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Abstract—Data mashup is a special class of mashup application 

that combines Web APIs from several data sources to generate 

a new and more valuable dataset. Although the data mashup 

has become very popular over the last few years, there are 

several challenging issues when combining a large number of 

APIs into the data mashup, especially when composite APIs 

are manually integrated by mashup developers. This paper 

proposes a novel algorithm for automatic composition of Web 

APIs. The proposed algorithm consists of constructing a direc-

ted similarity graph and searching composition candidates 

from the graph. We construct a directed similarity graph 

which presents the semantic functional dependency between 

the inputs and the outputs of Web APIs. We generate directed 

acyclic graphs (DAGs) that can produce the output satisfying 

the desired goal. We rapidly prune APIs that are guaranteed 

not to involve the composition in order to produce the DAGs 

efficiently. The algorithm is evaluated using a collection of RE-

ST and SOAP APIs extracted from ProgrammableWeb. 

Keywords-automatic composition algorithm; semantic data 

mashup; ontology learning method; Web API 

I. INTRODUCTION 

A mashup is a Web application that combines data, 
presentation, or functionality from several different sources 
to create new services. An example of the mashup is Hou-
singMaps [1], which displays available houses in an area by 
combining listings from Craigslist with a display map from 
Google. A data mashup is a special class of the mashup 
application that combines data from several data sources 
(typically provided through Web APIs; these API types are 
usually SOAP, REST, JavaScript, XML-RPC, Atom, etc.) to 
generate a more meaningful dataset. Data mashups have be-
come very popular over the last few years. For example, as 
of August 2012, ProgrammableWeb [2] has published more 
than 7000 Web APIs. Several mashup tools such as Yahoo’s 
Pipes, IBM’s Damia, and Intel’s Mashmaker have been 
developed to enable users to create data mashups without 
programming knowledge. 

Although the data mashup has emerged as a common 
technology for combining Web APIs, there are several 
challenging issues. First, since a portal site may have a large 
number of APIs available for data mashups, manually 
searching and composing compatible APIs can be a tedious 
and time-consuming task. Therefore, mashup developers 
wish to quickly find the desired APIs and easily integrate 
them without having to expend considerable programming 
efforts. Second, portal sites typically only support keyword 
search or category search. These search methods are 
insufficient due to their bad recall and bad precision. To 

make mashups more efficiently, we need a semantic-based 
approach such that agents can reason about the capabilities 
of the APIs that permit their discovery and composition. 
Third, most mashup developers want to figure out all the 
intermediate steps needed to generate the desired mashup 
automatically. An infrastructure that allows users to provide 
some interesting or relevant composition candidates that can 
possibly incorporate with existing mashups is needed. 

To solve the above issues, we present an algorithm for 
automatic discovery and composition of Web APIs using 
their semantic descriptions. Given a formal description of 
the Web API, a desired goal can be directed matched to the 
output of a single API. This task is called discovery. If the 
API is not found, the agent can search for two or more APIs 
that can be composed to satisfy the required goal. This task 
is called composition. Since the discovery is a special case 
of the composition where the number of APIs involved in 
the composition is exactly equal to one, discovery and 
composition can be viewed as a single problem.  

We define API descriptions to syntactically describe 
Web APIs, and use an ontology learning method [3] to 
semantically describe Web APIs. We propose a Web API 
composition algorithm based on the ontology learning meth-
od. The proposed algorithm consists of constructing a direc-
ted similarity graph and searching composition candidates. 
The composition process can be described as that of genera-
ting directed acyclic graphs (DAGs) that can produce the 
output satisfying the desired goal, where the DAGs are 
gradually generated by forward-backward chaining of APIs. 
In order to produce the DAGs efficiently, we filter out APIs 
that are not useful for the composition. The main contributi-
ons from this paper are as follows: 

 

 The paper proposes a new efficient algorithm for solving 
the Web API composition problem that takes semantics 
into account. The proposed algorithm automatically se-
lects the individual APIs involved in the composition for 
a given query, without the need for manual intervention.  

 Selecting and integrating APIs suitable for data mashups 
are critical for any mashup toolkits. We show in this 
paper how the characteristics of APIs can be syntacti-
cally defined and semantically described, and how to use 
the syntactic and semantic descriptions to aid the easy 
discovery and composition of Web APIs. 

