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Abstract—Real-time and embedded systems are sharply
impacted by wrong design choices detected at a very late
stage of the life-cycle. This impact is often due to timing
constraints which are related to structural and scheduling
analysis capabilities. The timing constraints analysis requires
an expertise in both design and scheduling analysis. In this
paper, we highlight some temporal analysis related difficulties.
In order to help designers and to improve the real-time
system design to be corrected at an early stage, we propose
an approach which is based on modeling oriented scheduling
analysis.

Keywords-model-based design; structure verification; schedul-
ing analysis validation.

I. INTRODUCTION

The temporal validation of real-time systems is mainly
based on the scheduling theory or model checking of the sys-
tem using a formal model (timed Petri nets, timed automata,
temporal logic, etc.). For example, the system analyst or
expert system designer can analyze the temporal behavior
of a set of tasks scheduled by a scheduling algorithm using
algebraic methods, called feasibility tests, in order to prove
that temporal constraints will be met at run-time.

The complexity of real-time systems leads to use model
driven engineering which has gained more popularity among
real-time system developers. Recently, the integration of
scheduling analysis in a model driven engineering process
has improved. On the one hand, several standardized design
languages such as the UML-MARTE [1] or AADL [2], pro-
vide sets of non-functional properties for the specification,
analysis and automated integration of real-time performance
of critical distributed computer systems. On the other hand,
many commercial and free schedulability analysis tools
provide some scheduling analysis tests in order to help
designers during the analysis phase such as MAST [3],
Cheddar [4], etc. The meta-models of those timing analysis
tools differ. Therefore, each of these tools uses a different
set of concepts to create the input models for simulation
and analysis. Despite all these standard design languages and
these analysis tools, the use of these standards for scheduling
analysis is still expensive in terms of design expertise.

In this paper, we propose a process assisting the designer
step by step in order to verify that a system structure is
coherent and respects all real-time architectural and behav-

ioral rules. Once all structural rules are respected, we help
designers to choose the feasibility tests corresponding to
their design by extracting real-time information, analyzing
it as a task model and then checking if the extracted
information respects the task model assumptions of a third-
party tool. Our approach is based on a decision tree.

The remainder of this article is organized as follows. The
next section is an overview of real-time scheduling concerns
and some related works. Section III introduces our global
process, the relevant concepts and their utilizations. Section
IV presents the analysis aspects of our approach. Finally,
Section V summarizes and concludes this article.

II. BACKGROUND AND RELATED WORK

A real-time system is interacting with a physical process
in order to insure a correct behaviour. For this, it is imple-
mented as a set of parallel, interdependent functionalities.
Parallelism is often ensured by the multitasking paradigm,
relying on a operational layer offering task scheduling.
Thus, the real-time problematic is based on three axes: the
hardware equipments, the task models and the scheduling
theory.

When validating a critical real-time system, starting from
the real task system S, a task model S’ which is a worst-
case of the real system has to be chosen. Then, the worst-
case behaviour of the task model S’ is analyzed in an
acceptable delay. All along this process, if the task model
S’ semantics is poor, then the way S is modeled leads
to pessimistic feasibility analysis. In order to decrease the
modeling gap between S and S’, several advances have
been made on the task models, like practical factors. As
examples, the multiframe models which have been proposed
for multimedia systems [5], serial communication systems
use transaction models [6] [7], self-suspension tasks [8],
precedence constraint anomalies [9], etc.

Real-time scheduling theory provides a set of scheduling
algorithms and algebraic methods called feasibility tests.
Scheduling theory has been originally studied for the basic
Liu and Layland model [10], and extended to cover more
advanced and precise task models. Usually, feasibility
tests prove that a software model using a set of hardware
resources will respect real-time requirements. The time
complexity of the analysis is a very important point: as an
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example, testing the schedulability of periodic independent
tasks with an implicit deadline using a deadline-driven
scheduler on a single processor is a very easy problem
and requires a linear time in the number of tasks. A small
change in the hardware, software or operational context
has a big impact on the temporal analysis. For example,
with the same hypothesis, if we consider a fixed-priority
scheduling policy, in the case where the periodic tasks
are either non strictly periodic, or strictly periodic and
released simultaneously. Then, the feasibility problem is
NP-hard in the weak sense (pseudo-polynomial feasibility
test). But, if the tasks are strictly periodic and not released
simultaneously, then the feasibility problem is NP-hard
in the strong sense, while one could, for test efficiency
reasons, choose to use a pseudo-polynomial feasibility test
as a sufficient (but non-necessary) test for this problem.

