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Abstract— This paper provides a new way of handling results 

related to safety algorithms used in urban area, in an 

intersection network. It denounces the waste of computing 

resources granted to run those algorithms while most mobile 

entities targeted may be detected several times during their 

journey through multiple interconnected intelligent 

intersections. A new approach is proposed, mixing detection 

algorithms and communications between intersection in order 

to reinforce consecutive detections of the same vehicles at 

different places. Experimentation in simulated environment 

leveraging a vehicular simulator called SCANeR Studio give 

some payoff on its performances: some improvements relative 

to the precision of vehicle detections but also a slight shift in 

detected position that may be corrected with an optimized data 

fusion algorithm. 

Keywords-vehicular simulation; sensors; communication; 

data fusion; prediction. 

I. INTRODUCTION 

Road safety have been considered primarily as a 

responsibility of each driver for a long time. Yet evolution 

of new vehicle technologies brought a renewal in this vision 

and allowed the development of new systems to assist 

drivers in their task: Advanced Driver Assistance Systems 

(ADAS) [1]. This possibility was granted thanks to the use 

of multiple on-board sensors and higher computational 

capabilities.  

A similar trend was followed for road infrastructures 

and contributed to the development of new prevention 

techniques [2]. It is shown in [3] that these techniques 

correspond mainly to the analysis of vehicle and driver 

behavior and are based on detection, classification and 

tracking of different objects. These objects are evolving on a 

monitored location to prevent potentially dangerous 

situations and subsequently collisions and accidents. These 

new approaches oriented the choice of the different sensing 

systems to deploy on infrastructures, depending on the 

capabilities of the sensors and on the configuration on the  

chosen infrastructure itself. With more and more sensors 

involved to ensure better knowledge on the monitored area, 

data fusion has become a necessity. In [4], models, 

architecture, opportunities, and applications of data fusion 

among Intelligent Transport Systems (ITS) are described 

and show promising results. 

Monitoring an intersection allows flexibility and the 

choice of sensors may be done by considering both the 

environmental factors and the particularities of the 

intersection. The concept introduced in this work offers a 

solution customizable to fit any road network and aims to 

perform with any type of sensors. In this regard, scenarios 

build in the chosen simulator are simple enough to 

accommodate all kind of sensors. Results presented in the 

review [5] outlined the good performances and relatively 

low-cost of camera-based solutions thanks to the progress of 

computer vision techniques. Although, their implementation 

requires most of the time the application of deep learning 

techniques. However, in order to keep the problem to a 

simpler state, other technologies are considered, such as: 

Radio Detection And Ranging (RADAR) or Light Detection 

And Ranging (LiDAR). Shirazi et al. in [3] give additional 

information on the trending sensors used for entity detection 

around intersections. While showing once again the potential 

of cameras, it also reveals comparable performances for 

LiDARs and rises only one main drawback: its high cost. 

However, this represents no obstacle for this project as 

simulations allow easy implementation without 

consideration of the cost. LiDAR will then be the chosen 

type of sensor at this stage. 

Some more work has been exposed in [6], focused on 

the use of Dedicated Short-Range Communication (DSRC) 

and especially Vehicle-To-All (V2X) communications. It 

shows the potential of DSRC in intersection safety, as well 

as the implication of countries in its development. V2X 

demonstrates strong results while associated with the 

sensing equipment’s that can be deployed in the 

infrastructure. Connected vehicles are considered as a highly 

potential step of the evolution of cars which may appear 

progressively, sooner than any automated driving vehicles 

from medium to high autonom level. Including 

communication technologies in any upcoming road safety 

solution should be a must. 
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Advances in infrastructure technologies have also led 

to improvements in traffic management through intersection 

cooperation [7], enabled by vehicular communications. Once 

again, some very promising solutions have been presented, 

leading to new thoughts on the future of signalization. 

However, while independently showing very good results, 

intersection cooperation and vehicular safety analysis have 

not gathered as much interest and very few works have been 

done in the preservation of analysis results. While powerful 

algorithms run on a single intersection to ensure its safety, 

once any mobile entity leaves this intersection, all gathered 

data is lost and next intersections will have to execute 

similar processes to infer to the same information for its self-

use. While taking advantage simultaneously of infrastructure 

equipped with multiple sensors, DSRC and data fusion 

techniques, this paper introduces the idea of shared data 

through an example of intersection network. For this 

purpose, a testing environment has been simulated on the 

vehicular simulator SCANeR Studio from AVSimulation 

where different scenarios were run to gather data from 

dedicated sensors, then processed in external models 

synchronized with the simulator. 