 A semantic-based data mashup tool is implemented for 
lowering the complexity of underlying programming 
efforts. Using this tool, the composition of APIs does 
not require in-depth programming knowledge. Users are 
able to integrate APIs with minimal training.  
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The rest of this paper is organized as follows. Section 2 
begins by introducing our ontology learning method. Sec-
tion 3 describes automatic Web API discovery and composi-
tion algorithms. Section 4 describes an implementation and 
experiment. Section 5 discusses related work, and Section 6 
contains conclusions and future work.  

II. ONTOLOGY LEARNING METHOD 

The successful employment of semantic Web APIs is 
dependent on the availability of high-quality ontologies. The 
construction of such ontologies is difficult and costly, thus 
hampering Web API deployment. Our ontology learning 
method [3] automatically generates ontologies from Web 
API descriptions and their underlying semantics.  

A. Parameter Clustering Technique 

We have developed a parameter clustering technique to 
derive several semantically meaningful concepts from API 
parameters. We consider the syntactic information that resi-
des in the API descriptions, and apply a mining algorithm to 
obtain their underlying semantics. The main idea is to mea-
sure the co-occurrence of terms and cluster the terms into a 
set of concepts. Formally, we can define an API as follows: 

 
Definition 1: A Web API W=<I, O> where I is the input 
and O is the output. Each input and output contains a set of 
parameters for the API. 

 
The input/output parameters are often combined as a 

sequence of several terms. We utilize a heuristic as the basis 
of our clustering, in that the terms tend to express the same 
concept if they frequently occur together. This allows us to 
cluster terms by exploiting the conditional probability of 
their occurrences in the input and output of Web APIs, 
specifically we are interested in the association rules [4]. 
We use the agglomerative hierarchical clustering algorithm 
to turn the set of terms               into the concepts 

             . For example, the terms {zip, city, area, 

state} can be treated as one concept, they are grouped into 
one cluster.  

B. Pattern Analysis Technique 

The pattern analysis technique captures relationships 
between the terms contained in a parameter, and matches the 
parameters if both terms are similar and the relationships are 
equivalent. This approach is derived from the observation 
that people employ similar patterns when composing a 
parameter out of multiple terms. Based on the experimental 
observations, the relationships between the terms are 
defined in Table 1. Two ontological concepts are matched if 
and only if one of the following is true; (1) one concept is a 
property of the other concept, and (2) one concept is a 
subclass of the other concept.  

From the above rules, an agent would be able to find a 
match based on the similarities of the API. For example, 
assume that a parameter CityName was to be compared 

against another parameter CodeOfCity. The keyword 
search would not count these as a possible match. However, 
if the City term had the relationships “X propertyOf Y” in 

its pattern rule, the matching logic will return a matching 
score because these two parameters are closely related 
(perhaps using the rules “CityName propertyOf City” and 

“CodeOfCity propertyOf City”). 

TABLE I.  RELATIONSHIPS BETWEEN TERMS 

 

C. Semantic Matching Technique 

The semantic matching technique estimates the 
similarity of the input and output by considering the 
underlying concepts the input/output parameters cover. 
Formally, we describe the input as a vector           
(similarly, the output can be represented in the form 
         ), where    is the set of input parameters and 
   is the concept that is associated with   . Then, the simila-
rity of the input can be found using the following two steps 
(the output can be processed in a similar fashion); (1) we 
split    into a set of terms, we then find synonyms for these 
terms, and (2) we replace each term with its corresponding 
concepts, and then compute a similarity score.  

The similarity score is defined to select the best matches 

for the given input. Consider a pair of candidate parameters 

   and   , the similarity between    and    is given by the 

following formula:  

 

                                   
  ‖            ‖

   
 

 

where m and n denote the number of valid terms in parame-

ters, ‖            ‖ returns the number of matching terms. 

Here, the similarity of each parameter is calculated by the 

best matching parameter that has a larger number of seman-

tically related terms. The overall similarity is computed by a 

linear combination [3] to combine the similarity of each 

parameter.  
Since existing matching techniques based on the cluste-

ring consider all terms in a cluster as an equivalent concept 
and ignore any hierarchical relationships between the terms, 
matches might exist that are irrelevant to the user's intention 
(i.e., false positives). Thus, a pruning process is necessary to 
improve the precision of the results. The basic idea is to 
improve the precision of the matching technique by 
applying the pattern relationships defined in Table 1. For 
details, readers may refer to our previous work [3]. 

