
Algorithm for Automatic Web API Composition

Yong-Ju Lee

School of Computer Information, Kyungpook National University, 386 Gajangdong, Sangju, South Korea

yongju@knu.ac.kr

Abstract—Data mashup is a special class of mashup application

that combines Web APIs from several data sources to generate

a new and more valuable dataset. Although the data mashup

has become very popular over the last few years, there are

several challenging issues when combining a large number of

APIs into the data mashup, especially when composite APIs

are manually integrated by mashup developers. This paper

proposes a novel algorithm for automatic composition of Web

APIs. The proposed algorithm consists of constructing a direc-

ted similarity graph and searching composition candidates

from the graph. We construct a directed similarity graph

which presents the semantic functional dependency between

the inputs and the outputs of Web APIs. We generate directed

acyclic graphs (DAGs) that can produce the output satisfying

the desired goal. We rapidly prune APIs that are guaranteed

not to involve the composition in order to produce the DAGs

efficiently. The algorithm is evaluated using a collection of RE-

ST and SOAP APIs extracted from ProgrammableWeb.

Keywords-automatic composition algorithm; semantic data

mashup; ontology learning method; Web API

I. INTRODUCTION

A mashup is a Web application that combines data,
presentation, or functionality from several different sources
to create new services. An example of the mashup is Hou-
singMaps [1], which displays available houses in an area by
combining listings from Craigslist with a display map from
Google. A data mashup is a special class of the mashup
application that combines data from several data sources
(typically provided through Web APIs; these API types are
usually SOAP, REST, JavaScript, XML-RPC, Atom, etc.) to
generate a more meaningful dataset. Data mashups have be-
come very popular over the last few years. For example, as
of August 2012, ProgrammableWeb [2] has published more
than 7000 Web APIs. Several mashup tools such as Yahoo’s
Pipes, IBM’s Damia, and Intel’s Mashmaker have been
developed to enable users to create data mashups without
programming knowledge.

Although the data mashup has emerged as a common
technology for combining Web APIs, there are several
challenging issues. First, since a portal site may have a large
number of APIs available for data mashups, manually
searching and composing compatible APIs can be a tedious
and time-consuming task. Therefore, mashup developers
wish to quickly find the desired APIs and easily integrate
them without having to expend considerable programming
efforts. Second, portal sites typically only support keyword
search or category search. These search methods are
insufficient due to their bad recall and bad precision. To

make mashups more efficiently, we need a semantic-based
approach such that agents can reason about the capabilities
of the APIs that permit their discovery and composition.
Third, most mashup developers want to figure out all the
intermediate steps needed to generate the desired mashup
automatically. An infrastructure that allows users to provide
some interesting or relevant composition candidates that can
possibly incorporate with existing mashups is needed.

To solve the above issues, we present an algorithm for
automatic discovery and composition of Web APIs using
their semantic descriptions. Given a formal description of
the Web API, a desired goal can be directed matched to the
output of a single API. This task is called discovery. If the
API is not found, the agent can search for two or more APIs
that can be composed to satisfy the required goal. This task
is called composition. Since the discovery is a special case
of the composition where the number of APIs involved in
the composition is exactly equal to one, discovery and
composition can be viewed as a single problem.

We define API descriptions to syntactically describe
Web APIs, and use an ontology learning method [3] to
semantically describe Web APIs. We propose a Web API
composition algorithm based on the ontology learning meth-
od. The proposed algorithm consists of constructing a direc-
ted similarity graph and searching composition candidates.
The composition process can be described as that of genera-
ting directed acyclic graphs (DAGs) that can produce the
output satisfying the desired goal, where the DAGs are
gradually generated by forward-backward chaining of APIs.
In order to produce the DAGs efficiently, we filter out APIs
that are not useful for the composition. The main contributi-
ons from this paper are as follows:

 The paper proposes a new efficient algorithm for solving
the Web API composition problem that takes semantics
into account. The proposed algorithm automatically se-
lects the individual APIs involved in the composition for
a given query, without the need for manual intervention.

 Selecting and integrating APIs suitable for data mashups
are critical for any mashup toolkits. We show in this
paper how the characteristics of APIs can be syntacti-
cally defined and semantically described, and how to use
the syntactic and semantic descriptions to aid the easy
discovery and composition of Web APIs.

