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Abstract—  By  focusing  on  systems  that  can  be  trusted  to 
operate as required, software validation offers a rich field to 
study how far one can go with the support  of mathematical 
certainty,  that  is,  to  identify  when  evidence  (a  non  formal 
entity) must come into play to dismiss the possibility of critical 
errors.  First,  this  article  highlights  that  the  view  of 
mathematics as a source of accuracy supported by a purified 
and rational  chaining of  reasoning persists  until  the present 
days.  Resorting  to  historical  controversies  of  the  1970's 
regarding software  validation,  it  is  possible  to  indicate local 
(social) elements that necessarily participate in what is usually 
considered  'technical'  or  'objective',  showing  therefore  that 
there is no way to establish rigid or fixed boundaries delimiting 
what is considered 'exact'. Regarding software correctness, the 
sociotechnical  approach  adopted  in  this  paper  leads  to  a 
intertwined frame where social (collaborative) mechanisms act 
in ways that are inseparable from those mechanisms that are 
considered 'technical'  or  'objective',  which are,  in  this  case, 
formal methods.  This  paper discusses  software validation in 
the  light  of  Sociology  of  Mathematics  and Social  Studies  of 
Science and Technology.

Keywords-  formal  specification;  collaborative  development;  
objectivity; sociology of mathematic.

I.  INTRODUCTION 

‘The only effective way to raise the confidence level of a 
program significantly is  to  give  a convincing  proof  of  its 
correctness’  [1].  Edsger  Dijkstra,  a  spokesman  of  formal 
methods for software reliability in the seventies, argued in 
favor of a more rigid way to develop software, as a reaction 
to  the  just  before  denounced  software  crisis in  the  1968 
Conference on Software Engineering, Garmisch, reported in 
[2]. He defended that programs should be constructed 'hand-
in-hand',  module  by  module,  with  their  formal  proof. 
Dijkstra opposed his proposition to the traditional technique, 
'to make a program and then to test it', which, in his view, 
was an effective way to detect the presence of errors but did 
not guarantee their absence. [1]

Dijkstra  allied  himself  with  a  powerful  partner: 
mathematics.  Among  mathematicians,  and  also  in  the 
common sense, there is a widespread culture of objectivity 
and accuracy of mathematics [3], which is strong enough to 

stifle  dissenting  voices,  those  sympathetic  to  non-formal 
mechanisms [4]. 

A. The strengthening of mathematics to support the trust

'Why  are  mathematical  certainty  and  the  evidence  of 
demonstration common phrases to express the very highest 
degree of assurance attainable by reason?' [5]

It  is  not  the  purpose  of  this  section  to  present  an 
exhaustive  historical  account  of  the  extensively  expanded 
relations between mathematics and trust and certainty. Much 
more modestly,  it  brings in for  discussion some historical 
moments over the last few centuries where those relations 
were under debate. The above quotation is a milestone: John 
Stwart Mill, in 'A System of Logic' (mid-nineteenth century) 
took a stand against the association of the highest degree of 
safety reachable  by reason 'to  mathematical  certainty'  and 
'the  evidence  of  demonstration'.  This  triggered  intense 
objection by Gottlob Frege (Die Grundlagen der Arithmetik 
– 1884) [6], today considered one of the founders of modern 
logic, a spokesman for the strengthening of rationalist trend. 
The  'peculiar  certainty'  attributed  to  so-called  'deductive 
science'  gained  momentum  in  early  twentieth  century, 
through  the  Vienna  Circle,  where  the  logical  positivists, 
declared their rejection to what they called theological and 
metaphysical  speculation [7].  At  the  same time,  amid  the 
movements  of  mathematical  foundations,  in  particular, 
David  Hilbert's  formalist  program  came  to  the  fore.  It 
conceived mathematics as a purely formal system, consisting 
of symbols devoid of meaning or interpretation: 'In a sense, 
mathematics has become a court  of arbitration, a supreme 
tribunal to decide fundamental questions — on a concrete 
basis  on  which  everyone  can  agree  and  where  every 
statement  can  be  controlled.'  [8]  The  1930s  revealed 
surprises  to  these  approaches,  especially  to  the  formalist 
program, with the publication of Gödel Theorems [9], which 
demonstrated the existence of statements that, although they 
could be written in a formal system of a certain kind, could 
not be proved in it. This exposed the inability of mathematics 
to decide any mathematically expressed matter maintaining 
its consistency. The publication of Gödel’s theorems put into 
question the role of mathematics as a 'court of arbitration' as 
envisioned in the Hilbert’s formalist program. Moreover, in 

63Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle



the  1940s some mathematicians have realized the need to 
consider  factors  then  considered  'extra-mathematical'  for 
understanding  the  configuration of  mathematics  itself.  For 
example,  the  Dutch  mathematician  Struik  proposed  a 
'Sociology  of  Mathematics'  to  be  concerned  'with  the 
influences of forms of social organization on the origin and 
growth of mathematical conceptions and methods' [10].

