
A Test Case Suite Generation Framework of Scenario Testing

Ting Li 1,3

1) Shanghai Development Center

of Computer Software Technology
Shanghai, China
lt@ssc.stn.sh.cn

Zhenyu Liu 2

2) Shanghai Key Laboratory of
Computer Software

Testing and Evaluating
Shanghai, China

{lzy, jiangx}@ssc.stn.sh.cn

Xu Jiang 2

3) Shanghai Software Industry
Association

Shanghai, China
lt@softline.sh.cn

Abstract—This paper studies the software scenario testing,
which is commonly used in black-box testing. In the paper, the
workflow model based on task-driven, which is very common
in scenario testing, is analyzed. According to test business
model in scenario testing, the model is designed to
corresponding test case suite. The test case suite that conforms
to the scenario test can be obtained through test case
generation and test item design. In the last part of the paper,
framework of test case suite design is given to illustrate the
effectiveness of the method.

Keywords-test case; software test; scenario testing; test suite.

I. INTRODUCTION

Software testing is the main activity of software quality.
The goal of software testing is to validate whether software
is good or conform to the initial requirement. However,
software engineers always consider that software testing
should be terminated under certain conditions. The adequacy
of software testing is an important factor according to testing
purpose. It is generally agreed that when software testing
reaches expected test purpose, the software testing activities
could be terminated. Thus, the quality and overhead cost of
software testing can be considered fully and controlled
effectively.

Nowadays, business processes become complicated by
the development of technology and information. At present,
many factors led to the e-business more complicated, such as
business logical become complexity, component-based
development widely accepted and complete workflow
processes scattered in various business components. The
component-based software led to process the data flow and
control flow the more tightly and more complicated.
Therefore, the scenario testing and verification has become
important increasingly before system runtime. The scenario
testing can be regarded as an independent test, which
becomes an important part of black box testing. On the one
hand, many business processes adopted e-business
management. The traditional paper-based business model
was replaced. On the other hand, uncertainty of system
requirement brings risks to scenario testing. So, it is
necessary to consider scenario testing gradually.

Software testing is the critical activity in the software
engineering. However, some research shows the design of
test cases will cost much time during software testing. While
many business workflow management systems have

emerged in recent years, few of them provide any
consideration for business workflow verification.

The research work on business scenario testing and
validation is less. As for the actual development of the
application system, the every operation in business is
designed and developed well. However, business processes
testing and requirements verification are very important and
necessary for software quality. The scenario testing satisfies
software requirement through the test design and test
execution.

Scenario testing is to judge software logic correction
according to data behavior in finite test data and is to analyze
results with all the possible input test data. It is generally
considered that test design can evaluate software testing
quality and select the test data. Scenario-based testing
focuses on what the end-user does, not what system does.
The flow path and boundary conditions are used to design
test data corresponding to business scenario. Therefore, the
main purpose of scenario testing is to find business flow
interaction defects as possible. The test results also help to
record results of software runtime during test execution.

Based on the existing test purpose of scenario-testing, in
this article, we’ll focus our research efforts on test case
design of scenario testing. In the first section, we introduce
the business scenario testing and its importance. And then, in
the second section, we give out a business scenario model. In
the third part, a test case suite model is proposed. The
generation method of design test case is introduced in the
fourth section, according to the requirements of business
scenario which conforms to test case suite model. The fifth
part gives related works and the conclusion is drawn with a
corresponding discussion in the final section.

II. BUSINESS SCENARIO MODEL

Firstly, we give the typical business scenario model,
which supports business model. The business model consists
of three elements: business workflow, business scenario and
basic operation.

A. Concepts

The business workflow indicates the typical business to
accomplish the basic business process. Indeed, the basic
workflow always consists of different scenario in the
business, and any scenario corresponding to the business
workflow. Therefore, we give the definition of the business
scenario model.

35

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

Firstly, notations are introduced (see Table 1).

