
Variability in Test Systems: Review and Challenges

Aitor Arrieta, Goiuria Sagardui, Leire Etxeberria

Computer and Electronics Department
Mondragon Goi Eskola Politeknikoa
Goiru 2, Arrasate-Mondragon, Spain

Email: {aarrieta, gsagardui, letxeberria}@mondragon.edu

Abstract—Customizable products are increasing in our society,
which creates a need on software systems, embedded systems
and cyber-physical systems to handle variability. In addition,
many companies are moving towards continuous integration and
deployment and as a result, an automated solution to testing the
relevant configurations is needed. Thus, variability appears in
different stages of the product life-cycle. When validating these
configurable systems, the test framework has to deal with their
variability in order to test different system variants. Modelling
variability in the test systems is an elegant solution to test
and validate variability-intensive systems. This paper studies
some test systems that handle variability and compares their
characteristics and limitations, which can help test engineers
needing a variability handling test system to choose among
different approaches.

Keywords–Test Systems; Test Architecture; Variability; Valida-
tion

I. INTRODUCTION

Variability is the ability to change or customize a system
[1], and it can be understood as configurability or modifiability
[2]. In the case of configurability, the variability appears in the
product space, whereas in the case of modifiability, variability
appears in the time space. The discipline of representing
variability in models that describe the common and variable
characteristics of a product is named variability modelling [3].

The different demands of the society and the users are
some of the causes for customized products. As a consequence,
variability in different points of the products, systems and
development phases is increasing. Variability-intensive systems
can be configured into thousands or millions of system vari-
ants. From one system variant to another, variability can appear
not only in the product itself, but also in the elements in charge
of testing the product, i.e., test system.

When testing different system variants, the test system has
to be configured and adapted as well in order to test them. Due
to this issue, modelling variability in the test system can be an
interesting approach for testing variability-intensive systems,
such as software product lines (SPLs), configurable embedded
systems or configurable Cyber-Physical Systems (CPSs).

Most of the reviews and surveys in the field of variability
modelling focus on the variability of the system itself, e.g.,
[4], or the use of variability modelling in industrial practice,
e.g., [3], where the different notations used for modelling
variability are analysed. This paper presents a review of
variability-handling test systems. To carry out this study, we
have systematically reviewed the documented approaches.

The rest of the paper is structured as follows: A brief
introduction about the background of test systems is presented
in Section II. Section III explains the methodology that has
been used to systematically review the documented approaches
in journals and conference papers. Section IV presents the
obtained results after applying the search methodology; the
documented approaches are explained and a discussion and
analysis is provided. Section V defines a set of open challenges
about variability modelling in test systems. Finally, Section VI
summarizes the obtained conclusions.

II. TEST SYSTEMS

A test system is a set of components that interact with
the objective of testing the System Under Test (SUT). The
complexity of a test system can vary depending on the overall
test objectives and type of testing. Some of the tests are
performed in simulation, e.g., Model-in-the-Loop (MiL) or
Software-in-the-Loop (SiL) simulation, whereas other tests are
performed in emulation, where additional hardware is needed,
e.g., Hardware-in-the-Loop (HiL). Other test systems support
test automation, where a test scheduler that decides which test
case to execute is mandatory.

The organization of the group of components comprising
the test system is called the test architecture [5], which
specifies the interaction among the different elements of the
test system and the SUT. A test architecture is a necessary
artefact in test and validation activities so that verification and
validation activities can be systematic, and it allows the reuse
of test cases along the different test phases [5].

Test cases are part of the test system and provide informa-
tion about the test execution. In Model-Based Testing (MBT),
test cases are automatically generated either from the System
Model, i.e., from the model of the SUT or from a test model
[6]. When the test cases are executed, the test results have to
be determined. This is typically performed by other elements
of the test system, such as test oracles, which are mechanisms
that analyse the SUT output and are able to decide the test
result [6].

Modelling variability in the elements of the test systems al-
low the execution of tests under different conditions. Moreover,
requirements of a configurable system varies from a system
variant to another, and the test system has to be adapted in
order to test different system variants, thus, variability in the
components of the test system can help to achieve this goal.

15Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

III. SEARCH METHOD

This paper collects the results of a systematically developed
state of the art study about variability-handling test systems.
To carry out this study systematically, the guideline presented
in [7] has been taken as a base, which follows the presented
steps below:

• Definition of the research questions

• Search process

• Inclusion and exclusion criteria

• Data collection

• Data analysis

A. Definition of Research Questions

As mentioned above, the scope of this study is to analyse
the current state of the art in the field of variability handling
test systems. The Research Questions (RQs) to carry out the
goal were the following:

• RQ1: Which are the approaches documented that take
into account variability in test systems?

• RQ2: Which kind of systems are tested with the
selected approaches?

• RQ3: Which are the used modelling or programming
languages?

• RQ4: Which are the used test strategies?

• RQ5: Which is the variability modelling approach?

B. Search Process

The search process has been a manual search by using
search strings on different scientific databases with the aim of
identifying conference proceedings and journal papers since
2008. The used databases have been IEEE Xplore, ACM digital
library, Science Direct and Springer. Other places and sources
such as proceeding of VALID 2014 or relevant PhD theses
available on the Internet have been also used. Once identified
some conference papers, journal papers and PhD theses on
these databases, some references of the selected studies have
also been used to detect new papers that are not available on
the proposed databases.

With respect to search strings, the following keywords were
used in order to find new papers:

• (“Variability” OR “Variant” OR “Modifiability” OR
“Configurable”) AND (“Test System” OR “Validation
Environments”)

C. Inclusion and Exclusion Criteria

The inclusion criteria for selecting a paper was the follow-
ing:

• The publication should be “journal”, “conference pro-
ceeding”, or “PhD Thesis”.

• The reader should clearly deduce that the test system
or architecture handles variability.

The exclusion criteria for excluding a paper was the
following:

• The publication is not written in English.

D. Data Collection

The data extracted from each selected study was:

• Full reference (authors, title, journal or conference and
year)

• Institution or institutions of the authors

• Characteristics and limitations of the proposed ap-
proach

E. Data Analysis

The data analysed once extracted the needed information
was the following:

• Which is the main characteristic of the approach

• Which kind of systems are tested with the proposed
approach

• Modelling tools used for the development of the test
system

• Which are the main limitations of the selected ap-
proaches

• Variability points in the test system

• Variability modelling approach

F. Search Result

After applying the search strings in the aforementioned
scientific databases, it concluded with 87 publications in IEEE,
12 in ACM, 1 in VALID 2014 and 1 known PhD thesis.
However, most of the publications did not offer the expected
overview. After following the inclusion and exclusion criteria,
nine publications have been selected for the review, which are
explained below. The selected publications are the following
(addressing RQ1): [5][8][9][10][11][12][13][14].

IV. VARIABILITY IN TEST SYSTEMS

Testing variability-intensive systems is a very time and
resource consuming activity due to the high number of possible
variants. When a specific system variant has to be tested,
the test system in charge of testing it has to be configured.
The variability among the different system variants affects the
test system, where different test cases have to be executed
to validate a specific system configuration, and as a result,
variability in the test model is required [15].

Variability handling systems appear in a wide range of
systems, such as SPLs, embedded software and systems,
mobile applications, CPSs, etc. The variability-handling test
system approaches presented in the selected publications are
used to test the following kind of systems (addressing RQ2):

• Non configurable Embedded Systems: [8][9]

• Variability handling systems (e.g., SPLs, highly con-
figurable CPSs, etc.): [11][12][13][14][5]

16Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

TABLE I. COMPARATIVE TABLE OF THE SELECTED TEST SYSTEMS

Ref. Modelling
Language

SUT Test Strategy Variability Points Variability Manage-
ment

Variability Modelling

[8] Messina Embedded Systems Evolutionary Evolutionary algorithm configu-
ration variables, target configu-
ration

Not considered Not used

[9] Simulink Embedded and
CPSs

Functional Testing In test stimuli generation Not considered Uniform variability

[5] Simulink Configurable CPSs Functional Testing SUT, Test oracles and Test data
generator

Feature Models Variant of negative
variability

[11] UML and UTP SPLs Not specified SUT, Test context, Test cases,
test component, data pool, data
partition and data selector

UML sequence dia-
grams and a proposed
UTP extension

UTP extension

[12] UML and UTP SPLs Not specified SUT, SUT interface, test con-
text, data pool, data partition

OVM, UML and UTP UTP extension

[13] State Machines SPLs Regression testing SUT, Test model, test goals, test
suite and test plan

Not considered Delta modelling

[14] State Machines SPLs Incremental testing SUT, Requirements, test model,
test goals, test suite and test plan

