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Abstract—Prognostic health management is desirable for com-
mercial core router systems to ensure high reliability and rapid
error recovery. The effectiveness of prognostic health manage-
ment depends on whether failures can be accurately predicted
with sufficient lead time. However, directly predicting failures
from a large amount of historical logs is difficult. We describe the
design of an anomaly-detection-based failure prediction approach
that first detects anomalies from collected time-series data, and
then utilizes these “outliers” to predict system failures. A feature-
categorizing-based hybrid anomaly detection is developed to
identify a wide range of anomalies. Furthermore, an anomaly
analyzer is implemented to remove irrelevant and redundant
anomalies. Finally, a Support-Vector-Machine (SVM)-based fail-
ure predictor is developed to predict both categories and lead
time of system failures from collected anomalies. Synthetic data
generated using a small amount of real data for a commercial
telecom system, are used to validate the proposed anomaly
detector and failure predictor. The experimental results show
that both our anomaly detector and failure predictor achieve
better performance than traditional methods.
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I. INTRODUCTION

A core router is responsible for the transfer of a large
amount of traffic in a reliable and timely manner in the
network backbone [1]. The complex hardware and software
architectures of core router systems make them more vulner-
able to hard-to-detect/hard-to-recover errors [2]. For example,
a wide range of failures can occur in a complex multi-card
chassis core router system:

• Hardware failures: The cards that constitute the chassis
system and the components that constitute a card can en-
counter hardware failures. Moreover, connectors between
cards and interconnects between different components
inside a card are also subject to hard faults. A multi-card
chassis system can have tens of different cards, each card
can have hundreds of components, and each component
consists of hundreds of advanced chips. Each chip in turn
has hundreds of I/Os and millions of logic gates, and the
operating frequency of chips and I/Os are now in the
GHz range. Such high complexity and operating speed
lead to an increase in incorrect or inconsistent hardware

behaviors. Moreover, in such a large-scale complex sys-
tem, whenever a hardware failure occurs in the chassis
system, it is difficult for debug technicians to accurately
identify the root cause of this failure and take effective
corrective action [3][4].

• Software failures: The entire chassis system and each
card have their own software platforms to control and
manage different network tasks. However, since the per-
formance requirement of network devices in the core
layer is approaching Tbps levels, failures caused by subtle
interactions between parallel threads or applications have
become more frequent. These failures often arise because
software applications tend to distribute their tasks into
parallel agents in order to improve performance [4][5].

All these different types of faults can cause a core router to
become incapacitated, necessitating the design and implemen-
tation of fault-tolerant mechanisms for reliable computing in
the core layer.

Due to the non-stop utilization (99.999% uptime) require-
ment of core router systems deployed in the network backbone,
a traditional fault-diagnosis system is of limited applicability
here because it aims at repair after failures occur. Such
solutions inevitably stall system operation. In contrast, prog-
nostic health management is promising because it monitors
the system in real time, triggers alarms when anomalies are
detected, and takes preventive actions before a system failure
occurs. Therefore, it ensures non-stop utilization of the entire
system [6]. The effectiveness of prognostic health management
depends on whether system failures can be predicted in a
timely manner [7]. Therefore, in this paper, we present the
design of an efficient anomaly-detection-based failure predic-
tor that can be applied to a commercial core router system.

The remainder of this paper is organized as follows. Section
II discusses the anomaly detection and failure prediction prob-
lems in more detail and highlights the contributions of this pa-
per. In Section III, a number of time-series-based anomaly de-
tection techniques are discussed and a feature-categorization-
based hybrid method is proposed. Then, a correlation-based
anomaly analyzer is described to select representative anoma-
lies. Section IV discusses how to predict failures based on
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historical anomaly events. In Section V, experimental results
on a synthetic data set generated from a commercial core
router system are used to demonstrate the effectiveness of the
proposed method. Finally, Section VI concludes the paper and
discusses future works.