III. WEB API DISCOVERY AND COMPOSITION  

A. Discovery Problem 

Given a query and a collection of APIs stored in the 

registry, automatically finding an API from the registry that 

No Pattern Relationships 

1 Noun1+Noun2 Parameter propertyOf Noun1 

2 Adjective+Noun Parameter subClassOf Noun 

3 Verb+Noun Parameter subClassOf Noun 

4 Noun1+Noun2+Noun3 Parameter propertyOf Noun1 

5 Noun1+Preposition+Noun2 Parameter propertyOf Noun2 
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matches the query requirement is the Web API discovery 

problem. For example, we are looking for an API to search a 

hotel. Table 2 shows the input/output parameters of a query 

and an API. In this example a Web API W satisfy the query 

Q. Q requires HotelName as the output and W produces 

HotelName and ConfirmNumber. The extra output produ-

ced can be ignored. W requires CountryCode and Name-

OfCity as the input and Q provides CountryID, State-

Name, and CityName as the input. An API parameter can be 

matched with the other parameter only if there is a semantic 

relationship between them. Here, although CountryCode 

and CountryID are different forms, they have the same 

semantics since they are referred to the same concept. Also 

NameOfCity and CityName have the same semantics since 

they are properties of the same object (i.e., City). Therefore, 

the agent is able to infer that Q and W input parameters have 

semantically the same classes. 

TABLE II.  EXAMPLE FOR DISCOVERY PROBLEM 

API Input Parameters Output Parameters 

Q 
CountryID, StateName, 

CityName 

HotelName 

W CountryCode, NameOfCity HotelName, ConfirmNumber  

 

We describe an automatic Web API discovery algorithm 
similar to the one in [5]. An API matches a query when an 
API is sufficiently similar to the query. This means that we 
need to allow the agent to perform matches that recognize 
the degree of similarity between APIs and the query. We 
define the matching criteria as follows: 

 

Definition 2: An API W matches a query Q when all the 

output parameters of Q are matched by the output parame-

ters of W, and all the input parameters of W are matched by 

the input parameters of Q. 

 

Definition 2 guarantees that the API found satisfies the 

needs of the query, and the query provides all the input 

parameters that the API needs to operate correctly. Our 

discovery algorithm is shown in Algorithm 1. This algori-

thm adopts strategies that rapidly prune APIs that are gua-

ranteed not to match the query, thus improving the efficien-

cy of the system. A query is matched against all APIs stored 

in the registry. A match between a query and an API con-

sists of matching all the output parameters of the query 

against the output parameters of the API; and all the input 

parameters of the API against the input parameters of the 

query. If one of the query's output parameters is not matched 

by any of the API's output, the match fails. Matching 

between inputs is computed by the same process, but with 

the order of the query and API reversed. The similarity 

score of a match between two parameters is calculated by 

the semantic matching technique described in the previous 

section. The APIs are returned in the descending order of 

similarity scores. 

 

Algorithm 1: Discovery Algorithm 

//input: query (Q), APIs 

//output: matched APIs 

for all APIs  

if Matching(Q, API) then result.append(API) 

return Sort(result) 

         Matching(Q, API)  

             SemanticMatch(Q.O, API.O) 

             SemanticMatch(API.I, Q.I)  

 

B. Composition Problem 

Given a query and a collection of APIs, in case a 

matching API is not found, searching a sequence of APIs 

that can be composed together is the composition problem 

of Web APIs. It means that the output generated by one API 

can be accepted as the input of another API. For example, 

we are looking for APIs to find a hotel’s location. Table 3 

shows the input/output parameters of a query Q, and two 

Web APIs W1 and W2 in the registry. Suppose the agent 

cannot find a single API that matches the criteria, then it 

composes n APIs from the set of Web APIs available in the 

registry. In this table, W1 returns HotelName as the output. 

W2 receives it as the input and returns Location as the 

result. So, the subsequent W2 may use the output produced 

by the preceding W1 as the input.  