 A semantic-based data mashup tool is implemented for
lowering the complexity of underlying programming
efforts. Using this tool, the composition of APIs does
not require in-depth programming knowledge. Users are
able to integrate APIs with minimal training.

57Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

The rest of this paper is organized as follows. Section 2
begins by introducing our ontology learning method. Sec-
tion 3 describes automatic Web API discovery and composi-
tion algorithms. Section 4 describes an implementation and
experiment. Section 5 discusses related work, and Section 6
contains conclusions and future work.

II. ONTOLOGY LEARNING METHOD

The successful employment of semantic Web APIs is
dependent on the availability of high-quality ontologies. The
construction of such ontologies is difficult and costly, thus
hampering Web API deployment. Our ontology learning
method [3] automatically generates ontologies from Web
API descriptions and their underlying semantics.

A. Parameter Clustering Technique

We have developed a parameter clustering technique to
derive several semantically meaningful concepts from API
parameters. We consider the syntactic information that resi-
des in the API descriptions, and apply a mining algorithm to
obtain their underlying semantics. The main idea is to mea-
sure the co-occurrence of terms and cluster the terms into a
set of concepts. Formally, we can define an API as follows:

Definition 1: A Web API W=<I, O> where I is the input
and O is the output. Each input and output contains a set of
parameters for the API.

The input/output parameters are often combined as a

sequence of several terms. We utilize a heuristic as the basis
of our clustering, in that the terms tend to express the same
concept if they frequently occur together. This allows us to
cluster terms by exploiting the conditional probability of
their occurrences in the input and output of Web APIs,
specifically we are interested in the association rules [4].
We use the agglomerative hierarchical clustering algorithm
to turn the set of terms into the concepts

 . For example, the terms {zip, city, area,

state} can be treated as one concept, they are grouped into
one cluster.

B. Pattern Analysis Technique

The pattern analysis technique captures relationships
between the terms contained in a parameter, and matches the
parameters if both terms are similar and the relationships are
equivalent. This approach is derived from the observation
that people employ similar patterns when composing a
parameter out of multiple terms. Based on the experimental
observations, the relationships between the terms are
defined in Table 1. Two ontological concepts are matched if
and only if one of the following is true; (1) one concept is a
property of the other concept, and (2) one concept is a
subclass of the other concept.

From the above rules, an agent would be able to find a
match based on the similarities of the API. For example,
assume that a parameter CityName was to be compared

against another parameter CodeOfCity. The keyword
search would not count these as a possible match. However,
if the City term had the relationships “X propertyOf Y” in

its pattern rule, the matching logic will return a matching
score because these two parameters are closely related
(perhaps using the rules “CityName propertyOf City” and

“CodeOfCity propertyOf City”).

TABLE I. RELATIONSHIPS BETWEEN TERMS

C. Semantic Matching Technique

The semantic matching technique estimates the
similarity of the input and output by considering the
underlying concepts the input/output parameters cover.
Formally, we describe the input as a vector
(similarly, the output can be represented in the form
), where is the set of input parameters and
 is the concept that is associated with . Then, the simila-
rity of the input can be found using the following two steps
(the output can be processed in a similar fashion); (1) we
split into a set of terms, we then find synonyms for these
terms, and (2) we replace each term with its corresponding
concepts, and then compute a similarity score.

The similarity score is defined to select the best matches

for the given input. Consider a pair of candidate parameters

 and , the similarity between and is given by the

following formula:

 ‖ ‖

where m and n denote the number of valid terms in parame-

ters, ‖ ‖ returns the number of matching terms.

Here, the similarity of each parameter is calculated by the

best matching parameter that has a larger number of seman-

tically related terms. The overall similarity is computed by a

linear combination [3] to combine the similarity of each

parameter.
Since existing matching techniques based on the cluste-

ring consider all terms in a cluster as an equivalent concept
and ignore any hierarchical relationships between the terms,
matches might exist that are irrelevant to the user's intention
(i.e., false positives). Thus, a pruning process is necessary to
improve the precision of the results. The basic idea is to
improve the precision of the matching technique by
applying the pattern relationships defined in Table 1. For
details, readers may refer to our previous work [3].

