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Abstract— Enterprise data center implementations make 
significant investments in high availability configurations, 
redundant hardware, software and Input / Output (I/O) paths 
that are in many failure scenarios quite successful. However, in 
spite of all that investment clients are still facing unexpected 
outages and performance impacts related to a phenomenon 
referred to as Sick but not Dead (SBND) errors.  SBND errors 
are sometimes lumped together in a category with other related 
errors including transient errors, partial failure scenarios and 
soft errors.  While SBND errors do have many common 
characteristics with the errors described above, there are key 
differences and environment impacts which we will explore 
further in this paper.  We will also present new proactive 
techniques, inject scenarios and methods to identify, characterize 
and address SBND failures including cross-component impacts 
and failures. 
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I.  INTRODUCTION AND MOTIVATION  
Despite high availability (HA) configurations, customers 

are still experiencing outages and severe performance declines 
in their environments. These outages typically show no signs 
of hard component failures for which the HA infrastructure 
would react to and provide recovery. We classify these errors 
as Sick but not Dead (SBND) failures. These errors are often 
the hardest failures to identify and can have sporadic but 
lasting impacts on the environment as a whole.  SBND failures 
currently represent 80% of business impact, but only about 
20% of the problems [2].   

SBND errors are sometimes lumped together in a category 
with other related errors including transient errors, partial 
failure scenarios and soft errors.  While SBND errors do have 
many common characteristics with the errors described above, 
there are key differences as well.  SBND errors by definition 
derive from a component within the I/O path that is ‘sick’ 
meaning behaving in an unorthodox or partially failed fashion 
but not completely ‘dead’ or hard failed.  Depending on the 
component exhibiting the SBND characteristics, the symptoms 
can vary, come and go at different intervals and it can take 
anywhere from seconds to months for the component to finally 

reach a hard fail state.  It is this in-between time when the 
component is defined as SBND. 

Complex customer solutions and environments utilizing 
mixed vendor products and technologies create textbook 
scenarios for SBND failures to occur.  Many products are 
intolerant of misbehavior of other devices and most failure 
paths deal promptly with hard failure scenarios, but are slower 
and more cautious to react to partially failed, misbehaving, or 
SBND components in a Storage Area Network (SAN).  With 
current field solutions, problem determination related to 
SBND failure scenarios is complex, time consuming and often 
requires special problem determination lab trace tools and a 
team of cross-vendor product and solution experts.  Current 
resolutions to SBND failure scenarios are almost always 
reactive vs. proactive.  In our system test and SAN labs we 
have been developing new proactive techniques, protocol 
inject scenarios and methods to identify, characterize and 
address SBND failures including cross-component impacts 
and failures across the I/O path. 

Our current research related to SBND defects reported 
shows that the highest number of SBND problems exists along 
the I/O path.  While related problems do occasionally exist 
within specific internal sever paths they are significantly less 
frequent, easier to debug and typically contained to a single 
server and handled via embedded HA mechanism.  

Systems generally behave properly when failures are solid 
or hard failures.  It is when components act SBND that system 
availability is often at risk.   In these scenarios failover or 
recovery mechanisms often do not behave as we should expect 
them to.  Often times the problems are corner cases where they 
are not easily reproducible and hard to trouble shoot, but 
continue to plague customer environments.  It should also be 
noted that SBND problems are not something that occur in a 
particular vendor or product set, but rather a system level 
event that occurs when one (or more) component(s) in the 
environment does not always behave consistently.  Since the 
problem does not relate to a particular vendor or component 
issue it is not a simple fix but rather a system level event that 
must be fully understood, tested and addressed by all vendors 
in a distributed systems SAN environment.   

The focus of this paper will be on SBND failures related to 
the I/O path in distributed systems Fibre Channel (FC) SAN 
and Fibre Channel over Ethernet (FCoE) environments.  In 
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this paper we will better define and characterize SBND 
failures, explain the impacts they can have on complex 
customer environments and introduce new testing techniques 
and injections we have deployed in our system test labs.   

 

II. COMMON CHARACTERISTICS OF SBND FAILURES 
Most SBND failures are not obvious product failures.  

Often when problem determination begins all individual 
products in the environment may appear ‘healthy’ and existing 
internal diagnostics often do not flag anything.  Even error log 
reviews may come up relatively clean, making problem 
determination very difficult.  SBND problems by definition 
are transient errors, meaning a product is temporarily 
misbehaving, making the side-effects or symptoms in an 
environment often appear and disappear.  

SBND failures are frequently first noticed at the host or 
application layer.  The tables below outline the most frequent 
symptoms and characteristics displayed when SBND failures 
were encountered.   