TABLE I. NOTATIONS

Symbol Implication

BW Business Workflow

SC Scenario

OP Operation

I Input Set

O Output Set

D Data, Test Data

U User

R Role

S State

PS Previous State

SS Success State

TR Test Result

TC Test Case

TCS Test Case Suite

Definition 1: (Business Workflow) Assumes the business

workflow, there are some business models for the fully
business operations.

BW= {I, O, SC, D}, in BW, I am input set, O is output
set, SC is related the scenarios, D is the test data
corresponding to specific scenarios.

Definition 2: (Scenario) As for business process, there
are scenarios in the business workflow. Every scenario could
represent the possible workflow path in business flow.

SC= {I, O, OP, R, U, D, S, RE}, in SC, I and O indicate
input and output separately, OP is the operation related to the
current scenario, U and R are abbreviated of user and role
separately. User and Role are the execute member of the
operation. S is the state which describes the workflow.

Definition 3: (Operation) In any scenario of business
workflow, operation is the basic element which
accomplishes the specific function or function collection.

OP= {PS, SS, UR, D}, in the OP, PS and SS are previous
state and successive state, which indicate the workflow state
before and after the operation.

Definition 4: (Role) There are three kinds of roles, one is
the workflow initiator (Sender), other two are workflow
receiver and workflow informed person the workflow-based
business model.

Definition 5: (User) Assumes the business process, there
are multiple operators, operator is a member of role for
specific operation.

For the two operations are carried out by the two users in
workflow, there are seven typical models for operation. In
these seven models, one model is concurrency or parallel,
and the other models are different orders of successive
operations. For the two operations and two users, two
operations implement the following executable sequence
(see Table 2).

Now, many collaborative business software systems are
followed these two models: concurrently and end-start. Other

models would exist in some special collaborative software
system.

TABLE II. MODELS OF TWO OPERATIONS

Model Description Notation

Concurrent Starts at the same time A||B

Switch Any one starts A|B

Start Start One start and another state ss(A, B)

End Start One finish then another state es(A, B)

End End One finish then another could finish ee(A, B)

Start End One start the another could finish se(A, B)

Loop Repeat when finish [A]

Based on the workflow definition, four typical business
models: sequence, parallel, switch and loop.

B. Model

 Sequence structure is used to define some activities
in sequence execute order. In Fig. 1, where OPa,
OPb are two independent tasks, OPb is defined as S2
and the causal state is S3. The sequence model could
be denoted as es(OPa,OPb).

Figure 1. Sequence Structure

 Parallel structure used to define the order is not
strictly executable. Every task in branch is not
running at the same time, it needs to use two basic
workflows: ‘branch’ and ‘connection’. Fig. 2, where
OPa, after implementation by S1 directly transferred
to the S2 and S4, then the two tasks OPb, OPc can
be executed separately, therefore is a parallel
relationship, and then performed the OPb, OPc, after
its implementation by the OPd. Fig. 2 could be
denoted as es(OPa, (OPb || OPc), OPd).

S2 S3

S6S1 OPa

OPb

OPd

S4 S5OPc

Figure 2. Parallel Structure

 Switch Structure is similar to the parallel structure,
but the condition is selected according to state of
S2/S3, rather than parallel structures, which OPb and
OPc is performed at the same time. This model
could be denoted as es(OPa, (OPb|OPc), OPd).

Figure 3. Branch/Select Structure

36

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 Loop Structure. This structure is used to define that
repeat the implement is needed in many tasks. The
loop structure shown in Fig. 4 is modeled as es(OPa,
[es(OPb,OPc)]). Here, operation OPb is executed
repeatedly in loop structure.

Figure 4. Loop Structure

III. TEST CASE SUITE MODEL

During software testing, a standard test script template is
provided to facilitate execute test case and collect test results.
The standard template not only is the standardized collection
process of quality elements, but also can assist comparative
analysis of different test results.

