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BIOTECHNO 2021

Foreword

The Thirteenth International Conference on Bioinformatics, Biocomputational Systems and
Biotechnologies (BIOTECHNO 2021), held between May 30 – June 3rd, 2021, covered these three main
areas: bioinformatics, biomedical technologies, and biocomputing.

Bioinformatics deals with the system-level study of complex interactions in biosystems providing
a quantitative systemic approach to understand them and appropriate tool support and concepts to
model them. Understanding and modeling biosystems requires simulation of biological behaviors and
functions. Bioinformatics itself constitutes a vast area of research and specialization, as many classical
domains such as databases, modeling, and regular expressions are used to represent, store, retrieve and
process a huge volume of knowledge. There are challenging aspects concerning biocomputation
technologies, bioinformatics mechanisms dealing with chemoinformatics, bioimaging, and
neuroinformatics.

Biotechnology is defined as the industrial use of living organisms or biological techniques
developed through basic research. Bio-oriented technologies became very popular in various research
topics and industrial market segments. Current human mechanisms seem to offer significant ways for
improving theories, algorithms, technologies, products and systems. The focus is driven by
fundamentals in approaching and applying biotechnologies in terms of engineering methods, special
electronics, and special materials and systems. Borrowing simplicity and performance from the real life,
biodevices cover a large spectrum of areas, from sensors, chips, and biometry to computing. One of the
chief domains is represented by the biomedical biotechnologies, from instrumentation to monitoring,
from simple sensors to integrated systems, including image processing and visualization systems. As the
state-of-the-art in all the domains enumerated in the conference topics evolve with high velocity, new
biotechnologes and biosystems become available. Their rapid integration in the real life becomes a
challenge.

Brain-computing, biocomputing, and computation biology and microbiology represent advanced
methodologies and mechanisms in approaching and understanding the challenging behavior of life
mechanisms. Using bio-ontologies, biosemantics and special processing concepts, progress was achieved
in dealing with genomics, biopharmaceutical and molecular intelligence, in the biology and microbiology
domains. The area brings a rich spectrum of informatics paradigms, such as epidemic models, pattern
classification, graph theory, or stochastic models, to support special biocomputing applications in
biomedical, genetics, molecular and cellular biology and microbiology. While progress is achieved with a
high speed, challenges must be overcome for large-scale bio-subsystems, special genomics cases, bio-
nanotechnologies, drugs, or microbial propagation and immunity.

We take here the opportunity to warmly thank all the members of the BIOTECHNO 2021
Technical Program Committee, as well as the numerous reviewers. The creation of such a high quality
conference program would not have been possible without their involvement. We also kindly thank all
the authors who dedicated much of their time and efforts to contribute to BIOTECHNO 2021.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the BIOTECHNO 2021 organizing
committee for their help in handling the logistics and for their work to make this professional meeting a
success.
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We hope that BIOTECHNO 2021 was a successful international forum for the exchange of ideas
and results between academia and industry and for the promotion of progress in the fields of
bioinformatics, biocomputational systems and biotechnologies.

BIOTECHNO 2021 Chairs:

BIOTECHNO 2021 Steering Committee
Birgit Gersbeck-Schierholz, Leibniz Universität Hannover, Germany
Hesham H. Ali, University of Nebraska at Omaha, USA

BIOTECHNO Industry/Research Advisory Committee
Steffen Heber, North Carolina State University, USA
Alexandru Floares, SAIA Institute, Romania
Gilles Bernot, University Nice Sophia Antipolis, France
Erliang Zeng,University of Iowa, USA
Y-h. Taguchi, Chuo University, Japan

BIOTECHNO 2021 Publicity Chairs
Daniel Basterretxea, Universitat Politecnica de Valencia, Spain
Marta Botella-Campos, Universitat Politecnica de Valencia, Spain
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Genetic Markers Associated with Anemia in Individuals with Sickle Cell Disease in Tanzania 
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Abstract—Sickle cell disease is a global health problem, a 
genetic disease which affects many people, particularly 
common among those whose ancestors came from sub-Saharan 
Africa. All individuals with sickle cell disease experience 
anemia which increases the morbidity and mortality. This 
research aims to identify genetic variants associated with 
anemia in individuals with sickle cell disease. In the long-term 
this will contribute towards efforts to improve the life 
expectancy of individuals by quickly identifying single 
nucleotide polymorphisms related to anemia in sickle cell 
disease and enabling better prediction of the severity of anemia 
that the individual will experience which enable better 
preventive treatment. Quality control of the Genome Wide 
Association Studies data and association between anemia and 
the genotype data were performed using PLINK software and 
will be presented. Designing of imputation and replication 
study of the Genome Wide Association Studies data is in 
progress. The analysis will identify single nucleotide 
polymorphisms and genes linked to anemia in individuals with 
sickle cell disease. The results can also be compared with single 
nucleotide polymorphisms candidates from other studies.

Keywords-Sickle cell disease; Anemia; Genome Wide 
Association Studies.

I. INTRODUCTION 

Sickle Cell Disease (SCD) is inherited genetic disorder 
caused by mutation in the hemoglobin (HBB) gene. SCD is 
a major public health concern [1]. Worldwide, it is 
estimated that majority of the 275,000 babies born with 
SCD annually are in sub-Saharan Africa [2]. The burden of 
SCD in Tanzania is high where it is estimated that 11,000 
children are born with SCD annually [3]. SCD causes 
shortage of healthy Red Blood Cells (RBC) due to the 
polymerization of the RBCs into a sickle shaped red blood 
cells. These aggregate in small blood vessels and slow or 
block blood flow and oxygen initiating vaso-occlusion. 
Individuals with SCD become anemic because the sickle 
shaped cells have a short life (10-20 days) unlike normal 
RBCs which live for 120 days.  

Despite the similarity in the origin of the disease, 
individuals demonstrate varying symptoms and severity. 
Our previous studies confirmed known and identified new 
genetic variants associated with fetal hemoglobin [4] and 
liver function (manuscript write-up ongoing). Other studies 

[5, 6] have also identified genetic variants associated with 
different phenotypes observed in individuals with SCD, 
however much of the variation in phenotype is yet to be 
explained.  

 Anemia in SCD increases the morbidity and mortality of 
individuals. Considering the amount of hemoglobin (Hb) as 
one variable, non-SCD individuals have a normal range of 
13.5-17.5 grams per deciliter (adult men) and 12-15.5 grams 
per deciliter (adult women). In our database SCD 
individuals have an average of 8 grams per deciliter. 
Genome Wide Association Studies (GWAS) involve 
studying a set of genetic variants in different individuals to 
see if any variant is associated with a trait by investigating 
the entire genome of each individual. This study aims to 
identify genetic variants associated with anemia in 
individuals with sickle cell disease using a database of 
GWAS data for 1952 individuals with SCD in Tanzania.  

The methodology used to identify the markers will be 
presented in Section II, followed by the results of the 
analysis in Section III. Discussion and conclusion of the 
research will be presented in Sections IV and V, 
respectively.  

II. METHODOLOGY

A.  Sampling of subjects and data collection  

The phenotype data contains clinical, laboratory and 
demographic information. Some of these parameters were 
used in this analysis. Data of 1952 individuals diagnosed 
with SCD from a cohort have been genotyped. Samples 
were collected, DNA extracted and genotyped. These 
individuals are part of the Muhimbili Sickle Cohort 
recruited at Muhimbili National Hospital, Dar es Salaam, 
Tanzania. Full details are provided in [4]. Samples were 
typed on the Illumina Human Omnichip 2.5 platform.  

B.  Quality control of the genotype data and Association 

Standard technical Quality Control (QC) of the data was 
performed using PLINK software to remove possible 
sources of technical and genetic bias [7]. This includes 
removing missing data, duplicates and individuals and 
Single Nucleotide Polymorphisms (SNPs) failing QC. 

