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Abstract—This paper illustrates the use of a Model-Based
Testing approach from SysML test model using four com-
plementary automotive case studies. The purpose of these
experiments is to give an empirical evidence of the reliability
and to show the suitability of this tooled approach for the
validation of embedded mechatronic systems (systems mixing
software and hardware aspects). The experimented toolchain,
based on the Model-Based Testing principles, reuses well-
known and effective existing tools in order to obtain an end-
to-end toolchain from the modeling step to the execution of
the concrete test cases derived from the initial test model. This
fully automated toolchain and the four automotive case studies
are introduced, and automation feedback is discussed.
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I. INTRODUCTION

The growing complexity and intensive use of software em-
bedded systems, combined with constant quality and time-
to-market constraints, entail the implementation of high-
performance and effective system validation strategies. Since
functional testing is a strategic activity for software quality
assurance, it creates new challenges for engineering practices
in this domain. To address this activity, we propose to
apply Model-Based Testing (MBT) approach to complete the
manual test cases executed during the software integration,
which often relies on manual, repeated and tedious efforts.

During the last decade, Model-Based System Engineer-
ing (MBSE) methodologies have emerged on the sharing
and standardisation of embedded software technologies [1].
These approaches put a strong emphasis on the use of
models at different steps of the system specification to
increase the quality of the software design process. In
this context, testing against original expectations can be
done using Model-Based Testing approach [2]. MBT is a
particular type of software testing techniques in which test
cases are automatically derived from a high-level model,
which describes the expected behavior of the System Under
Test (SUT). MBT is an increasingly used approach that has
gained much interest in recent years. Today, it is getting
closer and closer to an industrial reality: theoretical concepts
(and associated tools) to derive test cases from specifications
are indeed now mature enough to be applied in many
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application areas [3]. However, MBT approaches have still to
provide a better degree of automation, especially to translate
the generated test cases into executable test scripts in order
to shorten the testing time and increase the global time-to-
market [4].

The global picture of an MBT process is shown in Fig-
ure 1. The first step of this approach consists in specifying
a model that captures the functional behavior of the SUT.
From this specification, a tool automatically generates test
cases, which can be seen as an abstract execution trace of
the system. These test cases are abstract because they are
defined at the same abstraction level as the model repre-
senting the SUT. Afterwards, from the abstract test cases, a
concretization step allows to produce, test scripts that can
be directly executed either on a simulation platform of the
system, or directly on the concrete system. The automation
of such test generation process is a strategic issue, since
it can replace the (so current) manual development of test
cases, which is known as costly and error-prone [5].
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Figure 1.

In this paper, we illustrate the use of an MBT toolchain,
providing an automated and repeatable process, dedicated
to embedded and mechatronic systems, including real-time
and continuous executions. We discuss the results using
concrete case studies in order to show the effectiveness and
the suitability of this end-to-end tooled MBT solution, but
the relevance of the test cases is not discussed in this paper.
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This paper is organized as follows. Section 2 presents an
overview of the MBT toolchain, and defines each step of the
test generation and execution process. Section 3 introduces
four case-studies, conducted to evaluate the reliability of our
tooled approach. Section 4 synthesizes our experience and
gives feedback about automation issues. Finally, Section 5
gives conclusions and outlines our future work.

II. DESCRIPTION OF THE TOOLCHAIN

In this section, we briefly describe the toolchain im-
plementing the MBT approach. This toolchain has been
initially developed during the French project VETESS (from
September 2008 to August 2010) and experimented during
the last three years. The resulting MBT toolchain is based on
the Smartesting MBT process [6], which has been adapted
to address the specific testing needs and requirements of
the automotive domain. To achieve this goal, it takes, as
input, test models specified using the SysML [7] language,
from which specific model coverage criteria have been
created to generate dedicated test cases for embedded system
validation. Concerning technical issues, we have developed
a toolchain providing a full automated MBT solution from
the test model to the execution of the generated test cases on
the targeted SUT. This toolchain has been achieved by using
the open-source and Eclipse-based modeling tool Topcased,
the test generation engine Smartesting Test Designer™™
and the test manager and execution environment (dedicated
to embedded systems Clemessy TestInView platform). To
ensure a fully automated process, interfaces between these
tools have been developed. Before introducing the overall
toolchain, each tool is now briefly described in the next
subsections. A more detailed presentation of this toolchain
is available in [8].

A. SysML modeling with Topcased

UML is widely used as a modelling support in industrial
context and is today the main specification language for
object modelling. Recently, to provide sufficient features to
make it useful for systems engineers, SysML profile has
been created. Even if SysML is a recent modeling language,
it is on the rise in the industrial domain to specifically
address system engineering issues. Thus, several modeling
tools already support SysML models, such as Topcased,
which means Toolkit in OPen-source for Critical Application
and SystEms Development. We have decided to use this
tool because it provides a SysML editor based on the UML
metamodel (and therefore compliant with the OMG UML
standard and the SysML metamodel, derived from the OMG
SysML Profile).

