
CLOUD COMPUTING 2012

The Third International Conference on Cloud Computing, GRIDs, and Virtualization

ISBN: 978-1-61208-216-5

July 22-27, 2012

Nice, France

CLOUD COMPUTING 2012 Editors

Wolf Zimmermann, Martin-Luther University Halle-Wittenberg, Germany

Yong Woo Lee, University of Seoul, Korea

Yuri Demchenko, University of Amsterdam, Netherlands

 1 / 282

CLOUD COMPUTING 2012

Foreword

Cloud computing is a normal evolution of distributed computing combined with Service-
oriented architecture, leveraging most of the GRID features and Virtualization merits. The
technology foundations for cloud computing led to a new approach of reusing what was
achieved in GRID computing with support from virtualization.

The Third International Conference on Cloud Computing, GRIDs, and Virtualization
(CLOUD COMPUTING 2012), held between July 22 and 27, 2012, in Nice, France, intended to
prospect the applications supported by the new paradigm and validate the techniques and the
mechanisms. A complementary target was to identify the open issues and the challenges to be
fixed, especially on security, privacy, and inter- and intra-clouds protocols.

We welcomed technical papers presenting research and practical results, position
papers addressing the pros and cons of specific proposals, such as those being discussed in the
standard fora or in industry consortia, survey papers addressing the key problems and solutions
on any of the above topics short papers on work in progress, and panel proposals.

We take here the opportunity to warmly thank all the members of the CLOUD
COMPUTING 2012 Technical Program Committee, as well as the numerous reviewers. The
creation of such a broad and high quality conference program would not have been possible
without their involvement. We also kindly thank all the authors who dedicated much of their
time and efforts to contribute to CLOUD COMPUTING 2012. We truly believe that, thanks to all
these efforts, the final conference program consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the CLOUD COMPUTING 2012
organizing committee for their help in handling the logistics and for their work to make this
professional meeting a success.

We hope that CLOUD COMPUTING 2012 was a successful international forum for the
exchange of ideas and results between academia and industry and for the promotion of
progress in the area of cloud computing.

We are convinced that the participants found the event useful and communications very
open. We hope Côte d’Azur provided a pleasant environment during the conference and
everyone saved some time for exploring the Mediterranean Coast.

 2 / 282

CLOUD COMPUTING 2012 Chairs:

CLOUD COMPUTING Advisory Chairs
Jaime Lloret Mauri, Polytechnic University of Valencia, Spain
Wolf Zimmermann, Martin-Luther University Halle-Wittenberg, Germany
Yong Woo Lee, University of Seoul, Korea

CLOUD COMPUTING 2012 Industry/Research Chairs
Wolfgang Gentzsch, Senior HPC Consultant, Germany
Tony Shan, Keane Inc., USA
Donglin Xia, Microsoft Corporation, USA

CLOUD COMPUTING 2012 Research Institutes Chairs
Jorge Ejarque, Barcelona Supercomputing Center, Spain
Leslie Liu, IBM T.J Watson Research, USA

COULD COMPUTING 2012 Special Area Chairs
Virtualization
Toan Nguyen, INRIA, France

GRID
Jorge Ejarque, Barcelona Supercomputing Center, Spain
Javier Diaz, Indiana University, USA

Autonomic computing
Ivan Rodero, Rutgers the State University of New Jersey/NSF Center for Autonomic Computing,
USA
Hong Zhu, Oxford Brookes University, UK

Service-oriented
Qi Yu, Rochester Institute of Technology, USA

Security
Chih-Cheng Hung, Southern Polytechnic State University - Marietta, USA

Platforms
Arden Agopyan, IBM Central & Eastern Europe, Russia, Middle East & Africa (CEE & MEA),
Turkey
Dariusz Król, Academic Computer Center CYFRONET - Cracow, Poland

 3 / 282

CLOUD COMPUTING 2012

Committee

CLOUD COMPUTING Advisory Chairs

Jaime Lloret Mauri, Polytechnic University of Valencia, Spain
Wolf Zimmermann, Martin-Luther University Halle-Wittenberg, Germany
Yong Woo Lee, University of Seoul, Korea

CLOUD COMPUTING 2012 Industry/Research Chairs

Wolfgang Gentzsch, Senior HPC Consultant, Germany
Tony Shan, Keane Inc., USA
Donglin Xia, Microsoft Corporation, USA

CLOUD COMPUTING 2012 Research Institutes Chairs

Jorge Ejarque, Barcelona Supercomputing Center, Spain
Leslie Liu, IBM T.J Watson Research, USA

COULD COMPUTING 2012 Special Area Chairs

Virtualization
Toan Nguyen, INRIA, France

GRID
Jorge Ejarque, Barcelona Supercomputing Center, Spain
Javier Diaz, Indiana University, USA

Autonomic computing
Ivan Rodero, Rutgers the State University of New Jersey/NSF Center for Autonomic Computing, USA
Hong Zhu, Oxford Brookes University, UK

Service-oriented
Qi Yu, Rochester Institute of Technology, USA

Security
Chih-Cheng Hung, Southern Polytechnic State University - Marietta, USA

Platforms
Arden Agopyan, IBM Central & Eastern Europe, Russia, Middle East & Africa (CEE & MEA), Turkey
Dariusz Król, Academic Computer Center CYFRONET - Cracow, Poland

 4 / 282

CLOUD COMPUTING 2012 Technical Program Committee

Jemal Abawajy, Deakin University - Victoria, Australia
Imad Abbadi, University of Oxford, UK
Arden Agopyan, IBM Central & Eastern Europe, Russia & CIS (CEE), Turkey
Ali Beklen, IBM Turkey - Software Group, Turkey
Simona Bernardi, Centro Universitario de la Defensa / Academia General Militar - Zaragoza, Spain
Nik Bessis, University of Derby, UK
William Buchanan, Edinburgh Napier University, UK
Massimo Canonico, University of Piemonte Orientale, Italy
Juan-Vicente Capella-Hernández, Universitat Politècnica de València, Spain
Simon Caton, Karlsruhe Institute of Technology, Germany
Hsi-Ya Chang, National Center for High-Performance Computing (NCHC), Taiwan
Antonin Chazalet, France Télécom - Orange, France
Shiping Chen, CSIRO ICT Centre, Australia
Ye Chen, Microsoft Corp., USA
Yixin Chen, Washington University in St. Louis, USA
Zhixiong Chen, Mercy College - NY, USA