The test script is the basic element for test execution.
Therefore, test script design is accounting for much time on
test design. It is necessary to find generic test cases in order
to reduce the cost of the test case design for the further test
case design and test execution. For some same operation in
business, the reuse test script can accelerate the test case
design. The process of automatically generating test cases
can also improve the efficiency of test design [1]. As for
testing activities is high cost work, test design is accounting
for the workload and ability of test designer, the test case
reuse method is adopted to improve the design efficiency.
The reuse test case can reduce the design costs if used
existing test case which have been used. The test case reuse
technique can improve the test efficiency and reduce test cost
[2].

Figure 5. Test Case Suite Level Model

The test case suite is top level in the test suite model. The
test case suite, also named test suite, is the collection of test
case. The test case suite is corresponding to the business
model. The test case is the middle level in Fig. 5. The every
test case in test case suite is corresponding to the specific
scenario in the business model. In other words, the test case
could accomplish one of the business flows. The business
flow always consists of many possible workflow paths. For
example, as for the bank transaction workflow, the same
bank transaction in different bank could design two scenarios
in the transaction business workflow. The example
demonstrates the relationship between the business and
scenario. There are more scenarios than the examples in the
actual test requirement. Therefore, the different methods of

transaction could design for different test case in the test
suite of business.

The test case is related to specific scenario in business
workflow. In the business scenario, many tasks constitute the
integrated scenario. The operation is executed by user with
authority role. The relation between two operations in the
specific scenario should be modeled, which introduced in
section 2. The operations could be converted into test items
in test suite model. In the test suite model, the operation is
the basic element. During software testing, test item is the
basic elements during testing execution.

Definition 6: (Test Case Suite) Test case suite consists of
test purpose and related test cases. Test case consists of
related scenario, test method, expected test result and test
item collection. BNF is shown as Table 3.

TABLE III. BNF OF TEST CASE SUITE

<TestCaseSuite>::=<BusinessRule><TestPurpose><User><Role>
<TestType><Data>{<TestCase>}

<BusinessRule>::== /*refer to the business model */
<TestPurpose>::= /* test goal for the business*/
<TestType>::= function | performance | security | others
<User>::=/* user info for the operator */
<Role>::={<User>} /* usergroup */
<TestCase>::=<Scenario><Method>{<TestItem>}<TestResult>
< Scenario >::= /* test case state and its function when start */
<Method>::= manual | automated
<TestResult>::= /* the expected test result for test case */
<TestItem>::=<TestInput><TestOutput><TestData><TestOracle>
<TestInput>::= /* operation procedure and input information*/
<TestData>::= /* test data collection refers to the input */
<TestOracle>::= /*expected the result based on input and data*/
<TestOutput>::= /* software output information*/
Definition 7: (Test item) Test item is an individual test

step in the test case model, including the test input, test data,
test oracle and test output.

Test case consists of many test items. The test items
belong to the relevant test case. The test item is the part of
the test case and every test item is run during the test
execution. The different test scenario can add different test
items to fulfill the test case. Therefore, scenario testing can
be reconstructed according to the description of the test case.
Test item is a fundamental element to construct test case.

IV. GENERATION METHOD

The test case suite should be designed according to the
business model. The business model and workflow is
complicated in that the possible business flow path should be
considered completed for the validation and verification.

A. Generation Framework

The paper gives an integrated framework. Fig. 6 gives the
test case suite generation framework. The framework helps
test designer to design test case suite, test case and test item.
The business model and test purpose are input items. The
important activities in test design are analyzing path and
related operation. The analyze path is to get the possible path
according to the business model. The all possible paths are to
help generate related test case. The purpose of analyzing
operation is to design the test item. The test case, test item,

37

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

and their test data constitute the test case suite, which is
needed for test execution.

Figure 6. The framework of test case suite generation

 Analyze Execute Path
The test scenarios need to be analyzed all possible

execution paths. According to the model presented earlier
and test purpose, the designer should analyze the paths to
accomplish the specific business. Test cases need to be
considered that the coverage of business processes should
conform to test purpose. The typical logic coverage consists
of statement coverage, decision coverage, condition coverage,
decision/condition coverage.

