
Automatic Test Set Generator with Numeric Constraints Abstraction for Embedded

Reactive Systems: AUTSEG V2

Mariem Abdelmoula, Daniel Gaffé, and Michel Auguin

LEAT, University of Nice-Sophia Antipolis, CNRS
Email: Mariem.Abdelmoula@unice.fr

Email: Daniel.Gaffe@unice.fr
Email: Michel.Auguin@unice.fr

Abstract—AUTSEG is an automatic test set generator for embed-
ded reactive systems. It automatically generates exhaustive test
sets and allows to check safety properties of the tested system. A
first version of AUTSEG has been initially designed for programs
dealing with Boolean inputs and outputs. We present in this
paper an extension of this tool called AUTSEG V2 to handle
symbolic numeric data processing that provides more expressive
and concrete tests of the system. To this end, we have developed
a new library called superior linear decision diagrams (SupLDD)
built on top of linear decision diagrams (LDD) library. This allows
symbolic computation of system data while improving system
verification (Determinism, Death sequences) and identifying all
possible test cases. Our tool characterizes the system precondi-
tions by numeric constraints to derive automatically the symbolic
test cases using a backtracking operation. We demonstrate the
application of AUTSEG V2 on an industrial example.

Keywords–Test Sets; Synchronous Model; Pre-conditions; Nu-
meric Data Processing; Backtrack; AUTSEG V2; SupLDD.

I. INTRODUCTION

Systems verification receives a particular interest today,
especially for embedded reactive systems which have complex
behaviors over time and which require long test sequences.
This kind of systems is increasingly dominating safety critical
domains such as nuclear industry, health insurance, banking,
chemical industry, mining, avionics and online payment where
failure could be disastrous. A practical solution in industry is
to proceed using intensive test patterns in order to discover
bugs, and increase confidence in the system, while researchers
concentrate their efforts rather on formal verification. However,
testing is obviously non exhaustive and formal verification is
impracticable on real systems because of the combinatorial
explosion nature of the states space.

AUTSEG [1] combines these two approaches to provide an
automatic test set generator where formal verification ensures
the automation in all phases of design, execution and test
evaluation and help on get confidence in the consistency
and relevance of tests. In a first version of AUTSEG, only
Boolean inputs and outputs were supported while most of ac-
tual systems handle numeric data. Numeric data manipulation
represents a big challenge for most of existing test generation
tools due to the difficulty to express formal properties on
those data using a concise representation. In our approach, we
consider symbolic test sets which are thereby more expressive,
safe and less complex than the concrete ones.

Therefore, we develop in this paper a new version of
AUTSEG to take into account numeric data manipulation in
addition to Boolean data manipulation. This was achieved
by developing a new library for data manipulation called
SupLDD. Prior automatic test sets generation methods have
been consequently extended and adapted to this new numeric
context. Symbolic data manipulations in AUTSEG V2 allow
not only symbolic data calculations but also system verifica-
tion (Determinism, Death sequences), and identification of all
possible test cases without requiring the coverage of all the
system states and transitions. Therefore, our approach bypasses
in numerous cases the states space explosion problem. We
besides defined a backtrack operation to exhibit significant test
sets of the target system.

In the remainder of this paper, we briefly recall the princi-
ples of AUTSEG V1 and introduce the new version AUTSEG
V2. The principles of data manipulation and its capabilities on
tests generation and verification are presented in Section II. A
case study is presented in Section III. We show in Section IV
experimental results. Finally, we conclude the paper in Section
V with some directions for future works.

II. AUTSEG V2 DESCRIPTION

A. Architectural Test Overview
We introduce in this section the principles of our automatic

testing approach including data manipulation. Figure 1 shows
five main operations including: i) the design of a global model
of the system under test, ii) a quasi-flattening operation, iii)
a compilation process, iv) a generation process of symbolic
sequences mainly related to the symbolic data manipulation
entity, v) and finally the backtrack operation to generate all
possible test cases.