TABLE III.  EXAMPLE FOR COMPOSITION PROBLEM 

API Input Parameters Output Parameters 

Q 
CountryID, StateName, 

CityName 

Location 

W1 CountryCode, NameOfCity ConfirmNumber, HotelName 

W2 HotelName Location 

 

Now we can define the Web API composition problem 

as follows: 

 

Definition 3: If an API W1 can produce O1 as its output 

parameters and an API W2 can consume O1 as input parame-

ters, we can conclude that W1 and W2 are composable. Then, 

the Web API composition problem can be defined as auto-

matically finding a DAG of APIs from the registry. 

 

We describe a Web API as <W.I, W.O> and a query as 

<Q.I, Q.O>. A composition is valid if the following condi-

tions are satisfied: 

 

1)    
             

2)    
             

3)       
 , there exists at least a path from Wi to Wj. 

 

In other words, the APIs in the first stage of the compo-

sition can only use the query input parameters. The outputs 

produced by the APIs in the last stage of the composition 

should contain all the output parameters that the query 

requires to be produced. The output from an API at any 
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stage in the composition should be able to provide as the 

input to the next API. 

The composition problem is just achieving a desired 

goal from the initial request, while not making it know the 

underlying composition details. The mashup developers can 

now simply describe a goal in form of the query, and submit 

the requirement to our system. If the desired goal can be 

directly matched to the output of a single Web API, the 

composition problem reduces to the discovery problem. 

Otherwise, it can be accomplished by searching a sequence 

of APIs that can produce the desired output. Such sequence 

composition of APIs can be viewed as a searching DAG that 

can be constructed from an initially given query. In 

particular, when all nodes in the graph have not more than 

one incoming edge and not more than one outgoing edge, 

the problem reduces to a linearly linked APIs problem. 

Because the discovery problem is a simple case of the 

composition where the number of APIs involved in the 

composition is exactly equal to one, the discovery and 

composition can be viewed as a single problem. 

C. Constructing Directed Similarity Graph 

In order to speed up the calculation of possible composi-

tion plans, we use a pre-computed directed similarity graph 

that chains the output of one API into the input of another 

API. The connection of the nodes is based on the semantic 

similarity between the output and input of the nodes. Algori-

thm 2 illustrates the construction procedure for the graph. At 

the beginning, we assign each API in the registry to vertexes 

iteratively. We then establish edges between the vertexes. 

For each vertex vi, we check whether its corresponding out-

put can be accepted as an input by a vj by computing the 

similarity score. If the output of vi is semantically similar to 

the input of vj (i.e.,    (         )    , then we add a direc-

ted edge from vi to vj (in the reverse direction) and assign a 

similarity score. We also check if there exists a vertex vj, 

whose output can be consumed by vi as an input, in the 

similar manner. After constructing the directed similarity 

graph, we solve the composition problem within this graph. 

This initial graph is dynamically modified if new APIs 

become available. 

 

Algorithm 2: Graph Construction Algorithm 

//input: APIs 

//output: a directed similarity graph 

for all APIs  

vi = addVertex(API) 

for each vi ∈ V 

    for each vj ∈ V  

      if Sim(vi.O, vj.I)>0 then addEdge(vi, vj) 

      if Sim(vj.I, vi.O)>0 then addEdge(vj, vi) 

 

D. Graph-based Composition Algorithm 

Our graph-based composition algorithm can be descri-

bed as that of generating DAGs that can produce the output 

satisfying the desired goal. In order to produce the DAGs 

efficiently, we rapidly filter out APIs that are not useful for 

the composition. We extend our discovery algorithm to han-

dle the composition problem. The algorithm is based on a 

modified Breath-First Search (BFS) algorithm [6] which can 

find a shortest path from a source vertex to a target vertex. 

We solve the composition problem in four main stages: 

searching sub-graphs, adding start nodes, validating candi-

dates, and ranking candidates. 

Searching sub-graphs: First, we search the API registry 

about any API that has all the output parameters of the 

query (we call “last nodes”), and any API that has at least 

one of the input parameters of the query (we call “first 

nodes”). After this searching it is assumed that non empty 

sets are obtained for the first and last nodes. The next is to 

create n-ary trees for every last node by visiting all the 

nodes connected to a particular last node. Such tree is 

constructed by recursively including nodes and edges from 

the directed similarity graph until we reach the first nodes. 

