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CENICS 2022

Forward

The Fifteenth International Conference on Advances in Circuits, Electronics and Micro-electronics
(CENICS 2022), held on October 16-20, 2022, continued a series of events initiated in 2008, capturing the
advances on special circuits, electronics, and micro-electronics on both theory and practice, from
fabrication to applications using these special circuits and systems. The topics covered fundamentals of
design and implementation, techniques for deployment in various applications, and advances in signal
processing.

Innovations in special circuits, electronics and micro-electronics are the key support for a large
spectrum of applications. The conference is focusing on several complementary aspects and targets the
advances in each on it: signal processing and electronics for high speed processing, micro- and nano-
electronics, special electronics for implantable and wearable devices, sensor related electronics focusing
on low energy consumption, and special applications domains of telemedicine and ehealth, bio-systems,
navigation systems, automotive systems, home-oriented electronics, bio-systems, etc. These
applications led to special design and implementation techniques, reconfigurable and self-
reconfigurable devices, and require particular methodologies to be integrated on already existing
Internet-based communications and applications. Special care is required for particular devices intended
to work directly with human body (implantable, wearable, ehealth), or in a human-close environment
(telemedicine, house-oriented, navigation, automotive). The mini-size required by such devices
confronted the scientists with special signal processing requirements.

We take here the opportunity to warmly thank all the members of the CENICS 2022 technical
program committee, as well as all the reviewers. The creation of such a high quality conference program
would not have been possible without their involvement. We also kindly thank all the authors who
dedicated much of their time and effort to contribute to CENICS 2022.

We also thank the members of the CENICS 2022 organizing committee for their help in handling the
logistics and for their work that made this professional meeting a success.

We hope that CENICS 2022 was a successful international forum for the exchange of ideas and
results between academia and industry and to promote further progress in the field of circuits,
electronics and micro-electronics. We also hope that Lisbon provided a pleasant environment during the
conference and everyone saved some time to enjoy the historic charm of the city.
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Abstract—Convolutional and Deconvolutional Neural 

Networks are widespread in several modern computer vision 

applications, such as high-resolution imaging, object 

classification and generation, image segmentation and many 

others. While several efficient hardware architectures are 

known in literature to accelerate the convolution task, the 

design of accelerators for deconvolution is still an open 

problem. The few existing deconvolution engines are 

customized to exploit in the best possible way specific 

hardware resources, thus suffering from platform-dependency 

that certainly allows maximizing speed performances and 

power-resource efficiency, but, on the other hand makes these 

designs unsuitable for the high-level synthesis approach. This 

paper presents a deconvolution structure described in the C++ 

high-level language and then synthesized at the register-

transfer level of abstraction. Results demonstrate that, when 

characterized within the Xilinx XC7VX980tffg1930-1 device, 

the described architecture can up-sample a 256×256 input 

image to the 1024×1024 resolution using less than 3000 LUTs, 

1028 18Kb BRAMs and 640 FFs. The reached 121 MHz 

running frequency guarantees a frame rate higher than 50 fps 

to be achieved. 

Keywords-Hardware accelerators; High-Level Synthesis; 

Deconvolution; Multiply Accumulations; FPGAs. 

I.  INTRODUCTION 

Modern deep learning applications [1]-[3], including 
image segmentation, object generation and high-resolution 
imaging, exploit both Convolutional and Deconvolutional 
Neural Networks (CNNs and DCNNs). The former 
progressively down-sample the digital images received as 
input to extract relevant features, whereas the latter elaborate 
the input images to extrapolate new features. As it is well 
known, Convolution (CONV) and Deconvolution 
(DECONV) are nothing more than Multiply Accumulations 
(MACs) performed on the pixels of the received images and 
the kernel coefficients of k×k filters. However, despite to 
their similarity, while CONV has been extensively used in 
several CNNs, such as AlexNet [4], GoogleNet [5], ResNet 
[6], VGG16 [7], just to cite some of the most popular 
models, DECONV has received a great deal of attention only 
recently: it is an efficient approach to furnish high-resolution 
images and, therefore, it has become the basic operation of 
generative neural networks [8][9]. 

Generally speaking, a DECONV engine receives a low-
resolution H×W image and a k×k filter and produces a high-

resolution Ho×Wo output image. Several approaches can be 
exploited to perform such an operation, each having its own 
pros and cons. As shown in [10], DECONVs can be 
computed by executing classical CONVs. In order to do this, 
with S and P being the adopted stride and padding, 
respectively, the input image is preliminarily strided, by 
interleaving S−1 zeros between each pair of adjacent pixels, 
and padded by inserting P zeros on the borders. The image 
obtained in this way is processed through a classical CONV, 
which is a benefit in terms of design efforts, given that 
engines designed for CONV can be utilized also to perform 
DECONV. However, inserted zeros cause useless zeroed 
MACs and lead to unbalanced workloads. Moreover, the 
input reorganization, required to stride and pad the input 
images, limit the achievable speed performances.  

As an alternative, the technique proposed in [11] directly 
multiplies each input pixel by the filter coefficients, thus 
computing a block of k×k products. In this way, the blocks 
of products related to adjacent pixels are overlapped and, to 
perform DECONV correctly, up to k−S overlapping rows 
and columns must be properly managed, which increases 
both the computational complexity and the delay.  

The designs presented in [12]-[18] improve the above 
approach to implement efficient hardware DECONV engines 
within FPGA-based Systems-on-Chip (SoCs) able to 
accelerate the complex segmentation and the super-
resolution imaging tasks.   

As deeply discussed in [19], also the Winograd algorithm 
can be exploited to perform DECONV. The main benefit of 
this solution is the very high speed achieved, but, as a 
drawback, input images and filters must be preliminarily 
transformed in the Winograd domain, which introduces 
significant resources and power overheads. 