More precisely, the test model is specified on the basis
of a subpart of SysML notation called SysMLAMBT [9]. A
SysML4MBT model contains at least one Block Definition
Diagram to represent the static view of the system (with
blocks, associations, compositions, enumerations, properties,
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operations, signals, flow ports, etc.), at least one Inter-
nal Block Diagram to formalize interconnections between
blocks, and at least one Statemachine diagram to specify the
dynamic view of the system. In addition, Object Constraint
Language (OCL) [10] expressions are associated to the
SysML block operations and state diagram transitions to
provide the expected level of formalization and precisely
describe the dynamical behaviors of the system. Indeed,
OCL is an unambiguous language that allows formally to
express essential behavioral aspects of the SUT. That is why
the combination of OCL and the object-oriented graphical
model is known as a good practice to model the exact service
the system has to do.

B. Test generation with Smartesting Test Designer™ ™

Smartesting company has released an Eclipse-based
tooled MBT solution to generate and manage functional
tests from behavioral models specified in UML/SysML.
Basically, automatic test generation algorithm carries out
a systematic coverage of all behaviors of the test model
by applying All-Transitions criterion. Moreover, to address
the specificities of embedded systems, tests also cover each
couple of receipt/sending signals: for each sending event
and each corresponding receipt event, the coverage of the
succession of the sending event and the receipt event is
guaranteed.

Each test corresponds to a sequence of operations (or
events) taking the form of a 3-part structure: a first subse-
quence places the system in a specific context (preamble) to
exercise the test goal, a second subsequence invokes the be-
havior to be tested (test goal), and finally a last subsequence
allows to return in the initial state so that test cases can be
executed automatically in one single sequence. It should be
noted that this 3-part structure can be completed by one or
more observation function calls, which allow observing the
system state at any time during the test execution (to make
the verdict assignment more relevant). Indeed, the precise
meaning of SysML4AMBT permits to simulate the execution
of the model, and thus use it as an oracle by predicting the
expected output of the SUT.

The generated abstract test cases are finally exported into
XML proprietary files from which the generated test cases
are translated into specific languages or environments.

C. Test execution with Clemessy TestInView

TestInView (TIV) [11] is a test execution platform based
on a National Instruments hardware architecture (NI Test-
Stand) [12]. It is designed to generate and acquire simple
or complex electric signals and to import mathematical
models (as Matlab/Simulink) that simulate the behavior of
an item of equipment that is absent from its future working
environment. This platform can be used to describe the
test sequences, execute them and automatically assess the
expected results.
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D. Overview of the toolchain

The built toolchain is depicted in Figure 2. The associated

test process is defined as follows:

1) A SysML test model, specifying the SUT, is built
using Topcased.

2) This SysML model is translated into a SysML4MBT
model, which is exported to Test Designer” ™.

3) Test Designer”™ automatically generates abstract test
cases from the model by applying coverage criteria,
and produces the expected behavior of the SUT.

4) The generated test cases and expected outputs are
then exported into TestInView platform. During this
step, a manually-designed mapping table concretizes
the abstract generated test cases into concrete scripts.

5) Finally, Clemessy TestInView platform allows to auto-
mate the test case execution on a simulated system or
on a physical test bench. It also manages the verdict
assignment by comparing automatically the execution
results to the expected ones.

SysML4AMBT a
Model

TOPCASED

Observed
values

Expected
values

Overview of the MBT toolchain

Figure 2.

The next section introduces the case studies used to
illustrate how this MBT toolchain has been successfully
applied to automotive embedded systems.

III. CASE STUDIES

We now present four case-studies that have been used
to experiment the MBT toolchain presented in the previous
section. The goal of this work was to empirically show that
such a tooled approach using SysML notation is suitable
within the automotive embedded system context. The two
first case-studies (front lightings and seat control system)
can be seen as preliminary toy examples: they have been
conducted to experiment only the modeling and the test
generation process. The next two case-studies (front wiper
and steering column) have been used to validate the entire
toolchain from modeling to execution of the generated test
cases (using either simulation framework or physical test
bench). The functional scope of each case study is given.
Metrics about the model structure are summarized in Table I
on page 6. These data and the effort to conduct the case
studies are discussed in Section 4.
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A. Front Lightings

The first case study concerns the study of a car front
lighting system. This system allows to put the dipped lights
and full lights on and off. Unlike traditional lighting systems,
we replaces the control stick by a tactile panel (also called
control panel). This panel is composed of a dynamic screen
(variable display) and a tactile surface. In the initial state,
the panel and the lights are turned off. When the ignition is
turned on, all lights stay turned off and the control panel is
started. Two functionalities become then available: light on
dipped lights or flash lights. Two different area are therefore
displayed on the control panel screen. If we choose to light
on dipped lights, other functionalities are ready for use: light
on full lights, light off dipped lights or flash lights. If the
user lights on full lights, dipped lights are automatically light
off. From this new state, it is always possible to flash lights.

