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Abstract—Virtual sensing has attracted the interest of car
makers and automotive service providers, owing to its cost-
effective advantages, capacity to extract valuable insights from
car data and its significance in enhancing the reliability of
Advanced Driving Assistance Systems (ADAS). For instance,
accurate virtual sensing of tire forces and torques can help adapt
and improve the control strategies embedded in the vehicle’s
active safety systems. This paper deals with tire Self-Aligning
Torque (SAT) estimation, an inherent parameter for identifying
the limits of the vehicle at an early stage to prevent skidding.
We present a data-driven approach to estimate the right and left
front SATs, using a Neural Network (NN) model. The estimator
takes directly existing in-vehicle signals and does not rely on
expensive and unpractical sensors, which makes it cost-efficient
and fast. Simulation results based on a high-fidelity vehicle model
show a good performance of the chosen NN to estimate the SATs
while considering the combined slip and road friction change.

Index Terms—Tire Self-Aligning Torque, Estimation, Neural
Network, Simulation.

I. INTRODUCTION

To improve vehicle handling and ensure passenger safety,
current research trends of Advanced Driving Assistance Sys-
tems (ADAS) and Automated Driving (AD) are focusing on
monitoring the vehicle states, computing the road friction
conditions, and adapting the control outputs according to the
identified situation. Since the physical interaction between the
car and the road occurs through the tire, estimating the forces
and the moments applied at the contact surface of the tire in
real-time is essential for developing advanced, performance-
oriented, and safe driving assistance or automated driving sys-
tems [1]–[3]. For active safety systems, real-time identification
of the maximum grip µ on the road is a critical task. Estimating
the tire self-aligning torque (SAT), i.e the torque that a tire
creates as it rolls along its vertical axis, allows to detect when
the vehicle reaches its maximal lateral and longitudinal force
capacity before the skid: it peaks at a lower slip angle than
that corresponding to the maximum of the lateral forces (FY)
(Figure 1). However, only a few contributions are harnessing
this physical characteristic of the SAT. Current SAT estimation
can be classified into two categories: the estimation based on
an analytical model and the model-less estimation. Estimations
based on analytical models use a physical or empirical tire
model to infer the SAT. On the other hand, the model-less

approach does not need an explicit tire model to build the
virtual sensor.

The present study belongs to the second category and
proposes using a Neural Network (NN) model to directly and
cost-effectively estimate SAT with the aid of already existing
sensors, along with left and right suspension deflection sen-
sors. The latter has gained popularity in various applications
such as vertical parameter estimation [4], [5], and skyhook
control due to its cost-effective nature.

The structure of this paper is as follows: in Section II, we
review existing methods for estimating the SAT and evaluate
their performance. In Section III, we introduce the NN-based
approach that we use for SAT estimation. Section IV presents
the results of our simulations and provides an interpretation
of the NN model. In Section V, we discuss the potential
applications of SAT estimation. Finally, in Section VI, we
outline future work to enhance the robustness of our observer
and validate it on real data, before concluding with a summary
of our findings.

II. RELATED WORK

Concerning the analytical model approach, Lenzo et al.
[6] successfully estimate the SAT from a Brush tire model.
First, their method uses the TRICK tool (Tyre/Road Interaction

Fig. 1. SAT and Lateral force (FY) vs slip angle at different friction
coefficients µ; (SAT: solid line , FY: dashed line).
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Characterization & Knowledge) [7] to estimate the lateral
forces. Then, the parameters of the Brush model are optimized
to fit the estimation and are used to compute the SAT. The
effectiveness of this approach depends on the accuracy and
convergence speed of the TRICK tool.

Model-less estimation is mainly a data-driven method based
on dedicated sensors such as force transducers, tie rod forces
sensors [8] or sensors mounted on the kingpins [9]. Pasterkamp
and Pacjeka [9] present a 3-layer NN fed by the steering
wheel angle, the suspension inclination angle, the forces on
the kingpins and the force in the steering link to estimate
the forces and the SAT. Despite accurate results, the training
and validation test cases were not extensive. In addition to
that, sensors used to map the non-linearities are not commonly
mounted on commercial vehicles. Luque et al. [8] employed a
2-layer NN (NN) to estimate the front right and left SATs in
their study. The input to the NN consisted of tire longitudinal
and lateral forces inferred from a Random Walk Extended
Kalman Filter (RW-EKF), along with front axle vertical forces,
steering wheel angle, and steering tie-rod forces measured by
extensiometric sensors. However, one major drawback of this
approach is that the error in the estimated forces from the
RW-EKF, due to non-Gaussian noise, can be propagated to
the outputs of the NN, resulting in decreased accuracy of SAT
estimation.

