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Abstract—Dependability and robustness are essential re-
quirements of embedded systems. It is necessary to develop and
integrate mechanisms for a reliable fault detection. Regarding
the context of hard real-time computing, such a mechanism
should also focus on the correct timing behavior. In this paper,
we present results of the fault detection capabilities, i.e., the
fault coverage and detection latencies, of a novel timing and
control flow checker designed for hard real-time systems. An
experimental evaluation shows that more than 65 % of injected
faults uncaught by processor exceptions can be detected by
our technique – at an average detection latency of only 22.1
processor cycles. Errors leading to endless loops can even be
reduced by more than 90 %, while the check mechanism causes
only very low overhead concerning additional memory usage
(15.0 % on average) and execution time (12.2 % on average).

Keywords-Control flow checking; timing correctness; reliabil-
ity; embedded processors; hard real-time computing

I. INTRODUCTION

Most deployed systems in safety-critical areas, like the au-
tomotive and aerospace domains, are hard real-time comput-
ing systems. They must provide analyzable timing behavior,
because missing a deadline potentially causes catastrophic
consequences. The primary goal is not to optimize the
average performance, but to provide analyzability and to
determine timing guarantees [20]. If an embedded system
is intended for safety-critical applications, designers must
also guarantee that soft errors, e.g., caused by transient
faults, have negligible impact on the execution behavior. It
is necessary to integrate reliable error detection mechanisms
with low detection latency enabling an immediate reaction
to any misbehavior and possibly the execution of a fall-back
solution within the required deadlines.

In this context, we focus on errors occurring in the control
path of an embedded hard real-time processor, i.e., errors
causing timing or logical divergence from the proper control
flow. Fault injection studies show that up to 77 % [19]
of errors occurring in a computer system are control flow
errors. Regarding system errors caused by transient, non-
reproducible faults, an on-line error detection mechanism is
the only feasible solution to detect such errors.

In [23] and [24], Wolf et al. provide a detailed description
of a novel timing and control flow check mechanism. The
approach extends fine-grained on-line timing checks for hard

real-time systems by a lightweight control flow monitor-
ing technique. The instrumentation of application code at
compile-time is combined with a small hardware check unit
connected to the core verifying the correctness at run-time.

In this paper, we enhance this approach by additional
checks of a lower timing bound. Moreover, we particu-
larly focus on the fault detection capabilities of the check
mechanism. A fault injection study based on automotive
benchmarks provides additional results showing the main
benefits of the approach, i.e., a wide coverage of possible
soft errors resulting in a reduction of critical system failures,
very low fault detection latencies, and low memory and
execution time overhead.

This paper is organized as follows: Section II summarizes
related work in the field of on-line checking techniques.
Our proposed method for temporal and logical control flow
monitoring is presented in Section III. Subsequently, Section
IV shows details on implementation issues. The results
of fault injection experiments are presented in Section V.
Finally, Section VI concludes this paper and gives an outlook
to future work.

II. RELATED WORK

Several methods for control flow checking – neglecting
timing correctness – have been proposed during the last
decades, implemented in hardware or software. Accordingly,
these approaches either introduce additional hardware, like
a watchdog processor [12] performing reliability checks
during run-time [11], [15], [19], [22], or they add sup-
plementary code on software-level to perform monitoring
operations [1], [8], [14], [18]. However, both alternatives
have benefits and drawbacks as well: While hardware-
based approaches usually provoke high complexity for the
integration into a system, their advantage is a good average
performance due to less overhead concerning memory usage
and execution time. Moreover, most of these techniques do
not require changes in the executed application. Software-
based approaches on the other side are easy to integrate,
but cause significant overhead. Also, it is needed to add
redundant information to the application source code, given
that it is available. A solution for this dilemma can be the
usage of a hybrid detection technique [4], [17], combining
benefits of both hardware- and software-based approaches.
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Figure 1. Temporal instrumentation of basic blocks

On the other hand, Paolieri and Mariani [16] introduce
a special hardware unit to support timing correctness at
system level. The developed timing-aware coverage monitor
unit is CPU-independent, but requires timing footprints of
the running task. However, this approach focuses mainly on
timing errors caused by a multi-threaded usage of commonly
used resources, but not on transient faults. The intention of
this technique is only to guarantee timing correctness while
completely neglecting logical aberrations from the proper
control flow.