Section 2 explains the new concept presented in this 

document. Then, Section 3 gives more details about the 

mathematical models used. Section 4 introduces the system 

implemented and the corresponding scenarios put together to 

test the performances of the system. And eventually, a fifth 

section gives hints for improvements before the conclusion. 

II. SYSTEM AND DATA SOURCES 

This section presents the overall idea of the described 

system along with the different data sources handled. 

A. General Idea 

The concept presented here is about data exchange 

between road infrastructures. While equipped with a set of 

sensors, each intersection can produce some knowledge 

about the vehicular situation at its surroundings. These data 

are valuable and require important resources to be generated 

but are also generally thrown away as soon as the detection 

is lost. Thus, the idea is to keep this awareness and to share 

it with other intersections in order to simulate sensor inputs 

for connected intersections. Based on this, a detection and 

prediction process are put together to anticipate the arrival of 

the travelling announced vehicle. In this paper, the 

performance of such a system are questioned and results are 

showed. The intention is to create an anonymous track of 

vehicles on the road, while alleviating the computed 

detection task of each intersection. 

B. Data sources 

Sensors chosen to gather data at intersection are 

DSRC and LiDARs. Both represent popular sensors adapted 

to the automotive industry. They can get data about all kind 

of vehicles with a stronger confidence for connected 

vehicles. 

1) DSRC 

DSRC is a vehicular communication protocol based 

on broadcasting messages, called Basic Safety Messages 

(BSM), to inform connected entities within the 

communication range about vehicles intentions [8]. It 

participates in the creation of an ad hoc network of vehicles, 

exchanging data in order to evolve in a secure environment. 

Among the information contained in every BSM, the 

position of the emitting vehicles, its current speed and 

acceleration are the ones that are the most interesting for this 

work. By gathering those data, it will be possible to keep an 

awareness of all connected vehicles present at the 

intersection. 

An important note to make here is that this paper is 

not focused on disputing communication scheme. This point 

may be addressed in future works. That’s why, at this point, 

all communications are assumed perfect. 

2) LiDAR 

LiDAR is an active light-sensitive sensor that allows 

detection of obstacles in a specific field of view. Its strength 

rests on its ability to give accurate information of obstacle 

detected up to hundreds of meters [9]. It has the advantage 

of providing distance data and performing by day or night. 

But it may be affected by extreme weather (heavy rains, 

fogs) and some reflective surfaces. 

3) Intersection data 

Intersection data corresponds to the addition we are 

putting forward in this paper. It corresponds to the shared 

information that each intersection will send to other adjacent 

intersections. These data are based on the prior output of any 

detection and classification algorithm achieved by other 

sensors: the LiDAR and DSRC in this case. 

From its knowledge, any intersection will be able to 

determine leaving vehicles with their status: exit used, last 

speed and acceleration measured. It will then inform 

connected intersections of the arrival of a new vehicle. Upon 

reception of the intersection message, the target 

infrastructure is expected to build a continuous prediction 

model corresponding to the evolution of the anticipated 

vehicle until it appears in the field of detection of its own 

sensors (if it appears). 

A big interest of this new element relies on the fact 

that it can convey any type of data for any detected object 

that the intersection is capable of detecting. With LiDARs 

and DSRC chosen, each intersection should be able to detect 

any vehicle passing by the intersection, with a stronger 

belief in detection of connected vehicles. Although, 

intersections can only send data about vehicles monitored: it 

will not be able to predict the apparition of a newcomer. 
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III. MATHEMATICAL MODELS 

This section focuses on a description of the equations 

used in the processing of the data from each described 

sensor. 

A. Cluster and single detection 

1) LiDAR 

Simulated LiDARs in SCANeR Studio 1.7 return a 

matrix of all distances measured by each programmed beam 

including: obstacles: vehicles as well as roads and 

signalization sign. For the environment set in this simulation 

and to minimize the data processing task, a 375-beam 

configuration has been chosen. It corresponds to a matrix of 

15 rows and 75 columns, each beam separated by 3 degrees. 