William Cheng-Chung Chu(朱正忠), Tunghai University, Taiwan
Antonio Corradi, Università di Bologna, Italy
Marcelo Corrales, University of Hanover, Germany
Yuri Demchenko, University of Amsterdam, The Netherlands
Nirmit Desai, IBM Research - Bangalore, India
Edna Dias Canedo, Universidade de Brasília - UnB Gama, Brazil
Javier Diaz, Pervasive Technology Institute/Indiana University, USA
Qiang Duan, Pennsylvania State University Abington College, USA
Jorge Ejarque Artigas , Barcelona Supercomputing Center, Spain
Atilla Elçi, Suleyman Demirel University - Isparta, Turkey
Khalil El-Khatib, University of Ontario Institute of Technology - Oshawa, Canada
Umar Farooq, Amazon.com - Seattle, USA
Sören Frey, University of Kiel, Germany
Wolfgang Gentzsch, Senior HPC Consultant, Germany
Nils Grushka, NEC Laboratories Europe - Heidelberg, Germany
Weili Han, Fudan University, China
Haiwu He, INRIA, France
Neil Chue Hong, University of Edinburgh, UK
Kenneth Hopkinson, Air Force Institute of Technology - Dayton, USA
Chih-Cheng Hung, Southern Polytechnic State University - Marietta, USA
Anca Daniela Ionita, University "Politehnica" of Bucharest, Romania
César A. F. De Rose, Catholic University of Rio Grande Sul (PUCRS), Brazil
Luca Foschini, Università degli Studi di Bologna, Italy
Song Fu, University of North Texas - Denton, USA
Spyridon Gogouvitis, National Technical University of Athens, Greece
Yi-Ke Guo, Imperial College London, UK
Richard Hill, University of Derby, UK
Benoit Hudzia, SAP Research, France
Ming Jiang, University of Leeds, UK
Xuxian Jiang, North Carolina State University, USA

 5 / 282

Eugene John, The University of Texas at San Antonio, USA
Sokratis K. Katsikas, University of Piraeus, Greece
Shinji Kikuchi, Fujitsu Laboratories Ltd., Japan
Tan Kok Kiong, National University of Singapore, Singapore
William Knottenbelt, Imperial College London - South Kensington Campus, UK
Ryan Ko, HP Labs, Singapore
Sinan Kockara, University of Central Arkansas, USA
Joanna Kolodziej, University of Bielsko-Biala, Poland
Kenji Kono, Keio University, Japan
Arne Koschel, University of Applied Sciences and Arts - Hannover, Germany
George Kousiouris, National Technical University of Athens, Greece
Heinz Kredel, Universität Mannheim, Germany
Dariusz Król, Academic Computer Center CYFRONET - Cracow, Poland
Hans Günther Kruse, Universität Mannheim, Germany
Eric Kuada, Aalborg University - Copenhagen, Denmark
Pierre Kuonen, College of Engineering and Architecture - Fribourg, Switzerland
Tobias Kurze, Karlsruher Institut für Technologie (KIT), Germany
Dharmender Singh Kushwaha, Motilal Nehru National Institute of Technology - Allahabad, India
Ben Kwang-Mong Sim, Gwangju Institute of Science & Technology, South Korea
Dimosthenis Kyriazis, National Technical University of Athens, Greece
Alexander Lazovik, University of Groningen, The Netherlands
Grace Lewis, CMU Software Engineering Institute - Pittsburgh, USA
Jianxin Li, Beihang University, China
Richard Lin, National Sun Yat-sen University - Kaohsiung, Taiwan
Maik A. Lindner, SAP Labs, LLC - Palo Alto, USA
Maozhen Li, Brunel University - Uxbridge, UK
Xiaoqing (Frank) Liu, Missouri University of Science and Technology, USA
Xumin Liu, Rochester Institute of Technology, USA
H. Karen Lu, CISSP/Gemalto, Inc., USA
Ilias Maglogiannis, University of Central Greece - Lamia, Greece
Attila Csaba Marosi, MTA SZTAKI Computer and Automation Research Institute/Hungarian Academy of
Sciences - Budapest, Hungary
Goran Martinovic, J.J. Strossmayer University of Osijek, Croatia
Philippe Massonet, CETIC, France
Michael Maurer, Vienna University of Technology, Austria
Andreas Menychtas, National Technical University of Athens, Greece
Jose Merseguer, Universidad de Zaragoza, Spain
Thijs Metsch, IBM Deutschland GmbH, Germany
Louise Moser, University of California - Santa Barbara, USA
Claude Moulin, Technology University of Compiègne, France
Camelia Muñoz-Caro, Universidad de Castilla-La Mancha - Ciudad Real, Spain
Hidemoto Nakada, National Institute of Advanced Industrial Science and Technology (AIST), Japan
Surya Nepal, CSIRO ICT Centre, Australia
Toàn Nguyên, INRIA Grenobel Rhone-Alpes/ Montbonnot, France
Massimo Paolucci, DOCOMO Labs, Italy
Alexander Papaspyrou, Technische Universität Dortmund, Germany
Aljosa Pasic, Atos Research, Spain
Siani Pearson, Hewlett-Packard Laboratories, USA