However,  it  is  noteworthy  that  in  the  1970s,  Dijkstra 
proposed  a  program  of  mathematization  of  software  by 
mobilizing arguments in bases that were very similar to those 
that David Hilbert had proposed in the formalist approach: 
the effort in the pursuit of mathematical truth and accuracy 
and consistency of mathematical methods. Even today, it is 
to be highlighted, the discourse of the search for security and 
reliability is widely supported by confidence in mathematics 
and formal systems. An illustrative example can be found in 
the  general  terms  that  conducted  the  formulation  of  'The 
Grand Challenge Project'  in 2005 attesting an enthusiastic 
view of  formal  methods:  'Programmers  of  the  future  will 
make  no  more  mistakes  than  professionals  in  other 
disciplines.  Most  of  their  remaining  mistakes  will  be 
detected  immediately  and  automatically,  just  as  type 
violations  are  detected  today,  even  before  the  program is 
tested. An application program will typically be developed 
from an accurate specification of customer requirement; and 
the  process  of  rational  design  and  implementation  of  the 
code  will  be  assisted  by  a  range  of  appropriate  formally 
based  programming  tools,  starting  with  more  capable 
compilers  for  procedural  and  functional  programming 
languages.' [11]

The  Sociology  of  Mathematics  [12][10]  allows  us  to 
question the 'objectivity' that is sought in mathematics and 
formal methods, highlighting that in its own conformation, 
mathematical  entities  are  inseparably  mixed  with  local  or 
temporal  elements,  and  are  therefore  historically  situated. 
Such viewpoint takes social mechanisms for collaboration on 
a  par  with  formal  methods  in  the  validation  of  software 
systems and  reinforces the role of inductive reasoning, tests, 
empirical  approaches  as  allies  in  the  process  of  software 
validation.

B. Organization of the next sections

In  Section  II,  we  analyze  the  spreading  of  formal 
methods as a guarantee of software correctness since the 60's 
until  today.  In  this  process,  we  point  out  the  inevitable 
presence  of  personal  choices  and  subjectivities  that  the 
formal  methods are unable to  eliminate and the power of 
speech that relies on a so-called 'objectivity' of mathematics 
to enhance the trust in formal methods and the promise of a 
software free of errors.

In  Section  III,  we  present  a  case  study  relating 
mathematics  and  computers  that  reinforces  the  view  that, 
when mathematics is requested to be applied in real-world 
situations, not only local issues are modified as a result of 
interaction with mathematics, but also mathematics changes 
as result of interactions with local issues. This view collapses 
with  the  general  conception  that  math  is  unique  and 
immutable as a 'language of Gods', a conception that persists 
not only in common sense, but also among mathematicians 
by cultural reasons. As expressed in David Hilbert's Radio 
Broadcast,  in  1930:  'Already  Galileo  declared:  "To 

understand nature, we must learn the language and the signs 
through which  nature  speaks  to  us."  But  this  language  is 
mathematics, and these signs are mathematical figures!'

In the case analyzed here, we report a new arithmetic - 
one  that  is  remodeled  by  requirements  of  a  computer 
hardware, what shows that in mathematics there is room for 
subjectivity.  This  example  is  a  contribution  to  the 
understanding of how social elements come to be inseparable 
from the setting of mathematics, becoming part of it. 

Then, in Section IV we return to the subject of software 
correctness.  We  consider  arguments  that  emerged  in  the 
1970s, in response to the mathematization of software. These 
reactions emphasized  the importance of  considering social 
mechanisms  in  the  development  of  secure  software  and 
software verification. These social mechanisms gain a new 
dimension  when  we  consider  the  new  capabilities  of 
interaction  provided  by  the  Internet,  new  techniques  of 
software  development  considering  collaboration  and  reuse 
and the speed of technology nowadays. Furthermore, we also 
consider  a  recent  testimony  in  favor  of  the  association 
between formal methods and empirical mechanisms. These 
are allies with whom formal verification can go far beyond. 

