
Establishing Personalized IVI Features on Distributed Open Source Webinos Middleware Using 

Low-cost Devices

 

 

Abstract— An observable trend in the automotive area leads 

to a growing demand for personalized in-vehicle infotainment 

(IVI) systems, but mostly they are closed, therefore integrating 

custom made apps were not possible with existing IVI-systems. 

So we need to extend the existing closed IVI-system with an 

Open source based system supporting custom made apps e.g., 

with diagnostic and location features, independent of the car 

manufacturers and the used bus-system. This paper presents a 

solution of a web app using low-cost devices with an Open 

source web-based webinos middleware. To evaluate the 

functionality and feasibility of the system with respect to in-car 

diagnostics data and location features, we present a prototype 

webinos Vehicle Hub application that runs on a HTML5 web 

browser which showcases the implementation of diagnostics 

data in dashboard view on top of the webinos middleware. 

Additionally for the developers to enhance the given open 

system we provide a Vehicle Testbed to test the APIs and 

necessary drivers. The application runs on three different 

device types – IVI-system, PC and smartphone/tablet. Users 

control the view of the dashboard and the data that they want 

to view with drag and drop on their PCs and dynamic 

streaming data with gauges on the IVI-system and 

smartphone/tablet.  

 

Keywords – Middleware; In-Vehicle Infotainment System; 

Browser; HTML5; OBD-II; Raspberry Pi;  Distributed Systems; 

Distributed applications. 

I.  INTRODUCTION  

     IVI-systems are following a trend in enabling in-car 

browser-based runtime environments [2]. Supporting IVI-

systems with an embedded web browser that appears as a 

combined interface for cloud services and personalized 

features could be a starting point. Therefore, it would be 

important to see the capability for executing web 

applications or JavaScript respectively in a sufficient 

manner [4]. Accessing vehicle data from the Controller Area 

Network (CAN) bus is propriety based and is not easily 

available [1]. It would be important to build an open and 

cost effective system to access required engine data from the 

vehicle, following the safety and security regulations that 

can be used with any car. The webinos middleware provides  

 

 

 

a solution for open and web-based communication for 

heterogeneous devices in a distributed manner [16]. The 

Internet of Things Application Programming Interface (IOT 

API) [14] provided by webinos allows us to build drivers to 

connect devices like On board Diagnostics (OBD-II) [21] to 

be used as sensors. Based on webinos technology, the 

webinos Vehicle Hub app provides a solution for showing 

the OBD-II vehicle parameter values that can be viewed on 

the graphs and gauges, which are integrated with the 

webinos dashboard as an interface for managing devices and 

to register services in the user's personal zone or services 

that the user's friends provide [3]. The webinos Vehicle Hub 

app provides 18 OBD-II parameters where we can choose 

the parameters and set the intervals to see the values 

accordingly.  

 

   In summary, this paper makes the following contributions: 

 We present webinos as a middleware for permitting 

vehicle data from the car to be viewed on a 

browser locally or remotely. 

 We evaluate the functionality and feasibility of 

such a middleware approach by webinos Vehicle 

Hub application as an automotive use case.  

 We additionally provide webinos Vehicle Testbed 

page for testing the APIs and necessary drivers. 

 
The following Section 2 presents webinos personal zone 

concept. Section 3 shows related work about different ways 
of working with cars. Section 4 shows the webinos approach 
for connecting the in-car head unit with other devices 
required to build a personalized IVI-system. Sections 5 and 6 
outlines the implementation and evaluation of webinos 
approach with a common use case. Section 7 concludes with 
an outlook on future work. 

 

II. WEBINOS PERSONAL ZONE CONCEPT 

   The core webinos architecture is based on state of the 
art widget and HTML5 web runtime environment. The 
critical innovation of webinos is to place an embedded server 
on the devices, and place all extended APIs, policies and 
packaging logic behind the server [15]. By tying the 

Krishna Bangalore, Daniel Krefft, Uwe Baumgarten
 

Informatik 

Technische Universität München 

München, Germany 

Email:{krishna.bangalore, krefft, baumgaru}@in.tum.de 

 

 

 

 

 
 

52Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-348-3

VEHICULAR 2014 : The Third International Conference on Advances in Vehicular Systems, Technologies and Applications



functionality to a server, rather than binding it to the 
traditional runtime, these services become addressable by 
other devices, not just the device the browser is running on. 
As shown in the Figure 1, the personal zone concepts within 
webinos are built up from internet agents Personal Zone Hub 
(PZH) and device agents Personal Zone Proxy (PZP). The 
way these agents communicate and identify each other, is at 
the heart of webinos mechanics. 