1Copyright (c) IARIA, 2021.     ISBN:  978-1-61208-859-4

BIOTECHNO 2021 : The Thirteenth International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies

                             8 / 24



Principal Components Analysis (PCA) and the association 
of the phenotype (Hb) to the QC genotype were done by 
using PLINK software. 

C. Genotype imputation and replication study 

   Genotype imputation is a statistical inference of 
unobserved genotypes which is performed on SNPs using 
known haplotypes in a population such as 1000 Genomes 
Project in humans. Genotype imputation is underway. 
Replication in GWAS studies is performed to confirm the 
phenotype-genotype association results by providing 
statistical evidence and rule out associations due to biases. 
Designing of replication and imputation study of GWAS 
data is in progress. 

III. RESULTS 

Fig. 1 shows the relationship of the quality-controlled 
genotype data from our study to other populations. 

Our study population (blue dots) is admixture, most of 
individuals cluster with individuals of African ancestry 
while few individuals deviate from the cluster. The 
individuals deviating from the cluster are of Arabic and 
Indian origin. 

Figure 1. Study population relatedness to other population based on 
Principal Component Analysis (PCA) 

IV. DISCUSSION 

The analysis showed that the SNPs associated with 
anemia are present in the genes that are co-expressed. 
Individuals with sickle cell anemia experience anemia and 
frequent infections, this activates the immune response in 
individuals in order to fight the infections. The SNPs that 
significantly associated with anemia are found in the genes 

(Table.1) which function in cell-cell adhesion, antigen 
receptor-mediated signaling pathway, immune response-
activating cell surface receptor signaling pathway and T cell 
receptor signaling pathway These functions are associated 
with immune response in humans; it is common for immune 
system to respond when the human body gets infected.  

Other SNPs that significantly associate with anemia are 
found in the genes (Table.1) that function in hindbrain 
development and central nervous system neuron 
differentiation. This is expected in individuals with sickle 
cell anemia because they experience episodes of pain as 
well as developmental delays.  

Unfortunately, the SNP found to be mostly significant 
associated with anemia (Fig. 2) at chromosome 3 and 7 have 
not been annotated hence the functions are not known.  

Fig. 2 shows the SNPs (red and blue dots, the p-values on 
the y-axis) and chromosome in which the SNPs belong on 
the x-axis. 

Figure 2. Manhattan plot showing SNPs that associate with anemia in 
SCD, significant SNPs located at Chromosome 3, 7 and 12. 

Some of the SNPs that associate with anemia in 
individuals with SCD are in Table 1.  

TABLE I. FEW SELECTED  SNPS AND THEIR LOCATIONS. 

SNP Chromosome Gene 

rs2269688 8 MTMR7 

rs11259403 10 PRKCQ 

rs13389996 2 CTNNA2 

rs10778462 12 CKAP4 

rs7136826 12 CLEC1A 

rs11632584 15 MEGF11 

rs7163369 15 SLCO3A1 

rs732523 12 PCED1B 

rs17276467 7 CREB3L2 

rs10209276 2 KCNH7 

rs4578863 2 ZC3H6 

2Copyright (c) IARIA, 2021.     ISBN:  978-1-61208-859-4
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It is our hope that the completion of replication and 
imputation analysis will reveal more and significant 
associations.  

V. CONCLUSION AND FUTURE WORK 

This study indicated genetic markers (SNPs) that 
associate with anemia in individuals with SCD. This is the 
first step towards developing a tool that will quickly identify 
the markers linked to anemia in SCD individuals which is 
an important step in improving preventive treatment of these 
individuals. Similar analysis has to be extended in same and 
different sickle cell disease cohorts in order to identify new 
and confirm the variants linked to anemia in individuals 
with SCD.  
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Abstract—Abnormal regulation of glucose absorption in the
small intestine is an important cause of Type 2 Diabetes (T2D).
Even if this hypothesis is clinically well-known, it has not been
fundamentally validated yet, mainly due to a lack of reliable
metabolic knowledge on the glucose regulation. The main objec-
tive of this paper is to test this hypothesis on a highly referenced
model composed of ordinary differential equations. This model is
tested on an original dataset featuring the observations of obese
diabetic patients. It shows its limits to predict our post-prandial
glycemia and insulinemia time series especially with regard to
the crucial complexity of gastro-intestinal regulation.

Keywords—Ordinary Differential Equation; Systems Biology;
Type 2 Diabetes; Intestinal Glucose Absorption.

I. INTRODUCTION

Diabetes is a chronic metabolic disease characterized by a
lack of insulin secretion and a decreased peripheral insulin
response. Insulin is a hormone that down-regulates blood
sugar concentration. Consequently, the balance of glucose and
insulin concentrations in different tissues, called homeostasis,
is pathologically perturbed: hyperglycemia is observed both
during fasting and post-prandial periods. It gradually leads to
tissues damages and subsequent diseases, i.e., a high rate of
comorbidity [6].

More precisely, Type 2 Diabetes (T2D) results from the
body’s ineffective use of insulin. Most patients (∼ 90%)
with diabetes have T2D. Around 400 millions of people are
affected worldwide by the disease representing a major public
health issue in most developed countries [7]. It is commonly
accepted that this type of diabetes is largely caused by
physical inactivity combined with an high-carbohydrate diet.
However, through bariatric surgery, obese patients with T2D
have seen their physiological glycemia immediately restored,
independently to their weight loss [1]. This observation leads
us to consider Intestinal Glucose Absorption (IGA) as a critical
cause of T2D, among others. Bariatric surgery, and more
precisely Roux-en-Y Bariatric Surgery (RYGB), anatomically
leads to the decrease of the glucose absorption surface, which
would explain, at least partially, this unexpected clinical ben-
efit. Furthermore, the gastro-intestinal tract includes:

• enzymatic and mechanical transformation of starch (amy-
lopectine and amylose) into absorbable glucose,

• incretin secretion and effects on the blood sugar,

• and the small intestine microbiota, which may modulate
dietary responses.

This landscape of hypothetical causal factors shows that fun-
damental research effort on T2D must continue despite precise
clinical understanding of the disease. However, all represen-
tations of glucose-insulin homeostasis largely underestimate
the importance of the gastro-intestinal tract into the blood
sugar consequences. Instead, they tend to model with increas-
ing details the interaction of insulin with its related tissues
(pancreas, liver and insulino-dependent tissues). We want to
investigate the contribution of IGA to glucose homeostasis and
its potential role in diabetes. To this aim, and as a preliminary
work, we consider a typical and state of the art homeostasis
glucose-insulin model [5] formalized as a system of Ordinary
Differential Equations (ODEs). Our objective is twofold:

• test if this model can predict a significant improvement of
glucose homeostasis by simulating RYGB as is observed
experimentally,

• test if this model can predict the time-course data of an
original dataset of diabetic patients.

In Section 2, we briefly describe the model. In Section 3,
we present our parameter fitting results both from the original
parameters of [5] and for our own dataset We discuss the
partial results in Section 4 and present the on-going and future
work in Section 5.

II. MODEL

Many simulation models of the glucose-insulin system for
the postprandial period have been developed [8]. In this work,
we consider a highly cited model, proposed in [5], to simulate
the postprandial physiological events of their own cohorts of
normal subjects and T2D patients. This model is made of
12 ODEs and 36 parameters describing fluxes of glucose and
insulin between physiological compartments: gastro-intestinal
tract, plasma, liver, pancreas, muscle and adipose tissues
(Figure 1). We recall in the following, in informal terms, how
the physiological modules interact.