We  conclude  this  article  indicating  the  Sociology  of 
Mathematics and Social Studies of Science and Technology 
as  emerging  areas  that  consider  the  interweaving  of 
mathematical knowledge and  social and subjective issues. 
This kind of research supports mixed approaches in which 
recent mechanisms of collaboration can be taken in to build 
solutions to problems that were previously treated as purely 
technical.

II. FORMAL METHODS FOR SOFTWARE CORRECTNESS (FROM THE 
SEVENTIES TO TODAY)

It was in terms of trust in mathematics in the late 1960s 
and early 1970s, when computer programs had become too 
long and were used in applications involving safety-critical 
situations,  that  the  U.S.  Department  of  Defense  (DoD) 
initiated  a  series  of  debates  that  pointed  to  the 
mathematization of systems as a guarantee of correctness. At 
that time, the aim was to create a systematic methodology for 
building systems, to question the effectiveness of empirical 
tests and to bet on formal specifications as a means to enable 
secure  programming  in  two  ways:  first,  since  the 
specification  languages  are  more  ‘abstract’  (more  distant 
from  the  code  that  activates  the  hardware)  than  the 
programming languages, they can be closer to the problem 
domain, thus facilitating the correct understanding and ease 
of  expression  of  the  solution;  and,  second,  since  the 
specification languages are formal, they would be suitable to 
prove properties of programs, ensuring correctness. In 1985, 
the U.S. DoD published the Orange Book  whose 'purpose 
[was]  to  provide  technical  hardware/firm-ware/software 
security  criteria  and  associated  technical  evaluation 
methodologies', mandatory for use by all DoD Components 
in carrying out ADP (Automatic Data Processing) system. 
[13]

The establishment of these kinds of standards continued. 
In 1999 an arrangement of international organizations called 
Common Criteria  (CC) created  a  basis  for  evaluating  the 
security  of  information  technology  products,  which  then 
replaced the Orange Book. The CC defined seven levels of 
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assurance,  (EAL),  establishing  a  degree  of  trust  directly 
proportional to an adherence to formal methods:

TABLE I. The  Common  Criteria  Evaluation  Assurance 
Levels: the more formal, the more reliable.

EAL1: Functionally Tested, 
EAL2: Structurally Tested, 
EAL3: Methodically Tested and Checked, 
EAL4: Methodically Designed, Tested, and Reviewed, 
EAL5: Semiformally Designed and Tested, 
EAL6: Semiformally Verified Design and Tested, 
EAL7: Formally Verified Design and Tested. 

The  role  of  formal  methods  in  the  view of  Common 
Criteria  can  be  understood  from  the  report  [14]:  to  earn 
certification  the  developer  chooses  and  formalizes  the 
properties he considers indispensable for safety, provides a 
formal specification of the parts of the software he considers 
critical  and  a  proof  that  the  chosen  properties  meet  the 
specification. The last step is then to prove that the program 
is  indeed  a  refinement  (an  implementation)  of  the  given 
specification,  and  thus  meets  the  properties  proved  at  the 
formal  level.  These  documents  are  then  analyzed  by  the 
‘evaluation authority’ – a team of specialists  whose name 
reveals the sense of authority provided by mathematics. 

As an example, we refer to [15], which describes 'how 
formal  methods  were  used  to  produce  evidence  in  a 
certification, based on the Common Criteria, of a security-
critical software system'. This experience report makes clear 
that even being extremely formal the process always starts 
from choices,  and  these  are  inevitably  subjective.  As  this 
report shows, the software developer chooses the pieces of 
code that  are 'security-relevant software behavior'.  He also 
decides which are the properties to be proved and where to 
locate  the  preconditions  and  postconditions  in  the  code. 
However,  what  is  considered  difficult  in  the  certification 
process are the formal steps, while the developer's  choices 
are only briefly mentioned: 'Given 1) source code annotated 
with  preconditions  and  postconditions  and  2)  a  security 
property of interest, the overall problem is how to establish 
that the code  satisfies the property.  We developed a five-
step process for establishing the property. These five steps 
are described (...)'. 

As  one  might  expect,  arbitrariness,  convention,  and 
hence  ‘subjectivity’  are  inevitably  present  in  the  initial 
stages, when several choices are made by the developer. The 
formal  method  is  unable  to  eliminate  subjectivity,  but 
propagates it stealthily throughout the entire process. 

