
Communication Protocol for a Swarm Based Routing Algorithm Using the IEEE

802.11p Standard

Christian Stolcis, Steve Zakrzowsky and Wilhelm R. Rossak
Chair of Software Technology
Friedrich Schiller University

Jena, Germany
Email: {Christian.Stolcis, Steve.Zakrzowsky, Wilhelm.Rossak}@uni-jena.de

Abstract—Within the next few years, cars will be able to

communicate with their surrounding infrastructure, with other

cars and even drive autonomously. This allows a new generation

of applications to improve security and a better use of space and

resources. One of these applications is represented by the

Clustered Swarm algorithm. The Clustered Swarm algorithm is a

live swarm based algorithm for vehicles which pursues the aim

of a global traffic optimisation by performing a massive load

balancing of all road participants to improve the individual

routes of each user. Hereby it represents a potential solution for

the traffic jam problem. This paper introduces the current

communication protocol used by the Clustered Swarm algorithm

which is designed to ensure the integrity of the data, as well as

to reduce the amount of transmitted data to enable the use of

current and future vehicle-to-vehicle technologies such as the

IEEE 802.11p standard.

Keywords-IEEE802.11p; data compression; swarm

intelligence, traffic optimisation.

I. INTRODUCTION

Current technologies in the area of direct vehicle-to-
vehicle communication, most notably the IEEE 802.11p [1]
standard, have some limitations regarding their bandwidth
and their data rate. Especially for applications where a large
amount of data needs to be transmitted to many
communication partners within a short time window, the
current characteristics of the 802.11p standard are
insufficient. And so they are for the Clustered Swarm
algorithm [2], which uses direct vehicle-to-vehicle
communication to perform a load balancing of all road
participants. For best communication results, regarding the
amount of data transmitted, the Clustered Swarm algorithm
uses its own communication protocol, which will be
presented in the present paper.

In Section II, we will give a short overview of the
Clustered Swarm algorithm for a better understanding,
followed by the used communication model in Section III and
the communication protocol in Section IV. Finally in Section
V, we will discuss the results and in Section VI, we will give
a brief outlook for our next steps regarding further
improvements of the communication protocol to comply
even more with the requirements of the Clustered Swarm
algorithm.

II. CLUSTERED SWARM

Looking at traffic on a microscopic level, traffic consists
of many individual participants. But during route calculation,
only the personal and individual aims of the different drivers
are considered, which are mostly represented by reaching the
destination as fast as possible. So, current navigation systems
perform an individual local optimisation during route
calculation. Nevertheless the current traffic situation is
considered, the resulting route is only optimised for the single
user. If too many local optima are too similar in their
characteristics, this can have negative effects on the whole
traffic, particularly in combination with general traffic
influencing measures. If too many drivers take the same
diversion because they follow their navigation systems, a new
traffic jam can form very fast. Many local optima can
therefore counteract a common global optimum under some
circumstances.

The Clustered Swarm algorithm copes with this deficiency
by distributing all participating vehicles on the entire road
network based on its capacity without the need of a central
instance. In this case, the capacity of a road corresponds to
the maximum traffic density �

���
 [3], which is the amount

of vehicles on the road at the same time, causing a congestion.
Depending on the amount of high weight vehicles and the
type and construction state of a road, �

���
 is typically about

150 vehicles/km [3]. This relation between the traffic density
and the traffic speed is explained in the Fundamental
Diagram of Traffic Flow shown in Fig. 1 and expressed in a
few words, the more vehicles the less the traffic speed. The
Clustered Swarm algorithm takes advantage of this
dependence between the amount of vehicles and the traffic
speed to perform the load balancing.

Figure 1. The Fundamental Diagram of Traffic Flow [3]

1Copyright (c) IARIA, 2015. ISBN: 978-1-61208-434-3

VEHICULAR 2015 : The Fourth International Conference on Advances in Vehicular Systems, Technologies and Applications

To accomplish the desired Emergent Behaviour [4]
following the Clustered Swarm algorithm, each vehicle
aggregates the estimated traffic density of the road network
by exchanging its own route and all other considered routes
every time a vehicle is in reach. The first time a vehicle
communicates it can only transmit its own route but receives
a number of routes from its counterparts. The next time it
encounters another vehicle, it transmits its own route and all
newly acquired routes. Thereby, it can help spreading
knowledge within the swarm, which will be used for route
calculation to adapt the routes to the estimated traffic density.