III. DETECTION MECHANISM

Our hybrid timing and control flow checking mechanism
consists of two phases: In an off-line phase, the safety-
critical application is split into basic blocks (BB), i.e.,
sequences of instructions in which the execution always
begins at the first and terminates at the last instruction. These
blocks are analyzed and hardened with instrumented check-
points in the object code. In an on-line phase, a connected
hardware check unit reacts to the inserted checkpoints during
execution. If the program flow does not correspond to the
instrumented information, an error is signaled.

We separate the description of our technique into two
parts: Firstly, we explain the instrumentation and checking
mechanism only for timing errors occurring in the control
flow. Secondly, the additional part focusing on the detection
of logical control flow errors is presented.

A. Temporal Control Flow Monitoring

After splitting the code into basic blocks, we add check-
points at the beginning of each block containing information
about its timing behaviour. In detail, this timing informa-
tion consists of a lower bound symbolizing the Best-Case
Execution Time (BCET) estimate and an upper bound, the
Worst-Case Execution Time (WCET) estimate (see Fig. 1).

In the on-line phase, a specific hardware check unit
transfers the timing values to defined registers, as soon as
a checkpoint is reached. The register value symbolizing the
WCET is decremented at each following processor cycle.
When the next checkpoint is reached, the register is updated
by the next WCET value. Therefore, we can assume a timing
error, if the register is below zero. In this case, a basic
block required more cycles than the WCET analysis had
computed off-line. For checking the minimum execution
time, a counter value is set to zero at the beginning of each
basic block and is incremented at each following processor
cycle. If the counter value is lower than the instrumented
BCET bound when reaching the following checkpoint, a
timing error occurred.
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Figure 2. Logical instrumentation of basic blocks

B. Logical Control Flow Monitoring

If an application is split into basic blocks, their sequence
during execution is analyzable. We annotate each basic block
with a unique identifier (ID), which is added to the check-
point containing the timing bounds. In order to enable a fast
and easy check during run-time, we develop a technique to
explicitly signalize successors: Along with each ID, we store
the pre-calculated successor ID or two possible successor
IDs of this basic block. So, the hardware checker compares
in the on-line phase, if an actually executed basic block is an
allowed successor. To give a better understanding, we regard
each variation of the control flow, according to Fig. 2:

• In the sequential case (see Fig. 2(a)), we add to each
checkpoint the ID of the basic block itself and the ID
of its follower.

• In case of an unconditional (direct) jump instruction at
the end of basic block BBi in Fig. 2(b), the signalized
successor of BBi has to be updated accordingly.

• If a basic block ends with a branch or loop instruction,
we cannot distinguish off-line which path will be taken
during execution. So, basic block BBi in Fig. 2(c)
contains the IDs of both basic blocks BBi+1 and
BBi+n in a list of successors.

• Fig. 2(d) shows the instrumentation of calls and returns.
In this example, BBi+n is a function, which is called
from BBi. First, we add the ID of BBi+n as the
only allowed successor. Moreover, we append the basic
block, which should be executed after the function’s
return (in this example BBi+1). Within the function, it
is sufficient just to signal the return. This instrumenta-
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tion mechanism also works properly for nested function
calls, if we introduce a stack memory to save multiple
return IDs.

Since coding guidelines [5] for safety-critical hard real-
time systems forbid the usage of indirect jumps and re-
cursion due to problems concerning analyzability, we can
neglect these issues in our context.

The hardware check unit, which becomes active as soon
as a checkpoint is detected during run-time, is enhanced
to interpret the instrumented values. The check unit has
to verify, if the current ID corresponds to the signalized
successor(s). Furthermore, it must save the current values
for the checking progress when the application reaches the
next checkpoint. We have to provide memory for storing at
most two successors and a stack memory for function calls,
which is dependent on the degree of function nesting.

IV. IMPLEMENTATION ISSUES

To evaluate strengths and weaknesses, we provide a
tool for code instrumentation, which is integrated into the
compilation process to enhance the assembly code of an
application by checkpoints. This output is assembled and
linked in order to get a binary that can be executed on a
processor extended by a hardware check unit. The instru-
mentation could also be implemented on binary level. This
might be useful, if application sources are not available,
which can be neglected in our case.

