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Abstract—Within the next few years, cars will be able to 

communicate with their surrounding infrastructure, with other 

cars and even drive autonomously. This allows a new generation 

of applications to improve security and a better use of space and 

resources. One of these applications is represented by the 

Clustered Swarm algorithm. The Clustered Swarm algorithm is a 

live swarm based algorithm for vehicles which pursues the aim 

of a global traffic optimisation by performing a massive load 

balancing of all road participants to improve the individual 

routes of each user. Hereby it represents a potential solution for 

the traffic jam problem. This paper introduces the current 

communication protocol used by the Clustered Swarm algorithm 

which is designed to ensure the integrity of the data, as well as 

to reduce the amount of transmitted data to enable the use of 

current and future vehicle-to-vehicle technologies such as the 

IEEE 802.11p standard. 

Keywords-IEEE802.11p; data compression; swarm 
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I.  INTRODUCTION 

Current technologies in the area of direct vehicle-to-
vehicle communication, most notably the IEEE 802.11p [1] 
standard, have some limitations regarding their bandwidth 
and their data rate. Especially for applications where a large 
amount of data needs to be transmitted to many 
communication partners within a short time window, the 
current characteristics of the 802.11p standard are 
insufficient. And so they are for the Clustered Swarm 
algorithm [2], which uses direct vehicle-to-vehicle 
communication to perform a load balancing of all road 
participants. For best communication results, regarding the 
amount of data transmitted, the Clustered Swarm algorithm 
uses its own communication protocol, which will be 
presented in the present paper. 

In Section II, we will give a short overview of the 
Clustered Swarm algorithm for a better understanding, 
followed by the used communication model in Section III and 
the communication protocol in Section IV. Finally in Section 
V, we will discuss the results and in Section VI, we will give 
a brief outlook for our next steps regarding further 
improvements of the communication protocol to comply 
even more with the requirements of the Clustered Swarm 
algorithm. 

II. CLUSTERED SWARM 

Looking at traffic on a microscopic level, traffic consists 
of many individual participants. But during route calculation, 
only the personal and individual aims of the different drivers 
are considered, which are mostly represented by reaching the 
destination as fast as possible. So, current navigation systems 
perform an individual local optimisation during route 
calculation. Nevertheless the current traffic situation is 
considered, the resulting route is only optimised for the single 
user. If too many local optima are too similar in their 
characteristics, this can have negative effects on the whole 
traffic, particularly in combination with general traffic 
influencing measures. If too many drivers take the same 
diversion because they follow their navigation systems, a new 
traffic jam can form very fast. Many local optima can 
therefore counteract a common global optimum under some 
circumstances. 

The Clustered Swarm algorithm copes with this deficiency 
by distributing all participating vehicles on the entire road 
network based on its capacity without the need of a central 
instance. In this case, the capacity of a road corresponds to 
the maximum traffic density �

���
 [3], which is the amount 

of vehicles on the road at the same time, causing a congestion. 
Depending on the amount of high weight vehicles and the 
type and construction state of a road, �

���
 is typically about 

150 vehicles/km [3]. This relation between the traffic density 
and the traffic speed is explained in the Fundamental 
Diagram of Traffic Flow shown in Fig. 1 and expressed in a 
few words, the more vehicles the less the traffic speed. The 
Clustered Swarm algorithm takes advantage of this 
dependence between the amount of vehicles and the traffic 
speed to perform the load balancing.  

Figure 1. The Fundamental Diagram of Traffic Flow [3] 

1Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-434-3

VEHICULAR 2015 : The Fourth International Conference on Advances in Vehicular Systems, Technologies and Applications



To accomplish the desired Emergent Behaviour [4] 
following the Clustered Swarm algorithm, each vehicle 
aggregates the estimated traffic density of the road network 
by exchanging its own route and all other considered routes 
every time a vehicle is in reach. The first time a vehicle 
communicates it can only transmit its own route but receives 
a number of routes from its counterparts. The next time it 
encounters another vehicle, it transmits its own route and all 
newly acquired routes. Thereby, it can help spreading 
knowledge within the swarm, which will be used for route 
calculation to adapt the routes to the estimated traffic density. 