In this paper, we particularly focus on verification of
embedded software controlling reactive systems behavior. The
conception of such systems is generally based on the syn-
chronous approach [2] that presents clear semantics to ex-
ceptions, delays and actions suspension. This notably reduces
the programming complexity and favors the application of
verification methods. In this context, we present the global
model by hierarchical and parallel concurrent Finite States
Machines (FSMs) based on the synchronous approach. The
hierarchical machine describes the global system behavior,
while parallel automata act as observers for control data of

23Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

Figure 1. Global test process.

the hierarchical automaton. Our approach allows to test many
types of a system at once. In fact, we present a single generic
model for all types of the system, the specification of tests can
be done later using particular Boolean variables called system
preconditions (type of system, system mode, etc.). Hence, a
specific test generation could be done at the end of test process
through analysis of the system preconditions. This prevents to
generate as many models as system types, which can highly
limit the legibility and increase the risk of specification bugs.

A straightforward way to analyze a hierarchical machine is
to flatten it first (by recursively substituting in a hierarchical
FSM each super state with its associated FSM) and then
apply on the resulting FSM a verification tool such as a
model cheking tool. However, to analyze the global model, a
full flattening of the hierarchical FSM is not required. Only
the sequential hierarchical automata is flattened, the global
structure remains parallel. In fact, flattening parallel FSMs
explodes usually in number of states. Thus there is no need
to flatten them, as we can compile them separately thanks
to the synchronous approach [2], then concatenate them with
the flat model retrieved at the end of the compilation process.
This quasi-flattening operation allows to flatten the hierarchical
automata and maintain the parallelism. This offers a simpler
model, a faster compilation, and brings more flexibility to
identify all possible evolutions of the system as detailed in
the following steps.

Resulting flat automata and concurrent automata are then
compiled separately into explicit Mealy machines, implicitly
represented by a set of Boolean equations. Compilation results
of these automata are concatenated at the end of this process.
They are represented by a union of sorted equations rather
than a Cartesian product of graphs to support the synchronous
parallel operation and instantaneous diffusion of signals as
required by the synchronous approach. Accordingly, a sub-
stantial reduction is brought on the size of the system model.
Our compilation requires only log2(nbstates) registers, while
classical works uses one register per state [3]. It allows also
checking the determinism of all automata which ensures the
persistence of the system behavior.

To supply numeric data manipulation in our tests, we devel-
oped SupLDD library offering symbolic means to characterize
several preconditions by numeric constraints. It is sorely based

on the potency of LDD library [4]. The symbolic representation
of these preconditions shows an important role in the following
operations of sequences symbolic generation and test cases
generation ”Backtrack”. It evenly enhances system security by
analyzing the constraints computations.

During the sequences symbolic generation operation, we
automatically extract necessary preconditions which lead to
specific, significant states of the system from generated se-
quences. Having defined the optimal preconditions for re-
stricting the states space, we work locally on significant
subspaces. This sequences generation process relies on the
effective representation of the global model and the robustness
of numeric data processing to generate the exhaustive list of
possible sequences, avoiding therefore the manual and explicit
presentation of all possible combinations of system commands.

Finally, the verification of the whole system behavior is
performed by the manipulation of extracted preconditions from
each significant subspace. Namely, we verify the execution
context of each significant subspace. This verification is per-
formed by the backtrack operation. It generates all possible
test cases of the system under test. Specifically, it identifies all
paths satisfying each final critical state preconditions to reach
the root state.

We have already detailed in [1] the principles of the
global model conception, the quasi-flattening operation and the
compilation process. We will rather focus in the rest of this
paper on the presentation of symbolic data manipulations and
their capabilities to carry the symbolic sequences generation
and the backtrack operation.

B. Symbolic data manipulation
1) Related work: Since 1986, Binary Decision Diagrams

(BDDs) have successfully emerged to represent Boolean func-
tions for formal verification of systems with large states space.
BDDs, however, cannot represent quantitative information such
as integers and real numbers. Variations of BDDs have been
proposed thereafter to support symbolic data manipulations
that are required for verification and performance analysis of
systems with numeric variables. For example, Multi-Terminal
Binary Decision Diagrams (MTBDDs) [5] are a generalization
of BDDs in which there can be multiple terminal nodes, each
labeled by an arbitrary value. However, the size of nodes in
an MTBDD can be exponential (2n) for systems with large
range of values. To support a larger number of values, Yung-
Te Lai has developed Edge-Valued Binary Decision Diagrams
(EVBDDs) [6] as an alternative to MTBDDs to offer a more
compact form. EVBDDs associate multiplicative weights with
the true edges of an EVBDD function graph to allow an
optimal sharing of subgraphs. This suggests a linear evolution
of non-terminal nodes size rather than an exponential one for
MTBDDs. However, EVBDDs are limited to relatively simple
calculations units, such as adders and comparators, implying a
high cost per node for complex calculations such as (X × Y)
or (2X).