Not considered Delta modelling

[10] Home-grown General purpose
software

Not specified User interface, test control, code
generator, information system
and gateway

Not considered Not used

• General Purpose Software: [10]

In addition, there are different tools, modelling or pro-
gramming languages for developing these kind of systems. As
a consequence, the modelling languages used for developing
variability-handling test systems differ (addressing RQ3):

• MATLAB/Simulink: [9][5]

• State machines combined with delta modelling: [13]
[14]

• UML-UTP: [11][12]

• Messina: [8]

• Home-grown: [10]

Other characteristics of test systems are the test strategies
used to test the SUT. In the selected approaches, we have
detected different test strategies (addressing RQ4): In [8]
evolutionary testing is used, in [9] and [5] functional testing, in
[13] regression testing and in [14] incremental testing. Other
approaches do not consider the test strategy or it is not clear
for the reader, e.g., [10].

With regard to variability modelling (addressing RQ5),
different approaches are considered: Zander-Nowicka uses
uniform variability modelling in [9]. Lity et al. [13] and
Dukaczewski et al. [14] use delta modelling. Perez et al. use
UML and UTP extension to model variability in [11] and
[12]. In our previous work, we generate a skeleton model
that acts as a core model, and when configuring a specific
variant, the selected components of the skeleton model are
replaced by models stored in a Simulink library, and the non
selected are removed [5]. Other approaches ([10][8]) do not
model variability. Table I summarizes the main characteristics
of each approach.

A. Variability Handling Test Systems

The approach presented in [8] shows an evolutionary test
system, primarily based on the MESSINA tool, that tests
functional and non-functional properties of embedded systems.
An evolutionary algorithm is an optimization technique based

on the principles of the Darwinian theory of evolution, where
a set of candidate solutions called individuals are selected. The
fitness of these individuals are evaluated by the evolutionary
algorithm by executing a problem-specific fitness function. The
proposed approach by Kruse et al. in [8] supports MiL, SiL,
Processor-in-the-Loop (PiL) or Hardware-in-the-Loop (HiL)
test platforms, and allows the reuse of test cases across them. In
the case of MiL and SiL test system configurations, MESSINA
supports different tools, e.g., MATLAB/Simulink, ASCET
models, etc. In the case of HiL, MESSINA is connected to
modularHiL, a universal HiL test system developed by Berner
& Mattner. The main variability points of this approach can
be found in the configuration variables for the evolutionary
algorithm, (e.g., mutation rate, crossover rate, etc.) as well as
the test system target configuration, i.e., MiL, SiL, PiL or HiL.

Model-in-the-Loop for Embedded Systems Test (MiLEST)
is a toolbox for MATLAB/ Simulink developed by Zander-
Nowicka in [9]. This test system is designed towards the val-
idation of automotive real-time embedded systems in Model-
in-the-Loop (MiL). The hierarchy of MiLEST is divided into
four abstraction levels: Test Harness level, Test Requirement
level, Test Case level and Feature level. Although the ap-
proach in [9] proposes mechanisms for modelling variants, as
shown in Figure 1, the test system itself is not designed for
the validation of variability-handling systems. The proposed
modelling technique is uniform variability. This variability
modelling technique allocates all the components in the mod-
elling framework, i.e., Simulink, and the variability is bound
with different mechanisms, e.g., switch and constants. As there
are unused components allocated in the simulation framework
while simulation is running, simulation time is increased as
explained in [16].

Our previous work [5] presents a configurable test ar-
chitecture for the automatic validation of variability-intensive
CPSs, together with a model-based process (Figure 2) for
the systematic validation of these kind of systems. Variability
of the test system is managed using the tool FeatureIDE
[17] and saved into a *.xml file. This file is read by a test
architecture generator that semi-automatically generates the
skeleton of the test system. The tool FeatureIDE also allows
generating different product configurations either automatically

17Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

Figure 1. Variability Modelling Mechanism of MiLEST [9]

(using pair-wise or t-wise techniques) or manually. These
configurations are saved into a *.config file, which is read
by the test configurator. The test configurator automatically
configures the test system for the selected system configura-
tion. Finally, the work describes the different variability points
of the components of the test architecture: variability of the
SUT, variability of the test data generator, variability of the
test oracles and test control.