III. COMMUNICATION MODEL 

The key function of the Clustered Swarm algorithm is the 
knowledge and use of the estimated traffic density of the road 
network. As this information needs to be aggregated, 
communicated and used in route calculation, a common 
model is needed to meet the requirements of the three main 
tasks, especially for communication. As already mentioned, 
vehicles try to transmit all considered routes. So, the main 
object is the Route, which at the same time is the result of the 
route calculation. Each Route consists of different 
PathElements, which decompose the Route into different 
segments and conform to the edges of the graph used for route 
calculation. Fig. 2 shows both objects. 

The attributes of the Route object have the following 
purpose: 

• VehicleId: Identifies the vehicle to which the route 
belongs. 

• VersionNumber: Current version of the Route. 
Each time a vehicle recalculates its own route the 
version number is incremented. 

• NavigationDuration: Is the total duration the 
vehicle needs to drive on its route. 

The attributes of the PathElement object have the 
following purpose: 

• Id: Identifies the road within the digital road map 
used for route calculation. 

• NavigationTimestamp: Represents the time stamp 
of the day, when the road will be navigated. 

• DrivingDirection: Stores the direction in which the 
vehicle will drive on that road segment. 

• NavigationDuration: Is the duration the vehicle 
needs to drive on that road segment. 

 
With the information of the PathElements, and therefore 

the route of a vehicle, each vehicle can estimate how many 
vehicles will use a road at a given point in time and with this 

information the vehicle can adapt its own route if necessary 
due to high traffic density on certain roads [2]. 

 
Assuming that only 20% of all vehicles will be able to use 

the Clustered Swarm algorithm, in the near future in Berlin 
154,000 vehicles will communicate using a vehicle-to-
vehicle technology (in 2012 60.9 % of all registered vehicles 
in Germany were on the road on working days [5]; Berlin has 
1.1 million registered vehicles [6], so, each working day 
770.000 vehicles are on the road). If each vehicle 
communicates with only 50% of all possible vehicles capable 
of Clustered Swarm, each vehicle would save and 
communicate a maximum of 77,000 routes. A typical route 
in inner cities has an average amount of 80 road segments 
(assuming an average length of one trip of 12.3 km [5] and 
an average length of one road segment of 153.8m for 
Germany [7]), which corresponds to the PathElement. Each 
PathElement has a size of 17 bytes resulting in an average 
size of 1378 bytes for a Route. In a best case scenario, where 
the maximum transfer rate of 27 Mbit/s of the IEEE 802.11p 
standard [8] could be used (which is unlikely), it would take 
about 30 seconds to transmit the 101 MB of data. In realistic 
scenarios, where the data rate decreases due to the amount of 
parallel communication partners, the distances between them, 
as well as other interferences [8] a transfer of the huge 
amount of PathElements would not be guaranteed. As the 
vehicles move during communication, the time window for 
communication could limit the amount of data transmitted 
even more. This means that there is a big discrepancy 
between the amount of data to transmit to ensure the 
functionality of the Clustered Swarm algorithm and the 
transmission rate of the 802.11p standard. To cope with these 
limitations, we have implemented a communication protocol 
which reduces the amount of data to be sent while ensuring 
the integrity of the transmitted data, so that each received data 
packet contains complete information usable by the 
Clustered Swarm algorithm. 

IV. COMMUNICATION PROTOCOL 

A. Integrity 

As the IEEE 802.11p standard is situated in the data link 
layer of the OSI model [9], the used protocol for transmission 
has to be defined by the applications using the IEEE 802.11p 
standard. Given the limitations of the IEEE 802.11p standard 
compared to the requirements of the Clustered Swarm 
algorithm, a communication protocol is needed, which allows 
to transmit as much information as possible within a short time 
window ensuring that received data is usable by the receiver. 
The integrity of the data is especially important in this case. 
Since the amount of transmitted data is restricted by the short 
communication time of two vehicles passing by each other, it 
is even more necessary that the actual transmitted data can be 
used by the receiver. That means, the information needs to be 
sent in a way that each received data packet contains sound 
data independent of other data packets and thereby usable by 
the Clustered Swarm algorithm. 