The Gastro-Intestinal Tract module describes the digestion
process, from the stomach to the gut, and can be considered
as the input of the whole system. It includes the complexity of

4Copyright (c) IARIA, 2021.     ISBN:  978-1-61208-859-4
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Figure 1: Simplified interaction graph of physiological compartments describ-
ing the model of [5].

the gastric emptying depending on the proportion of the solid
and liquid phases of the alimentary bolus [4]. Only the liquid
phase that ends up in the gut is absorbed by the intestine and
discharged to the peripheral blood. Incretins are not modeled.
The Liver module describes the hepatic activity responsible
for the endogenous glucose production down-regulated by the
insulin. The glucagon hormone is not modeled. The Pancreas
secretes insulin, which is up-regulated with the amount of
glucose in the blood. The uptake of glucose by the (muscle
and adipose) Tissues is regulated by the insulin. The Kidney is
responsible for the glucose excretion-reabsorption. The insulin
degradation is due to its lifespan and liver clearance. Even
though the insulin independent glucose uptake by the brain
is modeled (not in shown in Figure 1) the regulation of the
glucose by the brain is neglected in [5].

Using tracer-to-tracee ratio clamp technics [3], the authors
of [5] measured the time course of the glucose concentration
in various compartments. This was done following a mixed-
meal received by several normal and diabetic subjects. The
parameters were estimated to fit this experimental data, which
resulted in two sets of parameter values modeling respectively
normal and T2D behaviors. For practical reasons, we fully
reimplemented the model in the Julia programming language
(version 1.5.3) with the DifferentialEquations package (ver-
sion 6.17.0).

III. RESULTS

A. From T2D to normal model

In the following, we call normal model, resp. T2D model,
the model instantiated with the normal, resp. diabetic, pa-
rameter values given in [5] (Table 1). We consider several
parameter subsets corresponding to the previous modules:
gastro-intestinal tract (also denoted as Ra in [5]), liver (EGP),
tissues (GK+U), pancreas (IK+S) and kidney (RE).

Starting from the T2D model, we re-estimated, in turn,
each of these subsets of parameters, while leaving the other
parameters fixed, in order to fit the plasma glucose dynamics of
the normal model. Based on the data of [5], our first objective
is to evaluate the capability of the model to predict, for each
module alone, its capability to restore a normal glycemia. We
estimate the parameters twice: with and without estimation of

the basal values for insulin secretion by the pancreas, glucose
production by the liver and utilization by the tissues. From
the resulting 10 inferred models, we plotted the time course
of the observed variables.

In this short paper, we only report (Figures 4a to 4d) the
most relevant plots for our purpose: plasma glucose (G),
plasma insulin (I) and the rate of intestinal absorption (Ra) for
the two models obtained from the estimations of the gastro-
intestinal tract and pancreas compartments, with and without
basal estimation. In order to compare the models’ performance
in fitting the normal model, we collect in a bar plot (Figure 3)
the residual sum of squares for each model.

B. Parameter estimation of obese diabetics and RYGB

Our second objective is to test whether the model of [5]
can predict the time course concentrations of glucose and
insulin obtained from our own dataset of diabetic patients who
underwent RYGB surgery. For each patient, we use data before
(hereafter referred to as visit A) and 3 months after (visit B)
surgery. We first estimate all the parameters in order to fit
the time course data of glucose and insulin from the visit A
dataset. The model that we obtain is called the visit A model.
Figure 2 shows the glucose and insulin plasma concentrations
predicted by this model as well as the fitted data points. Then,
as previously, we estimate each subset of parameters in order
to fit the visit B dataset. Here, we only consider the case
where we also estimate the basal concentrations, which indeed
changed 3 months after surgery. We report in Figure 4 the time
course of G, I and Ra after estimation of the parameters of
the gastro-intestinal tract and pancreas.

IV. DISCUSSION

Estimating the basal values for insulin secretion, endoge-
nous glucose production and insulino-dependent glucose uti-
lization, can be interpreted as a prediction of the “long-
term” effect of the parameter changes in the best case
(since the model does not incorporate any long-term recovery
mechanisms). Thus, not estimating these basal values can be
interpreted as a “short-term” (or worst case) prediction.

A. From T2D to normal model

Our re-estimations of the parameters based on the data
of [5] predict (Figure 3) that the best performing compartments
to restore a normal glycemia are pancreas and tissues, and
then the intestinal tract. As expected, estimating the basal
concentrations (i.e., long-term effect) improves the perfor-
mance especially for the intestinal tract (see also G curve
in Figures 4b and 4c), which is consistent with experimental
observation. However, the performance of the pancreas should
be modulated. Indeed, Figures 4b and 4a show that, in order to
improve the glycemia, a very high plasma insulin concentra-
tion is necessary if only the pancreas parameters are modified.
This seems physiologically unrealistic, meaning that the good
performance of this compartment is over-estimated. Similarly,
the estimation of the gastro-intestinal tract parameters on the
short term (Figure 4d) indicates an unrealistic decrease of
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Figure 2: Parameter estimation of all parameters, including basal concentrations, to fit ”Visit A” data.

Figure 3: Loss from the parameters estimation applied on the different
compartments.

plasma insulin concentration. Finally, the “long-term” esti-
mation of the gastro-intestinal tract parameters (Figure 4c)
allows a good improvement of the glycemia with a realistic
concentration of insulin and a decrease of intestinal absorption,
which is consistent with observation.

B. Parameter estimation of obese diabetics and RYGB

From Figure 2, it is primarily interesting to notice that the
T2D data of [5] is significantly different from ours. Indeed,
glucose in visit A is higher than in T2D model whereas insulin
in visit A is lower than in T2D model. Despite this difference,
the fitting is satisfying with all parameters set as free. This
fitting is sensitive to the parameters estimation methods.

In Figures 4e and 4f, the parameters are set free for the
pancreas (IK+S) and the gastro-intestinal tract (Ra), respec-
tively. Such process can be interpreted as surgery simulations
targeting respectively the pancreas and the gastro-intestinal
tract. No fitting attempt seems satisfying. On the one hand,
freeing IK+S parameters seems to be satisfying for fitting the
glycemia but clearly overestimates the insulinemia (cf. Fig-
ure 4e). On the other hand, by freeing Ra parameters, the rate
of appearance is decreased as observed in experimental data
(based on our D-xylose data, an alimentary glucose marker).
Still, the parameter estimation fails completely to fit visit B
glycemia and insulinemia (cf. Figure 4f).

V. CONCLUSION AND FUTURE WORKS

The parameter estimation performed by the authors of [5]
is based on training data generated by tracer-to-tracee clamp
technique [3], which, despite its efficiency, remains an un-
common and complex method to monitor exogenous solutes.
In practice, plasma glycemia and insulinemia are usually the
only accessible clinical data. However, and as our model

assessment suggests, this may raise parameter identifiability
issues. To overcome this problem, we first plan to use the
available additional D-xylose data, a marker that can be used
to fit the rate of appearance (Ra) [2]. We also plan, by
exploiting profile likelihood and sensitivity analysis, to study
model reduction in order to eliminate the potential sources of
non-identifiability. Other original datasets are currently used
for the parameter estimation, generated from experiments on
minipigs. Such biological models allow for more experiments
and reproducibility, and decreased individual variabilities thus
improving the reliability of parameter estimation. In this direc-
tion, another possibility, is to use publicly available datasets.

It should be noted that the failure of parameter estimation
may be due to structural problems inherent to the model of [5]
which sub-model of IGA is largely simplified. For instance,
it ignores the spatial none uniform glucose absorption rate
along the intestin and the secretion of incretins. We plan to
extend the model of [5] with these aspects while simplifying
the others to overcome identifiability issues that could emerge
from additional parameters related to the gastro-intestinal tract.
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(a) Parameter estimation of IK+S compartment and basal concentration to fit the normal model for the T2D model.

