
Automatic Test Evaluation for Driving Scenarios Using
Abstraction Level Constraints

Steffen Wittel∗, Daniel Ulmer∗ and Oliver Bühler∗
∗Steinbeis Interagierende Systeme GmbH, Esslingen, Germany

Email: {steffen.wittel,daniel.ulmer,oliver.buehler}@interagierende-systeme.de

Abstract—Sophisticated Driver Assistance Systems (DASs) on
the way to highly automated driving require extensive testing
activities to verify the functionality and the safety of the developed
software. With each step towards autonomous driving, the au-
tomobile manufacturers are increasingly taking on responsibility
for driving maneuvers automatically performed by such systems
in unknown environmental situations. Whereas recent DASs use
the driver as fallback, in the future this fallback will be only
available after a legally prescribed period of time since the driver
might be distracted by other activities. To take account of this,
robustness testing becomes more and more important to ensure
a safe operation at different environments. This paper presents
a constraint based approach that applies automatic testing to
evaluate DASs. Thereby, the focus is set on the determination of
the expected responses that are the basis for the automatic evalu-
ation of the generated test scenarios. The introduced approach is
working on different levels of abstraction in combination with an
analysis of the observed behavior to classify individual situations
of the scenarios after the test execution. The approach enables
a full automation of the evaluation, which is the bottleneck of
current state-of-the-art scenario generators.

Keywords–Automotive Testing; Test Generation; Test Evalua-
tion; Test Automation.

I. INTRODUCTION

The decreasing development times and product cycles in
combination with technical advances already require a high
testing effort to ensure that the vehicle’s built-in DASs are
working correctly. It is expected that with each step in the di-
rection to highly automated driving, the testing effort increases
to cover the new functionality and to ensure a safe operation
of the vehicle.

While the first assistance systems, like the Electronic Sta-
bility Control (ESC) [1] or the Antilock Braking System (ABS)
[1], were intervening in critical situations, only the current
generation of DASs supports the driver during his entire
drive, but without taking on responsibility for the maneuvers
performed. Even during an intervention of a DAS, the driver
is still responsible for the vehicle and the possible damage.
On the way to highly automated driving, this responsibility
of the driver will be only given after a legally prescribed time
limit, because it is assumed that the driver is distracted by other
activities and can only handle the situation after a certain time.

Additionally for autonomous driving, it is not sufficient that
systems are working as expected in a defined environment, but
also in unknown situations. Each drive is different from the
previous one, e.g., in respect to the environmental conditions
like traffic or weather. An early and safe hand over to the driver
would be a technical solution. But especially in the premium
market, the customers do not tolerate a system, which is rarely

available. The automobile manufactures have thus to find a
balance between safety and availability.

The automatic test generation is an approach, which is
not intended to replace the already performed testing, but
rather extends them to cover a broad functional range of a
system by creating a large number of different test cases. In
most cases, the commercial off-the-shelf scenario generators
do not determine the test result and leave it to the tester to
define the expected behavior of the System Under Test (SUT),
which limits the degree of automation. To get around this, an
approach is presented to determine the expected response of
the SUT using constraints on different levels of abstraction.
An automatic analysis of the observed behavior supplements
the approach to classify individual situations of the scenarios
after the test execution.

The following section shows the related work. Section III
and Section IV of this paper give an overview about the
SUT and the automatic testing. In Section V, the approach
for an automatic evaluation of the generated test scenarios is
presented. Finally, Section VI shows a case study.

II. RELATED WORK

In [2], a framework is described to construct a generic
course of the road for a virtual driving scenario using a stochas-
tic approach. It combines Markov Chain and Markov Chain
Monte Carlo methods to test different input combinations.
By using this automation, there would be the possibility that
parameter sets, which were forgotten or erroneously ignored
during the manually test creation, are tested.

A test generator is presented in [3][4], which creates, exe-
cutes and evaluates test scenarios automatically. The algorithm
behind the generator tries on the one hand to maximize the
coverage of the reached system states by changing the input
of the SUT during the test execution. On the other hand,
it searches for system states that do not fulfill the given
evaluation criteria. It is left to the test engineer to configure
the test generator in such a way that no invalid test scenario is
created and the evaluation criteria are valid for all generated
test scenarios.