In common communication protocols (e.g., TCP/IP), the 
data to be transmitted is distributed among different packages 

Figure 2. Communication model of the Clustered Swarm algorithm 
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depending on the Maximum Transfer Unit (MTU) [10]. By 
specifying the Maximum Transfer Unit size for a network 
compatible device, including header and protocol-meta-
information, the MTU defines the amount of data for one 
frame [11]. Data packages exceeding the size defined by the 
MTU are fragmented and distributed over multiple frames. In 
order to obtain complete and usable data this procedure 
requires all frames to be received. If one frame is lost, all 
others have to be resent [10]. This behaviour can lead to major 
radio transmission interferences, wherefore a fragmentation 
should be avoided to meet the requirements of the Clustered 
Swarm algorithm. 

As described in Section III, the information transmitted by 
each vehicle is represented by the Route object. Since one 
Route represents a complete set of data usable by the receiver, 
we decided to follow a “one route one frame” approach to 
guarantee data integrity. This means, one data packet 
represented by one Route should completely fit into the 
payload of one transmitted frame. To provide enough space to 
hold a Route and at the same time avoid too much data loss in 
case of a communication failure, we use a size of 1500 bytes 
as the maximum data packet size. Also, the fact that this size 
represents the standard for transmitting data over Ethernet 
since over 30 years, fortified our decision [10]. If a frame is 
lost, it does not affect other frames and hereby other Routes, 
so that the small time window for communication can be used 
in the best possible way. 

Since the average route size is 1378 bytes (see Section III), 
longer routes would not fit into the 1500 bytes. To be able to 
store even long routes, a reduction of the data was needed. 

B. Compression 

Thinking about possibilities to reduce the amount of data, 
a suggestive approach is the compression of the data. Many 
different algorithms exist (e.g., LZ77 [12], Deflate [13] and 
LZMA [14]), which are available for various programming 
languages and allow an easy integration into own applications. 
But in our special case, the existing algorithms showed low 
compression ratios (see Table I and Fig. 4), too low for the use 
in the Clustered Swarm algorithm. This mostly relies on the 
“black box” approach of existing compression algorithms 
where no semantic information about the data is considered 
[14]. As the structure of the communication model introduced 
in Section III offers many possibilities to reduce the data on a 
logical level, we developed our own compression algorithm 
called Gravity MDT Compression. Basically, the Gravity 
MDT Compression (Group-Var-Int minimal data 
compression) combines three approaches to reduce the 
amount of data without changing its content: Group-Var-Int-

Encoding [15], Delta-Encoding [14] and Elimination of 

redundancy. 
 

The Group-Var-Int-Encoding was developed by 
Google Inc. on the basis of the Var-Int-Encoding [16] which 
stands for “variable integer” and represents an integer data 
type that only occupies as many bytes as needed to represent 
the value. For example, a 32-Bit Integer with the value 1 only 
needs 1 byte instead of 4 bytes to be stored.  

Since the normal Var-Int-Encoding stores some extra 
information to be able to decompress the value, the maximum 
number of bits to be used for storing a value is 30 [16]. The 
Group-Var-Int-Encoding adds an additional byte to store this 
extra information which allows to use the full 32-bit-integer 
value range. The Gravity MDT Compression uses the Group-
Var-Int-Encoding to compress and store the Ids and the 
NavigationTimestamps of the PathElements.  

