
SAT-Based Testing of Diagnosability and Predictability

of Centralized and Distributed Discrete Event Systems

Hassan Ibrahim and Philippe Dague

LRI, Univ. Paris-Sud, CNRS, Univ. Paris-Saclay
Orsay, France

Email: firstname.lastname@lri.fr

Laurent Simon

LaBRI, Univ. Bordeaux, CNRS
Bordeaux, France

Email: lsimon@labri.fr

Abstract—In the general framework of safety analysis, diagnos-
ability of a system, i.e., the guarantee to surely identify any fault
in a finite delay after its occurrence, based on the available
observations, is a key property to be verified at design stage.
Diagnosability analysis of discrete event systems received a lot
of attentions in the past twenty years, firstly in the centralized,
then in the distributed case. In particular, a satisfiability-based
approach was proposed in 2007 in the centralized case. We extend
in this work this approach to cover also distributed discrete
event systems, by handling both observable and unobservable
synchronous communication events at the same time. Then, we
adapt the method to analyze, in both centralized and distributed
cases, fault predictability, a stronger property than diagnosability,
which guarantees that any fault can be correctly predicted before
its occurrence, based on observations. We provide experimental
results for both diagnosability and predictability.

Keywords–Discrete Event Systems; Distributed Systems; Diag-
nosability; Predictability; Satisfiability.

I. INTRODUCTION

Nowadays, there is an increasing interest to ensure from
the design stage of a system that partial observations given
by the sensors will allow a precise diagnosis of potential
faults that could occur in that system, once built. This will
actually save high costs of adding new sensors for this task
during the operating mode of the system. This raises the
problem of diagnosability and of predictability which are
essential properties to verify while designing the system model.
Once this verification has been done (possibly thanks to a
modification of the system model), both the system and its
diagnoser or predictor (which can be automatically derived
from diagnosability or predictability analysis) can be built with
a guarantee of correctness and precision of the diagnosis, at
least for those faults anticipated at design stage. Diagnosability
is a property that determines the possibility to distinguish any
possible behavior in the system with a given fault from any
other behavior without this fault. A fault is diagnosable if it
can be surely identified from the partial observation available
in a finite delay after its occurrence. A system is diagnosable
if every possible fault in it is diagnosable. Predictability is
similarly an important system property, stronger than diagnos-
ability, that determines at design stage whether a considered
fault can be correctly predicted before its occurrence, based
on available observations. If a fault is predictable, the fault
management system can be designed to warn the operator, to
halt the system or to take preventive measures.

The main difficulty in diagnosability and predictability
checking is related to the states number explosion. Methods
to cope with this problem and scale the studied system size in
the case of discrete event systems (DES) resort to adopting a
succinct representation of the system or a distributed modeling
and to use powerful checking tool. For these reasons, we ex-
tend in this work to distributed discrete event systems (DDES)
the succinct representation and the use of a satisfiability
(SAT) solver introduced in [1] for centralized DES. Then, we
adapt the SAT-based method to predictability analysis, in both
centralized and distributed cases.

The paper is structured as follows. We first present related
works in section II. In section III, we introduce the system
transition models for DES and recall the traditional definition
of diagnosability in those models and the state of the art of
encoding it as a satisfiability problem in propositional logic.
Then, in section IV, we present our first contribution, an
extension of this SAT-based diagnosability analysis to DDES
with observable and unobservable synchronous communication
events in the same model, and give experimental results of
this extension. Then, in section V, after having recalled the
usual definition of predictability in DES, follows our second
contribution, the encoding of this property as a satisfiability
problem for both DES and DDES, and presentation of experi-
mental results. Finally, in section VI, we conclude and outline
our perspectives for future work.

II. SELECTION OF RELATED WORKS

The first introduction to the notion of diagnosability was
by [2], who gave its formal definition (see Def. 2 in section
III) and studied it for labeled transition systems (LTS) by
constructing a deterministic diagnoser to test it. However,
this approach is exponential in the number of states of the
system, which makes it impractical. In order to overcome this
limitation, [3] introduced the twin plant approach, a structure
built by synchronizing on their observable events two identical
instances of a nondeterministic fault diagnoser. Then a so-
called critical path is searched in this structure, i.e., a path
with an observed cycle made up of ambiguous states, i.e., states
that are pairs of original states, one reached by going through a
fault and the other not. Fault diagnosability is thus equivalent
to the absence of such a critical path. This approach turns
the diagnosability problem in a search for a path with a cycle
in a finite automaton, and this reduces its complexity to be
polynomial of degree 4 in the number of states. The works by

7Copyright (c) IARIA, 2016. ISBN: 978-1-61208-500-5

VALID 2016 : The Eighth International Conference on Advances in System Testing and Validation Lifecycle

[4] and [5] generalize simple faults modeled as distinguished
events to supervision patterns, given as arbitrary suffix-closed
rational languages of events.