We use the BFS algorithm to solve this problem. Now we 

can find all the possible composition candidates from the 

trees. Figure 1 shows a general overview of the query and 

the matching APIs before constructing the overall composi-

tion plans.  

 

 

Q.I Q.O

Last NodesFirst Nodes  
Figure 1. General Overview of Query and Matching APIs 

 

Adding start nodes: In this stage, a start node is added to 

each of the trees. The start node is a special dummy node for 

a dynamically created API, namely the API that provides 

the input of the query. The start node is represented as W0 = 
<Ø , Q.I>, namely W0 is an API in a tree with no input, 

having only an output. Finding a possible composition 

candidate consists in generating a DAG from the start node 

to the last node in the trees. When a possible composition 

candidate has been found, all the nodes participating in the 

composition should be validated in the next stage. 

Validating candidates: A possible composition candidate 

is valid if all nodes in the composition can be executed 

(non-)sequentially in order to produce the desired results. 

This validating is done by starting from the start node wor-

king our way backwards. At this point, first nodes consist of 

all the APIs such that all their inputs are provided by the 

start node. Let O1 be a union of all outputs produced from 

the first nodes in the composition, and I1 (i.e., Q.I) be the 

query input. Inputs for the second nodes are all the outputs 
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produced by the previous nodes and the query input, i.e., I2 
= O1 ∪ I1. The combination I2 will be the available input for 

the next nodes. This transition (i.e., Ii+1 = Oi ∪  i) is repeated 

until the last node is reached, removing redundant nodes 

which do not contribute to the optimal path at each step. 

Ranking candidates: A DAG is considered as a composi-

tion candidate only if it meets the requirements of the output 

and input described in the query. It means all output para-

meters of the query must be obtained, and partly or fully the 

input parameters of the query must be consumed. After a 

composition candidate has been found, we gather all the 

similarity data from the edges involved in the composition 

in order to compute a similarity score. This score is calcula-

ted by the average value of all the similarity data related to 

the edges, and the ranking of the composition candidate is 

determined by the score. The list of composition candidates 

is ordered according to this ranking score and the head of 

the list is considered the best, recommended option for the 

user. Algorithm 3 illustrates our graph-based composition 

algorithm. 

 

Algorithm 3: Composition Algorithm 

//input: query (Q), a directed similarity  graph 

//output: ranked composition candidates 

if SemanticMatch(Q.O, API.O) is empty then fail 

if SemanticMatch(API.I, Q.I) is empty then fail 

for each last node  

     Call BFS algorithm 

     Create n-ary trees  

for each tree 

Adding a start node to the tree 

Generating a DAG from start node to last node 

//Validating possible composition candidates 

    i = 1, Ii = Q.I 

Li = NextApiList(i) 

    while Not (last node ˄ Vi ≡ Ø ) 

              Oi = UnionAllOutputs(Li) 

Ii+1 = Oi ∪ Ii 

              Li+1 = NextApiList(i+1) 

              Removing redundant nodes 

i = i+1 

     endwhile 

endfor 

Ranking composition candidates 

 

IV. IMPLEMENTATION AND EXPERIMENT 

We developed a semantic-based data mashup tool. The 

system architecture is shown in Figure 2. The composition 

planner is responsible for planning to achieve the composi-

tion relevant to the desired goal. It captures the current com-

position states and dynamically composes relevant APIs that 

can be added to the mashup. The mashup engine interprets 

the composition of corresponding APIs and displays the im-

mediate results. In the graphical user interface (GUI), mash-

up developers can obtain the immediate composition results 

visually, and iteratively refine their goals until the final 

results satisfying. The ontology learning method automati-

cally builds semantic ontologies from Web API descriptions.  

 

GUI

Registry

Mashup
Engine

Composition
Planner

Ontology 
Learning 
Method  

    Figure 2. System Architecture 

 

To experiment with the data mashup tool we extracted a 

collection of REST and SOAP APIs from Programmable-

Web. To avoid potential bias, we chose different APIs from 

different domains. We first collected a subset which associ-

ated REST APIs for three domains: weather, travel, and 

mapping. This set contains 63 APIs. Next, we collected a 

subset containing 17 SOAP APIs from three domains: zip-

code, location, and search. In Figure 3, we show a directed 

similarity graph which obtained from our experimental 

dataset. The graph consists of 80 nodes and 123 edges. 