This configuration ensures best processing performance but 

shows less accurate detections at long distance where beams 

are widely separate, increasing the detected position error. 

Two lidars, face to face, are monitoring each intersection as 

represented in Fig. 1. All measures returned are perfect. 

In the context of a static LiDAR placed at a known 

position, detecting new object 
L

C  in the environment can be 

made by taking a capture of the empty intersection 
Ref

C  and 

comparing each new capture 
c

C  with this reference 

(capture). 

L Refc
C C C= −  (1) 

This method works well in a simulated environment 

with a few possibilities of noise due to uncontrolled 

elements appearing in the scenario. Thus, to reduce these 

possibilities, a filter is required. In this case, where this 

problem is not specifically approached, a simple two-bound 

threshold is applied to guarantee that all detected objects 

may correspond to vehicles. From the resulting matrix 
L

C , 

we can retrieve clusters of active beams corresponding to 

detected obstacles. The isolation of each of these clusters, in 

each column of a new matrix LSC , allows the inference of 

listing spatial points forming each cluster. Hence, each 

cluster can be assimilated to a single center of gravity and its 

possible dimensions in final LiDAR detection matrix LD . 
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Where 
L,SC i

x , 
L,SC i

y  and 
L,SC i

z  are the coordinates of 

each point belonging to cluster i , respectively. 

2) DSRC 

Data returned by the DSRC correspond to position, 

speed and acceleration of connected vehicles. From this, a 

simple noise µ corresponding to GPS error (set to five 

meters) is applied to the perfect position returned by the 

system [10]. 

DSRC,
         

for [0, nb connected vehicle]

j

j j
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Pos

D v

a

j
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 
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with  and  (0, )

j

j j

j

x

Pos y P

z

= =

 
 
 
  

 (6) 

where
j

Pos  corresponds to the coordinates of the 

connected vehicle j , 
j

v  to its speed and 
j

a  to its 

acceleration. Lastly,   represents a white Gaussian noise 

with a covariance P  corresponding to the GPS location 

error. 
 

Figure 1. LiDARs field of view. 
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For synchronization purpose, BSMs are supposed to 

be all send at the same time and queued by the nearest 

intersections in communication range. Target intersection 

will then be able to build the current vehicle situation 

according to this input. 

3) Intersection data 

Intersection data depend on the result of the data 

fusion of all providing sources. Once this data fusion gives 

the current result, obstacles are located within the 

intersection and if some of them are flagged as leaving at a 

specific exit, then last fused data 
l

F  are sent to the 

corresponding intersection. 

           

for [0, nb leaving object]

l

l l

l

Pos

F v

a

l

=



 
 
 
  

 (7) 

Where 
l

Pos  correspond to the fused coordinate of 

leaving object l , 
l

v  to its last registered speed and 
l

a  to its 

last registered acceleration. 

The broadcasted data corresponds to the set of objects 

leaving the intersection at the specific exit. It mainly 

contains the moment of exit and, if available, the speed and 

acceleration of the object. This last data may not be 

accessible in the case of a non-connected vehicle, as no 

tracking is implemented for objects detected by LiDARs. 

Upon reception of any intersection data, the target 

intersection is expected to resort to a prediction model of the 

listed vehicles possibly incoming. At this stage, each 

intersection knows the position of each connected 

intersection, the configuration of the road section in between 

(topology and speed limit) and the last position and possible 

speed and acceleration of the departing object are known by 

the target intersection. 

For this simple scenario, the prediction part of a 

simple Kalman Filter is applied. In order to do so, the 

linearization of the vehicle dynamic is done by projecting 

the three Cartesian position coordinates to a single straight 

road between both involved intersections. In the case of this 

particular scenario topology, reducing the location to a one-

dimensional problem (represented by variable 
k

d ) is made 

by a compelling projection corresponding to the Manhattan 

distance (8) between the two involved intersections (with 

target intersection as origin). 

0
( )

l
d proj Pos=  (8) 

This projection gives a rather good estimate of the 

position of the vehicle during time but rests on the need of a 

mapping table. Then, the prediction part of the Kalman filter 

is applied with all known data. 