The first work that addressed diagnosability analysis in
DDES was [6], who introduced an incremental diagnosability
test that avoids to build the twin plant for the whole system if
not needed. Thus, one starts by building a local twin plant for
the faulty component to test the existence of a local critical
path. If such a path exists one builds the local twin checkers
of the neighboring components (structure similar to local twin
plant, except that there is no fault information in it) and one
tries to solve the ambiguity resulting from the local critical
path by exploiting the observable events in the neighboring
components. This is done by synchronizing on their communi-
cation events the local twin plant with the local twin checker of
one neighboring component. The process is repeated until the
diagnosability is answered, so only in the worst case has the
whole system to be visited. The work by [7] has optimized this
construction by exploiting the different identifiers given to the
communication events at the observation synchronization level
(depending on which instance, left or right, they belong to) to
assign them directly to the two behaviors studied. This helped
in deleting the redundant information, then in abstracting the
amount of information to be transferred later to next steps
if the diagnosability was not answered. The generalization to
supervision patterns in DDES was introduced by [8].

After the reduction of the diagnosability problem to a path
finding problem by [3], it became transferable to a satisfiability
problem as for planning problems [9]. This was done by [1]
which formulated the diagnosability problem (in its twin plant
version) into a SAT problem, assuming a centralized DES with
simple fault events, modeled as a succinct labeled transition
system (SLTS). We provide in subsection III-B a summary of
this approach, on which our work is based. Our prior work [10]
focused on using incremental SAT for diagnosability analysis
in DDES.

Works on the predictability property for DES are fewer and
more recent. A deterministic diagnoser approach was proposed
by [11], with exponential complexity in the number of system
states, and later a polynomial method by [12], that checks
predictability directly on a twin plant. But the whole twin
plant is built, which we avoid here by forcing the search
after the fault occurrence in the correct sequence only (see
subsection V-B). The generalization to supervision patterns
was introduced by [13] and to DDES by [14] and [15].

III. SAT-BASED DIAGNOSABILITY ANALYSIS OF
CENTRALIZED SYSTEMS

We recall the definitions of DES models we use, of the
diagnosability property and of its SAT-based analysis.

A. Preliminaries
Traditionally, since the seminal work [2], LTS are used as

a modeling formalism, where faults are simply modeled as
particular unobservable events. Following [1] we will use an
equivalent but more compact representation than LTS called
SLTS, that are expressed in terms of propositional variables,
allowing an easier translation to a SAT problem of the twin
plant method proposed by [3] for checking diagnosability. The
system states are represented by the valuations of a finite set
A of Boolean state variables where valuation changes reflect

the transitions between states according to the events. The set
of all literals issued from A is L = A ∪ {¬a|a ∈ A} and L
is the full propositional language over A that consists of all
formulas that can be formed from A and the connectives ∨, ∧,
¬, → and ↔. Each event is described by a set of pairs 〈φ, c〉
which represent its possible ways of occurrence by indicating
that the event can be associated with changes c ∈ 2L in states
that satisfy the condition φ ∈ L.

Definition 1. A succinct labeled transition system (SLTS)
is described by a tuple T = 〈A,Σo,Σu,Σf , δ, s0〉 where:

• A is a finite set of state variables,
• Σo is a finite set of observable correct events,
• Σu is a finite set of unobservable correct events,
• Σf is a finite set of unobservable faulty events,

• δ : Σ = Σo ∪Σu ∪Σf → 2L×2L

assigns to each event a set
of pairs 〈φ, c〉,
• s0 is the initial state (a valuation of A).

It is straightforward to show that any LTS with a set of states
X can be represented as an SLTS with dlog(|X|)e Boolean
variables and reciprocally that any SLTS can be mapped to an
LTS (see Definition 2.4 in [1]).

The formal definition of diagnosability of a fault f in
a centralized system modeled by an LTS or SLTS T was
proposed by [2] as follows.

Definition 2. Diagnosability. A fault f is diagnosable in a
system T if and only if (iff)

∃k ∈ N,∀sf ∈ L(T),∀t ∈ L(T)/sf , |t| ≥ k ⇒
∀p ∈ L(T), (P (p) = P (sf .t)⇒ f ∈ p).

In this formula, L(T) denotes the prefix-closed language
of T whose words are called trajectories, sf any trajectory
ending by (a first occurrence of) the fault f , L(T)/s the post-
language of L(T) after the trajectory s, i.e., {t ∈ Σ∗|s.t ∈
L(T)} and P the projection of a trajectory on its observable
events. The above definition states that for each trajectory sf
ending with fault f in T , for each t that is an extension of sf in
T with enough (depending only on f , not on its occurrences)
events, every trajectory p in T that is equivalent to sf .t in
terms of observation should contain in it f . As usual, it will
be assumed that L(T) is live (i.e., for any state, there is at least
one transition issued from this state) and convergent (i.e., there
is no cycle made up only of unobservable events).