III. COMMUNICATION MODEL

The key function of the Clustered Swarm algorithm is the
knowledge and use of the estimated traffic density of the road
network. As this information needs to be aggregated,
communicated and used in route calculation, a common
model is needed to meet the requirements of the three main
tasks, especially for communication. As already mentioned,
vehicles try to transmit all considered routes. So, the main
object is the Route, which at the same time is the result of the
route calculation. Each Route consists of different
PathElements, which decompose the Route into different
segments and conform to the edges of the graph used for route
calculation. Fig. 2 shows both objects.

The attributes of the Route object have the following
purpose:

• VehicleId: Identifies the vehicle to which the route
belongs.

• VersionNumber: Current version of the Route.
Each time a vehicle recalculates its own route the
version number is incremented.

• NavigationDuration: Is the total duration the
vehicle needs to drive on its route.

The attributes of the PathElement object have the
following purpose:

• Id: Identifies the road within the digital road map
used for route calculation.

• NavigationTimestamp: Represents the time stamp
of the day, when the road will be navigated.

• DrivingDirection: Stores the direction in which the
vehicle will drive on that road segment.

• NavigationDuration: Is the duration the vehicle
needs to drive on that road segment.

With the information of the PathElements, and therefore

the route of a vehicle, each vehicle can estimate how many
vehicles will use a road at a given point in time and with this

information the vehicle can adapt its own route if necessary
due to high traffic density on certain roads [2].

Assuming that only 20% of all vehicles will be able to use

the Clustered Swarm algorithm, in the near future in Berlin
154,000 vehicles will communicate using a vehicle-to-
vehicle technology (in 2012 60.9 % of all registered vehicles
in Germany were on the road on working days [5]; Berlin has
1.1 million registered vehicles [6], so, each working day
770.000 vehicles are on the road). If each vehicle
communicates with only 50% of all possible vehicles capable
of Clustered Swarm, each vehicle would save and
communicate a maximum of 77,000 routes. A typical route
in inner cities has an average amount of 80 road segments
(assuming an average length of one trip of 12.3 km [5] and
an average length of one road segment of 153.8m for
Germany [7]), which corresponds to the PathElement. Each
PathElement has a size of 17 bytes resulting in an average
size of 1378 bytes for a Route. In a best case scenario, where
the maximum transfer rate of 27 Mbit/s of the IEEE 802.11p
standard [8] could be used (which is unlikely), it would take
about 30 seconds to transmit the 101 MB of data. In realistic
scenarios, where the data rate decreases due to the amount of
parallel communication partners, the distances between them,
as well as other interferences [8] a transfer of the huge
amount of PathElements would not be guaranteed. As the
vehicles move during communication, the time window for
communication could limit the amount of data transmitted
even more. This means that there is a big discrepancy
between the amount of data to transmit to ensure the
functionality of the Clustered Swarm algorithm and the
transmission rate of the 802.11p standard. To cope with these
limitations, we have implemented a communication protocol
which reduces the amount of data to be sent while ensuring
the integrity of the transmitted data, so that each received data
packet contains complete information usable by the
Clustered Swarm algorithm.

IV. COMMUNICATION PROTOCOL

A. Integrity

As the IEEE 802.11p standard is situated in the data link
layer of the OSI model [9], the used protocol for transmission
has to be defined by the applications using the IEEE 802.11p
standard. Given the limitations of the IEEE 802.11p standard
compared to the requirements of the Clustered Swarm
algorithm, a communication protocol is needed, which allows
to transmit as much information as possible within a short time
window ensuring that received data is usable by the receiver.
The integrity of the data is especially important in this case.
Since the amount of transmitted data is restricted by the short
communication time of two vehicles passing by each other, it
is even more necessary that the actual transmitted data can be
used by the receiver. That means, the information needs to be
sent in a way that each received data packet contains sound
data independent of other data packets and thereby usable by
the Clustered Swarm algorithm.

In common communication protocols (e.g., TCP/IP), the
data to be transmitted is distributed among different packages

Figure 2. Communication model of the Clustered Swarm algorithm

2Copyright (c) IARIA, 2015. ISBN: 978-1-61208-434-3

VEHICULAR 2015 : The Fourth International Conference on Advances in Vehicular Systems, Technologies and Applications

depending on the Maximum Transfer Unit (MTU) [10]. By
specifying the Maximum Transfer Unit size for a network
compatible device, including header and protocol-meta-
information, the MTU defines the amount of data for one
frame [11]. Data packages exceeding the size defined by the
MTU are fragmented and distributed over multiple frames. In
order to obtain complete and usable data this procedure
requires all frames to be received. If one frame is lost, all
others have to be resent [10]. This behaviour can lead to major
radio transmission interferences, wherefore a fragmentation
should be avoided to meet the requirements of the Clustered
Swarm algorithm.

