
CENICS 2022

The Fifteenth International Conference on Advances in Circuits, Electronics and

Micro-electronics

ISBN: 978-1-68558-009-4

October 16 - 20, 2022

Lisbon, Portugal

CENICS 2022 Editors

Esteve Hassan, Mohawk College, Canada

 1 / 20

CENICS 2022

Forward

The Fifteenth International Conference on Advances in Circuits, Electronics and Micro-electronics
(CENICS 2022), held on October 16-20, 2022, continued a series of events initiated in 2008, capturing the
advances on special circuits, electronics, and micro-electronics on both theory and practice, from
fabrication to applications using these special circuits and systems. The topics covered fundamentals of
design and implementation, techniques for deployment in various applications, and advances in signal
processing.

Innovations in special circuits, electronics and micro-electronics are the key support for a large
spectrum of applications. The conference is focusing on several complementary aspects and targets the
advances in each on it: signal processing and electronics for high speed processing, micro- and nano-
electronics, special electronics for implantable and wearable devices, sensor related electronics focusing
on low energy consumption, and special applications domains of telemedicine and ehealth, bio-systems,
navigation systems, automotive systems, home-oriented electronics, bio-systems, etc. These
applications led to special design and implementation techniques, reconfigurable and self-
reconfigurable devices, and require particular methodologies to be integrated on already existing
Internet-based communications and applications. Special care is required for particular devices intended
to work directly with human body (implantable, wearable, ehealth), or in a human-close environment
(telemedicine, house-oriented, navigation, automotive). The mini-size required by such devices
confronted the scientists with special signal processing requirements.

We take here the opportunity to warmly thank all the members of the CENICS 2022 technical
program committee, as well as all the reviewers. The creation of such a high quality conference program
would not have been possible without their involvement. We also kindly thank all the authors who
dedicated much of their time and effort to contribute to CENICS 2022.

We also thank the members of the CENICS 2022 organizing committee for their help in handling the
logistics and for their work that made this professional meeting a success.

We hope that CENICS 2022 was a successful international forum for the exchange of ideas and
results between academia and industry and to promote further progress in the field of circuits,
electronics and micro-electronics. We also hope that Lisbon provided a pleasant environment during the
conference and everyone saved some time to enjoy the historic charm of the city.

CENICS 2022 Chairs

CENICS 2022 Steering Committee
Junghee Lee, Korea University, Korea
Timm Bostelmann, FH Wedel (University of Applied Sciences), Germany
David Cordeau, XLIM | University of Poitiers, France
Kenneth Skovhede, eScience | Niels Bohr Institute | University of Copenhagen, Denmark

CENICS 2022 Publicity Chairs
Sandra Viciano Tudela, Universitat Politecnica de Valencia, Spain
Jose Luis García, Universitat Politecnica de Valencia, Spain

 2 / 20

CENICS 2022

Committee

CENICS 2022 Steering Committee
Junghee Lee, Korea University, Korea
Timm Bostelmann, FH Wedel (University of Applied Sciences), Germany
David Cordeau, XLIM | University of Poitiers, France
Kenneth Skovhede, eScience | Niels Bohr Institute | University of Copenhagen, Denmark

CENICS 2022 Publicity Chairs
Sandra Viciano Tudela, Universitat Politecnica de Valencia, Spain
Jose Luis García, Universitat Politecnica de Valencia, Spain

CENICS 2022 Technical Program Committee

Naeem Abbasi, Qualcomm Technologies Inc., San Diego, USA
Francesco Aggogeri, University of Brescia, Italy
Ahmed Ammar, Ohio Northern University, USA
Amjad Anvari-Moghaddam, Aalborg University, Denmark
Mohammed A. Aseeri, King Abdulaziz City of Science and Technology (KACST), Kingdom of Saudi Arabia
Amirreza Ghadimi Avval, University of Arkansas, USA
M. Ali Aydin, Istanbul University, Turkey
Vincent Beroulle, Grenoble INP-UGA, France
Mahajan Sagar Bhaskar, Prince Sultan University (PSU), Saudi Arabia
Timm Bostelmann, FH Wedel (University of Applied Sciences), Germany
Manuel José Cabral dos Santos Reis, IEETA / University of Trás-os-Montes e Alto Douro, Portugal
Juan-Vicente Capella-Hernández, Universitat Politècnica de València, Spain
Saurabh Chaubey, Analog Devices Inc., Colorado Springs, USA
Spandonidis Christos, Prisma Electronics SA, Greece
Tales Cleber Pimenta, Universidade Federal de Itajuba, Brazil
David Cordeau, XLIM | University of Poitiers, France
Said Drid, University of Batna 2, Algeria
Francisco Falcone, UPNA-ISC, Spain
Laurent Fesquet, TIMA Laboratory | Grenoble Institute of Technology, France
Kamoun Fourati Fourati, University of Sfax, Tunisia
Patrick Girard, LIRMM - University of Montpellier 2 / CNRS, France
Victor Grimblatt, Synopsys Chile R&D Center, Chile
Wenkai Guan, Marquette University, USA
Mohammad Haider, The University of Alabama at Birmingham, USA
Amir M. Hajisadeghi, Amirkabir University of Technology (Tehran Polytechnic), Iran
Petr Hanáček, Brno University of Technology, Czech Republic
Abdus Sami Hassan, Chosun University, Korea
Wen-Jyi Hwang, National Taiwan Normal University, Taipei, Taiwan
Malinka Ivanova, Technical University of Sofia, Bulgaria

 3 / 20

Zhenge Jia, University of Pittsburgh, USA
Mouna Baklouti Kammoun, University of Sfax, Tunisia
Andrei Karatkevich, AGH University of Science and Technology, Krakow, Poland
Kenneth B. Kent, IBM Centre forAdvanced Studies - Atlantic | Universityof New Brunswick, Canada
Faiq Khalid, Technische Universität Wien, Austria
Kasem Khalil, Western Kentucky University, USA
Sabrine Kheriji, Technische Universität Chemnitz, Germany
Oliver Knodel, Helmholtz-Zentrum Dresden-Rossendorf, Germany
Ioannis Kouretas, University of Patras, Greece
Junghee Lee, Korea University, South Korea
Kevin Lee, School of InformationTechnology | Deakin University, Melbourne, Australia
Samira Legrini, Badji Mokhtar University, Algeria
Shuai (Steven) Li, Swansea University,UK
Diego Liberati, National Research Council of Italy, Italy
Yo-Sheng Lin, National Chi Nan University, Taiwan
David Lizcano, Madrid Open University (UDIMA), Spain
Jose Manuel Molina Lopez, Universidad Carlos III de Madrid, Spain
Xuyang Lu, Shanghai Jiao Tong University, China
Amalia Miliou, Aristotle University of Thessaloniki, Greece
Bartolomeo Montrucchio, Politecnico di Torino, Italy
Rafael Morales Herrera, University of Castilla-La Mancha, Spain
Ioannis Moscholios, University of Peloponnese, Greece
Umair Mujtaba Qureshi, City University of Hong Kong, Hong Kong
Anish NK, Arizona State University, USA
Soheil Nouri, University of Arkansas, USA
Arnaldo Oliveira, UA-DETI/IT-Aveiro, Portugal
Youssef Ounejjar, ETS, Montreal, Canada
Nakul Pande, University of Minnesota, USA
Maria S. Papadopoulou, Aristotle University of Thessaloniki, Greece
Ahmad Patooghy, University of Central Arkansas, USA
Michalis Pavlidis, University of Brighton, UK
Ladislav Polak, Brno University of Technology, Czech Republic
Jorge Portilla, Universidad Politécnica de Madrid, Spain
Waqas Rehan, University of Lübeck, Germany
Càndid Reig, University of Valencia, Spain
Enrique Romero-Cadaval, University of Extremadura, Spain
Pedro Santana, ISCTE - University Institute of Lisbon, Portugal
Sergei Sawitzki, FH Wedel (University of Applied Sciences), Germany
Sandra Sendra, Universidad de Granada, Spain
Emilio Serrano Fernández, Technical University of Madrid, Spain
Mustafa M. Shihab, The University of Texas at Dallas, USA
Ashif Sikder, Qualcomm, USA
Kenneth Skovhede, eScience | Niels Bohr Institute | University of Copenhagen, Denmark
Ivo Stachiv, Harbin Institute of Technology, Shenzhen China & Institute of Physics - Czech Academy of
Sciences, Prague, Czech Republic
Kenneth Stewart, University of California, Irvine
Viera Stopjakova, Slovak University of Technology, Bratislava, Slovakia
Zoltan Tibenszky, TU Dresden, Germany

 4 / 20

Carlos Travieso González, University of Las Palmas de Gran Canaria, Spain
Muhammad S. Ullah, Florida Polytechnic University, USA
Prajoona Valsala, Dhofar University, Salalah, Oman
John S. Vardakas, Iquadrat, Barcelona, Spain
Miroslav Velev, Aries Design Automation, USA
Manuela Vieira, CTS/ISEL/IPL, Portugal
Aili Wang, ZJU-UIUC Institute | Zhejiang University, China
Pengcheng Xu, UCLouvain, Belgium
Fei Yuan, Ryerson University, Canada
Piotr Zwierzykowski, Poznan Univeristy of Technolology, Poland

 5 / 20

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 6 / 20

Table of Contents

High-Level Synthesis of Hardware Accelerators for Deconvolution Engines
Cristian Sestito, Robert Stewart, and Stefania Perri

1

Processing Speed Impact of the Pipeline-Length on a Custom RISC-V CPU for FPGAs
Julian Weihe, Timm Bostelmann, and Sergei Sawitzki