A system T is said to be diagnosable iff any fault f ∈ Σf
is diagnosable in T , which is equivalent to each fault being
separately diagnosable (i.e., the other faults being considered
as unobservable correct events). Thus, to avoid exponential
complexity in the number of faults during diagnosability analy-
sis, only one fault’s diagnosability is checked at a time, without
loss of generality. It will thus be assumed in the following
that there exists only one fault event f (Σf = {f}), without
restriction on the number of its occurrences. Diagnosability
checking has been proved in [3] to be polynomial in the
number |X| of states for LTS, so exponential in the number
|A| of state variables for SLTS (actually the problem is
NLOGSPACE-complete for LTS and PSPACE-complete for
SLTS [16]).

8Copyright (c) IARIA, 2016. ISBN: 978-1-61208-500-5

VALID 2016 : The Eighth International Conference on Advances in System Testing and Validation Lifecycle

B. SLTS Diagnosability as Satisfiability
An immediate rephrasing of definition 2 shows that T is

nondiagnosable iff it exists a pair of trajectories corresponding
to cycles (and thus to infinite paths), a faulty one and a correct
one, sharing the same observable events. This is equivalent to
the existence of an ambiguous cycle in the product of T by
itself, synchronized on observable events, which is called twin
plant structure introduced in [3]. A cycle is ambiguous iff
it is made up of pairs of states respectively reachable by a
faulty path and a correct path. This nondiagnosability test was
formulated in [1] as a satisfiability problem in propositional
logic and we recall below this encoding, where superscripts
t ∈ N refer to time points and (eto) and (êto) refer respectively
to the faulty and correct events occurrences sequences of a
pair of trajectories witnessing nondiagnosability. These two
sequences share the same observable events represented by (et)
and forming a cycle. The states are described by valuations of
(at) and (ât).

In order to represent the occurrence of the fault f and
differently from the original encoding in [1], which does
not exploit any relation between the fault occurrences at the
different time steps, we added the variables f t, whose truth
value is True iff f has occurred before t. This helped us
to propagate the fault information automatically and guide
the solver to search this specific information about the fault
occurrence which is essential to decide the diagnosability test
(it will be required also for our predictability encoding in SAT).
Each time step increase corresponds to triggering at least one
transition and so the extension by an event of at least one of
the two trajectories. T = 〈A,Σu,Σo,Σf , δ, s0〉 being an SLTS,
the propositional variables required for the encoding are:

• at and ât for all a ∈ A and 0 ≤ t ≤ n,
• eto for all e ∈ Σo ∪ Σu ∪ Σf , o ∈ δ(e) and 0 ≤ t ≤ n− 1,

• êto for all e ∈ Σo ∪ Σu, o ∈ δ(e) and 0 ≤ t ≤ n− 1,

• et for all e ∈ Σo and 0 ≤ t ≤ n− 1,

• f t for all 0 ≤ t ≤ n.
The following formulas express the constraints that must

be applied at each t or between t and t+ 1.

1) The event occurrence eto must be possible in the current
state: eto → φt for o = 〈φ, c〉 ∈ δ(e) (1)

and its effects must hold at the next time step:

eto →
∧
l∈c

lt+1 for o = 〈φ, c〉 ∈ δ(e) (2)

We have the same formulas with êto.
2) The present value (True or False) of a state variable

changes to a new value (False or True, respectively) only
if there is a reason for this change, i.e., because of an event
that has the new value in its effects (so, change without
reason is prohibited). Here is the change from True to
False (the change from False to True is defined similarly
by interchanging a and ¬a):

(at ∧ ¬at+1)→ (eti1oj1

∨ · · · ∨ etikojk

) (3)

where the ojl = 〈φjl , cjl〉 ∈ δ(eil) are all the occurrences
of events eil with ¬a ∈ cji .
We have the same formulas with ât and êtilojl

.

3) At most one occurrence of a given event can occur at a
time and the occurrences of two different events cannot be
simultaneous if they interfere (i.e., if they have two contra-
dicting effects or if the precondition of one contradicts the
effect of the other):

¬(eto ∧ eto′) ∀e ∈ Σ,∀{o, o′} ⊆ δ(e), o 6= o′ (4)

¬(eto ∧ e′to′) ∀{e, e′} ⊆ Σ, e 6= e′,∀o ∈ δ(e),

∀o′ ∈ δ(e′) such that o and o′ interfere (5)

We have the same formulas with êto.
4) The information about f occurrence is propagated by

expressing that f has occurred before t+ 1 (t ≤ n− 1) iff
it has occurred either before t or between t and t+ 1.

f t+1 ↔ f t ∨
∨

e∈Σf ,o∈δ(e)

eto (6)

5) The formulas that connect the two events sequences re-
quire that observable events take place in both sequences
whenever they take place (use of et):∨

o∈δ(e)

eto ↔ et and
∨

o∈δ(e)

êto ↔ et ∀e ∈ Σo (7)

6) To avoid trivial cycles (silent loops with no state change at
some step) we require that at every time point at least one
event takes place:∨

e∈Σo

et ∨
∨

e∈Σu∪Σf ,o∈δ(e)

eto ∨
∨

e∈Σu,o∈δ(e)

êto (8)

The conjunction of all the above formulas for a given t is
denoted by T (t, t+ 1).