All the previously cited state-of-the-art papers present 
efficient DECONV engines customized to exploit in the 
most efficient way the hardware resources available within a 
specific FPGA device. If on the one hand this choice allows 
speed performances to be maximized, limiting the power 
dissipation and the hardware resources requirements, on the 
other hand it introduces specific realization platform-
dependency, which makes such designs unsuitable for the 
High-Level Synthesis (HLS). The latter allows describing 
complex tasks, like those performed by DCNNs, in a high-
level language (e.g., C/C++) letting the software tool 
automatically provide the description at the Register-
Transfer Level (RTL) of abstraction. The HLS design 
approach offers a precious aid to the users who: 1) must 

1Copyright (c) IARIA, 2022.     ISBN:  978-1-68558-009-4
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comply with limited realization time; 2) are not familiar with 
hardware designs at a low-level of abstraction; 3) desire 
platform-independent portable design descriptions. Indeed, 
HLS tools can access sets of libraries providing several 
classes of synthesizable functions that can be exploited to 
describe complex tasks. Moreover, proper directives and 
pragmas can be used within the description code to 
architecturally constrain the synthesis result. Stimulated by 
these considerations, this paper presents the design of a 
DECONV engine based on the HLS approach. 

The rest of the paper is organized as follows: Section II 
reviews the adopted DECONV method; Section III details 
the synthesizable C++ code, written, verified and synthesized 
with the Xilinx Vivado HLS Tool, and presents post-
synthesis results; future works are briefly described in 
Section IV; finally, conclusions are drawn in Section V.   

II. THE ADOPTED DECONV METHOD 

The proposed DECONV engine implements the Input-
Oriented-Mapping (IOM) strategy [11]. It performs the 
generic computation within three steps: 1) multiply each 
input pixel by the filter coefficients, thus providing a block 
of k×k products; 2) sum up the products belonging to the k–S 
rows (columns) overlapped with adjacent blocks; 3) crop the 

borders of the output image to modulate its size to Ho×Wo, 
as given in (1), where PI and PO are the input and output 
padding, respectively. 

                 (1a) 

          (1b) 
To better explain how the referred method runs, let us 

examine the example reported Figure 1. It refers to the case 
in which H=W=3, k=3, S=2, PI=1, PO=0. Figure 1b shows 
how the 3×3 blocks of products obtained by the step 1 (i.e., 
multiplying each input pixel by the filter) should be arranged 
into the output space. In this case, adjacent bocks have only 
1 overlapping row (column), therefore the accumulations 
performed in the step 2 lead to the 7×7 provisional image of 
Figure 1c. Since the size of the output image obtained by (1) 
is HO=WO=5, the gray borders are cropped in the step 3, thus 
finally producing the output image reported in Figure 1d. 

III. THE SYNTHESIZABLE C++ CODE AND POST-

SYNTHESIS RESULTS 

The synthesizable C++ routine purposely written to 
exploit the HLS design approach has been organized 
assuming that the DECONV engine is the computational 
core of a custom hardware module exploited within a typical 
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d) 

1: for (unsigned int i = 0; i < k; i++) { 

2:      for (unsigned int j = 0; j < k; j++) { 

3:            #pragma HLS PIPELINE II=1 

4:            filt[i][j]=filter.read();           

5: for (unsigned int r = 0; r < H; r++) { 

6:      for (unsigned int c = 0; c < W; c++) { 

7:            #pragma HLS PIPELINE II=1 

8:            Pix=InIm.read();           

9:            for (unsigned int i = 0; i < k; i++) {  

10:  for (unsigned int j = 0; j < k; j++) {  

11:                         // Multiply the generic pixel by the filter 

12:        Prods[i][j]=Pix*filt[i][j]; 

13:                       // Store the products to be reused for the column overlap 

14:        if (j >= S)  

15:           CBuff[i][j−S]=Prods[i][j]; 

16                          // Sum up overlapped columns 

17:        if (j<k−S)   

18:                           if (c==0)  

19:                                SumCol [i][j]=Prods [i][j]; 

20:             else SumCol[i][j]=Prods [i][j]+CBuff[i][j]; 

21:        else SumCol[i][j]=Prods[i][j]; 

22:                      // Store the results to be reused for the row overlap 

23:        if (i>=S) { 

24:                           if (j<S)  

25:               RBuff[i-S][j][c]=SumCol[i][j];  

26:                      } 

27:                      //Sum up overlapping rows  

28:        if (i < k-S) {  

29:            if (j < S) { 

30:                if (r == 0)  

31:                     SumRow[i][j]=SumCol [i][j]; 

32:                 else SumRow[i][j]=SumCol[i][j]+RBuff[i][j][c]; 

33:            } 

34:        } 

35:            else SumRow [i][j]=SumCol [i][j]; 

36:        // Map the results to the output space 

37:        for (unsigned int i = 0; i < S; i++) { 

38:               for (unsigned int j = 0; j < S; j++) { 

39:                  OBuff[c+i*W+r*S*H].range(16*j+15,16*j)=SumRow[i][j];      

40:               } 

41:                       } 

42:   }    

43:             }      

44:        } 

45: } 

Figure 3. The synthesizable C++ code describing the DECONV task. 

2Copyright (c) IARIA, 2022.     ISBN:  978-1-68558-009-4

CENICS 2022 : The Fifteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

                             9 / 20



heterogeneous System-On-Chip (SoC) structured as 
schematized in Figure 2. In such an architecture, data to be 
processed and produced results are stored in the external 
memory. As usually happens, read and write memory 
accesses are managed by the memory controller that 
communicates directly with the modules responsible for the 
management of data transfers, like Direct Memory Access 
modules (DMAs), Central DMAs (CDMAs) or Video DMAs 
(VDMAs). 