III. WEB API DISCOVERY AND COMPOSITION

A. Discovery Problem

Given a query and a collection of APIs stored in the

registry, automatically finding an API from the registry that

No Pattern Relationships

1 Noun1+Noun2 Parameter propertyOf Noun1

2 Adjective+Noun Parameter subClassOf Noun

3 Verb+Noun Parameter subClassOf Noun

4 Noun1+Noun2+Noun3 Parameter propertyOf Noun1

5 Noun1+Preposition+Noun2 Parameter propertyOf Noun2

58Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

matches the query requirement is the Web API discovery

problem. For example, we are looking for an API to search a

hotel. Table 2 shows the input/output parameters of a query

and an API. In this example a Web API W satisfy the query

Q. Q requires HotelName as the output and W produces

HotelName and ConfirmNumber. The extra output produ-

ced can be ignored. W requires CountryCode and Name-

OfCity as the input and Q provides CountryID, State-

Name, and CityName as the input. An API parameter can be

matched with the other parameter only if there is a semantic

relationship between them. Here, although CountryCode

and CountryID are different forms, they have the same

semantics since they are referred to the same concept. Also

NameOfCity and CityName have the same semantics since

they are properties of the same object (i.e., City). Therefore,

the agent is able to infer that Q and W input parameters have

semantically the same classes.

TABLE II. EXAMPLE FOR DISCOVERY PROBLEM

API Input Parameters Output Parameters

Q
CountryID, StateName,

CityName

HotelName

W CountryCode, NameOfCity HotelName, ConfirmNumber

We describe an automatic Web API discovery algorithm
similar to the one in [5]. An API matches a query when an
API is sufficiently similar to the query. This means that we
need to allow the agent to perform matches that recognize
the degree of similarity between APIs and the query. We
define the matching criteria as follows:

Definition 2: An API W matches a query Q when all the

output parameters of Q are matched by the output parame-

ters of W, and all the input parameters of W are matched by

the input parameters of Q.

Definition 2 guarantees that the API found satisfies the

needs of the query, and the query provides all the input

parameters that the API needs to operate correctly. Our

discovery algorithm is shown in Algorithm 1. This algori-

thm adopts strategies that rapidly prune APIs that are gua-

ranteed not to match the query, thus improving the efficien-

cy of the system. A query is matched against all APIs stored

in the registry. A match between a query and an API con-

sists of matching all the output parameters of the query

against the output parameters of the API; and all the input

parameters of the API against the input parameters of the

query. If one of the query's output parameters is not matched

by any of the API's output, the match fails. Matching

between inputs is computed by the same process, but with

the order of the query and API reversed. The similarity

score of a match between two parameters is calculated by

the semantic matching technique described in the previous

section. The APIs are returned in the descending order of

similarity scores.

Algorithm 1: Discovery Algorithm

//input: query (Q), APIs

//output: matched APIs

for all APIs

if Matching(Q, API) then result.append(API)

return Sort(result)

 Matching(Q, API)

 SemanticMatch(Q.O, API.O)

 SemanticMatch(API.I, Q.I)

B. Composition Problem

Given a query and a collection of APIs, in case a

matching API is not found, searching a sequence of APIs

that can be composed together is the composition problem

of Web APIs. It means that the output generated by one API

can be accepted as the input of another API. For example,

we are looking for APIs to find a hotel’s location. Table 3

shows the input/output parameters of a query Q, and two

Web APIs W1 and W2 in the registry. Suppose the agent

cannot find a single API that matches the criteria, then it

composes n APIs from the set of Web APIs available in the

registry. In this table, W1 returns HotelName as the output.

W2 receives it as the input and returns Location as the

result. So, the subsequent W2 may use the output produced

by the preceding W1 as the input.

TABLE III. EXAMPLE FOR COMPOSITION PROBLEM

API Input Parameters Output Parameters

Q
CountryID, StateName,

CityName

Location

W1 CountryCode, NameOfCity ConfirmNumber, HotelName

W2 HotelName Location

Now we can define the Web API composition problem

as follows:

Definition 3: If an API W1 can produce O1 as its output

parameters and an API W2 can consume O1 as input parame-

ters, we can conclude that W1 and W2 are composable. Then,

the Web API composition problem can be defined as auto-

matically finding a DAG of APIs from the registry.

We describe a Web API as <W.I, W.O> and a query as

<Q.I, Q.O>. A composition is valid if the following condi-

tions are satisfied:

1)

2)

3)
 , there exists at least a path from Wi to Wj.