(b) Parameter estimation of IK+S compartment only to fit the normal model for the T2D model.

(c) Parameter estimation of Ra compartment and basal concentration to fit the normal model for the T2D model.

(d) Parameter estimation of Ra compartment only to fit the normal model for the T2D model.

(e) Parameter estimation of IK+S compartment and basal concentrations, to fit visit B model from visit A model.

(f) Parameter estimation of Ra compartment and basal concentrations, to fit visit B model from visit A model.

Figure 4: Glucose (G), insulin (I), and rate of appearance (Ra) after parameter estimation, with and without basal concentrations, of pancreas (a, b), gastro-
intestinal tract (c, d) compartment for fitting normal model from TD2 model and for fitting visit B from visit A model (e, f).
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Abstract—Genomes may be analyzed from an information
viewpoint as very long strings, containing functional elements
of variable length, which have been assembled by evolution. In
this work, an innovative information theory based algorithm is
proposed, to extract significant (relatively small) dictionaries of
genomic words. Namely, conceptual analyses are here combined
with empirical studies, to open up a methodology for the ex-
traction of variable length dictionaries from genomic sequences,
based on the information content of some factors. Its application
to human chromosomes highlights an original inter-chromosomal
similarity in terms of factor distributions.
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I. INTRODUCTION

Human genome computational analysis is one of the most
important and intriguing research challenges we are currently
facing. Genomes carry the main information underlying life of
organisms and their evolution, including a system of molecular
rules which orchestrate all cell functions [1]. Our work here
follows and outlines some trends of research which analyze
and interpret genomic information, by assuming the genome to
be a book encrypted in a language to decipher [2–7], in order
to convert the genomic information into a comprehensible
mathematical form, such as a dictionary of variable-length
factors that collects words of the unknown genomic language.

According to a common approach in computational ge-
nomics [8–12], a genome is represented by a string over
the nucleotidic alphabet. This representation easily leads to
affinities with a text, written in a natural language, which is
comprehensible by means of its vocabulary, giving both syntax
and semantic of words.

Several studies define properties for words which result to
be salient features in analysing genomic sequences [13]. Min-
imal absent words, maximal or palindromic repeated words
are some examples [14–16]. These approaches are focused on
finding specific words to be used as key features of a string for
analysing its property or for comparing it to another sequence
[17]. The extracted words are often sparsely located in the
analysed sequence [18], thus they do not constitute a real
linguistic analysis of genomic strings.

According to recent advancements, the concept of functional
element is central, defined as a genomic segment that codes
for a defined biochemical product or displays a reproducible

biochemical signature [6, 19]. An information theory based
analysis clearly plays an important role in deciphering such
elements as the genomic language [20], and it allows us
to confirm the linkage between DNA fragments and their
information content [4, 8, 19, 21–23].

In [24, 25], the authors applied a methodology developed for
literary text to extract fixed length genomic dictionaries. Ex-
amples of fixed length dictionary extraction procedures could
be provided by applying notions such as word multiplicity
or word length distributions. On the other hand, graphical
investigative analyses, based on expected frequency gaps,
show the unpredictable behaviour of genomic sequences and
help to detect peculiar words [26].

If we think of a book, semantically significant words have
a fairly medium number of occurrences and they are clustered
according to the topic described in specific part of the book.
Several works are focused on finding genomic words exhibit-
ing some special kind of (somehow clustered) repetitiveness,
with a global frequency quite different than the expected
frequency in purely random sequences having the same length
of an investigated genome [8, 21, 22, 27–29]. A very relevant
and peculiar word periodicity is revealed by the Recurrence
Distance Distribution (RDD), which measures the frequency
at which a given word occurs at given distances [30]. Its
application to coding regions shows the informational evidence
of the codon language, and in [31–33] some characterizations
of recurrence behaviours were pointed out for very short k-
mers. However, only fixed length dictionaries were extracted
from real genomes by means of such a distribution [25].

In this paper, we start from a modified version of an
algorithm introduced in [24], in order to apply it to real
genomes. We call it V-algorithm, from the first name of the
authors who designed it. Both these original and modified
algorithms are aimed at finding words forming local clusters
(the approach is explained in Section II-A). Then, we propose
a new RDD-based algorithm, we call it W-algorithm, which
extracts variable length dictionaries of interests from several
real genomic sequences and collects words having a recurrence
distribution maximally different than their random distribution.
Such a selection is developed by computing the (locally)
maximum divergence, from random sequences, of the RDD
of each string obtained by elongating an initial seed word
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over the genome. The divergence from random sequences
is a crucial issue in information analysis of strings [34, 35]
and in analyzing mathematical properties of dictionaries. The
methodology in [24] to find dictionaries is therefore here
improved by the V-algorithm, and a more general approach
is proposed (Section II-B) by means of the RDD based W-
algorithm, that works with the global word recurrence distance
distribution rather than with only a first slice of it.

II. MATERIAL AND METHODS

This section summarizes the genomic word extraction
methodology reported in [24], which was our starting point to
develop a variant of it, the V-algorithm, and then introduces
a novel RDD-based extraction algorithm, called W-algorithm.
We also propose some criteria to evaluate extracted genomic
dictionaries. Following the terminology from our previous
work [12], a genome is a string over the genomic alphabet
Γ = {A,C,G, T}. Given a genome G, we call Dk(G) ⊆ Γk

the k-dictionary of all k-mers occurring in the genome G.
Given a word α ∈ Dk(G)), a recurrence distance distribution
(RDD) informs how many times α occurs at a given distance
d. Thus, a recurrence is a pair of positions (p1, p2) (with
p1, p2 < |G| and p1 < p2) such that α occurs in p1 and p2 and
no other occurrences of α are in the middle. The recurrence
distance is given by p2 − p1.

A. A clustering coefficient based approach

RDD has been used to identify keywords by applying a
methodology that associates a clustering coefficient C to k-
mers [24]. The main idea is based on the fact that keywords are
not uniformly distributed among a literary text, instead they are
clustered. The approach combines the information provided
by the spatial distribution of a word along the text (via the
clustering coefficient) and its frequency, since the statistical
fluctuation depends on the frequency. This basic approach has
been used in [25] to assign a relevance to 6-mers and 8-mers
in Homo sapiens and Mus musculus. The 8-mers were sorted
by their normalized clustering coefficient (called σnor), and
it has been shown that part of the top-200 clustered words
(about 70%) appears in known functional biological elements,
like coding regions and transcription factor binding sites.

The whole recurrence distribution is synthesised with a
single parameter σ, to quantify the clustering level, previously
presented in [9] for studying the energy levels of quantum
disorder systems [36], and a clustering degree σnor assigned
to words, for the identification of keywords in literary texts,
obtained by means of the relation between the σ of a real word
and the theoretical expected one (coming from a theoretical
hypothesized distribution), as in the following.

For a given word, the parameter σ is the standard deviation
of its normalized set of recurrence distances, σ = s/d̄,
where s is the standard deviation of the recurrence distance
distribution, and d̄ is the average recurrence distance. When
the RDD is a geometric distribution, the parameter is denoted
by σgeo and it is equal to

√
1− p, since s =

√
1− p/p and

d̄ = 1/p, where p is the word frequency. Thus, the resultant

normalized clustering measuring σnor of the given word is
given by σ

σgeo
= s/d̄√

1−p . For values of σnor near to 1, the
recurrence distribution of the word is close to the geometric
one, thus it indicates a randomness of the word. In fact,
a random sequence is generated by a Bernoullian process,
then different occurrences of a given word are independent
events, and the event of having k occurrences of a word (in a
segmentation unit) follows a Poisson distribution. Therefore,
according to probability theory [37] its waiting time, that is the
distance at which a word recurs, is an exponential distribution
(having a geometric distribution as a discrete counterpart).