According to [5][6], the formal verification is currently the
only known way to ensure that a system works as specified.
This means that the implementation strictly follows the specifi-
cation and thus it is possible to determine its behavior in every
situation. To perform a formal verification, the specification
must meet some requirements. Among others, the specifica-
tion must be complete and correct. This is a big challenge,
especially in large projects with many dependencies to external
components from different suppliers.

14Copyright (c) IARIA, 2016. ISBN: 978-1-61208-500-5

VALID 2016 : The Eighth International Conference on Advances in System Testing and Validation Lifecycle

A comparative study on methods to automatically deter-
mine the expected response of the SUT is given in [7]. Such
methods are necessary for the automatic testing. Otherwise, the
response has to be verified manually. The presented approaches
are mostly limited to their application field and cannot be
generally applied.

III. SYSTEM UNDER TEST

The SUT, which is also named as “test object”, is a
physical or logical unit as illustrated in Fig. 1 that is tested for
correctness against the specification. It has an input interface
X and an output interface Y . A stimulus x ∈ X at the input
causes a response y ∈ Y at the output, as can be seen in (1),
where the stimulus x can change over time.

x(t)
τ−→ y(t) (1)

For the reproducibility of the test results, a defined start
state of the SUT is required at the beginning of the test
execution. Given that, it is possible to obtain an identical
response when repeating a test case or after changing the
execution order of test cases in a test run. For this purpose,
however, the SUT must meet the following properties:

a) time-invariant
b) memoryless

According to [8], a system is called time-invariant, if a
delay of the input causes the same delay at the output as shown
in (2), and memoryless, if the response does only depend on
the current input and not on an input from the past. If both
properties are satisfied by the SUT, exactly one y ∈ Y can
be associated for each x ∈ X regardless of the point in time
and the sequence of the stimulation. Other systems that do not
meet these properties can show different responses to the same
stimulus.

x(t)
τ−→ y(t) =⇒ x(t+ δ)

τ−→ y(t+ δ) (2)

Decisions in autonomous driving are dependent on the
environment and usually on the history of events, which means
that different stimulation sequences over time are needed
for the testing. A static input pattern or a small number of
scenarios are not sufficient to verify a DAS.

A. Stimulation
The input interface of the SUT consists of signals pro-

viding data from other Electronical Control Units (ECUs). It
represents the lowest level of stimulation and can be stimulated
at a Model-in-the-Loop (MIL) or Software-in-the-Loop (SIL)
test bench. At a Hardware-in-the-Loop (HIL) test bench, a bus
interface and a Residual Bus Simulation (RBS), which could

Figure 1. Schematic representation of the SUT

have effects to the time behavior of the stimulation as shown
in [9], are required.

A direct access to the input interface on the signal-level
allows a precise stimulation of the SUT. The large fan-in leads
to an exponential number of test cases, which can be generated.
State-of-the-art DASs have hundreds of input signals, which
have to be consistently stimulated with the correct values over
time. Many input signals that are not in the scope of the current
test case, but are necessary for the proper operation of the SUT,
must be correct and should not be manipulated by the test case
generator. Deviations from the correct sequence are usually
detected by the SUT and leads to a functional degradation
to bring the SUT into a safe state. This outcome must be
considered at the evaluation of the test.

To cope with the complexity of the input interface, it
is a common practice to use models to abstract the input
signals and thus to simplify the stimulation of the SUT. The
models are acting as an intermediate layer between the signal-
level and the used level of stimulation and ensure that the
stimulation is performed in a consistent way. The advantage
of the simplification is achieved by losing direct control of
the input interface, which could complicate the stimulation, if
specific signal characteristics are needed.