II. PROBLEM STATEMENT

Prognostic health management can benefit from reasoning-
based and data-driven techniques [8], as shown in Fig. 1. The
system is monitored by recording different Key Performance
Indicators (KPIs). The logged KPI data is then fed to an
anomaly detector. When anomalies occur, an anomaly analyzer
can be used to filter redundant and irrelevant anomalies. Then,
a failure predictor can be triggered to forecast the occurrences
of different system failures [7]. Finally, appropriate preventive
actions can be executed on the monitored system to avoid
failures in advance. We can see that the anomaly detector and
failure predictor are two essential components in a data-driven
prognostic health management scheme.

Monitored
System

Anomaly
Detector

Anomaly
Analyzer

Failure
Predictor

Set of 
Anomalies

Representative 
Anomalies 

Failures
Preventive

Actions

Figure 1. An illustration of data-driven prognostic health management.

Anomaly detection, which is also sometimes referred to as
outlier detection, has been widely used in other domains, e.g.,
intrusion detection and fraud detection [9][10]. For example,
density-based techniques, such as K-Nearest Neighbor (KNN)
have been used in detecting outliers in high-dimensional
datasets [11]. Machine-learning methods, such as Artificial
Neural Networks (ANN) have also been applied to detect
fraud in large multivariate databases [12]. A Multivariate State
Estimation Technique (MSET) has been used to reduce or

eliminate No-Trouble-Found [13]. This technique is sensitive
to subtle changes in the signal trend, making it effective for
detecting indirect anomalies [14].

Failure prediction has also been studied to assess the reli-
ability, availability and serviceability of complex computing
systems [15]. For example, a semi-markov reward model has
been used to forecast the resource exhaustion problem in
software systems [16]. Machine-learning methods, such as
Naive Bayes have also been applied to predict hard disk
drive failures [17]. A rule-based model has been built to
predict attacks in computer networks and illegal financial
transactions [18]. However, little research has focused thus
far on combining failure prediction with anomaly detection in
a high-performance and complex communication system.

The difficulty of developing an efficient anomaly detector
and failure predictor for a complex communication system
can be attributed to the reason that features extracted from
communication systems are far more complex than those from
a general computing system. For example, as shown in Fig. 2,
a multi-card chassis core router system uses monitors to log a
large amount of features from different functional units. These
features include performance metrics (e.g., events, bandwidth,
throughput, latency, jitter, error rate), resource usage (e.g.,
CPU, memory, pool, thread, queue length), low-level hardware
information (e.g., voltage, temperature, interrupts), configu-
ration status of different network devices, and so on. Each
of these features can have significantly different statistical
characteristics, making it difficult for a single type of anomaly-
detection/failure-prediction technique to be effective.

We, therefore, address the important practical problem of
designing an anomaly-detection-based failure predictor that
can be effectively applied to a commercial core router sys-
tem. To achieve this, a feature-categorization-based hybrid
method is developed to detect a wide range of anomalies; a
correlation-based anomaly analyzer is implemented to select
the most important anomalies; and a machine-learning-based
failure predictor is developed to predict different failures from

Time stamp:  2015-09-05 08:11:50 Saturday UTC

System version: V100R100

Patch version: V100R100_P0025.PAT

……

SFU 11: uptime is 1 days, 20 hours, 48 minutes

Startup time 2015/09/03 11:23:33

CPU usage: 3% Memory usage: 15%

Board temperature: 45

……

LPU 8: uptime is 1 days, 20 hours, 47 minutes

Startup time 2015/09/03 11:24:33

CPU usage: 13% Memory usage: 13%

Board temperature: 52

NP backpressure: RB0RS > IF_Channel(127 0)

NP exception: EXCP_ID_IPV4_ARP_MISS

……

Interface 3: last uptime is 1 days, 20 hours, 50 minutes

Router ID: 190.80.80.80/16

Input rate: 1976 bits/sec

Output rate: 3015 bits/sec

……

Figure 2. A multi-card chassis core router system and a snapshot of extracted (monitored) features.
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historical anomalies.