Test requirements consist of various logical coverage,
such as path coverage, decision coverage, condition coverage
and condition/decision coverage, etc. The different coverage
requirements impact on test data design. The decision
coverage is to determine the true and false values in one
statement.

Here, we consider the situation, including two conditions,
the one condition (C1) is x<0 or y>5 and the other condition
(C2) is x>2 and y>3. The x value and y value constitute
collection 1 and collection 2, the detail value and condition
as below. The collection 2 satisfies the condition/decision
coverage.

Collection 1(C1)
x y x<0 y>5 x>2 y>3 C1 C2
-1 3 T F F F T F
2 6 F T F T T F
3 2 F F T F T T

Collection 2(C2)
x y x<0 y>5 x>2 y>3 C1 C2
-1 3 T F F F T F
2 4 F F F T T F
3 2 F F T F T T

The data size should be further considered. The more
data size, the more test execution time and cost. That is to
say, the minimum number of test cases improved test
efficiency. The design test data will affect the size of test
case. Although different test data could achieve the same test
purpose eventually, the less test data will reduce the test
execution time.

It can be seen, the value y in condition 2 is not meet is
true of the condition y> 5, so a new value is needed to design.

If consider further optimization, the collection can be two
data sets, which reduce one data set compare to original data
sets. The final collection is:

x y x<0 y>5 x>2 y>3 C1 C2
-1 3 T F F F T F
3 4 F T T T F T

 Analyze Operation
Operation analysis will get the basic operation based on

business model, including test items and test cases. Each test
item is corresponding to a basic operation. The basic
operations maintain consistency with the test data.

 Combine Test Case
Each operation will be designed to one test item. Test

case consists of test procedures and related test data. Test
procedures are sequence collection of test items, which
sequence corresponds to execution path that analyzed during
test design. The execution path is transformed into a series of
branches that determine the condition and coverage. The user
role information is also to be considered.

Through a set of test cases, test designer can be combined
into a test case suite based on business models and their test
purpose.

B. Algorithm

Here, we develop the algorithm for generating the test
case suite, test cases and related test data. The algorithm
analyzes the business rule and transverse all possible
workflow paths. The every execution path is corresponding
to the test case. The all test cases are composed into an
integrated test case suite, that is to say, the test case suite
consists of all possible execution paths. Indeed, some
execution paths may be invalid due to the contradiction
between test data and business logical. The some execution
paths will be reduced according to test data.

INPUT: SC,OP,TR
OUTPUT: TCS
Begin
 OP’= {};
 EP = {};
 TD = {};
 COND = {};
 Foreach sc In SC Do
 Begin

OP’ = OP’ U getOper(SC);
EP = getAllPath(SC);
TD = createTestData(OP’);
Foreach ep In EP Do
 TD’ = TD’ U getTestData(ep, TR);
TD’ = ProcessUnsed(TD);

 End
Foreach op in OP Do

TC =TC U Generation (OP);
 TCS = Combine(TC,TD’)
End

C. Example

Here, we give the actual example to demonstrate the
experimental result. The business process consists of four
operations, Oa-Od; four conditions, C1-C4. Therefore, the
maximum path is 2*2*2*2=16, if consider the possibility of
execution, the all possible paths are {OaC1C2Ob,
OaC1C2Oc, OaC1C3Oc, OaC1C3C4Oc, OaC1C3C4Od}.

38

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

The Oa-Od is needed to design the test item corresponding to
an operation.

Figure 7. An actual business process

The second step is to design the test data for possible
path. If test requirement is condition/decision coverage,
some condition coverage should be deleted or redesigned
due to the contraction with test data. In table 4, the 8th test
data are unreachable for condition (x>1 and y>10000) true.
The condition is false due to y=6000 in No.8. And then, we
could design the test data for execution path. So the final test
data in No.8 should be x=2, y=20000, z=4.

