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BIOTECHNO 2022

Foreword

The Fourteenth International Conference on Bioinformatics, Biocomputational Systems and
Biotechnologies (BIOTECHNO 2022), held between May 22 – 26, 2022, covered these three main areas:
bioinformatics, biomedical technologies, and biocomputing.

Bioinformatics deals with the system-level study of complex interactions in biosystems providing
a quantitative systemic approach to understand them and appropriate tool support and concepts to
model them. Understanding and modeling biosystems requires simulation of biological behaviors and
functions. Bioinformatics itself constitutes a vast area of research and specialization, as many classical
domains such as databases, modeling, and regular expressions are used to represent, store, retrieve and
process a huge volume of knowledge. There are challenging aspects concerning biocomputation
technologies, bioinformatics mechanisms dealing with chemoinformatics, bioimaging, and
neuroinformatics.

Biotechnology is defined as the industrial use of living organisms or biological techniques
developed through basic research. Bio-oriented technologies became very popular in various research
topics and industrial market segments. Current human mechanisms seem to offer significant ways for
improving theories, algorithms, technologies, products and systems. The focus is driven by
fundamentals in approaching and applying biotechnologies in terms of engineering methods, special
electronics, and special materials and systems. Borrowing simplicity and performance from the real life,
biodevices cover a large spectrum of areas, from sensors, chips, and biometry to computing. One of the
chief domains is represented by the biomedical biotechnologies, from instrumentation to monitoring,
from simple sensors to integrated systems, including image processing and visualization systems. As the
state-of-the-art in all the domains enumerated in the conference topics evolve with high velocity, new
biotechnologes and biosystems become available. Their rapid integration in the real life becomes a
challenge.

Brain-computing, biocomputing, and computation biology and microbiology represent advanced
methodologies and mechanisms in approaching and understanding the challenging behavior of life
mechanisms. Using bio-ontologies, biosemantics and special processing concepts, progress was achieved
in dealing with genomics, biopharmaceutical and molecular intelligence, in the biology and microbiology
domains. The area brings a rich spectrum of informatics paradigms, such as epidemic models, pattern
classification, graph theory, or stochastic models, to support special biocomputing applications in
biomedical, genetics, molecular and cellular biology and microbiology. While progress is achieved with a
high speed, challenges must be overcome for large-scale bio-subsystems, special genomics cases, bio-
nanotechnologies, drugs, or microbial propagation and immunity.

We take here the opportunity to warmly thank all the members of the BIOTECHNO 2022
Technical Program Committee, as well as the numerous reviewers. The creation of such a high quality
conference program would not have been possible without their involvement. We also kindly thank all
the authors who dedicated much of their time and efforts to contribute to BIOTECHNO 2022.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the BIOTECHNO 2022 organizing
committee for their help in handling the logistics and for their work to make this professional meeting a
success.
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We hope that BIOTECHNO 2022 was a successful international forum for the exchange of ideas
and results between academia and industry and for the promotion of progress in the fields of
bioinformatics, biocomputational systems and biotechnologies.

We are convinced that the participants found the event useful and communications very open.
We also hope that Venice provided a pleasant environment during the conference and everyone saved
some time for exploring this beautiful city

BIOTECHNO 2022 Chairs:

BIOTECHNO 2022 Steering Committee
Birgit Gersbeck-Schierholz, Leibniz Universität Hannover, Germany
Hesham H. Ali, University of Nebraska at Omaha, USA

BIOTECHNO 2022 Publicity Chairs
Hannah Russell, Universitat Politècnica de València (UPV), Spain
Mar Parra, Universitat Politecnica de Valencia, Spain
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Abstract—Bioreactors are complex sets of tubes, sensors and
actuators embodied in recipients of different shapes and sizes,
used thoroughly in biotechnical and chemical investigative and
commercial environments for hours on end. Stirred tank biore-
actors are widely used and available globally, whose design is
intentioned for in-batch and continuous operations. They serve
as closed controlled systems for specific organic compounds
reaction examination when treated with agitation changes and
temperature shifts, as well as oxygen saturation and viscosity
variation for both aerobic and anaerobic processes. In particular,
the rapidness and magnitude at which a substance changes
its associated pH affect its solubility and molecular structure,
possibly reaching its denaturalization. Hence, analyzing and
acting upon these systems pH, where several parameters interact
with each other, is crucial for avoiding compound stressing and
arriving to the desired products in addition to coherent investi-
gation conclusions. The pH level management, commonly done
manually by scientists, serves the purpose for applying fuzzy logic
principles where historical data, as well as human expertise and
experience, can be best utilized in designing the controller sets
of inference rules and membership functions. Thus, this paper
focuses on experiments design and proven tuned applications
with limited microorganisms capacities of adaptative neuro-fuzzy
process trained with custom genetic algorithms for automatic pH
control in 5 litres stirred tank bioreactors, joined with practical
comparisons between other control engineering formulations.
While earlier related research focused on simulated reactions
and theoretical control, this empirical procedure gives promising
results on 10 seconds cycles of sensing and actuating, achieving
an average 0.1 pH error margin on stability when utilized on
an agitation and temperature controlled environment. This study
provides scientists with an extendable and configurable procedure
so to successfully and efficiently control pH on closed systems
using an affordable master-slave micro-controllers architecture.

Keywords—fuzzy logic, automatic control, pH controller, biore-
actor design, optimization engineering

I. INTRODUCTION

Bioreactors are meticulously designed and carefully manip-
ulated closed systems, crucial for biotechnological and chem-
ical procedures in both academical and commercial contexts
[1]. Its research usages usually aim to analyze biochemical
active organic compounds behaviour and response when af-
fected by different cycles of natural conditions variations such
as temperature [2], oxygen saturation [3] and viscosity [4].
Its main market-oriented utilization ranges from large scale
production of consumables or custom alcoholic beverages and
milk processing [5] to more contained and closely examined
small scale on vaccines fabrication and proteins synthesis [6].
These systems standard capacity vary between contents of

approximately 5 litres for investigation purposes and 200 litres
for mass production [7]. This paper proposes and compares
approaches to bioreactor pH control guided by classical and
fuzzy logic, which are general and independent of the systems
dimensions, but dependent on its substances concentrations.

Controlling the pH of compounds formed by microorgan-
isms in a liquid medium is paramount for the proper study and
analysis of the biomolecular processes that occur, as well as for
the correct and expected nutrients development and biological
functions availability [8]. Nonetheless, given the strict system
requirements for accurate usage, this mandatory regulation
mechanism needs to act in conjunction with other relevant
controlled properties (e.g., external vest temperature, agitation
rotor speed) whose variance produce changes on pH and vice-
versa [9]. This intrinsic unavoidable feedback joined by the
microorganisms behavior unpredictability demands generally
complex solutions through classical means. Using fuzzy logic,
however, trained human experience and deductive thinking can
be emulated on a robust, reliable and efficient controller [10].

The presented approaches are tested with multiple com-
pounds on bioreactors with working regular agitation speeds
from 120 to 220 rpm for molecular oxygenation and tem-
perature variation between 18 and 42 Celsius grads. Further
sterilization ranges, i.e., microorganisms cleansing, are not
considered for pH control.

Figure 1 shows the used system architecture and commu-
nication sequencing per cycle regarding devices related to pH
control. It corresponds to a centralized master-slave structure
where the master has the control logic of all regulatory
properties of the system and the slave communicates and
mandates over the peripherals sensor and actuators, consisting
on one peristaltic pump for each acid and base drops.

Figure 1. Proposed architecture and sequencing of control system.

1Copyright (c) IARIA, 2022.     ISBN:  978-1-61208-971-3

BIOTECHNO 2022 : The Fourteenth International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies

                             8 / 32



This paper proceeds with a brief review of related biore-
actor control literature followed by considerations of rele-
vant preliminary experiments necessary for particular system
understanding. Then, it focuses on proposed classical, fuzzy
and neuro-fuzzy perspectives on pH control in order to later
compare its testing results and applications.

II. LITERATURE REVIEW

Bioreactor design’s research and analysis is a discipline
whose beginnings date back several decades while being con-
tinuously encompassed and updated with evolving practices
and techniques in its search for generality, scalability and
efficiency [11]. Indeed, recent viral outbreaks not only pro-
moted the technical relevance of the biotechnological field but
also demanded sophisticated tuned precision and fault tolerant
equipment to fulfill the increasing vaccines requirements [12].

Currently, the majority of bioreactor control observations
consists on specification and hierarchical delineation of inter-
ested magnitudes sets whose regulation may provide greater
dominion over part of the system processing. These properties
are then subjected to traditional ON-OFF or PID controls
(usual for agitation and temperature procedures) [13], as well
as neural networks on supervised reinforcement learning algo-
rithms [14]. Albeit useful in practice, these perspectives stand
as too complex to the general public, with little availability
for further customization.

Contemporary remarks on bioreactor pH control remain
traditional variations of classical loop stresses on particular fer-
mentation compounds using stepwise aggregation procedures
[15] and/or CO2 sparge feedback commands [16]. Although
tested optimal within their specific environment and processes,
these studies depict certain lack of generality and flexibility
for more broaden and global scenarios.

Recent related researches on fuzzy control of bioreactors
describe specialized designs of a predictive model and fuzzy
supervisory controllers for anaerobic processes [17], as well as
adaptive PI controller with fuzzy-based parameter selection for
fed-batched procedures [18]. Although these methodologies
are innovative, they are focused on simulated reactions of
scarce microorganisms types with theoretical specifications.

III. PRELIMINARY EXPERIMENTS

This section focuses on initial experimentation with selected
peripherals and associated operational fault managements, nec-
essary in every control design. The proposed procedure also
requires a historical analysis and abstraction of the system’s
time evolution over iterated pH homogeneous variation.

A. Peripherals Examination
The utilized glass two-electrode sensor measures pH with a

precision of 0.002 in the entire range 0-14 at usual aforemen-
tioned conditions, with reference electrode fixed at 6.86 [19].
It communicates with slave controller using a communication
module through I2C data protocol, industrially used between
integrated circuits on environments with little signal interfer-
ence [20]. This enables additional automatic functionalities of
connectivity check and calibration verification.

The low-pressure electrical peristaltic pumps are integrated
with DC engines and generates drops of tested approximate
69µL through silicon tubes of 1 cm diameter [21]. These are
activated by slave controller using dual h-bridge motor drivers
and Pulse Width Modulation (PWM) as shown in Figure 2.