 6 / 282

Sabri Pllana, University of Vienna, Austria
Jari Porras, Lappeenranta University of Technology, Finland
Thomas E. Potok, Oak Ridge National Laboratory, USA
Alfonso Niño Ramos, Universidad de Castilla-La Mancha-Ciudad Real, Spain
Christoph Reich, Hochschule Furtwangen University, Germany
Sebastian Rieger, Steinbuch Centre for Computing (SCC)/Karlsruher Institut für Technologie (KIT),
Germany
Philip Robinson, SAP Research - Belfast, UK
Benny Rochwerger, IBM Haifa Research Lab., Israel
Ivanm Rodero, NSF Center for Autonomic Computing, Rutgers the State University of New Jersey -
Piscataway, USA
Majd F. Sakr, Carnegie Mellon University in Qatar, Qatar
Iñigo San Aniceto Orbegozo, Universidad Complutense de Madrid, Spain
Volker Sander, FH Aachen University of Applied Sciences, Germany
Gregor Schiele, University of Mannheim, Germany
Igor Sfiligoi, University of California San Diego-La Jolla, USA
Alan Sill, Texas Tech University, USA
Raül Sirvent, Barcelona Supercomputing Center, Spain
Luca Spalazzi, Università Politecnica delle Marche - Ancona, Italy
George Spanoudakis, City University London, UK
Jie Tao, Steinbuch Centre for Computing/Karlsruhe Institute of Technology (KIT), Germany
Sofie Van Hoecke, Ghent University, Belgium
Luis Vaquero, HP Labs., Spain
Michael Gr. Vassilakopoulos, University of Central Greece - Lamia, Greece
Jose Luis Vazquez-Poletti, Universidad Complutense de Madrid, Spain
Salvatore Venticinque, Second University of Naples - Aversa, Italy
Mario Jose Villamizar Cano, Universidad de loa Andes - Bogotá, Colombia
Eugen Volk, High Performance Computing Center Stuttgart (HLRS) - Stuttgart, Germany
Andy Ju An Wang, Southern Polytechnic State University - Marietta, USA
Cho-Li Wang, University of Hong Kong, China
Zhi Wang, North Carolina State University, USA
Philipp Wieder, Gesellschaft fuer wissenschaftliche Datenverarbeitung mbH - Goettingen (GWDG),
Germany
Yong Woo Lee, University of Seoul. Korea
Christos Xenakis, University of Piraeus, Greece
Hiroshi Yamada, Keio University, Japan
Chao-Tung Yang, Tunghai University, Taiwan R.O.C.
Hongji Yang, De Montfort University (DMU) - Leicester, UK
Yanjiang Yang, Institute for Infocomm Research, Singapore
Jinhui Yao, CSIRO ICT Centre, Australia
Qi Yu, Rochester Institute of Technology, USA
Jong P. Yoon, Mercy College - Dobbs Ferry, USA
Jie Yu, National University of Defense Technology (NUDT), China
Massimo Villari, University of Messina, Italy
Baokang Zhao, National University of Defence Technology, China
Zibin (Ben) Zheng, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
Hong Zhu, Oxford Brookes University, UK
Wolf Zimmermann, University of Halle, Germany

 7 / 282

 8 / 282

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 9 / 282

Table of Contents

Proposed Joint Multiple Resource Allocation Method for Cloud Computing Services with Heterogeneous QoS
Yuuki Awano and Shin-ichi Kuribayashi

1

Guidelines for Increasing the Adoption of Cloud Computing within SMEs
Marius Marian and Ileana Hamburg

7

IDSaaS: Intrusion Detection System as a Service in Public Clouds
Turki Alharkan and Patrick Martin

11

A Semantic Model to Characterize Pricing and Negotiation Schemes of Cloud Resources
Giuseppe Di Modica and Orazio Tomarchio

18

Controlling Data-Flow in the Cloud
Mandy Weissbach and Wolf Zimmermann

24

A Security Architecture for Cloud Storage Combining Proofs of Retrievability and Fairness
Aiiad Albeshri, Colin Boyd, and Juan Gonzalez Nieto

30

The Optimal Resource Allocation Among Virtual Machines in Cloud Computing
Marjan Gusev and Sasko Ristov

36

A Framework for the Flexible Deployment of Scientific Workflows in Grid Environments
Javier Fabra, Sergio Hernandez, Pedro Alvarez, and Joaquin Ezpeleta

43

Semi-shared Storage Subsystem for OpenNebula
Sandor Acs, Peter Kacsuk, and Miklos Kozlovszky

51

A Fast Virtual Machine Storage Migration Technique Using Data Deduplication
Kazushi Takahashi, Koichi Sasada, and Takahiro Hirofuchi

57

Network Performance-Aware Virtual Machine Migration in Data Centers
Jun Chen, Weidong Liu, and Jiaxing Song

65

Performance Influence of Live Migration on Multi-Tier Workloads in Virtualization Environments
Xiaohong Jiang, Fengxi Yan, and Kejiang Ye

72

About the flexible Migration of Workflow Tasks to Clouds
Michael Gerhards, Volker Sander, and Adam Belloum

82

HPCCA: Is efficient in Mobile Cloud Environment (MCE)? 88

 1 / 4 10 / 282

Khalid Mohiuddin, Ashiqee Rasool Mohammad, Asharul Islam, and Aftab Alam

Intercloud Object Storage Service: Colony
Shigetoshi Yokoyama, Nobukazu Yoshioka, and Motonobu Ichimura

95

Mobile Cloud Computing Environment as a Support for Mobile Learning
Stojan Kitanov and Danco Davcev

99

Provenance in the Cloud: Why and How?
Muhammad Imran and Helmut Hlavacs

106

A Secure Data Access Mechanism for Cloud Tenants
Chunming Rong and Hongbing Cheng

113

Dynamic Scenarios of Trust Establishment in the Public Cloud Service Market
So Young Kim, Junseok Hwang, and Jorn Altmann

120

De-replication: A Dynamic Memory Aware Mechanism
Manu Vardhan, Paras Gupta, and Dharmender Singh Kushwaha

124

Evaluating Eucalyptus Virtual Machine Instance Types: a Study Considering Distinct Workload Demand
Erica Sousa, Paulo Maciel, Erico Medeiros, Debora Souza, Fernando Lins, and Eduardo Tavares

130

Towards a SLA-compliant Cloud Resource Allocator for N-tier Applications
Aaron McConnell, Gerard Parr, Sally McClean, Philip Morrow, and Bryan Scotney

136

Simulation-based Evaluation of an Intercloud Service Broker
Foued Jrad, Jie Tao, and Achim Streit