5

Design of Novel Integrated Data Acquisition System for Multi-Channel Sensing in Landing Gear
Esteve Hassan

9

Powered by TCPDF (www.tcpdf.org)

 1 / 1 7 / 20

High-Level Synthesis of Hardware Accelerators for Deconvolution Engines

Cristian Sestito

Department of Informatics, Modeling,

Electronics and System Engineering

University of Calabria

Arcavacata di Rende, Italy

e-mail: cristian.sestito@unical.it

Robert Stewart
Department of Computer Science

Heriot-Watt University

Edinburgh, United Kingdom

e-mail: R.Stewart@hw.ac.uk

Stefania Perri
Department of Mechanical, Energy

and Management Engineering

University of Calabria

Arcavacata di Rende, Italy

e-mail: s.perri@unical.it

Abstract—Convolutional and Deconvolutional Neural

Networks are widespread in several modern computer vision

applications, such as high-resolution imaging, object

classification and generation, image segmentation and many

others. While several efficient hardware architectures are

known in literature to accelerate the convolution task, the

design of accelerators for deconvolution is still an open

problem. The few existing deconvolution engines are

customized to exploit in the best possible way specific

hardware resources, thus suffering from platform-dependency

that certainly allows maximizing speed performances and

power-resource efficiency, but, on the other hand makes these

designs unsuitable for the high-level synthesis approach. This

paper presents a deconvolution structure described in the C++

high-level language and then synthesized at the register-

transfer level of abstraction. Results demonstrate that, when

characterized within the Xilinx XC7VX980tffg1930-1 device,

the described architecture can up-sample a 256×256 input

image to the 1024×1024 resolution using less than 3000 LUTs,

1028 18Kb BRAMs and 640 FFs. The reached 121 MHz

running frequency guarantees a frame rate higher than 50 fps

to be achieved.

Keywords-Hardware accelerators; High-Level Synthesis;

Deconvolution; Multiply Accumulations; FPGAs.

I. INTRODUCTION

Modern deep learning applications [1]-[3], including
image segmentation, object generation and high-resolution
imaging, exploit both Convolutional and Deconvolutional
Neural Networks (CNNs and DCNNs). The former
progressively down-sample the digital images received as
input to extract relevant features, whereas the latter elaborate
the input images to extrapolate new features. As it is well
known, Convolution (CONV) and Deconvolution
(DECONV) are nothing more than Multiply Accumulations
(MACs) performed on the pixels of the received images and
the kernel coefficients of k×k filters. However, despite to
their similarity, while CONV has been extensively used in
several CNNs, such as AlexNet [4], GoogleNet [5], ResNet
[6], VGG16 [7], just to cite some of the most popular
models, DECONV has received a great deal of attention only
recently: it is an efficient approach to furnish high-resolution
images and, therefore, it has become the basic operation of
generative neural networks [8][9].

Generally speaking, a DECONV engine receives a low-
resolution H×W image and a k×k filter and produces a high-

resolution Ho×Wo output image. Several approaches can be
exploited to perform such an operation, each having its own
pros and cons. As shown in [10], DECONVs can be
computed by executing classical CONVs. In order to do this,
with S and P being the adopted stride and padding,
respectively, the input image is preliminarily strided, by
interleaving S−1 zeros between each pair of adjacent pixels,
and padded by inserting P zeros on the borders. The image
obtained in this way is processed through a classical CONV,
which is a benefit in terms of design efforts, given that
engines designed for CONV can be utilized also to perform
DECONV. However, inserted zeros cause useless zeroed
MACs and lead to unbalanced workloads. Moreover, the
input reorganization, required to stride and pad the input
images, limit the achievable speed performances.

As an alternative, the technique proposed in [11] directly
multiplies each input pixel by the filter coefficients, thus
computing a block of k×k products. In this way, the blocks
of products related to adjacent pixels are overlapped and, to
perform DECONV correctly, up to k−S overlapping rows
and columns must be properly managed, which increases
both the computational complexity and the delay.

The designs presented in [12]-[18] improve the above
approach to implement efficient hardware DECONV engines
within FPGA-based Systems-on-Chip (SoCs) able to
accelerate the complex segmentation and the super-
resolution imaging tasks.

As deeply discussed in [19], also the Winograd algorithm
can be exploited to perform DECONV. The main benefit of
this solution is the very high speed achieved, but, as a
drawback, input images and filters must be preliminarily
transformed in the Winograd domain, which introduces
significant resources and power overheads.

All the previously cited state-of-the-art papers present
efficient DECONV engines customized to exploit in the
most efficient way the hardware resources available within a
specific FPGA device. If on the one hand this choice allows
speed performances to be maximized, limiting the power
dissipation and the hardware resources requirements, on the
other hand it introduces specific realization platform-
dependency, which makes such designs unsuitable for the
High-Level Synthesis (HLS). The latter allows describing
complex tasks, like those performed by DCNNs, in a high-
level language (e.g., C/C++) letting the software tool
automatically provide the description at the Register-
Transfer Level (RTL) of abstraction. The HLS design
approach offers a precious aid to the users who: 1) must

1Copyright (c) IARIA, 2022. ISBN: 978-1-68558-009-4

CENICS 2022 : The Fifteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

 8 / 20

comply with limited realization time; 2) are not familiar with
hardware designs at a low-level of abstraction; 3) desire
platform-independent portable design descriptions. Indeed,
HLS tools can access sets of libraries providing several
classes of synthesizable functions that can be exploited to
describe complex tasks. Moreover, proper directives and
pragmas can be used within the description code to
architecturally constrain the synthesis result. Stimulated by
these considerations, this paper presents the design of a
DECONV engine based on the HLS approach.

The rest of the paper is organized as follows: Section II
reviews the adopted DECONV method; Section III details
the synthesizable C++ code, written, verified and synthesized
with the Xilinx Vivado HLS Tool, and presents post-
synthesis results; future works are briefly described in
Section IV; finally, conclusions are drawn in Section V.

II. THE ADOPTED DECONV METHOD

The proposed DECONV engine implements the Input-
Oriented-Mapping (IOM) strategy [11]. It performs the
generic computation within three steps: 1) multiply each
input pixel by the filter coefficients, thus providing a block
of k×k products; 2) sum up the products belonging to the k–S
rows (columns) overlapped with adjacent blocks; 3) crop the

borders of the output image to modulate its size to Ho×Wo,
as given in (1), where PI and PO are the input and output
padding, respectively.

 (1a)

 (1b)
To better explain how the referred method runs, let us

examine the example reported Figure 1. It refers to the case
in which H=W=3, k=3, S=2, PI=1, PO=0. Figure 1b shows
how the 3×3 blocks of products obtained by the step 1 (i.e.,
multiplying each input pixel by the filter) should be arranged
into the output space. In this case, adjacent bocks have only
1 overlapping row (column), therefore the accumulations
performed in the step 2 lead to the 7×7 provisional image of
Figure 1c. Since the size of the output image obtained by (1)
is HO=WO=5, the gray borders are cropped in the step 3, thus
finally producing the output image reported in Figure 1d.

III. THE SYNTHESIZABLE C++ CODE AND POST-

SYNTHESIS RESULTS

The synthesizable C++ routine purposely written to
exploit the HLS design approach has been organized
assuming that the DECONV engine is the computational
core of a custom hardware module exploited within a typical

 General-
purpose

processor

 Memory
Controller

Processing
System

DECONV

Engine

Management of
Data Transfers

M
E
M
O
R
Y

Heterogeneous SoC

Figure 2. Typical structure of a heterogeneous SoC.

Custom Hardware

Input image

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

 2 4 6

 8 10 12

 14 16 18

 3 6 9

 12 15 18

 21 24 27

4 8 12

16 20 24

28 32 36

 5 10 15

 20 25 30

 35 40 45

 6 12 18

 24 30 36

 42 48 54

7 14 21

28 35 42

49 56 63

 8 16 24

 32 40 48

 56 63 72

 9 18 27

 36 45 54

 63 72 81

1 2 5 4 9 6 9

4 5 14 10 24 15 18

11 16 40 26 60 36 45

16 20 44 25 54 30 36

35 46 100 56 120 66 81

28 35 74 40 84 45 54

49 56 119 63 135 72 81

Input fmap Filter

Pixel 1 - Res Pixel 2 - Res Pixel 3 - Res

Pixel 4 - Res Pixel 5 - Res Pixel 6 - Res

Pixel 7 - Res Pixel 8 - Res Pixel 9 - Res

Output fmap
(gray locations are cropped)

Filter

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

 2 4 6

 8 10 12

 14 16 18

 3 6 9

 12 15 18

 21 24 27

4 8 12

16 20 24

28 32 36

 5 10 15

 20 25 30

 35 40 45

 6 12 18

 24 30 36

 42 48 54

7 14 21

28 35 42

49 56 63

 8 16 24

 32 40 48

 56 63 72

 9 18 27

 36 45 54

 63 72 81

1 2 5 4 9 6 9

4 5 14 10 24 15 18

11 16 40 26 60 36 45

16 20 44 25 54 30 36

35 46 100 56 120 66 81

28 35 74 40 84 45 54

49 56 119 63 135 72 81

Input fmap Filter

Pixel 1 - Res Pixel 2 - Res Pixel 3 - Res

Pixel 4 - Res Pixel 5 - Res Pixel 6 - Res

Pixel 7 - Res Pixel 8 - Res Pixel 9 - Res

Output fmap
(gray locations are cropped)