To overcome this exponential growth, Binary Moment
Diagrams (BMDs) [7], another variation of BDDs, have been
specifically developed for arithmetic functions considered as
linear functions with Boolean inputs and integer outputs to
perform a compact representation for integer encodings and
operations. They integrate a moment decomposition principle
giving way to two sub-functions representing the two moments

24Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

(constant and linear) of the function, instead of a decision.
This representation was later extended to Multiplicative Bi-
nary Moment Diagrams (*BMDs) [8] to include weights on
edges allowing to share common sub-expressions. These edges
weights are multiplicatively combined in a *BMD, in contrast
to the principle of addition in an EVBDD. Thus, the following
arithmetic functions X + Y , X − Y , X × Y , 2X show
representations of linear size. Despite their significant success
in several cases, handling edges weights in BMDs and *BMDs
is a costly task. Moreover, BMDs are unable to verify the
satisfiability property, and functions outputs are non divisible
integers to separate bits, causing a problem for applications
with output bit analysis. BMDs and MTBDDs were combined
by Clarke and Zhao in Hybrid Decision Diagrams (HDDs) [9].
But, all of these diagrams are restricted to materials arithmetic
circuits check and not suitable for the verification of software
systems specifications.

Within the same context of arithmetic circuits check, Taylor
Expansion Diagrams (TEDs) [10] have been introduced to
supply a new formalism for multi-values polynomial functions
providing a more abstract, standard and compact design rep-
resentation, with integer or discrete inputs and outputs values.
For an optimal fixed order of variables, the resulting graph is
canonical and reduced. Unlike the above data structures, TED
is defined on a non-binary tree. In other words, the number of
child nodes depends on the degree of the relevant variable.
This makes TED a complex data structure for particular
functions such as (ax). In addition, the representation of the
function (x < y) is an important issue in TED. This is
particularly challenging for the verification of most software
systems specifications. In this context, Decision Diagrams
for Difference logic (DDDs) [11] have been proposed to
present functions of first order logic by inequalities of the
form {x − y ≤ c} or {x − y < c} with integer or real
variables. The key idea is to present these logical formulas
as BDD nodes labeled with atomic predicates. For a fixed
variables order, a DDD representing a formula f is no larger
than a BDD of a propositional abstraction of f. It supports as
well dynamic programming by integrating an algorithm called
QELIM based on Fourier-Motzkin elimination [12]. Despite
their proved efficiency in verifying timed systems [13], the
difference logic in DDDs is too restrictive in many program
analysis tasks. Even more, dynamic variable ordering (DVO)
is not supported in DDDs. To address those limitations, LDDs
[4] extend DDDs to full Linear Arithmetic by supporting an
efficient scheduling algorithm and a QELIM quantification.
They are BDDs with non terminal nodes labeled by linear
atomic predicates satisfying a scheduling theory and local
constraints reduction. Data structures in LDDs are optimally
ordered and reduced by considering the several implications of
all atomic predicates. LDDs have the possibility of computing
arguments that are not fully reduced or canonical for most
LDD operations. This suggests the use of various reduction
heuristics that trade off reduction potency for calculations cost.

2) SupLDD: We summarize from the above data structures
that LDD is the most relevant work for data manipulation
in our context. We present in this section a new library for
data manipulation called SupLDD founded on LDD basis.
Figure 2 shows an example of representation in SupLDD of
the arithmetic formula F1 = {(x ≥ 5) ∧ (y ≥ 10) ∧ (x+ y ≥
25)} ∨ {(x < 5) ∧ (z > 3)}. Nodes of this structure are

labeled by the linear predicates {(x < 5); (y < 10); (x+ y <
25); (−z < −3)} of formula F1, where the right branch
evaluates its predicates to 1 and the left branch evaluates its
predicates to 0. In fact, the choice of a particular comparison
operator within the 4 possible operators {<,≤, >,≥} is not
important since the 3 other operators can always be expressed
from the chosen operator: {x < y} ⇔ {NEG(x ≥ y)}; {x <
y} ⇔ {−x > −y} and {x < y} ⇔ {NEG(−x ≤ −y)}.

Figure 2. Representation in SupLDD of F1.