For words with low multiplicity, the statistical fluctuation
is much larger, and it is possible to obtain an higher σnor for
rare words placed at random, and they would be misidentified
as keywords. Thus, the authors applied a correction by a Z-
score measure that combines the clustering of a word and its
multiplicity n. The resultant clustering measure C is given by
the following equation: C(σnor, n) = σnor−〈σnor〉(n)

sd(σnor)(n) , where
〈σnor〉(n) = 2n−1

2n+2 and sd(σnor)(n) = 1√
n(1+2.8n−0.865)

.
Parameter values were obtained via extensive simulations, by
taking into account the distribution of σnor in random texts.
They represent the mean value and the standard deviation of
such empirical distribution. The C coefficient measures the
deviation of σnor with respect to the expected value in a
random text, in units of the expected standard deviation. In
this case, C = 0 indicates randomness, C > 0 that the word
is clustered and C < 0 that the word repels itself.

In [24] also an approach to explore the lineage of a word
(from a short word to one of its possible elongations), without
any knowledge about the effective word length, was provided.
Given an initial word length k0, some of the words in Dk0(G)
are selected, according to their C measure, that must be
greater then a C0 measure corresponding to a fixed percentile
(usually 0.05). Successively, for each of these initial words,
their lineage is explored by selecting only the elongations
having a C measure greater than C0, and up to a fixed
maximal word length: these are properly the two points we
changed in the V-algorithm presented in the next section. The
longest visited lineage is selected as a word with semantic
meaning, and the process is repeated for different values of
k0 (ranging from 2 to 35), until a dictionary is obtained by
discarding repeating words.

B. The RDD-based W-algorithm

We use RDD to calculate the divergence of the real distri-
bution of a word within the genome from its frequency over a
random string with the same genome length [29, 38]. Such a
divergence is used as a measure of the information content of
a word. Low expressive words are elongated by an expansion
procedure, until they reach a reasonable level of significance
according to which they are classified as genomic words of
the extracted dictionary.

We assume that the higher the entropic divergence from
the above exponential distribution, the more specialized and
evolutionary selected is the genomic element. In this sense,
low multiplicity words already represent elements owning high
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level of significance. Instead, for what concerns repeats, we
associate their meaning with their repetitiveness-profile, as it
is revealed by their RDD. A word has to occur along the
genomic sequence several times and at different distances.
See an example in Figure 1, where the exponential distribution
represents the random recurrence behaviour of the word. RDD
of words along real genomes is often sparse, meaning that
several distances (of recurrence) actually do not appear in the
genome. This is why we evaluate the sound (i.e., more fitting)
exponential distribution after removing peaks, that are absent
in exponential functions, and by imposing a normalization
ensuring the overall unitary probability.

Fig. 1. RDD of word CGC (the jagged curve) in human chromosome 22

The degree of significance of a word is its random deviation,
measured by the function in 1, based on the the entropic
divergence (Kullback-Leibler divergence [27]), between the
real RDD of a word (over the analysed genome) and its
expected exponential distribution.

More technically, given a word α, which occurs in a genome
G, we calculate its random deviation as the entropic divergence
between its RDD and a suitable exponential distribution. To
this aim, we first extract the real RDD of α over G, which we
refer as Rα. Then, we estimate a two parameters exponential
distribution Eα, by making use of the Nelder and Mead Sim-
plex algorithm [39]. A denoised distribution is used as input
for the estimation procedure: it is obtained by applying a low-
pass filter (over Rα) in order to attenuate peaks. Afterwards,
we remove from Eα the domain values which are not present
in Rα, namely the gaps of Rα. Successively, both Rα and Eα
are normalized in order to become probability distributions.
Finally, the random deviation of α is chosen as:

r(α) = max(KL(Rα, Eα) , KL(Eα, Rα)), (1)

where KL is the asymmetric Kullback-Leibler entropic diver-
gence.

In our algorithm (reported in Listing 1) estimation of the
information content of a word α is computed by the function
r(α). Word elongation is realized until the random deviation
does not start to decrease. As it may be seen in Figure
2, smaller seeds allow the algorithm to generate words α
corresponding to the first peak (local maximum) of r(α). To
produce a longer significant word α, corresponding to the
second peak of r(α), a longer seed has to be taken as a starting
string. In all our computational experiments, r(α) showed

W:=∅ ;
ForEach α ∈ D0 :

E l o n g a t e (α,W )
W := W \D0 ;
Re tu rn W

Listing 1. Extraction Algorithm

i f r(αx) ≤ r(α),∀x ∈ Γ t h e n W := W ∪ {α}
e l s e ForEach x ∈ Γ

i f r(αx) > r(α) t h e n E l o n g a t e (αx , W )
Listing 2. Elongation procedure: Elongate (α,W )

to have only two peaks, whose localization depends on the
genome length.

Fig. 2. Expansion procedure

We would like to extract all the words α such that both
α[1, |α|−1] and αx (where αx is any elongation of α occurring
in G at least once) own a lower level of significance, namely
a lower random deviation, with respect to α. The goal can be
reached by examining all the words within G from monomers
up to a word length equal to the maximum repeat length of G,
and by discarding hapaxes. However, such an approach turns
out highly expensive, and it cannot be applied efficiently for
long genomes. Thus, we developed an expansion procedure
with the aim of elongating seed words, let say monomers, up
to more meaningful words. The (variable length dictionary)
extraction algorithm, combining word elongation and random
deviance test (in the expansion procedure) is given by two
recursive functions in Listings 1 and 2, where D0 denotes the
set of seeds Dk0(G).

The main idea is to compare the random deviation of a word
with those of its elongations. If an elongation results in a word
more significant than its root, then the root word is discarded
and the elongated word is selected. The process is applied
recursively over the word branching of the selected elements
(see Listing 2). Seeds are discarded from the output dictionary.
Three steps are implemented to compute random deviations.
For all factors α of the genome i) RDD of the current
word α is computed, by also removing distribution noise
(peaks) and transforming Rα into a probability distribution;
ii) an exponential distribution Eα is computed from Rα
and normalized to be a probability distribution; iii) random
deviation rα is computed by means of the Kullback-Leibler
(entropic) divergence.
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We employ two elongating functions (along both directions
of the genome double string) and the resulting dictionary is
the union of the dictionaries obtained with the two elongations.
We refer with WL2R and WR2L as the dictionaries extracted
by following the 5′ − 3′ and 3′ − 5′ verses, respectively, and
with W = WL2R ∪WR2L as the resulting dictionary.

C. Dictionary evaluation

Extracted dictionaries are evaluated by means of infor-
mation measurements, such as the word length distribution
of their elements. Two other parameters are the sequence
coverage, which is the percentage of positions i in the genome
such that G[j, k] is a word of the extracted dictionary D
for j < i < k, and the average positional coverage, which
is the average over positions i of number of words G[j, k]
for j < i < k of the dictionary D. They are denoted
by cov(G,D) and avg(covp(G,D)), respectively. A good
dictionary must have a high sequence coverage, but a low
overlapping degree among its elements. In fact, if we consider
Dk(G) as a language, for a certain value of word length k,
then it has the maximum sequence coverage (all positions of
the genome would be involved by at least one k-mer) but
also the maximum positional coverage, since each position of
the sequence is involved by up to k different words of the
dictionary. On an ideally good dictionary, both parameters are
close to one, meaning that its words cover almost the entire
genome and tend to not overlap.

III. RESULTS

Both algorithms described in previous section were run over
all human chromosomes belonging to the reference assembly
hg19.