 

 
Figure 1: Personal Zone concept introduced by the webinos middleware 

 
The aim of webinos is to provide a secure platform to 
connect heterogeneous devices like TV, IVI-system, PC and 
Smartphone for a multi-user and for any Operating system 
that supports web browsers in a web-enabled federated 
framework (means domains can exchange messages). The 
JavaScript Object Notation-Remote Procedure Call (JSON-
RPC) [26] is used to get remote JavaScript and Transport 
Layer Security (TLS) [27] mutually authenticates the 
connection and gives the overlay network security and 
attestation. The secure session allows for transport of 
messages and synchronization. Apps run on top of webinos, 
when a webinos API is invoked, the invoked methods and its 
parameters are sent over a web socket, where the listening 
PZP checks them and returns a callback with a result locally. 
When it comes to remote communication the PZP forwards 
the request to the PZH, which finds the correct PZP that is 
connected to it and forwards the request. If PZP belongs to 
another PZH then it is forwarded under the security and 
policy control checks. 
 

III. DIFFERENT WAYS OF WORKING WITH                       

    CARS 

         The market for personalized solutions, especially in 

the automotive area, is set to explode over the next few 

years with AutolinQ opening doors for future of mobility 

inside the car [17].  

The following opportunities are offered by the upcoming 
trends: 
• Vehicle IVI-System: A complete web based technology 

stack is provided to implement in-vehicle entertainment, 

navigation and real time driving consoles. It also provides 

an environment for third party application development.  

• In car communications: A secure local communication 

stack allows phones, tablets, satellite navigation systems 

and other devices to interact seamlessly with the vehicle’s 

entertainment and telematics systems.  
• Remote sensing: Secure interoperable remoting protocols 
allow these same capabilities to be accessed by trusted 
remote third parties, thereby enabling remote vehicle and 
driver diagnostic scenarios. 
 

A. What is so special about webinos vehicle? 

 Since there has been a huge trend for HTML5-based 
applications [6] Sonnenberg, presents an approach for 
embedding a web application server into a native application, 
running on a portable device [9]. Similar to that, Open source 
webinos middleware provides a practical solution for in-car 
application development and porting on to new devices. Like 
Chrome OS [11], Firefox OS [18] and Tizen [19] it is 
HTML5 based, and indeed largely compatible with these 
technologies. It differs in that, it is not tied to a specific 
application ecosystem, and comes with a suite of vehicle 
specific additions, which speeds up automotive application 
development. 

 
       A strong emphasis has been placed on the webinos 

security model. This is important because vehicle 

informatics subsystems are extremely sensitive, and grant 

access to highly sensitive data. Security plus interoperability 

is the key here. The webinos protocols are unusual in that 

the same mechanism that allows device interaction over the 

cloud can be reused for local, in-vehicle networks. For real 

world deployment where internet in-car is unreliable this is 

essential. In practice, this means that “permissions 

permitting” any phone or tablet in car can securely and 

interoperably interact with the core infotainment systems of 

the car. Imagine pushing the location of the destination 

directly from a tablet to the in-vehicle navigation or even 

using this exact same technology to push locations from a 

remote desktop [28]. 

 
Out of all the use cases that webinos supports, remote 

analytics and sensing are the most interesting and disruptive 
aspects. Fleet management, real-time logistics, remote 
vehicle diagnostics (automatically alerts issues similar to 
mbrace2) [7] and more recently, behavioral driver 
monitoring are all existing and in some cases quite mature 
technologies. The webinos technology stack is interesting in 
this context because it can support all of these use cases, by 
using entirely commoditized and Open source stacks, which 
not only break apart existing locked in systems, but do so in 
a way that grants explicit control of sensitive data to the end 
user. 

53Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-348-3

VEHICULAR 2014 : The Third International Conference on Advances in Vehicular Systems, Technologies and Applications



IV. THE WEBINOS DOMAIN FOR VEHICLE 

The Personal zone concept that webinos provides, the 
PZP and PZH are built on top of node.js [5]. Node.js is based 
on Google's V8 JavaScript engine, all the devices (Personal 
Zone Proxies) belonging to the same zone support and 
expose a set of standard APIs for accessing services such as 
device features IOT [14], Geolocation [13], Device 
Orientation [12], networking with other devices and cloud 
services.  
 

 
Figure 2: Architecture view how the webinos Middleware connects with 

OBD-II in a distributed automotive environment, similar to architecture [16] 

As shown in Figure 2, the architecture describes the local 
interaction. The PZH is the center point of the personal zone 
between PZH and PZPs and the PZPs in the same zone if 
they try to share the resources. The PZPs can be more than 
one type of device, for example in-car devices, PCs, 
smartphones and so on. The interactions can take place 
between PZHs if the personal zones try to communicate with 
each other PZH. 

 
    Applications run on top of the webinos stack. PZH runs 

the server resident webinos applications using node.js, 

unpacking and performing security checks on packed 

widgets, authenticates users to set up trusted sessions, stores 

the policy files, routes messages, processes synchronization 

protocol messages so that the PZPs can synchronize the data 

from the devices [15]. The architecture describes the 

working of webinos middleware for the vehicle, before an 

API can be used by an application it has to query the 

Service Discovery for the available APIs for that particular 

PZP. Once the API is discovered it has to bind to the 

discovered API. In case of remotely available features the 

message is passed through Connection Manager, the 

requested feature is routed through PZH. The Policy 

manager checks for requests from the local or remote 

devices and grants access based on the policy settings set by 

the user.   

 
The vehicle prototype uses Raspberry Pi [20] as 

hardware and the webinos IOT API that supports OBD-II 
driver to retrieve data from the streaming OBD-II sensor. 
Look for Section 5 for implementation notes. 

 

V. IMPLEMENTATION NOTES 

      The interoperable specifications for the device APIs, the 

security model and the remoting interoperability layer have 

all been made available under royalty free terms. The 

software is highly flexible and can be deployed on several 

operating systems and in several configurations including 

Pandaboard [8], Android and Raspberry Pi. 

 

      Our current prototype deployment scenario for vehicle 

environment includes the following listed components 

attached to it (see Figure 3):  

 Raspberry Pi with 5V Power-supply and a SD-

Card. The Raspberry Pi does not have any internal 

storage, the SD-card is used to store the image of 

Linux version Raspbian wheezy [20].  It uses SD-

card for booting and for storage. We recommend 

16 GB. 

 Bluetooth Dongle. 

 OBD-II (Bluetooth) [21]. 

 Surf stick or Wi-Fi (mobile hotspot). 

 Compact/mini PC display or TFT-Screen (for a 

closer automotive touch, we recommend to use 

54Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-348-3

VEHICULAR 2014 : The Third International Conference on Advances in Vehicular Systems, Technologies and Applications



suitable car TFT with 8" to 10" display size and 

16:9 ratio) [22].  

 DVI-to-HDMI cable required for attaching the 

screen to the Raspberry Pi. 

 Compact/mini PC keyboard and mouse or a 

combination of keyboard and mouse (pad) [23].  

      See our website [28] for available documentation. The 

source code is available under Apache 2.0 license terms. 

 
The Bluetooth OBD-II connector is connected to the 

Raspberry Pi using the Bluetooth dongle. Since Raspberry Pi 
has two USB ports in our implementation we have connected 
the Bluetooth dongle and Wi-Fi stick to the keyboard which 
has USB hub. For the Vehicle environment we would 
propose to use a mini PC keyboard and mini PC mouse or a 
combination of keyboard and mouse (pad) [23].  

 

 
Figure 3: Prototype of Modularized webinos, running on a Raspberry Pi 

Hardware and showcasing IVI-system view connected to an OBD 
simulator 

 

 
Figure 4: ELM 327 OBDII device 

 
The ELM 327 OBD-II device (shown in Figure 4) 

standard specifies the type of diagnostic connector and its 
pinout, the electrical signaling protocols available, and the 
messaging format [21]. It also provides a list of vehicle 
parameters to monitor along with how to encode the data for 
each. There is a pin in the connector that provides power for 
the scan tool from the vehicle battery. The parameters 
defined in the OBD-II driver, that the IOT API uses looks for 
the streaming parameter messages from the OBD-II. The 
Geolocation and Device Orientation API offer the relevant 
data. 