A formula for the initial state s0 is:

I0 = ¬f0 ∧
∧

a∈A,s0(a)=1

(a0 ∧ â0) ∧
∧

a∈A,s0(a)=0

(¬a0 ∧ ¬â0) (9)

At last, the following formula can be defined to encode
the fact that a pair of executions is found with the same
observable events and no fault in one execution but one fault
in the other (first line), which are infinite (in the form of a
cycle, necessarily non trivial by (8)) at step n (second line),
witnessing non diagnosability:

ΦTn = I0 ∧ T (0, 1) ∧ · · · ∧ T (n− 1, n) ∧ fn

∧
n−1∨
m=0

(
∧
a∈A

((an ↔ am) ∧ (ân ↔ âm)))

From this encoding in propositional logic, follows the result
(theorem 3.2 of [1]) that an SLTS T is not diagnosable iff
∃n ≥ 1,ΦTn is satisfiable. It is also equivalent to ΦT

22|A| being
satisfiable, as the twin plant states number is an obvious upper
bound for n, but often impractically high (see in the same
reference some ways to deal with this problem).

IV. SAT-BASED DIAGNOSABILITY ANALYSIS OF
DISTRIBUTED SYSTEMS

We extend from centralized to distributed systems the
satisfiability framework above for testing diagnosability and
we provide some experimental results.

9Copyright (c) IARIA, 2016. ISBN: 978-1-61208-500-5

VALID 2016 : The Eighth International Conference on Advances in System Testing and Validation Lifecycle

A. DDES Modeling
In order to model DDES with SLTS, we need to extend

these ones by adding communication events to each compo-
nent. So we introduce the following definition for a distributed
SLTS with k different components (sites):

Definition 3. A distributed succinct labeled transition sys-
tem (DSLTS) with k components is described by a tuple
T = 〈A,Σo,Σu,Σf ,Σc, δ, s0〉 where (subscript i refers to
component i):

• A is a union of disjoint finite sets (Ai)1≤i≤k of component
own state variables, A = ∪ki=1Ai,

• Σo is a union of disjoint finite sets of component own
observable correct events, Σo = ∪ki=1Σoi,

• Σu is a union of disjoint finite sets of component own
unobservable correct events, Σu = ∪ki=1Σui,

• Σf is a union of disjoint finite sets of component own
unobservable faulty events, Σf = ∪ki=1Σf i,

• Σc is a union of finite sets of (observable or unobservable)
correct communication events, Σc = ∪ki=1Σci, which are
the only events shared by at least two different components
(i.e., ∀i,∀c ∈ Σci,∃j 6= i, c ∈ Σcj),

• δ = (δi), where δi : Σi = Σoi∪Σui∪Σf i∪Σci → 2Li×2Li ,
assigns to each event a set of pairs 〈φ, c〉 in the propositional
language of the component where it occurs (so, for commu-
nication events, in each component separately where they
occur),

• s0 = (s0i) is the initial state (a valuation of each Ai).

Synchronous communication is assumed. More precisely, a
transition by a communication event c may occur in a compo-
nent iff a simultaneous transition by c occurs in all the other
components where c appears (has at least one occurrence).
The global model of the system is thus the product of the
models of the components, synchronized on communication
events. Notice that we allow in whole generality communi-
cation events to be, partially or totally, unobservable (which
is not allowed up to now in any model, to the best of our
knowledge), so one has in general to wait further observations
to know that some communication event occurred between
two or more components. On the other side, assuming these
communications to be faultless is not actually a limitation. If a
communication process or protocol may be faulty, it has to be
modeled as a proper component with its own correct and faulty
behaviors. In this sense, communications between components
are just a modeling concept, not subject to diagnosis. It will
be also assumed that the observable information is global, i.e.
centralized, allowing to keep definition 2 (as, when observ-
able information is only local to each component, distributed
diagnosability checking becomes undecidable [17]).

B. DSLTS Diagnosability as Satisfiability
Let T be a DSLTS made up of k components denoted by

indexes i, 1 ≤ i ≤ k. In order to express the diagnosability
analysis of T as a satisfiability problem, we have to extend the
formulas of the centralized case to deal with communication
events between components. Let Σc = Σco ∪ Σcu be the
communication events, with Σco = ∪ki=1Σcoi the observable
ones and Σcu = ∪ki=1Σcui the unobservable ones. The idea
is to treat each communication event as any other event in

each of its owners and, as it has been done with events et for
e ∈ Σo for synchronizing observable events occurrences in the
two executions, to introduce in the same way a global reference
variable for each communication event at each time step, in
charge of synchronizing any communication event occurrence
in any of its owners with occurrences of it in all its other
owners. We use one such reference variable for each trajectory,
et and êt, for unobservable events e ∈ Σcu, and only one
for both trajectories, et, for observable events e ∈ Σco as it
will also in addition play the role of synchronizing observable
events between trajectories exactly as the et for e ∈ Σo. So, we
add to the previous propositional variables the new following
ones:

• eto, êto for all e ∈ Σc, o ∈ δ(e) = ∪iδi(e) and 0 ≤ t ≤
n− 1,

• et for all e ∈ Σc, êt for all e ∈ Σcu and 0 ≤ t ≤ n− 1.