III. SELF-ALIGNING TORQUE ESTIMATION

A. Data Acquisition and Context of Study

In our case, we use a high-fidelity vehicle model from
AMESIM software, equipped with Electric Power Assisted
Steering (EPAS) system and two suspension deflection sensors
mounted on the front right and left.

To extract sufficient and reliable data and to map our entries
to different regions of the SAT, the simulation was done on
different open loop handling maneuvers, as depicted in Table
I.

TABLE I
OPEN LOOP MANOEUVERS DONE IN SIMULATION.

ISO Maneuver Longitudinal
velocity range
(Km/h)

Free steer 20 – 80
Steering pulse 20 – 80
Double lane change 40 – 120
Circular maneuver 40 – 80
One transient 40 – 80
Random swept sine steer 40 – 80
Braking in a turn 40 – 120
Fishhook 40 – 80
Sine with dwell 40 – 120
Steady brake/acceleration command 40 – 120

It is worth mentioning that the maneuvers were simulated
with high repeatability on dry asphalt and other grip sur-
faces ranging between 0.7 (wet) to 0.2 (ice). Moreover, this
evaluation did not consider active safety systems such as the

Anti-lock Braking System (ABS) or the Electronic Stability
Program (ESP).

We consider some measurable inputs related to the steering
system [10] and other vehicle dynamic-related signals: The
first part consists of choosing the steering wheel angle, the
steering torque, and the assist torque according to the equation
(1) of a second order steering system model. These measure-
ments are available if the car has EPAS.

Jeff δ̈ + beff δ̇ = τSAT + τSW + τassist − τf (1)

where Jeff is the effective moment of inertia, beff is the
effective damping of the steering system at the road wheels,
and δ is the steering wheel angle. τSAT, τSW, τassist, and τf
represent the Self-Aligning Torque (SAT), the steering wheel
torque, the assist torque, and the frictional torque at the road
wheel, respectively.

The SAT observed from the previous equation is different
from the real one. The main reason is the complexity of the
tire behavior [9] due to the variation of the load, the couplings
between longitudinal and lateral slips, and the non-linearities
due to suspensions. To take this into account, additional
measurable signals are considered such as the longitudinal
and lateral accelerations, the longitudinal velocity, the yaw
rate, the wheels speed, the wheel torque, and the compres-
sion/decompression of front right and front left suspensions.
In total, 12 inputs are used to train the neural network to
estimate the front right and the front left SATs. Specifications
of the input and output data are listed in Table II.

TABLE II
INPUT & OUTPUT DATA.

Inputs
Longitudinal acceleration Ax (ms−2)

Lateral acceleration Ay (ms−2)

Longitudinal velocity Vx (ms−1)

Yaw rate ψ̇z (rads−1)

Steering angle αsteering (rad)

Steering torque τsteering (Nm) from EPAS

Assist torque τassist (Nm) from EPAS

Motor torque τmotor (Nm)

Compression/Decompre- cosladleft (m) from front left sensor

ssion of the suspensions cosladright (m) from front right sensor

Wheel speed ωleft (rads−1) from front left sensor

ωright (rads−1) from front right sensor

Outputs
Self-Aligning torque τ lSAT (Nm) front left

τrSAT (Nm) front right

From the previous remarks and due to the variation of the
pressure distribution in the tire, the use of a physical tire
model such as the Brush model is disregarded. Thus, we
choose to label our data using the Pacjeka tire model or the
Magic Formula [11]. This semi-empirical model fits best the
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measured data and takes into account the couplings between
longitudinal and lateral slips. The details of SAT formula from
Pacjeka 97 tire model can be found in [11].

In the first step, the correlation between all variables is
performed to assess the dependency between the inputs and
the outputs, as shown in Figure 2. The assist torque has the
highest correlation value since it is linearly related to the SAT,
as described in the steering system model equation (1). In
addition, we also notice a medium dependency on suspension
deflection sensors, highlighting the relation between the load
variation and the SAT.