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

 2 4 6

 8 10 12

 14 16 18

 3 6 9

 12 15 18

 21 24 27

4 8 12

16 20 24

28 32 36

 5 10 15

 20 25 30

 35 40 45

 6 12 18

 24 30 36

 42 48 54

7 14 21

28 35 42

49 56 63

 8 16 24

 32 40 48

 56 63 72

 9 18 27

 36 45 54

 63 72 81

1 2 5 4 9 6 9

4 5 14 10 24 15 18

11 16 40 26 60 36 45

16 20 44 25 54 30 36

35 46 100 56 120 66 81

28 35 74 40 84 45 54

49 56 119 63 135 72 81

Input fmap Filter

Pixel 1 - Res Pixel 2 - Res Pixel 3 - Res

Pixel 4 - Res Pixel 5 - Res Pixel 6 - Res

Pixel 7 - Res Pixel 8 - Res Pixel 9 - Res

Output fmap
(gray locations are cropped)

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

 2 4 6

 8 10 12

 14 16 18

 3 6 9

 12 15 18

 21 24 27

4 8 12

16 20 24

28 32 36

 5 10 15

 20 25 30

 35 40 45

 6 12 18

 24 30 36

 42 48 54

7 14 21

28 35 42

49 56 63

 8 16 24

 32 40 48

 56 63 72

 9 18 27

 36 45 54

 63 72 81

1 2 5 4 9 6 9

4 5 14 10 24 15 18

11 16 40 26 60 36 45

16 20 44 25 54 30 36

35 46 100 56 120 66 81

28 35 74 40 84 45 54

49 56 119 63 135 72 81

Input fmap Filter

Pixel 1 - Res Pixel 2 - Res Pixel 3 - Res

Pixel 4 - Res Pixel 5 - Res Pixel 6 - Res

Pixel 7 - Res Pixel 8 - Res Pixel 9 - Res

Output fmap
(gray locations are cropped)

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

 2 4 6

 8 10 12

 14 16 18

 3 6 9

 12 15 18

 21 24 27

4 8 12

16 20 24

28 32 36

 5 10 15

 20 25 30

 35 40 45

 6 12 18

 24 30 36

 42 48 54

7 14 21

28 35 42

49 56 63

 8 16 24

 32 40 48

 56 63 72

 9 18 27

 36 45 54

 63 72 81

1 2 5 4 9 6 9

4 5 14 10 24 15 18

11 16 40 26 60 36 45

16 20 44 25 54 30 36

35 46 100 56 120 66 81

28 35 74 40 84 45 54

49 56 119 63 135 72 81

Input fmap Filter

Pixel 1 - Res Pixel 2 - Res Pixel 3 - Res

Pixel 4 - Res Pixel 5 - Res Pixel 6 - Res

Pixel 7 - Res Pixel 8 - Res Pixel 9 - Res

Output fmap
(gray locations are cropped)

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

 2 4 6

 8 10 12

 14 16 18

 3 6 9

 12 15 18

 21 24 27

4 8 12

16 20 24

28 32 36

 5 10 15

 20 25 30

 35 40 45

 6 12 18

 24 30 36

 42 48 54

7 14 21

28 35 42

49 56 63

 8 16 24

 32 40 48

 56 63 72

 9 18 27

 36 45 54

 63 72 81

1 2 5 4 9 6 9

4 5 14 10 24 15 18

11 16 40 26 60 36 45

16 20 44 25 54 30 36

35 46 100 56 120 66 81

28 35 74 40 84 45 54

49 56 119 63 135 72 81

Input fmap Filter

Pixel 1 - Res Pixel 2 - Res Pixel 3 - Res

Pixel 4 - Res Pixel 5 - Res Pixel 6 - Res

Pixel 7 - Res Pixel 8 - Res Pixel 9 - Res

Output fmap
(gray locations are cropped)

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

 2 4 6

 8 10 12

 14 16 18

 3 6 9

 12 15 18

 21 24 27

4 8 12

16 20 24

28 32 36

 5 10 15

 20 25 30

 35 40 45

 6 12 18

 24 30 36

 42 48 54

7 14 21

28 35 42

49 56 63

 8 16 24

 32 40 48

 56 63 72

 9 18 27

 36 45 54

 63 72 81

1 2 5 4 9 6 9

4 5 14 10 24 15 18

11 16 40 26 60 36 45

16 20 44 25 54 30 36

35 46 100 56 120 66 81

28 35 74 40 84 45 54

49 56 119 63 135 72 81

Input fmap Filter

Pixel 1 - Res Pixel 2 - Res Pixel 3 - Res

Pixel 4 - Res Pixel 5 - Res Pixel 6 - Res

Pixel 7 - Res Pixel 8 - Res Pixel 9 - Res

Output fmap
(gray locations are cropped)

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

 2 4 6

 8 10 12

 14 16 18

 3 6 9

 12 15 18

 21 24 27

4 8 12

16 20 24

28 32 36

 5 10 15

 20 25 30

 35 40 45

 6 12 18

 24 30 36

 42 48 54

7 14 21

28 35 42

49 56 63

 8 16 24

 32 40 48

 56 63 72

 9 18 27

 36 45 54

 63 72 81

1 2 5 4 9 6 9

4 5 14 10 24 15 18

11 16 40 26 60 36 45

16 20 44 25 54 30 36

35 46 100 56 120 66 81

28 35 74 40 84 45 54

49 56 119 63 135 72 81

Input fmap Filter

Pixel 1 - Res Pixel 2 - Res Pixel 3 - Res

Pixel 4 - Res Pixel 5 - Res Pixel 6 - Res

Pixel 7 - Res Pixel 8 - Res Pixel 9 - Res

Output fmap
(gray locations are cropped)

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

 2 4 6

 8 10 12

 14 16 18

 3 6 9

 12 15 18

 21 24 27

4 8 12

16 20 24

28 32 36

 5 10 15

 20 25 30

 35 40 45

 6 12 18

 24 30 36

 42 48 54

7 14 21

28 35 42

49 56 63

 8 16 24

 32 40 48

 56 63 72

 9 18 27

 36 45 54

 63 72 81

1 2 5 4 9 6 9

4 5 14 10 24 15 18

11 16 40 26 60 36 45

16 20 44 25 54 30 36

35 46 100 56 120 66 81

28 35 74 40 84 45 54

49 56 119 63 135 72 81

Input fmap Filter

Pixel 1 - Res Pixel 2 - Res Pixel 3 - Res

Pixel 4 - Res Pixel 5 - Res Pixel 6 - Res

Pixel 7 - Res Pixel 8 - Res Pixel 9 - Res

Output fmap
(gray locations are cropped)

a)

b)

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

 2 4 6

 8 10 12

 14 16 18

 3 6 9

 12 15 18

 21 24 27

4 8 12

16 20 24

28 32 36

 5 10 15

 20 25 30

 35 40 45

 6 12 18

 24 30 36

 42 48 54

7 14 21

28 35 42

49 56 63

 8 16 24

 32 40 48

 56 63 72

 9 18 27

 36 45 54

 63 72 81

1 2 5 4 9 6 9

4 5 14 10 24 15 18

11 16 40 26 60 36 45

16 20 44 25 54 30 36

35 46 100 56 120 66 81

28 35 74 40 84 45 54

49 56 119 63 135 72 81

Input fmap Filter

Pixel 1 - Res Pixel 2 - Res Pixel 3 - Res

Pixel 4 - Res Pixel 5 - Res Pixel 6 - Res

Pixel 7 - Res Pixel 8 - Res Pixel 9 - Res

Output fmap
(gray locations are cropped)

c)
Figure 1. An example: a) the inputs; b) step 1; c) step 2; d) step 3.

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

 2 4 6

 8 10 12

 14 16 18

 3 6 9

 12 15 18

 21 24 27

4 8 12

16 20 24

28 32 36

 5 10 15

 20 25 30

 35 40 45

 6 12 18

 24 30 36

 42 48 54

7 14 21

28 35 42

49 56 63

 8 16 24

 32 40 48

 56 63 72

 9 18 27

 36 45 54

 63 72 81

1 2 5 4 9 6 9

4 5 14 10 24 15 18

11 16 40 26 60 36 45

16 20 44 25 54 30 36

35 46 100 56 120 66 81

28 35 74 40 84 45 54

49 56 119 63 135 72 81

Input fmap Filter

Pixel 1 - Res Pixel 2 - Res Pixel 3 - Res

Pixel 4 - Res Pixel 5 - Res Pixel 6 - Res

Pixel 7 - Res Pixel 8 - Res Pixel 9 - Res

Output fmap
(gray locations are cropped)

d)

1: for (unsigned int i = 0; i < k; i++) {

2: for (unsigned int j = 0; j < k; j++) {

3: #pragma HLS PIPELINE II=1

4: filt[i][j]=filter.read();

5: for (unsigned int r = 0; r < H; r++) {

6: for (unsigned int c = 0; c < W; c++) {

7: #pragma HLS PIPELINE II=1

8: Pix=InIm.read();

9: for (unsigned int i = 0; i < k; i++) {

10: for (unsigned int j = 0; j < k; j++) {

11: // Multiply the generic pixel by the filter

12: Prods[i][j]=Pix*filt[i][j];

13: // Store the products to be reused for the column overlap

14: if (j >= S)

15: CBuff[i][j−S]=Prods[i][j];

16 // Sum up overlapped columns

17: if (j<k−S)

18: if (c==0)

19: SumCol [i][j]=Prods [i][j];

20: else SumCol[i][j]=Prods [i][j]+CBuff[i][j];

21: else SumCol[i][j]=Prods[i][j];

22: // Store the results to be reused for the row overlap

23: if (i>=S) {

24: if (j<S)

25: RBuff[i-S][j][c]=SumCol[i][j];

26: }

27: //Sum up overlapping rows

28: if (i < k-S) {

29: if (j < S) {

30: if (r == 0)

31: SumRow[i][j]=SumCol [i][j];

32: else SumRow[i][j]=SumCol[i][j]+RBuff[i][j][c];

33: }

34: }

35: else SumRow [i][j]=SumCol [i][j];

36: // Map the results to the output space

37: for (unsigned int i = 0; i < S; i++) {

38: for (unsigned int j = 0; j < S; j++) {

39: OBuff[c+i*W+r*S*H].range(16*j+15,16*j)=SumRow[i][j];

40: }

41: }

42: }

43: }

44: }

45: }

Figure 3. The synthesizable C++ code describing the DECONV task.

