An Analysis and Survey of the
Development of Mutation Testing,” in IEEE Transactions of
Software Engineering, vol. PP, no. 99, Paris, France, 2010,
p. 1.

[2] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin,
“Using Mutation Analysis for Assessing and Comparing
Testing Coverage Criteria,” in IEEE Transactions on Software
Engineering, September 2006, pp. 608–624.

[3] R. Ceballos, M. Nica, J. Weber, and F. Wotawa, “On the com-
plexity of program debugging using constraints for modeling
the program’s syntax and semantics,” in Proc. Conference of
the Spanish Association for Artificial Intelligence (CAEPIA),
Seville, Spain, 2009, pp. 22–31.

[4] M. Nica, J. Weber, and F. Wotawa, “How to debug sequential
code by means of constraint representation,” in International
Workshop on Principles of Diagnosis (DX-08), Leura, Aus-
tralia.

[5] F. Wotawa, M. Nica, and B. K. Aichernig, “Generating
Distinguishing Tests using the MINION Constraint Solver,”
in CSTVA 2010: Proceedings of the 2nd Workshop on Con-
straints for Testing, Verification and Analysis, Paris, France,
2010, pp. 325–330.

[6] R. Dechter, Constraint Processing. The Morgan Kaufmann
Series in Artificial Intelligence, 2003.

[7] A. J. Offutt and W. M. Craft, “Using compiler optimization
techniques to detect equivalent mutants,” in Software Testing,
Verification, and Reliability, 1994, pp. 131–154.

[8] D. Schuler and A. Zeller, “(Un-)Covering Equivalent Mu-
tants,” in ICST ’10: Third International Conference on
Software Testing, Verification and Validation. Paris, France:
IEEE Computer Society, April 2010, pp. 45–54.

[9] J. H. Andrews, L. Briand, and Y. Labiche, “Is Mutation an
Appropriate Tool for Testing Experiments?” in Proceedings
of IEEE International Conference on Software Engineering,
St. Louis, MO, USA, May 2005, pp. 402–411.

[10] W. Krenn and B. K. Aichernig, “Test Case Generation by
Contract Mutation in Spec #,” in Electronic Notes in Theo-
retical Computer Science, 2009, pp. 71–86.

[11] V. Debroy and W. Wong, “Using mutation to automatically
suggest fixes for faulty programs,” in Third International
Conference on Software Testing, Verification and Validation
(ICST 2010), Paris, France, 2010, pp. 65–74.

[12] A. Gotlieb, B. Botella, and M. Rueher, “Automatic Test Data
Generation using Constraint Solving Techniques,” in Proceed-
ings of the 1998 ACM SIGSOFT International Symposium
on Software testing and analysis, Clearwater Beach, Florida,
United States, 1998, pp. 53–62.

[13] B. J. M. Grün, D. Schuler, and A. Zeller, “The Impact
of Equivalent Mutants,” in IEEE International Conference
on Software Testing, Verification, and Validation Workshops,
Denver, USA, 2009, pp. 192–199.

[14] Y. Ma, J. Offutt, and Y. Kwon, “Mujava : An automated
class mutation system,” in Software Testing, Verification and
Reliability , 2005, pp. 97–133.

[15] S. Nica and B. Peischl, “Challenges in Applying Mutation
Analysis on EJB-based Business Applications,” in Proceed-
ings of Metrikon 2009, Kaiserslautern, Germany, November
2009.

[16] I. Gent, C. Jefferson, and I. Miguel, “Minion: A fast, scalable,
constraint solver,” in 17th European Conference on Artificial
Intelligence ECAI-06, Trento, Italy, 2006, pp. 98–102.

[17] HTML Parser, “http://htmlparser.sourceforge.net/,” 2011.

24

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