From Figure 3, it can be seen that the engine processes 
the streams filter and InIm that collect the k×k filter 
coefficients and the H×W pixels of the input image, 
respectively (lines 1-8). As explained above, the generic 
pixel Pix is multiplied by the filter coefficients, thus 
providing the block of products Prods (lines 9-12). In order 
to properly manage the overlapping columns between 
adjacent blocks of products, the 2D array CBuff is exploited 
to provisionally store the overlapping products that must be 
summed up (lines 13-21) taking into account where the 
currently processed pixel is located within the input image. 
To correctly treat also the overlapping rows between 
adjacent blocks of products, the 3D array RBuff is also used. 
Given that the input image is fed in the raster scan order, the 
3D data structure is needed to store: the results obtained by 
the previous sum of overlapping columns; the results 
obtained by the current sum of the overlapping rows; and the 
products that are being computed on the next incoming pixel 
(lines 22-35). Finally, the results are stored in the output 
buffer OBuff (lines 36-45).  

It is worth noting that, in order to architecturally 
constrain the synthesis result, the C++ code reported in 
Figure 3 uses the directive #pragma HLS PIPELINE II=1 
several times to introduce pipelining with an Initiation 
Interval (II) equal to 1. The latter ensures that a new input is 
read at each clock cycle, thus allowing the incoming data and 
the produced results to be continuously streamed-in and 
streamed-out.  

The above C++ code has been successfully simulated and 
synthesized using the Vivado HLS 2019.2 CAD tool. Several 
functional tests have been performed referring to 8-bit 
unsigned input images and 8-bit signed filters with different 
image and kernel sizes.  

TABLE I.  POST-SYNTHESIS RESULTS 

Chip XC7Z020-clg484-1 

k S H×W, HO×WO Tclk [ns] fps #BRAMs #LUTs #FFs 

3 2 

64×64, 128×128 7.81 4878 18 1648 741 

128×128, 256×256 7.81 1219 66 1674 756 

256×256, 512×512 7.81 304 258 1729 771 

5 2 

64×64, 128×128 7.81 4878 20 2256 1105 

128×128, 256×256 7.81 1219 68 2282 1122 

256×256, 512×512 7.81 304 260 2307 1139 

5 4 
64×64, 256×256 7.85 840 68 2862 795 

128×128, 512×512 7.85 210 260 2887 817 

Chip XC7VX980tffg1930-1 

5 4 256×256, 1024×1024 8.24 53 1028 2917 641 

7 4 256×256, 1024×1024 8.01 37 1036 5132 1230 

 
Some post-synthesis results obtained with the XC7Z020-

clg484-1 and the XC7VX980tffg1930-1 devices for various 

image and filter sizes and strides are summarized in Table 1. 
The latter shows how the speed performances, achieved in 
terms of clock period (Tclk) and number of frames produced 
per second (fps), and the hardware resources requirements, 
represented in terms of occupied Lookup Tables (LUTs), 
Flip-Flops (FFs) and on chip 18Kb Blocks RAM (BRAMs), 
change with k, S, H×W and HO×WO. 

Obtained results clearly demonstrate that, while the stride 
S and the output image size HO×WO directly affect the 
amount of utilized BRAMs, the filter size k×k impacts on the 
amount of occupied LUTs and FFs. It can also be observed 
that the achieved frame rate strictly depends on H×W, which 
determine how many clock cycles are required to process all 
the input pixels. Figure 4 plots the number of clock cycles 
required at various input image size when the stride is set to 
2 and the filter size varies from 2 to 4. As expected, the 
number of clock cycles varies with the image size.  

From Table 1, it can also be seen that, due to the limited 
amount of available BRAMs, the XC7Z020 chip is 
unsuitable to host the DECONV engine when 256×256 
images must be up-sampled to the 1024×1024 resolution 
(i.e., S=4). For this reason, a different platform has been 
chosen to synthesize and characterize the proposed 
architecture in this operating condition. Obtained results 
confirm the behavior previously discussed. 

IV. FUTURE WORKS 

It is worth noting that the design presented in the 
previous Section is the preliminary version of a DECONV 
engine, which is intended to be used within DCNNs to 
implement DECONV Layers (DCLs). This means that the 
deconvolution operation is being performed on M input 
images (named ifmaps) using N different M×k×k filters, thus 
furnishing N output images (named ofmaps), each obtained 
by accumulating M intermediate ofmaps in a pixel-wise 
manner.  

Taking this into account, for future works, the 
architecture above described and characterized will be 
improved to employ a proper accumulation logic as 
schematized in Figure 5. Moreover, an adequate level of 
parallelism will be introduced to process multiple ifmaps 
contemporaneously. Generally speaking, a DCL can be made 
able to perform multiple deconvolutions in parallel, thus 
producing OM intermediate ofmaps contemporaneously. A 

 

H=W 

Figure 4. Number of clock cycles versus the input image size. 
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certain parallelism may be exploited also at the pixel-level to 
process multiple pixels of the same ifmap at the same time. It 
is expected that this capability will be introduced by 
exploiting the Single Instruction Multiple Data (SIMD) 
paradigm.  

Finally, on the basis of the desired behavior other 
directives and pragmas will be used to use available 
resources more efficiently, for example including the Digital 
Signal Processors (DSPs). Obviously, this will further 
improve the achieve speed performances. 