2Copyright (c) IARIA, 2022. ISBN: 978-1-68558-009-4

CENICS 2022 : The Fifteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

 9 / 20

heterogeneous System-On-Chip (SoC) structured as
schematized in Figure 2. In such an architecture, data to be
processed and produced results are stored in the external
memory. As usually happens, read and write memory
accesses are managed by the memory controller that
communicates directly with the modules responsible for the
management of data transfers, like Direct Memory Access
modules (DMAs), Central DMAs (CDMAs) or Video DMAs
(VDMAs).

From Figure 3, it can be seen that the engine processes
the streams filter and InIm that collect the k×k filter
coefficients and the H×W pixels of the input image,
respectively (lines 1-8). As explained above, the generic
pixel Pix is multiplied by the filter coefficients, thus
providing the block of products Prods (lines 9-12). In order
to properly manage the overlapping columns between
adjacent blocks of products, the 2D array CBuff is exploited
to provisionally store the overlapping products that must be
summed up (lines 13-21) taking into account where the
currently processed pixel is located within the input image.
To correctly treat also the overlapping rows between
adjacent blocks of products, the 3D array RBuff is also used.
Given that the input image is fed in the raster scan order, the
3D data structure is needed to store: the results obtained by
the previous sum of overlapping columns; the results
obtained by the current sum of the overlapping rows; and the
products that are being computed on the next incoming pixel
(lines 22-35). Finally, the results are stored in the output
buffer OBuff (lines 36-45).

It is worth noting that, in order to architecturally
constrain the synthesis result, the C++ code reported in
Figure 3 uses the directive #pragma HLS PIPELINE II=1
several times to introduce pipelining with an Initiation
Interval (II) equal to 1. The latter ensures that a new input is
read at each clock cycle, thus allowing the incoming data and
the produced results to be continuously streamed-in and
streamed-out.

The above C++ code has been successfully simulated and
synthesized using the Vivado HLS 2019.2 CAD tool. Several
functional tests have been performed referring to 8-bit
unsigned input images and 8-bit signed filters with different
image and kernel sizes.

TABLE I. POST-SYNTHESIS RESULTS

Chip XC7Z020-clg484-1

k S H×W, HO×WO Tclk [ns] fps #BRAMs #LUTs #FFs

3 2

64×64, 128×128 7.81 4878 18 1648 741

128×128, 256×256 7.81 1219 66 1674 756

256×256, 512×512 7.81 304 258 1729 771

5 2

64×64, 128×128 7.81 4878 20 2256 1105

128×128, 256×256 7.81 1219 68 2282 1122

256×256, 512×512 7.81 304 260 2307 1139

5 4
64×64, 256×256 7.85 840 68 2862 795

128×128, 512×512 7.85 210 260 2887 817

Chip XC7VX980tffg1930-1

5 4 256×256, 1024×1024 8.24 53 1028 2917 641

7 4 256×256, 1024×1024 8.01 37 1036 5132 1230

Some post-synthesis results obtained with the XC7Z020-

clg484-1 and the XC7VX980tffg1930-1 devices for various

image and filter sizes and strides are summarized in Table 1.
The latter shows how the speed performances, achieved in
terms of clock period (Tclk) and number of frames produced
per second (fps), and the hardware resources requirements,
represented in terms of occupied Lookup Tables (LUTs),
Flip-Flops (FFs) and on chip 18Kb Blocks RAM (BRAMs),
change with k, S, H×W and HO×WO.

Obtained results clearly demonstrate that, while the stride
S and the output image size HO×WO directly affect the
amount of utilized BRAMs, the filter size k×k impacts on the
amount of occupied LUTs and FFs. It can also be observed
that the achieved frame rate strictly depends on H×W, which
determine how many clock cycles are required to process all
the input pixels. Figure 4 plots the number of clock cycles
required at various input image size when the stride is set to
2 and the filter size varies from 2 to 4. As expected, the
number of clock cycles varies with the image size.

From Table 1, it can also be seen that, due to the limited
amount of available BRAMs, the XC7Z020 chip is
unsuitable to host the DECONV engine when 256×256
images must be up-sampled to the 1024×1024 resolution
(i.e., S=4). For this reason, a different platform has been
chosen to synthesize and characterize the proposed
architecture in this operating condition. Obtained results
confirm the behavior previously discussed.

IV. FUTURE WORKS

It is worth noting that the design presented in the
previous Section is the preliminary version of a DECONV
engine, which is intended to be used within DCNNs to
implement DECONV Layers (DCLs). This means that the
deconvolution operation is being performed on M input
images (named ifmaps) using N different M×k×k filters, thus
furnishing N output images (named ofmaps), each obtained
by accumulating M intermediate ofmaps in a pixel-wise
manner.

Taking this into account, for future works, the
architecture above described and characterized will be
improved to employ a proper accumulation logic as
schematized in Figure 5. Moreover, an adequate level of
parallelism will be introduced to process multiple ifmaps
contemporaneously. Generally speaking, a DCL can be made
able to perform multiple deconvolutions in parallel, thus
producing OM intermediate ofmaps contemporaneously. A

H=W

Figure 4. Number of clock cycles versus the input image size.

3Copyright (c) IARIA, 2022. ISBN: 978-1-68558-009-4

CENICS 2022 : The Fifteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

 10 / 20

certain parallelism may be exploited also at the pixel-level to
process multiple pixels of the same ifmap at the same time. It
is expected that this capability will be introduced by
exploiting the Single Instruction Multiple Data (SIMD)
paradigm.

Finally, on the basis of the desired behavior other
directives and pragmas will be used to use available
resources more efficiently, for example including the Digital
Signal Processors (DSPs). Obviously, this will further
improve the achieve speed performances.

V. CONCLUSION

This paper presented a deconvolution engine designed
using the high-level synthesis approach. In contrast to state-
of-the-art designs proposed in literature, the description
proposed here avoids specific realization platform-
dependency, thus being suitable to be implemented
efficiently in different realization platforms. The
synthesizable C++ description here described has been
characterized at different input and output image sizes,
referring to various stride and kernel sizes. Some post-
synthesis results have been presented referring to the
XC7Z020 low-end device. Then, due to the increasing
demand of on-chip memory resources, with the output image
being up-sampled to the 1024×1024 resolution, a more
expensive chip has been required. Due to its platform
independency, the presented code can be synthesized also
within different devices families. For future works, the
proposed deconvolution engine can be improved to be used
within DCNNs and to introduce proper level of parallelism at
both frame- and pixel-level.

ACKNOWLEDGMENTS

This work was supported by: “POR Calabria FSE/FESR
2014-2020 – International Mobility of PhD students and
research grants/type A Researchers” – Actions 10.5.6 and
10.5.12 actuated by Regione Calabria, Italy; The
Engineering and Physical Research Council: HAFLANG
(EP/W009447/1); Border Patrol (EP/N028201/1); Serious
Coding (EP/T017511/1).

REFERENCES

[1] I. J. Goodfellow et al., “Generative adversarial nets,” in Proc.
of the 27th International Conference on Neural Information
Processing Systems—Volume 2, Montreal, QC, Canada, 8–13
Dec. 2014, pp. 2672–2680.

[2] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-
Martinez, and J. Garcia Rodriguez, “A review on deep
learning techniques for image and video semantic
segmentation,” Appl. Soft Comput., vol. 70, pp. 41–65, 2018.

[3] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-
resolution using deep convolutional networks,” IEEE Trans.
Pattern Anal. Mach. Intell.,vol. 38, no. 2, pp. 295–307, 2015.

[4] A. Krizhevsky, I. Sutskever, and G. Hinton, ‘‘ImageNet
classification with deep convolutional neural networks,’’ in
Proc. Neural Inf. Process. Syst. Conf. (NIPS), 2012, pp.
1097–1105.

[5] C. Szegedy et al., “Going deeper with convolutions,” in Proc.
IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), Boston (MA), USA, 2015, pp. 1-9.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual
Learning for Image Recognition,” in Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), Boston
(MA), USA, 2015, pp. 770-778.

[7] K. Simonyan, and A. Zisserman, “Very Deep Convolutional
Networks For Large-Scale Image Recognition,” in Proc. Int.
Conf. on Learning Representations (ICLR), San Diego (CA),
USA, 2015, pp. 1-14.

[8] A. Radford. L. Metz and S. Chintala, “Unsupervised
Representation Learning with Deep Convolutional Generative
Adversarial Networks,” in Proc. 4th Int. Conf. on Learning
Representations (ICLR 2016), San Juan, Puerto Rico, May
2016.

[9] Y. Yu, T. Zhao, M. Wang, K. Wang, and L. He, “Uni-OPU:
An FPGA-Based Uniform Accelerator for Convolutional and
Transposed Convolutional Networks,” IEEE Trans. VLSI
Syst., vol. 28, no. 7, pp. 1545–1556, 2020.