B. Evaluation
Depending on the stimulation of the SUT a response can

be observed at the output interface, which has to be checked
for its correctness. The evaluation of the signal characteristics
can be done at selected points in time or over a certain period
of time. Within these time intervals, the observed response of
the SUT is compared against the expected response to ensure
that the behavior corresponds with the specification. Thereby,
the specification is a single point of failure. If the specification
is not reliable, the tests do not recognize an abnormal behavior
of the SUT in specific situations.

IV. AUTOMATIC TESTING

As explained in the previous section, it is not sufficient to
test only static input pattern or a small number of scenarios
to verify the functionality and the safety of a DAS. Rather,
it is required to test a broad range of different situations as
they can be found in real-world environments. The variety of
environmental conditions makes it difficult to verify the DAS
within its operating range and to ensure that a safe state is
always reached. For this reason, automatic testing in addition
to the already performed testing is thought to play an important
role.

A. Setup
Fig. 2 shows the setup for the automatic testing as used

by the presented approach. The Test Generator comprises two
parts. In the first part, the Scenario Generator composes a
Scenario and the corresponding Stimulus for the Test Bench
that is responsible for the test execution. In the second part,
the Response Determination determines the Expected Response
based on the generated Scenario. The Test Bench applies the
Stimulus created by the Scenario Generator to the SUT, while
observing the Response. The Evaluator compares the observed
Response of the SUT with the Expected Response provided by
the Response Determination. Differences outside a specified
tolerance value cause the Result to fail as described in [10].

15Copyright (c) IARIA, 2016. ISBN: 978-1-61208-500-5

VALID 2016 : The Eighth International Conference on Advances in System Testing and Validation Lifecycle

Figure 2. Setup for the automatic testing

The Report Generator processes the raw data provided by the
Evaluator and creates a detailed Report, which allows a person
with appropriate domain knowledge to analyze failed test cases
and to verify successfully executed test cases. To speed-up the
analysis, relevant signal characteristics are diagrammed and,
where required, derived values and signals are calculated in
advance.

B. Need for an Automatic Evaluation
Tools for generating scenarios usually do not provide the

expected responses of the SUT, which constitutes the basis for
an automatic evaluation. They leave it to the tester to define
them. Without an automatic evaluation the generated scenarios
can be executed at a test bench, but the actual behavior of the
SUT cannot be automatically evaluated. This means that each
scenario must be analyzed manually by an expert before the
first execution. In this manner the evaluation can be done for
individual scenarios, but this is not feasible in practice for the
expected large number of generated scenarios needed for the
testing.

V. EVALUATION BASED ON ABSTRACTION LEVEL
CONSTRAINTS

In order to benefit from the advantages of automatic testing,
a constraint based approach is presented to determine the
response of the SUT working on different levels of abstraction.
It uses an automatic analysis of the observed behavior to
classify individual situations of the scenarios on the system-
level after the test execution. Thereby the approach recognizes
an unusual behavior of the SUT initially on the system-level
from the viewpoint of an outside observer and is subsequently
going down to lower levels.

For being able to implement the determination of the
response on the signal-level, a profound expert knowledge is

necessary to determine whether an output signal provides a
correct value, or not. Dependencies between signals complicate
the evaluation in addition. On the input interface, it is a
common practice to use models to abstract the large number
of input signals. The same is done by the approach on the
output interface. Through the use of models the abstraction
at the output is increased to a higher level. As a result of
this, less knowledge about the functionality of the DAS is
necessary to evaluate the response. However, missing parts of
the overall system have to be simulated due to the increasing
of the abstraction. The higher the level of the abstraction, the
more parts are missing. For the evaluation of a DAS on the
system level, at least a physical model of the system vehicle
and simulations of all other involved ECUs are necessary.

The approach uses a parameterized model for the evalua-
tion on the system-level, which spans a safety area around the
road objects. As shown in Fig. 3, the safety area is thereby
defined by the variables d1, d2, d3 and d4 that represents the
safe distance in each direction. These variables can be changed
over the time and thus dynamically adapted to the current
situation. The safety area can be, e.g., increased in specific
directions depending on the vehicle velocity.

A. Classification
For the evaluation, the observed behavior of the DAS

is analyzed after the test execution to classify individual
situations of the performed scenario according to the following
four classes.