 
      TABLE I. MOST FREQUENT SBND SYMPTOMS  

Severe performance degradation at sporadic intervals 
Mirror or replication times exceeding Service Level 
Agreements 
I/O redrives  
I/O near redrives 
Application sensitivity to Recoverable I/O Events 
Product interaction behaviors related to unforeseen 
external trigger events 

 
 

      TABLE II. COMMON SBND CHARACTERISTICS 
Not an obvious product failure, individual products in 
the environment appear ‘healthy’ even after detailed 
internal dump analysis at highest levels of product 
support 
HA Mechanisms see no error and don’t react 
Hard for software and monitoring products to detect, 
internal diagnostics often do not find anything 
Problems often appear and disappear 
Start slowly and often amplify with time 
 
Note; the 2 tables above were compiled using defect data 
from problems that were encountered in the IBM system test 
labs and the IBM field support group from 2010 through 
2012. 
 
One might fail to realize the size and/or scope of a SBND 

failure, by examining the symptoms alone. This is because 
SBND failures commonly create a sympathy sickness 
throughout the entire network. Sympathy sickness is when a 
single device or condition in one part of a network impairs the 
performance of other devices or other parts of the network. 
For example, a single bad small form-factor pluggable (SFP) 
in one of the E-ports of an inter-switch link (ISL) can 
intermittently corrupt frames that are being transported 

through the ISL [3]. The other switches in the SAN or the end 
devices will discard these corrupted frames. This will result in 
the initiators having to perform error recover, and re-drive the 
corrupted I/O exchanges. Thus one bad SFP in an E-port, can 
affect the performance of 100’s or 1000’s of initiators that 
have their frames transported over the ISL. 

III. TEST APPROACH 
In a proactive attempt to better address and improve test 

and design around SBND customer failures, IBM introduced 
an internal quality improvement effort to better define, 
categorize and test SBND failures. As part of this ongoing 
effort, the IBM Systems and Technology Group labs have 
begun introducing a variety of SBND symptoms into complex 
system test environments using a three-pronged approach. 1. 
Build a center of competency around identifying, 
characterizing and debugging SBND failures in the I/O path. 
2. Target modified reliability, availability and serviceability 
(RAS) microcode to better identify and flag SBND failures for 
troubled areas. 3. Targeted test case coverage related to SBND 
failures, symptoms and characteristics.   

For this paper we will cover the 3rd prong described above 
related to increased SBND testing and early results.  In late 
2010 our SAN test labs within IBM began technical analysis 
on SBND errors and targeted ways to not only inject SBND 
failures, but to proactively monitor the environment as a whole 
for related defects and outages.  This was a detailed and 
controlled approach consisting of injects in three primary 
locations within the I/O path, as outlined in figure 1 below. 

 
Figure 1. Example of Typical SAN  

 
 
Once the inject areas were established and test tools in 

place we began targeted testing covering the most frequent 
SBND symptoms and characteristics described in tables 1 and 
2.   Table 3 below outlines some of the test injects symptoms 
and test case examples that were created to inject SBND 
symptoms into our SAN environments to monitor for proper 
handling and unintended side effects.  
 

TABLE III. SBND TEST SCENARIO INJECTS 
Symptom: Types of Injects 

Used: 
Test Case 

Examples: [4] 
Severe 
Performance 

1. Credit starvation 
2. Inject Delay 

 

1. Replace R_Rdy 
primitives with 
IDLE/ARB (FC), inject 
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Degradation PFCs for Class 3 traffic 
(FCoE).  
2. Hold all frames for x 
microseconds 

Mirror or 
Replication times 
exceed Service 
Level Agreement 

1. port flaps 
2. drop frames 
3. jitter 

1. Port shut/no shut 
activity (FC,VFC,Eth) 
2. Drop every xth frame 
in each direction 
3. Corrupt sof, eof, crc 
and other header data 

I/O redrives or 
near redrives 

1. drop, corrupt or 
re-order data frames 
2. short holds of 
frames 

1. Target data frames 
and drop or re-order  
2. Hold all data frames 
and/or transfer ready 
frames for x seconds. 

Application 
sensitivity to 
Recoverable I/O 
Events 

1. virtual link jams 
2. link resets 
3. corrupt frames  

1. FDISC drops, VFC 
jitter, VSAN jams 
2. Inject NOS, OLS, LR 
and/or LRR onto link 
3. Corrupt bits in the FC 
or FCoE header and 
recalculate CRC 

Product behaviors 
related to 
unforeseen 
external trigger 
events 

1. protocol 
violations 
2. unexpected data 
returns 
3. partial recovery 
scenarios 

1. Inject protocol 
deviations from 
standard and monitor 
destination handling 
2. Return Check Cond 
to write exchange 
3. Drop data frame, then 
drop subsequent ABTS, 
allow re-driven ABTS 
to flow through un-
jammed. 