[10] V. Dumoulin, and F. Visin, “A Guide to Convolution
Arithmetic for Deep Learning,” [Online; Retrieved: Jul, 2022]
Available: https://arxiv.org/abs/1603.07285.

[11] D. Wang, J. Shen, M. Wen, and C. Zhang, “Efficient
Implementation of 2D and 3D Sparse Deconvolutional Neural
Networks with a Uniform Architecture on FPGAs,”
Electronics, vol. 8, no. 7, pp. 1–13, 2019.

[12] S. Liu, H. Fan, X. Niu, H. C. Ng, Y. Chu, and W. Luk, “
Optimizing CNN-based Segmentation with Deeply
Customized Convolutional and Deconvolutional Architectures
on FPGA,” ACM Trans. Rec. Technol. Syst., vol. 11, no. 3,
pp. 1–22, 2018.

[13] S. Liu, C. Zeng, H. Fan, H. C. Ng, J. Meng, and W. Luk,
“Memory-Efficient Architecture for Accelerating Generative
Networks on FPGAs,” in Proc. of the IEEE International
Conference on Field Programmable Technology, Naha,
Okinawa, Japan, 10–14 Dec. 2018, pp. 33–40.

[14] S. Liu, and W. Luk, “Towards an Efficient Accelerator for
DNN-Based Remote Sensing Image Segmentation on
FPGAs,” in Proc. of the 29th International Conference on
Field Programmable Logic and Applications, Barcelona,
Spain, 9–13 September, 2019; pp. 187–193.

[15] J. W. Chang, and S. J. Kang, “Optimizing FPGA-based
convolutional neural networks accelerator for image super-
resolution,” in Proc. of the 23rd Asia and South Pacific
Design Automation Conference, Jeju, South Korea, 22–25
January 2018, pp. 343–348.

[16] J. W. Chang, K. W. Kang, and S. J. Kang, “An Energy-
Efficient FPGA-Based Deconvolutional Neural Networks
Accelerator for Single Image Super-Resolution,” IEEE Trans.
Circ. Sys. Video Technol., vol. 30, no. 1, pp. 281–295, 2020.

[17] S. Perri, C. Sestito, F. Spagnolo, and P. Corsonello, “Efficient
Deconvolution Architecture for Heterogeneous Systems-on-
Chip,” Journal of Imaging, vol. 6, no. 9, pp. 1-17, 2020.

[18] C. Sestito, F. Spagnolo, and S. Perri, “Design of Flexible
Hardware Accelerators for Image Convolutions and
Transposed Convolutions,” Journal of Imaging, vol. 7, no. 10,
pp. 1-16, 2021.

[19] X. Di, H. G. Yang, Y. Jia, Z. Huang, and N. Mao, “Exploring
Efficient Acceleration Architecture for Winograd-
Transformed Transposed Convolution of GANs on FPGAs,”
Electronics, vol. 9, no. 2, pp. 1–21, 2020.

Deconvolution

Engine
ifmaps Accumulation

Logic

Intermediate
ofmaps

ofmaps

Figure 5. A possible DECONV layer architecture.

4Copyright (c) IARIA, 2022. ISBN: 978-1-68558-009-4

CENICS 2022 : The Fifteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

 11 / 20

Processing Speed Impact of the Pipeline-Length
on a Custom RISC-V CPU for FPGAs

Julian Weihe, Timm Bostelmann and Sergei Sawitzki

FH Wedel (University of Applied Sciences)
Wedel, Germany

Email: {inf104808,bos,saw}@fh-wedel.de

Abstract—To achieve a higher processing speed of a Central
Processing Unit (CPU), a higher clock frequency can be used.
Since the underlying circuit is limited by the switching and signal
runtimes, pipeline stages are installed to divide the signal paths.
Due to the piecewise processing in the stages, the evaluation of
the instruction, which is necessary for the program flow, occurs
too late. An example of this are jump instructions in which
the target address is not determined until new instructions have
already been read. As a result, instructions have to be discarded
or the evaluation has to be delayed. This leads to a reduced
processing speed and a dependency on the program code. This
work shows the difference between a two- and a five-stage CPU
with CoreMark. For this purpose, two simple Reduced Instruction
Set Computer generation five (RISC-V) CPUs with the instruction
set rv32i were compared. At the same clock frequency, the two-
stage CPU processes 21.358 % more instructions per time than the
five-stage CPU, which is slowed down by the pipeline structure.
However, a 69.851 % higher clock frequency is possible with the
five-stage CPU, which leads to a 39.969 % higher CoreMark score.

Keywords–CPU; FPGA; RISC-V; Pipeline; CoreMark.

I. INTRODUCTION
With RISC-V, an Instruction Set Architecture (ISA) has

been developed which, due to its open licensing model, allows
modifications and extensions to the underlying hardware. The
architecture is particularly widespread in embedded systems
and microcontrollers and is also used by companies, such
as Seagate, Western Digital Corp. or Espressif Systems Corp
[1]. A RISC-V CPU can either be obtained pre-built from
companies, such as SiFive Inc. or created by the developer [2].
It is precisely the expandability through, as an example, new
instructions that makes the development of one’s own CPU
attractive [3].

The instructions of the ISA must be appropriately con-
verted into hardware when creating a microprocessor with a
RISC-V CPU. Since clock speeds and structure depend on
the underlying hardware, there is some room for development
here. The basic structure of a microprocessor with memory,
registers, Arithmetic Logic Unit (ALU) and Program Counter
(PC) is always quite similar. However, the interconnection of
the components is not trivial and influences runtimes and the
size of the design. The execution speed is directly related to
the clock used for the CPU. The clock applied to increase
performance is limited by the runtimes of the signals and gates.
To reduce these, pipeline stages are built into the CPU. The
synchronous memories save intermediate results from partial
calculations and thus shorten the critical path [4].

In this paper, the performance of a two-stage CPU is
compared with a five-stage CPU using CoreMark [5]. The
number of instructions per time is compared with the increased
clock rate of the five-stage pipeline CPU. In addition, the
space requirements resulting from the further pipeline stages
are also discussed. The development and benchmark of the two
designs was implemented on a Field Programmable Gate Array
(FPGA). In contrast to other works, which compare complete
existing processor designs in different aspects [6][7], here only
the effect of the actual number of the two analysed pipeline
stages is considered.

In Section II, the basics for implementation and evaluation
are described. The RISC-V ISA is described in more detail, as
it directly influences the design. The CoreMark benchmark
is also briefly introduced. Section III describes the imple-
mentation of the two CPUs, as well as the compilation of
the programme code. The performance losses due to a longer
pipeline are also shown here. Section IV compares the results
of the two CPUs. As described, space requirements, maximum
clock and scores determined by the benchmark are analysed
and discussed. Finally, Section V provides a summary of this
work and an outlook on further comparisons and analyses.

II. BACKGROUND
The RISC-V ISA provides a compiler for instructions

with an instruction width of 32, 64 and 128 bit. In addi-
tion, extensions can be added which, for example, support
hardware-supported calculation with floating point values. The
list of instructions given by the ISA must be implemented
in the hardware. They are roughly divided into logical and
arithmetic, load and store and conditional or unconditional
jump operations. The instructions determine the structure of
the hardware. Modules, such as the logical and arithmetic
operations are combined in ALU, the comparator for the
conditional jumps or the memory address calculation provide a
relatively strict specification for implementation. Also decisive
for the compiler are the firmly defined 32 registers, as well as
the byte-addressable memory access [8].

A benchmark is used to compare the performance of the
two CPUs. There are only a few popular benchmarks for
embedded systems [9]. In each of them, different functions
are performed to measure performance. In Whetstone, the
focus is on floating point computation. But especially in small
systems often no explicit hardware is implemented for this
and therefore it is not used in this project. Also Dhrystone, for
example, uses the c standard library with functions for mem-
ory management, which cannot always be fully implemented

5Copyright (c) IARIA, 2022. ISBN: 978-1-68558-009-4

CENICS 2022 : The Fifteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

 12 / 20

rs1_addr rs1_data rs2_data

rs1_data

imm

imm

imm

pc

pc

op_l

imm

instr

rd_addr rd_addrrs1_addr, rs2_addr, rd_addr

IF/ID/EX MA/WB

pcpc

pc_next

rs2_addr rs2_data

alu_res alu_res

jmp_addrj
m
p
_
a
d
d
r

addr

jmp

j
m
p

op_r

i
n
s
t
r
_
r
a
w

rd_addr

rd_data

Reg
Mem
Data

Mem
Instr

Alu

Comp

sext

M
u
x

M
u
x

M
u
x

M
u
x

Decode_imm

Decode_instr

data

m
e
m
_
d
a
t
a

+4
M
u
x

rs1_addr rs1_data rs2_data

rs1_data

imm

imm

imm

pc

pc

op_l

imm

instr

rd_addr rd_addrrs1_addr, rs2_addr, rd_addr

IDIF EX MA WB

pc

pc

pc_next

rs2_addr rs2_data

alu_res alu_res

jmp_addrj
m
p
_
a
d
d
r

addr

jmp

j
m
p

op_r

i
n
s
t
r
_
r
a
w

rd_addr

rd_data

Reg
Mem
Data

Mem
Instr

Alu

Comp

sext

M
u
x

M
u
x

M
u
x

M
u
x

M
u
x

Decode_imm

Decode_instr

data

m
e
m
_
d
a
t
a

+4

Figure 1. Structure of the implemented five-stage CPU (A) and the two-stage CPU (B).

due to the memory size [9]. For these reasons, the bench-
mark CoreMark developed by the company EDN Embedded
Microprocessor Benchmark Consortium (EEMBC) was used.
The focus here is on list processing, matrix operations, state
machines, and Cyclic Redundancy Check (CRC) calculations
[10]. The integration is done without dependencies of other
libraries. Regarding the hardware, there are only two require-
ments. A timer must be integrated for time recording and a
communication interface must be implemented to export the
results. To use CoreMark with custom hardware, the timer and
communication interface must be implemented by the design
and made available through functions. The result is output via
the serial communication interface after the benchmark has
been executed [11].