A. Evaluation Platform

As a baseline for the execution we use the real-time ca-
pable multithreaded two-way superscalar CarCore processor
[13]. The architecture of the CarCore is binary compatible
to the Infineon TriCore [10], which is a commonly used
microcontroller in safety-critical applications of the auto-
motive industry. Up to two instructions per cycle can be
assigned to its two pipelines (an address and a data pipeline)
consisting of a decode, execution and write back stage. Both
pipelines share the stages instruction fetch and schedule in
the front part of the processor. The processor works in-order;
instructions in both pipelines can be executed in parallel if
an address instruction directly follows a data instruction.

Our simulations are executed on a cycle-accurate Car-
Core SystemC model, which exactly implements the timing
behavior of the processor. This enables a measurement
and comparison of realistic execution times of different
applications.

B. Integration of Checkpoints

To handle the described methodology for timing and
control flow checking, we need to enhance the application
code by BCET and WCET estimates of a basic block, its
ID along with two potential Successor IDs, and a field Type
signalizing the required compare operation to the hardware
check unit (see Fig. 2 for type values). However, we can

Type ID Succ. ID BCET WCET

2 Bit 9 Bit 9 Bit 6 Bit 6 Bit

Figure 3. A 32 bit checkpoint

avoid an explicit prediction of a second ID by a constraint
on the assignment of basic block IDs: Each succeeding basic
block in the assembler code should get an ID incremented
by one (compared to its predecessor). By this, the second
possible successor in a branch is always the ID of the block
itself, incremented by one. Equally, we can implicitly define
the return ID in case of a function call. The ID of the basic
block of the return target is always the calling basic block’s
ID incremented by one.

The timing bounds are computed with an analysis tool,
which accumulates execution times of single instructions.
The instrumentation tool can be enhanced by connecting
a WCET tool providing less overestimation like the static
WCET tool OTAWA [3], which also works on the baseline
of basic blocks.

Focusing on low overhead, we choose an overall check-
point bit width of 32 bit. This allows writing a checkpoint
value to a 32 bit register of the CarCore processor, which
has to be read by the hardware check unit. The bit mask
displayed in Fig. 3 shows our implementation of a check-
point: We need 2 bit for the declaration of the checkpoint
type and 9 bit both for encoding the ID and the successor
ID. The remaining 12 bits are used for the integration of
the BCET and WCET values. This configuration allows
a representation of 512 unique basic block IDs, which is
sufficient regarding our evaluations.

To enable the check mechanism during run-time, it is
necessary to add processor instructions, which trigger the
check mechanism during execution. The CarCore processor
provides special registers, called Core Special Function
Registers (CSFRs) for hardware extensions. So, we imple-
ment the check unit to be triggered, as soon as an MTCR
(move to core register) instruction on a specific checkpoint
register is executed. For each checkpoint, we need three
instructions: first, we write the checkpoint value into a data
register (requires two instructions), then we call MTCR (one
instruction) to copy the value to the special register. Since
MTCR is an address instruction immediately following after
a data instruction, the CarCore can execute two of these
instructions in parallel, which minimizes execution time
overhead.

C. Hardware Check Unit

To perform timing and control flow checks at run-time,
we connect our hardware check unit directly to the processor
pipeline. It needs two input signals: the processor clock
and the decoded MTCR instructions including the checkpoint
values. To estimate the hardware overhead of the integrated
check unit, we transformed the SystemC code of the checker
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to Very High Speed Integrated Circuit Hardware Description
Language (VHDL) [21] and performed a synthesis for an
Altera Stratix II Field Programmable Gate Array (FPGA)
[2]. A critical point is the stack, which is needed for the
call and return mechanism. Its size depends on the call
depth of the program. If we store the stack in an on-chip
RAM, which is cheaper than logic registers, the check unit
requires only 163 Adaptive Look-Up Tables (ALUTs) (0.5 %
compared to the overall CarCore processor) and 102 (1.0 %)
logic registers, independent of the call depth. However,
in this case we have an additional memory overhead of
(call depth ∗ 9 Bit)/8 Byte for the stack.