III. ANOMALY DETECTION AND ANALYSIS

In complex communication systems, such as a core router,
data is collected in the form of time-series. Three kinds
of techniques have been studied in the literature to detect
anomalies in time-series data [9]. The first one is distance-
based anomaly detection, which utilizes a distance measure
between a pair of time-series instances to represent the simi-
larity between these two time-series. The smaller the overall
“distance” is, the closer this pair of time-series instances
would be. Instances far away from others will be identified
as being abnormal. The second one is window-based anomaly
detection. This method divides time series instances into
overlapping windows. Anomaly scores are first calculated
per window and then aggregated to be compared with a
predefined threshold. Only when the overall anomaly score of
a single time-series instance significantly exceeds a predefined
threshold, this instance will be identified as being abnormal.
The third one is prediction-based anomaly detection. First,
a machine-learning-based predictive model is learned from
historical logs. Next, predicted values are obtained by feeding
test data to this predictive model. These predicted values are
then compared with the actual measured data points. The
accumulated difference between these predicted and the actual
observations is defined as the anomaly score for each test time-
series instance.

KPI Category 
Identification

Statistical 
Analysis of 
Features

Data point 𝐷1 = { 𝑓11, 𝑓12, …, 𝑓1𝑖, 𝑓1(𝑖+1), …, 𝑓1(𝑣−1), 𝑓1𝑣 }

Data point 𝐷2 = { 𝑓21, 𝑓22, …, 𝑓2𝑖, 𝑓2(𝑖+1), …, 𝑓2(𝑣−1), 𝑓2𝑣 }

……
……

Data point 𝐷t = { 𝑓𝑡1, 𝑓𝑡2, …, 𝑓𝑡𝑖 , 𝑓𝑡(𝑖+1), …,  𝑓𝑡(𝑣−1), 𝑓𝑡𝑣 }

𝐶𝑎,    …     𝐶𝑘,     …      𝐶𝑟

Distance-based 
anomaly 
detector

Window-based 
anomaly 
detector

prediction-
based anomaly 

detector

Global 
aggregated 

anomaly checker

Time-Series 
KPI Features

Figure 3. A depiction of feature-categorization-based hybrid anomaly
detection.

However, a single class of anomaly detection methods
is effective for only a limited number of time-series types.
Therefore, we propose a feature-categorization-based hybrid
method whereby each class of features can be classified
by the most appropriate anomaly detection method. Fig. 3
illustrates the proposed feature-categorization-based hybrid
anomaly detection. First, time-series data of different features
extracted from the core router system is fed to a KPI-category
identification component. Since features belonging to different
KPI categories often exhibit significantly different statistical
characteristics across the timeline, natural language processing
techniques are utilized here to ensure that different KPI
categories, such as configuration, traffic, resource type, and
hardware can be identified. However, it is also possible that

features belonging to different KPI categories have similar
trend or distribution across time intervals; therefore, a statis-
tical analysis component is needed to ensure that all features
that exhibit similar statistical characteristics are placed in the
same class. After these steps, a data point Dt with v features
can be divided into different groups Ca, Cb, . . . , Ck, . . . , Cr,
where each group has different statistical characteristics. Next,
each group of features is fed to the anomaly detector that
is most suitable for this type of features. Finally, the results
provided by different anomaly detectors are aggregated so that
we can detect an anomaly in terms of the entire feature space.

Although the proposed feature-categorization-based hybrid
method can help us detect a wide range of anomalies, not
all anomalies are useful and necessary for predicting system
failures. First, the temporal and spatial localities of neighbor-
ing components lead to co-occurrences of similar anomalies.
Second, some anomalies are caused by workload variations
or temporary external noise, which makes them irrelevant
for predicting system failures. Since the number of possible
anomalies will increase from hundreds to tens of thousands
when more new features are identified and extracted from the
raw log data, anomaly analysis is needed in order to remove
irrelevant and redundant anomalies before predicting failures.

Anomalies

Clustering Correlating

Anomaly Analyzer

Selected
Anomalies

Correlation
Graph

Figure 4. Overview architecture of the proposed Anomaly Analyzer.