The class “Fallback” is a specified and thus explicitly
allowed state of a DAS. The state is not necessarily critical,
but rather it indicates a situation that cannot be handled by the
system. As a precaution, the DAS returns the vehicle control
to the driver at the expense of its availability. In relation to
highly automated driving, these situations still reveal functional
restrictions of the system.

Definition 1 (Fallback): The fallback is a state of the DAS,
which is entered if the system cannot handle the situation by
its own and returns the vehicle control to the driver.

A “Hazardous Situation” is a critical situation without a
collision that is either caused by the DAS itself or by at least
one object included in the scenario. On the one hand, an object
vehicle can cause such a situation, e.g., during a lane change
if the scenario generator has ignored the safety distance and
thus the object gets too close to the system vehicle. On the
other hand, the DAS can cause the critical situation, e.g.,

Figure 3. Safety area spanned around a vehicle

16Copyright (c) IARIA, 2016. ISBN: 978-1-61208-500-5

VALID 2016 : The Eighth International Conference on Advances in System Testing and Validation Lifecycle

by following too closely on an object vehicle. From when a
situation is considered as hazardous heavily depends on the
conditions given by the scenario. The change of only one
condition can lead to a new driving scenario with a different
hazard potential.

Definition 2 (Hazardous Situation): A hazardous situation
occurs, when:

a) the system vehicle leaves the lane without cause.
b) the minimum distance between the system vehicle

and an object is less than a specified value.

The class “Event of Damage” means that the DAS was not
able to avoid a collision. Further investigations are required to
find out, whether there is any misconduct of the system, or
not. The event of damage is usually preceded by a hazardous
situation.

Definition 3 (Event of Damage): An event of damage oc-
curs, when:

a) the system vehicle leaves the road.
b) a collision between the system vehicle and one or

more objects cannot be avoided by the DAS.

All other situations are classified as “Unsuspicious”, which
is used as the default class.

Definition 4 (Unsuspicious): A situation is unsuspicious,
if an event of damage or a hazardous situation does not exist,
as well as, the DAS is not in the fallback state.

In general, the operating mode of the DAS during a
situation is crucial for the evaluation. If the DAS is in an
emergency situation, its behavior is different from the behavior
in the driving mode. While a collision in the driving mode is
not acceptable, an unavoidable collision that was mitigated in
an emergency situation might be tolerable.

B. Determination of the Expected Response
The determination of the expected response works on a

knowledge base individually created for each DAS on the
basis of the available specifications. In the knowledge base,
a hierarchical structure ensures that the behavior of the SUT
is stored dependent on its abstraction level. At the beginning
only the behavior described on a high level is used to fill
the knowledge base. Already after a short time, a state is
thus reached, which allows the determination of the expected
response of the DAS. This turns out to be sufficient to execute
the first test cases and to get a test result, which guides the
system developer to refine the behavior on lower levels and to
establish relations between different abstraction levels.

In addition, the use of constraints allows a selective de-
scription of the behavior. Based on the stimulus, a distinction
can be made at each abstraction level to describe deviating
responses of the SUT. In this way, different situations can be
handled.

VI. CASE STUDY

In this section, two examples, which were done as a case
study, are discussed to show the idea behind the approach. All
scenarios of both examples are executed at a SIL test bench.
The first example demonstrates a passing maneuver that is
analyzed using dynamically expandable safety areas around the
objects. It describes, how individual situations of a scenario
are classified corresponding to the Section V-A. Following
this, a second example is presented that uses an algorithm
based on [11] as a SUT to provide the functionality of a
CMS. It explains the determination of the expected response
on the system-level and discusses the results with respect to
the performed scenarios.

A. First Example: Classification of a Scenario
The safe distance between objects in the road traffic heavily

depends on a variety of factors, such as the vehicle velocity or
the weather, and cannot be specified by generally valid values.
Even in the law, usually no specific values are specified, but a
sufficient safe distance is stipulated, e.g., in the German Road
Traffic Act [12], to avoid hazardous situations or collisions
with other road users. The distances considered as safe vary
with the velocity, the driving direction or environmental con-
ditions.