VI. EXAMPLE SCENARIO  

A. webinos Vehicle Testbed 

       The webinos platform provides a Vehicle Testbed for 

testing its APIs that runs on a HTML5 browser to display 

test results from the OBD-II. In this particular example we 

connected the OBD-II to the webinos Vehicle Testbed, we 

could either test in a virgin PZP mode (not enrolled to the 

PZH) or enroll it to the PZH. We chose the latter and by 

doing this we register the browser to a particular OpenID 

[10] that the user wants.  

 

 
Figure 5: webinos Testbed shows RPM value 

 
Figure 5 shows the working of webinos-api-iot, we show 

an example scenario of Revolutions per minute (RPM) value 
being streamed. We have to follow certain steps to retrieve 
the OBD-II value. First, find IOT API service through the 
service discovery. Second, bind to the found and selected 
service. Third, call the IOT API method to display the result. 
We can choose the register button as shown in the Figure 5 
to connect to a listener to retrieve the RPM sensor streaming 
every few seconds. 

B. webinos Vehicle Hub app 

       The webinos Vehicle Hub app shows OBD-II vehicle 

parameter values that can be viewed on the graphs and 

gauges as shown in the Figure 6 that depicts the IVI-system 

view and Figure 7 depicts the PC view, both use RGraph 

[25], which is integrated with the webinos dashboard as an 

interface for managing devices and to register services in the 

user's personal zone or services that the user's friends 

provided. The dashboard provides all the OBD-II 

parameters where we can choose the parameters and set the 

intervals to see the values accordingly. For demonstrating 

the webinos Vehicle Hub app we chose 5 useful parameters 

e.g., Engine RPM, Vehicle Speed, Throttle position, Engine 

Temperature and Fuel Rail Pressure that matches the 

webinos specifications and are useful diagnostics data. 

 

       The OBD-II drivers that are written for the webinos 

IOT API are registered within user's personal zone and 

allow the application to listen for values from OBD-II as 

sensors data. The application uses web technologies such as 

HTML5, JavaScript and CSS. For e.g., JSPlumb library [24] 

is used for the drag & drop feature. 

55Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-348-3

VEHICULAR 2014 : The Third International Conference on Advances in Vehicular Systems, Technologies and Applications



 
Figure 6: IVI-system Diagnostics data tab view 1 and IVI-system Dashboard 

with gauges tab view 2 [28] 
 

 
Figure 7: PC view - drag and drop OBD parameters as sensors [28] 

 

     Vehicle Hub Features: 

 In the PC view we can drag and drop the OBD-II 

parameters on the graphs and gauges, on the right 

side as shown in the Figure 7 graphs and gauges 

are present that are to be dragged and dropped to 

the middle of the window screen. Each OBD-II 

parameter act as sensors as seen on the left side of 

the Figure 7 and needs to be dragged and dropped 

on the graph window pane to view the results.  

 Shows Live streaming data both on the PC view as 

well on the IVI-system. 

 Historical view can record and play the historical 

data on IVI-system, collected logs of the data from 

the OBD-II that could be used to show as reports, 

we can show them on a graph as trip data and some 

vehicle specific data. 

 Diagnostics data shows the 18 OBD-II supported 

parameter values that are useful for the mechanics 

to diagnose the vehicle. By connecting to webinos, 

mechanics can view the vehicle data from 

elsewhere and diagnose the vehicle before it’s 

brought to the garage. 

 Insurance data collection – It was learnt from one 

of our workshops that the insurance companies 

install and maintain devices to get the vehicle 

reports. By using the current app and by further 

enhancing the webinos Vehicle Hub app we could 

create reports that will be useful for the insurance 

companies. This proposal from our workshops is 

now an ongoing work and is in its requirements 

phase.   

C. Running webinos Vehicle Hub  

       Steps to run webinos Vehicle Hub app using OBD 

device with modularized webinos codebase on Linux 

distributions:  

 

1. The demo works on the latest webinos version. It can be 

executed using firefox/Chrome browser. To make it run we 

need to clone the hub-webinosVehicle repository from the 

github [34] inside the web_root folder of the webinos-pzp or 

copy the content of the hub-webinosVehicle folder into the 

web_root folder in the webinos-pzp. 