140

A Study of Cloud Mobility in a Mobile Cloud Network based on Future Internet Approach
Dongha Kim, Hyunjun Kim, Gijeong Kim, and Sungwon Lee

146

Provenance Framework for the Cloud Environment (IaaS)
Muhammad Imran and Helmut Hlavacs

152

Enhancing Mobile Device Security by Security Level Integration in a Cloud Proxy
Thomas Ruebsamen and Christoph Reich

159

Maximizing Utilization in Private IaaS Clouds with Heterogenous Load
Tomas Vondra and Jan Sedivy

169

Defining Inter-Cloud Architecture for Interoperability and Integration
Yuri Demchenko, Canh Ngo, Marc Makkes, Rudolf Stgrijkers, and Cees de Laat

174

 2 / 4 11 / 282

Cloud Network Security Monitoring and Response System
Murat Mukhtarov, Natalia Miloslavskaya, and Alexander Tolstoy

181

Analysis and Optimization of Massive Data Processing on High Performance Computing Architecture
He Huang, Shanshan Li, Xiaodong Yi, Feng Zhang, Xiangke Liao, and Pan Dong

186

Providing a Solution for Live Migration of Virtual Machines in Eucalyptus Cloud Computing Infrastructure
without Using a Shared Disk
Shayan Zamani Rad, Morteza Sargolzai Javan, and Mohammad Kazem Akbari

192

Proactive Performance Optimization of IT Services Supply-Chain Utilizing a Business Service Innovation Value
Roadmap
Ethan Hadar, Jason Davis, and Donald F. Ferguson

197

Load Balancing in Cloud Computing Systems Through Formation of Coalitions in a Spatially Generalized
Prisoner's Dilemma Game
Jakub Gasior and Franciszek Seredynski

201

Cloud Computing Brokering Service : A Trust Framework
Prashant Khanna and Budida Babu

206

Towards a Domain-Specific Language to Deploy Applications in the Clouds
Eirik Brandtzaeg, Parastoo Mohagheghi, and Sebastien Mosser

213

Cloud-based Healthcare: Towards a SLA Compliant Network Aware Solution for Medical Image Processing
Shane Hallett, Gerard Parr, Sally McClean, Aaron McConnell, and Basim Majeed

219

Cloud Objects: Programming the Cloud with Object-Oriented Map/Reduce
Julian Friedman and Manuel Oriol

224

Reliable Approach to Sell the Spare Capacity in the Cloud
Wesam Dawoud, Ibrahim Takouna, and Christoph Meinel

229

Enabling the Deployment of Virtual Clusters on the VCOC Experiment of the BonFIRE Federated Cloud
Raul Valin, Luis M. Carril, J. Carlos Mourino, Carmen Cotelo, Andres Gomez, and Carlos Fernandez

237

Towards a Scalable Cloud-based RDF Storage Offering a Pub/Sub Query Service
Laurent Pellegrino, Francoise Baude, and Iyad Alshabani

243

Datanode Optimization in Distributed Storage Systems
Xiaokang Fan, Shanshan Li, Xiangke Liao, Lei Wang, Chenlin Huang, and Jun Ma

247

 3 / 4 12 / 282

ERHA: Execution and Resources Homogenization Architecture
Guilherme Galante, Luis Carlos Erpen Bona, Paulo Antonio Leal Rego, and Jose Neuman Souza

253

Cloud based Dynamically Provisioned Multimedia Delivery: An Elastic Video Endpoint (EVE).
Alistair Blair, Gerard Parr, Philip Morrow, Bryan Scotney, Aaron McConnell, Steve Appleby, and Mike Nilsson

260

“cocoBox”: A Social File Cloud System for Collaboration
Ki-Sook Chung and Hyun-joo Bae

266

Powered by TCPDF (www.tcpdf.org)

 4 / 4 13 / 282

Proposed Joint Multiple Resource Allocation Method for Cloud
Computing Services with Heterogeneous QoS

Yuuki Awano Shin-ichi Kuribayashi

Dept. of Computer and Information Science Dept. of Computer and Information Science
Seikei University Seikei University

Musashino, Tokyo, Japan Musashino, Tokyo, Japan

us092008@cc.seikei.ac.jp kuribayashi@st.seikei.ac.jp

Abstract - This paper proposes to enhance the proposed joint
multiple resource allocation method so that it can handle multiple
heterogeneous resource-attributes. The basic idea is to identify
the key resource-attribute first which has the most impact on
resource allocation and to select the resources which provide the
lowest Quality of Service for the key resource-attribute as it
satisfies required Quality of Service. It is demonstrated by
simulation evaluations that the enhanced method can reduce the
total amount of resources up to 30%, compared with the
conventional methods. The enhanced method could be also
effective to the resource allocation in a hybrid-cloud in which
either a private-cloud or a public-cloud is selected depending on
the required security level.

Keywords - cloud computing; heterogeneous QoS; joint multiple
resource allocation; hybrid cloud.

1. Introduction

Cloud computing services are allow the user to rent, only
at the time when needed, only a desired amount of
computing resources (ex. processing ability, storage
capacity) out of a huge mass of distributed computing
resources without worrying about the locations or internal
structures of these resources [1]-[5]. The popularity of cloud
computing owes to the increase in the network speed, and to
the fact that virtualization and grid computing technologies
have become commercially available. It is anticipated that
enterprises will accelerate their migration from building and
owning their own systems to renting cloud computing
services, because cloud computing services are easy to use
and can reduce both business costs and environmental loads.

As cloud computing services rapidly expand their
customer base, it has become important to provide them
economically. To do so, it is essential to optimize resource
allocation under the assumption that the required amount of
resource can be taken from a common resource pool and
rented out to the user on an hourly basis. In addition, to be
able to provide processing ability and storage capacity, it is
necessary to allocate simultaneously a network bandwidth to
access them and the necessary power capacity. Therefore, it
is necessary to allocate multiple types of resources (such as
processing ability, bandwidth, and storage capacity)
simultaneously in a coordinated manner, instead of allocate
-ing each type of resource independently [6]-[8].