III. IMPLEMENTATION
The implementation section is divided into four subsec-

tions. First, the development environment and conditions are
presented. This is followed by an outline of the similarities
and then the differences between the two implimented CPUs.
Finally, the design decisions that lead to performance losses
in the five-stage CPU are described.

A. Environment
The development and benchmark was done on an Intel Cy-

clone 10LP 10CL025 FPGA. The clock frequency is generated
via the FPGA integrated Phase Locked Loop (PLL). These
are set at synthesis time. The carrier board of the FPGA also
provides a standard clock of 12.000 MHz. Synthesis and timing
analyses are provided by the software Quartus Prime v.20.1.0.
The prebuild tools published by Sifive in December 2020 were
used to compile the benchmark software [12]. The optimisation
-O1, as well as selected features, were added to the compiler
call. The same compilation was used for all benchmarks.

B. Uniform structures
Structurally, the design consists of the CPU and the mem-

ory connected to it. The memory is divided into a common
program and data memory and a peripheral area that provides
Input Output (IO), timer and a serial communication interface
used by CoreMark. For the simplicity of the system, no
external memory is connected. Program and data memory are
located on the integrated memory blocks of the FPGA. The
access to the M9K memory blocks can be done in the used
FPGA with a maximum frequency of 200 MHz [13]. As the
memory blocks do not support the byte addressing required

6Copyright (c) IARIA, 2022. ISBN: 978-1-68558-009-4

CENICS 2022 : The Fifteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

 13 / 20

IF

#2 #1

#3 (jmp) #2 #1

#E1 #3 (jmp) #2 #1

#E2 #E1 #3 (jmp) #2 #1

#3 (jmp) #2

#3 (jmp)#4

ID EX MA WB

#5 #4

Figure 2. Instruction processing with jump delay.

by the ISA, this is realised by interconnecting four separate
byte blocks. Here, the last two bits determine the reading
order of the four memory blocks. The memory is identical
in both implementations of the microprocessor, so changes in
performance are due to differences in the CPU.

Two microprocessors were developed for the comparison.
Both implement the instruction set rv32i and differ mainly in
the pipeline structure. The structure of both implementation are
shown in Figure 1. Since this is a fully synchronous design,
the clock connection of storing elements has been omitted
for a better overview. Likewise, from decoding on, the signal
instr is not displayed in the further stages, because it is used
in almost all places. The pipeline stages are named above
the respective design and are described in more detail in the
following paragraph. The different stages are separated from
each other with synchronous memory blocks represented by
the red narrow blocks. In contrast the grey block in the middle
of B corresponds to a strictly logical linkage and serves the
purpose of clarity.

C. Five-stage vs. two-stage structure
In the five-stage pipeline CPU, certain tasks are calcu-

lated in each stage. In the Instruction Fetch (IF) stage, the
instructions are read from the memory at the address of the
programme counter. In the next step, the Instruction Decode
(ID) stage is responsible for analysing the command. Operators
from the registers are also loaded here. In the following stage
Execute (EX), arithmetic, logical and comparison operations
are carried out. In addition, the memory address for the
memory access and possible jump addresses are calculated. In
the next stage Memory Access (MA), write and read accesses
to the memory take place. Read signed values are also adjusted
to the 32 bit data width. Finally, in the Write Back (WB) stage,
the results are written back to the registers.

The two-stage pipeline CPU merges the stages IF, ID and
EX and is no longer separated by memory stages. Similarly,
the separation of MA and WB has been dropped. Because of
the data memory, which writes the address and data to the
memory, two stages are also necessary here. The functionality
of the pipeline stages are implemented as in the five-stage
CPU. The designs differ only in the pipeline memory blocks
and the complexity of the multiplexers.

D. Disadvantages of pipeline stages
Due to the reduced signal paths in the five-stage CPU, an

increased possible clock frequency can be expected. However,
the pipeline stages in particular lead to performance losses
due to jumps. Figure 2 shows an example of the instructions
in the pipeline stages during a jump. The pipeline stages are
displayed vertically and show in each new row the instructions

IF

#3

#2 (lw)

#1

#4

#4

#3 #1

#4

#3

#3

#3

#3

#4

#4

#2 (lw)

#2 (lw) #1

#2 (lw)

ID EX MA WB

Figure 3. Instruction processing with memory read dependencies.

in the respective stage to the corresponding clock cycle. The
#1 and #2 instruction are fully executed, but the #3 instruction
is a jump, which is only detected in the execution phase.
The previous misread #Ex instructions are discarded. After the
executed jump, the instructions continue to be read sequentially
as normal. The late evaluation of the instruction in the EX
stage leads to further instructions being read by mistake at first.
Since these must be ignored, a gap is created at this point so
that the pipeline is not fully utilised. This has the consequence
that three instructions are lost per jump instruction.

In the programme sequence, successive calculations can
occur on the same register. This would lead to waiting with
the following calculation until the result was written back to
the WB stage. To speed this up, separate returning connections
have been added [4]. The target register corresponds to the one
in the MA stage. In the 5-stage pipeline CPU, this affects the
results of the ALU operation in the MA and the write back
data result of the WB stage. Read operations from memory
require another clock cycle before the result can be returned.
Therefore, in the sequence, an empty instruction is inserted if
the register addresses match, thus delaying the execution by
one clock cycle. This is shown in Figure 3. The instruction
#3 coming after the memory-reading instruction #2 needs the
memory value as an operand. Since the memory access is
only available one clock cycle later, a stalling instruction is
inserted. If instruction #3 is now applied in the EX stage,
the memory value from the WB stage is used. In the design,
the returns of the data lines in Figure 1 are recognisable
by the pink connections. The two-stage microprocessor has
no waiting cycle after a read memory access due to the
deliberate reduction of the pipeline stages. This increases the
corresponding signal runtimes here.

IV. RESULTS
The evaluation first looks at the performance determined by

the benchmark. Then the space requirements of the respective
implementation are analysed.

A. Runtime analysis
Both CPUs are not able to perform floating point calcu-

lations. Therefore, the ticks determined after the benchmark
must be converted into a score for the run. The conversion is
shown below.

ScoreIterations / Sec =
Iterations · Frequence

TicksTotal
(1)

The score of the benchmark describes the number of iter-
ations per second. At compile time, the number of completed
runs was transferred via parameters. In this case, a total
measurement of 200 runs was taken. After the benchmark is
finished, the number of ticks required for execution is output.

7Copyright (c) IARIA, 2022. ISBN: 978-1-68558-009-4

CENICS 2022 : The Fifteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

 14 / 20

TABLE I. COREMARK SCORES OF THE TWO MICROPROCESSORS WITH
THE SAME AND RESPECTIVE MAXIMUM CLOCK.

Stages Frequence / MHz Iterations Ticks Score
2 12.000 200 203629411 11,786
2 39.670 200 203629411 38,963

5 12.000 200 247103108 9,7125
5 67.380 200 247103108 54,536

The score can be calculated from this. The results are shown
in Table I.

The series of measurements begins with a synthesis at the
same clock rate of 12.000 MHz for both microprocessors. It
can be seen that the two-stage CPU with 203 629 411 ticks
needs less time to run the benchmark than the five-stage
CPU with 247 103 108 ticks. This is also visible in the corre-
spondingly higher score. The two-stage CPU works faster by
21.358 % due to the jumps and also the delays caused by the
dependencies of successive instructions with memory accesses.

After synthesis, a time analysis is performed. The devel-
opment tool provides a maximum clock that may be applied
to the circuit. Here, the advantage of the pipeline structure
becomes apparent. Whereas the two-stage CPU may clock at
a maximum of 39.670 MHz, the maximum clock for the five-
stage pipeline CPU is 67.380 MHz, which is 69.851 % higher.
With the maximum clocks determined for each microprocessor,
a score is calculated again. Although the two-stage pipeline
CPU has a higher score at the same clock frequency, the
higher clock frequency of the five-stage pipeline CPU leads
to a higher score, overall.

From a performance point of view, the increased clock
rate due to the pipeline stages is an improvement. However,
it should be noted that the function from the benchmark was
executed. Since jumps in particular lead to performance losses,
it cannot be said in general how efficiently the CPU calculates
with the pipeline stages. A compiled program with more
jumps, for example, would also perform worse in this respect.
It always depends on the application and the compilation.

B. Space analysis
In addition to the execution speed, the occupied area on

the semiconductor or FPGA is a decisive point, especially for
small embedded systems. Table II shows the demand for logic
elements and registers of the two implemented designs. This
includes, for example, the program and data memory as well
as their overlying byte addressing. However, since both im-
plementations use identical assemblies for the implementation
of the logic, the difference in number is due to the pipeline
structure.

In Table II, two syntheses with different optimisation
levels have been carried out in each case. The benchmark
values determined in Table I always refer to the performance
optimisation. As expected, the additional logic through the
pipeline requires more logic elements as well as registers.