Formulas in T (t, t+ 1) are extended as follows.

1) Formulas (1), (2), (3) and (5) extend unchanged to eto and
êto ∀e ∈ Σc.

2) Formulas (4) extend to prevent two simultaneous occur-
rences of a given communication event in the same owner
component, i.e. apply ∀e ∈ Σc,∀i,∀{oi, o′i} ⊆ δi(e), oi 6=
o′i (the same with ê)

3) The new following formulas express the communication
process itself, i.e. the synchronization of the occurrences of
any communication event e in all its owners components
(S(e) being the set of indexes of the owners components
of e) and extend also formulas (7) to observable commu-
nication events:∨
oi∈δi(e)

etoi ↔ et and
∨

oi∈δi(e)

êtoi ↔ êt ∀e ∈ Σcu ∀i ∈ S(e)

∨
oi∈δi(e)

etoi ↔ et and
∨

oi∈δi(e)

êtoi ↔ et ∀e ∈ Σco ∀i ∈ S(e)

4) Finally, the clause (8) is adapted to take into account both
observable and unobservable communication events:∨
e∈Σo∪Σc

et ∨
∨

e∈Σcu

êt ∨
∨

e∈Σu∪Σf ,o∈δ(e)

eto ∨
∨

e∈Σu,o∈δ(e)

êto

We have thus the result that a DSLTS T is not diagnosable
iff ∃n ≥ 1,ΦTn is satisfiable (proof analog to that in the
centralized case). It is also equivalent to ΦT

22
∑k

i=1
|Ai|

being
satisfiable.

C. Implementation and Experimental Testing
We have implemented the above extension in Java, our

experiments were run on 64-bit Windows 7 machine with
an Intel(R) Xeon(R) CPU @2.80GHz processor and 8 GB
of RAM. We used the well designed API of the SAT solver
Sat4j [18] as it fitted well our clause generator written in
Java. We have tested our tool on small examples with several
communication events with multiple occurrences, with global
communication (all components share the same event) or
partial communication (only some components share the same
event), as in Fig. 1, adapted from the running example in [6],
which is made up of three communicating components. The
results are in Table I, where the columns show the system
and the fault considered (4 cases separated by horizontal

10Copyright (c) IARIA, 2016. ISBN: 978-1-61208-500-5

VALID 2016 : The Eighth International Conference on Advances in System Testing and Validation Lifecycle

lines), the steps number n, the answer of the SAT solver,
the numbers of variables and of clauses and the runtime in ms.

x1

x5

x2

x4

x3

x6x7

x8

y1

y2

y3

y4y5

y6

z1

z2 z3

f1

O1

c1

O1

O0

c1

c1

c1

O2

c2

c1 O3

c2

f2

c1

O3

O3

c1

c1 c2

O4 O5

Figure 1. A DDES made up of 3 components C1, C2 and C3 from left to
right. ci,1≤i≤2 are unobservable communication events, Oi,0≤i≤5 are

observable events and fi,1≤i≤2 are faulty events.

TABLE I. DIAGNOSABILITY RESULTS ON THE EXAMPLE OF FIG 1.

System Fault |Steps| SAT? |Variables| |Clauses| Time(ms)
C2 f2 4 No 112 561 6
C2 f2 5 No 138 699 11
C2 f2 6 Yes 164 837 15
C1, C2 f2 6 No 356 356 25
C1, C2 f2 32 No 1838 12751 94
C1, C2 f2 64 No 3662 25487 225
C1, C2 f2 128 No 7310 50959 112
C1, C2 f2 256 No 14606 101903 180
C1, C2 f2 512 No 29198 203791 1855
C1, C2 f2 1024 No 58382 407567 784
C1, C2 f2 4096 No 233486 1630223 23453
C2, C3 f2 6 No 252 1237 15
C2, C3 f2 32 No 1292 6541 46
C2, C3 f2 64 No 2572 13069 71
C2, C3 f2 128 No 5132 26125 61
C2, C3 f2 256 No 10252 52237 216
C2, C3 f2 512 No 20492 104461 143
C2, C3 f2 1024 No 40972 208909 381
C1, C2, C3 f1 8 No 586 3723 40
C1, C2, C3 f1 9 Yes 657 4186 45
C1, 10× C2, 10× C3 f1 9 Yes 3862 22907 342
C1, 20× C2, 20× C3 f1 9 Yes 7112 42087 592
C1, 50× C2, 50× C3 f1 9 Yes 16862 99627 3141
C1, 100× C2, 100× C3 f1 9 Yes 33372 196723 26930