In other words, the APIs in the first stage of the compo-

sition can only use the query input parameters. The outputs

produced by the APIs in the last stage of the composition

should contain all the output parameters that the query

requires to be produced. The output from an API at any

59Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

stage in the composition should be able to provide as the

input to the next API.

The composition problem is just achieving a desired

goal from the initial request, while not making it know the

underlying composition details. The mashup developers can

now simply describe a goal in form of the query, and submit

the requirement to our system. If the desired goal can be

directly matched to the output of a single Web API, the

composition problem reduces to the discovery problem.

Otherwise, it can be accomplished by searching a sequence

of APIs that can produce the desired output. Such sequence

composition of APIs can be viewed as a searching DAG that

can be constructed from an initially given query. In

particular, when all nodes in the graph have not more than

one incoming edge and not more than one outgoing edge,

the problem reduces to a linearly linked APIs problem.

Because the discovery problem is a simple case of the

composition where the number of APIs involved in the

composition is exactly equal to one, the discovery and

composition can be viewed as a single problem.

C. Constructing Directed Similarity Graph

In order to speed up the calculation of possible composi-

tion plans, we use a pre-computed directed similarity graph

that chains the output of one API into the input of another

API. The connection of the nodes is based on the semantic

similarity between the output and input of the nodes. Algori-

thm 2 illustrates the construction procedure for the graph. At

the beginning, we assign each API in the registry to vertexes

iteratively. We then establish edges between the vertexes.

For each vertex vi, we check whether its corresponding out-

put can be accepted as an input by a vj by computing the

similarity score. If the output of vi is semantically similar to

the input of vj (i.e., () , then we add a direc-

ted edge from vi to vj (in the reverse direction) and assign a

similarity score. We also check if there exists a vertex vj,

whose output can be consumed by vi as an input, in the

similar manner. After constructing the directed similarity

graph, we solve the composition problem within this graph.

This initial graph is dynamically modified if new APIs

become available.

Algorithm 2: Graph Construction Algorithm

//input: APIs

//output: a directed similarity graph

for all APIs

vi = addVertex(API)

for each vi ∈ V

 for each vj ∈ V

 if Sim(vi.O, vj.I)>0 then addEdge(vi, vj)

 if Sim(vj.I, vi.O)>0 then addEdge(vj, vi)

D. Graph-based Composition Algorithm

Our graph-based composition algorithm can be descri-

bed as that of generating DAGs that can produce the output

satisfying the desired goal. In order to produce the DAGs

efficiently, we rapidly filter out APIs that are not useful for

the composition. We extend our discovery algorithm to han-

dle the composition problem. The algorithm is based on a

modified Breath-First Search (BFS) algorithm [6] which can

find a shortest path from a source vertex to a target vertex.

We solve the composition problem in four main stages:

searching sub-graphs, adding start nodes, validating candi-

dates, and ranking candidates.

Searching sub-graphs: First, we search the API registry

about any API that has all the output parameters of the

query (we call “last nodes”), and any API that has at least

one of the input parameters of the query (we call “first

nodes”). After this searching it is assumed that non empty

sets are obtained for the first and last nodes. The next is to

create n-ary trees for every last node by visiting all the

nodes connected to a particular last node. Such tree is

constructed by recursively including nodes and edges from

the directed similarity graph until we reach the first nodes.

We use the BFS algorithm to solve this problem. Now we

can find all the possible composition candidates from the

trees. Figure 1 shows a general overview of the query and

the matching APIs before constructing the overall composi-

tion plans.

Q.I Q.O

Last NodesFirst Nodes
Figure 1. General Overview of Query and Matching APIs

Adding start nodes: In this stage, a start node is added to

each of the trees. The start node is a special dummy node for

a dynamically created API, namely the API that provides

the input of the query. The start node is represented as W0 =
<Ø , Q.I>, namely W0 is an API in a tree with no input,

having only an output. Finding a possible composition

candidate consists in generating a DAG from the start node

to the last node in the trees. When a possible composition

candidate has been found, all the nodes participating in the

composition should be validated in the next stage.

Validating candidates: A possible composition candidate

is valid if all nodes in the composition can be executed

(non-)sequentially in order to produce the desired results.