V. CONCLUSION 

This paper presented a deconvolution engine designed 
using the high-level synthesis approach. In contrast to state-
of-the-art designs proposed in literature, the description 
proposed here avoids specific realization platform-
dependency, thus being suitable to be implemented 
efficiently in different realization platforms. The 
synthesizable C++ description here described has been 
characterized at different input and output image sizes, 
referring to various stride and kernel sizes. Some post-
synthesis results have been presented referring to the 
XC7Z020 low-end device. Then, due to the increasing 
demand of on-chip memory resources, with the output image 
being up-sampled to the 1024×1024 resolution, a more 
expensive chip has been required. Due to its platform 
independency, the presented code can be synthesized also 
within different devices families. For future works, the 
proposed deconvolution engine can be improved to be used 
within DCNNs and to introduce proper level of parallelism at 
both frame- and pixel-level.  
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Abstract—To achieve a higher processing speed of a Central
Processing Unit (CPU), a higher clock frequency can be used.
Since the underlying circuit is limited by the switching and signal
runtimes, pipeline stages are installed to divide the signal paths.
Due to the piecewise processing in the stages, the evaluation of
the instruction, which is necessary for the program flow, occurs
too late. An example of this are jump instructions in which
the target address is not determined until new instructions have
already been read. As a result, instructions have to be discarded
or the evaluation has to be delayed. This leads to a reduced
processing speed and a dependency on the program code. This
work shows the difference between a two- and a five-stage CPU
with CoreMark. For this purpose, two simple Reduced Instruction
Set Computer generation five (RISC-V) CPUs with the instruction
set rv32i were compared. At the same clock frequency, the two-
stage CPU processes 21.358 % more instructions per time than the
five-stage CPU, which is slowed down by the pipeline structure.
However, a 69.851 % higher clock frequency is possible with the
five-stage CPU, which leads to a 39.969 % higher CoreMark score.

Keywords–CPU; FPGA; RISC-V; Pipeline; CoreMark.

I. INTRODUCTION
With RISC-V, an Instruction Set Architecture (ISA) has

been developed which, due to its open licensing model, allows
modifications and extensions to the underlying hardware. The
architecture is particularly widespread in embedded systems
and microcontrollers and is also used by companies, such
as Seagate, Western Digital Corp. or Espressif Systems Corp
[1]. A RISC-V CPU can either be obtained pre-built from
companies, such as SiFive Inc. or created by the developer [2].
It is precisely the expandability through, as an example, new
instructions that makes the development of one’s own CPU
attractive [3].

The instructions of the ISA must be appropriately con-
verted into hardware when creating a microprocessor with a
RISC-V CPU. Since clock speeds and structure depend on
the underlying hardware, there is some room for development
here. The basic structure of a microprocessor with memory,
registers, Arithmetic Logic Unit (ALU) and Program Counter
(PC) is always quite similar. However, the interconnection of
the components is not trivial and influences runtimes and the
size of the design. The execution speed is directly related to
the clock used for the CPU. The clock applied to increase
performance is limited by the runtimes of the signals and gates.
To reduce these, pipeline stages are built into the CPU. The
synchronous memories save intermediate results from partial
calculations and thus shorten the critical path [4].

In this paper, the performance of a two-stage CPU is
compared with a five-stage CPU using CoreMark [5]. The
number of instructions per time is compared with the increased
clock rate of the five-stage pipeline CPU. In addition, the
space requirements resulting from the further pipeline stages
are also discussed. The development and benchmark of the two
designs was implemented on a Field Programmable Gate Array
(FPGA). In contrast to other works, which compare complete
existing processor designs in different aspects [6][7], here only
the effect of the actual number of the two analysed pipeline
stages is considered.

In Section II, the basics for implementation and evaluation
are described. The RISC-V ISA is described in more detail, as
it directly influences the design. The CoreMark benchmark
is also briefly introduced. Section III describes the imple-
mentation of the two CPUs, as well as the compilation of
the programme code. The performance losses due to a longer
pipeline are also shown here. Section IV compares the results
of the two CPUs. As described, space requirements, maximum
clock and scores determined by the benchmark are analysed
and discussed. Finally, Section V provides a summary of this
work and an outlook on further comparisons and analyses.

II. BACKGROUND
The RISC-V ISA provides a compiler for instructions

with an instruction width of 32, 64 and 128 bit. In addi-
tion, extensions can be added which, for example, support
hardware-supported calculation with floating point values. The
list of instructions given by the ISA must be implemented
in the hardware. They are roughly divided into logical and
arithmetic, load and store and conditional or unconditional
jump operations. The instructions determine the structure of
the hardware. Modules, such as the logical and arithmetic
operations are combined in ALU, the comparator for the
conditional jumps or the memory address calculation provide a
relatively strict specification for implementation. Also decisive
for the compiler are the firmly defined 32 registers, as well as
the byte-addressable memory access [8].

A benchmark is used to compare the performance of the
two CPUs. There are only a few popular benchmarks for
embedded systems [9]. In each of them, different functions
are performed to measure performance. In Whetstone, the
focus is on floating point computation. But especially in small
systems often no explicit hardware is implemented for this
and therefore it is not used in this project. Also Dhrystone, for
example, uses the c standard library with functions for mem-
ory management, which cannot always be fully implemented
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Figure 1. Structure of the implemented five-stage CPU (A) and the two-stage CPU (B).

due to the memory size [9]. For these reasons, the bench-
mark CoreMark developed by the company EDN Embedded
Microprocessor Benchmark Consortium (EEMBC) was used.
The focus here is on list processing, matrix operations, state
machines, and Cyclic Redundancy Check (CRC) calculations
[10]. The integration is done without dependencies of other
libraries. Regarding the hardware, there are only two require-
ments. A timer must be integrated for time recording and a
communication interface must be implemented to export the
results. To use CoreMark with custom hardware, the timer and
communication interface must be implemented by the design
and made available through functions. The result is output via
the serial communication interface after the benchmark has
been executed [11].

III. IMPLEMENTATION
The implementation section is divided into four subsec-

tions. First, the development environment and conditions are
presented. This is followed by an outline of the similarities
and then the differences between the two implimented CPUs.
Finally, the design decisions that lead to performance losses
in the five-stage CPU are described.