In order to obtain a thin design granularity and to avoid
the over-sizing of the hardware resources of critical systems,
some research works have proposed several results in this
major, such as the sensitivity analysis [11], [12], the priority
assignment [13], and the multi-criteria optimization [14].

The architectural verification and temporal validation of
real-time systems can be difficult for system designers.
Recently some research works aim at helping designers
during the modeling phase in order to get a coherent system
architecture. Roquemaurel et al. [15] are interested just in
the architectural validation to ensure the architecture coher-
ence by using formal methods and constraint satisfaction
problems. Plantec et al. [16] have proposed a panel of
design patterns, once the system design respects design
pattern rules then a scheduling analysis corresponding to
this pattern can be be applied [16]. Peres et al. [17] have
also proposed a verification method for real-time system by
using model checking. These research studies focus on one
kind of validation (architectural requirements or temporal
requirements) of the real-time systems. Moreover, for those
which are interested in real-time scheduling, they do not
reduce the gap between the real system and the task model,
nor offer the closest scheduling model when the real system
does not correspond to an existing analyzable model.

We propose an approach based on model driven engineer-
ing in order to assist designers to validate their architecture
during the design phase and then to facilitate the choice
of the appropriate analysis during the design phase. This
approach called MoSaRT (Modeling oriented Scheduling
analysis of Real-Time systems) consists of a domain specific
language enriched by a formal language. Our goal is not to
compete with other design languages or to compete with
existing scheduling analysis tools, but we suggest MoSaRT
to cope with the modeling difficulty and to reduce the gap
between the standardized real-time languages and temporal
analysis tools.

III. MODELING ORIENTED SCHEDULING ANALYSIS

A. Brief description of MoSaRT language

MoSaRT framework is an intermediate framework be-
tween real-time design languages and temporal analysis
tools. This framework is based on the MoSaRT language
which is conceived as a domain specific modeling language
for embedded real-time systems. It is based on four pillars:
the platform, the behavior, the analysis and the functional
model. These aspects are based on the notion of viewpoint
complementarity. Each viewpoint represents a side of the
global system (see Figure 1).

Figure 1. Different views of a real-time system designed through MoSaRT
language

MoSaRT language is an instance of Ecore [18], which
is a scripting language for meta-models. Moreover, Ecore
is an implementation of the MOF (Model Object Facility)
[19] under the integrated development environment Eclipse
[www.eclipse.org] which is a well-equipped framework.

Figure 2. General structure of MoSaRT language

The architecture of MoSaRT language is organized in
various packages and sub-packages. Figure 2 shows a
global overview of the MoSaRT design language. For more
details about MoSaRT language, readers can see related
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papers [20], [21].

B. Formal semantics for MoSaRT language

The MoSaRT meta-model uses similar concepts as
those used in the real-time system domain. For a good
understandability of structural rules (Section IV-A), this
section defines the main structural concept semantics and
their inter-relationships without introducing the real-time
properties.

Definition: Global System: In MoSaRT meta-model,
the global system element “gs” represents the real-time
system. It is characterized by the software platform Sgs,
the hardware platform Hgs and the application Fgs. Then,
gs = <Sgs, Hgs, Fgs>.

Definition: System’s software platform: The software
platform is composed of the software operators and the
software behavior. MoSaRT language contains many
software operators for modeling the tasks, the processes,
the interaction resources (remote and local), etc. In order
to ensure software operators consistency, especially tasks,
behavioral elements offer to the designers the possibility
to express the communication relationship, the precedence
relationship, the trigger mode, etc. Thus: Sgs = <SO, SB>,
where SO is a subset of software operators set SO, and SB

is a subset of software behavioral elements set SB.