Figure 2. PWM signaling to peristaltic pumps for 1 to 5 drops expulsion.

Thus, sensors and actuators are commanded using afford-
able Arduino slave controllers, which are connected to a
Raspberry Pi master controller where the procedural control
decisions are defined. Master and slaves controllers commu-
nicate through Modbus ASCII serial protocol [22], which
redundantly corroborates message information on both ends.
This system design enables the usage of multiple sensors and
actuators with a correspondent latency increase.

B. Operational Considerations

Automatic sequential systems functioning over long periods
of time demand in practice to define actions consequence of
possible defects and events. Due to its overarching simplicity,
procedures based on GEMMA framework [23] are structured
for pH control, segmenting strategies as functioning, stop and
failing processes shown in Figure 3.

Figure 3. Depiction of automation processes based on GEMMA framework.

2Copyright (c) IARIA, 2022.     ISBN:  978-1-61208-971-3
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Predominant faults are classified as measurement defects,
communication errors and actuators malfunction, all not mu-
tually exclusive. Measurement defects are non blocker faults
result of incorrect sensing that require message repetition.
Communication errors are blocker faults consequence of bad
frame reading or writing on a given endpoint, which obligate
system stop and physical connector checking. Actuators mal-
function provoke unexpected expulsions of acid or base drops,
or none entirely.

Bidirectional communication between master and slave con-
trollers, as well as with sensors, provides with acknowledg-
ment notification possibility after each action, enabling repeti-
tions or cancellations. However, communication with actuators
remains unidirectional as there are no guarantees of consistent
requested drops amount. This is considered on control logic, as
incoherent system interaction generates corrective maneuvers
on subsequent iterations.

C. System Analysis

The actuators interact with the bioreactor by the expulsion
of standard acid HCl with pH 1.8 and base NaOH with pH
11.6, both on 70% concentrated solutions. When analyzing
regular pH increments and decrements on organic compounds
with constant homogenization, an immediate effect is identi-
fied on the pH measurement. Moreover, no apparent inertia is
observed on the response as is illustrated in Figure 4, even
when using multiple continuous drops. These factors cause
that the usual working range is limited by the pH of acid and
base expelled by actuators.

Considering these observations and given the need of pro-
longed continuous system functioning of days at a time, as
well as the limited quantity of actuator solutions and engines
life expectancy before replacement, extra requirements such
as the usage of minimal drops with loose intervals over time
are imposed.

Figure 4. Incremental variation on pH result of periodic drop expulsions.

The addition of a buffered solution as an intent to maintain
the pH level at a certain value provokes the natural differen-
tiation of the system response into zones, distinguishable for
the steepness of the pH variation. Figure 5 illustrates this,

Figure 5. Variations of pH using three drops in a buffered KH2PO4 solution
of Streptococcus Thermophilus in lacteus medium, with zones distinctions.

where five distinct zones are defined and named based on
the nearness to buffer control or border limits and transitions
between each state, for separate increments and decrements.
These temporal behaviour is performed for traditional buffers
KH2PO4, C2H3NaO2, C2H4O2 and Ca3(BO3)2 on sets
of 1, 3 and 5 continuous drops, resetting the system setup for
each iteration. In order to avoid excessive compound waste,
this analysis can be miniaturized on smaller recipients with
same conditions and adequate substances concentration.

Several limitations are also required for consideration. First,
bioreactors are usually used nearing maximum capacity with
relevant compounds, and exceeded inclusions of actuator so-
lutions are undesirable. Second, the system is needed for
prolonged continuous system functioning of multiple days
and it must endure limited quantity of actuator solutions and
engines life expectancy before replacement. These imposes an
extra requirement of minimal drops usage with loose intervals
over time, granting a 6 to 10 seconds idle cycles in between
consecutive control measurements and conditional expulsions
of acid or base.

3Copyright (c) IARIA, 2022.     ISBN:  978-1-61208-971-3
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IV. CONTROL OBSERVATIONS

Previous experiences compendium and its analysis enables
the structuring of custom classical, fuzzy and neuro-fuzzy con-
trollers. These logic seek simplification and customization that
fulfills requirements of counteracting biochemical reactions
due to pH variations lesser than 0.2 per 10 seconds cycles.

A. Classical Controller

Given the observed non-inertial and immediate characteris-
tics of pH permutations, a ON-OFF controller with decisions
based on pH sensibilities and an error deadband for both
increments and decrements of 0.05 from objective is used.

Figure 6 illustrates the general ON-OFF sequential logic,
having as output the acid or base drops quantity to expel on
system in the current control cycle.

Figure 6. Diagram of utilized sensibility-based ON-OFF control logic.

The general idea, albeit compound specific, requires for
significant drops expulsion on buffer zone (e.g., 5 drops
for 0.02 variation) and considerably less on transition and
reference zones (e.g., 1 and 3 drops respectively for same
variation).

B. Fuzzy Perspective

An alternate broader approach is using fuzzy logic con-
trollers, looking for a soft system response given ambiguous
inputs and avoiding non-trivial mathematical modelling.

Figure 7 shows the global fuzzy control sequencing loop
with the same drops amount parameter as decision output.

Figure 7. Diagram of proposed fuzzy-based control logic within the system.

In this case, input functions refer to error and sensibility,
while output function allude to drops quantity expulsion for
acid and base. Figure 8 exhibit a combination of triangular and
trapezoidal membership functions that characterize fuzzy sets
elements of both inputs expressed by linguistic variables result
of a support fuzzification process, defining its universe of
discourse. Through this method, a mapping of the crisp input
values to the defined membership functions and truth values
is performed. Then, these variables are used among max-min
inference rules resulting in output linguistic variables, which
conclude on the drops quantity after a defuzzification process
guided by discrete centroid method, thus favoring the rule with
the output of greatest area. In centroid defuzzification the truth
values result of each rule are OR’d, i.e., the maximum value
is used and the results are then combined using a centroid
calculation.

Figure 8. Fuzzy knowledge database, with membership functions definitions
and linguistic variables indications.

The conditional rule base is described as follows:
• IF[(IE = IE1 ∧ IB = IB2)] ⇒ OQ1 = Oacid

Q1 ∨Obase
Q1

• IF[(IE = IE1 ∧ IB = IB1)] ⇒ OQ2 = Oacid
Q2 ∨Obase

Q2

• IF[(IE = IE2 ∧ IB = IB2)] ⇒ OQ1 = Oacid
Q1 ∨Obase

Q1

• IF[(IE = IE2 ∧ IB = IB1)] ⇒ OQ2 = Oacid
Q2 ∨Obase

Q2

• IF[(IE = IE3 ∧ IB = IB2)] ⇒ OQ2 = Oacid
Q2 ∨Obase

Q2

• IF[(IE = IE3 ∧ IB = IB1)] ⇒ OQ3 = Oacid
Q3 ∨Obase

Q3

4Copyright (c) IARIA, 2022.     ISBN:  978-1-61208-971-3
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The selection of acid or base drops expulsion is decided
implicitly by the rules based on the error differential sign.

When processing these inference rules using max-min, if
an AND relationship is specified, then their minimum value is
used as the combined truth value, occurring analogously with
OR relationships and their maximum value.

Given the carefulness needed for these systems variable
conditions, traditional common practices for pH regulation are
the manual addition of acidic and alkaline solutions. Thus,
practical human experience is mandatory for the definition
of mentioned placement and usual ranges of membership
functions, as well as for distinguishing each linguistic variable
and truth values. In consequence, the proposed solution is
diagrammed by empirical methods using a trial-and-error
approach on Streptococcus Thermophilus, Escherichia Coli,
Myxococcus Xanthus and Deinococcus Radiodurans while
testing grade fuzzification methods together with weighted-
average and mean-max defuzzification processes.

C. Neuro-Fuzzy Approach

Another alternative consists in joining fuzzy logic with cus-
tomizable learning methodologies, thus providing with adap-
tative responses over natural changes on system behaviour. In
this case, again, input functions refer to error and sensibility,
while output function allude to drops quantity expulsion for
acid and base. This perspective, diagrammed in Figure 9,
enables constant feedback between the fuzzy neural network
and the genetic algorithm, which selects the amplitude sets
{e1, e2, e3}, {b1, b2} and {q1, q2, q3} of the predefined mem-
bership functions based on historical pH variations with given
buffer. Consequent permutations over neural formulations ad-
justs dynamic responses over persistent system modifications.

Figure 9. Neuro-fuzzy flow representation, including neural network iterations
trained using a genetic algorithm helped by historical data.

Selected Mamdani-based feed-forward neural network is a
5-layer sequence with two inputs and one output that resem-
bles aforementioned traditional fuzzy flow. Transitions from

layers 1 to 2, as well as layers 4 to 5, contain [0,1] weights with
equal average values in order to ensure symmetrical answer
distributions on error input (IE) and drops output (Out).

A genetic algorithm is used for training and selection of
adequate amplitude sets and neural network configuration on
each t cycle iteration. Defined selection rules dynamically
choose past contiguous iteration’s sets as parents of future
generations. Custom crossover rules linearly combine these
parents using proportional [0,1] parameters {α, β, γ} based
on historical data, as shown in below equations.

(
et1 et2 et3

)
=

(
αI αII αIII

)et−1
1 et−1

2 et−1
3

et−2
1 et−2

2 et−2
3

et−3
1 et−3

2 et−3
3


(
bt1 bt2

)
=

(
βI βII

)(bt−1
1 bt−1

2 bt−1
3

bt−2
1 bt−2

2 bt−2
3

)

(
qt1 qt2 qt3

)
=

(
γI γII γIII

)qt−1
1 qt−1

2 qt−1
3

qt−2
1 qt−2

2 qt−2
3

qt−3
1 qt−3

2 qt−3
3


Customization attributes enable constant or evolutionary

proportional parameters indication, as well as fixed or variable
parents selection. Particularly, setting constant proportional
parameters provide equal pondering on membership varia-
tions per cycle, while using evolutionary variations generates
dynamic functions for reaching certain behaviour at a given
point in time. Moreover, configuring fixed parenting promotes
constant and stable considerations of parenthood relationships,
while selecting variable parenting allows for suppressing or
emphasizing set behaviours caused by expected disturbances.
Both evolutionary proportional parameters and variable par-
enting involves preliminary optimization steps with specific
distributions, which resolve primarily on fewer or lower buffer
usage and consequent error in regime. Possible combinations
of aforementioned approaches broaden the system’s response
and behaviour for a given experiment context, which might de-
liver further research and production possibilities for in-batch
microorganisms growth. Furthermore, initial iterations are de-
fined mirroring aforementioned traditional fuzzy perspective,
thus aiming at overcome natural system hysteresis and early
reactions. Seeking simplification, no specific mutation rules
are currently determined or deemed necessary.