Ignoring the subjective character of choices such as those 
pointed out above, and still evoking the absolute certainty in 
formal methods, we can see nowadays in the CC web site 
statements  such  as:  ‘IT  products  and  protection  profiles 
which earn a Common Criteria certificate can be procured or 
used without the need for further evaluation’ suggesting that 
formal methods are reliable enough to bypass the need of 
any additional testing, and overshadowing that its role is to 
provide  strong  evidence  that  the  system does  not  contain 
critical errors.

III. WHEN OBJECTIVITY IS NO LONGER ENOUGH

In software verification and validation, the criterion of 
truthfulness,  reliability  and  applicability  is  many  times 
dependent upon confidence in proofs,  which,  in  turn,  has 
been historically  linked to the  purely deductive reasoning 
(or 'the ideal of certainty achieved by mathematical proof', 
in words of Hoare [16]). This does sound a bit contradictory 
since, in computer science, the abstract (formal) knowledge 
becomes directly embodied in computer programs, and so, 
apparently  makes  direct  contact  (without  intermediation) 
with  the  'life-world',  that  is,  borrowing  the  term  from 
Edmund  Husserl,  the  'only  real  world,  the  one  that  is 
actually given through perception, that is ever experienced 
and experienceable - our every-day life-world' [17]. Thus, 
inductive reasoning, tests, empirical approaches as well as 
methodologies  based  on  social  collaboration  appear  in 
programming activities side by side with formal methods, as 
a way of approaching 'our every-day life-world'. Computer 
programming  evinces  that  knowledge  is  a  situated 
construction,  that  is,  a  construction strongly  connected  to 
materialities  and  local  issues,  even  when  the  subject  is 
mathematics or other technical or abstract subjects. 

Let  us  consider  the  controversies  around  the 
establishment  of  the  IEEE  Standard  for  Floating-Point 
Arithmetic [18].  It shows the conflict between the 'objective' 
arithmetic  and  the  requirements  of  'every-day  life-world', 
here embodied in a hardware architecture. In this struggle, 
both  sides  change,  giving  rise  not  only  to  a  modified 
computer but,  as a counterpoint  of Frege's claim ('there is 
nothing  more  objective  than  the  laws  of  arithmetic'  [6]) 
giving rise also to a modified arithmetic.

 The  core  issue  was  the  confrontation  of  the  infinite 
expansion  of  certain  real  numbers  and  the  finite  size  of 
computational representation, which certainly requires some 
form  of  truncation.  Different  algorithms  were  used  by 
different companies (IBM, Digital, HP, Intel, Texas) which 
generated  different  results  for  the  same  purpose.  A 
comparison  between  them  showed  that  there  were  many 
decisions to be taken: ‘One specialist cite[d] a compound-
interest problem producing four different answers when done 
on  calculators  of  four  different  types:  $331,667.00, 
$293,539.16, $334,858.18 and $331,559.38. He identifie[d] 
machines  on  which  a/1  is  not  equal  to  a  (as,  in  human 
arithmetic, it always should be) and eπ −πe is not zero.’ [18] 

The  total  number  of  digits  to  be  adopted  in  the 
computational representation of real numbers was a decision 
that involved the complexity of the hardware being used. In 
addition,  other  decisions  would  also  influence  hardware 
design,  such  as  the  size  of  the  sequence  of  digits  for 
representing the mantissa and exponent in the floating point 
representation.  Mackenzie  [18]  also  pointed  out  the 
mathematical  arbitrariness  embedded  in  several  choices: 
what should be done if the result of a calculation exceeds the 
largest absolute value expressible in the chosen system, or if 
it  falls  below the lowest?  What  should be  done if  a  user 
attempts a meaningless arithmetic operation such as dividing 
zero by zero? In addition to producing different  results in 
some  calculations,  the  lack  of  standardization  hindered 
compatibility  among  different  computers.  Thus,  it  was 
necessary  to  define  a  standard  computational  arithmetic. 
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However,  changes  in  the numerical  representation  implied 
costly hardware changes and other nuisances such as lack of 
compatibility  with  preexisting  programs.  Fundamental 
questions persisted:  these different  forms of representation 
configured a new arithmetic or were they just different ways 
of representing the sole real arithmetic? 

'Negotiating  arithmetic',  as  Mackenzie  aptly  termed  it, 
proved to be a long process.  A committee began to work in 
1977 but the norm IEEE 754, Numbers  Fractional  Binary 
Arithmetic, was not adopted until 1985. The crucial  point, 
highlighted by [18], is that 'there was a stable,  consensual 
human arithmetic against which computer arithmetic could 
be judged. Human arithmetic was, however,  insufficient to 
determine the best form of computer arithmetic. (…) Human 
arithmetic  provided  a  resource,  drawn  on  differently  by 
different  participants,  rather  than a set  of  rules  that  could 
simply be applied in computer arithmetic.' 