TABLE IV. CONDITIONS AND TEST DATA

No. Condition (T)
Test Data

x y z T/F

1
x>0 or y>5000

0 3000 0 T

2 2 12000 -2 F

3
y<2000 or z<3

 1000 2 T

4 4000 3 F

5
x>1 and y>10000

1 5000 T

6 2 15000 F

7
y/(x+z)>10000

1 20000 1 T

8 2 6000 2 F

V. RELATED WORKS

Software testing, as is mentioned by Zhu [3], can be
divided into white-box testing and black-box testing,
according to whether or not it involves with code. The white-
box testing includes testing based on code and testing based
on standard. Well, the black-box testing includes hybrid test,
which is based on standard. Moreover, FSM (finite state
automata) is used to generate test data for lots of models
[4-6]. Also, many researches are aim at generating testing
path of EFSM (extended finite state automata). As for EFSM
testing, testing coverage will involve many aspects, for
example, state coverage, transition coverage, path coverage,
and so on. These coverages are used to generate FTP
(feasible transition path), which is required by test cases [7]
[8].

Weyuker's axiomatic system proposed basic properties of
software test adequacy criteria. By using axioms set, it could
assess the adequacy criteria for the testing. In the evaluation
of axiom, Weyuker’s criteria for testing are compared with
test adequacy of the criteria [2]. The anti-composition axiom

in [2] is not positive. This axiom points out, even though test
case suite T is adequate for each component in testing
program P, T in the case of P, it may not necessarily be
adequate. This axiom shows, as for the tested program, the
adequacy of testing is impossible to be fulfilled. Although
the axiom indicates an intuitive concept in software testing, it
cannot enhance the confidence of test engineer with certain
test case. So, the test criterion, which is described by the
axiom, has a kind of a negative character.

VI. CONCLUSION AND FUTURE WORK

The paper gives the method of generating the complete
test case suite according to the business model for the
scenario test. The framework is fulfilling the demand of test
requirement and supporting the design test case and test suite
effectively in scenario testing.

Future work of this research includes deeply research
further improve the efficiency and correctness of the test
case suite and give more extension of choosing better test
cases from the alternative test case which generate thought
reuse technique. The related work and the newly exploration
of reusing technique are still ongoing for software testing.

ACKNOWLEDGMENT

The work is supported by National Torch Program under
Grant No. 2009GH510068 and Shanghai STCSM Program
under Grant No.10DZ2291800. The authors would like to
thank without knowing the name for their helpful
suggestions.

REFERENCES
[1] W. K. Leow, S. C. Khoo, and Y. Sun, “Automated generation

of test programs from closed specifications of classes and test
cases”, Proceedings of the International Conference on
Software Engineering, 2004, pp. 96-105.

[2] E.J. Weyuker, Axiomatizing software test data adequacy.
IEEE Trans. on Software Engineering, 1986, vol. 12(12), pp.
1128-1138.

[3] H. Zhu and Z. Jin, Software Quality Assurance and Testing.
Science Press, Beijing, 1997, pp. 142-147.

[4] Z. Liu, G. Yang, and T Li, “A Component-based Reuse
Technique of Software Test Cases, Proceedings of the 3rd
World Congress for Software Quality”, Munich, Germany,
2005, vol. 1, pp. 26-30.

[5] A. A. Andrews, J. Offutt, and R. T. Alexander, Testing Web
Applications by Modeling with FSMs. Software and Systems
Modeling, 2005, vol. 4(3), pp. 326-345.

[6] R. Lai, "A survey of communication protocol testing," Journal
of Systems and Software, 2002, vol. 62, pp. 21-46.

[7] D. Lee and M. Yannakakis, "Principles and methods of
testing finite state machines-a survey," Proceedings of the
IEEE, 1996, vol. 84, pp. 1090-1123.

[8] A. Kaliji, R. M. Hierons, and S. Swift, Generating Feasible
Transition Paths for Testing from an Extended Finite State
Machine(EFSM) In proceedings of 2nd International
Conference on Software Testing Verification and Validation,
Denver, USA, 2009, pp. 230-239.
A. Y. Duale and M. U. Uyar, "A method enabling feasible
conformance test sequence generation for EFSM models,"
IEEE Transactions on Computers, 2004, vol. 53, pp. 614-627.

39

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