D. Results Comparison

Generalizing outcomes are complex for systems with non-
identical repeatable experiences, even more when considering
different combinations of input parameters values and process
cycles through ever-changing environmental conditions. How-
ever, certain particularities can be observed for most use cases
that enable objective control results distinctions.

Figure 10 shows examples of the system evolution with
active pH controls that illustrates the comparable similarities
between all the examined approaches.
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Figure 10. System response to pH controls at different objectives setpoints
on Streptococcus Thermophilus solution with buffer KH2PO4.

According to these tuning and verification experiments re-
sults, the ON-OFF, fuzzy and neuro-fuzzy controllers stimulate
the system to successfully reach pH levels with less than
required 0.1 error margin without considerable overdraft nor
oscillations when stationary for both increments and decre-
ments. In fact, the fuzzy control gets to higher precision results
than the classical control, i.e., closer to pH objective at regime,
at a similar variation speed but at a greater transition time. This
differentiation can be clearly appreciated on decrements and
when a more extended pH variation is needed. Indeed, the
fuzzy and neuro-fuzzy controllers are empirically more robust
to noisy data caused by sensor malfunctions or circumstantial
system behavioral spikes and levels reactions variations in
setpoint vicinity in lesser approximation cycles quantities.

The neuro-fuzzy approach applied here defines balanced
and constant proportional parameters while assuming fixed
parents selection of three previous cycle iterations. As shown
in Figure 10, it provides with sharper transition periods on both
pH increment and decrement compared to traditional fuzzy
perspective, with softer albeit slower adaptability changes
and smaller divergences from objective. In particular, more

accurate results with faster transitions can be obtained when
setting evolutionary parameters along with same fixed parents
selection, or variable parenting with extended preceding cycles
considerations for further adaptability possibilities.

V. CONCLUSION

In this paper, three different approaches to pH control in
bioreactors were proposed and its results compared through
tuning and application of compounds with Streptococcus
Thermophilus, Escherichia Coli, Myxococcus Xanthus and
Deinococcus Radiodurans with standard actuators NaOH and
HCl together with usual buffers KH2PO4, C2H3NaO2,
C2H4O2 and Ca3(BO3)2. Motivated by the natural relevance
of pH property on the growth and survival of different microor-
ganisms, and sought of general customized and flexible pro-
cedures for its control, all perspectives achieved an acceptable
functioning with variable precision within the system char-
acteristics and set requirements using affordable and scalable
devices. Improvements related to diminishing transition times
and increasing selection of membership classes can be further
pursued for more meticulous or precise control and expanding
current action ranges with additional limited drops quantities.

While the classical ON-OFF controller presented a more
standard and direct logic sequence, the fuzzy and neuro-fuzzy
propositions aimed at a more generic, customized and adapt-
able scheme to uncertain biochemical reaction changes with
nonlinear behaviour. Due to its successful empirical testing
and customization capabilities, the neuro-fuzzy approach is
recommended to use on standard stirred tank bioreactors,
with possible further investigation related to variants on other
systems (e.g., other bioreactor types), as well as studied
influence of different actuators concentrations and biological
compounds characteristics (e.g., distinct buffers solutions and
microorganisms combinations).

Potential real world use cases of this procedure involve
commercial consumable fermentation and composition (e.g.,
milk derivatives preparation), as well as vaccine components
concoction and manufacturing (e.g., antivirus processing for
different animals) for small and large scale aerobic or anaer-
obic production. This is justified by the main dependence of
the proposed procedure on compounds concentrations and in-
dependence of the system dimensions or capacities. Also, other
academic use cases consist on studying certain microorganisms
behaviour under stressing contexts in addition to genetic codes
examinations, apart from traditional teaching and cultivation
of recombinant DNA on proteins and bacteria. Thus, the
complete process focused on reducing manual control and
automating the simultaneous managing of multiple system
properties, which is a contemporary trending practice on
general bioreactors with long-term processes.
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Abstract—Climate change will have serious repercussions on
the planet, including an increase in solar irradiance. The aim
of this article was to study how this problem will affect the
behaviour of plants. This is a topic of high relevance in Systems
Biology and Metabolic Networks. In particular, we will study
the metabolic pathway known as the ascorbate-glutathione cycle.
For this purpose, solar irradiance over the course of a year was
modelled using the Amplitude Modulation technique and will
serve as an input to this metabolic pathway. The aim was to
study how the plant behaves in the different seasons of the year
and how much increase in solar irradiance the plant will be able
to withstand.

Keywords- Amplitude Modulation; Solar Irradiance;
Metabolic Pathway.

I. INTRODUCTION

Light/dark cycles play an essential role in regulating plant
growth and development. On the other hand, computer sim-
ulation is a key technology increasingly used in systems
biology to analyze the dynamic behavior of plant metabolome.
Therefore, solar irradiance becomes a relevant parameter for
plant models. However, very few models contemplate this fact,
and in the best of cases, they only simulate a few days.

Numerous algorithms have been developed to predict solar
irradiance from meteorological data [1]. However, linking
these calculations with model simulation can become difficult
and many times such excessive precision is not necessary.
Therefore, our aim was to address this question looking for a
simple algorithm to simulate daily solar irradiance. For that,
we have chosen the modulation technique known as Amplitude
Modulation (AM), widely used in electronic communication
in the transmission messages with a radio wave [2]. The
corresponding equations have been adapted to design a basic
model able to generate quasi-real solar irradiance data, which
can be used as an input for metabolic pathways. Specifically,
the ascorbate-glutathione redox pathway in chloroplasts has
been studied [3][4] (see Figure 1).

Figure 1. Scheme of the Ascorbate-Glutathione cycle.

II. MAIN RESULTS

The first step is to have approximate information about solar
irradiance data at the target location for a typical year. It is
also necessary to take into account the duration of day and
night for that place. As a proof of concept, we shall consider
the city of Albacete (Spain) (Lat/Long 38.998/-1.853) for the
case of global horizontal irradiance in a typical meteorological
year [5].

The equations have been described in a normalised way
(maximum solar irradiance is 1), and a random value will be
used to simulate real fluctuations. This factor can be adapted

8Copyright (c) IARIA, 2022.     ISBN:  978-1-61208-971-3

BIOTECHNO 2022 : The Fourteenth International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies

                            15 / 32



0 25 50 75 100 125 150
Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

So
la
r i
rra

di
an

ce
 (W

/m
2 )

Figure 2. Normalised Solar Irradiance (7 days in winter).
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Figure 3. Normalised Solar Irradiance (7 days in summer).

and modified ad-hoc. Figure 2 shows a zoom for the 7 first
days of winter and Figure 3, for summer. As can be seen,
intensity of solar irradiance is different, and the length of
light/dark periods has changed.

Figure 4 shows the normalised solar irradiance simulated
through this technique for a year (8,760 h). This methodology
is easily adaptable to other geographical locations.

Then, this yearly light/dark model is used to feed a complex
metabolic pathway, in particular the ascorbate-glutathione cy-
cle using Tellurium [6], a Python environment for reproducible
dynamical modelling of biological networks. This cycle in-
volves the photosensitive enzyme ascorbate peroxidase (APX)
and Figure 5 shows the changes in the APX concentration over
a year.

III. CONCLUSION

The model herein proposed can be easily used to simulate
solar irradiance to input plant metabolic models. As a future
work, we plan to increase the solar irradiance and study how it
affects to the chloroplast; additionally we will consider other
photosensitive pathways and geographic locations. All of them
following the guidelines proposed in [7].
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Abstract—Among the challenges that the COVID-19 pandemic
outbreak revealed is the problem of reducing the number of tests
required for identifying the virus carriers. To cope with this
issue, a prevalence testing paradigm based on Group Testing
and Compressive Sensing approach or GTCS was examined. In
these settings, a non-adaptive group testing algorithm is designed
to rule out sure-negative samples. Then, a compressive sensing
algorithm is applied to decode the positives without requiring any
further testing. The result is a single-round non-adaptive group
testing - compressive sensing algorithm to identify the positive
samples. In this paper, we propose a heuristic random method to
construct the test design called α−random row design or α−RRD.
In the α−RRD, a random test matrix is constructed such that
each test aggregates at most α samples in one group test or pool.
The pooled tests are heuristically selected one by one such that
samples that were previously selected in the same test are less
likely to be aggregated together in a new test. We examined the
performance of the α−RRD design within the GTCS paradigm
for several values of α. The experiments were conducted on
synthetic data and sensitivity to noise was checked. Our results
show that, for some values of α, a reduction of up to 10 fold in
the tests number can be achieved when α−RRD design is applied
in the GTCS paradigm.

Index Terms—Group Testing, Pooling Design, Compressive
Sensing, COVID19-PCR

I. INTRODUCTION

The problem of group testing is the problem of identifying
a small amount of items or subjects known as defective items
or positive subjects within a pile of elements using group tests
or pools.

Denote the number of positive subjects by d and the total
number of elements by n. A group test or a pool is a subset
of subjects. A test result is positive if it contains at least one
positive subject and negative otherwise. The objective of group
testing algorithms is to find the set of positive subjects, denoted
by I , with minimum number of group tests.

In this paper, we will examine non-adaptive group testing.
In non-adaptive algorithms, tests are independent and must
not rely on previous results. Therefore, all the tests can be
performed in a single parallel step. The set of tests in any non-
adaptive deterministic (resp. randomized) algorithm can be

identified with an (resp. random) m×n test design matrix M
(also called pool design) that its rows are all the assignments
a that correspond to the group tests selected by the algorithm.