As described in Section III, the information transmitted by
each vehicle is represented by the Route object. Since one
Route represents a complete set of data usable by the receiver,
we decided to follow a “one route one frame” approach to
guarantee data integrity. This means, one data packet
represented by one Route should completely fit into the
payload of one transmitted frame. To provide enough space to
hold a Route and at the same time avoid too much data loss in
case of a communication failure, we use a size of 1500 bytes
as the maximum data packet size. Also, the fact that this size
represents the standard for transmitting data over Ethernet
since over 30 years, fortified our decision [10]. If a frame is
lost, it does not affect other frames and hereby other Routes,
so that the small time window for communication can be used
in the best possible way.

Since the average route size is 1378 bytes (see Section III),
longer routes would not fit into the 1500 bytes. To be able to
store even long routes, a reduction of the data was needed.

B. Compression

Thinking about possibilities to reduce the amount of data,
a suggestive approach is the compression of the data. Many
different algorithms exist (e.g., LZ77 [12], Deflate [13] and
LZMA [14]), which are available for various programming
languages and allow an easy integration into own applications.
But in our special case, the existing algorithms showed low
compression ratios (see Table I and Fig. 4), too low for the use
in the Clustered Swarm algorithm. This mostly relies on the
“black box” approach of existing compression algorithms
where no semantic information about the data is considered
[14]. As the structure of the communication model introduced
in Section III offers many possibilities to reduce the data on a
logical level, we developed our own compression algorithm
called Gravity MDT Compression. Basically, the Gravity
MDT Compression (Group-Var-Int minimal data
compression) combines three approaches to reduce the
amount of data without changing its content: Group-Var-Int-

Encoding [15], Delta-Encoding [14] and Elimination of

redundancy.

The Group-Var-Int-Encoding was developed by
Google Inc. on the basis of the Var-Int-Encoding [16] which
stands for “variable integer” and represents an integer data
type that only occupies as many bytes as needed to represent
the value. For example, a 32-Bit Integer with the value 1 only
needs 1 byte instead of 4 bytes to be stored.

Since the normal Var-Int-Encoding stores some extra
information to be able to decompress the value, the maximum
number of bits to be used for storing a value is 30 [16]. The
Group-Var-Int-Encoding adds an additional byte to store this
extra information which allows to use the full 32-bit-integer
value range. The Gravity MDT Compression uses the Group-
Var-Int-Encoding to compress and store the Ids and the
NavigationTimestamps of the PathElements.

The Delta Encoding or differential encoding is a simple

data compression method used to reduce correlating or
sequential data [14]. The idea behind the delta encoding is
that not the information itself is stored but the difference from
an initial state to the current state. Table II shows the Delta-
Encoding applied to sample Ids. So, the Delta Encoding helps
to trim the possible big integer values to much smaller values.
As the compression ratio of the Group-Var-Int-Encoding

TABLE II DELTA ENCODING APPLIED ON SAMPLE PATHELEMENT IDS

Encoding
Id

PathElement #1

Id

PathElement #2

Id

PathElement #3

Id

PathElement #4

Id

PathElement #5

none 5890234 5839494 5839274 5897947 5897366

Delta-

Encoding
5890234 50740 220 -58673 581

TABLE I. SPACE SAVINGS OF DIFFERENT COMPRESSION ALGORITHMS

3Copyright (c) IARIA, 2015. ISBN: 978-1-61208-434-3

VEHICULAR 2015 : The Fourth International Conference on Advances in Vehicular Systems, Technologies and Applications

increases with the decreasing size of the values to store, the
combination of the Delta-Encoding with the Group-Var-Int-
Encoding allows to reach a very high compression ratio. In
the Gravity MDT Compression algorithm, it is also used to
store the Id and NavigationTimestamp of the PathElements.

Elimination of redundancy: Taking a closer look at the

communication model, it turns out that the PathElements save
some redundant information given by the NavigationDuration
and the NavigationTimestamp. Both values are needed by the
Clustered Swarm algorithm but for communication, one of the
values becomes obsolete as both can be calculated considering
the other. Since the PathElements are stored in the order they
are driven during route guidance, the chronological
accumulation of the NavigationDuration allows the
calculation of the NavigationTimestamp of all PathElements
and through the difference of the NavigationTimestamps of
two following PathElements the NavigationDuration can be
calculated. Also, considering the advantages of the Group-
Var-Int-Encoding and the Delta-Encoding, we decided to
store the NavigationTimestamps to calculate the
NavigationDuration. The final structure of the
communication protocol considering the three mentioned
approaches is visualized in Fig. 3. Each route to be transmitted
is converted into this structure and at the same time
compressed by applying the three methods.
The first 26 bytes represent a header, which saves
information of the Route object and some additional meta
information used for compression like the
InitialNavigationTimestamp, the PathElementCount and the
PathElementIdsOffset. The InitialNavigationTimestamp is
needed by the Delta-Encoding as a start value. The
PathElementCount and the PathElementIdsOffset are
required since after compressing the Ids and the
NavigationTimeStamps with the Group-Var-Int-Encoding
the block size is variable. The header is followed by
information about the PathElements, which are stored in