Fig. 4 presents an outline of the proposed anomaly an-
alyzer. A set of detected anomalies is fed to the anomaly
analyzer. It then goes through two components: the cluster-
ing component and the correlating component in sequential
order. The clustering component groups anomalies that occur
”simultaneously” (within the same small time interval) and
have similar statistical characteristics. Only one anomaly is
selected from each cluster and then fed to the next component.
The correlating component first identifies both linear and non-
linear relationships among these anomalies and then group
anomalies that have strong correlations. Finally, the anomaly
analyzer outputs a number of correlated anomaly groups. An
effective anomaly subset can be generated by selecting the
most representative anomalies from these correlated groups.
Furthermore, detailed relationships among anomalies within
each group can be represented by a correlation graph G =
(V,E), where the set of vertices V represent anomalies and
the set of edges E represent correlations between anomalies.
Therefore, a correlation graph is generated for each group of
anomalies.

22Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-500-5

VALID 2016 : The Eighth International Conference on Advances in System Testing and Validation Lifecycle



IV. FAILURE PREDICTION

Fig. 5 shows the temporal relationship between faults,
anomalies, and failures. Assume that a fault occurs in the
system at time point tr. After a period of time, a wide range of
anomalies begin to appear at time point tas. Finally, at time
point tf , the system encounters a fatal failure and crashes.
Two important time intervals are defined here: δtl, referred as
the lead time, is the time interval between the occurrence of
the last anomaly and the occurrence of the predicted failure.
It is defined as δtl = tf − tae. Only if this lead time is
larger than the time required to take preventive actions can
our prediction become useful in reality. The parameter δtd
is defined as the time interval between the occurrence of the
first and last anomaly, i.e., δtd = tae − tas. Since our failure
prediction is based on the detected anomalies in the system,
δtd can be considered to the temporal length of our dataset.

Timert ftast aet

dt lt

Fault

Anomalies

Failure

System

Figure 5. Temporal relationship between faults, anomalies, and failures.

Using the proposed anomaly detector and analyzer, repre-
sentative anomalies can be identified and recorded. Correlating
them with logs of system failures, two types of anomaly event
set can be formed: failure-related anomaly event set and non-
failure-related anomaly event set. An example of these two
types of anomaly event sets is shown in Fig. 6. We can see that
Ai represents the ID of each anomaly and Fj represents the ID
of each failure. The failure-related anomaly event set consists
of records that always end with a failure event Fj while the
non-failure-related anomaly event set consists of records that
do not have any failure events.

A1: 03/11/16 10:12:25 …… A9: 03/11/16 10:16:08 …… F2: 03/11/16 10:29:42
A4: 03/12/16 13:34:05        F4: 03/12/16 13:51:17
……
A3: 03/13/16 12:01:23 …… A8: 03/13/16 12:10:15
A8: 03/14/16 12:22:31 
……

Failure ID

Anomaly ID

Figure 6. An example of anomaly event sets.

An efficient failure predictor should not only predict
whether failures will occur, but also predict the type/category
and occurrence time of those failures. Therefore, as shown
in Fig. 7, the proposed failure predictor consists of two main
components: the classifier and the regressor so that both the
category and the lead time of failures can be predicted. First,
the historical logs including both failure-related and non-
failure-related anomaly events are fed as training data to both

the classifier and the regressor in order to build corresponding
learning models. Second, a set of newly detected anomalies
of is fed to these learning models. Finally, the learnt classifier
outputs which type of system failures will be triggered by
the current anomalies, and the learnt regressor will output the
predicted lead time for this type of system failure.

Failure-Related
Non-Failure
-Related

Historical Anomaly Event Sets

Classifier Regressor

Category Lead Time

Predicted Failures

Current
Anomalies

Figure 7. Overview architecture of the proposed failure predictor.

One key step implicit in Fig. 7 is to build training datasets
from historical anomaly event sets for both the classification
component and the regression component. Suppose we have
identified a set of anomalies A = {A1, A2, ..., AN} and a set
of system failures F = {F1, F2, ..., FM} from our historical
log H. The training dataset D for the classification component
can then be built. For each record Hi in the historical log, it
can contain one or more anomalies and either no failure or one
failure. If the anomaly Aj appears in the record Hi, Dij = 1,
otherwise Dij = 0. Note that Di(N+1) represents the failure
category of the record Hi: If the failure Fk appears in the
record Hi, Di(N+1) = k. If no failures occur in the record,
Di(N+1) = 0. The process of building the training dataset T
for the regression component is similar. The only difference
is that the occurrence times of anomalies and failures needs
to be included now. If the anomaly Aj appears at time tj in
the record Hi, Tij = tj , otherwise Tij = 0. If the failure
Fk appears at time tk in the record Hi, Ti(N+1) = tk. If no
failures occur in the record, Ti(N+1) = 0.