We show in Figure 2.b that the representation of F1 in
SupLDD has the same structure as a representation in BDD
that labels its nodes by the corresponding Boolean variables
{C0;C1;C2;C3} to each SupLDD predicate. But, a repre-
sentation in SupLDD is more advantageous. In particular, it
ensures the numeric data evaluation and manipulation of all
predicates along the decision diagram. This furnishes a more
accurate and expressive representation in Figure 2.c than the
original BDD representation. Namely, the Boolean variable C3
is replaced by EC3 which evaluates the corresponding node to
{x+y < 15} instead of {x+y < 25} taking into account prior
predicates {x < 5} and {y < 10}. Besides, SupLDD relies
on an efficient T-atomic scheduling algorithm [4] that makes
compact and non-redundant diagrams for SupLDD where a
node labeled for example by {x ≤ 15} never appears as a
right child of a node labeled by {x ≤ 10}. As well, nodes are
ordered by set of atoms {x, y, etc.} where a node labeled by
{y < 2} never appears between two nodes labeled by {x < 0}
and {x < 13}. Further, SupLDD diagrams are optimally
reduced including the LDD reduction rules. First, the QELIM
quantification introduced in LDDs allows the elimination of
multiples variables: For example, the QELIM quantification of
the expression {(x−y ≤ 3)∧(x−t ≥ 8)∧(y−z ≤ 6)∧(t−k ≥
2)} eliminates the intermediate variables y and t and generates
the simplified expression {(x − z ≤ 9) ∧ (x − k ≥ 10)}.
Second, the LDD high implication [4] rule allows to get the
smallest geometric space: For example the simplification of the
expression {(x ≤ 3) ∧ (x ≤ 8)} in high implication turns to
the single term {x ≤ 3}. Finally, the LDD low implication [4]
rule generates the largest geometric space where the expression
{(x ≤ 3) ∧ (x ≤ 8)} becomes {x ≤ 8}.

SupLDD operations- SupLDD operations are primarily
generated from basic LDD operations [4]. They are simpler and
more adapted to our needs. We present functions to manipulate
inequalities of the form {

∑
aixi ≤ c}; {

∑
aixi < c};

{
∑

aixi ≥ c}; {
∑

aixi > c}; where {ai, xi, c ∈ Z}. Given
two inequalities I1 and I2, the main operations in SupLDD
include:

25Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

• SupLDD conjunction (I1, I2): This absolutely corre-
sponds to the intersection on Z of sub-spaces repre-
senting I1 and I2.

• SupLDD disjunction (I1, I2): As well, this operation
absolutely corresponds to the union on Z of sub-spaces
representing I1 and I2.

Accordingly, all the space Z can be represented by a union
of two inequalities {x ≤ a} ∪ {x > a}. As well, the empty
set can be inferred from the intersection of inequalities {x ≤
a} ∩ {x > a}.
• Equality operator {

∑
aixi = c}: It is defined by the

intersection of two inequalities {
∑

aixi ≤ c} and
{
∑

aixi ≥ c}.
• Resolution operator: It simplifies arithmetic expres-

sions using QELIM quantification, and both low and
high implication rules introduced in LDD. For exam-
ple, the QELIM resolution of {(x−y ≤ 3)∧ (x− t ≥
8) ∧ (y − z ≤ 6) ∧ (x − t ≥ 2)} gives the simplified
expression {(x− z ≤ 9)∧ (x− t ≥ 8)∧ (x− t ≥ 2)}.
This expression can be more simplified to {(x− z ≤
9) ∧ (x − t ≥ 8)} in case of high implication and to
{(x−z ≤ 9)∧(x−t ≥ 2)} in case of low implication.

• Reduction operator: It solves an expression A with
respect to an expression B. In other words, if A implies
B, then the reduction of A with respect to B is the
projection of A when B is true. For example, the
projection of A {(x− y ≤ 5)∧ (z ≥ 2)∧ (z− t ≤ 2)}
with respect to B {x − y ≤ 7} gives the reduced set
{(z ≥ 2) ∧ (z − t ≤ 2)}.

We report in this paper on the performance of these
functions to enhance our tests. More specifically, by means
of SupLDD library, we present next an extension of Se-
quences Symbolic Generation operation initially presented in
AUTSEG V1 to integrate data manipulation and generate
more significant and expressive sequences. Moreover, we track
and analyze tests execution to spot the situations where the
program violates its properties. In the other hand, our library
ensures the analyze of generated sequences context to carry
the backtrack operation and generate all possible test cases.