The data were sampled at 20 Hz, giving us an input matrix
of (45000x12) and an output matrix of (45000x2).

The next part of this section will focus on the choice of the
network model, the tuning of its parameters, and the definition
of the performance metrics for evaluation.

B. Proposed Model

A static feedforward neural network or Multi-Layer Per-
ceptron (MLP) is considered in this study. The goal is to
use the MLP as a non-linear function approximator to map
the entries to the SAT. In general, an MLP is composed of
one input layer, one or more layers called hidden layers, and
one output layer. The inputs of each layer are combined in a
weighted sum and subjected to an activation function. Then,
the result of this combination is propagated to the next layers.
A backpropagation learning mechanism allows finally to adjust
weights with the goal of minimizing the cost function.

The design of the NN model and the tuning of the hyper-
parameters was done in an iterative manner using the Grid
Search library in Python. This tool enables us to find the
optimal hyperparameters by evaluating different combinations
of values based on a defined performance metric. To assess
the score of our predictor, we choose to use the R-squared
metric defined as:

R2 = 1−
∑n

i=1(yi − ŷi)∑n
i=1(yi − ȳ)

(2)

where n is the total number of measurements, yi is the true
measured value, ŷi is the predicted value and ȳ is the average
of all measures. The best possible score for R2 is 1.

The optimal model has 2 hidden layers with 32 and 12
neurons, respectively. We use the hyperbolic tangent activation
function for non-linear mapping and the Adam optimization
[12] for training. Table III summarizes the set of the chosen
hyperparameters and the estimation structure is presented in
Figure 3.

TABLE III
OPTIMAL PARAMETERS FOR THE MLP.

Parameter Optimal
Hidden dimensions [32,12]
Learning rate Adaptive
Optimizer ADAM
Activation function Hyperbolic tangent
Data pre-processing Robust Scaler

IV. SAT ESTIMATION RESULTS

A. Simulation results

To test the performance of our model, the recorded data
were randomly split into 70% for training and 30% for testing.
The optimal NN model yields an R-squared score of 0.986
for the first and 0.982 for the second. The Mean Absolute
Error (MAE), which is less sensitive to the outliers caused
by software compilation errors, is found to be 2.4 (Nm) in
training and 2.59 (Nm) in the test phase.

To appraise the extrapolation ability of our NN model, we
run the same vehicle model on the Magny-Cours race track.
This sort of track is available on Simcenter AMESIM and is
generally used to simulate severe maneuvers. The reference
trajectory, the longitudinal velocity, and the steering wheel
angle of the simulation are depicted in Figure 4.

The car does two rounds, the first one on a dry surface
(µ=1) and the second on wet asphalt (µ=0.7). The results of
estimation on dry asphalt presented in Figure 5 show that our
NN model predicts accurately the front wheels SATs with an
MAE of 3.1 (Nm). The blue line represents the true value and
the red one is the NN estimation. On the wet road though,
the MAE increases to 8.1 (Nm) and the NN does poorly to
extrapolate the peak of the SAT. The results of this second case
are plotted in Figure 6. Table IV summarizes all simulations’
values of MAE and R-squared.

TABLE IV
SUMMARY OF SIMULATION RESULTS.

Simulation test R2 score MAE (Nm)

Training phase 0.986 2.4

Test phase 0.982 2.59

Magny-Cours dry asphalt 0.971 3.1

Magny-Cours wet asphalt 0.931 8.1

One last thing to highlight is the good accuracy of our NN
model to estimate the total aligning moment of the front axle
i.e. the sum of the front right and front left SATs, as shown
in Figure 7.

This observation proves that our NN model would be accu-
rate to target mainly the front axle maximum grip estimation.
However, it will do less to predict a µ-split case for example.

B. Interpretation of the model

To boost our model transparency, we will provide its in-
terpretation based on SHapley Additive exPlanations (SHAP)
[13]. SHAP was introduced as a unified framework for inter-
preting predictions. It is a game theoretic approach that assigns
each feature an importance value. Two types of explanations
are accessible via SHAP: A global one where the SHAP
values show how much each predictor contributes to the target
variables. And, a local one dedicated to a specific observation.

In this paper, we will provide only global interpretability
based on the test set data. Figure 8 is a bar plot that lists the
most influencing features in descending order and the average
impact on the SAT magnitude is shown on the x-axis. On the
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Fig. 2. Correlation matrix of input and output data.