A. Environment
The development and benchmark was done on an Intel Cy-

clone 10LP 10CL025 FPGA. The clock frequency is generated
via the FPGA integrated Phase Locked Loop (PLL). These
are set at synthesis time. The carrier board of the FPGA also
provides a standard clock of 12.000 MHz. Synthesis and timing
analyses are provided by the software Quartus Prime v.20.1.0.
The prebuild tools published by Sifive in December 2020 were
used to compile the benchmark software [12]. The optimisation
-O1, as well as selected features, were added to the compiler
call. The same compilation was used for all benchmarks.

B. Uniform structures
Structurally, the design consists of the CPU and the mem-

ory connected to it. The memory is divided into a common
program and data memory and a peripheral area that provides
Input Output (IO), timer and a serial communication interface
used by CoreMark. For the simplicity of the system, no
external memory is connected. Program and data memory are
located on the integrated memory blocks of the FPGA. The
access to the M9K memory blocks can be done in the used
FPGA with a maximum frequency of 200 MHz [13]. As the
memory blocks do not support the byte addressing required
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ID EX MA WB

#5 #4

Figure 2. Instruction processing with jump delay.

by the ISA, this is realised by interconnecting four separate
byte blocks. Here, the last two bits determine the reading
order of the four memory blocks. The memory is identical
in both implementations of the microprocessor, so changes in
performance are due to differences in the CPU.

Two microprocessors were developed for the comparison.
Both implement the instruction set rv32i and differ mainly in
the pipeline structure. The structure of both implementation are
shown in Figure 1. Since this is a fully synchronous design,
the clock connection of storing elements has been omitted
for a better overview. Likewise, from decoding on, the signal
instr is not displayed in the further stages, because it is used
in almost all places. The pipeline stages are named above
the respective design and are described in more detail in the
following paragraph. The different stages are separated from
each other with synchronous memory blocks represented by
the red narrow blocks. In contrast the grey block in the middle
of B corresponds to a strictly logical linkage and serves the
purpose of clarity.

C. Five-stage vs. two-stage structure
In the five-stage pipeline CPU, certain tasks are calcu-

lated in each stage. In the Instruction Fetch (IF) stage, the
instructions are read from the memory at the address of the
programme counter. In the next step, the Instruction Decode
(ID) stage is responsible for analysing the command. Operators
from the registers are also loaded here. In the following stage
Execute (EX), arithmetic, logical and comparison operations
are carried out. In addition, the memory address for the
memory access and possible jump addresses are calculated. In
the next stage Memory Access (MA), write and read accesses
to the memory take place. Read signed values are also adjusted
to the 32 bit data width. Finally, in the Write Back (WB) stage,
the results are written back to the registers.

The two-stage pipeline CPU merges the stages IF, ID and
EX and is no longer separated by memory stages. Similarly,
the separation of MA and WB has been dropped. Because of
the data memory, which writes the address and data to the
memory, two stages are also necessary here. The functionality
of the pipeline stages are implemented as in the five-stage
CPU. The designs differ only in the pipeline memory blocks
and the complexity of the multiplexers.

D. Disadvantages of pipeline stages
Due to the reduced signal paths in the five-stage CPU, an

increased possible clock frequency can be expected. However,
the pipeline stages in particular lead to performance losses
due to jumps. Figure 2 shows an example of the instructions
in the pipeline stages during a jump. The pipeline stages are
displayed vertically and show in each new row the instructions

IF

#3

#2 (lw)

#1

#4

#4

#3 #1

#4

#3

#3

#3

#3

#4

#4

#2 (lw)

#2 (lw) #1

#2 (lw)

ID EX MA WB

Figure 3. Instruction processing with memory read dependencies.

in the respective stage to the corresponding clock cycle. The
#1 and #2 instruction are fully executed, but the #3 instruction
is a jump, which is only detected in the execution phase.
The previous misread #Ex instructions are discarded. After the
executed jump, the instructions continue to be read sequentially
as normal. The late evaluation of the instruction in the EX
stage leads to further instructions being read by mistake at first.
Since these must be ignored, a gap is created at this point so
that the pipeline is not fully utilised. This has the consequence
that three instructions are lost per jump instruction.

In the programme sequence, successive calculations can
occur on the same register. This would lead to waiting with
the following calculation until the result was written back to
the WB stage. To speed this up, separate returning connections
have been added [4]. The target register corresponds to the one
in the MA stage. In the 5-stage pipeline CPU, this affects the
results of the ALU operation in the MA and the write back
data result of the WB stage. Read operations from memory
require another clock cycle before the result can be returned.
Therefore, in the sequence, an empty instruction is inserted if
the register addresses match, thus delaying the execution by
one clock cycle. This is shown in Figure 3. The instruction
#3 coming after the memory-reading instruction #2 needs the
memory value as an operand. Since the memory access is
only available one clock cycle later, a stalling instruction is
inserted. If instruction #3 is now applied in the EX stage,
the memory value from the WB stage is used. In the design,
the returns of the data lines in Figure 1 are recognisable
by the pink connections. The two-stage microprocessor has
no waiting cycle after a read memory access due to the
deliberate reduction of the pipeline stages. This increases the
corresponding signal runtimes here.

IV. RESULTS
The evaluation first looks at the performance determined by

the benchmark. Then the space requirements of the respective
implementation are analysed.

A. Runtime analysis
Both CPUs are not able to perform floating point calcu-

lations. Therefore, the ticks determined after the benchmark
must be converted into a score for the run. The conversion is
shown below.

ScoreIterations / Sec =
Iterations · Frequence

TicksTotal
(1)

The score of the benchmark describes the number of iter-
ations per second. At compile time, the number of completed
runs was transferred via parameters. In this case, a total
measurement of 200 runs was taken. After the benchmark is
finished, the number of ticks required for execution is output.