Group testing approach was first introduced during World
War II [3], when Robert Dorfman, in 1943, suggested the
method to reduce the expected number of tests needed to
weed out all syphilitic soldiers in a specific unit. Among
its recent applications, due to the recent pandemic outbreak,
group testing approach for accelerating COVID-19 testing was
widely applied across the globe. Due to severe shortages
in testing kits supply, a number of researches adopted the
group testing paradigm for COVID-19 mass testing not only to
accelerate the testing process, but also to reduce the number
of the tests required to reveal positive virus-carriers [4] [5]
[6] [9] [12] [13] [16]. In many labs, COVID-19 detection was
performed using Polymerase Chain Reaction tests or PCR tests
for short. PCR-based machines can perform multiple parallel
tests in single run, while each run can be several hours long.
Driven by the process of PCR testing, non-adaptive group
testing is most fit for these settings. In this context, the items
in question are samples taken from potential patients and the
positive subjects are samples that test positive to the virus.

While many researchers applied Dorfman’s attitude with
multi-stage PCR runs, some have examined designing single-
PCR round tests instead. One of the promising directions is
the Group Testing - Compressed Sensing paradigm (GTCS)
used in [7] [8] [10] [14]. This method includes the following
stages; initially, a test matrix M is designed for a single
non-adaptive group testing round. Upon test results delivery,
a two-stage decoding process is performed. The decoding
process is purely combinatorial and does not involve any
further sample testing. Using standard non-adaptive group
testing decoding (e.g., Combinatorial Matching Pursuit or
COMP algorithm [2]), a substantial amount of samples that
tested negative to the virus are ruled out. Obviously, the
main benefit of this phase is to reduce the dimension of the
compressed sensing problem by cutting down the number of
samples that need further decoding. This is crucial due to the
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computational complexity of compressed sensing algorithms.
In the next stage, compressive sensing techniques are used
over the reduced problem (e.g., Orthogonal Matching Pursuit
- OMP [15], Fast-OMP [11]), to identify real carriers.

The design of the test matrix M is crucial for both group
testing phase and the compressive sensing phase that follows.
In [14], the design matrix is constructed using Reed Solomon
error correcting codes. The authors has checked their method
on a set of n = 384 samples in which 5 samples are positive
(about 1.3%). For pool size of 48 and using 48 group tests,
they could recover all the 5 positive samples. In the work of
Jirong, Mudumbai and Xu [10], the authors investigated two
types of pooling designs. The first is Bernoulli random matrix
where each entry is selected to be 1 or 0 with equal probability.
The second design is obtained using expander graphs where
each column has a fixed number of non-zero entries. The
designs tested in [7] are based on Kirkman triples.

In this paper, we propose a heuristic random method to
construct the test design M called α−random row design or
α−RRD. In the α−RRD, a random test matrix is constructed
such that each test in M aggregates at most α < n samples in
one group test. This model is useful in applications were tests
reliability might be compromised if the pool size is large. We
call α the pool size. The matrix rows are selected one by one.
The main idea of the construction is to choose the non-zero
entries of a new row according to two considerations: samples
that belong to the same subject participate in similar number of
tests on average (fairness); and samples that were previously
selected in the same test are less likely to be aggregated
together in a new test (sparsity). We perform experiments on
noiseless and noisy synthetic data to examine the performance
of the design, while applying Orthogonal Matching Pursuit
or OMP as the compressive sensing algorithm. Practically,
test designs need to be deterministic, meaning, they need to
be predefined before the testing process. To use random test
design, it is acceptable to make simulations of several random
designs and choosing the design that performs best on some
set of data. Then, this design is adopted to be used as a
deterministic one for the real time tests.

The advantage of the α−RRD design is first that it can be
applied for any dimensions m and n. In many applications,
the pool size is crucial for the accuracy of the testing process,
therefore, it is highly recommended to use α as small as
possible. In some applications there is an upper bound on the
number samples that can be merged in one pool. Therefore,
the α−RRD design fits those settings when choosing α within
the bounds of the pool size.

Our experiments results suggest that using the GTCS frame-
work with α−RRD design can reduce the number of tests
dramatically. In the experiments, we tested the performance of
the framework on designs with total number of tests m = 96
and the number of samples can be n = 400, 600 or 900.
For each value of n, we tested on several pool sizes α that
range between α = 12 up to 48. The number of positives d
ranges from 1 up to 20. For each n, α and d, we calculated the
average error in restoring the positives subset over 200 random

sets. The results imply that there is an evident correlation
between the value of α and the performance of the process;
choosing higher values of α can increase the success rate in
identifying the positives. Moreover, the tests results show that
the GTCS paradigm with the α−RRD matrix, can improve
dramatically the total number of tests. In some settings, a
10−fold improvement can be achieved compared to the single
sample per test approach.

The paper is organized as follows. In Section II, we cover
some definitions and preliminaries required for defining the
problem of group testing and the compressive sensing in
mathematical terms. Moreover, in this section, we define the
group testing - compressive sensing (GTCS) paradigm. In
Section III, we describe in details of the α−RRD design
and give a detailed algorithm for constructing such design.
Section IV outlines experiments results designed to measure
the performance of the α−RRD design as part of the GTCS
paradigm, and in Section V, we give some conclusions and
future directions.

II. DEFINITIONS AND PRELIMINARIES

In this section, we define the mathematically of the prob-
lems of group testing and compressive sensing.

A. The group testing − GT problem

Let X = [n] := {1, · · · , n} be a set of n items or subjects,
and let I ⊆ X be the set of positive (defective) items such
that |I| = d � n. A group test or a pool is a subset Q ⊆ X
of items. The quantity α := |Q| is called the pool size. The
result of the test Q with respect to I is defined by Q(I) := 1 if
Q∩I 6= ∅ and Q(I) := 0 otherwise. Alternatively, we identify
the test Q ⊆ X with an assignment a ∈ {0, 1}n where ai = 1
if and only if i ∈ Q.

The set of tests in any non-adaptive group testing algorithm
can be identified with an m × n test design matrix M (pool
design), where each row corresponds to an assignment a ∈
{0, 1}n that defines a group test selected by the algorithm.
Upon performing the tests defined by M , each test of the
m assignments in M yields the value 1 or 0 according to
whether the tests contains at least one positive sample or not.
Let y ∈ {0, 1}m denote the test results obtained by performing
the tests of M , and let x ∈ {0, 1}n be a vector such that xi = 1
if and only if i ∈ I . Formally,

y =M � x,

where the operation � is defined as follows; for each 1 ≤ i ≤
m,

yi =

n∨
j=1

Mi,j · xj , (1)

where the ∨ operation is the logic OR. It is easy to see that,
the definition from (1) is equivalent to yi = 1 if and only if
M(i) ∩ I 6= ∅, where M(i) is the set that corresponds to the
test defined by the ith row in M .
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B. The compressive sensing − CS problem

Assume that each subject sample can be measured by a real
valued number that expresses the magnitude or the load of the
examined symptom (e.g., viral load in COVID-19 case). Let
x̂ ∈ Rn be a n−dimensional real-valued vector that signifies
the symptom load of the subjects; i.e., for each 1 ≤ i ≤ n, x̂i
indicates the symptom load of the subject i, where the value
of x̂i is directly proportional to the load. Symptom-free items
will have their corresponding load measure equals to 0. We
assume that the number of positives d� n, therefore, the load
vector x̂ is d−sparse; it includes only d non-zero entries. The
objective is to restore the indexes of the non-zero entries in x̂.

Similar to the definition of the result vector y from the GT
settings, the design matrix M , also called the sensing matrix
in the compressive sensing context, defines the load vector
ŷ ∈ Rn where each entry ŷi correlates with the load of the
ith pool in M . That is,

ŷ =M · x̂, (2)

where the (·) operation is the standard matrix multiplication,
therefore, for each 1 ≤ i ≤ m,

ŷi =

n∑
j=1

Mi,j · x̂j . (3)

In this paper, we are interested in restoring the indexes of
the non-zero entries of the vector x̂, which is equivalent to
restoring the binary vector x from the GT settings.

Formally, to find solutions for (2), we consider the following
optimization problem (P0):

min
x̂

‖x̂‖0 s.t. ŷ =M · x̂ (4)

where ‖x‖0 denotes the zero norm, L0, which is defined
as the number of non-zero entries in x. The problem in
(4) is NP-Hard. The main difficulty in solving (P0) is that
the constraint is highly non-smooth due to the L0 penalty.
Therefore, some relaxations are considered for approximating
the solution. Even if the problem (P0) has a unique solution,
for slightly perturbed vector ŷ, the system M · x̂ = ŷ will no
longer have a sparse solution as desired (a solution with at
most d non-zero entries). Moreover, the L0 measure is strict,
and a small random noise in x̂ causes the solution of (P0) to
be fully dense. To cope with these two problems, the following
alternative problem (P ε0 ) is considered:

min
x̂

‖x̂‖0 s.t. ‖M · x̂− ŷ‖22 ≤ ε2. (5)

It is well known that the ε−deviation in the constraint in
(P ε0 ) overcomes the two difficulties. Therefore, compressive-
sensing algorithms designed to solve the problem (P ε0 ) have
inherent robustness for noise. The OMP algorithm finds the
best approximation for the solution of (5) using a greedy
attitude. Other methods relax the L0 norm via the L1 norm.
In our experiments, we choose ε = 10−3.

C. The group testing - compressive sensing paradigm - GTCS

The GTCS paradigm suggests a non-adaptive group testing
generic algorithm for identifying the exact set of positives
while using compressive-sensing based decoding techniques.
The GTCS paradigm is composed of three basic phases.

1) Create and perform the actual tests: Create a test
design M and perform the group tests defined by
the design. Practically, the outcome of this stage is a
vector ŷ ∈ Rn as described in (2) and (3). This stage
is followed by two-stage decoding process to exactly
identify the test of positives. The vector y is derived
from ŷ by assigning each entry yi = 1 if ŷi > 0, and
yi = 0 otherwise.