Fig. 3. SAT estimation structure, adapted from [8].

other hand, the dependence plot depicted in Figure 9 explains
the marginal effect between the top 3 features and the front left
SAT. From the latter, we observe a negative linear relationship
between the assist torque and the front left SAT. While for
lateral acceleration and the steering wheel angle, the effect on
the SAT is non-linear.

V. DISCUSSIONS

A. SAT dependency on inflation pressure

Tire inflation pressure has an influence on the quasi-static
generated forces and moments, most importantly, the SAT.

From a physical perspective, the SAT is generated because of
the distance between the contact patch center and the point of
lateral force application, this distance is called the pneumatic
trail and it is linearly dependent on the contact patch.

An investigation on the effect of pressure change on SAT
was carried out using an extended version of the Pacjeka tire
model in AMESIM environment. This model called SWIFT-
Tyre has been developed at Delft University of Technology
and TNO Automotive [14] and includes the most recent
developments such as inflation pressure effects. We observe
from Figure 10 that the amplitude of SAT decreases when
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Fig. 4. Reference trajectory (top), steering wheel angle (middle), and velocity
profile (bottom) for Magny Cours Track.

Fig. 5. Estimation results of SAT on dry asphalt; Blue (True) and Red
(Estimated with NN).

inflation pressure increases. This is logical because higher
pressure reduces the contact length, thus the pneumatic trail
decreases and eventually also the SAT. This leads us to
consider in a future study the tire’s inflation pressure acquired
from Tyre Pressure Monitoring Systems (TPMS) as an input
of our NN model to enhance the performance and robustness
of our estimator. Or in a simpler way, consider a corrective
term that will compensate for the effect of the pressure.

B. Applications of SAT estimation

What motivates most the SAT estimation is the early
detection of tire friction coefficient. Unlike other traditional
approaches that reach a good estimate near the critical region
of the tire, the SAT is viable for limits detection at low

Fig. 6. Estimation results of SAT on wet asphalt; Blue (True) and Red
(Estimated with NN).

Fig. 7. Estimation of front axle total aligning moment on wet asphalt; Blue
(True) and Red (Estimated with NN).

excitation levels. Owing to this, the knowledge of friction
conditions is prior to the intervention of advanced active safety
systems.

The knowledge of SAT can also improve the lateral control
[15] and particularly the Steering Wheel Angle (SWA) control
in EPAS systems [16]. While it is considered a disturbance
to be overcome in most controllers, a precise estimation can
prevent generating inefficient control gains and cancel its
effects in some situations. Moreover, it can be useful to return
to the center position of the SWA after a change in direction.

To wrap up, real-time estimation of SAT is inherent to
guarantee safety by providing the available grip at an early
stage and also enhancing the performance of some lateral
controllers.
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Fig. 8. Feature Importance based on SHAP.

Fig. 9. Dependency plot of the top 3 features.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented and outlined a real-time data-
driven approach for SAT estimation. This quantity is inherent
for friction coefficient prediction at low excitation levels and
for enhancing some lateral controllers’ performance e.g (SWA
control).

The proposed neural network model and the methodology
followed distinguish themselves from the previously reported
methods in terms of the following features: 1) The NN is
fed directly by in-vehicle sensor signals and does not rely
on estimated inputs nor uncommon expensive sensors. 2) It
is trained and tested on a wide range of maneuvers with
different road surfaces to improve its extrapolation ability. 3)
Labeling the data uses a semi-empirical tire model (Pacjeka
tire) that considers combined lateral and longitudinal dynamics
and can fit the measured SAT on a real test drive. 4) A global
interpretation based on SHAP values is provided. It gives us
the most important features and the nature of their relationship
with the estimated SAT. We investigated also the effect of
inflation pressure on SAT by using an extended version of the
same tire model, and we deduced that for more robustness and
precision, the pressure acquired from TPMS can be considered
as an additional input in our model.

The graphs and regression metrics show a good performance
of our NN model to estimate the front right and front left
SATs, especially for tests on dry asphalt. As the error increases
for the wet road test, enriching the dataset with repeatable
maneuvers on other grip surfaces may resolve this problem.