2

1 1

1

2
k k k k

k k k

t
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v v t a

− −

−


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= +  






 (9) 

Where 
k

d  corresponds to the distance remaining to 

the next intersection (based on the projection of the 

coordinate), 
k

v  corresponds to the predicted speed of the 

vehicle and 
k

a  to its acceleration. With the state vector 

being  
T

k k k
X d v=  with  

0 0

T

l
X d v= , we deduce the 

model, as follows: 

1k k
k k k

X F X B U−=  +   (10) 

with 
1

0 1
k

t
F


=
 
 
 

 as the state transition matrix and 

the control part corresponding to the acceleration influence 

and defined as follows: 

1
0   if speed limit

    otherwise

k

k

l

v
U

a

−
=

=


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 (11) 

2
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B
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 
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 (12) 

In (11), the acceleration is assumed to be constant 

until speed limit is reached. This acceleration corresponds to 

the last acceleration measured for the leaving vehicle 
l

a . 

The prediction part of the covariance matrix 
k

P  

according to the Kalman filter is then defined as: 

1
   

k k k k k
P F P F Q

−
=   +  (13) 

6

0with 10 . (2)P diag
−

=  (14) 

3
2

3 4
and 

2

2 4

Qk

t
t

t t
=

 
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 
  
  

 (15) 

Where 
k

Q  corresponds to the covariance matrix of the 

acceleration influence. Such that the final prediction model 

corresponds to: 
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1

1

k k k k k

k k k k k

X F X B U

P F P F Q

−

−

=  + 

=   +





 (16) 

For every returned state vector kX , it is possible to 

infer to the corresponding 
k

d  to the actual Cartesian position 

thanks to the projection table. 

B. Data fusion 

Data fusion is applied on three nodes, as in Fig. 2: 

- Between data from both LiDARs  

- Between data from LiDAR and intersection data 

(IT Data) 

- Between previous fused data and DSRC 

All three of these data fusion correspond to a data 

association processed with a method inspired from the 

covariance intersection method [11]. The principle is to get 

both the set of position and covariance matrix measured or 

predicted in detection methods above and trying to find the 

best match between each sensor to fuse. Covariance 

Intersection method states that: 

1 2

1 1 1

1 2pf p p
P w P w P

− − −
=  +   (17) 

1 2

1 1

1 2
1 2

( )f
pf p p

Pos P w P Pos w P Pos
− −

=    +    (18) 

Where iPos  corresponds to the Cartesian position of 

considered points and 
i

p
P  corresponds to the covariance 

matrix associated to iPos . All position measures are made 

relative to the center of the intersection processing the 

vehicle detected. The optimization problem, where 
k

w  must 

be computed, is not of interest in this situation. More simply, 

this same variable is estimated (19) with each covariance 

matrix from sensors to fuse (
1

p
P  and 

2
p

P ) and then the fused 

position ( fPos ) and covariance matrix (
pf

P ) are determined 

and compared to both initial positions ( 1Pos  and 2Pos ) to 

assess possibility of matching. 
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Where ( , )f kdist Pos Pos  corresponds to the Euclidean 

distance between the two position vectors and S  

corresponds to the set of all fused position vector verifying 

the condition in (19). 

An area estimation of each matching possibility 

( ( )( )lSA ) is then calculated and the wider area is retained as 

best match ( BM ). 

f,( ) kkBM S Pos= =  (22) 

( ) ( )where ( ) ( )k SS AA Max=  (23) 

f ,
lS( )and A( )= ( , )

l
P i i   (24) 

It is to be noted that each captured data frame is 

considered independent of the others. For this purpose, no 

tracking was implemented during active detection of mobile 

entities, except when the detected vehicle was considered as 

leaving the intersection. Region-based comparisons grant 

this distinction and trigger a tracking process where a 

Kalman Filter is used to follow leaving vehicles. 

IV. EXPERIMENT AND RESULTS 

This section depicts the configuration of the scenarios 

built to tests this system, the experiments conducted, and the 

results obtained. 

A. System presentation 

For the purpose of this article, a simulated 

environment has been built using the vehicular simulator 

SCANeR Studio from AVSimulation. This environment 

consists of a succession of three intelligent intersections 

highlighted in Fig. 3. While all these intelligent intersections 

are equipped with sensors, we focus the study on the 

intersection in the middle. The other intelligent intersections 

are assumed to host perfect sensors and only their detection 

outputs are sent to the monitored intersection. 
 