A. Dictionaries extracted by the V-algorithm

Table I shows the number of extracted words (that is,
dictionary sizes), for each single human chromosome, and
their union at the bottom, for both the algorithm in [24]
and the V-algorithm, by starting from different seed lengths,
and by implementing two filters as redundancy strategies: one
discarding duplicates (same words coming from different seed
lengths) and the other discarding prefixes (in order to estimate
the relative amount of prefixes).

The result is that the V-algorithm is able to select a smaller
set of words, with a lower gap between the two redundancy
discarding strategies. This is essentially due to the fact that the
higher is k the lower are the C measures of k-mers. Therefore,
comparing the C measure of a word, relatively longer than k0,
with the measure of its proper prefix is more restrictive than a
comparison with the measure of the initial word of length k0.
From this behaviour, we can speculate that the V-algorithm
selects words with an higher semantic meaning.

In Table I, it is evident that the V-algorithm extracts a
smaller amount of duplicates and prefixes than the algorithm
in [24] (even when starting from seeds with different length).
Indeed, smaller variable length dictionaries were extracted by
the V-algorithm, with fewer duplicate discarding steps, and a

TABLE I
NUMBER OF EXTRACTED WORDS BY THE ORIGINAL AND MODIFIED

ALGORITHMS

Chr Orig. Orig. ratio V-algo V-algo. ratio
no dup. no pref. no dup. no pref.

1 276,178 210,728 0.763 57,064 57,055 1.000
2 281,698 227,544 0.808 119,582 118,368 0.990
3 259,805 203,888 0.785 102,640 101,142 0.985
4 251,067 201,760 0.804 108,229 106,879 0.988
5 259,167 207,300 0.800 112,846 111,581 0.989
6 255,025 198,487 0.778 106,193 104,510 0.984
7 269,392 208,465 0.774 113,139 111,840 0.989
8 259,586 206,241 0.794 118,551 117,295 0.989
9 212,362 152,523 0.718 33,886 33,878 1.000
10 234,663 186,844 0.796 100,616 99,595 0.990
11 249,374 188,012 0.754 94,484 93,417 0.989
12 247,842 187,931 0.758 99,147 97,579 0.984
13 176,546 149,563 0.847 81,634 78,868 0.966
14 209,881 162,515 0.774 94,312 90,313 0.958
15 207,173 177,125 0.855 107,114 103,917 0.970
16 229,208 166,653 0.727 62,732 62,673 0.999
17 204,905 160,475 0.783 85,091 84,303 0.991
18 161,710 131,900 0.816 65,985 65,558 0.994
19 258,781 197,822 0.764 123,913 122,541 0.989
20 171,474 131,434 0.766 66,320 65,597 0.989
21 130,763 100,427 0.768 50,698 50,233 0.991
22 147,002 120,259 0.818 77,797 74,511 0.958
X 279,938 213,093 0.761 124,793 123,006 0.986
Y 194,014 137,284 0.708 66,088 65,986 0.998

union 4,281,701 3,737,766 0.873 1,813,776 1,798,241 0.991

smaller amount of prefixes (which needed to be discarded in
the original algorithm).

B. Dictionaries extracted by the W-algorithm

The RDD-based W-algorithm was applied (with values
for seed length from the range 1 − 12) to extract genomic
dictionaries from each human chromosome, and some analysis
was performed also on the union of such 24 dictionaries.
However, here we show data only for some (more explicable)
chromosomes, for (more significant) seed lengths up to 8.

TABLE II
WORD LENGTH DISTRIBUTION OF HUMAN CHROMOSOME 1

k0
k 1 2 3 4 5 6 7 8
4 2 13 20
5 31 134 202 272
6 63 349 517 995 1,261
7 57 180 232 350 475 1,343
8 57 193 277 430 679 3,001 10,668
9 10 144 241 529 1,073 7,602 29,521 53,314

10 5 201 326 794 1,391 9,126 59,951 129,872
11 2 151 233 569 923 4,302 63,089 184,296
12 64 91 198 323 973 24,275 97,646
13 21 30 51 81 225 4,592 20,670
14 2 3 10 18 40 875 3,525
15 2 2 5 6 11 190 724
16 4 5 5 5 9 54 165
17 1 1 2 2 3 17 54
18 5 19
19 5
20 6
21 3
22 6
23 1

The Word Length Distribution (WLD) related to human
chromosomes 1 is shown in Table II by reporting the car-
dinality of words having a given length and being generated
by starting from a given seed length. A common feature is to
have two modes in the k-dictionary sizes, that is, two local
maximum values (indicated in bold) for some lengths k. In
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Table II, such values are 6 (for seeds long from 1 to 5) and
10-11 (for seeds long from 2 to 8). Although they do not
have fixed values (for tests performed on the other human
chromosomes and not shown here), they are not very variable.

Another empirical result, confirmed on all the other chromo-
somes, is that the dictionary generated by starting from seeds
k−1 long is a proper subset of that generated by starting from
seeds k long, apart of the words long k. In fact, words with
the same length of the seed are eliminated by the algorithm
and do not appear in the WLD tables.

Extracted dictionaries are evaluated according to both their
sequence and their (average) positional coverage: these data
related to chromosome 1 are reported in Table III and Table
IV respectively, where it is clear that parameter goodness does
not increase with the word or seed length k0.

TABLE III
HUMAN CHROMOSOME 1: SEQUENCE COVERAGE VALUES

k0
k 1 2 3 4 5 6 7 8
4 0.0291 0.0291
5 0.0309 0.0790 0.1362 0.1681
6 0.0269 0.3149 0.5504 0.7767 0.8426
7 0.0742 0.2479 0.3878 0.6430 0.7691 0.8141
8 0.0285 0.0616 0.0899 0.1187 0.1384 0.1643 0.2634
9 0.0115 0.0209 0.0303 0.0499 0.0615 0.0714 0.1593 0.6315

10 0.0008 0.0054 0.0071 0.0128 0.0206 0.0329 0.0974 0.5388
11 0.0025 0.0077 0.0088 0.0108 0.0127 0.0174 0.0602 0.3509
12 0.0028 0.0031 0.0081 0.0089 0.0101 0.0342 0.2858
13 0.0000 0.0006 0.0013 0.0054 0.0065 0.0070 0.0155 0.1209
14 0.0035 0.0048 0.0049 0.0056 0.0065 0.0066 0.0101 0.0451
15 0.0026 0.0036 0.0036 0.0050 0.0052 0.0052 0.0065 0.2140
16 0.0016 0.0017 0.0017 0.0071 0.0028 0.0032 0.0090
17 0.0011 0.0011 0.0012 0.0013 0.0013 0.0014 0.0031
18 0.0006 0.0006 0.0006 0.0006 0.0012 0.0012 0.0020
19 0.0000 0.0003
20 0.0000 0.0002
21 0.0001
22 0.0000
23
24 0.0000

By observing the data in Table III, the best coverage of
the chromosome (corresponding value 0.84) is obtained by
the examers obtained starting from 5-mers as seeds, while the
average positional coverage of such a dictionary is 2.7715 (see
Table IV), which is far from one. However, this dictionary was
our choice for the chromosome clustering analysis described
below, because we gave a priority of importance to sequence
coverage. Relatively to only positional coverage values, in
Table IV we may notice that words of length 10 (or longer, for
instance 15) exhibit good (i.e., less than 2) values for any seed
length up to 7, while examers have good positional coverage
with shorter seeds (long up to 3).

Finally, we extracted dictionaries of examers on each single
human chromosome, and from their pairwise intersections,
in absolute and relative terms, we found interesting results,
reported in Figure 3, where four groups of chromosomes may
be identified at the second level of the dendrogram, having
cardinalities of dictionary intersection of the same order of
that of the extracted dictionary from each single chromosomes
(see leaves of the dendogram). Our dictionary based method
was then capable to discriminate by structure similarity the
following clusters of human chromosomes.