IV. SOCIAL PROCESSES FOR SOFTWARE CORRECTNESS

Despite  the  strength  of  mathematization  of  software, 
even in the seventies the confidence in formal methods was 
not a consensus: ‘[L]et us suppose that the programmer gets 
the message ‘VERIFIED.’ (. . . ) What does the programmer 
know?  He  knows that  his  program  is  formally,  logically, 
provably, certifiably correct. He does not know, however, to 
what extent it is reliable, dependable, trustworthy, safe; he 
does not know within what limits it will work; he does not 
know what happens when it exceeds those limits. And yet he 
has that mystical stamp of approval: “VERIFIED.” ’ [19]. 
Hence,  subjectivity  was  clearly  pointed  out,  but  was 
insufficient  to  shake  the  confidence  that  rested  solely  on 
formal methods, and even applies today.

The  dissenting  voices  did  more  than  point  out  the 
existence  of  a  social  component  in  the  acceptance  of 
theorems and proofs.  They argued that  it  is  precisely  the 
social component that acts as a decisive factor of trust and 
may lead to minimize the error conditions: 'What elements 
could  contribute  to  making  programming  more  like 
engineering and mathematics? One mechanism that can be 
exploited is the creation of general structures whose specific 
instances  become  more  reliable  as  the  reliability  of  the 
general  structure  increases.  This  notion  has  appeared  in 
several incarnations, of which Knuth's insistence on creating 
and understanding generally useful algorithms is one of the 
most important and encouraging. Baker's team-programming 
methodology  is  an  explicit  attempt  to  expose  software  to 
social  processes.  If  reusability  becomes  a  criterion  for 
effective design, a wider and wider community will examine 
the most common programming tools.'[19]. 

Although these ideas have not strongly echoed then, we 
now see that 'expose software to social processes' seems to 
be  the  trend  in  the  development  of  secure  software. 
Researchers cited generally useful algorithms that took the 
form  of  the  present  design  patterns  which  are  general 
descriptions of how to solve a commonly occurring problem 
in software design. A pattern is an unfinished algorithm that 
must to be adapted to many real situations. They also cited 
team programming methodologies that nowadays have been 
improved  by  the  collaborative  capabilities  introduced 
through the Internet, in a  way that a piece of code can be 

constructed  or  examined  by  several  hands,  tending  to 
stability.  Reusability  is  a  key  issue  in  the  conception  of 
modern program environments, enabling stable codes to be 
used as components in the construction of modules. Finally, 
there  is  currently  a  proliferation  of  software  development 
methodologies which rely on social collaboration for secure 
software  development.  Some  examples  are  TDD,  PBL, 
social coding, pair programming.  Test Driven Development 
(TDD)  is  a  programming  methodology  where  any 
functionality  of  a  program starts  from a  failing  test  case. 
Each  piece  of  code  is  written  to  solve  the  test  case  and 
overpass  its  failure.  Problem  Based  Learning  (PBL)  is  a 
learning methodology that considers a realistic problem, with 
all its  complexity, as a way of invoking interdisciplinarity 
and autonomy aiming at knowledge construction through the 
design and  implementation of  a  solution for  the  proposed 
problem. Both TDD and PBL takes place in teams. Social 
Coding  are  face  events  aiming  the  development  or 
enhancement  of  code  in  groups.  Pair  Programming  is  a 
programming  mechanism guided by a "pilot" trading ideas 
with  a  "co-pilot"  attended  by  an  audience.  Each  of  these 
methodologies, among others, start from the assumption that 
the collective creation, negotiation, discussion and review by 
multiple agents,  among other mechanisms of participation, 
tend  to  maximize  the  chances  of  success  in  building  a 
product, especially software.

V. CONCLUSION 

In the Strong Program in the Sociology of Knowledge of 
the University of Edimburgh, case studies play an important 
role  as  they  bring  in  the  complexity  of  the  ‘life-world’ 
situations. The Sociology of Mathematics, a sub-area of the 
Strong  Program,  is  a  field  were  the  resistance  against  a 
intertwined approach to mathematics is a key issue of study, 
and case studies make visible this resistance. David Bloor, 
one of the proponents of the Strong Program, referring to 
questions  involving  the  myth  of  a  purified  mathematics, 
claimed  that  ‘[t]he  best  answer  to  these  questions  is  to 
provide examples of such sociological analyses’ [12]. 