This validating is done by starting from the start node wor-

king our way backwards. At this point, first nodes consist of

all the APIs such that all their inputs are provided by the

start node. Let O1 be a union of all outputs produced from

the first nodes in the composition, and I1 (i.e., Q.I) be the

query input. Inputs for the second nodes are all the outputs

60Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

produced by the previous nodes and the query input, i.e., I2
= O1 ∪ I1. The combination I2 will be the available input for

the next nodes. This transition (i.e., Ii+1 = Oi ∪ i) is repeated

until the last node is reached, removing redundant nodes

which do not contribute to the optimal path at each step.

Ranking candidates: A DAG is considered as a composi-

tion candidate only if it meets the requirements of the output

and input described in the query. It means all output para-

meters of the query must be obtained, and partly or fully the

input parameters of the query must be consumed. After a

composition candidate has been found, we gather all the

similarity data from the edges involved in the composition

in order to compute a similarity score. This score is calcula-

ted by the average value of all the similarity data related to

the edges, and the ranking of the composition candidate is

determined by the score. The list of composition candidates

is ordered according to this ranking score and the head of

the list is considered the best, recommended option for the

user. Algorithm 3 illustrates our graph-based composition

algorithm.

Algorithm 3: Composition Algorithm

//input: query (Q), a directed similarity graph

//output: ranked composition candidates

if SemanticMatch(Q.O, API.O) is empty then fail

if SemanticMatch(API.I, Q.I) is empty then fail

for each last node

 Call BFS algorithm

 Create n-ary trees

for each tree

Adding a start node to the tree

Generating a DAG from start node to last node

//Validating possible composition candidates

 i = 1, Ii = Q.I

Li = NextApiList(i)

 while Not (last node ˄ Vi ≡ Ø)

 Oi = UnionAllOutputs(Li)

Ii+1 = Oi ∪ Ii

 Li+1 = NextApiList(i+1)

 Removing redundant nodes

i = i+1

 endwhile

endfor

Ranking composition candidates

IV. IMPLEMENTATION AND EXPERIMENT

We developed a semantic-based data mashup tool. The

system architecture is shown in Figure 2. The composition

planner is responsible for planning to achieve the composi-

tion relevant to the desired goal. It captures the current com-

position states and dynamically composes relevant APIs that

can be added to the mashup. The mashup engine interprets

the composition of corresponding APIs and displays the im-

mediate results. In the graphical user interface (GUI), mash-

up developers can obtain the immediate composition results

visually, and iteratively refine their goals until the final

results satisfying. The ontology learning method automati-

cally builds semantic ontologies from Web API descriptions.

GUI

Registry

Mashup
Engine

Composition
Planner

Ontology
Learning
Method

 Figure 2. System Architecture

To experiment with the data mashup tool we extracted a

collection of REST and SOAP APIs from Programmable-

Web. To avoid potential bias, we chose different APIs from

different domains. We first collected a subset which associ-

ated REST APIs for three domains: weather, travel, and

mapping. This set contains 63 APIs. Next, we collected a

subset containing 17 SOAP APIs from three domains: zip-

code, location, and search. In Figure 3, we show a directed

similarity graph which obtained from our experimental

dataset. The graph consists of 80 nodes and 123 edges.

Figure 3. Directed Similarity Graph

A possible query for the Web API composition is given

as follows: Q.I = {zipcode}, Q.O = {city, latitude,

longitude}. The composition result is exemplified by part

of the directed similarity graph as shown in Figure 4. From

the registry our engine has discovered 8 last nodes (dark

grey circles) and 7 first nodes (light grey circles). We call

the BFS algorithm and create an n-ary tree for each last

node. This is repeated until all the last nodes are reached.

A total of 3 possible composition candidates have been

automatically generated from the graph. As we have mentio-

ned in Section 3.D, a start node W0 is added to each tree and

the validation of candidates is performed for optimal paths.

After running the validation, final composition candidates

are selected and similarity scores are calculated. In Table 4,

we list these ranked composition candidates.

To evaluate our composition quality, we check how

many of desired goals are captured by the composition algo-

rithm. We can observe that two third of all the recommen-

61Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

ded results in Table 4 have desired or relevant goals.

Although the 3rd ranking result turns out to be invalid as it

does not satisfy the user requirement, top 2 ranking results

have desired composition plans. These results have shown

that our algorithm can generate most user desired outputs.