Different machine-learning techniques can be applied for
classification and regression in the proposed failure predic-
tor. Among these techniques, the Support Vector Machine
(SVM) algorithm offers several advantages, such as overfitting
control through regularisation parameters and performance
improvement via custom kernels [19]. Therefore, we utilize
SVM-based techniques in this paper. Specifically, we apply
multiclass SVM for the classification component and support
vector regression for the regression component.

V. EXPERIMENTS AND RESULTS

The commercial core router system used in our experiments
consists of a number of different functional units, such as the
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main processing unit, line processing unit, switch fabric unit,
etc. A total of 602 features are monitored and sampled every
5 minutes for 15 days of operation of the core router system,
generating a set of multivariate time-series data consisting of
4320 time points.

To evaluate the performance of the proposed anomaly de-
tection and failure prediction methods, we use a 4-fold cross-
validation method, which randomly partitions the extracted
time series dataset into four groups. Each group is regarded
as a test case while all the other cases are used for training. The
Success Ratio (SR), referred to as a percentage, is the ratio of
the number of correctly detected anomalies/predicted failures
to the total number of anomalies/failures in the testing set. For
example, a SR of 70% means that 7 out of 10 anomalies are
correctly detected. In addition to SR, the Non-False-Alarm
Ratio (NFAR) is also considered as an evaluation metric. It
is defined as the ratio of the number of correctly detected
anomalies/predicted failures to the total number of alarms
flagged by the anomaly detector/failure predictor.

A. Anomaly Detection and Analysis

To evaluate the effectiveness of feature-categorization-based
hybrid anomaly detection, five base algorithms are imple-
mented: KNN is a distance-based anomaly detection method,
and for each test instance, its distance to its kth near-
est neighboring instance will be considered as its anomaly
score. Window-based KNN and window-based SVM are two
window-based methods, and the difference between them is
the way they calculate their per-window anomaly score. SVR
and AR are two prediction-based methods, and the difference
is that the former one uses support vector regression to predict
values while the latter uses auto-regression for forecasting.

The results are shown in Fig. 8-9. We can see that for the six
anomaly detection methods, i.e., KNN, Window-based KNN,
window-based SVM, SVR, AR, and the feature-categorization-
based hybrid method, the success ratios are 82.7%, 84.5%,
86.4%, 88.2%, 78.6% and 95.1%, respectively, and the non-
false-alarm ratios are 73.1%, 76.3%, 80.7%, 88.1%, 71.6% and
92.1%. The reason that the proposed feature-categorization-
based hybrid method achieves much higher SR and NFAR
than other methods is that it can overcome the difficulty of
adopting a single class of anomaly detection to features with
significantly different statistical characteristics.

(S
R
)

Figure 8. Success ratios of different anomaly detection methods.

(N
FA
R)

Figure 9. Non-False-Alarm ratios of different anomaly detection methods.

Initially, 467 anomalies are detected by the proposed
anomaly detector. The anomaly analyzer can then partition
these anomalies into disjoint clusters based on their inner-
similarity and inter-correlation. The results of such clustering
and correlating are summarized in Table I. We can see that
only 15 out of 467 anomalies are identified as being in
independent groups (clusters with a single element), which
implies that most anomalies are correlated. Moreover, if we
choose a single anomaly within each cluster to represent this
cluster, only 105 anomalies are needed to represent the entire
anomaly set, reducing the number of anomaly dimensions by
77.5%.

TABLE I. RESULTS AFTER CLUSTERING AND CORRELATING OF
ANOMALIES.