C. Sequences Symbolic Generation (SSG)
In this version, we take into account data calculations

within the sequences generation process. Let’s recall the princi-
ples of SSG in AUTSEG V1. In fact, our approach is primarily
designed to test systems running iterative commands. In this
context, we confine only on significant sub-spaces representing
each command of the system instead of considering all the
states space. Indeed, we test all the system commands, but
one command is tested at once. This restriction was done by
characterizing all preconditions defining the execution context
in each subspace. Hence, the major complex calculation is
intended to be locally done in each significant subspace avoid-
ing the states space combinatorial explosion problem. Figure
3 shows this efficient representation of the system behavior.
It presents a repetition of a subspace pattern representing a
specific system command instead of an infinite tree if we
typically imagine all possible combinations of the system
iterative commands.

Each state in the subspace is specified by 3 main variables:
symbolic values of the program variables, path condition

Figure 3. AUTSEG V2 Model Representation.

and command parameters (next byte-code to be executed).
The path condition represents preconditions that should be
satisfied by the symbolic values to successfully progress the
execution of the current path. We particularly define two types
of preconditions:

• Boolean global preconditions that define the execution
context of a given command. They states the list of
commands that should be executed before. They arise
as command output if this latter is properly executed.

• Numeric local preconditions that define numeric con-
straints on commands parameters. They are presented
and manipulated by SupLDD functions.

We have explained in details in the first version of AUT-
SEG the SSG operation. We have applied BDD-analysis to
generate all possible paths from a Local Initial state (LI)
to reach Local Final states (LF) of the tested subspace. As
well, necessary preconditions are extracted from this subspace
check. We extend in this paper the SSG operation to integrate
data manipulations. We apply SupLDD analysis on numeric
local preconditions to check if the tested system is safe. We
firstly check if there are erroneous sequences. To this end,
we apply the SupLDD conjunction function on all extracted
numeric preconditions within the analyzed path. If the result
of this conjunction is null, the analyzed sequence is then
impossible and should be rectified! Second, we check the
determinism of the system behavior. To this end, we verify
if the SupLDD conjunction of all outgoing transitions from
each state is empty. In other words, we verify if the SupLDD
disjunction of all outgoing transitions from each state is equal
to all the space covering all possible system behaviors.

Contrary to the classical sequences generator, our tool
constantly generates a tree of pure future states, thus preventing
loops from occurring. Namely, previous states always converge
to the global initial state. This approach easily favors the
backtrack execution.

D. Backtrack operation
Once the necessary preconditions are extracted, a next step

is to backtrack paths from each final critical state until the
initial state finding the sequence fulfilling these preconditions.
This operation is carried by robust calculations on SupLDD
and the compilation process which kept enough knowledge to
find later the previous states. It includes two main actions:
a global backtrack and a local backtrack. Let’s consider the
SSG representation in Figure 3, if we take into account LF
as a critical final state FS of the tested system, the global

26Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

backtrack operation is to find the list of commands that should
be executed before the tested command. Figure 4 details this
operation: Given the global extracted preconditions (GP1,GP2,
etc.) from the SSG operation at this level (Final state FS of
command C1), we search in the global actions table for actions
(Commands C2 and C3) that emit each parsed global precon-
dition. Next, we put on a list SL the states that trigger each
identified action (SL= {C2, C3}). This operation is iteratively
executed on all found states (C2,C3) until reaching the root
state I with zero preconditions (C4 with zero preconditions).

Figure 4. Global Backtrack.

As many commands can share the same global precon-
ditions (C1 and C3 share the same precondition GP1), the
identified states can be repeated on SL (C2 and C4 are repeated
on SL). To manage this redundancy, we allocate a priority P to
each found state where each state of priority P should precede
the state of priority P+1. More specifically, if an identified
state already exists in SL, then its priority is incremented by
1 (Priority of C2 and C4 are incremented by 1). By the end
of this operation, we obtain the list SL (SL= { C3,C2,C4 })
of final states refering to subspaces that should be traced to
reach I.