Moreover, it is necessary to consider not only the
required resource size but also resource-attributes in actual
resource allocation. Resource-attributes of bandwidth, for
example, are network delay time, packet loss probability, etc.
If it is required to respond quickly, bandwidth with a short
network delay time should be selected from a group of

bandwidths. Computation time is one of resource-attributes
of processing ability. References [6] and [7] consider a
model in which there are multiple data centers with
processing ability and bandwidth to access them, and
proposed the joint multiple resource allocation method
(referred to as “Method 3”).

The basic idea of Method 3 is to select a bandwidth with
the longest network delay time from a group of bandwidths
that satisfy the condition on service time. It is for
maximizing the possibility to accept requests later, which
need a short network delay time. It was demonstrated by
simulation evaluations that Method 3 can handle more
requests than the case where network delay time is not taken
into account, and thus can reduce the required amount of
resources by up to 20% [6],[7].

Method 3 takes into account only a single resource-
attribute of network bandwidth (namely, network delay
time). However, it is usually necessary to consider multiple
heterogeneous resource-attributes in a real cloud computing
environment. It is proposed to enhance the proposed
method, Method 3, to handle multiple heterogeneous
resource-attributes. The enhanced-Method 3 could be also
effective to the efficient resource allocation in hybrid clouds
[9]. In a hybrid cloud, transactions that require a critical
security are executed using private clouds only and other
transactions that require a normal security may be executed
using more economical public clouds. For the preliminary
evaluation, this paper assumes two types of resources
(processing ability and bandwidth), loss-system based
services and the static resource allocation.

The rest of this paper is organized as follows. Section 2
explains related works. Section 3 provides the resource
allocation model for cloud computing environments. Section
4 proposes to enhance the proposed joint multiple resource
allocation method, Method 3, to be able to handle multiple
heterogeneous resource-attributes. Section 5 describes
simulation evaluations which confirm the effectiveness of
the enhanced-Method 3 (referred to as “Method 3E”).
Finally, Section 6 gives the conclusions.

2. Related work

Resource allocation for clouds has been studied very
extensively in References [10]-[19]. References [14],[15]
have proposed automatic or autonomous resource
management in cloud computing. Reference [10] has
proposed the heuristic algorithm for optimal allocation of
cloud resources. Reference [16] has presented the system
architecture to allocate resources assuming heterogeneous
hardware and resource demands. References [11] and [12]

1Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 14 / 282

have proposed market-oriented allocation of resources
including auction method. Reference [13] has proposed to
use game-theory to solve the problem of resource allocation.
Energy aware resource allocation methods for clouds have
been proposed [18]-[20].

However, most of conventional studies on resource
allocation in a cloud computing environments are treating
each resource-type individually. To the best our knowledge,
the cloud resource allocation has not been fully studied
which assumes that multiple resources are allocated
simultaneously to each service request and there are multiple
heterogeneous resource-attributes for each resource-type.

3. Resource allocation model for cloud comput

-ing environments

3.1 Resource allocation model

The resource allocation model for a cloud computing
environment is such that multiple resources with
heterogeneous resource-attributes taken from a common
resource pool are allocated simultaneously to each request
for a certain period. For the preliminary evaluation, this
Section considers two resource-types: processing ability and
bandwidth. It is assumed that the physical facilities for
providing cloud computing services are distributed over
multiple data centers, in order to make it easy to increase the
number of the facilities when demand increases, to allow
load balancing, and to enhance reliability.

The cloud resource allocation model that incorporates
these assumptions is illustrated in Figure 1. Each center has
servers which provide processing ability and network
devices which provide the bandwidth to access the servers.
The maximum size of processing ability and bandwidth at
center j (j=1,2,..,k) is assumed to be Cmaxj and Nmaxj
respectively. The different resource-attributes of
processing ability and network bandwidth could be provided
by each center.

When a service request is generated, one optimal center is
selected from among k centers, and the processing ability
and bandwidth in that center are allocated simultaneously to
the request for a certain period. If no center has sufficient
resources for a new request, the request is rejected. These

are the same as those in References [6]-[8].

3.2 Guidelines of joint multiple resource allocation
assuming multiple heterogeneous resource-attributes

In general, a cloud computing environment includes
multiple resource-types and multiple resource-attributes for
each resource-type. For example, resource-attributes of
bandwidth are network delay time, packet loss probability,
required electric power capacity, etc. If a request requires
quick-response, it is needed to select one with a short
network delay from a group of bandwidths. On the contrary,
if a request requires a less power consumption, it is needed
to select a bandwidth whose power consumption is small.
Resource-attributes of processing ability are computation
time, memory size, required electric power capacity, etc.
In a hybrid cloud, resource-attributes may additionally
include the levels of security (critical or normal) and
reliability.

The center selection algorithm with Method 3 proposed
in References [6] and [7] is explained with Figure 2.
Figure 2 is just an example. There are five centers in
different locations, and that each center has two
resource-types: bandwidth and processing ability. In Figure
2(1), centers are divided to multiple groups according a
resource-attribute (network delay time) of bandwidth. That
is, centers in Group #1 can provide bandwidth with short
delay and centers in Group #2 provide bandwidth with long
delay. If a request’s requirement on response is not so
stringent, Method 3 first tries to select a center from Group
#2, and only when there is no center with appropriate
resources available in this group, it selects a center from
Group #1. This approach makes it possible to meet more
future requests later, which need a short delay. We next
consider center groups taking a resource-attribute
(computation time) of processing ability into consideration,
as shown in Figure 2(2). If a request has no stringent
requirement on computation time, Method 3 first attempts to
select a center from Group #4, and only when there is no
center with appropriate resources available in this group, it
selects a center from Group #3.