 2. Place the webinos-api-iot API [30], webinos-api-

deviceOrientation API [31] and webinos-api-geolocation 

API [32] in the webinos-pzp [29] folder. After that, in the 

webinos-api-iot/node modules path, clone the OBD-II 

drivers to get it run. 

 

After, installing the required APIs and drivers do an npm 

install and change settings in config.json in webinos-iot-

driver-obd2 [33] to set the connector parameter for the 

Vehicle to OBD or if using the simulator then to obdsim. 

 

Starting OBD-II simulator - The demo Figure 3 runs with 

an OBD-II simulator. To install the OBD-II simulator on to 

the Linux/Raspbian machine follow the instructions as 

described below.  

 

Installing on the terminal 

 apt-cache search obd 

 sudo apt-get install obdgpslogger 

To run with simulator 

 obdsim or obdsim –o 

 

Note: Change the /dev/pts/(Port Number) in config.json in 

webinos-iot-driver-obd2 

 

When connecting with a car to retrieve real time car 
values - Connect OBD-II (Bluetooth/Serial) into the OBD 
slot and rest similar to Figure 3, it runs on /dev/USB0 for 
serial and for Bluetooth, change the parameters of the OBD 
params settings present in the config.json in the webinos-iot-
driver-obd2 folder to retrieve the data. 
 

VII. CONCLUSIONS AND FUTURE WORK 

          The presented work strongly focuses on providing 
custom apps e.g., diagnostic and location features with low-
cost devices based on distributed Open source webinos 
middleware, connecting to the vehicle environment across 
heterogeneous devices.  
 
This approach allows various in-car infotainment concepts. 
Firstly, it allows the execution of web applications that have 
access to the vehicle data via the introduced IOT API and 
OBD-II driver to support it and this implementation, can be 
tested on a webinos testbed. Secondly, the webinos platform 

56Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-348-3

VEHICULAR 2014 : The Third International Conference on Advances in Vehicular Systems, Technologies and Applications



provides the components to build and communicate with the 
vehicle system. The implemented webinos Vehicle Hub 
highlights that the webinos middleware is capable and 
applicable to aggregate data seamlessly across heterogeneous 
devices, with the help of webinos dashboard. The user can 
control the OBD parameters that the user wishes to see.  
 
        However, the application outlines items for future work. 
The devices mentioned in the paper were used as a prototype 
to showcase the usage of webinos middleware. We could use 
a smartphone with Android operating system and OBD-II to 
stream the data by connecting via Bluetooth interface (which 
is in development) to show the application running with an 
automatic user interface adaption without distracting the car 
driver. Instead of OBD-II it would be interesting to use 
different devices like vehicle Black box that match the 
webinos specification with similar parameters. We can build 
innovative applications like Insurance apps and Traffic apps 
to support the open and web world of communication that 
the webinos middleware presents. 
 

ACKNOWLEDGMENT 

     The research leading to these results has received 

funding from the European Union's Seventh Framework 

Program (FP7-ICT-2009-5, Objective 1.2) under grant 

agreement number 257103 (webinos project). We thank all 

our project partners within the webinos consortium towards 

the contribution and realization of this work. 

REFERENCES 

[1] http://www.dgtech.com/images/primer.pdf 

        [retrieved: May, 2014]. 

[2] http://www.we-conect.com/cms/media/uploads/events/31/ 

        dokumente/QNX__Why_Automakers_(Should)_Care_    
about_HTML5.pdf [retrieved: May, 2014]. 

[3] http://dev.webinos.org/deliverables/wp3/Deliverable35/ 

        wiki$t3-5$Deliverable_Specifications_Personal_Zone 
_Security.html [retrieved: May, 2014]. 

[4] S. Isenberg, M. Goebl, and U. Baumgarten. Is theWeb Ready 
for In-Car Infotainment? A Framework for Browser 
Performance Tests Suited for Embedded Vehicle Hardware. 
In 2012 14th IEEE International Symposium on Web Systems 
Evolution (WSE). IEEE, 

         2012. 

[5] http://nodejs.org/ [retrieved: May, 2014]. 