A next step is to execute a local backtrack on each
identified subspace (C1,C3, C2,C4) starting from the state with
the lowest priority and so on to trace the final path from FS
to I. The sequence from I to FS is an example of a good
test set. Figure 5 presents an example of local backtrack in
command C3. In fact, during the SSG operation each state
S was labeled by (1) a Local numeric Precondition (LP)
presenting numeric constraints that should be satisfied on its
ongoing transition and (2) a Total Local numeric precondition
(TL) that presents the conjunction of all LP along the executed
path from I to S. To execute the local backtrack, we start from
the ongoing transition PT to FS to find a path that satisfy
the backtrack precondition BP initially defined by TL. If the
backtrack precondition is satisfied by the total precondition
{TL ≥ BP}, then if the local precondition LP of the tested
transition is not null, So we remove this verified precondition
LP from BP by applying the SupLDD projection function.
Next, we move to the amount state of PT and test its ongoing
transitions, etc. However, if {TL < BP}, we move to the test
of other ongoing transitions to find the transition from which
BP can be satisfied. This operation is iteratively executed until
reaching the initial state on which the backtrack precondition

Figure 5. Local Backtrack.

is null (fully satisfied). In short, if the context is verified, the
generated sequence is considered correct. At the end of this
process, we join all identified paths from each traced subspace
according to the given priority order from the global backtrack
operation.

III. USE CASE

To illustrate our approach, we studied the case of a con-
tactless smart card for the transportation sector manufactured
by ASK company [14], a world leader in contactless smart
card technology. We specifically target the verification of the
card’s functionality and security features. Overall, security
of such systems is critical: it can concern cards for access
security, banking, ID, etc. Cards complexity makes it difficult
for a human to identify all possible sensitive situations or to
validate it by classical methods. We need approximately 500
000 years to test the first 8 bytes if we consider a classical
Intel processor able to generate 1000 test sets per second. As
well, combinatorial explosion of possible modes of operation
makes it nearly impossible to attempt a comprehensive simu-
lation. The problem is exacerbated when the system integrates
numeric data processing. We have already studied this use case
within the first version of AUTSEG, but processing numeric
variables was ignored. We rather show in this section real tests
with AUTSEG V2 taking into account the complexity of data
manipulation.

The smart card operation is defined by a transport standard
called Calypso that presents 33 commands. The succession
of these commands (e.g., Open Session, SV Debit, Get Data,
Change Pin) gives the possible scenarios of card operation.
We designed the generic model of the studied card by 52
interconnected automata including 765 states. Forty three of
them form a hierarchical structure. The remaining automata
operate in parallel and act as observers to control the global
context of hierarchical automaton (Closed Session, Verified
PIN, etc.). We choose to use Light Esterel (light version of
SyncChart) [15], a synchronous graphical model that integrates
high-level concepts of synchronous languages in an expressive
graphical formalism. We show in Figure 6 a small part of
our model representing the command Open Session. Each

27Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

command in Calypso is presented by an APDU (Application
Protocol Data Unit) that presents the next byte-code to be
executed (CLA,INS,P1,P2, etc.). We expressed these parame-
ters by SupLDD local preconditions on various transitions. For
instance, AUTSEGINT(h10 < P1 < h1E) means that the cor-
responding transition can only be executed if (10 < P1 < 30).
Back-Autseg-Open-Session and Back-Autseg-Verify-PIN are
examples of global preconditions that appear as outputs of
respectively Open Session and Verify PIN commands when
they are correctly executed. They appear also as inputs for
other commands as SV Debit command to denote that the card
can be debited only if the PIN code is correct and a session is
already open. Autseg-Contact-mode is an example of system
precondition specifying that Open Session command should
be executed in a Contactless Mode.

Figure 6. Open Session command.

IV. EXPERIMENTAL RESULTS

In this section, we show experimental results of applying
our tool to the contactless transportation card. We intend to
test the security of all possible combinations of 33 commands
of the Calypso standard. This validation process is extremely
important to determine whether the card correctly meets
its specifications. Each command in the Calypso standard
is encoded on a minimum of 8 bytes. We conducted our
experiments on a PC with Intel Dual Core Processor, 2 GHz
and 8 GB RAM. We have already shown in a previous work
[1] the successful application of our quasi-flattening process
on the smart card hierarchical model. Compared to classical
works, we have moved from 9.6 1024 states in the designed
model to only 256 per branch of parallel. Then, due to the
compilation process, we have moved from 477 registers to
only 22.

We present in this paper more interesting results on se-
quences generation and test coverage with data processing.