In this way, the priority with which a center group is
selected differs between Figure 2(1) and Figure 2(2). If a
request with no strong requirement is allocated to a center 4
or center 5 taking only one resource-type into consideration,
for example, then fewer resources are likely to be available
later when requests with a stringent requirement on
processing ability are generated. Therefore, it is necessary
to take both multiple resource-types and multiple
resource-attributes into consideration simultaneously in
selecting a center. Moreover, it would be necessary to
consider a new center group if requests with a stringent
requirement on both bandwidth and processing ability are
generated. Even if center groups are created taking all the
resource-types and resource-attributes into consideration, the
combinations of different requirements can be too numerous
to be manageable, and it would not be easy to develop a
guideline as to the sequence of priority in which center
groups are to be selected.

Figure 1. Resource allocation model for cloud computing
environments

Cmaxj: Maximum size of processing ability at center j
Nmaxj: Maximum size of bandwidth at center j

: Servers (Processing ability) : Link (Bandwidth)

Network

Center 1

・・Cmax1

Nmax1

Cmax2

Nmax2

Cmaxk

Nmaxk

Center 2 Center k

2Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 15 / 282

Therefore, the simplified algorithm adopted by the
authors in References [6] and [7] would be also applicable
here.
 The above guidelines could also be effective to the
resource allocation in a hybrid-cloud. In hybrid-cloud, either
a private or a public cloud will be selected depending on the
required levels of security or reliability, as shown in Figure 3.
Requests that require a normal security should be allocated
to the public cloud first, and then to the private cloud so that
the resources in the private cloud can be kept available for
future requests that require a critical security. It turns out
that security level or reliability level need to be considered
as one of resource-attributes.

4. Enhanced joint multiple resource allocation
supporting multiple resource-attributes

4.1 Principle

As discussed in Section 3.2, it is difficult to take multiple
resource-types and multiple resource-attributes for each
resource-type into consideration simultaneously. It is

proposed to apply the same principle adopted in References
[6] and [7]. That is, it is proposed to allocate resources
focusing on the most important resource-attribute (hereafter
referred to as the “key resource-attribute”). The key
resource-attribute is decided by the system (not by the user),
and can be different for each request.

The resource allocation algorithm of enhanced Method 3
(Method 3E) is explained in the next Section 4.2, which
adopts the concept of key resource-attribute above.

4.2 Resource allocation algorithm of Method 3E
4.2.1 Identification of key resource-attribute

An attribute with the lowest relative amount of
resource is selected as key resource-attribute from among
multiple resource-attributes for all resource-types. The
relative amount of resource, Mg, for resource-attribute g is
calculated by

Mg =d2g/d1g (1)

where d1g is the sum of resources which offer
resource-attribute g and all the resources which offer higher
quality of service (QoS) than resource-attribute g. d2g is
the expected amount of resources with resource-attribute g
required by all requests.

For example, if there are bandwidths with network delay
time of 50ms and those with network delay time of 200ms,
d1g for network delay time of 200ms includes not only the
amount of bandwidths with network delay time of 200ms
but also the amount of bandwidths with network delay time
of 50ms.

It is also proposed that resource-attribute g is not
selected as key resource-attribute when the ratio of the
number of requests requiring resource-attribute g to the total
number of requests is lower than a certain value (e.g., 10%).
4.2.2 Identification of a center group

Here we focus on the resource-type associated with the
key resource-attribute, and classify center groups into three
categories: Center Group X, which contains resources that
provide lower QoS than that provided by the key
resource-attribute, Center Group Y, which contains resources
that provide QoS equal to that provided by the key
resource-attribute, and Center Group Z, which contains
resources that provide higher QoS than that provided by the
key resource-attribute. In some cases, Center Group X or
Center Group Z may not exist.
4.2.3 Selection of a center
- A center that can provide multiple resources required by

the request is selected. If there is no center that can satisfy
the requirements, the request is rejected.
- If there are several selectable centers in the center group,

one is selected either at random or sequentially.
- A center is selected as follows depending on the QoS
required by the request.
i) If the request requires lower QoS than that associated

with the key resource-attribute, it is tried to select a center in
Center Group X. If there is no selectable center in the group,

Figure 2. Example of resource allocation assuming
heterogeneous resource-attributes

(1) Grouping with resource-attribute of bandwidth

Center 2 Center 4 Center 3Center 5 Center 1

Group #3 Group #4

Center 2 Center 1Center 3 Center 5

Group #1 Group #2

Bandwidth
with short delay

Center 4

(2) Grouping with resource-attribute of processing ability

Bandwidth
with long delay

Processing ability
with short computation

time
Processing ability

with long computation
time

Bandwidth

Processing
ability

Bandwidth

Processing
ability

Cmax5

Nmax5

Cmax3

Nmax3

Figure 3. Services with both private and public
cloud

Public cloudPrivate cloud

Requests which require
critical security

Requests which require
normal security

3Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 16 / 282

a selectable center in Center Group Y or in Center Group Z
is selected in this order.
ii) If the request requires the QoS associated with the key

resource-attribute, a center is selected in Center Group Y. If
there is no selectable center there, a center in Center Group
Z is selected.
iii) If the request requires higher QoS than that associated

with the key resource-attribute, it is tried to select a center in
Center Group Z.
- The multiple resources with required resource-attribute in
the selected center are allocated to the request simul-
taneously.
- When the service time to the request has expired, all the
resources allocated in Section 4.2.4 are released.

5. Simulation evaluation

5.1 Evaluation model
1) Method 3E proposed in Section 4.2 is evaluated using a
(self-made) simulator written in the C language.
2) For the preliminary evaluation, we consider only two
resource-types: processing ability and bandwidth.
‘Computation time’ is used as a resource-attribute of
processing ability and ‘network delay time’ as that of
bandwidth here.
3) Figure 1 with k=3 is assumed as the resource allocation
model. That is, there are three centers, Centers 1, 2 and 3,
which provide resources with different resource-attributes as
follows:
<Attribute: Computation time>

- long for Centers 1 and 3
 - short (referred to as ‘high_1’) for Center 2
< Attribute: Network delay time>

- long for Centers 1 and 2
 - short (referred to as ‘high_2’) for Center 3

Any attribute other than high_1 or high_2 is referred to as
‘normal’ in this Section.
4) Three types of requests are considered here:
<Type_1> Requests that can be satisfied with attribute