2) Group testing decoding: using standard group testing
decoding methods (e.g., Combinatorial Maching Pursuit
or COMP algorithm [2]) on the problem y = M � x,
a subset X0 ⊆ X of items that are guaranteed by the
GT algorithm to be negative samples is identified. This
stage is used to reduce the size of the problem to be
solved in the next stage. The rational behind this step
is to exploit the fact that GT decoding algorithms like
COMP has zero false negatives (i.e. all sample that were
detected by the algorithm as negative ones are actually
negative). Therefore, eliminating the set of sure-negative
samples X0 reduces the computational complexity of the
step that follows, while keeping its decoding accuracy
intact.
The reduced compressive-sensing problem is established
by applying the following enhancements. Given the set
X0 that includes the sure negatives, we define a new set
Xr := X \X0. Let Y0 ⊆ [m] be the set of tests indexes
that yielded the result 0 in the previous stage. The new
test design matrix Mr is constructed from M , X0 and
Y0 by projecting M on the columns that correspond to
the samples in X\X0 and the rows that appear in the set
[m]\Y0. Therefore, the resulting matrix is an (mr×nr)
binary matrix where mr = m−|Y0| and nr = n−|X0|.
The reduced test result vector ŷr is derived from ŷ by
deleting the entries that correspond to Y0.

3) Compressive sensing decoding: by applying standard
compressive sensing algorithms (e.g., OMP) on the
reduced problem ŷr = Mr · x̂r, and using the results
from previous stage, the vector x̂r and therefore, the
vectors x̂ and x can be restored.

III. RANDOM ROW DESIGN - α−RRD

In this section, we propose a random design for GT. For
this design, we restrict the pool size to be at most α < n.
The design is constructed row by row. The main idea of the
construction is to choose the non-zero entries in the new row
according to two principles;

1) Fairness: Elements that participated in the minimum
number of tests in previous rows, will be more likely
to be chosen in the new test.
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2) Sparsity: Elements that were previously selected in the
same test, will be less likely to be assembled together
in the new test.

For a vector a = (a1, . . . , an) ∈ {0, 1}n, recall that
H(a) := {i : ai = 1} ⊆ [n]. The set H(a) is also called
the support of a. The Hamming weight of a is denoted by
ω(a) and is equal to ω(a) = |H(a)|. Let 0n (1n, ∞n) denote
the all zero (one, ∞ resp.) vector of length n. Let A(m×n)
be an m × n matrix over {0, 1}. For all 1 ≤ i ≤ m, denote
by A(i) ∈ {0, 1}n the ith row of the matrix A, by A(j) the
jth column and by Ai,j the element in A that corresponds to
the ith row and the jth column. The columns weight vector
of a matrix Am×n is a vector w = (w1, . . . , wn) ∈ Rn such
that wj =

∑m
i=1Ai,j . Practically, the weight column vector

indicates the number of tests each element participated in.
The procedure RRD(n,m,α) from Fig. 1 describes the

RRD strategy to choose a random design A with m rows
and n columns where each row is of Hamming weight at
most α. The algorithm starts by randomly choosing the first
row in A from the set of binary vectors of length n and
Hamming weight α. Assume that the first `−1 rows are already
chosen, and let A`−1 be the matrix defined by those rows. Let
ŵ = (w1, . . . , wn) ∈ Rn be the columns weight vector of
A`−1. Then, the algorithm chooses the first non-zero entry in
the `th row uniformly randomly from the set of indexes that
correspond to the entries of minimal value in ŵ. This choice
complies with the fairness principle.

Let k < α be the number of non-zero entries that algorithm
already chose for the `th row. The k + 1 entry is chosen as
follows. Let Qk be the set of indexes of the non-zero entires
chosen so far in the current row. Let Z be the set of rows
indexes i, such that H(A(i)) ∩ Qk 6= ∅, and let ŵ be the
weight vector of submatrix of A defined by the rows in Z. The
algorithm evaluates ŵ in steps (8) and (9) in Fig. 1. Then, the
algorithm constructs the set of indexes S ⊆ [n] that includes
all the indexes j such that wj is of minimum value among the
entries in ŵ and sums the corresponding columns. Let X be
the set of column indexes with minimum value. Then, among
the indexes in X, choose s ∈ X uniformly at random and
assign A`,s = 1. These are steps (10) − (16) in the algorithm
in Fig. 1. This choice complies with the fairness principle.

Fig. 4 describes the procedure CalcSelectedRows. The
procedure outputs a set of row numbers C ⊆ {1, . . . , ` −
1} such that i ∈ C if and only if H(A(i)) ∩ Qk 6= ∅. The
procedure UpdateWeight calculates the weight vector w =∑
j∈C A(j) (See step no. 2 in Fig. 2). To ensure that the entries

in Qk are excluded from the selection of the next non-zero
index, the weight vector w is updated to have the value ∞ in
the corresponding indexes. (See step 8 in Fig. 2).

The selection of the set S complies with the sparsity
principle. The set S is derived from the weight vector ŵ by
selecting the indexes with minimal weight, where the weight
is evaluated over the rows that agree with one or more of
the entries selected for the current test. The initialization step
in SumColumns implies that the choice of the next non-
zero entry of the current test will be from the indexes in

Procedure: m, n, α
Output: An m× n design matrix A

1: A← {0}(m×n).
2: Choose a ∈ {0, 1}n uniformly at random from all vectors

of weight α.
3: A(1) ← a.
4: for ` = 2 to m do
5: k ← 0, Q0 ← {}
6: while k < α do
7: k ← k + 1.
8: C ← ClacSelectedRows(n,Qk−1, A, `− 1)
9: ŵ ← UpdateWeight(n,Qk−1, C,A)

10: ŵmin ← min1≤j≤n ŵj
11: S ← {p : ŵp = ŵmin}
12: ẑ ← SumColumns(n,A, `− 1, S)
13: ẑmin ← min1≤j≤n ẑj
14: X ← {t : ẑt = ẑmin}
15: Select s uniformly at random from X .
16: Qk ← Qk−1 ∪ {s}.
17: A`,s ← 1
18: end while
19: end for
20: Return A.

Fig. 1: The procedure RRD(m,n, α)

Procedure: UpdateWeight(n,Q,C,A)
Output: An updated weight vector w

1: if C = ∅ then
2: w ← 1n

3: else
4: w ←

∑
j∈C A(j)

5: end if
6: for i = 1 to n do
7: if i ∈ Q then
8: wi ←∞
9: end if

10: end for
11: Return w

Fig. 2: The procedure UpdateWeight

S (See Fig. 3). Those indexes are the ones with minimum
agreement with the current test, therefore, choosing the next
non-zero entry from them is the best choice to keep the sparsity
principle. The selection of the set X in step 14 of the algorithm
in Fig. 1 complies with the fairness principle; among the best
candidates from the indexes of S, the algorithm chooses s
uniformly from those that appeared minimum number of times
over all the previous tests.

The time complexity of generating α−RRD design is poly-
nomial in the dimensions of the design and can be easily
generated for any dimensions m and n.

13Copyright (c) IARIA, 2022.     ISBN:  978-1-61208-971-3

BIOTECHNO 2022 : The Fourteenth International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies

                            20 / 32



Procedure: n,A, `, S.
Output: Sum all columns in A

1: w ←∞n

2: for each i ∈ S do
3: wi ←

∑`
j=1Aj,i

4: end for
5: Return w

Fig. 3: The procedure SumColumns(n,A, `, S)

Procedure: n,A, `, S.
Output: Calculate selected rows

1: C ← ∅
2: for each i = 1 to ` do
3: if (H(A(i)) ∩Q 6= ∅) then
4: C ← C ∪ {i}
5: end if
6: end for
7: Return C

Fig. 4: The procedure CalcSelectedRows(n,Q,A, `)

IV. EXPERIMENTS AND SIMULATIONS

In this section, we outline tests results of the performance
of the α−RRD design when chosen as the test design in the
GTCS generic paradigm. For the GT decoding, the COMP
algorithm is selected to generate initial sure-negative set, while
the OMP is used as the CS algorithm in the final stage.

A. Data generation

We test the performance of the α−RRD design on both
synthetic noisy and noiseless data, where an α−RRD design
matrix is generated for the dimensions m = 96 and n =
400, 600 and 900. Despite the fact that the construction from
section III does not impose any limitation on the parameter m,
the choice of the value of m in the experiments is derived from
the number of tests that can be performed in parallel in most
PCR machines used in the industry. We examine several values
of α starting from α = 12 up to 48. The minimum choice of
α is derived from the applicability of the compressive sensing
algorithm on the constructed matrix, while the maximum
value of the pool size matches the maximum value tested for
COVID-19 PCR pool designs [14]. The number of positive
subjects d ranges from 1 up to 20. For each choice of n and α,
an m×n α−RRD matrix M was randomized according to the
algorithm from Fig. 1 for several values of α. For each value d,
we randomized 200 vectors x̂ = (x̂1, x̂2, · · · , x̂n) ∈ <n with d
non-zero entries that signify the symptom load in the positive
samples amongst the n samples. The vector x̂ is chosen where
the d non-zero entries are chosen uniformly at random, while
the symptom load of each non-zero entry is chosen uniformly
over the real range [1, 2].

For each realization x̂, the test result ŷ is generated accord-
ing to ŷ =M · x̂. In the noisy settings, a random noise vector
v with energy ‖v‖2 = 10−3 was added to ŷ to generate a

noisy version of ŷ, denoted by ỹ = ŷ+ v (here, ‖ · ‖2 denotes
the L2 norm of the vector v). In the noiseless case, we have
ỹ = ŷ. Given the design matrix M and ỹ , we use the COMP
algorithm followed by OMP to restore the support of x̂. Denote
by x̃ the result calculated after the OMP phase. Let S be the
true support of x̂, i.e. S = {i|x̂i > 0}, and S̃ be the support
of x̃. The support recovery error is defined as

1− |S ∩ S̃|
max{|S̃|, |S|}

.

B. Tests results
Our experiments results suggest that using the GTCS frame-

work with α−RRD design dramatically reduces the number of
tests. Fig. 5 shows the average support recovery error over all
the 200 trials for each value of d and α for the noiseless case
when n = 400, 600 and 900, where the number of positive
samples is up to d = 20. In all these settings, an α−RRD
design matrix with total number of tests m = 96 is selected.
For n = 400 and positives rate near 2.5% (d = 10), the
average error in restoring the correct support is less than 0.005
when α approaches 20. Moreover, the error drops to 0 for
positives rate 1.5% (d = 6) for α = 16. This is 4−fold
improvement compared to the single test per sample settings.
For n = 900 and positives rate up to 1% (d = 9), for α = 48
the error probability is less than 0.06. When the rate is 0.5%
and α = 48, the error probability drops to near 0 value. (See
Fig. 5.(c)). This is 10−fold improvement over single-test per
sample method.