Which means that f2 is not diagnosable in C2 alone while
it becomes diagnosable when synchronizing C2 with either C1
or C3. For proving these two last results, we have increased
the steps number, verifying that the answer remained UNSAT,
until reaching the theoretical upper bound 22

∑
i |Ai| (equal to

22(3+2) = 1024 for {C2, C3} and to 22(3+3) = 4096 for
{C1, C2}). While f1 is not diagnosable even after synchroniz-
ing all three components together. These 4 tests are mentioned
as a proof of concept. But actually, numbers of variables
and clauses are small in comparison to what SAT solvers
can handle (up to hundred thousands propositional variables
and millions of clauses). This is why we extended the last
case (non-diagnosability of f1) to bigger systems obtained by
duplicating (10, 20, 50 and 100 times) components C2 and C3,
keeping unchanged their communication events and renaming
their proper local events. This shows the efficiency of the
method (less than 27s for 201 components). Notice that here
the steps number remains unchanged as occurrences of non-

interfering events are processed simultaneously in the same
step, thanks to the succinct encoding in this representation.
The number of states in the last tested system is very large,
which proves the efficiency of this approach in detecting the
non-diagnosability of a system if the length of a potential
critical path stays short. The case where diagnosability analysis
requires checking very long potential critical paths is still im-
practical and needs a more abstract induction-proof approach.

V. PREDICTABILITY AS SATISFIABILITY

We recall the definition of the predictability property, adapt
the framework above to define SAT-based predictability anal-
ysis for both centralized and distributed systems and provide
experimental results.

A. Definition
The formal definition of predictability of a fault f in

a centralized system modeled by an LTS or SLTS T was
proposed by [11] as follows.

Definition 4. Predictability. A fault f is predictable in a
system T iff

∃k ∈ N, ∀sf ∈ L(T), ∃η ∈ sf , ∀p ∈ L(T), ∀p′ ∈ L(T)/p

(P (p) = P (η) ∧ f /∈ p ∧ |p′| ≥ k ⇒ f ∈ p′)

The above definition, where t denotes the set of strict
prefixes of t, states that a fault f is predictable iff for any
trajectory sf ending with a first occurrence of f , there exists
at least one strict prefix of sf , denoted by η (thus η does not
contain f), such that for every correct trajectory p with the
same observations as η, all the long enough (depending only
on f) continuations of p should contain f . In other words, the
non-predictability of f is equivalent to the existence of a finite
faulty sequence that ends with a first occurrence of f and of
an infinite (i.e. corresponding to a cycle) correct sequence that
is synchronized with the faulty sequence on observable events
before the occurrence of f . Predictability is thus stronger than
diagnosability (if f is predictable, then f is diagnosable).

B. SLTS Predictability as Satisfiability
Unlike diagnosability, predictability checking process has

two different phases, before and after the fault occurrence in
the faulty sequence: the synchronization on observable events
between the two sequences is required only up to this fault
occurrence and, after it, only the correct sequence has to be
extended and searched for the presence of a cycle in it. The
new or modified formulas expressing the constraints to be
applied at each time step t are as follows.

1) The synchronization of observable events between the two
sequences holds only up to the fault occurrence, i.e. (7) is
replaced by:

f t ∨ (
∨

o∈δ(e)

eto ↔ et) ∀e ∈ Σo

f t ∨ (
∨

o∈δ(e)

êto ↔ et) ∀e ∈ Σo
(10)

2) The formula (8), requiring that at every time point at least
one event takes place in either one or the other sequence,
remains valid up to the fault occurrence; after it, we require
that at least one event takes place in the correct sequence:

11Copyright (c) IARIA, 2016. ISBN: 978-1-61208-500-5

VALID 2016 : The Eighth International Conference on Advances in System Testing and Validation Lifecycle

f t ∨
∨
e∈Σo

et ∨
∨

e∈Σu∪Σf ,o∈δ(e)

eto ∨
∨

e∈Σu,o∈δ(e)

êto

¬f t ∨
∨

e∈Σo∪Σu,o∈δ(e)

êto (11)

The conjunction of the formulas (1-6), (10) and (11) for a
given t is denoted by S(t, t+ 1).

The formula (9) for the initial state s0 is unchanged.
Finally, the formula to encode the non predictability prop-

erty is obtained as ΦTn , where the presence of a cycle at step
n is required only in the correct sequence:

ΨT
n = I0 ∧ S(0, 1) ∧ · · · ∧ S(n− 1, n) ∧ fn

∧
n−1∨
m=0

(
∧
a∈A

(ân ↔ âm))

It follows that an SLTS T is not predictable iff ∃n ≥ 1,ΨT
n

is satisfiable, which is also equivalent to ΨT
22|A| being satisfi-

able (proof analog to that for diagnosability).