Test Feature
Model

.xml

Test Architecture
Generator

Simulation
Framework

Test Configurator

Test Case
Library

HW Model
Library

Test Historic
Database

1
2

3

5

7

6
Configurations

Library .config
4

SW Model
Library

Domain Engineering

Application Engineering

Figure 2. Model-Based Testing process for the systematic
validation of variability-intensive CPSs [5]

A product line of validation environments with variability
to test different applications in different domains and technolo-
gies is proposed in [10]. The study presents a validation en-
vironment able to test different SUTs from different domains,
used programming languages, etc. Different elements of the
validation system are identified (Figure 3) and the variability
points together with variability requirements are identified and
classified in a table.

The validation system proposed by [10] works as follows:
The test engineer executes a test through the GUI, the GUI
sends the test command to the engine, and this transforms the
test command into the programming language that the SUT
understands. For this step, the engine communicates with the
database to obtain the correspondences between the source
and target languages. When the transformation is finished, the

Figure 3. Test Elements Composing the Validation System
[10]

command is sent to the SUT through the SUT interface, and
awaits the response to begin the process again. These steps are
shown in a UML sequence diagram depicted in Figure 4. The
variability points of this system includes the user interface, test
control, code generator, information system or gateway.

Figure 4. Interactions between the elements of the validation
system proposed in [10]

The study presented in [11] defines an extended architec-
ture for UTP to deal with variability in the test models, where
the meta-model is shown in Figure 5. The proposed extension
includes mechanisms to describe the behaviour of test cases
and other elements needed to support variability. An example
is illustrated in Figure 6.

The main variability in the proposed UTP extension is
included in the Test Context, Test Cases, Test Components,
UTP and Data Pool, Data Partition and Data Selector:

• TestContext: It is a class that organizes the test arti-
facts and contains test cases [11]. It can be stereotyped
with “Variation Point”, which means that the test cases
corresponding to the TestContext have variation points
[11].

• TestCase: A test case is represented with UML se-
quence diagram in [11]. A test case can also be stereo-
typed as “Variation Point” for testing a functionality
with variability [11].

18Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

Figure 5. Proposed Extension to the UTP meta-model for
handling variability [11]

• TestComponent: Test components interact with the
SUT with the aim of realizing the test behaviour [11].
In the proposed extension, a test component can be
stereotyped with “Variation Point” or “Variant”, which
means that the test component can encapsulate the
communication with the SUT, for the entire variation
point or just for one of its variants.

• SUT: It can be stereotyped as “Variant”, which means
that it realizes the functionality for its variant.

• DataPool, DataPartition and DataSelector: The Dat-
aPool contains the test data while the DataPartition the
equivalence classes and data sets [11]. The dataPool
can be stereotyped as “Variation Point”, which means
that contains specific data for a Variation point. The
DataPartition and the DataSelector are stereotyped as
“Variant”, which means that the DataPartition contains
the data associated with one of its variants and the
dataSelector selects the data in the DataPartition for a
specific variant.

Figure 6. Example of a Test Case Using the UTP Extention
proposed in [11]

In [12], a model-based method for the automatic generation
of test cases for the testing of SPLs is described using UML

2.0, the UML Testing Profile and the QVT language. The ap-
proach differentiates two main models: Platform Independent
Models (PIM) and Platform Independent Test Models (PIT).
Each of the models are separated for the domain engineering
layer (PIMD and PITD) or the application engineering (PIM
and PIT), as shown in Figure 7. Variability of the system
models are managed with an extension of the UML Testing
Profile. The proposed approach uses Orthogonal Variability
Model (OVM) for managing variability of the test system.
In this case, variability in the test system can be found in
the test case behaviour and in the test architecture. The test
case behaviour is modelled using sequence diagrams handling
variability, whereas the variability-handling test architecture
is modelled with UML class diagrams. The test model is
automatically transformed taking as source models the design
model and the variability model using QVT.

Figure 7. Model driven testing approach for SPLs [12]

A Model-Based SPL regression testing approach is pro-
posed in [13], where delta-oriented state machine as variable
test models are used to incrementally evolve test artifacts
by re-using artifacts of previously tested variants. Variability
is applied in test artifacts, which are composed of (1) Test
Models, (2) Test Goals, (3) Test Suite and (4) Test Plan. In
[13], products evolve by applying deltas. Following the idea of
Delta Modelling [18], a core model is developed and product
variants are represented by the core model and a set of deltas
that describe changes to be applied to this core model. From
the testing point of view, a test artifact is developed to test the
core system and deltas are applied to the test artifact in order
to test the rest of the products.