Currently, interrupts are neglected in our implementation.
However, it is possible to extend the stack of the hardware
check unit in order to support a kind of context change in
case of an interrupt. But this will be part of our future work.

V. EXPERIMENTAL EVALUATIONS

In this section, we focus on a detailed analysis of the
implemented timing and control flow checking technique.
In detail, we evaluate the detection coverage and latency
using simulations with fault injections and we measure the
overhead caused by the proposed mechanism. All evalua-
tions are performed on the SystemC model of the CarCore
processor, which was enhanced by the presented hardware
check unit. Moreover, we integrated an extension enabling
a systematic fault injection.

A. Benchmark Programs

We use different applications of the Embedded Micro-
processor Benchmark Consortium (EEMBC) AutoBench 1.1
benchmark suite [7]. These programs are implemented in
standard C and represent typical properties and requirements
of automotive software for embedded systems. For the
compilation, we use the HighTec GNU C/C++ Compiler
for Infineon’s TriCore (optimization level O2 enabled) [9].

B. Fault Model

Around 80 % - 90 % of hardware errors are induced by
transient faults [6]. Therefore, in this context, we focus on
transient faults in the form of Single Event Upsets (SEUs)
during operation. These SEUs, usually appearing as bit flips,
are presumed to occur in the instruction memory, since the
consequences are very heterogeneous and challenging for a
successful detection in such cases. As multiple bit faults at
a time are extremely seldom, we assume only one single
occurrence per program execution. For the fault injection
studies, we modified the fetch stage of our simulated pro-
cessor pipeline to inject bitflips. As the memory footprint
of the EEMBC benchmarks is quite low, we can iteratively
run simulations with a systematic injection of all potential
bit flips in the instruction memory. Allover, we performed
143,673 simulation runs, each containing one bit flip.

C. Fault Coverage

As a first result of our evaluation studies, we observed
that 67.0 % of injected faults cause an error, i.e., a deviation
from the correct program functionality. In 33.0 % of all
simulation runs, the injected faults showed no effects. This
mainly results from the following causes:

• Since, according to our fault model, bit flips are injected
in the fetch stage of the processor (always fetching 64
bit, i.e., up to four instructions at once), the faulty
instructions are often not executed, e.g., in case of
previously executed control flow instructions.

• The TriCore instruction set contains several unused bits
in opcodes, where a bitflip will cause no erroneous
behaviour, too.

• If a bitflip is injected inside an instruction representing
a checkpoint, a shortening of the instrumented BCET
value / an elongation of the WCET value will neither
be detected nor lead to an error.

If we focus only on injected faults leading to errors, we
can see that 28.4 % of these simulations abort due to an
exception by the processor (19.5 % illegal opcode, 8.9 %
wrong memory access). We can also neglect this part in our
following considerations, since an additional error detection
is not necessary in these cases.

In the first line (A) of Fig. 4 we can finally see the
detection coverage of our proposed check mechanism –
regarding errors, which are not caught by a processor
exception. The results show that a total of 65.3 % can be
detected: 41.1 % by logical control flow checks because of
a wrong order of IDs, 19.4 % by timing checks due to an
exceeding of the instrumented WCET estimates and 4.8 %
by timing checks due to a deviation from the BCET values.
On the other hand, 33.1 % of simulation runs terminate with
wrong results. These are mostly pure data errors, which
cannot be covered by our mechanism. Finally, we see 1.6 %
of undetected endless loops; these loops comprise multiple
basic blocks, since loops within one single basic block could
be easily detected by our temporal check mechanism.