The results of the noiseless settings are reproduced also
for the noisy case. For example, Fig. 6.(a) shows the average
support recovery error over all the 200 trials for each value of
d and α for the noisy case, when n = 400. It can be noticed
that, for the same settings of the noiseless case, i.e, α = 20
and d = 10, the error is bellow 0.005, and reaches 0 for d = 6
and α = 16. For n = 900 and positives rate up to 1%, for
α = 48, the error probability is less than 0.06 and for positive
rate 0.56% (d = 5) the error rate is near 0 (See Fig. 6.(c)).

Moreover, the results imply that there is a correlation
between the value of α and the performance of the process;
choosing higher values of α can decrease the average error
in identifying the positives. For example, in the noisy case,
Fig. 6 shows that for n = 400 and d = 10 (p = 2.5%), the
average error for α = 12 is greater than 0.1 while it can be
decreased bellow 0.005 for α between 20. For n = 600, and
p = 1%, when α = 16, the error is about 0.069 while it drops
to less than 0.001 when α = 44. Similarly, for n = 900,
p = 0.56% and α = 48, the error probability is near zero,
while for α = 20, the error is higher than 0.1. This paradigm
is reproduced in both noisy and noise free case too.

In practice, deciding the best value for α for the problem in-
hand can be done while taking in consideration the limitations
of the test process (for example, if there is some upper bound
on the pool size). Once such limitations on the value of α
are known, we can use computer simulation on synthetic data,
similar to the ones described in this work, to decide on the
best choices of α for each settings.
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The results in Fig. 5 and Fig. 6 show that the error rate
increases with d. This behavior is as expected from any
group testing - compressive sensing algorithm, since those
are designed to be used when the solutions x and x̂ of the
equations (1) and (2) are sparse vectors, meaning the number
of the non-zero entries d is very small relative to n, more
precisely when d = O(

√
n).

It is worth noticing that, the differences in the noisy case vs.
the noise-free case are almost negligible. This behavior can be
explained by two major factors. First, group testing decoding
algorithms like COMP used in our simulations, are known
for their robustness for false negatives (a false-negative is a
sample classified by the algorithm as negative, but it is actually
positive). That is, the set of samples classified by the GT
algorithm as sure-negatives and therefore excluded from the
decoding of the CS algorithm, does not include false-negatives.
Therefore, it is highly unlikely to miss positive samples during
the GT initial classification. The second factor is the noise-
tolerance of the compressive sensing algorithm. Specifically,
the OMP algorithm is known for its high accuracy in the
presence of noise, while its drawback is its computational
complexity.

V. CONCLUSION

In this paper, we suggested a new random pooling design
α−RRD. This design can be used as part of the GTCS
paradigm in order to build a single-round non-adaptive group
testing protocol to exactly identify positives within a large set
of elements. The complexity of generating α−RRD design
is polynomial in the dimensions of the design and can be
easily generated for any dimensions m and n. By its design,
the α−RRD pooling matrix is designed to restrict the size of
the pool α which might be critical for test accuracy. If there
is no practical restrictions on the size of α, then, given the
parameters m,n and positives rate, the best choice for the
parameter α can be concluded using computer simulations.
Moreover, since random sensing matrices can perform well
with compressive-sensing algorithms, the GTCS paradigm
can be further tested with other well-known group testing
random designs such as RID, RrSD, RsSD and Transversal
design [1]. Similarly, other compressive sensing algorithms
can be applied too. Besides being tested on synthetic data, it
is worth examining the efficiency of the method and the design
on real COVID-19 data or any other disease that follow the
same paradigm.
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Fig. 5: Probability of support error for d up to 20, n = 400, 600, and 900, m = 96 and α ≤ 48 for the noise-free case.
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Fig. 6: Probability of support error for d up to 20, n = 400, 600, and 900, m = 96 and α ≤ 48 for the noisy case.
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Abstract—Functional Magnetic Resonance Imaging (fMRI) 
measures brain activity by detecting blood flow changes as 
cerebral blood flow and neuronal activation are coupled. fMRI 
is noninvasive, is considered safe, and may allow studying the 
brain under hyperbaric conditions. This new coil may be 
necessary for studying decompression sickness and disorders 
of hyperbaricity, including nitrogen narcosis. This study 
focuses on the safety and technical details of building fMRI 
coils for human hyperbaric studies. One of the most 
remarkable properties of this novel technology is that the new 
multichannel arrays provide high-quality images at 3 Tesla (T) 
MRI, one of the highest strength magnets among the most 
common MRI scanners available in the market. The paper 
describes all the risks associated with simultaneous MRI and 
Hyperbaric oxygen therapy (HBO2) and discusses mitigation 
strategies and regulatory testing. One of the most significant 
risks for this type of study is a fire in the hyperbaric chamber 
caused by the sparking of the MRI coils due to high voltage RF 
arcs. RF pulses at 128MHz elicit signals from the human 
tissues, and RF sparking occurs commonly and is considered 
safe in normobaric conditions. We describe how we built a coil 
for HBO2-MRI studies by modifying an eight-channel phased-
array MRI coil with all the mitigation strategies discussed. The 
coil was fabricated and tested with a unique testing platform 
that simulated the worst-case RF field of a 3 Tesla MRI in a 
Hyperlite hyperbaric chamber at 3 atm pressure. The coil was 
also tested in normobaric conditions for image quality in a 3 T 
scanner in volunteers and SNR measurement in phantoms. 
Further studies are necessary to completely characterize the 
coil safety for HBOT/MRI studies by following the Guidance 
for Industry and Food and Drug Administration titled 
"Testing and Labeling Medical Devices for Safety in the 
Magnetic Resonance (MR) Environment". 

Keywords-hyperbaric oxygen therapy; MRI; safety; diving 
medicine. 

I. INTRODUCTION

Magnetic Resonance Imaging (MRI) and functional 
Magnetic Resonance Imaging (fMRI) have rapidly gained 
acceptance as "the gold standard" for diagnosing and 
evaluating neurologic conditions. This adoption comes from 
MRI's perceived non-invasiveness, avoidance of ionizing 
radiation, and ability to elucidate the human nervous 
system's fine anatomic and functional nuances. MRI and 
fMRI have, however, not been utilized in the study of 

Hyperbaric Oxygen Therapy (HBO2) due to the genuine 
dangers that these two challenging environments present. 

HBO2 has been accepted for the treatment of many 
neurological conditions (e.g., decompression sickness, 
carbon monoxide poisoning, cerebral arterial gas emboli, 
etc.) and postulated to help in many others (stroke, cerebral 
palsy, and even autism); however, there has not been a safe 
method to utilize the tools of MRI and fMRI to evaluate 
mechanisms and efficacy of HBO2. The hyperoxic high-
pressure environment of HBO chambers and the powerful 
magnetic fields of the MRI scanner are traditionally 
incompatible. There are genuine risks of mechanical injury 
to the integrity of most chambers by magnetic forces, space, 
and access challenges to the patients in both monoplane 
chambers and MRI scanners, and --likely the most 
concerning-- the risk of fire from radio frequency (RF) MRI 
generated arcing in a hyperoxic environment. For many 
years HBO2 has provided safe and effective treatments for 
many diseases. Hyperbaric chambers provide oxygen 
administration in a manner that has few side effects. 
Combining these two technologies (HBO2 and MRI) can 
reveal other illnesses that HBO2 and fine-tuning established 
HBO therapies can treat, such as stroke rehabilitation [1]. In 
this paper, we discuss the risks as well as strategies and 
technological approaches to mitigate these risks and enable 
MRI and fMRI studies to be performed under hyperbaric 
conditions. We hope that these technological breakthroughs 
will permit both an increased understanding of HBO2 
mechanisms as well as a clinical tool to evaluate the 
efficacy of HBO2. 

II. METHODS

A new type of receive array MRI coil was designed and 
built to minimize fire hazards by using a combination of 
electronic protection components and fire retardant epoxy 
for insulation. Figure 1 (left panel, Top), in which eight 
surface coils are connected each to an independent amplifier 
and receiver channel (see below). The outputs from the 
receiver channels are combined in an optimum manner with 
a phase correction dependent on the point in space from 
which the signal is originated. Technical issues related to 
the mutual inductance of the coils have been addressed by 
using partial loop overlap [2]. In contrast, we followed the 
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current state-of-the-art MRI systems by adopting a phased 
array coil design.  

III. RESULTS 

The new MRI coil for HBO2 was fabricated (Figure 1, 
left panel) and tested at 3 Tesla. The constructed array coil 
passed the safety tests [3] without additional adjustment 
beyond the bench adjustments. The design included an 8-
channel phased array with extremely large area coil loops 
that have resulted in very high image quality. The head coil 
was composed of (Figure 1 left panel, middle): (A) lattice 
balun with a PIN diode for detuning during transmit and 
every soldering was inspected and photographed, (B) copper 
wires loops, (C) distributed capacitors, and (D) fuses. 

The following image acquisitions were performed on a 
human volunteer for a total scan time of approximately 2 
hours. Figure 1A (right panel) shows the amplitude and 
phase of a field map. A field map can help reconstruct high-
fidelity images as it is typically acquired during the MRI 
system tuning. Furthermore, lipid suppression can be much 
more robust by measuring the field map and adjusting the 
acquisition parameters.  

One of the most common MRI sequences is the T1-
weighted scan which depicts differences in signal based 
upon intrinsic T1 relaxation time of various tissues. Figure 
1B-C (right panel) shows the typical and high-quality T1-
weighted images. In these images, fat tissue realigns its 
longitudinal magnetization with B0, which appears bright. 
Conversely, tissues predominately made out of the water, 
such as central spinal fluid, have a much slower longitudinal 

magnetization realignment after an RF pulse and appear 
dark. 

Separate MRI and HBO2 studies have shown that 
imaging is a quantitative biomarker that can help guide and 
optimize HBO2 therapy [4]. However, only performing 
simultaneous fMRI and HBOT will enable studying the 
brain-altering effects of nitrogen narcosis or oxygen 
toxicity.  