Size of clusters Number of clusters Number of anomalies
1 15 15
2 38 76
3 14 42
4 9 36
6 10 60
10 13 130
15 4 60
21 1 21
27 1 27

B. Failure Prediction

To evaluate the effectiveness of the SVM-based classifier
and the SVR-based regressor in the proposed failure predictor,
two base algorithms are implemented. For the classification
component, a rule-based approach is used: first, a rule model
is built from the historical log; each rule takes the form “IF
{anomaly A1, anomaly A2, ..., anomaly Ai}, THEN {failure
Fj}”. Second, for each new anomaly set, if a matched rule can
be found, the failure label of that rule is assigned to the new
anomaly set; otherwise, a random failure label is assigned. For
the regressor component, a simple linear regression method is
used to predict the lead time of a failure from the occurrence
time of its related anomalies.

Fig. 10-11 show the SR and NFAR values for the SVM-
based and the rule-based approaches. Eight failure categories
are identified from the historical log, and are denoted as A, B,
..., H in the figures. The results can be summarized as follows:

1) For all eight failure categories, the SVM method achieves
higher SR and NFAR than the rule-based method. One
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possible explanation is that the effectiveness of the rule-
based method highly depends on whether the rule model
covers a sufficient range of “IF anomalies, THEN failure”
rules. However, there are always new anomaly sets that
do not match any existing rules, and therefore cannot
be predicted well by the rule-based method. In contrast,
the SVM method can learn “implicit rules” during its
training phase, making it more suitable for predicting
failure categories of new anomaly patterns.

2) Both methods perform better in predicting failure cate-
gories A and G, but they are worse in predicting failure
categories C and F. After analyzing the anomaly event
sets related to these failure categories, we find that the
anomaly event sets for A and G are significantly different
while the anomaly event sets for C and F are very similar.
In some cases, the anomaly sets of C and F have exactly
the same anomaly events and the only difference is the
sequential order of these anomaly events. Since both
SVM and rule-based methods do not take this sequential
information into consideration, it is quite likely that
misclassification will occur when predicting the failure
category C and F.
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Figure 10. Success ratios of two failure category prediction methods.
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Figure 11. Non-False-Alarm ratios of two failure category prediction
methods.

The classical metric Root Mean Square Error (RMSE) is
used to evaluate the effectiveness of the failure lead time
prediction methods. For our experiments, we define RMSE
as the square root of the average squared distance between
the actual lead time and the predicted lead time. The results
are shown in Fig. 12. We can see that the SVR method
achieves much lower RMSE than the linear regression method.
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Figure 12. RMSE of two failure lead time prediction methods.

The reason is that in most cases, the temporal relationships
between anomalies and failures are not linear. Also, we find
that the RMSE for the SVR method for most failure categories
is not greater than 10 minutes, which means the lead time
predicted by the SVR method can be considered as a realistic
approximation.

VI. CONCLUSION AND FUTURE WORKS

We have described the design of a anomaly-detection-based
failure predictor for a complex core router system. Both a
feature-categorization-based hybrid anomaly detector and a
correlation-based anomaly analyzer have been implemented to
detect and identify important anomalies. A SVM-based failure
predictor has also been developed to predict the category and
lead time of different failures from anomaly event sets. Data
collected from a commercial core router system has been used
to evaluate the effectiveness of the proposed methods. The ex-
perimental results show that the proposed anomaly-detection-
based failure predictor achieves not only higher success ratio
and non-false-alarm ratio than traditional rule-based method in
predicting failure categories, but also lower root mean square
error than linear regression method in predicting failure lead
time.

However, several drawbacks exist in current work and need
to be addressed in the future:

1) The proposed anomaly detector did not take correlations
among features into account. Therefore, this method
cannot capture anomalies caused by abnormal combina-
tion of multiple features. A correlation engine will be
investigated in the future to detect multivariate anomalies.

2) The proposed failure predictor did not take sequen-
tial information of anomaly events into consideration.
Therefore, this method cannot accurately identify failure
categories if they share similar anomaly event set. A time-
series-based failure predictor will be investigated in the
future to better forecast different types of failures.

3) A key assumption in current work is that failures and
anomalies are well-correlated. However, this assumption
may not always hold true in real scenarios. Whether a
sequence of anomalies will trigger a specific failure de-
pends on a variety of factors such as software aging, hard-
ware update, or even human intervention. Therefore, data
from other sources such as business scenarios, system
configurations, expertise experiences will be incorporated
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and investigated in the future to build more fine-grained
relationships among anomalies and failures.
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