Future work will be oriented towards generating larger data
sets in different friction coefficients and considering the infla-

Fig. 10. Inflation pressure effect on SAT for a triangle-shape steer command.

tion pressure as an input, in order to refine the generalization
of our estimator. Besides, this estimator will be used for
friction estimation in a subsequent paper. Finally, a real test
drive is planned with GROUPE RENAULT for validation and
evaluation.

REFERENCES

[1] M. Viehweger et al., “Vehicle state and tyre force estimation: demon-
strations and guidelines,” Vehicle System Dynamics, vol. 59, no. 5, pp.
675–702, 2021.

[2] X. Jin, G. Yin, and N. Chen, “Advanced estimation techniques for
vehicle system dynamic state: A survey,” Sensors, vol. 19, no. 19, 2019.

[3] M. Acosta, S. Kanarachos, and M. Blundell, “Road friction virtual
sensing: A review of estimation techniques with emphasis on low
excitation approaches,” Applied Sciences, vol. 7, no. 12, 2017.

[4] B. Wang, H. Wang, L. Wu, L. Cai, D. Pi, and E. Wang, “Truck mass
estimation method based on the on-board sensor,” Proceedings of the
Institution of Mechanical Engineers, Part D: Journal of Automobile
Engineering, vol. 234, no. 10-11, pp. 2429–2443, 2020.

[5] B. L. Boada, M. J. L. Boada, and H. Zhang, “Sensor fusion based on
a dual kalman filter for estimation of road irregularities and vehicle
mass under static and dynamic conditions,” IEEE/ASME Transactions
on Mechatronics, vol. 24, no. 3, pp. 1075–1086, 2019.

[6] B. Lenzo, S. A. Zingone, and F. Timpone, “On the estimation of tyre
self-aligning moment through a physical model and the trick tool,”
International Journal of Mechanics and Control, vol. 21, no. 2, pp.
13–20, December 2020.

[7] F. Farroni, “T.r.i.c.k.-tire/road interaction characterization & knowledge
- a tool for the evaluation of tire and vehicle performances in outdoor
test sessions,” Mechanical Systems and Signal Processing, vol. 72-73,
pp. 808–831, 2016.

[8] P. Luque et al., “Tyre–road grip coefficient assessment – part ii: online
estimation using instrumented vehicle, extended kalman filter, and neural
network,” Vehicle System Dynamics, vol. 51, no. 12, pp. 1872–1893,
2013.

[9] W. R. Pasterkamp and H. B. Pacejka, “The tyre as a sensor to estimate
friction,” Vehicle System Dynamics, vol. 27, no. 5-6, pp. 409–422, 1997.

[10] Y.-H. J. Hsu, S. M. Laws, and J. C. Gerdes, “Estimation of tire slip
angle and friction limits using steering torque,” IEEE Transactions on
Control Systems Technology, vol. 18, no. 4, pp. 896–907, July 2010.

[11] H. B. Pacejka and I. J. M. Besselink, “Magic formula tyre model with
transient properties,” Vehicle System Dynamics, vol. 27, no. sup001, pp.
234–249, 1997.

[12] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
International Conference on Learning Representations, 2014.

[13] S. M. Lundberg and S. Lee, “A unified approach to interpreting model
predictions,” CoRR, vol. abs/1705.07874, 2017.

[14] A. J. Schmeitz, I. J. Besselink, J. De Hoogh, and H. Nijmeijer,
“Extending the Magic Formula and SWIFT tyre models for inflation
pressure changes,” VDI Berichte, no. 1912, pp. 201–225, 2005.

[15] Z. Yu, Y. Hou, B. Leng, L. Xiong, and Y. Li, “Disturbance compensation
and torque coordinated control of four in-wheel motor independent-drive
electric vehicles,” IEEE Access, vol. 8, pp. 119 758–119 767, 2020.

10Copyright (c) IARIA, 2023.     ISBN:  ISBNFILL

VEHICULAR 2023 : The Twelfth International Conference on Advances in Vehicular Systems, Technologies and Applications



[16] W. Kim, C. M. Kang, Y.-S. Son, and C. C. Chung, “Nonlinear steering
wheel angle control using self-aligning torque with torque and angle sen-
sors for electrical power steering of lateral control system in autonomous
vehicles,” Sensors, vol. 18, no. 12, 2018.

11Copyright (c) IARIA, 2023.     ISBN:  ISBNFILL

VEHICULAR 2023 : The Twelfth International Conference on Advances in Vehicular Systems, Technologies and Applications