 
The Delta Encoding or differential encoding is a simple 

data compression method used to reduce correlating or 
sequential data [14]. The idea behind the delta encoding is 
that not the information itself is stored but the difference from 
an initial state to the current state. Table II shows the Delta-
Encoding applied to sample Ids. So, the Delta Encoding helps 
to trim the possible big integer values to much smaller values. 
As the compression ratio of the Group-Var-Int-Encoding 

TABLE II               DELTA ENCODING APPLIED ON SAMPLE PATHELEMENT IDS 

Encoding 
Id 

PathElement #1 

Id 

PathElement #2 

Id 

PathElement #3 

Id 

PathElement #4 

Id 

PathElement #5 

none 5890234 5839494 5839274 5897947 5897366 

Delta-

Encoding 
5890234 50740 220 -58673 581 

 

TABLE I. SPACE SAVINGS OF DIFFERENT COMPRESSION ALGORITHMS 
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increases with the decreasing size of the values to store, the 
combination of the Delta-Encoding with the Group-Var-Int-
Encoding allows to reach a very high compression ratio. In 
the Gravity MDT Compression algorithm, it is also used to 
store the Id and NavigationTimestamp of the PathElements. 

 
Elimination of redundancy: Taking a closer look at the 

communication model, it turns out that the PathElements save 
some redundant information given by the NavigationDuration 
and the NavigationTimestamp. Both values are needed by the 
Clustered Swarm algorithm but for communication, one of the 
values becomes obsolete as both can be calculated considering 
the other. Since the PathElements are stored in the order they 
are driven during route guidance, the chronological 
accumulation of the NavigationDuration allows the 
calculation of the NavigationTimestamp of all PathElements 
and through the difference of the NavigationTimestamps of 
two following PathElements the NavigationDuration can be 
calculated. Also, considering the advantages of the Group-
Var-Int-Encoding and the Delta-Encoding, we decided to 
store the NavigationTimestamps to calculate the 
NavigationDuration. The final structure of the 
communication protocol considering the three mentioned 
approaches is visualized in Fig. 3. Each route to be transmitted 
is converted into this structure and at the same time 
compressed by applying the three methods. 
The first 26 bytes represent a header, which saves 
information of the Route object and some additional meta 
information used for compression like the 
InitialNavigationTimestamp, the PathElementCount and the 
PathElementIdsOffset. The InitialNavigationTimestamp is 
needed by the Delta-Encoding as a start value. The 
PathElementCount and the PathElementIdsOffset are 
required since after compressing the Ids and the 
NavigationTimeStamps with the Group-Var-Int-Encoding 
the block size is variable. The header is followed by 
information about the PathElements, which are stored in 

arrays for best compression rate, and save the 
DrivingDirections the Ids and the NavigationTimestamps of 
the PathElements. 

C. Further compression improvements 

A simple way to improve the quality of an algorithm is 
applying two or more algorithms to the same problem. This 
is also applicable for the compression of data, by combining 
the advantages of different approaches to reach a better 
compression. However, a potential improvement can only be 
reached in case of the compression ratio since the coding and 
decoding times increase with the number of the applied 
algorithms. 

Nevertheless, we evaluated the combination of the 
Deflate and the LZMA with the Gravity MDT algorithm to 
get the most out of the compression. The results are shown in 
Table I and in Fig. 4 and Fig. 5, and will be discussed in the 
next Section. 

V. EVALUATION 

The evaluation of the quality of the presented 
compression algorithms has been determined using JUnit 
tests. For this purpose we generated a set of Route objects 
with random data. To be able to generate realistic data, the 
random generator has been restricted. In case of the 
NavigationDuration we used a Gaussian distribution with a 
mean value of 30 which represents the average duration in 
seconds to navigate a RoadElement retrieved from the used 
Navteq maps [7]. In addition, the generated number has an 
upper limit of 3600 (1 hour), so that the range of values for 
the NavigationDuration is [0, 3600]. 