TABLE IV
HUMAN CHROMOSOME 1: AVERAGE POSITIONAL COVERAGE

k0
k 1 2 3 4 5 6 7 8
4 1.0078 1.0078
5 1.0807 1.1690 1.2411 1.4198
6 1.1539 1.3022 1.6590 2.3201 2.7715
7 1.0934 1.2876 1.4587 1.9817 2.5877 2.9160
8 1.1569 1.2590 1.3125 1.4228 1.5184 1.5836 1.5572
9 1.4480 1.5411 1.5211 1.7039 1.8791 1.8661 1.5470 1.7484

10 1.0006 1.1090 1.1033 1.1697 1.1926 1.2632 1.2580 1.5457
11 4.0810 2.1729 2.0809 1.9100 1.7829 1.6131 1.3009 1.3658
12 1.0654 1.0624 1.1926 1.1809 1.1716 1.1507 1.3455
13 1.0000 1.0000 1.0000 1.1355 1.3769 1.3530 1.2340 1.3709
14 1.0000 1.0000 1.0000 1.0551 1.2244 1.2235 1.1687 1.3807
15 1.000 1.1446 1.1445 1.1065 1.1739 1.1725 1.1444 1.2559
16 1.2684 1.2636 1.2588 1.2539 1.1544 1.1447 1.1148
17 1.0000 1.0000 1.3982 1.3957 1.3948 1.3608 1.3440
18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0015 1.0187
19 1.0000 1.0000
20 1.0000 1.0000
21 1.0000
22 1.0000
23
24 1.0000

Fig. 3. (a) Human chromosome similarities percentages. (b) Heatmap of
human cromosome similarity.

The dictionary of examers obtained by the algorithm from
seeds long 5 was here employed to cluster all human chro-
mosomes (see Figure 3). All chromosomes share very few
examers (159 are common to all, over the 1,666 extracted
words) which we exhibit as informative conserved sequences,
a sort of product by evolution selection, to be further analyzed
for their biological characterization.
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IV. CONCLUSIONS AND DISCUSSION

Given a genome, we extract a specific set of its factors
which represent the building blocks, or semantic units, of a
dictionary significant for the genome language. In this work,
we have described an information theoretical methodology to
extract relatively small genomic dictionaries, which have good
properties in terms of genome coverage.

Three methods were presented. One from the literature,
introduced in [24], which was our starting point in terms of
basic ideas, the second method is a variant of this, called V-
algorithm, more efficient and appropriate to extract genomic
dictionaries, and finally, our RDD based W-algorithm, which
originally combines a criterion of anti-randomness with a cri-
terion of elongation of seeds to select variable length factors.
The application of the state of the art methodology and the V-
algorithm to human chromosomes show that both algorithms
often fail in extending seeds, and when they success, they
more-likely extract very long words, which sparsely cover
the investigated sequences. The point of our approach is
to produce relatively small dictionaries with both sequence
and average positional coverage as close as possible to one.
The goal is reached thanks to the proposed W-algorithm.
We have shown that preferred seed lengths emerge, from an
observation of sequence and positional genome coverage that
provide a better coverage. Moreover, dictionaries of examers
were identified to reveal a clear similarity pattern for human
chromosomes.
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Abstract— Alzheimer disease (AD) is the most common cause 

of neurodegenerative disorder in the elderly individuals. To 

support the biomarker research on Alzheimer’s Disease 

progression, this study describes a bioinformatics pipeline for 

the evaluation of the mutations impact on the tertiary 

structure of AD causative genes.  
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I.  INTRODUCTION 

Proteins are large, complex biomolecules made up of 
amino acids. Proteins play a significant role in almost all 
biological processes. The functional properties of proteins 
rely upon their three-dimensional structures. The three-
dimensional structure arises because the polypeptide chains 
fold to produce (starting from linear sequences) compact and 
independent structural regions with specific structures. 
Predicting the three-dimensional structure of proteins by 
their amino acid sequence contributes to understanding their 
biological function. Prediction is not always possible: despite 
the remarkable efforts of recent years, the problem of folding 
remains one of the major problems in molecular biology. In 
addition, proteins that do not get the right configuration can 
bind abnormally to other biomolecules, as well as form 
aggregates that are highly toxic to the body [1]. Aggregates 
are organized into fibrillar structures, a common feature of 
many neurodegenerative diseases [2]. 

Alzheimer's Disease (AD), characterised as a protein 
misfolding disease, is the most common progressive form of 
dementia [3]. Typical pathological findings are misfolded 
and aggregated amyloid-β (Aβ) peptides and intracellular 
neurofibrillary tangles of tau protein. The most well-known 
predisposing genetic factor for the disease is the presence of 
the e4 allele of apolipoprotein E (ApoE) [4]. In the e4 allele 
(frequency 13.7%), the codon 112 has been replaced by 
arginine. However, the frequency of the e4 allele increases 
dramatically to ~ 40% in patients with AD. This mutation is 
associated with a change in the tertiary structure of the 
protein and the accumulation of β-amyloid in neurons, as 
well as with the induction of inflammatory responses, while 
it is the most prone isoform to proteolysis. In this context, 
changes in the tertiary structure of proteins, which are 
components of major signaling pathways of AD, could 
justify the genetic background of this heterogeneous 
disorder. 

In recent years, the correlation of the different tertiary 
structures of the isoforms of the ApoE gene with the 
pathogenesis of AD has been studied worldwide [5, 6]. In 
particular, a study published by the Paralvrez-Marin group in 
Sweden proposed a computational model of the abnormal 
interaction of the β-amyloid peptide with the e4 isoform of 
ApoE, due to the incorrect tertiary structure of the second 
[7]. However, apart from ApoE-related studies, to date, 
changes in the tertiary form of proteins due to gene 
mutations have not yet been investigated in AD. Prior to the 
discovery of mutations in genes associated with disease 
onset, no molecular signaling pathways were implicated. 
Recent genetic studies have identified many candidate genes 
that are associated with an inherited form of AD. Even if 
mutations in these genes account for a small proportion of 
Familial AD (FAD), knowledge of these genes and 
correlated biochemical cascades will provide several 
potential targets for treatment of AD and aging-related 
disorders. Also, the different pathogenetic mechanisms of the 
disease involve a combination of genetic factors (with 
different severity for the disease from person to person), 
indicating that it is essentially a set of disorders with 
common characteristics rather than a distinct disease. 

The present research paper aims to contribute to the 
reduction of the research gap created by the study of the 
tertiary structure, to understand the pathogenesis of the 
disease. In recent years, research interest has focused on 
identifying all the genetic sites associated with the disease 
and the different alleles of these genes using high-resolution 
technologies. In contrast, there is the tertiary form of these 
mutant proteins, which has not yet been studied in depth. In 
addition, some of the AD-related proteins have not yet had 
their crystal structure determined.  

Approaches that allow the prediction of three-
dimensional structures of proteins through computers are 
relatively new in the medical sciences [8], but their 
contribution is increasingly recognized as a tool for 
characterizing changes in the structure of proteins and 
detecting rare molecular events. These principles make it 
easier for us to understand how the protein structure is 
created, to identify common structural issues, to relate 
structure and function, but also to see the fundamental 
relationships between different proteins. Deciphering the 
mechanisms of the loss of the tertiary structure of a protein is 
essential for understanding the pathogenesis of diseases, such 
as AD and essential for explaining neuronal damage during 
aging. 
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This pipeline is described by four steps: (a) the 
evaluation of the online prediction tools and the selection of 
the most suitable for AD protein structures, (b) the prediction 
of the mutated structures, (c) the AI/ML classification of the 
tertiary structures into discrete groups and (d) the evaluation 
of the pathogenicity of each group to gain evidence for the 
impact of the mutations and to suggest a characterization for 
the mutations with unclear etiology. This is an on-going 
research and thus preliminary results on Presenilin one will 
be presented here. 