Figure 2. Data Fusion Scheme. 
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Figure 4. DSRC Entries and exits of each intersection. 

This simulated topography is based on the modern 

representation of urban road network with a Manhattan grid 

network. It also allows easier distance calculation when 

needed. However, the vehicle flow is limited to few vehicles 

compared to real urban scenarios where hundreds of vehicles 

may be present. This scenario will be used as an early stage 

of the concept introduced. 

All three of these intersections are identical and 

composed of four pairs of entries/exists following two axes, 

as shown in Fig. 4: north-south and east-west. Each of these 

entries is marked by a stop sign and contains two lanes: left 

lane allows only left turn while right lane allows all 

remaining other directions. 

The scenario also contains four vehicles of different 

dimensions driving within the intersections and following a 

specific pre-defined path assigned to each of them. 

For the processing part of each intersection, control 

models have been implemented externally to compute all 

exchanged data. Simulated environment and control models 

communicate through UDP and are synchronized so that 

reaction models depend on the vehicular simulator outputs. 

In this regard, these models are configured to ran at a faster 

rate than the simulator to efficiently process all data in due 

time. 

The physical platform is currently only composed of a 

Windows 10 computer running SCANeR Studio version 1.7. 

But this system has been thought so that it can be 

implemented on a real-time platform to perform Software-

In-The-Loop (SIL) based validation. Indeed, data exchange 

through UDP allows the communication with any external 

devices such as, for example, a real-time platform from 

Opal-RT Technologies. This would allow easy handling of 

any synchronization matter within the platform and ensures 

the access to greater computing resources for more complex 

systems. 

B. Experiments details 

Two main experiments will be realized to attest the 

performances of this system. First, the contributions of the 

new system will be observed through the comparison of the 

result of the data fusion with IT Data and with the initial 

output of the lidars data fusion. 

Second, as the main sensors are LiDARs and DSRC, 

the number of connected vehicles may have some effect on 

the performance of the system. For that reason, four 

scenarios are considered in Table 1. 

These scenarios can relate to the evolution of the 

vehicle population with time (DSRC penetration ratio), 

following the progress of the automotive industry. And, as a 

matter of fact, may show the relevance of the proposed 

system. 

Performance factors will correspond to the influence 

of the intersection data on the detection of vehicles entering 

the new intersection. For this analysis, comparison factors 

correspond to: 

- Position error of the detected vehicle compared to 

its true position; 

- Data covariance ratio between results of data fusion 

with and without Intersection Data. 

TABLE I. LIST OF SCENARIOS 

# Scenarios 

A Only connected vehicles 

B Number of connected vehicles greater than 50% 

C 50% of connected vehicles 

D Number of connected vehicles lesser than 50% 

 

 

Figure 3. Simulated environment with monitored intersections 

highlighted. 
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Three minutes long scenarios corresponding to the 

ones described in Table 1, are monitored. Each of these 

scenarios presents eleven intersection crosses by vehicles 

from the simulation, nine of them announced by other 

intersections. Details about detections made in main 

intersection are registered at each time and saved for 

processing, for a total of 12 GB of data. Next section 

presents a condensed study of this data, depending on the 

comparison factors chosen. 

C. Results and discussions 

From the first experiment, two graphics are generated. 

Fig. 5 presents the distance error between the real position of 

the vehicle and the detected position. Values from the result 

of IT-LiDARs data fusion are compared with LiDARs 

fusion. This measure is limited to each time that a fusion is 

operated with an IT Data and then occurred only when a 

vehicle from another intersection is coming in range of the 

target intersection.  

Fig. 5 shows that the fusion with IT Data tends to 

move detections away from their true position with some 

extreme cases as for the third successful fusion attempt 

where the resulting fusion comes from two separated 

vehicles detected by each sensors with a covariance large 

enough for the data fusion algorithm to consider it possible. 

However, the average distance error of the IT-LiDARs 

fusion results (counting the wrong fusion) remains around 

ten meters, still corresponding to a standard GPS error.  