As the basis for the example, the model of the safety
area used for classification was parameterized according to the
two-second rule [13][14] (in some states also known as three-
second rule), which states that a driver of a vehicle should stay
at least two seconds behind the vehicle in front. During the
test execution the safety area are dynamically expanded in the
driving direction based on the vehicle velocity with a lower
saturation at one meter. The other parameters of the model,
i.e., the safe distance to the left and to the right, as well as,
the safe distance to the rear, are set to a constant value of one
meter.

The scenario used for the example represents a passing
maneuver at high speed, as illustrated on the left side of Fig.
4, in which an object vehicle passes the system vehicle on the
left lane. The timing of the passing maneuver has been chosen
such that it is hazardous by violating the safety distance but
not damaging.

Figure 4. Passing maneuver illustrated as a difference representation (left side) and the corresponding test result (right side)

17Copyright (c) IARIA, 2016. ISBN: 978-1-61208-500-5

VALID 2016 : The Eighth International Conference on Advances in System Testing and Validation Lifecycle

The test results diagrammed on the right side of Fig. 4 show
the detection of a hazardous situation. Thereby, it is striking
that the situation has been classified as hazardous after the
minimum distance between the system vehicle and the object
vehicle had already reached its minimum value. The minimum
value is achieved, when both vehicles are at the same level.
At this point in time, the distance between the left side of
the system vehicle and the right side of the object vehicle are
considered by the model only. The first instance of violating
the safe distance can be seen during the lane change. At this,
the safe distance of the system vehicle is violated by the object
vehicle and the hazardous situation is recognized by the model
based on the two-second rule.

The example shows that the obtained sequence of classified
situations describes the scenario on the system-level, which can
be used in the next step to evaluate the behavior of the SUT.
It is thus not necessary to directly cope with signals.

B. Second Example: Behavior Analysis in Different Environ-
mental Conditions

The Collision Mitigation System (CMS) [15], which can
be found nowadays in almost all new vehicles, monitors the
traffic around the vehicle and warns the driver of potential
collisions in hazardous situations. If the driver does not react
to the warning, an automatic braking is performed. The success
of the system, whether a collision can be avoided or at least
the effects of a collision can be reduced, is highly determined
by the environmental conditions.

On the one hand, the automotive manufacturer has to
ensure that no unnecessary triggering of an automatic braking
is performed by the CMS, which can cause a threat on the road.
On the other hand, the system should provide an added value
to the driver in as many situations as possible. As elucidated
in [16], there is a trade-off for the automobile manufacturers
between safeness and availability.

In contrast to other DASs, the driver sees the CMS only in
action in hazardous situations or at collisions. The same applies
for testers, which have to put themselves in danger for the test-
ing of the system. Although there is the opportunity to simulate
virtual objects for the system vehicle [17] and thus to reduce
the risk, the number of tests that can be performed is limited
and in no relation to the possible scenarios. Through automatic
testing, a variety of different scenarios can be executed on
test benches. Thereby, the presented approach provides the
expected responses of the DAS for the generated scenarios
on different abstraction levels, which can be compared with
the observed response obtained from the test bench.

The determination of the expected response is based on
the specification of the CMS. Only the behavior described on
a high level is used in the following to get a test result within a
short time. In further work, the determination can be extended
to support additional abstraction levels down to the signal-
level.

Two characteristic scenarios for the CMS are presented in
the following:

1) Reaching the Tail End of a Traffic Jam at Low Speed
without the Driver Applying the Brake: Based on the scenario
a hazardous situation is determined, where it comes to a brake
intervention by the CMS. Through the intervention, the system
vehicle should be slowed down to standstill, before there can
be a front-end collision with the object vehicle ahead. As
shown by the test results on the left side of Fig. 5, the minimal
distance between the system vehicle and the object vehicle
decreases over the time. A hazardous situation is recognized,
but there is, as expected, no collision. Shortly before standstill,
the situation is no longer evaluated to be hazardous due to the
automatic braking.