arrays for best compression rate, and save the
DrivingDirections the Ids and the NavigationTimestamps of
the PathElements.

C. Further compression improvements

A simple way to improve the quality of an algorithm is
applying two or more algorithms to the same problem. This
is also applicable for the compression of data, by combining
the advantages of different approaches to reach a better
compression. However, a potential improvement can only be
reached in case of the compression ratio since the coding and
decoding times increase with the number of the applied
algorithms.

Nevertheless, we evaluated the combination of the
Deflate and the LZMA with the Gravity MDT algorithm to
get the most out of the compression. The results are shown in
Table I and in Fig. 4 and Fig. 5, and will be discussed in the
next Section.

V. EVALUATION

The evaluation of the quality of the presented
compression algorithms has been determined using JUnit
tests. For this purpose we generated a set of Route objects
with random data. To be able to generate realistic data, the
random generator has been restricted. In case of the
NavigationDuration we used a Gaussian distribution with a
mean value of 30 which represents the average duration in
seconds to navigate a RoadElement retrieved from the used
Navteq maps [7]. In addition, the generated number has an
upper limit of 3600 (1 hour), so that the range of values for
the NavigationDuration is [0, 3600].

Fig. 4 shows the determined compression ratios of the
different algorithms and combinations of them. The x-axis
shows the amount of PathElements of a random generated
Route, and the y-axis shows the arithmetic mean over all
generated Routes (100,000) with x PathElements. The lowest
compression ratio of 1.8 has been reached by the Deflate
algorithm (blue). This corresponds to a space saving of 45.2%
(see Table I). The LZMA algorithm (yellow) reached a
compression ratio of 2 which corresponds to a space saving
of 53%. The evaluation of the Gravity-MDT algorithm
(green) showed a compression ratio of 3.1 and therefore a
compression of 68% which is an improvement of 15%
compared to the LZMA algorithm.

Figure 3. Communication protocol structure

Figure 4: Compression ratios

4Copyright (c) IARIA, 2015. ISBN: 978-1-61208-434-3

VEHICULAR 2015 : The Fourth International Conference on Advances in Vehicular Systems, Technologies and Applications

As expected, the combined algorithms showed the highest
compression ratios, where the LZMA combined with the
Gravity MDT algorithm (red) reached the best space saving
of 74%.

Taking a look at the encoding times of the different
algorithms in Fig. 5, with the amount of PathElements on the
x-axis and the coding time in milliseconds on the y-axis, the
LZMA (yellow) followed by the Deflate (blue) algorithm
achieved the slowest encoding times and showed the fastest
increase depending on the amount of PathElements. The
fastest algorithm regarding the encoding times reached the
Gravity-MDT algorithm (green), followed by the Deflate
combined with the Gravity-MDT algorithm (brown). Since in
the combined approaches the Gravity-MDT algorithm is
executed first, the reduced amount of bytes to compress lead
to very good encoding times for the Deflate-Gravity-MDT
combination.

Considering these results for the compression ratio and

the encoding times, we decided to use the combination of the
Deflate with the Gravity-MDT algorithm in the
communication protocol. Despite the slightly inferior results
compared to the best algorithms in the two categories, the
approach represents the best choice considering both
characteristics.

VI. CONCLUSION AND FUTURE WORK

Current mobile communication technologies, especially
the IEEE 802.11p standard enable a broad field of new
applications and services to improve different aspects of the
current road traffic. However, the IEEE 802.11p standard
with its current characteristics is not completely suitable for
all future applications, and so it is not for the Clustered
Swarm algorithm. As the quality of the load balancing
performed by the Clustered Swarm algorithm is highly
depending on the amount and the actuality of the transmitted
PathElements, it is crucial that within the short
communication window as much information as possible is
transmitted and that the integrity of the data is guaranteed. To
achieve this goal, we build a communication protocol that
compresses the routes to be transmitted in a way that one
route fits into one 1500 bytes sized frame. Since every
received frame contains complete and usable data, the
communication is failsafe without the need of additional
integrity checks, even if a package is lost.