II. METHODS 

The first step towards the implementation of the pipeline is 

to collect data from biological databases, to evaluate the 

existing data and finally to apply machine learning 

approaches and classify proteins into groups with similar 

characteristics. 

A. Data Consolidation 

Here some of the most AD pathogenic mutated alleles 

will be studied. As many of these mutations affect protein 

stability, modeled protein structures for the mutant proteins 

will be compared with the native protein to evaluate stability 

changes. The genetic loci that will be analysed further 

through protein 3D structure include APP (Amyloid 

precursor protein), PSEN1 (Presenilin one), PSEN2 

(Presenilin two), CLU (Clusterin), CR1 (Complement 

receptor 1), PICALM (Phosphatidylinositol binding clathrin 

assembly protein), BIN1 (Myc box- dependent- interacting 

protein 1), ABCA7 (ATP binding cassette transporter 7), 

MS4A (Membrane- spanning 4- domains, subfamily A), 

EPHA1 (Ephrin type-A receptor 1), CD33 (CD33 antigen), 

CD2AP (CD2 associated protein), SORL1 (Sortilin-related 

receptor 1), ΤΡΕΜ2 (Triggering receptor expressed on 

myeloid cells 2) [9]. These genes are linked to 

inflammation, oxidative stress, vascular regulation, immune 

system function, and the function of specific proteases.  

Successful mapping of these genes and their association 

with the onset of the disease has led to the formulation of 

the amyloid hypothesis [10]. This hypothesis sets as the 

main pathogenetic mechanism the increased production of β 

amyloid peptide fragments. Nevertheless, there are cases 

where the onset of symptoms occurs at a much younger age. 

In a unique clinical case so far, the onset of the disease 

occurred in the mid-forties and in some people from the age 

of thirty. Members of this family had a mutation in the 

PSEN1 gene (Presenilin 1 E280A) [11]. The mutations 

related to the proteins were identified through literature and 

used for the next steps of this pipeline. More particular, so 

far 69 mutations were identified for APP, 112 for MART, 

326 for PSEN1, 68 for PSEN2, and 68 for TREM2.  

B. Evaluation of Protein Structures 

Since the three-dimensional shape of most of the related 

proteins is not determined through experimental 

methodologies, the most established servers were evaluated 

for predicting the mutated structures and estimate the impact 

of the mutations to the 3-dimensional structure. A list of the 

selected methodologies is presented on the Table I below:  

TABLE I.  LIST OF SELECTED METHODOLOGIES 

Methodology Description How was used 

Uniprot [12] A comprehensive resource 
for protein sequence and 

annotation data 

To understand the 
protein function, and 

the most related protein 

structures 

PolyPhen-2 

[13] 

A tool which predicts 

possible impact of an 

amino acid substitution on 
the structure and function 

To understand how 

mutations affect the 

structure and function 
of the protein 

iTASSER 

[14] 

A hierarchical approach to 

protein structure prediction 

and structure-based 
function annotation 

To predict the mutated 

and unmutated 3D 

protein structures 

PDBeFold 

[15] 

An interactive service that 

allows you to identify 
structures that are similar 

to that of your reference 

protein 

To compare the 

mutated and unmutated 
structures on residues 

level 

CATH / 
Gene3D [16] 

A protein family 
classification methodology 

To identify if there is 
any relationship 

between mutations 

impact and protein 
families 

 

The methodologies are currently used based on the order 

of the table, to determine the protein structures and 

understand in detail the impact of the mutations to the 

proteins. Furthermore, STRING [17] server is used to 

analyse protein-protein association networks and assess any 

change that might occur on the mutated protein networks 

(Figures 1&2). 

C. Clustering of protein structures 

To analyze further the mutated structures, an established 

methodology from the field of 3D object recognition was 

applied [18]. The combination of the above local descriptors 

was applied to the 3D structures to extract the appropriate 

features for the comparison. 

 
Figure 1. Example of APP network in STRING network analysis.  
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In order to evaluate the accuracy of clustering using the 

3D descriptors, a first round of experiments was conducted, 

using an annotated dataset. This dataset included every 

mutated structure while the label of each structure was 

aligned with the pathogenetic impact of each mutation 

according to literature data.   

 

 
Figure 2. Structural Analysis of the protein. Each protein is mapped to the 

experimental determined structures (one or more) included in PDB(e).   

 

 
Figure 3. Example of PolyPhen-2 output for the A673V mutation of the 

APP protein. Percentage of prediction is taken into consideration for the 
annotation of the clustering output. 

 

The k-medoids, Agglomerative Hierarchical clustering 

and Density-based spatial clustering of applications with 

noise (DBSCAN) methods were used to cluster the data 

using the extracted descriptors [19]. After extracting 

descriptors from each pair of aligned proteins, the root-

mean-square distances (RMSD) between each pair of 

descriptors is computed, forming a square distance matrix.   

 

In this computational analysis work, preliminary results 

of our study on PSEN1 mutations are presented and are 

compared to available clinical data for PSEN1 variants 

known to cause AD (Figures 3&4). To the best of our 

knowledge, this is the first study of its kind investigating 

performing comparative and ab initio prediction of protein 

structure for mutated forms of PSEN1. The experimental 

results verify that the use of 3D descriptors can be 

effectively applied to distinguish structural differences of 

proteins based on the pathogenic categories of the 

mutations. 

 

 

 
Figure 4. Results of hierarchical clustering are presented for the PSEN1 

protein based on the 3DCS and the RSD descriptors type that was applied 

to each case. 

 

The same process will be repeated for all the other 

proteins related to the AD progression described in the Data 

Consolidation section. However, due to the limitations in 

the prediction time of the online servers, the proof of 

concept of the PSEN1 is presented here.  

III. CONCLUSION 

It is known that there is no cure for AD to date. The 

collective failure of recent clinical trials in the treatment of 

AD suggests the need for a fuller understanding of the 

complex biological processes underlying this disease to 

develop effective, targeted therapeutic approaches. To date, 

several genetic sites have been identified that are involved 

in the onset or evolution of AD. Also, AD, like other 

neurodegenerative diseases, seems to be a biological 

phenomenon distinct from the phenomenon of normal aging 

and not an accelerated and pathological version of it. These 
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data indicate the multiplicity of etiological factors that 

contribute to the occurrence of AD. 

The therapeutic targeting of protein folding has created 

unique challenges for the discovery and development of 

new drugs. To achieve this, we must first understand the 

dynamic nature of the protein species involved and discover 

the structure and folding of each protein (formation of 

monomers, oligomers or insoluble aggregates) as well as 

whether this leads to cell toxicity. To date, our lack of 

understanding of how proteins interact with other cell 

proteins and the lack of well-characterized biomarkers that 

can be used in clinical trials is another bet for the research 

community. 

In the present study, a comprehensive methodology for 

the analysis of the impact of the AD related proteins is 

presented. Based on the approach, a combination of well-

established online tools can support the prediction of 3D 

protein structures that have not been determined 

experimentally yet.  Furthermore, the use of Poly-phen2 and 

CATH can support the identification of evidence of the 

impact of mutations to the protein structure. Finally, a 

combination of bioinformatic and object recognition 

clustering methodology is applied to group the tertiary 

structures. The annotation of the groups based on the 

pathogenic characterization of the mutations along with the 

networks produced by STRING server can reveal evidence 

on how each mutation affects the protein network.  

As mentioned in Section II, the prediction process 

through online servers consumes significant time and thus a 

proof of concept is presented here. Since this is an on-going 

work, the complete analysis will be available as soon as the 

models are obtained. 
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