Fig. 4 shows the determined compression ratios of the 
different algorithms and combinations of them. The x-axis 
shows the amount of PathElements of a random generated 
Route, and the y-axis shows the arithmetic mean over all 
generated Routes (100,000) with x PathElements. The lowest 
compression ratio of 1.8 has been reached by the Deflate 
algorithm (blue). This corresponds to a space saving of 45.2% 
(see Table I). The LZMA algorithm (yellow) reached a 
compression ratio of 2 which corresponds to a space saving 
of 53%. The evaluation of the Gravity-MDT algorithm 
(green) showed a compression ratio of 3.1 and therefore a 
compression of 68% which is an improvement of 15% 
compared to the LZMA algorithm. 

 
 

Figure 3. Communication protocol structure 

Figure 4: Compression ratios 
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As expected, the combined algorithms showed the highest 
compression ratios, where the LZMA combined with the 
Gravity MDT algorithm (red) reached the best space saving 
of 74%. 

Taking a look at the encoding times of the different 
algorithms in Fig. 5, with the amount of PathElements on the 
x-axis and the coding time in milliseconds on the y-axis, the 
LZMA (yellow) followed by the Deflate (blue) algorithm 
achieved the slowest encoding times and showed the fastest 
increase depending on the amount of PathElements. The 
fastest algorithm regarding the encoding times reached the 
Gravity-MDT algorithm (green), followed by the Deflate 
combined with the Gravity-MDT algorithm (brown). Since in 
the combined approaches the Gravity-MDT algorithm is 
executed first, the reduced amount of bytes to compress lead 
to very good encoding times for the Deflate-Gravity-MDT 
combination. 

 
Considering these results for the compression ratio and 

the encoding times, we decided to use the combination of the 
Deflate with the Gravity-MDT algorithm in the 
communication protocol. Despite the slightly inferior results 
compared to the best algorithms in the two categories, the 
approach represents the best choice considering both 
characteristics. 

VI. CONCLUSION AND FUTURE WORK 

Current mobile communication technologies, especially 
the IEEE 802.11p standard enable a broad field of new 
applications and services to improve different aspects of the 
current road traffic. However, the IEEE 802.11p standard 
with its current characteristics is not completely suitable for 
all future applications, and so it is not for the Clustered 
Swarm algorithm. As the quality of the load balancing 
performed by the Clustered Swarm algorithm is highly 
depending on the amount and the actuality of the transmitted 
PathElements, it is crucial that within the short 
communication window as much information as possible is 
transmitted and that the integrity of the data is guaranteed. To 
achieve this goal, we build a communication protocol that 
compresses the routes to be transmitted in a way that one 
route fits into one 1500 bytes sized frame. Since every 
received frame contains complete and usable data, the 
communication is failsafe without the need of additional 
integrity checks, even if a package is lost. 

Beside these advantages, the current implementation of 
the protocol offers some possibilities for improvement. The 
longer the route, the more PathElements and so the more bytes 
to transmit, regardless the compression ratio. If a route 
exceeds the size of 1500 bytes, at the moment the route would 
be truncated and thereby incomplete. However, not all 
PathElements are really necessary for all vehicles in range. A 
vehicle driving in the opposite direction does not need the 
information where all other vehicles intend to go. It only needs 
information about a smaller area regarding its position and its 
target. To adapt the transmitted information to the receivers’ 
needs and at the same time reduce the amount of 
PathElements, we started elaborating a filtering mechanism. 
Based on the position of the receiver and a defined radius, the 
sender transmits only PathElements within the given 
perimeter. Because this directly affects the quality of the 
calculated routes and hereby the load balancing, the filter will 
be evaluated to guarantee a maximum reduction for each route 
to fit into the 1500 bytes while still maintaining the impact on 
the traffic. Nevertheless this approach also implies that most 
routes will not need all the 1500 available bytes so that the 
capacity of one frame is not fully used. Basically, this 
corresponds to a knapsack problem where a subset of routes 
needs to be chosen without exceeding the size of 1500 bytes. 
Since the communication represents the key mechanism of the 
Clustered Swarm algorithm, a suitable solution for the 
knapsack problem is already in development to get the most 
out of it. 
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