7Copyright (c) IARIA, 2022.     ISBN:  978-1-68558-009-4

CENICS 2022 : The Fifteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

                            14 / 20



TABLE I. COREMARK SCORES OF THE TWO MICROPROCESSORS WITH
THE SAME AND RESPECTIVE MAXIMUM CLOCK.

Stages Frequence / MHz Iterations Ticks Score
2 12.000 200 203629411 11,786
2 39.670 200 203629411 38,963

5 12.000 200 247103108 9,7125
5 67.380 200 247103108 54,536

The score can be calculated from this. The results are shown
in Table I.

The series of measurements begins with a synthesis at the
same clock rate of 12.000 MHz for both microprocessors. It
can be seen that the two-stage CPU with 203 629 411 ticks
needs less time to run the benchmark than the five-stage
CPU with 247 103 108 ticks. This is also visible in the corre-
spondingly higher score. The two-stage CPU works faster by
21.358 % due to the jumps and also the delays caused by the
dependencies of successive instructions with memory accesses.

After synthesis, a time analysis is performed. The devel-
opment tool provides a maximum clock that may be applied
to the circuit. Here, the advantage of the pipeline structure
becomes apparent. Whereas the two-stage CPU may clock at
a maximum of 39.670 MHz, the maximum clock for the five-
stage pipeline CPU is 67.380 MHz, which is 69.851 % higher.
With the maximum clocks determined for each microprocessor,
a score is calculated again. Although the two-stage pipeline
CPU has a higher score at the same clock frequency, the
higher clock frequency of the five-stage pipeline CPU leads
to a higher score, overall.

From a performance point of view, the increased clock
rate due to the pipeline stages is an improvement. However,
it should be noted that the function from the benchmark was
executed. Since jumps in particular lead to performance losses,
it cannot be said in general how efficiently the CPU calculates
with the pipeline stages. A compiled program with more
jumps, for example, would also perform worse in this respect.
It always depends on the application and the compilation.

B. Space analysis
In addition to the execution speed, the occupied area on

the semiconductor or FPGA is a decisive point, especially for
small embedded systems. Table II shows the demand for logic
elements and registers of the two implemented designs. This
includes, for example, the program and data memory as well
as their overlying byte addressing. However, since both im-
plementations use identical assemblies for the implementation
of the logic, the difference in number is due to the pipeline
structure.

In Table II, two syntheses with different optimisation
levels have been carried out in each case. The benchmark
values determined in Table I always refer to the performance
optimisation. As expected, the additional logic through the
pipeline requires more logic elements as well as registers.

V. CONCLUSION
In this work, the effect of different numbers of pipeline

stages on their performance and space requirements was in-
vestigated. It shows that the number of instructions per time
decreases with a five-stage CPU, but a higher clock rate is
possible. This increases the performance and in this case

TABLE II. ASSIGNMENT OF LOGIC ELEMENTS AND REGISTERS BY THE
RESPECTIVE IMPLEMENTATION OF THE MICROPROCESSOR.

Stages Optimization mode Logic Elements Register
2 Balanced 4566 1344
2 Performance 4769 1577

5 Balanced 4821 1670
5 Performance 5009 1833

ultimately works faster than a CPU with two pipeline stages.
The space requirement increases with an increasing number of
pipeline stages because of the additional logic.

In the end, the application determines the choice between
the number of stages. If the application requires the fastest
possible execution, a five-stage pipeline CPU is more recom-
mended. But especially when it comes to small embedded
systems or the application is not time-critical, the space re-
quirement can also be decisive. Another advantage of the two-
stage CPU designed in this work is the guaranteed execution
of instructions, which does not depend on the program code.

Further analysis is needed to more accurately assess the
efficiency of pipeline stages. In the context of this work, a jump
prediction logic was explicitly omitted. Likewise, the memory
is directly connected and does not depend on a cache structure.
This must be taken into account for the implementation in real
systems.
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Abstract— In this paper, it is intended to describe the design 

process, planning, and development of a new Data Logger System 

(DLS) that can be potentially used in acquiring sensor signals in 

the landing gear of aircraft. This paper is presenting the new 

concept and development process of the DLS that employs a 

novel low-power pulse mode circuit structure. It outlines the 

overview of the sensor acquisition system and manufacturing of 

the DLS housing to fit the partner's requirements. The conducted 

work is broken down into several phases, these include 

conceptual design, development, production, and testing. 
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I. INTRODUCTION 

Timely and accurate detection of aircraft status signals such 
as the landing gear is a basic guarantee of its normal operation 
and also improves aircraft reliability and reduces potential risks 
through taking timely and effective measures [1]-[6]. 

The proposed DLS in this paper is adopting a novel data 
acquisition system to reduce overall system power consumption 
and provide an effective 32 multi-channel sensing capability that 
outputs signals with varying ranges. To accommodate the 
different parts of the DLS including power management and 
data processing, a modular housing design is being used to meet 
the requirements of a rigid system that can withstand the harsh 
environment in aircraft landing gear and provide flexible testing 
accessibility. The new design is addressing a major sensing 
data challenge in the aviation industry which required a 
reliable and sustainable system that runs effectively under 
severe environmental flying conditions. A new low-power 
strategy was adopted in our design based on power sampling 
for sensor array which allows the integration of additional 
sensors without complicating overall system development. 

Section II is outlining the system design overview. The 
description of the new development will be presented in 
section IV. The structure design is given in section V, whereas 
the design verification and testing results are presented in 
section VI. 

 
II. DESIGN OVERVIEW 

The system design requirements obtained from the industry 
partner are summarized in Table I. The desired low average 
current could only be achieved by implementing a high-speed 
configuration that would complete all the action in a small 
fraction of the sampling period, remaining in sleep mode the 
rest of the time. This ratio (active/sleep) determines how much 
is comparatively high active mode consumption reduced to an 
acceptable low average.  

 

 

 

That means, all the procedures (sampling, A/D conversion, 
and memory update) should be as short, as only possible 
compared to the sampling period. The description of the system, 
designed to meet these requirements follows. 