2) Reaching the Tail End of a Traffic Jam at High Speed
without the Driver Applying the Brake: In contrast to the
previous scenario, the system vehicle has a much higher
velocity in this situation than before. Due to the increased
velocity, a brake intervention with subsequent collision is
determined. The test results, as diagrammed on the right side of
Fig. 5, shows that the minimal distance between both vehicles
rapidly decreases. Also a hazardous situation is recognized, but
this time there is an event of damage caused by the collision of
the system vehicle and the object vehicle. After the collision,
no further information was provided by the test bench.

The example shows that the determination of the expected
response on the system-level can be used for an automatically
evaluation of driving scenarios within unknown environmental
situations. The abstraction leads to a simplification of the
evaluation.

VII. CONCLUSION AND FUTURE WORK

Automatic testing, which can be used within traffic sim-
ulations, would have the potential for analyzing the response
of a DAS based on a large number of different scenarios with
reasonable effort. However, an appropriated determination of
the expected response and a convincing approach for an evalu-
ation are mostly missing nowadays. Due to the expected large
number of generated test cases for the automatic testing and
the time-consuming definition of the expected responses, the

Figure 5. Test result of the slow maneuver (left side) and the test result of the fast maneuver (right side)

18Copyright (c) IARIA, 2016. ISBN: 978-1-61208-500-5

VALID 2016 : The Eighth International Conference on Advances in System Testing and Validation Lifecycle

determination and the evaluation should be done automatically
by the test generator and not manually performed by experts
with appropriate domain knowledge about the DAS and its
included functionality.

It has been shown that the complexity of the determination
and the evaluation, which arises due to the number of signals
in the output interface of the SUT, is manageable through
the use of models. The higher the level of abstraction at
the output interface is chosen, the less domain knowledge is
necessary for the evaluation. The abstraction and the resulting
simplification cause that not all information from the signal-
level are available at each level of abstraction. By increasing
the level of abstraction, parts of the overall system must
be simulated. The closer the simulation to reality, the more
reliable the results obtained. However, for software-driven
testing issues a sufficient imitation of the real-world system
is supposed to be precise enough. A simulation that considers
all eventualities is usually not necessary.

Furthermore, it has been shown that the behavior of a SUT
can be determined after the test execution by classifying the
response observed at the test bench. Thereby, the obtained se-
quence of classified situations describes the driving scenario on
the system-level. This sequence can be automatically evaluated
based on the determined response und used to find errors or
missing parts in the specification.

It is left for future work to apply the current approach to a
DAS with several assistance functions. One aspect might be to
analyze, how many abstraction levels are required to model the
behavior of the SUT and to examine at which abstraction level
constraints are necessary to correctly determine the expected
response based on the stimulus. Another aspect might be to
optimize the scenario generator to increasing the search space
coverage with a minimum number of additional test cases.

REFERENCES
[1] A. Zanten and F. Kost, Handbook of Driver Assistance Systems:

Basic Information, Components and Systems for Active Safety
and Comfort. Cham: Springer International Publishing, 2016, ch.
Brake-Based Assistance Functions, pp. 919–967. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-12352-3 40

[2] S. Prialé Olivares, N. Rebernik, A. Eichberger, and E. Stadlober,
Advanced Microsystems for Automotive Applications 2015: Smart
Systems for Green and Automated Driving. Cham: Springer
International Publishing, 2016, ch. Virtual Stochastic Testing of
Advanced Driver Assistance Systems, pp. 25–35. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-20855-8 3

[3] A. Rink, E. Chrisofakis, and M. Tatar, “Automating test of control
software,” ATZelektronik worldwide, vol. 4, no. 6, pp. 24–27, 2009.
[Online]. Available: http://dx.doi.org/10.1007/BF03242245

[4] M. Tatar, “Test and validation of advanced driver assistance
systems automated search for critical scenarios,” ATZelektronik
worldwide, vol. 11, no. 1, pp. 54–57, 2016. [Online]. Available:
http://dx.doi.org/10.1007/s38314-015-0574-1