Definition: Software Operators: We define some mathe-
matical notions that are used in this section:
- ∃! means there exists exactly one
- f is a total function from the set EA to the set EB ,
if ∀ a ∈ EA, ∃! b ∈ EB such that f(a) = b
- h is a partial function from EA to EB ,
if A ⊂ EA and ∀ a ∈ A, ∃! b ∈ EB such that h(a) = b
- g is a total bijection from EA to EB ,
if and only if ∀ b ∈ EB , ∃! a ∈ EA with b = g(a)
- r is a relation from EA to EB ,
if A ⊂ EA and ∀ a ∈ A, ∃ B ⊂ EB where r(a)= B
- ⊕ means “exclusive or”
We admit that:
- LCR is a set of Local Communication Resources
- RCR is a set of Remote Communication Resources
- EMR is a set of Exclusion Mutual Resources
- TA is a set of Task Activities that we define further
Then:
• IR = {ir1, ir2, ..., irn} = LCR ∪ RCR ∪ EMR, is

a set of interaction resources, where each iri denotes
an interaction resource, and LCR, RCR and EMR are
disjoint sets. Thus:
∀ iri ∈ IR, iri ∈ LCR ⊕ iri ∈ RCR ⊕ iri ∈ EMR

• ST = {st1, st2, ..., stn} is a set of Schedulable Tasks,
each task is characterized by sti = <spj , Ωi, Ξi, Ψi,

tai> where:
– belongsTo is a total function defined as:
∀ sti ∈ ST, belongsTo(sti) = spj , spj ∈ SP

– writesOn is a relation defined as: ∀ sti ∈ ST,
writesOn(sti) = Ωi, Ωi ⊆{ LCR ∪ RCR}

– readsFrom is a relation defined as: ∀ sti ∈ ST,
readsFrom(sti) = Ξi, Ξi ⊆ { LCR ∪ RCR}

– accessesTo is a relation defined as:
∀ sti ∈ ST, accessesTo(sti) = Ψi, Ψi ⊆ EMR

– representedBy is a total bijection defined as:
∀ sti ∈ ST, representedBy(sti) = tai, tai ∈ TA

• SP = {sp1, sp2, ..., spn} is a set of Space Processes,
each process is characterized by spi = <Ti, spj>
where:

– ∀ stj ∈ Ti ⊆ ST ⇒ belongsTo(stj) = spi

– inherits is a partial function defined as:
∀ spi ∈ SP, inherits(spi) = spj , spj ∈ SP

Thus, SO = IR ∪ ST ∪ SP is a set of Software Operators.

Definition: Software Behavior: Let TR is a set of Trig-
gers, and:
• TA = {ta1, ta2, ..., tan} is a set of Task Activities, each

task activity is defined as tai = <sti,trj , IAi, OAi, Λi>
such that:

– representedBy−1(tai) = sti, sti ∈ ST
– triggredBy is a partial function defined as:
∀ tai ∈ TA, triggredBy(tai) = trj , trj ∈ TR

– precededBy is a relation defined as: ∀ tai ∈ TA,
precededBy(tai) = IAi, IAi ⊆ TA and
∀ taj ∈ OAi ⊆ TA ⇒ ∃ tai ∈ precededBy(taj)

– containedBy is a total function defined as:
Λi ⊆ AS, ∀ asj ∈ Λi, containedBy(asj) = tai

• AS = {as1, as2, ..., asn} is a set of steps, each step is
defined as asi = <κi, ISi, OSi> where:

– κi ∈ K = {action, acquire, release, send, receive,
read, write} which is a set of step kinds.

– stepPrecededBy is a relation defined as:
∀ asi ∈ AS, stepPrecededBy(asi) = ISi, ISi ⊆ AS
and
∀ asj ∈ OSi ⊆ AS ⇒ asi ∈ stepPrecededBy(asj)

So, SB = TR ∪ TA ∪ AS is a set of Software Behavioral
elements.

In this subsection, we have shown just a part of some
MoSaRT elements and their relationships. We have not
introduced the real-time properties, nor how we relate the
operational model to the functional model without any
impact on the functional layer.

IV. STRUCTURAL AND SCHEDULING ANALYSIS

In object-oriented modeling, graphical models are not
sufficiently expressive to be able to express an entire precise
specification. Moreover, it is often necessary to describe
additional constraints on model instances. To specify these
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constraints, formal languages have been developed. Gen-
erally, these languages use complex notations that require
mathematical knowledge. Nevertheless, clarity and simplic-
ity are among MoSaRT purposes. Moreover, MoSaRT can
be used by different actors (designers and analysts) who
are not necessarily proficient in different fields. Therefore,
MoSaRT is enriched by several rules in different severity.
It encapsulates these rules and generates just the error or
information message which can be understood easily. For
implementing structural and analysis rules, we have opted
for OCL (Object Constraint Language) [22] for two reasons.
The first one is the clarity of OCL, which is a formal
language that is conceived to be read and written easily.
The second reason is related to the meta-meta-model used,
which is Ecore [18]. Ecore language operates very well with
OCL and allows to define the constraints, the operations and
the derived properties.