The curve denoted C1 in Figure 7 shows an exponential
evolution of the number of generated sequences versus the
number of tested bytes. This corresponds to a classical testing
method that browses all possible paths of the card model
without any restriction. We are not even able to test more
than 2 commands of the model. Our model explodes by 13
bytes generating 3,993,854,132 possible sequences. A second
test applies AUTSEG V1 on the card model represented in
the same manner as Figure 3. Results shows in curve C2 a
lower evolution that stabilizes at 10 steps and 1784 paths,
allowing for coverage of all states of the tested model. More
interesting results are shown in curve C3 by AUTSEG V2
tests. Our approach enables coverage of the global model in
a substantially short time (few seconds). It allows separately
testing 33 commands (all the system commands) in only
21 steps, generating a total of solely 474 paths. Covering
all states in only 21 steps, our results demonstrate that we
test separately one command (8 bytes) at once in our ap-
proach thanks to the backtrack operation. The additional steps
(13 bytes) correspond to the test of system preconditions
(e.g., Autseg-Contact-mode, etc.), global preconditions (Back-
Autseg-Open-Session, etc.) and other local preconditions (e.g.,
AUTSEGINT(h00 ≤ buffer−size ≤ hFF)). Whereas, only
fewer additional steps (2 bytes) are required within the first
version of AUTSEG that stabilizes at 10 steps. This difference
proves a complete evaluation of system constraints by our new
version of AUTSEG performing therefore more expressive and
reel tests: we integrate a better knowledge of the system.

Figure 7. SSG evolutions.

Curve C4 in Figure 8 exhibits results of AUTSEG V2 tests
simulated with 3 anomalies on the smart card model. We note
less generated sequences by the 5 steps. We obtain a total of
460 sequences instead of 474 at the end of tests. 14 sequences
are removed since they are unfeasible (dead sequences) by Su-
pLDD calculations. Indeed, the SupLDD conjunction of parsed
local preconditions AUTSEGINT(01h ≤ RecordNumber ≤
31h) and AUTSEGINT(RecordNumber ≥ FFh) within a
same path is null presenting an over-specification example
(anomaly) of the Calypso standard that should be revised.

We show in Figure 9 an excerpt of generated sequences

28Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

Figure 8. AUTSEG V2 SSG evolutions.

by AUTSEG V2 detecting another type of anomaly: an under-
specification in the card behavior. The Incomplete Behavior
message reports a missing action on a tested state of Update-
Binary command. Indeed, two actions are defined (Tag =
54h) and (Tag = 03h) at this state. All states where Tag is
different from 84 and 3 are missing. We can automatically
spot such problems by checking for each parsed state if the
union SupLDD-Or of all outgoing transitions is equal to all
the space. Once, this property is always true, then the smart
card behavior is proved deterministic.

Figure 9. Smart Card Under-specification.

As explained before, we get the execution context of each
generated sequence at the end of this operation. The next step
is then to backtrack all critical states of the Calypso standard
(all final states of 33 commands). We show in Figure 10
a detailed example of backtrack from the final state of SV
Undebit command that emit SW6200 code.

We identify from the global extracted preconditions Back-
Autseg-Open-Session and Back-Autseg-Get-SV the list of
commands (Open Secure Session and SV Get) to be executed
before. Then, we look recursively for all global preconditions

Figure 10. SV Undebit Backtrack.

of each identified command to trace the complete path to the
initial state of Start command. We observe from the results
that Verify PIN command should proceed the Open Secure
Session command. So, the final backtrack path is to trace
(local backtrack) the identified commands respectively SV
Undebit, SV Get, Open Secure Session et Verify PIN using
local preconditions of each command.

At the end of this process, we generate automatically 5456
test sets that cover the entire behavior of the studied smart
card. While, industrials take much more time to solely generate
manually 520 test sets covering 9,5% of our tests as shown in
Figure 11.

Figure 11. Tests Coverage.

V. CONCLUSION

We have proposed an extension of AUTSEG to integrate
data manipulations. For this purpose, we have developed a new
library called SupLDD that supplies numeric data manipula-
tions and takes advantages of the symbolic encoding scheme
of BDDs. This library allows not only symbolic calculations of
system data but also the verification of the system behavior.
Our method is practical and performs well, even with large
models where the risk of combinatorial explosion of states
space is important. Our experiments confirm that our tool

29Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

provides more expressive and significant tests covering all
possible system evolutions in a short time. More generally,
our tool including the SupLDD calculations can be applied to
many numeric systems as they could be modeled by FSMs
handling integer variables.