Delta-oriented testing is also used in [14]. In this approach,
Dukaczewski et al. propose a delta-oriented incremental testing
approach based on textual requirements, where the test cases
are directly associated to the requirements. Based on delta
modelling [18], a delta describes how the behaviour of two
system variants differs from each other. The main idea of
this approach is based on testing the core system exhaustively
and consider only the newly added or modified behaviour
of the previous sytem during testing when moving to the
next system variant [14]. Three steps are carried out to apply
the proposed delta-oriented testing approach: The first step
consist in selecting a core system, the requirements related
to the selected system are separated from the requirements of

19Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

all possible system variants and the selected core system is
tested exhaustively. In the second a variant system is selected,
deltas are applied to requirements to define changes between
the requirements of different system variants by adding or
removing requirements. Lastly, the test cases associated with
the requirements are classified. Depending on the delta, the
test cases are divided into four categories (Figure 8) [14]:

• Invalid: Test cases that become invalid for the new
system variants. Invalid test cases belong to removed
requirements.

• New: Test cases that are added to the new system
variant, which belong to added requirements.

• Reuse: Test cases from the previous system variant
that are not affected by the performed changes, which
can be obtained using model slicing techniques (e.g.
[19]). These test cases belong to unchanged require-
ments.

• Retest: Test cases from the previous system variant
that are affected by the changes and have to be
executed again. The test cases for retest are determined
by the following identified options [14]: Random,
Meta data, History/Statistics, Test expert and model.

Figure 8. Delta Test-Sets [14]

B. Discussion and Analysis

The previous section has introduced the different docu-
mented approaches for handling variability in test systems.
Each of these systems have their advantages and their lim-
itations. When modelling variability in test systems, several
characteristics are important, such as variability management,
test automation, variability in test cases, or the specification of
a test architecture. This section analyses the main limitations
of each approach.

Kruse et al. propose a configurable test system for evolu-
tionary testing of embedded systems in [8]. Variability in this
test system appears in some configuration variables used by
the evolutionary algorithm as well as the target configuration
of the test system, i.e., MiL, SiL, PiL or HiL. Although the
test system handles some variability points, it is not oriented
for the validation of variability-handling systems.

Simulink is also used to model variability of test systems
in two of the selected approaches ([9] [5]). This tool could be
one of the most interesting when testing embedded software

and CPSs, as it allows simulating the physical layer, as well
as the cyber-digital layers (embedded system, software, etc.).

MiLEST is a toolbox oriented for the validation of em-
bedded systems designed in [9], which can also be applied to
CPSs. Although this test system shows variability modelling
mechanisms, MiLEST is not designed for it. The variability
points in the test architecture are limited to the test stimuli
generator. Neither variability management tools nor automatic
generation and configuration of the architecture for variability-
intensive systems are used in this case. Another important
factor when testing configurable systems is the simulation
time. In this case, uniform variability is used as a variability
modelling technique, which enlarges simulation time [16].

In our previous work [5], we analysed the variability of
the test system and its components for the efficient validation
of highly configurable CPSs. The test system is modelled in
Simulink, and it is semi-automatically generated taking the
information of a Feature Model into account. Apart from the
SUT, variability can be found in the signals of the test data
generator, requirements, test cases, signals of the test oracle,
validation functions and validation function characteristics. In
addition, we propose a traceability strategy among the features
of the SUT and the test system. This strategy enables the
automatic configuration of the test system depending on the
selected SUT variant.

Apart from MATLAB/Simulink, other modelling languages
are widely used when modelling embedded software, e.g.,
UML. In the case of [11], UML together with its UTP
extension is used as a modelling tool. This approach analyses
variability in several points, e.g., test context, test cases, etc.
Moreover, some interesting concepts are provided that could be
used in other test system, especially when modelling variability
in test cases. In this case, variability is managed using UML
models.

This UTP extension is used by the same author in [12]. In
this case, the test models are generated automatically from the
model of the SPL using the QVT Language. The variability
modelling strategy of the test systems presented in [11] and
[12] are clearly identified. In both cases, the test architecture
is presented so that the interaction among the components of
the test systems and the SUT is provided.

Delta modelling is used to model variability in [13] and
[14]. In [13], Lity et al. propose a regression testing approach
to test SPLs. The variability points of the test system can be
found in test models, test goals, test suite and test plan. With
regard to the drawbacks of this approach, on the one hand, the
variability management of the test system is not specified. On
the other hand, a test architecture is not considered, and as a
consequence, the interaction among the components of the test
system and the SUT cannot be appreciated.