 

IV. EARLY RESULTS 
Overall we established a test suite consisting of over 100 

unique SBND test cases, which are run in a controlled SAN 
environment allowing us the capabilities to inject a single 
error (or combination of errors) and monitor the environment 
as a whole.  The majority of the problems we have identified 
are defects that would have been near impossible to detect and 
correlate in a customer environment.  The ability to understand 
which variables are being injected at which time and location 
in the SAN and watching all associated host, switch and 
storage logs provides the ability to correlate and connect 
events that otherwise would have appeared to be non-related.  
Further, having packet level traces at each point in the SAN 
allows the ability to deep-dive into the traces. Figure 2 below 
illustrates one SBND inject example where every 5 min the 
Not_Operational primitive sequence (NOS) was injected to 
simulate a bouncing or partially failed port in the SAN.  Figure 
2 below shows the subsequent behaviors following one of the 
NOS injects which resulted in failed link initialization. For 
link initialization to complete successfully following our NOS 
injects the primitive sequences OLS/LR/LRR/IDLE/IDLE 
have to be traded sequentially. In figure 2 you can see one 
SAN vendor sent extra R_RDY primitives and LRRs prior to 
sending the final IDLE packets required to complete link 
initialization.  

 
 
 
 

Figure 2: Protocol trace review 

 
 

The protocol trace analysis results and frame level debug 
capabilities, provide enhanced problem determination 
capabilities and when combined with associated host, switch 
and storage logs and traces present a clear picture of the 
problem and greatly aid in cross-vendor problem 
determination.   

Typical product system test environments and test plans 
will analyze recovery capabilities in a product or system 
offering along with potential implementation architectures and 
then inject hard errors to determine if products under test were 
behaving according to specification and customer 
requirements. A high level example would be a system test 
environment that had been designed and implemented with 
full redundancy of all components in order to minimize 
Service Level Agreement (SLA) violations [1]. The test 
engineer would then introduce failures of the components at 
injectable points in the configuration to validate and verify the 
system offering would meet SLA requirements. What this 
technique misses is the “almost errors” that are not specified 
or articulated as customer requirements. Additionally, there is 
some level of subjectivity to a SBND event actually occurring 
and convincing the designers that such a situation would exist 
in the real world.  A test engineer also has to use reasonable 
judgment in designing the injection as any SBND injection 
can be pushed to unrealistic limits and then the test can be 
declared invalid. For example, when testing credit starvation 
one must be cautious in the rate of R_Rdy (frame buffer 
credit) drops that are injected as too many will cause link 
resets, replenishing credits back to the agreed upon limit 
during login.  For SBND scenarios, the tester would want to 
identify the buffer credits allotted during login and drop 
R_Rdys at a rate which slowly impacts the environment 
without causing an immediate link reset.  It is this careful 
balance that must be pursued in the test design and execution.  
Having a test engineering center of competency for SBND 
problems that can provide real world patterns of these 
injections is critical to wining the subjective discussions 
between test engineers and designers.    

Since starting this work in 2010 we have seen a dramatic 
spike in internally found SBND related defects being 
identified and fixed in system test.  In 2010 when we started 
this testing only 5% of the defects found in SAN system test 
were related to SBND error handling.  In May of 2012, these 
defects accounted for 48% of the overall defects opened by the 
SAN system test teams. The defects opened are spread across 
multiple vendors and I/O path components including operating 
systems, host HBA/CNA firmware and drivers, multipath 
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drivers, SAN and FCoE switch code and storage firmware and 
drivers. 

 

V. CONCLUSION AND FURTHER DEVELOPMENT  
As complexity, virtualization and mixed vendor solutions 

continue to grow in the IT industry and customer solutions, the 
need for highly-skilled SBND low-level testing will also 
continue to increase. In an industry where quality is expected 
and customer defects can cause costly outages it is no longer 
sufficient to test products for correct recovery in hard failure 
scenarios.  We need to continue to put increased focus on 
solution testing, and further on solution injects and handling of 
hard failures and SBND failures on any component within the 
environment.   
      As we continue to implement deeper SBND testing 
described in this paper, we are pursuing plans to continue this 
effort with a second phase targeting new inject methods and 
focus on spreading these testing capabilities and awareness 
across IBM test labs worldwide. Given the economic costs of 
the tools to inject SBND scenarios and the skill required we 
are also innovating in economically scalable methods to do 
this type of testing in more diverse testing and test skill 
environments. We also continue to drive a close-loop feedback 
process between IBM test, development and support teams 
and across OEM partners, ensuring that the SBND defects that 
have been found are fixed and lessons learned are applied to 
future product development and monitoring capabilities.   
      It is our hope and vision that impacts of SBND failures be 
understood across the industry and that more SBND testing 
and proactive measures are taken to help minimize the impacts 
these failures have on the environments of the future.  
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