[5] G. Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell,
R. Kolanski, and G. Heiser, “Comprehensive formal verification of an os
microkernel,” ACM Trans. Comput. Syst., vol. 32, no. 1, pp. 2:1–2:70,
Feb. 2014. [Online]. Available: http://doi.acm.org/10.1145/2560537

[6] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish,
T. Sewell, H. Tuch, and S. Winwood, “sel4: Formal verification
of an os kernel,” in Proceedings of the ACM SIGOPS 22Nd
Symposium on Operating Systems Principles, ser. SOSP ’09. New
York, NY, USA: ACM, 2009, pp. 207–220. [Online]. Available:
http://doi.acm.org/10.1145/1629575.1629596

[7] S. R. Shahamiri, W. M. N. W. Kadir, and S. Z. Mohd-Hashim, “A
comparative study on automated software test oracle methods,” in
Software Engineering Advances, 2009. ICSEA ’09. Fourth International
Conference on, Sept 2009, pp. 140–145.

[8] M. D. Adams, Continuous-Time Signals and Systems. Victoria:
University of Victoria, 2013, ch. Continuous-Time Signals and Systems,
pp. 7–44, ISBN: 978-1-55058-495-0.

[9] D. Ulmer, S. Wittel, K. Hünlich, and W. Rosenstiel, “Testing
Platform for Hardware-in-the-Loop and In-Vehicle Testing Based
on a Common Off-The-Shelf Non-Real-Time PC,” International
Journal on Advances in Systems and Measurements, vol. 4, no.
3 & 4, pp. 182–191, 2011, ISSN: 1942-261x. [Online]. Available:
http://www.iariajournals.org/systems and measurements/

[10] K. Hünlich, D. Ulmer, S. Wittel, and U. Bröckl, “Optimized Testing
Process in Vehicles Using an Augmented Data Logger,” International
Journal on Advances in Systems and Measurements, vol. 6, no.
1 & 2, pp. 72–81, 2013, ISSN: 1942-261x. [Online]. Available:
http://www.iariajournals.org/systems and measurements/

[11] H. Winner, Fundamentals of Collision Protection Systems. Cham:
Springer International Publishing, 2016, pp. 1149–1176. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-12352-3 47

[12] H. Janker, Road Traffic Law - Text Edition (”Strassenverkehrsrecht -
Textausgabe”), 53rd ed. Stuttgart: Dt. Taschenbuch-Verlag, 2015.

[13] Road Safety Authority Ireland, “Driving safely in traffic - the two
second rule,” 2016, URL: http://www.rotr.ie/rules-for-driving/speed-
limits/speed-limits 2-second-rule.html [retrieved: July, 2016].

[14] New York State Department of Motor Vehicles, “Driver’s Manual &
Practice Tests - Chapter 8: Defensive Driving,” 2016, URL: https://dmv.
ny.gov/about-dmv/chapter-8-defensive-driving/ [retrieved: July, 2016].

[15] L. Walchshäusl, R. Lindl, K. Vogel, and T. Tatschke, Advanced
Microsystems for Automotive Applications 2006. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, ch. Detection of Road Users in
Fused Sensor Data Streams for Collision Mitigation, pp. 53–65.
[Online]. Available: http://dx.doi.org/10.1007/3-540-33410-6 6

[16] A. Pruckner, R. Stroph, and P. Pfeffer, Handbook of Intelligent Vehicles.
London: Springer London, 2012, ch. Drive-By-Wire, pp. 235–282.
[Online]. Available: http://dx.doi.org/10.1007/978-0-85729-085-4 11

[17] Steinbeis-Stiftung für Wirtschaftsförderung (StW), “Virtual Testing of
Reality,” 2015, URL: http://www.steinbeis.de/en/publications/transfer-
magazine/edition-042015/virtual-testing-of-reality.html [retrieved: July,
2016].

19Copyright (c) IARIA, 2016. ISBN: 978-1-61208-500-5

VALID 2016 : The Eighth International Conference on Advances in System Testing and Validation Lifecycle