[6] G. Lawton. Moving the OS to the Web. Computer, 
41(3):16{19, Mar. 2008. 

[7] Mercedes-Benz, mbrace.                  

http://www.mbusa.com/mercedes/mbrace#!layout=/mbrace/re
mote_access&waypoint=mbrace-remote_access [retrieved: 
May, 2014].  

[8] Pandaboard, Pandaboard Reference. 

http://pandaboard.org/content/resources/references [retrieved: 
May, 2014]. 

[9] J. Sonnenberg. A distributed in-vehicle service architecture 
using dynamically created web Services. In IEEE 
International Symposium on Consumer Electronics (ISCE 
2010), pages 1-5. IEEE, June 2010. 

[10] OpenID, http://openid.net/ [retrieved: May, 2014]. 

[11] Chrome OS,https://www.google.com/intl/en/chrome/browser/ 

        [retrieved: May, 2014]. 

[12] W3C, DeviceOrientation Event Specification. 

http://dev.w3.org/geo/api/spec-source-orientation.html     

        [retrieved: May, 2014]. 

[13] W3C, Geolocation API Specification.  

         http://www.w3.org/TR/geolocation-API/ [retrieved: May,      

        2014]. 

[14] webinos, Specifications, 2014. 

http://dev.webinos.org/specifications/api/sensors.html 

[retrieved: May, 2014]. 

[15] webinos, Architecture, 2014.   

http://dev.webinos.org/deliverables/wp3/Deliverable31/wiki$
wp3-1$Webinos_key_architectural_components.html 
[retrieved: May, 2014]. 

[16] Isenberg, Simon and Bangalore, Krishna and Goebl, Matthias 
and Haberl, Wolfgang and Baumgarten, Uwe. Towards a 
Personalized and Distributed In-car Infotainment Experience 
Using the Open and Web-based Webinos Middleware, Multi-
Device '2012 [retrieved: May, 2014]. 

[17] Continental Corporation. AutolinQ, http://www.continental-
corporation.com/www/pressportal_us_en/themes/press_releas
es/3_automotive_group/pr_2009_06_02_en.html [retrieved: 
May, 2014]. 

[18] http://www.mozilla.org/en-US/firefox/os/ [retrieved: May, 
2014]. 

[19] Tizen IVI Architecture, 

http://events.linuxfoundation.org/images/stories/pdf/lceu2012
_haitzler.pdf [retrieved: May, 2014].  

[20] Raspberry Pi, www.raspberrypi.org [retrieved: May, 2014].           

[21] OBD-II, http://www.obdii.com/,  

http://en.wikipedia.org/wiki/On-board_diagnostics [retrieved: 
May, 2014]. 

[22] TFT-Screen, http://www.cartft.com/catalog/il/1213 [retrieved: 
May, 2014]. 

[23] http://www.logitech.com/de-de/product/wireless-touch-
keyboard-k400r [retrieved: May, 2014].  

[24] JSplumb, http://jsplumbtoolkit.com/demo/home/jquery.html 

[retrieved: May, 2014]. 

[25] RGraph, http://www.rgraph.net/ [retrieved: May, 2014]. 

[26] JSON-RPC, http://www.jsonrpc.org/specification [retrieved: 
May, 2014]. 

[27] TLS, http://www.techsoup.org/support/articles-and-how- 
tos/introduction-to-transport-layer-security [retrieved: May, 
2014]. 

[28] https://developer.webinos.org/vehicle-hub [retrieved: May, 
2014]. 

[29] https://github.com/webinos/webinos-pzp [retrieved: May, 
2014]. 

[30] https://github.com/webinos/webinos-api-iot [retrieved: May, 
2014]. 

[31] https://github.com/webinos/webinos-api-deviceOrientation 
[retrieved: May, 2014]. 

[32] https://github.com/webinos/webinos-api-geolocation 
[retrieved: May, 2014]. 

[33] https://github.com/webinos/webinos-iot-driver-obd2 
[retrieved: May, 2014]. 

[34] https://github.com/webinos/hub-webinosVehicle [retrieved: 
May, 2014]. 

 

         

57Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-348-3

VEHICULAR 2014 : The Third International Conference on Advances in Vehicular Systems, Technologies and Applications