This case study proposes a system with quite simple
communications (see Figure 3) but offers a quite complex
statemachine by the number of possible fireable transitions.

starter : Ignition

inTgnitionLights : starterSignals _ _
lights : Lights

&l

outIgnition : starterSignals

injactivale lights [Z] [Z]
inDipped : lightsignls

inFull ; lightsSignals

(in)activate control panel controlPanel: CantrolPanel | Light anjoff dipfped lights

intgritionPanel :|startersignals Light on/offfull lights

outTolights : lightsSignals

Figure 3. Internal Block Diagram of the front lightings case study

This model has generated 41 test targets that are covered
by 11 abstract test cases. Since we did not have concrete
test bench for this case study, it has been used to adjust our
approach on modeling and test generation parts.

B. Seat control

The second case study was carried out on part of the
electronic control of a car driver seat management (the
specification of this case study is provided by [13]). As for
the previous case study, neither a test bench, nor a simulator
were available to execute generated tests. So, this case study
has been also useful to validate the two first parts of the
toolchain: modeling and test generation.

As shown in Figure 4, this system is composed of six
motors (LA, FH, RH, SD, B and HR) that allow to change
features of the seat. Each motor has a maximum amplitude.
All motors can turn on in two different ways (PLUS and
MINUS). They are divided in two groups: the first one
containing LA, FH and RH motors, the other one containing
SD, B and HR motors. We assume that, in a given time, only
one motor can be running in a given group. Priorities are
associated to each motor: if a higher priority motor is turned
on during a lower priority motor is running, this second one
is temporarily turned off in order to run the first one.
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Figure 4. Seat control system

This example describes a continuous system: variations of
the seat features are synchronized by a clock. The amplitude
of motors is thus represented as an amount of clock ticks.
The block definition diagram of this model is composed
of one block for the buttons that activate motors (called
command), one block for each motor and one block for
the clock management. For instance, the statemachine of
the command block is depicted in Figure 5.
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Figure 5. Statemachine of the command block of the seat control model
The global model contains 42 signals sendings and 48

signal receipts. The test generation strategy generated 130

test targets, which are covered by 78 abstract test cases.

C. Front Wiper

The third case study specifies a wiper system of a car.
Modeled functionalities are drying up with different speeds
(low, high and intermittently) and a window cleaning with
drying up. In this system, a lot of mecatronic parts are
considered: the serial link, the CAN bus and the EEPROM
memory. Then, the model contains more transitions than
previously (91 transitions shared by 12 parallel statemachine
diagrams) and communications are much more complex.
Thereby, 189 abstract test cases have been generated to cover
the 233 targets derived from the SysML test model.

These generated test cases have been concretized and
exported to the TestInView platform. As shown in Figure 6,
tests have been executed on a simulation model (designed
using Matlab). The result of the test execution on the
simulator has been automatically compared to the expected
result predicted by the SysML test model.
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Figure 6. TIV simulation GUI of the front wiper system

D. Steering Column

The steering column case study aims to analyze the
behaviors of a car steering column. A major issue of this
last case study concerns the strong continuous feature of
this system (its state is always evolving), which cannot be
trivially abstracted. Indeed, variation of the steering column
depends on complex mathematical formula and cannot be
modelled using a SysML4MBT model, which describes
only discrete actions. Because of these limitations, our
approach consists in modelling the environment of the SUT
in a discrete manner, and in deferring the management
of continuous time issues at the concretization step. Thus,
for this case study, statemachine diagrams are not used to
represent behaviors of the SUT, but to represent behaviors
of its environment. So, the road plots are modeled, and the
expected values of the SUT are computed in a latter step by
simulation (see Figure 7). Then, the testing process consists
in comparing the values obtained using simulation against
the values observed in the concrete system.

SysML4MBT 3 I
Model Test Designer

TOPCASED

Observed
values

Expected
values

Tests execution for continuous systems

Figure 7.

The SysML model represents road characteristics with
blocks that are linked to the steering column (defining the
black box SUT). Figure 8 depicts one of the 61 generated
test cases. Perpendicular lines separate the different steps of
the road. A flat road is represented by gray line, a downhill
part by light gray line, an ascending part by black lines, and
finally the various banking by arrows.