IV. CONCLUSIONS

 To the best of our knowledge, this is the first work 
aiming at imaging the brain in extreme pressurized 
environments, like HBOT, which have significant 
repercussions for understanding the brain in conditions like 
decompression sickness, which are currently poorly 
understood. We expect to complete the safety studies and 
request IRB/IDE to complete the HBO2/fMRI studies in 
future work. 
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Figure 1  (LEFT PANEL) The MRI Coil. (Top) Design of the layout and schematics of the 8-channel Phased Array Coil System. (Middle) The new coil: 
(Bottom) lattice balun. (RIGHT PANEL) 3 Tesla normobaric MR images. (Top) Field map images of magnitude (A) and phase (B), sagittal (C), and axial 
(D) T1-weighted MPRAGE images. 
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Abstract—Patient classifiers should be able to rely on the 

strength of machine learning methodologies while not losing 

biological interpretability. So far, most of the developed 

methods lack in one of the two aspects. We propose Simpati, a 

pathway-based tool for patient classification, which enables 

accurate classification focusing on the detection of relevant 

biological features and patient cohesive communities. The tool 

makes it possible to classify patients and investigate the 

features which were mostly representative of each class. It 

presents ad-hoc algorithms for the processing of patient 

similarity networks and proposes an effective simulation 

strategy as a recommender system to predict a patient's class 

based on graph topology. Its computational performance, 

classification performance and biological validation were 

performed on genetic data from different types of cancer and 

compared favorably with state-of-the-art competitors. 

 Pathway-based classification; Network-based propagation; 

Patient similarity network; Subgroup cohesive algorithm. 

I.  INTRODUCTION  

High-throughput biological data provide valuable 

information to clinicians for the prognosis and treatment 

response of patients. They offer quantitative and qualitative 

evidences to biomedical scientists for developing a study or 

confirming wet-lab results. Pathway-based analysis is a 

technique to investigate these data and detect molecular 

mechanisms related to the patients [1][2]. The pathway 

space is more robust to noise than the single feature level, 

summarizes the information of multiple patient’s molecules 

into the pathway activity (inhibited or activated), reduces 

the model complexity and maintains predictive accuracy 

[3][4]. Nowadays, pathway-based analysis is mostly 

performed through enrichment tools, fundamental methods 

which provide to clinicians understanding of the cellular 

functions affected in a patient, so that they can better define 

a disease phenotype and manually classify patients. 

Although some attempts have been made to couple pathway 

enrichment with classification [5], pathway-based classifiers 

that do not require pathway enrichment (i.e., supervised 

classifiers able to integrate simple pathway information to 

classify biological samples), are not yet strongly developed.  

Among them there are two classifiers that exploit the idea of 

pathway. The first is PASNet [6], which incorporates 

biological pathways in a Deep Neural Network. The neural  

 

network is composed by an input gene layer, a pathway 

layer, a hidden layer that represents hierarchical 

relationships among biological pathways and an output layer 

that corresponds to the patient classes. The second is netDx 

[7] and represents pathways thanks to the Patient Similarity 

Network (PSN) paradigm. In a PSN, each node is an 

individual patient and an edge between two patients 

corresponds to pairwise similarity for a given patient’s 

feature (e.g., gender, height, gene expression). All the user-

provided data are converted into PSNs and molecular data 

can be converted into networks representing pathways. This 

made netDx a pioneer classifier able to combine multi-

omics and pathway specific features. The decision system of  

the software relies on GeneMANIA [8], state-of-art gene 

function predictor, to select the best patient similarity 

networks and to use them in the classification. netDx 

revealed to be better than canonical machine learning 

algorithms and to provide a good level of interpretability 

based on the network's graphical representation. However, 

the software requires the user to define a similarity measures 

for each input data and manually tune hyper-parameters, 

making the results highly dependent on users choices. 

Additionally, netDx does not consider the topology of the 

networks for inferring the relationships between training and 

testing patients, providing a black box prediction difficult to 

interpret. 
A classifier should be able to benefit both from the 

interpretability of pathway-based enrichment tools and the 

strength of machine learning methodologies [9]. We want to 

stand up to the challenge by proposing the pathway-based 

classifier Simpati. Our method provides a novel feature-

selection strategy for classifiers based on patient similarity 

networks, implements a subgroup cohesive algorithm for 

extracting patient communities in PSNs and proposes an 

effective simulation strategy to predict a patient's class 

based on graph topology. Plus, the method introduces ad-

hoc operations for genetic data to reduce the number of 

hyper-parameters, similarity measures, or external software 

that the user has to define or install, it naturally handles 

outliers and integrates a graphical user interface to allow the 

visualization of the networks. 

This text is structured as follows: in the Methods section 

the general workflow of the tool is described and different 
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subsections detail the implementation of each step. These 

include all steps necessary for data preparation, feature 

selection and prediction, as well as a description of required 

input data and possible downstream analyses. In the Results 

section, Simpati performances are compared to those of  two 

state-of-the-art competitors, both in terms of computational 

requirements, classification performance and biological 

interpretation. Finally, the Conclusions section remarks the 

impact of this classifier, its limitations, and its future 

development.  

II. METHODS 

In this section, a general overview of Simpati’s workflow is 

given, then the other subsections detail the specific aspects 

of implementation of each step. The R package to use 

Simpati and its graphical interface can be found online 

[10][11]. 

A. Overview 

Simpati is a binary patient classifier, which exploits the 

similarity of patients’ molecular profiles at the pathway-

level. An overview of the method is shown in Figure 1. It 

takes as input patients' genetic profiles similarly to a gene 

differential analysis setting where counts have been library 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

normalized and two classes are to be compared. The method 

has to be provided also with a list of pathways and a gene  
interaction network. Simpati transforms the profile of each 

individual patient to take into account the interconnectivity 

of genes. Each profile is propagated over the interaction 

network and the transformed data are used in the 

downstream analysis. Next, Simpati creates, selects and 

cleans PSNs. For each set of genetic features falling into a 

pathway, Simpati creates a Pathway-Specific PSN (psPSN), 

tests if the two patient classes show separability and finds 

cohesive communities inside each class. A psPSN is 

retained if it shows a strong intra-similarity between patients 

of one class, while having at the same time a weak intra-

class similarity in the other class and a weak inter-class 

similarity. Once a network is selected as significant, Simpati 

removes patients showing an outlier pathway activity as 

compared to the rest of patients in the same class. Signature 

pathways are then used to classify patients of unknown 

class, based on their similarity to labeled patients.  

B. Network-based data preparation 

The first step is the transformation of patients’ biological 

profiles using a network-based propagation algorithm. Each 

single-level feature gets a new value based on its a priori  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                            

 

Figure 1. Simpati’s workflow: (a) Overview of the main steps. (b) Input: matrix of features by patients, feature interaction network, features grouped by 

pathways. (c) Each patient’s profile is propagated on the interaction network. (d) Within each pathway’s subnetwork patient’s similarity is computed. 
Patient’s similarities are the edges of Pathway-Specific Patient Similarity Networks (psPSNs). (e) A psPSN is signature if intra-class similarities are 

stronger that intra-class similarities of the other class and inter-class similarities. (f) Unknown patients are classified based on their similarity to other 

patients and on how well they resemble class representatives. 
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information (e.g., gene expression) and on its associations 

with all the other molecules in the network. At first, the 

values of the patient’s genetic features are mapped to their 

corresponding nodes in the provided interaction network, 

then Simpati propagates their values through 

the interactions. Each node, including the ones without a 

value, gets a score, which reflects its starting information 

and the amount given and received from its neighbors. 

Simpati propagates using the random walk with restart 

algorithm on the row-normalized network [12]. Propagating 

a patient’s profile starting from the genetic single-value 

features allows us to obtain a genome-wide profile. This is 

relevant because the profile can be compared across patients 

and gives a genome-wide overview of all the genes. 

Moreover, this is particularly beneficial when we deal with 

sparse data (e.g., somatic mutation data) where fewer 

features are identified from the analysis [13].  

C. Pathway specific patient similarity  

Simpati computes a pairwise similarity between patients 

for each set of genetic features falling into a specific 

pathway. In this way, Simpati creates a database of psPSNs 

reflecting the similarity of patients in each pathway. The 

nodes of a psPSN are all the patients with known class and 

the edges are weighted to reflect the pairwise similarity of  

patients in the features belonging to the pathway. 
The approach of measuring similarity on a pathway-

level, not only allows to reduce the dimensionality of the 

features to be compared across patients, but it also creates a 

feature space, which is more robust to noise compared to 

single features, while still retaining predictive accuracy [14]. 
Pathway-specific patient similarity is computed as a 

linear combination score of three factors. The first one (1) is 

the Weighted Jaccard and determines how similar the 

propagated values between two profiles are; the second 

factor (2) determines how high or low the propagated values 

are, while the third factor is the opposite of their difference 

(3). The similarity increases as the two patients have similar 

values and at the same time high values for the same single-

level feature. This is reflected in the final similarity 

measure, called Trending Matching (4): 
 

WJp(Pa,Pb) = ∑g min(mg,a, mg,b)                                 (1) 
                                                        ∑g max(mg,a, mg,b)   

 
MGp(Pa,Pb) = ∑g (mg,a+ mg,b)/2                                  (2) 

                                                           |p|                                          
 

DIFFp(Pa,Pb) = 1-|WJp(Pa,Pb)-MGp(Pa,Pb)|                          (3) 
 

TMp(Pa,Pb) = WJp(Pa,Pb)+MGp(Pa,Pb) +DIFF(Pa,Pb)              (4) 
 

where p is a pathway, Pa and Pb are two patients, g are all the 

features | g  ∈ p, and m is the matrix of features by patients. 

D. Feature selection and Best Friend Connector algorithm 

Simpati evaluates which pathways are signatures for one 

of the classes. The members of one class must be more 

similar (strong intra-similarities of one class) than the 

members of the opposite class (weak intra-similarities of the 

other class) and the two classes are not similar (weak inter-

similarities). In other words, the topology of the psPSN 

must reflect the presence of a clique of nodes belonging to 

the same class being more strongly connected than the rest 

of the patients. Despite this criterion being genetically 

intuitive, it is not easy to satisfy due to the complex 

structure of a patient similarity network where each patient 

is connected to any other member of the classes in 

comparison. One patient can easily be more similar to the 

patients of its opposite class in one specific pathway activity 

and decrease the separability of the groups. To account for 

this situation and making the feature selection more robust 

to outliers at the level of the single pathway, we developed 

an algorithm called Best Friends Connector algorithm 

(BFC). The latter is a cohesive subgroup detection algorithm 

implemented specifically for PSNs to find the strongest 

community of patients from each class in a network. The 

algorithm relies on the definition of the concepts of first 

order best friend (1BF), second order best friend (2BF) and 

outsiders. Given a root node, its 1BFs are its most similar 

nodes. 2BFs are the nodes that are not among the root’s 

1BFs but are 1BFs to one of the root’s 1BFs. Outsiders do 

not belong to any of the previous definitions. The algorithm 

performs the following operations. It first adjusts the 

weights of the intraclass connections. Precisely, it increases 

the similarity of two patients when they both have a weak 

similarity with outsiders and it decreases it in the opposite 

case. Then, it iteratively considers one patient as root, it 

assesses the average of the intraclass connection weights of 

the subgroup composed by his 1BFs and 2BFs. When each 

patient has been considered, the algorithm retrieves the set 

of best friends who got the strongest connections. The 

cardinality of the 1BFs and 2BFs subgroups, as well as the 

size of the final subgroup, are customizable.  