‘normal’ for both computation time and network delay time.
Selectable resources exist in any center. The probability at
which type_1 request occurs is designated as q1.
<Type_2> Requests that can be satisfied only with attribute

‘high_1’ for computation time, but can be satisfied with
attribute ‘normal’ for network delay time. Selectable
resources exist only in Center 2. The probability at which
type_2 request occurs is designated as q2.
<Type_3> Requests that can be satisfied only with attribute

‘high_2’ for network delay time, but can be satisfied with
attribute ‘normal’ for computation time. Selectable resources
exist only in Center 3. The probability at which type_3
request occurs is designated as q3 (q1+q2+q3=1).
5) When a new request is generated, one appropriate center
is selected according to the resource allocation algorithm
(Method 3E) in Section 4.2 and then both processing ability
and bandwidth from that center is allocated to the request
simultaneously. For the purpose of comparison, the proposed

method, Method 3, and Round Robin method (referred to as
“RR Method”) in which a center is selected in sequence, are
also evaluated in the simulation. Method 3, which does not
have the concept of key resource-attribute, considers only
network delay time here.
6) The size of required processing ability and bandwidth by
each request is assumed to follow a Gaussian distribution
(dispersion is 5). Let C and N be the averages of the
distributions of processing ability and bandwidth
respectively.
7) The intervals between requests follow an exponential
distribution with the average, r. The length of resource
holding time, H, is constant. All allocated resources are
released simultaneously after the resource holding time
expires.
8) The pattern in which requests occur is a repetition of
{C=a1, N=b1; C=a2, N=b2; …; C=aw, N=bw } , where w is the
number of requests that occur within one cycle of repetition,
au (u=1~w) is the size of C of the u-th request, and bu
(u=1~w) is the size of N of the u-th request.

5. 2 Simulation results and evaluation

The simulation results are shown in Figures 4, 5 and 6.
The horizontal axis shows the probability q1 at which type_1
request occurs. The value of q2 and q3 is set to (1- q1)/2
respectively. The vertical axis of Figures 4 and 5 shows the
average request loss probability. The vertical axis of Figure
6 shows the ratio of required amount of resources by Method
3E and those by RR method, on the condition of keeping the
same average request loss probability. Figure 4(1) shows
evaluation results for the case where the request generation
pattern is uniform. Figure 4(2) shows the case where it is
uneven (i.e., rise and fall in anti-phase). Figure 5 is
intended to evaluate the impact of the unevenness of the
total amount of resources between centers. While the total
amount of resources in each center is the same in Figure 4,
the total resource amount of Center 3 is twice that of Center
1 or Center 2 in Figure 5. Figure 5(1) and 5(2) show the
total average request loss probability and the request loss
probability for each request-type respectively. The
parenthesis following Method 3 or Method 3E in Figure 5
indicates the request-type.

The following points are clear from these Figures:
i) Except for the area near q1=1.0 (i.e., the area where

almost all requests are type_1), the request loss probabilities
of Method 3E and Method 3 are smaller than that of the RR
method by up to 30%. This tendency is effective regardless
of the request generation pattern.

<Reason> Even when requests are type_1, RR method
tends to select Center 2 or Center 3 more often compared
with Method 3E or Method 3. The reason why there is not
much difference in results between Methods 3E and 3 is that
type_1 requests use almost all resources in Centers 1, 2 and
3 when q1 comes close to 1.0.

ii) Except for the area near q1=1.0, the request loss
probability of Method 3E is smaller than that of Method 3
when the total resource amount used by each request-type is

4Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 17 / 282

dif
bet
Me

<
key

fferent. The d
tween differen
ethod 3E.
< Reason> M
y resource-at

differences in
nt request-type

Method 3, whic
ttribute and

n the request
es can also be

ch does not ha
takes attrib

t loss probab
e made smalle

ave the concep
ute high_2

bility
er by

pt of
into

con
if th
The
decr
loss

nsideration, go
he appropriat
erefore, the a
reases rather t
s probability o

oes on to selec
e resources a
mount of res
than that in Ce
of type_2 requ

ct Center 2 fo
are not availa
sources availa
enter 3. As a r

quests increase

r type_1 requ
able in Cente
able in Cente
result, the requ
es, which requ

uests
r 1.
er 2
uest
uire

5Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 18 / 282

resources with attribute high_1 (key resource-attribute here).
In Method 3E, the key resource attribute is set to

attribute high_1, and when type_1 requests cannot use
Center 1, they attempt to select Center 3, which has more
resources. As a result, more resources are kept available in
Center 2 than in the case of using Method 3, and it is
possible to reduce the request loss probability of type_2
requests. As the value of q1 becomes small, the number of
type_2 requests to handle increases and the request loss
probability of type_2 will increase also by Method 3E.

iii) The total amount of resources required for keeping the
same request loss probability could be smaller with Method
3E than with RR method by up to 30%.

6. Conclusion and Future Work

This paper has enhanced the proposed joint multiple
resource allocation method (Method 3) so that it can handle
multiple heterogeneous resource-attributes. The basic idea
of the enhanced Method 3 (Method 3E) is to identify the
key resource-attribute first which has the most impact on
resource allocation and to select the resources which provide
the lowest QoS for the key resource-attribute as it satisfies
required QoS, so that future requests with more stringent
requirement can still find available resources.

It has been demonstrated by simulation evaluations that
Method 3E can reduce the total amount of resources up to
30%, compared with the conventional methods. Method 3E
could be also effective to the resource allocation in a
hybrid-cloud in which either a private-cloud or a
public-cloud is used depending on the required level of
security.

For the preliminary evaluation, we have limited the
numbers of request types, centers, resource-types, and
resource-attributes to small numbers in our simulation
evaluation. We will make an evaluation with larger
numbers of these to confirm the effectiveness of the
proposed method and to identify the conditions in which the
proposed method is effective. Moreover, the value of
resource-attribute related to bandwidth may change with the
location where a request occurs. For example, the procedure
to regulate the access from a distant location temporarily
when the amount of available resources are less than the
threshold value is required to be studied.