V. CONCLUSION
In this work, the effect of different numbers of pipeline

stages on their performance and space requirements was in-
vestigated. It shows that the number of instructions per time
decreases with a five-stage CPU, but a higher clock rate is
possible. This increases the performance and in this case

TABLE II. ASSIGNMENT OF LOGIC ELEMENTS AND REGISTERS BY THE
RESPECTIVE IMPLEMENTATION OF THE MICROPROCESSOR.

Stages Optimization mode Logic Elements Register
2 Balanced 4566 1344
2 Performance 4769 1577

5 Balanced 4821 1670
5 Performance 5009 1833

ultimately works faster than a CPU with two pipeline stages.
The space requirement increases with an increasing number of
pipeline stages because of the additional logic.

In the end, the application determines the choice between
the number of stages. If the application requires the fastest
possible execution, a five-stage pipeline CPU is more recom-
mended. But especially when it comes to small embedded
systems or the application is not time-critical, the space re-
quirement can also be decisive. Another advantage of the two-
stage CPU designed in this work is the guaranteed execution
of instructions, which does not depend on the program code.

Further analysis is needed to more accurately assess the
efficiency of pipeline stages. In the context of this work, a jump
prediction logic was explicitly omitted. Likewise, the memory
is directly connected and does not depend on a cache structure.
This must be taken into account for the implementation in real
systems.

REFERENCES
[1] “Esp32-c3,” https://espressif.com/en/products/socs/esp32-c3, Espressif

Inc., accessed: 2022-07-03.
[2] “Sifive processors,” https://www.sifive.com/risc-v-core-ip, SiFive Inc.,

accessed: 2022-07-12.
[3] J. Hsu, “RISC-V star rises among chip developers worldwide,”

https://spectrum.ieee.org/riscv-rises-among-chip-developers-worldwide,
April 2021, accessed: 2022-07-12.

[4] H. Miyazaki, T. Kanamori, M. A. Islam, and K. Kise, “RVCoreP:
An optimized RISC-V soft processor of five-stage pipelining,” IEICE
Transactions on Information and Systems, vol. 103, no. 12, 2020, pp.
2494–2503.

[5] “Coremark,” https://www.eembc.org/coremark/, EEMBC, accessed:
2022-07-03.

[6] A. Dörflinger et al., “A comparative survey of open-source application-
class RISC-V processor implementations,” in Proceedings of the 18th
ACM International Conference on Computing Frontiers, 2021, pp. 12–
20.

[7] P. D. Schiavone et al., “Slow and steady wins the race? a comparison
of ultra-low-power RISC-V cores for internet-of-things applications,” in
2017 27th International Symposium on Power and Timing Modeling,
Optimization and Simulation (PATMOS). IEEE, 2017, pp. 1–8.

[8] K. A. Andrew Waterman, “The RISC-V instruction set manual,”
https://riscv.org, January 2021, accessed: 2021-12-18.

[9] P. K. Krause, “Stdcbench: A benchmark for small systems,” in Proceed-
ings of the 21st International Workshop on Software and Compilers for
Embedded Systems, 2018, pp. 43–46.

[10] S. Gal-On and M. Levy, “Exploring coremark
a benchmark maximizing simplicity and efficacy,”
https://www.eembc.org/techlit/articles/coremark-whitepaper.pdf, 2012,
accessed: 2022-07-03.

[11] eembc, “coremark,” https://github.com/eembc/coremark, GitHub, ac-
cessed: 2022-03-01.

[12] sifive, “freedom-tools,” https://github.com/sifive/freedom-tools, GitHub,
accessed: 2022-03-07.

[13] “Intel cyclone 10 lp device datasheet,”
https://cdrdv2.intel.com/v1/dl/getContent/666518?fileName=c10lp-
51002-683251-666518.pdf, Intel Corp., 2018, accessed: 2022-06-15.

8Copyright (c) IARIA, 2022. ISBN: 978-1-68558-009-4

CENICS 2022 : The Fifteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

 15 / 20

Design of Novel Integrated Data Acquisition System for Multi-Channel Sensing in

Landing Gear

Esteve Hassan

Sensor Systems and Internet of Things (IoT)

Centre Mohawk College

Hamilton (ON), Canada

esteve.hassan@mohawkcollege.ca

Abstract— In this paper, it is intended to describe the design

process, planning, and development of a new Data Logger System

(DLS) that can be potentially used in acquiring sensor signals in

the landing gear of aircraft. This paper is presenting the new

concept and development process of the DLS that employs a

novel low-power pulse mode circuit structure. It outlines the

overview of the sensor acquisition system and manufacturing of

the DLS housing to fit the partner's requirements. The conducted

work is broken down into several phases, these include

conceptual design, development, production, and testing.

Keywords—data acquisition; low power; multi-channel

sensing; landing gear.

I. INTRODUCTION

Timely and accurate detection of aircraft status signals such
as the landing gear is a basic guarantee of its normal operation
and also improves aircraft reliability and reduces potential risks
through taking timely and effective measures [1]-[6].

The proposed DLS in this paper is adopting a novel data
acquisition system to reduce overall system power consumption
and provide an effective 32 multi-channel sensing capability that
outputs signals with varying ranges. To accommodate the
different parts of the DLS including power management and
data processing, a modular housing design is being used to meet
the requirements of a rigid system that can withstand the harsh
environment in aircraft landing gear and provide flexible testing
accessibility. The new design is addressing a major sensing
data challenge in the aviation industry which required a
reliable and sustainable system that runs effectively under
severe environmental flying conditions. A new low-power
strategy was adopted in our design based on power sampling
for sensor array which allows the integration of additional
sensors without complicating overall system development.

Section II is outlining the system design overview. The
description of the new development will be presented in
section IV. The structure design is given in section V, whereas
the design verification and testing results are presented in
section VI.

II. DESIGN OVERVIEW

The system design requirements obtained from the industry
partner are summarized in Table I. The desired low average
current could only be achieved by implementing a high-speed
configuration that would complete all the action in a small
fraction of the sampling period, remaining in sleep mode the
rest of the time. This ratio (active/sleep) determines how much
is comparatively high active mode consumption reduced to an
acceptable low average.

That means, all the procedures (sampling, A/D conversion,
and memory update) should be as short, as only possible
compared to the sampling period. The description of the system,
designed to meet these requirements follows.

To provide the shortest available sampling time, along with
minimum power loss, no voltage regulator has been used to
power the sensor circuitry (due to long power on/off time). The
sensors are powered dynamically (with exponentially rising
voltage); A high-speed comparator disconnects the sampling
keys from the set of sampling capacitors when the sensor driving
voltage achieves the threshold. It is assumed, that the response
of the sensor is linear related to driving voltage. To avoid errors
related to sensor output impedance, the signals from sensors are
applied via buffer amplifiers as seen in the system diagram
presented in Figure 1.

The maximum slew rate of sensor driving voltage is
limited by the slew rate of buffering amps that could be as
high as 2V/us. To avoid errors, related to the response time of
the comparator, the driving voltage is also sampled, providing
the possibility for further software correction.

Figure. 1. Data acquisition system diagram

9Copyright (c) IARIA, 2022. ISBN: 978-1-68558-009-4

CENICS 2022 : The Fifteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

 16 / 20

TABLE I. TO BE DEVELOPED SYSTEM REQUIREMENTS

Number of channels 31

Sampling rate 128 Hz

Battery life (in operation mode) 1800 hrs.

Operation temperature range -40 to +85 C

Overall dimensions minimize

System weight minimize

Typical consumption of the set of
sensors

400 mA @ 5.0 V

Sensor type Passive, resistive

Memory type and size 32 Gb, Flash

Data stored Sensor reading
and time stamp

External interface USB

III. FEASIBILITY ANALYSIS AND SOLUTION APPROACH

Since the system is battery-powered and should provide long
battery life, its power consumption becomes the determining
factor for setting the system structure. The size and weight of the
battery are limited as well, so the available battery of acceptable
size is a pack of 4 cells (3.6 V, 2600 mAh, series-parallel), that
is, 5200 mAh.

Typically, the capacity of the battery is limited by its
discharge to approx. 5.5V is around 60-65% of the total and is
actually 3120-3380 mAh. That yields, that the average current
consumption should be within 1.73 -1.88 mA (for 1800 hours
of operation). The desired low average current could only be
achieved if the system is operated in pulse mode, completing all
the necessary actions (A/D conversion, memory interfacing,
etc.) in a small fraction of the sampling period, remaining in
sleep the rest of the time.

The ratio of active/sleep mode of each element of the system
will determine this element’s average current, the sum of these,
being the whole system average current, should be within the
required limit. The second important point is, that the sensors
used have a significantly different range of output signals
(from volts to millivolts) on one hand and that the physical
length of cables might be up to 1-1.5m. This makes the use of
buffer amplifiers on sensors compulsory, to bring the signal

levels to an acceptable range and avoid pickup on signal lines by
providing low output impedance. More to the point, some types
of sensors have differential output, while the common-mode
voltage is high enough – that means, two types of buffering
amplifiers are to be designed.

At the first stage of this work, however, to speed up the
development, it was planned to test the system with
comparatively simple non-inverting amplifiers and imitation of
sensor signals from resistor dividers. After completing the
conversion, the ADC is brought to the full-sleep mode by the
microcontroller, bringing its consumption from 3.3mA in active
mode down to 1uA.

IV. SYSTEM DESCRIPTION

This section will be presenting the design methodology and

data processing control adopted in this work as illustrated by the

following subsections.

A. Measurement Method

In order to provide the shortest possible sampling time, the
sensors are powered dynamically (with exponentially rising
voltage). During this time the keys remain closed, and sensor
voltages are transferred to sample holding capacitors as shown
in Figure 1.