A. MoSaRT structural rules

In this section, we propose the different kinds of structural
rules that must be respected in order to have a coherent
design. We have separated structural rules into three groups.
Architectural rules, vivacity rules ans safety rules. We treat
these different kinds of rules through an example.

Figure 3. Checked models: Architectural rule (a) and vivacity rule (b) are
violated

We consider a real-time system which contains two pro-
cesses, a set of tasks and a set of interactions resources (see
part (a) of Figure 3). The architectural constraints ensure
the possibility of a good utilization of all elements that are
modeled in the platform architecture. For instance, if Task1
and Task2 communicate through a local communication
resource then Task1 and Task2 must belong to the same space
process. This rule is formalized as follow:
∀ sti ∈ ST and ∀ stj ∈ ST
if (Ωi ∪ Ξi) ∩ (Ωj ∪ Ξj) 6= {}
and ((Ωi ∪ Ξi) ∩ (Ωj ∪ Ξj)) ⊂ LCR
then spsti = spstj

Listing 1 shows the implementation of this architectural
rule as an OCL invariant.

Listing 1. An expressed architectural rule in OCL
i n v a r i a n t SoLocalCommResourceRule1 :

( s e l f . oclAsType ( SoCommunica t ionResource ) . w r i t e r T a s k s
−>union
( s e l f . oclAsType ( SoCommunica t ionResource ) . r e a d e r T a s k s ) )
−>f o r A l l ( t1 , t 2 | t 1 <> t 2 i m p l i e s t 1 . p r o c e s s = t 2 . p r o c e s s ) ;

Consequently, the architecture that is shown in Figure 3
(part (a)) is not validated.

The vivacity rules ensure the correctness and complete-
ness of the global behaviour. This kind of rules is very
important especially for behavioral model. For example,
in the behavioral model of real-time system designed with
MoSaRT language, a scheduling activity must be triggered
by a time trigger or external event trigger. Else, a scheduling
activity must be preceded by another scheduling activity.
This precedence relationship can be designed as a prece-
dence synchronization or as communication relationship. So,
∀ tai ∈ TA
if @ trj ∈ TR where triggredBy(tai) = trj
then precededBy(tai) 6= {}

By translating this rule to OCL, we obtain:

Listing 2. An expressed vivacity rule in OCL
i n v a r i a n t S b T a s k A c t i v i t y R u l e 1 :
s e l f . oclAsType ( S b S c h e d u l i n g A c t i v i t y ) . t r i g g e r
−>i sEmpty ( ) i m p l i e s s e l f . oclAsType ( S b S c h e d u l i n g A c t i v i t y ) .
i n p u t S q u e n c i n g R e l a t i o n−>notEmpty ( ) ;

Therefore, TaskActivity1 and TaskActivity3 which are
shown in Figure 3 (part (b)) respect the vivacity rule that is
previously defined, contrariwise to TaskActivity2.

Safety rules guarantee that no erroneous behavior will
happen especially when a designer enriches the model. For
instance, if the objective of a designer is to have a detailed
design, then the designer can specify the core of a task
activity by adding steps.

Among MoSaRT safety rules, we can find the following
one:
∀ asi ∈ AS if κi = acquire, then asi /∈ stepPrecededBy(asi)

This rule means that an acquire step can not precede itself.
An “acquire step” means that task gets a semaphore in order
to access to a critical shared resource. Then, the defined rule
must be respect to ensure a safe system behavior. The Listing
3 shows the corresponding OCL rule.

Listing 3. An expressed safety rule in OCL
i n v a r i a n t S b S t e p P r e c e d e n c e R e l a t i o n R u l e 1 :
s e l f . s o u r c e S t e p . o c l I s T y p e O f ( SbAcqu i r eS t ep )
i m p l i e s not s e l f . t a r g e t S t e p . o c l I s T y p e O f ( SbAcqu i r eS t ep ) ;

In this section, we have shown the structural rules
which must be respected during the design phase. Through
MoSaRT, the validation of a real-time system structure is
incremental. This approach has two advantages. The first
one is to cope with scaling problems. So, the verification
process stops a the first violation rule. The second advantage
is to keep the traceability, then inform the designer about the
model element that causes the invalidation of the system. In
the next section, we expose the way MoSaRT rules detect
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the ability of a real-time system to be analyzable and then,
how it proposes the possible scheduling analysis which is
matching with the analyzable system.