142



VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

Figure 8. Graphical test generated for the steering column case study

Since the generated test cases do not allow to calculate
the expected values (road plots do not give the status of
the steering column), it is then necessary to execute the
generated tests on a simulated Matlab version (Figure 9), and
thus compare these results to the execution on the physical
test bench (Figure 10). This comparison has been automated
using the TIV framework. The execution of such scenario
on this test bench is available at the end of the video in [14].

"

o

Figure 10. Physical test bench of the steering case study
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IV. EXPERIMENT SYNTHESIS AND FEEDBACK

The four case studies, presenting a growing complexity
in terms of model expressiveness and behavioral aspects
(see Table I), have shown that Model-Based Testing from
SysML can be successfully applied to several aspects of
automotive embedded system domain. This tooled approach
leads to great benefits to generate automatically test cases
by ensuring a given model coverage and generating a very
large number of test cases from a simple model. Moreover,
for any change in the model, it offers the capacity to re-
generate and re-execute the test cases automatically. As
illustrated in Table I, the test generation time was always
trivial in comparison to the time spent to write the model.
Indeed, the complexity of the test models being reasonable,
test generation tools, such as Test Designer’ ™, are now
mature enough to be efficient in terms of generation time
and model coverage rate. However, with more complex and
larger systems, a risk of combinatorial explosion during test
case generation may occur.

In addition, it should be noted that our MBT process
(that relies on a discrete representation of the SUT) can be
nevertheless relevant even if the SUT refers to continuous
issues (eg. steering column example) that cannot easily be
abstracted (such as seat control example). In this specific
context, the test model can be used to describe the dynamic
of the SUT environment, meaning how the SUT can be
stimulated by its environment (and not how it evolves
against these stimuli). The expected behaviors of the SUT
are computed latter, during the concretization step of the
process, which then appears more complex than a simple
mapping between abstract and concrete data.

Whatever the configuration may be, these experiments
have shown that more than 50% of the time is consummed
to manually design and manage the mapping table, which
gives the relation between the concepts of the abstract test
cases and the concrete sequences to be executed on the real
system. The difficulty of this task often comes from the
real-time features of the concrete system, and the need to
synchronize all the operation calls of the test cases. The map-
ping between abstract and concrete notions has been clearly
identified as the key point to make the automation of the
concretization step manageable and reliable in an industrial
context. This issue is not due to our technologies: previous
works using other MBT tools have already underlined this
rough step [15].

Finally, on the basis of this fully automated toolchain,
new experiments are necessary to determine more precisely
the scalability of our MBT approach. Moreover, real-life
experiments with more complex and larger test models
should be conducted to study in a deeper way the relevance
of the generated test cases (our study was mainly focused
on feasibility).
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[ [ | Lightings | Seat control | Wiper [ Steering |
Blocks 4 9 15 9
S | Connectors / sends / receipts 8/14/10 24/42/48 26/58/65 10/25/20
&ob Statemachines 3 8 12 6
& . [2,5,5] [8,1,3,3, [1,1,1,1,1,2, [2,4,3,6,3,4]
%&\ States per statemachine 3.3.33] 17.10.2.2.2.2]
B Transitions per statemachine [2,8.8] [18.1,8.8, [2,3,2.4,1.3, (3.8.4,5.9.8]
sthions p 8,8.8,8] 52,16,2,2,2,2]
Targets 41 130 233 106
Test results Tests 1 78 189 61
Modeling 99% 97% 40% 30%
&04‘ Test generation 1% 3% 4% 2%
< Concretization 50% 61%
Test execution 6% 7%
Table T

SYNTHESIS OF EXPERIMENT RESULTS

V. CONCLUSION AND FUTURE WORK

This paper reported on results applied to the automotive
system using an MBT toolchain prototype that automates
the generation of executable test scripts from SysML test
models. This prototype is based on existing tools that have
been adapted and customized to achieve testing process
automation: this prototype indeed offers an integrated ap-
proach and continuous process. Several case-studies have
been successfully experimented and have showed that this
toolchain is suitable and can gain benefits within automotive
embedded system validation. However, the manual design
and customization of the translation of the abstract test cases
into concrete ones clearly appeared to be a pain. To provide
a better degree of automation of this step, we intend to
manage real-time issues at the earliest stage of the process,
directly in the SysML model. To address this issue, we want
to investigate the use of the UML MARTE profile [16]; this
feature will allow to model and manage real-time constraints
in the test model. In this way, the generated test cases will
naturally consider the real-time requirements of the SUT,
and thus will simplify the customization of the mapping
table. Moreover, this extension will permit to define new
test generation strategies, focusing on real-time issues.
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