It is assumed, that due to the passive and purely resistive
nature of the sensors, their response is directly proportional to
powering voltage. As soon as the powering voltage is applied to
the inverting input of the high-speed comparator via the divider
to achieve the threshold, the output of the comparator goes low,
opening the keys, thus disconnecting sample holding capacitors
from the signal lines, and at the same time switching off the
sensor power by resetting the flip-flop.

Signal end of conversion (EOFC) is provided to MCU to indicate
that the A/D conversion of the voltages present on sample holding
capacitors may begin. To avoid any errors related to comparator
delay time and threshold variation, the sensor power voltage is
sampled in addition to sensor signals to provide the possibility to
recalculate the obtained readings.

Figure. 2. System timing chart

10Copyright (c) IARIA, 2022. ISBN: 978-1-68558-009-4

CENICS 2022 : The Fifteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

 17 / 20

B. Considerations for A/D conversion

Since the time for the conversion should be minimized,
usage of ADC built-in to the microcontroller is inapplicable in
principle, due to the very long conversion time. The (EOFC)
signal is provided to MCU to indicate that the A/D conversion
of the voltages present on sample holding capacitors may begin.

To achieve acceptable time from the structure depicted in
Figure 1, The voltages, obtained on sampling capacitors, are
applied via 32-to-1 multiplexor to a fast (800ns) ADC. The
output code is a 12-bit parallel, which allows the controller to
get one conversion result in one read instruction. That means,
32 words of data could be obtained in 32us. Additionally, the
ADC used has its in-built clock source and stable reference
voltage (used to provide threshold for comparator) as given in
the system timing chart in Figure 2.

C. Considerations for microcontroller choice

The microcontroller should be able to accept the data from
the ADC without delay and accept and generate all the necessary
control signals without slowing down A/D conversion (that
determines its minimum parallel bus speed). However, stricter
requirement arises out of necessity to transfer the data to external
memory. The data amount for a single transfer is 33 words of
16-bit (32 data and timestamp from RTC). This also requires
choosing the fastest available interfacing to external memory.

V. STRUCTURAL DESIGN

The DLS is designed to be as compact as possible. The
original concept, shown below in Figure 3, incorporates two
separate modules, the Main module, and the Battery-Memory
module.

Figure. 3. DLS structural design

Now that the preliminary battery selection and media storage
selection was performed and know the approximate volume
requirements, a new concept design was proposed. The idea of
the concept is that the battery cell can be removed for charging

and the media storage also can be removed for data download as
shown in Figure 4.

VI. DATA ACQUISITION VERIFICATION AND TESTING RESULTS

To verify the performance of both data logger systems
a number of resistive potentiometers of various ranges were
used as dummy sensors. From a design perspective, the main
focus is to get the dynamic sensors' power circuitry working as
desired and then extract the necessary ADC waveforms and
match them with the device datasheet. Such practice was useful
in debugging and testing to overcome many issues before
getting the system prototype functioning as expected. Figure 5
shows some of the sensors' power and conversion signals,
where obviously they are very comparable with the ones in
Figure 2.

Figure. 4. Actual DLS design with power and data storage

Figure. 5. Dynamic power signals of DLS system-Power unit

11Copyright (c) IARIA, 2022. ISBN: 978-1-68558-009-4

CENICS 2022 : The Fifteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

 18 / 20

A. Integration with Industrial Sensor and Test Results

The next phase of the testing process was to use a real
industrial sensor interfaced to the Design system and use the
developed Graphical Unser Interface (GUI) to monitor and
record the multi-channel sensors' data acquisition via serial
interface, these sensors are:

▪ Thermocouple temperature sensor

▪ Linear Displacement Potentiometer sensor (0-
300mm)

▪ Pressure sensor (5 Ins max)

▪ Load cell strain gauge sensor

An interface board was manufactured with sensors mounted
and all signals and power necessary connections are provided as
shown in Figure 6.

Figure. 6. Industrial sensor system setup using DLS

The DLS system performance was tested and verified using
the sensors interface board and sensors readings were displayed
by the developed GUI. Special single-ended input and
differential amplifiers were designed for low-level sensor
signals, like thermocouples and strain gauge sensors.

The enclosure of the DLS was designed using rapid
prototyping. Figure 7 shows the side and top views of the
designed enclosure where it can be seen the two main units are
attached to fit both the system PCBs and battery.

The main functionality of the developed GUI is to show the
incoming data from the DLS unit. The programming language
used for programming this GUI was Visual Basic.NET from
the Microsoft Visual Studio.NET package. The
communication is done through COM ports and the data is sent
in HEX format in a specific format (frame) which then is read in
GUI and interpreted (parsed). The data is shown in a master
graph for each channel as given in Figure 8 where each
individual graph can be added and associated with specific
given user options that can be set to modify the visual display
of the GUI.

Figure. 7. DLS System enclosure

Figure. 8. Developed GUI to monitor the sensor readings recorded by DLS

system.

B. Measuring DLS power consumption

The average current, consumption by the system is the sum
of all quiescent currents of constantly powered elements (CPU
in sleep mode (max.25uA), comparator (90uA max), flip-flop
(2uA max) and two voltage regulators (2x35=70uA max)), and
the average current of the components powered for a short time.
Using the time chart, the following equation can be obtained :

𝐼𝑎𝑣𝑔 = 187uA +
𝐼𝑎𝑑𝑐𝑇𝑎𝑑𝑐 + 𝐼𝑎𝑚𝑝1𝑇𝑎𝑚𝑝1+𝐼𝑠𝑒𝑛𝑠 + (𝑇𝑎𝑑𝑐 + 𝑇𝑖𝑛𝑡𝑒𝑟𝑓) ∗ 𝐼𝐶𝑃𝑈

𝑇𝑠𝑎𝑚𝑝𝑙𝑒

The equivalent time for sensor activity (under the condition

of powering by constant 5V voltage) is less than 2us. (at 400mA
current)

Then, at Tsample = 7812.5us,

𝐼𝑎𝑣𝑔
= 187uA

+
3.3𝑚𝐴 ∗ 40𝑢𝑠 + 31𝑚𝐴 ∗ 4𝑢𝑠 + 400𝑚𝐴 ∗ 2𝑢𝑠 + (40𝑢𝑠 ∗ 𝑇𝑖𝑛𝑡𝑒𝑟𝑓) ∗ 60𝑚𝐴

7812.5us

12Copyright (c) IARIA, 2022. ISBN: 978-1-68558-009-4

CENICS 2022 : The Fifteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

 19 / 20

= 622uA + 60mA
𝑇𝑖𝑛𝑡𝑒𝑟𝑓

7812.5us

That guarantees, that for interface time that is less than 143us,
the average system current will remain within the limit. At the
same time, if interfacing is fast enough, it is possible to reduce
the speed of the system (for better accuracy and reliability).

The DLS current consumption was measured using in-circuit
metering for two options, with and without pulse-mode
operation concept as shown in Table II.

TABLE II. PEAK CURRENT CONSUMPTION MEASURING OF THE DLS

Operating option Peak current draw (mA)

With Pulse-mode 0.714

Without Pulse-mode 2.26

VII. CONCLUSIONS

In this work, a novel sensor data logging system has been
introduced. The system design is utilizing the pulse-mode
dynamic power concept where output sensors are sampled
through switched capacitors and then sensor power is turned off

to start the ADC process. It was found the system power has
been significantly reduced by more than (3:1) as can be seen in
Table I to meet the requirements of low power consumption
and extended battery lifetime.

The overall DLS design has been placed in a developed
modular housing that incorporated the power source and storage
components. A GUI has been developed to test the system
output signals using industrial-rated sensors.

Planning for future work will be involving future testing
on the sensing side and improving the power consumption
performance. Also, the GUI is to be further developed to
include more features on system-measured parameters.

REFERENCES

[1] D. A. Dudina, V. A. Vasiliev, and E. S. Mandrakov, "Smart Tool for
Tracing Humidity and Temperature of Products During Transportation,"
2021 International Conference on Quality Management, Transport and
Information Security, Information Technologies (IT&QM&IS), 2021, pp.
279-281.

[2] J. Kang, K. Choi, Y. Kim, and H. Yang, "A Method of Integrating
Information for SWIM," 2017 IEEE 13th International Symposium on
Autonomous Decentralized System (ISADS), 2017, pp. 195-198.

[3] S. M. McGovern, and K. F. Chin, "Portable avionics test suite design
and operation," Digital Avionics Systems Conference, 2003. DASC '03.
The 22nd, 2003, pp. 4-7.

[4] L. Leilei, W. Hongxin, X. Yubing, Y. Zhenshan, Y. Chenyi, and Y. Fan,
"Research and development for landing gear test interface unit for one
type aircraft," CSAA/IET International Conference on Aircraft Utility
Systems (AUS 2018), Guiyang, 2018, pp. 216-219.

[5] Delebarre, Grondel, Dupont, Rouvarel, and Yoshida, "Wireless
monitoring system for lightweight aircraft landing gear," 2017
International Conference on Research and Education in Mechatronics
(REM), Wolfenbuettel, Germany, 2017, pp. 1-6.

[6] S. Yang, M. Crisp, R. V. Penty, and I. H. White, "RFID Enabled Health
Monitoring System for Aircraft Landing Gear," in IEEE Journal of Radio
Frequency Identification, vol. 2, no. 3, pp. 159-169, Sept. 2018.

13Copyright (c) IARIA, 2022. ISBN: 978-1-68558-009-4

CENICS 2022 : The Fifteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

Powered by TCPDF (www.tcpdf.org)

 20 / 20

http://www.tcpdf.org