Beside these advantages, the current implementation of
the protocol offers some possibilities for improvement. The
longer the route, the more PathElements and so the more bytes
to transmit, regardless the compression ratio. If a route
exceeds the size of 1500 bytes, at the moment the route would
be truncated and thereby incomplete. However, not all
PathElements are really necessary for all vehicles in range. A
vehicle driving in the opposite direction does not need the
information where all other vehicles intend to go. It only needs
information about a smaller area regarding its position and its
target. To adapt the transmitted information to the receivers’
needs and at the same time reduce the amount of
PathElements, we started elaborating a filtering mechanism.
Based on the position of the receiver and a defined radius, the
sender transmits only PathElements within the given
perimeter. Because this directly affects the quality of the
calculated routes and hereby the load balancing, the filter will
be evaluated to guarantee a maximum reduction for each route
to fit into the 1500 bytes while still maintaining the impact on
the traffic. Nevertheless this approach also implies that most
routes will not need all the 1500 available bytes so that the
capacity of one frame is not fully used. Basically, this
corresponds to a knapsack problem where a subset of routes
needs to be chosen without exceeding the size of 1500 bytes.
Since the communication represents the key mechanism of the
Clustered Swarm algorithm, a suitable solution for the
knapsack problem is already in development to get the most
out of it.

References

[1] G. R. Hiertz, D. Denteneer, L. Stibor, Y. Zang, X. P. Costa,

and B. Walke, "The IEEE 802.11 universe", Communications
Magazine, IEEE (Volume:48, Issue: 1), pp. 62-70, January
2010.

[2] C. Stolcis and E. Pfannerstill, “Clustered Swarm – A live
swarm based traffic load balancing algorithm against traffic
jams”, “in press”, ITS World Congress, Bordeaux 2015.

[3] Leutzbach, W., “Introduction into the theory of traffic flow”,
Springer Berlin, 1972.

[4] J. Kennedy and R. C. Eberhart, „Swarm Intelligence“, Morgan
Kaufmann, March 1997.

[5] „Motor vehicle traffic in Germany 2010 (KiD 2010)“, Federal
Ministry of Transport, April 2012.

[6] „Vehicle registrations, inventory of motor vehicles and
vehicle trailers by town”, Federal Ministry of Transport,
January 2014.

[7] „GDF 3.0 Reference Manual v42.0“, Nokia, April 2012.

[8] D. Jiang and L. Delgrossi, "IEEE 802.11p: Towards an
International Standard for Wireless Access in Vehicular
Environments", Vehicular Technology Conference, May
2008, pp. 2036-2040.

[9] “IEEE Std. 802.11-2007, Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY)
specifications”, Institute of Electrical and Electronics
Engineers Inc., 2007.

[10] K. R. Fall and W. R. Stevens, “TCP/IP Illustrated”, Volume
1, The Protocols, Second Edition, Addison Wesley 2012.

[11] D. Murray, T. Konziniec, K. Lee, and M. Dixon, “Large
MTUs and Internet Performance”, IEEE 13th International
Conference, June 2012, pp. 82-87.

Figure 5: Compression encoding times

5Copyright (c) IARIA, 2015. ISBN: 978-1-61208-434-3

VEHICULAR 2015 : The Fourth International Conference on Advances in Vehicular Systems, Technologies and Applications

[12] S. Kreft and G. Navarro, “LZ77-like Compression with Fast
Random Access”, Data Compression Conference (DCC),
2010, pp.239-248.

[13] P. Deutsch, “DEFLATE Compressed Data Format
Specification”, version 1.3 in RFC 1951, May 1996.

[14] E. Leavline and D. Singh, “Hardware Implementation of
LZMA Data Compression Algorithm”, International Journal
of Applied Information Systems (IJAIS), March 2013, pp. 51-
56.

[15] J. Dean, “Challenges in building large-scale information
retrieval systems: invited talk.”, Proceedings of the Second
ACM International Conference on Web Search and Data
Mining (WSDM), 2009.

[16] A. Stepanov, A. Gangolli, D. Rose, R. Ernst, and P. Oberoi,
“SIMD-Based Decoding of Posting Lists in CIKM”,
International Conference on Information and knowledge
management, 2011, pp. 317-326.

6Copyright (c) IARIA, 2015. ISBN: 978-1-61208-434-3

VEHICULAR 2015 : The Fourth International Conference on Advances in Vehicular Systems, Technologies and Applications