C. DSLTS Predictability as Satisfiability
Let T be now a DSLTS. The extension of predictability

analysis to distributed systems adapts what we presented for
diagnosability analysis. As the synchronization of observable
events holds only before the fault occurrence, we will decouple
it from the synchronization of communication events. So,
the only change concerning the variables is that we use
now one reference variable for each sequence for observable
communication events, as for unobservable ones, i.e. we have:

• et, êt for all e ∈ Σc and 0 ≤ t ≤ n− 1.

Formulas in S(t, t + 1) are extended as those in T (t, t + 1)
were extended, except the following.

1) The synchronization of the occurrences of any commu-
nication event e in all its owner components in S(e) is
expressed in each sequence and in the same way for both
observable and unobservable events:∨
oi∈δi(e)

etoi ↔ et and
∨

oi∈δi(e)

êtoi ↔ êt ∀e ∈ Σc ∀i ∈ S(e)

while the synchronization of the occurrences of any observ-
able event in the two sequences before the fault occurrence,
expressed in the centralized case by formulas (10), is
extended to any observable communication event:

f t ∨ (et ↔ êt) ∀e ∈ Σco

2) The clauses (11) are extended to take into account commu-
nication events:

f t ∨
∨

e∈Σo∪Σc

et ∨
∨

e∈Σcu

êt ∨
∨

e∈Σu∪Σf ,o∈δ(e)

eto ∨
∨

e∈Σu,o∈δ(e)

êto

¬f t ∨
∨
e∈Σc

êt ∨
∨

e∈Σo∪Σu,o∈δ(e)

êto

We have thus the result that a DSLTS T is not predictable
iff ∃n ≥ 1,ΨT

n is satisfiable, which is also equivalent to
ΨT

22
∑k

i=1
|Ai|

being satisfiable (proof analog to that for diag-
nosability).

D. Experimental Results
We used the same example (Fig. 1) as for diagnosability

and studied the predictability of the faulty events f1 and
f2. Table II shows the results obtained. It is found that f2
is not predictable in C2 alone, which was expected as it is
not diagnosable in C2. We saw that it became diagnosable
in the system composed of C1 and C2 and we find that it
is actually even predictable in this system, by obtaining the
UNSAT answer up to the theoretical upper bound 4096. On
the contrary, although we saw it became also diagnosable in
the system composed of C2 and C3, we find that it remains
not predictable in this system. And here again, we extend this
test to bigger systems by duplicating component C3, with the
same steps number and very good efficiency. Concerning the
fault f1, it is found not predictable in the whole system made
up of the three components, which was expected as it has been
shown not diagnosable in this system.
TABLE II. PREDICTABILITY RESULTS ON THE EXAMPLE OF FIG 1.

System Fault |Steps| SAT? |Variables| |Clauses| Time (ms)
C2 f2 3 No 92 414 7
C2 f2 4 Yes 120 549 12
C1, C2 f2 1024 No 66574 404495 10109
C1, C2 f2 4096 No 266254 1617935 91299
C2, C3 f2 4 No 196 817 14
C2, C3 f2 5 No 242 1018 21
C2, C3 f2 6 Yes 288 1219 27
C1, C2, C3 f1 3 No 267 1399 29
C1, C2, C3 f1 4 Yes 350 1859 40
C2, 10× C3 f2 6 Yes 1408 5219 24
C2, 20× C3 f2 6 Yes 2528 9219 50
C2, 50× C3 f2 6 Yes 5888 21219 125
C2, 100× C3 f2 6 Yes 11488 41219 277

VI. CONCLUSION AND FUTURE WORKS

By extending the state of the art work for centralized
DES [1], we have expressed diagnosability analysis of DDES
as a satisfiability problem by building a propositional for-
mula whose satisfiability, witnessing non-diagnosability, can be
checked by SAT solvers. We allow both observable and unob-
servable synchronous communication events in our model. We
have then applied the same method to express predictability
analysis as a SAT problem, both for centralized DES and for
DDES. In each case, we have provided experimental results.

In order to conduct more experiments to check precisely
the scalability of the method and to compare it with other
approaches referenced above (for which no software is avail-
able and in general no experimental results are given), we have
implemented classical twin plant based algorithms and achieve
implementing an automatic benchmarks generator, tuned by
several parameters and whose diagnosability and predictability
will be known by construction. We have also designed and are
implementing the extension of this work from simple faulty
events to supervision patterns. All our programs will be made
available as open source. We also aim at investigating relations
between our work and the problem of opacity of discrete
event systems [19], in order to treat this problem with SAT-
based methods. Finally, relationships between satisfiability and
bounded or unbounded model checking methods to encode
and analyze fault diagnosability and predictability will be
studied. In particular, SAT-based model checking [20] allows
incremental solving, which significantly improves both the
capacity and the speed of solving. Research of invariants
by full-proof methods like temporal induction should avoid
unrolling to a theoretical bound, as it is the case here when
the system is not diagnosable.