E. Classification 

The signature pathways identified by Simpati are used to 

classify unknown patients. Each of them is compared to 

already annotated patients and assigned to the same class of 

who is most similar to. However, the only strength of 

similarity could be misleading. The unknown patient could 

have the strongest similarity with outlier members of the 

class. Therefore, we designed Simpati to consider also how 

much the unknown patient represents the class. 
The patient to be classified undergoes the same 

preprocessing described for annotated patients: its profile is 

propagated in the interaction network and its pairwise TM 

similarity to each annotated patient is computed, so that the 

unclassified patient becomes itself a node in each signature 

psPSN. Then, Simpati associates the profile to one of the 

classes based on the results of two approaches. For the first, 

it determines the average similarity of the patient to the 

members of each class. The patient would be assigned the 

class to which it has the strongest similarity. For the second 
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approach, Simpati pretends that the patient belongs to one 

class and measures how far it is from being considered an 

outlier. The patient would be assigned the class in which it 

is considered less of an outlier with respect to the other 

members. More specifically, the patient is simulated to 

belong to one class and the BFC algorithm is run iteratively. 

At each run, the algorithm is asked to return a smaller 

number of strongly connected individuals. The iteration 

stops when the patient does not belong to the best subgroup. 

A large number of iterations reflects a strong similarity of 

the patient to the class representatives. Due to this, the 

patient would be a candidate to be assigned the class in 

which it survived the highest number of iterations. Simpati 

assigns the patient to the class that has been predicted by 

both the approaches. In case, the results are not concordant, 

then Simpati does not make the prediction and the pathway 

together with its PSN are removed from the downstream 

operations. This step is performed for all signature psPSNs, 

then the patient’s definitive class is the one to which the 

patient has been most frequently assigned. 
The classification performance are evaluated with a 

leave one out cross validation approach, such that iteratively 

one patient is considered unknown and composes the testing 

set, while the others are known and are used as training to 

determine which pathways are signature. The performance 

on the testing set are computed using area under the receiver 

operator characteristic curve (auROC) and area under 

precision recall curve (auPR) metrics. 

F.  Downstream Analysis 

The signature pathways that are used to classify at least 

one patient are reported in the final output of Simpati and 

information about which class they were identified to be 

signature for. To further pinpoint the most relevant 

pathways and confirm their signature role for a class, an 

empirical probability value is computed. On each signature 

psPSN it is tested whether by randomly shuffling the 

patients between the two classes, the pathway is still 

predictive of the original signature class. 
To improve the interpretability of the results some other 

information is computed. First, it has been established that 

signature pathways reflect strong similarity between 

members of one class. However, Simpati also reports 

whether the members are similar in having high values (e.g., 

high gene expression), reported as up-involved signature 

pathway, or low values (e.g., low gene expression), reported 

as down-involved signature pathway. Additionally, based on 

the BFC results, it is reported how many times a patient has 

been considered an outlier for its class. 
When the features of the profiles provided as input to 

Simpati are genes and the classification aims to determine 

association to a disease, it is possible to validate the 

biological relevance of the identified pathways within 

Simpati. Queries to the gene-disease associations database 

(DisGeNet) [15] and to the Human Protein Atlas [16] allows 

detecting whether the features returned are already known to 

be associated with the disease being tested. 
To obtain a graphical representation  of the psPSNs of 

interest, Simpati offers a graphical interface, which allows 

to obtain a compact representation of the networks. Patients 

are grouped based on their similarity so that, instead of 

plotting all nodes, only some representatives are depicted, 

making the interpretation of the figure much more feasible. 

G. Data preparation for testing 

Simpati performances were tested by classifying patients 

from five cancer types, extracted from The Cancer Genome 

Atlas (TCGA) using the R packages curatedTCGAData 

(v1.1.38) [17] and TCGAutils [18]. Two  types of biological 

omics were tested for each cancer type, gene expression 

from RNAseq data and somatic mutations. The classes 

assigned to the patients were based on disease stage 

progression binarized into Early (stage I and II) or Late 

(stage III and IV). Data preparation for the RNAseq 

followed the workflow defined by Law et al. [19], while 

somatic mutation data have been converted into a binary 

matrix, where a value equal to one was indicating a mutated 

gene in a patient and zero otherwise. Finally, the six 

datasets  were composed of the following number of 

samples: 14 Liver hepatocellular carcinoma (LIHC) (7 

Early, 7 Late), 21 Stomach adenocarcinoma (STAD) (8 

Early, 13 Late), 37 Kidney renal clear cell carcinoma 

(KIRC) (24 Early, 13 Late), 45 Bladder Urothelial 

Carcinoma (BLCA) (8 Early, 37 Late), 75 Lung squamous 

cell carcinoma (LUSC) (60 Early, 13 Late) and 152 

Esophageal carcinoma (ESCA)  (91 Early, 61 Late) 

patients.  
Pathways were collected from the major databases 

MSigDB [20] and GO [21] and KEGG [22], while a Biogrid 

network (v4.2.191) [23] was used  to model the biological 

feature’s interactions.  

III. RESULTS 

Simpati classification results and computational 

performance were compared to those obtained with netDx 

(v1.2.0 14-10-2020) for both gene expression and somatic 

mutations on the prepared TCGA datasets and with PASNet 

only for gene expression, as this tool does not handle sparse 

data. Additionally, a biological validation of the pathways 

retrieved was performed on Simpati and netDx. An online 

repository is available with a tutorial on how to replicate the 

results [24]. 
The classification comparison was performed on the 

metrics supported by both netDx and PASNet, the auROC 

and the auPR. These were obtained from a 10-fold cross-

validation approach in netDx and a stratified 5-fold cross-

validation repeated 10 timed in PASNet, based on the 

authors’ vignette, while for Simpati it was obtained through 

the leave one out cross validation approach. Figure 2 shows 

how Simpati performs better than the competitors in both 

the measures and the biological omics. Simpati also proves  
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Figure 2. Classification performance comparison between methods. The 

top box shows performance on the RNAseq datasets, the bottom box on the 
somatic mutation datasets. 

 
to be more reliable in each dataset with a standard error 

equal to zero due to its leave-one out cross-validation 

approach.   

The patient similarity network paradigm used by Simpati 

and netDx brings many advantages both in the feature 

selection, in the classification phase and in the overall 

interpretability of the software. However, these pros come 

with a price, which is the software scalability already 

introduced as a challenge by Pai et al. [5]. A PSN is a 

complete graph that the methods build with all the patients 

and for every pathway. This means that an increment in the 

number of patients and in the number of annotated pathways 

lead the methods to require more computational resources. 

netDx and Simpati faced this point with different 

approaches. netDx is implemented in R and Java, uses the 

disk to save temporary files and applies a sparsification of 

the PSNs to decrease the number of edges and so the 

amount of information associated with them.  Simpati is 

implemented completely in R, natively supports parallel 

computing and handles all the data of the workflow as 

sparse matrices or vectors. The RAM usage and the running 

time required to classify the TCGA datasets were monitored 

with the same hardware settings for all tools (32-Core 

Processor, 251 Gigabyte System memory). Simpati 

compared favorably in the usage of the resources, as 

reflected in Figure 3. On average across the datasets, 

Simpati it’s ~ 16 times faster than netDx and requires ~ 1.5 

times less Gb of RAM. Both netDx and Simpati 

outperformed PASNet performance. 

Both Simpati and netDx provide the most relevant pathways 

they detect during the workflow. These pathways should 

help characterize patient’s classes and improve the 

interpretability of the method. For this reason, Simpati 

integrates into its workflow a biological validation step 

exploiting DisGeNet and the Human Protein Atlas. For each 

dataset, a set of key words describing the disease are 

defined, then the percentage of key words associated with 

the pathway in DisGeNet at least once are reported. 

Additionally, Simpati reports the percentage of features in 

each pathway which are associated with the cancer type in 

 
Figure 3. Computational performance comparison between methods. The 

top box shows running time in hours, the bottom box shows RAM usage in 

Gigabytes.   
 

the Human Protein Atlas.  In order to compare the biological 

validity of the methods, these values were computed for 

netDx and Simpati signature pathways and only the most 

biologically relevant pathways were kept. Two criteria for 

retaining relevant pathways were tested: pathways having at 

least one key word associated in DisGeNet and pathways 

having more than 90% of features associated with the cancer 

type in the Human Protein Atlas. The number of pathways 

satisfying these constraints were compared and results are 

shown in Figure 4.  

 
Figure 4. Biological validation comparison. The top box shows the relative 

proportion of signature pathways associated with relevant dataset key-

words between the two methods and the bottom box shows the relative 

proportion of signature pathways associated with disease-type between the 
two methods. 

 

This analysis highlights how Simpati is able to select 

biologically significant pathways directly associated with 

the patients it classifies and it performs better than the 

competitor.  

IV. CONCLUSIONS 

Simpati is a pathway-based classifier of patient classes 

for genetic data. It is the first classifier employing novel ad-

hoc algorithms for PSNs to detect pathway-specific 

similarities. The tool is strongly centered around providing a 

good interpretability, as it provides signature pathways to 

unveil the altered biological mechanisms of  a disease 
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phenotype. Thanks to a propagation algorithm that considers 

the interconnected nature of the cell’s molecules, Simpati 

can classify dense, sparse, and nonhomogeneous genetic 

data. Future work will be focused on the development of 

strategies for the integration of multiple omics and on 

improving scalability for larger datasets. 
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