In the line of the Sociology of Mathematics, this article 
pointed out that strategies of software certification currently 
in place and the tone of recent initiatives such as 'The Great 
Challenge' indicate that confidence in purified mathematics 
still underlies the thinking and the doing of mathematicians 
and computer scientists. In the sequence, this article brings 
in a case study concerning the definition of an arithmetic for 
computers  that  makes  a  compelling  argument  about  the 
impossibility of achieving a purified arithmetic, that is, an 
arithmetic  that  is  not  influenced  by  what  is  considered 
'extra-mathematical'  factors.  In  a attempt  to have purified 
mathematics  as  an  arbiter,  new elements  and  testimonies 
have slowly emerged, destabilizing the bases of the search 
for objectivity and making room for mixed heterogeneous 
(extra  mathematical)  elements  that  were  decisive  in 
establishing  consensus.  We  thus  conclude  this  paper  by 
citing  two  recent  cases  that  argue  in  favor  of  hybrid 
approaches, rejecting the possibility of a mathematics that, 
being  supposedly  free  of  subjectivities,  would  provide 
absolute certainty.  
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The first case is a recent discussion referring to a famous 
phrase of the mathematician Georg Cantor: 'Je vois mais je  
ne  le  crois  pas',  by  which  he  would  have  expressed  his 
astonishment  at  the  amazing  results  that  he  had  just 
discovered. According to the analyses of the mathematician 
Gouvêa [20], however, this phrase was actually a response 
to Dedekind who argued contrary to Cantor’s proposals. It 
was  an  emphatic  trope  against  his  opponent’s  arguments 
about  something  that  was,  for  Cantor,  completely  clear. 
Gouvêa's conclusions about this case have much to do with 
the  discussion  of  objectivity  and  the  influences  of  non-
mathematical factors in the configuration of what is said to 
be objective. According to Gouvêa (in page 198) ‘[t]he story 
was then co-opted to demonstrate that mathematicians often 
discover things that they did not expect or prove things that 
they did not actually want to prove.’

Sociology  of  Mathematics  argues  that  mathematical 
knowledge is a result of several steps of agreement within a 
collective  thought,  in  strong  alignment  with  Gouvêa’s 
assertion  about  subjectivity  in  mathematical  proofs:  ‘A 
proof  is  not  a  proof  until  some  reader,  preferably  a 
competent one, says it is. Until then we may see,  but we 
should not believe.’

The second case  is  about  a  recent  statement  of  Tony 
Hoare, a well known knowledgeable spokesman, for the use 
of formal methods to ensure program correctness. As late as 
2010 Hoare felt adequate to announce a reconsideration of 
his  own  previous  words.  In  page  5  of  [21]:  'I  regarded 
program testing as the main rival technology'. He reported a 
join work where he could see senior researches using formal 
methods not for proof but to detect program errors as much 
close  as  possible  to  their  occurrence  in  code.  He  then 
concludes: 'Testing and proving are not rivals: they are just 
two ends of a scale of techniques available to the software 
engineer  to  collect  evidence  for  the  validity  and 
serviceability  of  delivered  code.'  Hoare’s  testimony  in  a 
year  as  recent  as  2010  shows  for  how  long  inductive 
reasoning, tests, empirical approaches have been (and very 
likely  still  are)  rejected  as  legitimate  mechanisms  for 
software verification.

The  Sociology  of  Mathematics  bring  legitimacy  to 
explanations  of  mathematical  facts  (such  as  proved 
theorems) which distance themselves from explanations of a 
more  absolutist  flavor  prevailing  among  the  majority  of 
mathematicians.  For  the  Social  Studies  of  Science  and 
Technology,  where  the  universality  of  knowledge  is 
understood as a mechanism to ensure authority and science 
is viewed as a local phenomenon, objectivity is addressed in 
its interweaving with the social; this makes it possible that 
other elements besides those considered as ‘technical’ come 
into  play  in  the  composition  of  the  facts  regarded  as 
‘mathematical’.  A  closer  examination  of  mathematical 
practice shows this inevitable interweaving of knowledge, 
which,  however,  remained  invisible  to  the  great  majority 
possibly  because  of  the  lack  of  interest  in  shaking  the 
stability  of  a  purified  body  of  knowledge  which  places 
mathematics  in  a  level  of  unquestionable,  neutral  and 
universal truth.
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