Dukaczewski et al. propose incremental testing for the
validation of SPLs in [14]. The way the test cases are clas-
sified in [14], “invalid”, “new”, “reuse” and “retest”, are an
interesting option when testing SPLs. However, the proposed
approach shows the same drawback as in [13], i.e., a variability
management tool to model variability of the test system is
not specified, and a test architecture showing the interactions
among the test system and test components is not provided.

20Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

In the case of [10], a product line of validation envi-
ronments is proposed. Although the interaction among the
elements of the validation systems seems interesting, the
analysed variability points of the systems are related to high-
level elements, i.e., it does not take into account variability in
test cases, test oracles, etc. Moreover, important characteristics
such as variability management or test automation are not
provided in this approach.

V. OPEN CHALLENGES

Variability is an issue that has to be considered across the
software-rich systems life cycle. In the previous section we
have selected eight approaches that consider variability in the
test systems. Nevertheless, there are still a lot of open questions
and challenges when developing variant-rich test systems.

One of the major challenges would be to integrate a
test system that could be able to test variant-rich systems
from different domains. However, this is a complex issue, as
different domains might need different kind of test systems.
Furthermore, this can be infeasible because of the use of Do-
main Specific Languages, which warrants the use of different
tools, e.g., SCADE for railway domain or MATLAB/Simulink
for the automotive domain. Not only that, many variability
points would have to be considered, as variability can appear
in several points depending on the system.

Some of the selected test systems proposed a testing
strategy. Depending on the validation phase, one test strategy
could be more appropriate than another. Considering variability
in the test strategy could be an interesting option, so that one
test strategy or another could be chosen depending on the test
needs and the validation stage.

A unified methodology that would warrant a systematic
validation process of variant-rich systems of different domains
could help test engineers with the validation activities. For
instance, our previous work [20] proposes a model-based
testing methodology for the validation of highly configurable
CPSs.

One of the major problems in the validation of variant-
rich systems is that as it is infeasible to test all the possible
product configurations, the notion of the achieved test coverage
is unclear. As a result, the analysis of new test metrics is a clear
challenge in this field.

VI. CONCLUSION

This paper presents the current trends when modelling
variability in test systems, issues that have to be considered as
well as future challenges. Most of the research in the field of
variability modelling of SPLs and variant-rich software focuses
on the system itself. With regard to testing and validating SPLs
and variant-rich software, most of the papers of the current
state of the art propose generation of efficient configurations of
the systems using different techniques such as combinatorial
interaction testing (CIT). Other research efforts in this field
consider the efficient test case generation for specific product
variants. Although the research efforts in the field of variability
modelling of test systems is not major, it is an important field
of validation of variant-rich systems.

The paper has presented different approaches for testing
different types of targets. In particular, the approaches pre-
sented in [9][8][5] are oriented to the testing and validation of
real time embedded systems, embedded software or CPSs. On
the other hand, the approaches presented in [11][12][13][14]
have as testing objectives SPLs.

Some of the selected works do not consider variability
management, e.g., [9][10]. This is not a problem if the test
system is not variant rich, but in the case there are many
variability points, the lack of a variability management tool
can become a problem. In addition, the variability management
tool can help to trace the variability of the test system with
the variability of the SUT, as proposed in [5].

The paper also shows that variability in test systems is not
just used to test variability-handling systems, but also general
purpose systems. Three of the selected approaches consider
variability in their test system although the SUT does not
present any variability point. In the case of [8] and [9], the
test systems are designed to test embedded systems, whereas
the approach presented in [10] tests general purpose software.

VII. ACKNOWLEDGEMENTS

This work has been developed by the embedded systems
group from Mondragon Goi Eskola Politeknikoa, supported by
the Department of Education, Universities and Research of the
Basque Government.

REFERENCES

[1] J. V. Gurp, J. Bosch, and M. Svahnberg, “On the notion of variability
in software product lines,” in Proceedings of the Working IEEE/IFIP
Conference on Software Architecture, ser. WICSA ’01. Washington,
DC, USA: IEEE Computer Society, 2001, pp. 45–54.

[2] S. Thiel and A. Hein, “Modelling and using product line variability in
automotive systems,” IEEE Software, vol. 19, no. 4, 2002, pp. 66 – 72.