12Copyright (c) IARIA, 2016. ISBN: 978-1-61208-500-5

VALID 2016 : The Eighth International Conference on Advances in System Testing and Validation Lifecycle

REFERENCES

[1] J. Rintanen and A. Grastien, “Diagnosability testing with satisfiability
algorithms.” Proceedings of the 20th International Joint Conference on
Artificial Intelligence (IJCAI’07), pp. 532–537, 2007.

[2] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and
D. Teneketzis, “Diagnosability of discrete-event systems.” IEEE Trans-
actions on Automatic Control, vol. 40, no. 9, pp. 1555–1575, 1995.

[3] S. Jiang, Z. Huang, V. Chandra, and R. Kumar, “A polynomial algorithm
for testing diagnosability of discrete-event systems.” IEEE Transactions
on Automatic Control, vol. 46, no. 8, pp. 1318–1321, 2001.

[4] T. Jéron, H. Marchand, S. Pinchinat, and M.-O. Cordier, “Supervision
Patterns in Discrete Event Systems Diagnosis.” Proceedings of the 8th
International Workshop on Discrete Event Systems (WODES’06), pp.
262–268, 2006.

[5] S. Genc and S. Lafortune, “Diagnosis of patterns in partially-observed
discrete-event systems.” Proceedings of the 45th IEEE Conference on
Decision and Control (CDC’06), pp. 422–427, 2006.

[6] Y. Pencolé, “Diagnosability Analysis of Distributed Discrete Event
Systems.” Proceedings of the 16th European Conference on Artificial
Intelligence (ECAI’04), pp. 43–47, 2004.

[7] L. Ye and P. Dague, “An optimized algorithm for diagnosability
of component-based systems.” Proceedings of the 10th International
Workshop on Discrete Event Systems (WODES’10), pp. 143–148, 2010.

[8] Y. Yan, L. Ye, and P. Dague, “Diagnosability for patterns in distributed
discrete event systems.” Proceedings of the 21st International Workshop
on Principles of Diagnosis (DX’10), pp. 345–352, 2010.

[9] H. Kautz and B. Selman, “Planning as Satisfiability.” Proceedings of
the 10th European Conference on Artificial Intelligence (ECAI’92), pp.
359–363, 1992.

[10] H. Ibrahim, P. Dague, and L. Simon, “Using Incremental SAT for
Testing Diagnosability of Distributed DES.” Proceedings of the 26th
International Workshop on Principles of Diagnosis (DX’15), pp. 51–
58, 2015.

[11] S. Genc and S. Lafortune, “Predictability in discrete-event systems
under partial observation.” Proceedings of the 6th IFAC Symposium
on Fault Detection, Supervision and Safety of Technical Processes
(SAFEPROCESS’06), pp. 1461–1466, 2006.

[12] S. Genc and S. Lafortune, “Predictability of Event Occurrences in
Partially-observed Discrete-event Systems.” Automatica, vol. 45, no. 2,
pp. 301–311, 2009.

[13] T. Jéron, H. Marchand, S. Genc, and S. Lafortune, “Predictability of
Sequence Patterns in Discrete Event Systems.” Proceedings of the 17th
World Congress, pp. 537–453, 2008.

[14] L. Ye, P. Dague, and F. Nouioua, “Predictability Analysis of Distributed
Discrete Event Systems.” Proceedings of the 52nd IEEE Conference on
Decision and Control (CDC’13), pp. 5009–5015, 2013.

[15] ——, “ A predictability algorithm for distributed discrete event sys-
tems.” Proceedings of the 17th International Conference on Formal
Engineering Methods (ICFEM’15), pp. 201–216, 2015.

[16] J. Rintanen, “Diagnosers and diagnosability of succinct transition
systems.” Proceedings of the 20th International Joint Conference on
Artificial Intelligence (IJCAI’07), pp. 538–544, 2007.

[17] L. Ye and P. Dague, “Undecidable Case and Decidable Case of Joint
Diagnosability in Distributed Discrete Event Systems.” International
Journal On Advances in Systems and Measurements, vol. 6, no. 3 and
4, pp. 287–299, 2013.

[18] D. Le Berre and A. Parrain, “The Sat4j library, release 2.2.” Journal on
Satisfiability, Boolean Modeling and Computation, vol. 7, pp. 59–64,
2010.

[19] F. Lin, “Opacity of discrete event systems and its applications.” Auto-
matica, vol. 47, no. 3, pp. 496–503, 2011.

[20] E. Clarke, A. Biere, R. Raimi, and Y. Zhu, “Bounded model checking
using satisfiability solving.” Formal Methods in System Design, vol. 19,
no. 1, pp. 7–34, 2001.

13Copyright (c) IARIA, 2016. ISBN: 978-1-61208-500-5

VALID 2016 : The Eighth International Conference on Advances in System Testing and Validation Lifecycle