(a) Discovered last and first nodes (b) n-ary trees

Figure 4. Result of Graph-Based Composition Algorithm

TABLE IV. LIST OF RANKED COMPOSITION CANDIDATES

Rank Score DAG

1 0.625 W0→(9, 72) →23

2 0.550 W0→ (9, 72) →24

3 0.222 W0→ (9, 72, 65, 66, 67) →21→11→12→25

V. RELATED WORK

Most researches handing the automatic composition
problem have been focusing on the composition of SOAP-
based Web services. Many various techniques have been
used for this study, such as graph-based search algorithm [7]
and AI planning [8]. However, the work presented in this
paper is not limited to composing SOAP-based Web servi-
ces, but also considers REST, JavaScript, XML-RPC, and
Atom Web APIs.

The use of graph-based search algorithms to solve the
composition problem has been studied before. Kona et al. [7]
propose an automatic composition algorithm for semantic
Web services. Rodriguez-Mier et al. [9] propose a heuristic-
based search algorithm for automatic Web service composi-
tion. Shiaa et al. [10] present an incremental graph-based
approach to automatic service composition. These works are
similar to our study. However, they cannot find an optimal
solution, and do not support various Web API protocols.

We recently proposed an automatic Web API composi-
tion algorithm [11] to handle the sequential composition
problem. This paper is an extension of our previous work
and focuses on the (non-)sequential composition that can be
represented in the form of directed acyclic graphs (DAGs).
This is the most general case of the Web API composition.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents an algorithm for the automatic Web
API composition. This algorithm is based on the graph-
based approach, where composition candidates are gradually

generated by forward-backward chaining of APIs. Our algo-
rithm can get optimal plans by applying strategies that
rapidly prune APIs that are guaranteed not to match the
query. A key issue is how to locate the desired APIs. The
efficient discovery can play a crucial role in conducting
further API composition. We define API descriptions that
syntactically describe Web APIs, and use an ontology
learning method that semantically describes APIs. These
syntactic and semantic descriptions allow the agent to auto-
mate the composition of Web APIs.

Our future work is focusing on the investigation of the
performance and scalability measures for the proposed
graph-based composition algorithm. By this we aim to opti-
mize the functionality of our system. We are also exploring
various optimization techniques that can apply to the algori-
thm. For example, a heuristic AI planning technique can be
used to find an optimized solution with a minimal number
of paths. The use of dynamic optimization techniques over
the graph helps greatly in obtaining the effectiveness and
efficiency of our approach.

ACKNOWLEDGMENT

This research was supported by Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science, and
Technology (No. 2010-0008303).

REFERENCES

[1] http://www.housingmaps.com

[2] http://www.programmableweb.com

[3] Y. J. Lee and J. H. Kim, “Semantically Enabled Data Mashups using
Ontology Learning Method for Web APIs,” Proceedings of the 2012
Computing, Communications and Applications Conference, 2012.

[4] R. Agrawal, T. Imielinski, and A. Swami, “Mining Association Rules
between Sets of Items in Large Databases,” Proceedings of the 1993
ACM-SIGMOD International Conference Management of Data, 1993.

[5] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara, “Semantic
Matching of Web Services Capabilites,” Proceedings of the
International Semantic Web Conference (ISWC), 2002.

[6] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to
Algorithms (Second Edition), MIT Press, 2001.

[7] K. Kona, A. Bansal, M. Blake, and G. Gupta, “Generalized
Semantics-based Service Composition,” Proceedings of the IEEE
International Conference on Web Services (ICWS), 2008.

[8] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau, “HTN Planning
for Web Service Composition using SHOP2,” Web Semantics:
Science, Services and Agents on the World Wide Web, Vol. 1, No. 4,
pp. 377-396, 2004.

[9] P. Rodriguez-Mier, M. Mucientes, and M. Lama, “Automatic Web
Service Composition with a Heuristic-based Search Algorithm,”
Proceedings of the International Semantic Web Conference (ISWC),
2011.

[10] M. Shiaa, J. Fladmark, and B. Thiell, “An Incremental Graph-based
Approach to Automatic Service Composition,” Proceedings of the
International Semantic Web Conference (ISWC), 2008.

[11] Y. J. Lee and J. S. Kim, “Automatic Web API Composition for
Semantic Data Mashups,” Proceedings of the 4th International
Conference on Computational Intelligence and Communication
Networks (CICN), 2012.

62Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