[3] T. Berger, et al., “A survey of variability modeling in industrial practice,”
in Variability Modelling of Software-intensive Systems (VaMoS), 2013,
pp. 7:1–7:8.

[4] J. Weiland and P. Manhart, “A classification of modeling variability
in simulink,” in Proceedings of the Eighth International Workshop on
Variability Modelling of Software-Intensive Systems, ser. VaMoS ’14.
New York, NY, USA: ACM, 2014, pp. 7:1–7:8.

[5] A. Arrieta, G. Sagardui, and L. Etxeberria, “A configurable test ar-
chitecture for the automatic validation of variability-intensive cyber-
physical systems,” in VALID 2014: The Sixth International Conference
on Advances in System Testing and Validation Lifecycle, 2014, pp.
79–83.

[6] J. Zander-Nowicka, I. Schieferdecker, and P. J. Mosterman, A Tax-
onomy of Model-Based Testing for Embedded Systems from Multiple
Industry Domains. Model-Based Testing for Embedded Systems, 2011,
ch. 1, pp. 3–22.

[7] B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey,
and S. Linkman, “Systematic literature reviews in software engineering
- a systematic literature review,” Inf. Softw. Technol., vol. 51, no. 1,
Jan. 2009, pp. 7–15.

[8] P. M. Kruse, J. Wegener, and S. Wappler, “A highly configurable test
system for evolutionary black-box testing of embedded systems,” in
Proceedings of the 11th Annual Conference on Genetic and Evolution-
ary Computation, ser. GECCO ’09. New York, NY, USA: ACM, 2009,
pp. 1545–1552.

[9] J. Zander-Nowicka, “Model-based testing of real-time embedded sys-
tems in the automotive domain,” Ph.D. dissertation, Technical Univer-
sity Berlin, 2008.

21Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

[10] B. Magro, J. Garbajosa, and J. Perez, “A software product line definition
for validation environments,” in 12th International Software Product
Line Conference (SPLC), Piscataway, NJ, USA, 2008, pp. 45 – 54.

[11] B. Pérez, M. Polo, and M. Piattini, “Towards an automated testing
framework to manage variability using the uml testing profile,” in AST,
2009, pp. 10–17.

[12] B. Pérez, M. Polo, and I. Garcı́a, “Model-driven testing in software
product lines,” in Proceedings of the 2009 IEEE International Confer-
ence on Software Maintenance (ICSM 2009), 2009, pp. 511 – 514.

[13] S. Lity, M. Lochau, I. Schaefer, and U. Goltz, “Delta-oriented model-
based spl regression testing,” in 3rd International Workshop on Product
LinE Approaches in Software Engineering, PLEASE 2012, Piscataway,
NJ, USA, 2012, pp. 53 – 6.

[14] M. Dukaczewski, I. Schaefer, R. Lachmann, and M. Lochau,
“Requirements-based delta-oriented spl testing,” in 4th International
Workshop on Product LinE Approaches in Software Engineering,
PLEASE 2013, San Francisco, CA, United states, 2013, pp. 49 – 52.

[15] D. Streitferdt et al., “Model-based testing of highly configurable em-
bedded systems in the automation domain,” International Journal of
Embedded and Real-Time Communication Systems, 2011, pp. 22–41.

[16] A. Arrieta, G. Sagardui, and L. Etxeberria, “A comparative on variability
modelling and management approaches in simulink for embedded
systems,” in V Jornadas de Computación Empotrada, ser. JCE 2014,
no. 26-33, 2014.

[17] T. Thuem, C. Kastner, F. Benduhn, J. Meinicke, G. Saake, and T. Leich,
“Featureide: An extensible framework for feature-oriented software
development,” Science of Computer Programming, vol. 79, 2014, pp.
70 – 85.

[18] I. Schaefer, “Variability modelling for model-driven development of
software product lines,” in VaMoS, 2010, pp. 85–92.

[19] J. Kamischke, M. Lochau, and H. Baller, “Conditioned model slicing
of feature-annotated state machines,” in Proceedings of the 4th Interna-
tional Workshop on Feature-Oriented Software Development, ser. FOSD
’12. New York, NY, USA: ACM, 2012, pp. 9–16.

[20] A. Arrieta, G. Sagardui, and L. Etxeberria, “A model-based testing
methodology for the systematic validation of highly configurable cyber-
physical systems,” in VALID 2014: The Sixth International Conference
on Advances in System Testing and Validation Lifecycle, 2014, pp.
66–72.

22Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