 

 
Figure 3. Directed Similarity Graph 

 

A possible query for the Web API composition is given 

as follows: Q.I = {zipcode}, Q.O = {city, latitude, 

longitude}. The composition result is exemplified by part 

of the directed similarity graph as shown in Figure 4. From 

the registry our engine has discovered 8 last nodes (dark 

grey circles) and 7 first nodes (light grey circles). We call 

the BFS algorithm and create an n-ary tree for each last 

node. This is repeated until all the last nodes are reached. 

A total of 3 possible composition candidates have been 

automatically generated from the graph. As we have mentio-

ned in Section 3.D, a start node W0 is added to each tree and 

the validation of candidates is performed for optimal paths. 

After running the validation, final composition candidates 

are selected and similarity scores are calculated. In Table 4, 

we list these ranked composition candidates. 

To evaluate our composition quality, we check how 

many of desired goals are captured by the composition algo-

rithm. We can observe that two third of all the recommen-
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ded results in Table 4 have desired or relevant goals. 

Although the 3rd ranking result turns out to be invalid as it 

does not satisfy the user requirement, top 2 ranking results 

have desired composition plans. These results have shown 

that our algorithm can generate most user desired outputs.  

 

  

(a) Discovered last and first nodes                  (b) n-ary trees 

Figure 4. Result of Graph-Based Composition Algorithm 
 

TABLE IV.  LIST OF RANKED COMPOSITION CANDIDATES 

Rank Score DAG 

1 0.625 W0→(9, 72) →23 

2 0.550 W0→ (9, 72) →24 

3 0.222 W0→ (9, 72, 65, 66, 67) →21→11→12→25 

 

V. RELATED WORK 

Most researches handing the automatic composition 
problem have been focusing on the composition of SOAP-
based Web services. Many various techniques have been 
used for this study, such as graph-based search algorithm [7] 
and AI planning [8]. However, the work presented in this 
paper is not limited to composing SOAP-based Web servi-
ces, but also considers REST, JavaScript, XML-RPC, and 
Atom Web APIs.  

The use of graph-based search algorithms to solve the 
composition problem has been studied before. Kona et al. [7] 
propose an automatic composition algorithm for semantic 
Web services. Rodriguez-Mier et al. [9] propose a heuristic-
based search algorithm for automatic Web service composi-
tion. Shiaa et al. [10] present an incremental graph-based 
approach to automatic service composition. These works are 
similar to our study. However, they cannot find an optimal 
solution, and do not support various Web API protocols.  

We recently proposed an automatic Web API composi-
tion algorithm [11] to handle the sequential composition 
problem. This paper is an extension of our previous work 
and focuses on the (non-)sequential composition that can be 
represented in the form of directed acyclic graphs (DAGs). 
This is the most general case of the Web API composition. 

VI. CONCLUSIONS AND FUTURE WORK 

This paper presents an algorithm for the automatic Web 
API composition. This algorithm is based on the graph-
based approach, where composition candidates are gradually 

generated by forward-backward chaining of APIs. Our algo-
rithm can get optimal plans by applying strategies that 
rapidly prune APIs that are guaranteed not to match the 
query. A key issue is how to locate the desired APIs. The 
efficient discovery can play a crucial role in conducting 
further API composition. We define API descriptions that 
syntactically describe Web APIs, and use an ontology 
learning method that semantically describes APIs. These 
syntactic and semantic descriptions allow the agent to auto-
mate the composition of Web APIs. 

Our future work is focusing on the investigation of the 
performance and scalability measures for the proposed 
graph-based composition algorithm. By this we aim to opti-
mize the functionality of our system. We are also exploring 
various optimization techniques that can apply to the algori-
thm. For example, a heuristic AI planning technique can be 
used to find an optimized solution with a minimal number 
of paths. The use of dynamic optimization techniques over 
the graph helps greatly in obtaining the effectiveness and 
efficiency of our approach.  
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