To provide the shortest available sampling time, along with 
minimum power loss, no voltage regulator has been used to 
power the sensor circuitry (due to long power on/off time). The 
sensors are powered dynamically (with exponentially rising 
voltage); A high-speed comparator disconnects the sampling 
keys from the set of sampling capacitors when the sensor driving 
voltage achieves the threshold. It is assumed, that the response 
of the sensor is linear related to driving voltage. To avoid errors 
related to sensor output impedance, the signals from sensors are 
applied via buffer amplifiers as seen in the system diagram 
presented in Figure 1. 

The maximum slew rate of sensor driving voltage is 
limited by the slew rate of buffering amps that could be as 
high as  2V/us. To avoid errors, related to the response time of 
the comparator, the driving voltage is also sampled, providing 
the possibility for further software correction. 

 

 

Figure. 1. Data acquisition system diagram 
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TABLE I. TO BE DEVELOPED SYSTEM REQUIREMENTS 
 

Number of channels 31 

Sampling rate 128 Hz 

Battery life ( in operation mode ) 1800 hrs. 

Operation temperature range -40 to +85 C 

Overall dimensions minimize 

System weight minimize 

Typical consumption of the set of 
sensors 

400 mA @ 5.0 V 

Sensor type Passive, resistive 

Memory type and size 32 Gb, Flash 

Data stored Sensor reading 
and time stamp 

External interface USB 

III. FEASIBILITY ANALYSIS AND SOLUTION APPROACH 

Since the system is battery-powered and should provide long 
battery life, its power consumption becomes the determining 
factor for setting the system structure. The size and weight of the 
battery are limited as well, so the available battery of acceptable 
size is a pack of 4 cells (3.6 V, 2600 mAh, series-parallel), that 
is, 5200 mAh. 

Typically, the capacity of the battery is limited by its 
discharge to approx. 5.5V is around 60-65% of the total and is 
actually 3120-3380 mAh. That yields, that the average current 
consumption should be within 1.73 -1.88 mA (for 1800 hours 
of operation). The desired low average current could only be 
achieved if the system is operated in pulse mode, completing all 
the necessary actions (A/D conversion, memory interfacing, 
etc.) in a small fraction of the sampling period, remaining in 
sleep the rest of the time. 

The ratio of active/sleep mode of each element of the system 
will determine this element’s average current, the sum of these, 
being the whole system average current, should be within the 
required limit. The second important point is, that the sensors 
used have a significantly different range of output signals 
(from volts to millivolts) on one hand and that the physical 
length of cables might be up to 1-1.5m. This makes the use of 
buffer amplifiers on sensors compulsory, to bring the signal 

levels to an acceptable range and avoid pickup on signal lines by 
providing low output impedance. More to the point, some types 
of sensors have differential output, while the common-mode 
voltage is high enough – that means, two types of buffering 
amplifiers are to be designed. 

At the first stage of this work, however, to speed up the 
development, it was planned to test the system with 
comparatively simple non-inverting amplifiers and imitation of 
sensor signals from resistor dividers. After completing the 
conversion, the ADC is brought to the full-sleep mode by the 
microcontroller, bringing its consumption from 3.3mA in active 
mode down to 1uA. 

 
IV. SYSTEM DESCRIPTION 

This section will be presenting the design methodology and 

data processing control adopted in this work as illustrated by the 

following subsections. 

A. Measurement Method 

In order to provide the shortest possible sampling time, the 
sensors are powered dynamically (with exponentially rising 
voltage). During this time the keys remain closed, and sensor 
voltages are transferred to sample holding capacitors as shown 
in Figure 1. 

It is assumed, that due to the passive and purely resistive 
nature of the sensors, their response is directly proportional to 
powering voltage. As soon as the powering voltage is applied to 
the inverting input of the high-speed comparator via the divider 
to achieve the threshold, the output of the comparator goes low, 
opening the keys, thus disconnecting sample holding capacitors 
from the signal lines, and at the same time switching off the 
sensor power by resetting the flip-flop. 

Signal end of conversion (EOFC) is provided to MCU to indicate 
that the A/D conversion of the voltages present on sample holding 
capacitors may begin. To avoid any errors related to comparator 
delay time and threshold variation, the sensor power voltage is 
sampled in addition to sensor signals to provide the possibility to 
recalculate the obtained readings. 

 

 
Figure. 2. System timing chart 
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B. Considerations for A/D conversion 

Since the time for the conversion should be minimized, 
usage of ADC built-in to the microcontroller is inapplicable in 
principle, due to the very long conversion time. The (EOFC) 
signal is provided to MCU to indicate that the A/D conversion 
of the voltages present on sample holding capacitors may begin. 

To achieve acceptable time from the structure depicted in 
Figure 1, The voltages, obtained on sampling capacitors, are 
applied via 32-to-1 multiplexor to a fast (800ns) ADC. The 
output code is a 12-bit parallel, which allows the controller to 
get one conversion result in one read instruction. That means, 
32 words of data could be obtained in 32us. Additionally, the 
ADC used has its in-built clock source and stable reference 
voltage (used to provide threshold for comparator) as given in 
the system timing chart in Figure 2. 

 

C. Considerations for microcontroller choice 

The microcontroller should be able to accept the data from 
the ADC without delay and accept and generate all the necessary 
control signals without slowing down A/D conversion (that 
determines its minimum parallel bus speed). However, stricter 
requirement arises out of necessity to transfer the data to external 
memory. The data amount for a single transfer is 33 words of 
16-bit (32 data and timestamp from RTC). This also requires 
choosing the fastest available interfacing to external memory. 

 
V. STRUCTURAL DESIGN 

The DLS is designed to be as compact as possible. The 
original concept, shown below in Figure 3, incorporates two 
separate modules, the Main module, and the Battery-Memory 
module. 