On the other hand, Fig. 6 shows the ratio of 

covariance for the same detections as before, comparing 

results from the LiDARs fusion and results from IT-LiDARs 

fusion. It shows that in second case, the covariance is 

reduced in average by approximatively thirty percent. This 

implies a better precision of the detection even with a bigger 

distance error to the real position. The fusion error specified 

earlier can also be observed in this new graphic where the 

covariance ratio exceed one in value. Furthermore, another 

exceeding value can be observed which also corresponds to 

a fusion error. This gives hint of improvement for the 

algorithm. 

The second experiment focuses more on the study of 

the impact on the system of communicating vehicles. From 

it, we obtain both boxplots diagram in Fig. 7 and 8. In this 

case, all detections are considered, and pertinent data are 

summarized in presented graphs. 

Fig. 7 presents the distance errors between detected 

and real position of vehicles for each scenario described in 

Table 1. And Fig. 8 details the covariance ratio between the 

scenarios with IT Data and the ones without it. Results 

obtained allow to confirm the ones obtained in the previous 

experiment: slight distance shift of the detection position and 

better covariance ratio. Also, what is more interesting to 

notice here is the relative absence of changes between the  

 

Figure 5. Distance error between detections and real position. 

 

Figure 6. Covariance ratio between IT-LiDARs and LiDARs Data. 

 

Figure 7. Distance errors between detected and real vehicles for each 

described scenarios – with and without Intersection Data. 

 

Figure 8. Covariance ratio between results with Intersection Data and 

without for each scenarios. 
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different scenarios. From this observation, we can conclude 

that the system is quite robust against the variation of 

communicating vehicles and allow to perform a relatively 

more precise detection of all vehicles in the vicinity of the 

intersection. 

The scenario presented for this system is simple and 

does not take into consideration all variations that may 

happen in most real-life scenario: vehicles driving through 

the road network may leave at any moment without any 

warnings, stop in a place between two intersections or even 

face any sort of possible obstacles that may slow down its 

progression. All those possible outcomes will have an 

impact on the system, resulting in the loss of the data 

gathered about this vehicle or its mix with other data from 

another vehicle circulating on the same road sections. The 

first case does not represent much trouble as following 

detection of the vehicle will only be considered as new. 

However, the second case might lead to some data mismatch 

which may affect the detected behavior of vehicles on some 

road sections between intersections. The comparison of the 

results obtained in these simulations with the data from real-

life scenarios is of great interest and will be the topic of a 

future work. It is to be noted that some adjustments may be 

needed to guarantee that the vehicular simulator can handle 

further vehicle loads in order to match more realistic urban 

scenarios. 

V. CONCLUSION AND FUTURE WORK  

Among all the assumptions made in this work, 

communications are considered perfect which surely affect 

positively the results presented. A more realistic simulation 

should involve more realistic communication models. That’s 

why it would be necessary to switch to a later version of the 

vehicular simulator used or even add an intermediary 

software specialized in communications and include DSRC 

to enhance the current model. 

Detection algorithms used in this work lacks 

optimization. The covariance intersection method 

implemented searches only for a possible fusion result and 

elect the best choice based on the largest common 

covariance area between two detections. Better adjustments 

could be made to enhance the potential of this data fusion 

and reduce the covariance factors of detections. 

On a similar thought, the Kalman prediction 

performed to follow vehicles between intersections is also 

open to better performances. Some pre-study of typical 

vehicle dynamic evolution could be used to set a speed 

profile for better anticipation. This could contribute to real 

improvement of the results gathered in this work and lead to 

an acceleration of the detection. 

Also, other type of sensors and data fusion methods 

will be applied to guarantee good results of the introduced 

concept. This analysis will be introduced as soon as 

scenarios with heavier vehicle load will be implemented for 

closer fidelity to urban scenario. 

To conclude, the work presented in this article 

introduces a different handling of the data gathered by 

intelligent road infrastructures in urban area. The recycling 

of old detection data towards the whole intersection network 

was presented as a mean of preparation for smart cities to 

welcome intelligent and automated driving vehicles among 

other vehicles. Results presented have demonstrated that the 

system is effective with no regards to the number of 

communicating vehicles present. It still needs to be 

improved but already has some interesting outputs when 

applied to the discussed scenarios. 
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