B. MoSaRT scheduling analysis ability rules

The purpose of MoSaRT language is not to provide
scheduling analysis, but to help designers to verify their
systems in order to conclude about the schedulability of
their systems and to help in its dimensioning. MoSaRT
contains several scheduling analysis rules which guide de-
signers to choose the appropriate scheduling analysis tests.
Moreover, MoSaRT can also offer to a designer several
external scheduling analysis tools that provide these tests,
such as Cheddar [4], MAST [3], etc.
Each analysis test depends on the model completion phase.
For example, sensitivity analysis [11][12] is a dimensioning
technique which can be solicited at an early design phase.
Moreover, the model completion is measured by the kind of
real-time properties mentioned in a real-time system design.
For instance, a design which can be mapped to a Liu and
Lalyland task model [10] could be analyzed as a transaction
model [6] if offset-time properties were mentioned.

In this paper, we focus on scheduling analysis validation.
MoSaRT offers a set of scheduling analysis ability rules
in order to check the meta-model instance and then to
infer the task model that corresponds to this instance. In
the case where no task model corresponds to the designed
instance, MoSaRT should suggest the closest task model.
To facilitate the understanding about the manner MoSaRT
detects scheduling ability of a design, we expose that trough
a simple example. This example is based on a simple real-
time system. It is composed of three independent periodic
tasks which are executed on a processor using a fixed priority
scheduling policy. Each task is characterized by a release
date ri, a worst-case execution time Ci, a relative deadline
Di, a period Pi and a priority Prioi (the smallest value is the
highest priority). Table I summarizes these characteristics.

Task ri Ci Di Pi Prioi
Task1 0 ms 2 ms 4 ms 4 ms 1
Task2 0 ms 1 ms 4 ms 4 ms 2
Task3 0 ms 1 ms 8 ms 8 ms 3

Table I
VALUE OF TASK CHARACTERISTICS

Figure 4 shows the design of this example through
MoSaRT language. This model respects all structural rules;
then, we can apply schedulability analysis rules in order to
know the possible analysis tests which can match this model.

The scheduling analysis ability rules are a set of assump-
tions. These assumptions are collected from different task
models and they are implemented in MoSaRT language as
a set of OCL rules that are not necessarily true. These OCL

Figure 4. A simple real-time system that is designed using MoSaRT
language: software model(a), hardware model(b) and behavioral model(c)

Figure 5. A decision tree of Scheduling analysis ability rules

rules are inter dependent and they are organized as a decision
tree (see Figure 5). So, the verification of a rule requires the
accuracy of other rules. For example, MoSaRT first checks
if a hardware platform exists. If true, then it will verify if the
hardware architecture is uniprocessor, else it will verify if the
hardware architecture is multi-processor else it will deduce
the hardware architecture is distributed. We note that a tree
exploration gives the task model which corresponds to the
design or else the nearest worst-case model. For instance, the
design appearing in Figure 4 respects a set of rules which
correspond to Liu and Layland task model [10] assumptions.
Therefore, the simulation, the worst case response time
calculation and the processor utilization calculation are the
analysis tests corresponding to our design example. This
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Figure 6. Result provided from Cheddar analysis tool

result does not mean that the system example is schedulable,
but the system can be analyzed by a third-party tool provid-
ing the appropriate scheduling analysis tests. Figure 6 shows
the simulation test applied by the real-time system example.
This validation can be provided by Cheddar analysis tool.

V. CONCLUSION

We presented an approach to cope with design and analy-
sis real-time system difficulty. MoSaRT is an implementation
of this approach. It is a language which helps to design, to
verify the system structure and to choose a schedulability
test. It is based on Ecore and OCL. We presented two kinds
of analysis that are based on a set of rules. In order to
ease the understanding, the structural rules and scheduling
analysis ability rules are presented through some examples.
The transformation from MoSaRT to analysis tools is done
manually. So, we are focusing on model transformation from
MoSaRT to standardized design languages and then we will
try to automatize the transformation process.
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