 

Figure. 3. DLS structural design 

 

Now that the preliminary battery selection and media storage 
selection was performed and know the approximate volume 
requirements, a new concept design was proposed. The idea of 
the concept is that the battery cell can be removed for charging 

and the media storage also can be removed for data download as 
shown in Figure 4. 

 

VI. DATA ACQUISITION VERIFICATION AND TESTING RESULTS 

To verify the performance of both data logger systems  
a number of resistive potentiometers of various ranges were 
used as dummy sensors. From a design perspective, the main 
focus is to get the dynamic sensors' power circuitry working as 
desired and then extract the necessary ADC waveforms and 
match them with the device datasheet. Such practice was useful 
in debugging and testing to overcome many issues before 
getting the system prototype functioning as expected. Figure 5 
shows some of the sensors' power and conversion signals, 
where obviously they are very comparable with the ones in 
Figure 2. 

 

Figure. 4. Actual DLS design with power and data storage 
 

 
Figure. 5. Dynamic power signals of DLS system-Power unit 
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A. Integration with Industrial Sensor and Test Results 

The next phase of the testing process was to use a real 
industrial sensor interfaced to the Design system and use the 
developed Graphical Unser Interface (GUI) to monitor and 
record the multi-channel sensors' data acquisition via serial 
interface, these sensors are: 

▪ Thermocouple temperature sensor 

▪ Linear Displacement Potentiometer sensor (0- 
300mm) 

▪ Pressure sensor (5 Ins max) 

▪ Load cell strain gauge sensor 

An interface board was manufactured with sensors mounted 
and all signals and power necessary connections are provided as 
shown in Figure 6. 

 

Figure. 6. Industrial sensor system setup using DLS 

 

The DLS system performance was tested and verified using 
the sensors interface board and sensors readings were displayed 
by the developed GUI. Special single-ended input and 
differential amplifiers were designed for low-level sensor 
signals, like thermocouples and strain gauge sensors. 

The enclosure of the DLS was designed using rapid 
prototyping. Figure 7 shows the side and top views of the 
designed enclosure where it can be seen the two main units are 
attached to fit both the system PCBs and battery. 

The main functionality of the developed GUI is to show the 
incoming data from the DLS unit. The programming language 
used for programming this GUI was Visual Basic.NET from 
the Microsoft Visual Studio.NET package. The 
communication is done through COM ports and the data is sent 
in HEX format in a specific format (frame) which then is read in 
GUI and interpreted (parsed). The data is shown in a master 
graph for each channel as given in Figure 8 where each 
individual graph can be added and associated with specific 
given user options that can be set to modify the visual display 
of the GUI. 

 

 

Figure. 7. DLS System enclosure 
 

 

Figure. 8. Developed GUI to monitor the sensor readings recorded by DLS 

system. 

 

B. Measuring DLS power consumption 

The average current, consumption by the system is the sum 
of all quiescent currents of constantly powered elements ( CPU 
in sleep mode ( max.25uA), comparator (90uA max ), flip-flop 
(2uA max) and two voltage regulators ( 2x35=70uA max)), and 
the average current of the components powered for a short time. 
Using the time chart, the following equation can be obtained : 

 

𝐼𝑎𝑣𝑔 = 187uA +
𝐼𝑎𝑑𝑐𝑇𝑎𝑑𝑐 + 𝐼𝑎𝑚𝑝1𝑇𝑎𝑚𝑝1+𝐼𝑠𝑒𝑛𝑠 + (𝑇𝑎𝑑𝑐 + 𝑇𝑖𝑛𝑡𝑒𝑟𝑓) ∗ 𝐼𝐶𝑃𝑈

𝑇𝑠𝑎𝑚𝑝𝑙𝑒
 

 
The equivalent time for sensor activity ( under the condition 

of powering by constant 5V voltage ) is less than 2us. ( at 400mA 
current ) 

Then, at Tsample = 7812.5us, 

 
𝐼𝑎𝑣𝑔
= 187uA

+
3.3𝑚𝐴 ∗ 40𝑢𝑠 + 31𝑚𝐴 ∗ 4𝑢𝑠 + 400𝑚𝐴 ∗ 2𝑢𝑠 + (40𝑢𝑠 ∗ 𝑇𝑖𝑛𝑡𝑒𝑟𝑓) ∗ 60𝑚𝐴

7812.5us
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= 622uA + 60mA
𝑇𝑖𝑛𝑡𝑒𝑟𝑓

7812.5us
 

 
That guarantees, that for interface time that is less than 143us, 
the average system current will remain within the limit. At the 
same time, if interfacing is fast enough, it is possible to reduce 
the speed of the system ( for better accuracy and reliability ). 

The DLS current consumption was measured using in-circuit 
metering for two options, with and without pulse-mode 
operation concept as shown in Table II. 

 
TABLE II. PEAK CURRENT CONSUMPTION MEASURING OF THE DLS 

 

Operating option Peak current draw (mA) 

With Pulse-mode 0.714 

Without Pulse-mode 2.26 

 

 

 

 

VII. CONCLUSIONS 

In this work, a novel sensor data logging system has been 
introduced. The system design is utilizing the pulse-mode 
dynamic power concept where output sensors are sampled 
through switched capacitors and then sensor power is turned off 

to start the ADC process. It was found the system power has 
been significantly reduced by more than (3:1) as can be seen in 
Table I to meet the requirements of low power consumption 
and extended battery lifetime. 

The overall DLS design has been placed in a developed 
modular housing that incorporated the power source and storage 
components. A GUI has been developed to test the system 
output signals using industrial-rated sensors. 

Planning for future work will be involving future testing 
on the sensing side and improving the power consumption 
performance. Also, the GUI is to be further developed to 
include more features on system-measured parameters.  
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