To compare the results to a system without our check
mechanism, we also conduct a fault injection study using
the EEMBC benchmarks without modifications. As these
applications use less instruction memory due to the missing
instrumentation, a less number of different bit flips can be
injected (a total of 83,782 instead of 143,673). However,
we can see a similar percentage of 38.7 % injected faults
without any effects on the program behaviour. Regarding
the remaining 61.3 % of simulation runs, there is a somewhat
higher rate of 39.6 % of detections by processor exceptions.
This increase is caused by the low detection latency of our
check mechanism: Since several errors are detected very
early, these errors can no longer raise a processor exception
several cycles later. Focusing on errors, which are not caught
by exceptions (see Fig. 4 (B)), there would be 83.2 % of
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(A) 41.1 %
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4.8 %

BCET checks
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Wrong results Endless loops

Errors detected by check mechanism: 65.3 % Errors not detected: 34.7 %

(B) 83.2 %

Wrong results

16.8 %

Endless loops

Figure 4. Behaviour of erroneous executions with (A) and without (B) integration of the proposed detection technique (results based on injected faults
leading to errors, which are not caught by processor exceptions)

simulation runs terminating with wrong results and 16.8 %
causing an endless loop.

Finally, we can conclude that the integration of our check
mechanism reduces the number of errors leading to wrong
results by more than 60 % (from 83.2 % to 33.1 %). The rate
of errors leading to undetected endless loops even decreases
by more than 90 % (from 16.8 % to 1.6 %).

D. Detection Latency

Beside the coverage, we evaluate the latency of our
detection mechanism, i.e., the amount of processor cycles
between fault injection and error detection. Focusing on
latencies lower than 100 cycles (which make around 95 %
of all executions), we receive a distribution shown in Fig. 5.
Overall, the simulations show an average detection latency
of 22.1 processor cycles. Values resulting from logical
checks are generally lower (16.5 cycles on average) than
those resulting from timing checks (25.4 cycles on average
by BCET checks, 34.1 cycles by WCET checks). This
difference is easy to explain: While an error is detected by
logical checks directly after reaching a checkpoint with a
wrong ID, an exceeding of the allowed execution time can
only be detected when the estimated WCET bound of a basic
block was overrun. The fact that several detections in Fig. 5
have a latency of around 70 cycles is a consequence of the
call and return handling of the CarCore, which takes a high
execution time compared to other architectures.

E. Overhead

The software instrumentation of our technique provides a
higher level of reliability but causes overhead. We aim to find
an optimal trade-off between execution time and memory
overhead on the one hand and good results concerning error
detection on the other.

As described in Section IV-B, our instrumentation tech-
nique needs three processor instructions for each checkpoint.
Since the CarCore is able to execute two of these instructions
in parallel, the execution of a checkpoint usually requires
two processor cycles. Fig. 6 shows the results measured
on the selected EEMBC benchmarks; as can be seen, the
additional execution time is low, only 12.2 % in the average
case. To determine the memory overhead we compare the
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number of instructions with the original benchmark program
without instrumentation. Here, we can see an increased
code size of 15.0 % in the average case. Regarding the
benchmark bitmnp, we observe slightly higher results, since
this application contains lots of very small basic blocks.

VI. SUMMARY AND FUTURE WORK

In this paper, we have presented the fault detection ca-
pabilities of our hybrid hardware-software technique for the
on-line detection of control flow and timing errors. Our ap-
proach goes one step beyond related checking mechanisms:
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Besides monitoring only logical correctness of the control
flow, we additionally introduce a technique to guarantee
temporal correctness, especially focusing on hard real-time
systems.

We have implemented our error detection technique for
the hard real-time capable CarCore processor. The hardware
overhead of the check unit is very low, it requires only
0.5 % of ALUTs compared to the processor core. Fault
injection experiments on automotive benchmarks prove the
effectivity of our approach: More than 65 % of injected
SEUs uncaught by processor exceptions can be detected. The
number of simulation runs terminating with wrong results
can be reduced by more than 60 %, the rate of endless loops
even by 90 % using the proposed mechanism. Furthermore,
the detection latency of our technique is very low: An
error is detected after only 22.1 cycles in the average case.
Moreover, we measured the instrumentation overhead for
several benchmarks. In our evaluations, the mean additional
execution time is only 12.2 %, while the increased code size
is around 15.0 %.

In our future work, we will further optimize the ratio be-
tween coverage, latency and the occurring overhead: In case
of a long basic block with a high WCET, a potential fault
is currently detected with high latency. This problem can be
avoided by splitting blocks and adding extra checkpoints in
the middle. On the other side, very small basic block causing
much overhead could be combined with neighboring blocks
without suffering from detection quality.
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