Since SupLDD is implemented on top of a simple BDD
package. We aim in a future work to rebuild SupLDD on
top of an efficient implementation of BDDs with complement
edges [16] to get a better optimization of our library. Another
interesting contribution would be to integrate SupLDD in data
abstraction of CLEM [15]. More details about these future
works are presented in [17].

REFERENCES
[1] M. Abdelmoula, D. Gaffé, and M. Auguin, “Autseg: Automatic test

set generator for embedded reactive systems,” in Testing Software and
Systems, 26th IFIP International Conference,ICTSS, ser. Lecture Notes
in Computer Science. Madrid, Spain: springer, September 2014, pp.
97–112.

[2] C. André, “A synchronous approach to reactive system design,” in 12th
EAEEIE Annual Conf., Nancy (F), May 2001, pp. 349–353.

[3] I. Chiuchisan, A. D. Potorac, and A. Garaur, “Finite state machine
design and vhdl coding techniques,” in 10th International Conference
on development and application systems. Suceava, Romania: Faculty
of Electrical Engineering and Computer Science, 2010, pp. 273–278.

[4] S. Chaki, A. Gurfinkel, and O. Strichman, “Decision diagrams for linear
arithmetic.” in FMCAD. IEEE, 2009, pp. 53–60.

[5] M. Fujita, P. C. McGeer, and J. C.-Y. Yang, “Multi-terminal binary
decision diagrams: An efficient datastructure for matrix representation,”
Form. Methods Syst. Des., vol. 10, no. 2-3, Apr. 1997, pp. 149–169.

[6] Y.-T. Lai and S. Sastry, “Edge-valued binary decision diagrams
for multi-level hierarchical verification,” in Proceedings of the 29th
ACM/IEEE Design Automation Conference, ser. DAC’92. Los Alami-
tos, CA, USA: IEEE Computer Society Press, 1992, pp. 608–613.

[7] R. E. Bryant and Y.-A. Chen, “Verification of arithmetic circuits
with binary moment diagrams,” in Proceedings of the 32Nd Annual
ACM/IEEE Design Automation Conference, ser. DAC ’95. New York,
NY, USA: ACM, 1995, pp. 535–541.

[8] L. Arditi, “A bit-vector algebra for binary moment diagrams,” I3S,
Sophia-Antipolis, France, Tech. Rep. RR 95–68, 1995.

[9] E. Clarke and X. Zhao, “Word level symbolic model checking: A new
approach for verifying arithmetic circuits,” Pittsburgh, PA, USA, Tech.
Rep., 1995.

[10] M. Ciesielski, P. Kalla, and S. Askar, “Taylor expansion diagrams: A
canonical representation for verification of data flow designs,” IEEE
Transactions on Computers, vol. 55, no. 9, 2006, pp. 1188–1201.

[11] J. Møller and J. Lichtenberg, “Difference decision diagrams,” Master’s
thesis, Department of Information Technology, Technical University of
Denmark, Building 344, DK-2800 Lyngby, Denmark, Aug. 1998.

[12] A. J. C. Bik and H. A. G. Wijshoff, Implementation of Fourier-Motzkin
Elimination. Rijksuniversiteit Leiden. Valgroep Informatica, 1994.

[13] P. Bouyer, S. Haddad, and P.-A. Reynier, “Timed petri nets and
timed automata: On the discriminating power of zeno sequences,” Inf.
Comput., vol. 206, no. 1, Jan. 2008, pp. 73–107.

[14] “Ask,” [Retrieved: 16-October-2015]. [Online]. Available:
http://www.ask-rfid.com/

[15] A. Ressouche, D. Gaffé, and V. Roy, “Modular compilation of a
synchronous language,” in Soft. Eng. Research, Management and Ap-
plications, best 17 paper selection of the SERA’08 conference, R. Lee,
Ed., vol. 150. Prague: Springer-Verlag, August 2008, pp. 157–171.

[16] K. Brace, R. Rudell, and R. Bryant, “Efficient implementation of a bdd
package,” in Design Automation Conference, 1990. Proceedings., 27th
ACM/IEEE, June 1990, pp. 40–45.

[17] M. Abdelmoula, “Automatic test set generator with numeric constraints
abstraction for embedded reactive systems,” Ph.D. dissertation, Pub-
lished in ”Génération automatique de jeux de tests avec analyse sym-
bolique des données pour les systèmes embarqués”, Sophia Antipolis
University, France, 2014.

30Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