Acknowledgement

This work was supported in part by the Japan Society
for the Promotion of Science through a Grant-in-Aid for
Scientific Research (C) (21500041).

References

[1] G.Reese: “Cloud Application Architecture”, O’Reilly&
Associates, Inc., Apr. 2009.
[2] J.W.Rittinghouse and J.F.Ransone: “Cloud Computing:
Imprementation, Management, and Security”, CRC Press LLC,
Aug. 2009.

[3] P.Mell and T.Grance, “Effectively and securely Using the
Cloud Computing Paradigm”, NIST, Information Technology
Lab., July 2009.
[4] P.Mell and T.Grance： “The NIST Definition of Cloud
Computing” Version 15, 2009.
[5]Z.Hang, L.Cheng, and R.Boutaba, “Cloud compuing:
state-of-the-art and research challenges”, J Internet Serv Apl, Jan.
2010.
[6] S.Kuribayashi, “Optimal Joint Multiple Resource Allocation
Method for Cloud Computing Environments”, International Journal
of Research and Reviews in Computer Science (IJRRCS), Vol. 2,
No.1, Feb. 2011.
[7] S.Tsumura and S.Kuribayashi: “Simultaneous allocation of
multiple resources for computer communications networks”, In
Proceeding of 12th Asia-Pacific Conference on Communications
(APCC2006), 2F-4, Aug. 2006.
[8] K.Mochizuki and S.Kuribayashi, “Evaluation of optimal
resource allocation method for cloud computing environments with
limited electric power capacity”, Proceeding of the 14-th
International Conference on Network-Based Information Systems
(NBiS-2011), Sep. 2011.
[9] H.Zhang, G.Jiang, K.Yoshihira, H.Chen, and A.Saxena,
“Intelligent workload factoring for a hybrid cloud computing
model”, Proceedings of the 2009 IEEE Congress on Services
(Services’09), July 2009.
[10] B. Soumya, M. Indrajit, and P. Mahanti, “Cloud computing
initiative using modified ant colony framework,” in In the World
Academy of Science, Engineering and Technology 56, 2009.
[11]R.Buyya, C.S. Yeo, and S.Venugopal, “Market-Oriented Cloud
Computing:Vision, Hype, and Reality for Delivering IT Services as
Computing Utilities”, Proceedings of the 10th IEEE International
Conference on High Performance Computing and Communications
(HPCC-08), Sep. 2008
[12] W.Y. Lin, G.Y. Lin, and H.Y.Wei, “Dynamic Auction
Mechanism for Cloud Resource Allocation”, 10th IEEEACM
International Conference on Cluster Cloud and Grid Computing
(2010)
[13] G.Wei, A.V. Vasilakos, Y.Zheng, and N.Xiong, “A
game-theoretic method of fair resource allocation for cloud
computing services”, The journal of supercomputing, Vol.54, No.2.
[14] Yazir, Y.O., Matthews, C., Farahbod, R., Neville, S.,
Guitouni, A., Ganti, S., and Coady, Y., “Dynamic Resource
Allocation in Computing Clouds through Distributed Multiple
Criteria Decision Analysis”, 2010 IEEE 3rd Internatiuonal
Conference on Cloud Computing (CLOUD 2010), July 2010.
[15] B.Malet and P.Pietzuch, “Resource Allocation across Multiple
Cloud Data Centres”, 8th International workshop on Middleware for
Grids, Clouds and e-Science. (MGC'10), Nov. 2010.
[16] G.Leey, B.G.Chunz, and R.H.Katz, “Heterogeneity-Aware
Resource Allocation and Scheduling in the Cloud”, HotCloud '11
June. 2011.
[17] B. Rajkumar, B. Anton, and A. Jemal, “Energy efficient
management of data center resources for computing: Vision,
architectural elements and open challenges,” in International
Conference on Parallel and Distributed Processing Techniques and
Applications, Jul. 2010.
[18] M. Mazzucco, D. Dyachuk, and R. Deters, “Maximizing
Cloud Providers’ Revenues via Energy Aware Allocation Policies,”
in 2010 IEEE 3rd International Conference on Cloud Computing.
IEEE, 2010.
[19] K.Mochizuki and S.Kuribayashi, “Evaluation of optimal
resource allocation method for cloud computing environments with
limited electric power capacity”, Proceeding of the 14-th
International Conference on Network-Based Information Systems
(NBiS-2011), Sep. 2011.

6Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 19 / 282

Guidelines for Increasing the Adoption of Cloud Computing within SMEs

Marius MARIAN

Department of Computers and Information Technology

University of Craiova

Craiova, Romania

marius.marian@cs.ucv.ro

Ileana HAMBURG

Institut Arbeit und Technik

Westfälische Hochschule

Gelsenkirchen, Germany

hamburg@iat.eu

Abstract — This document is part of a larger effort meant to

define a set of guidelines useful for the fast adoption of cloud

computing and social media technologies within small and

medium enterprises (SMEs) in European Union. The topic

under scrutiny is how SMEs should approach and what they

should do when embracing these new technologies, and also

what to know about their potential impact on the SMEs

businesses.

Keywords: SME, guidelines, cloud computing.

I. INTRODUCTION

Cloud computing is not a new technology, but rather a
natural evolution of efficient using and combining several
modern technologies. Computing power, data storage and
internetworking resources have all been put into a novel
context and consequently, transformed into services (either
separately or taken together). The paradigm in cloud
computing is based on an old commercial approach – on-
demand pay per use – in which you better rent a service for a
specific period of time instead of buying the support
infrastructure (utilities included), building a solution and
administering it all by yourself. The cloud service providers
(CSPs) promise reliable and configurable resources, made
available promptly to consumers with a minimum effort and
involvement on their behalf.

Small and medium enterprises (SMEs) are – as everyone
else is – interested in reducing costs, and remaining
competitive. Also, green computing is getting momentum
and SMEs are targeting the issue too. Cloud computing is
able to offer solutions to these aspects obviously for a price;
the pay per use approach encourages a responsible behavior
and maximum efficiency for what concerns consumption of
resources and energy. In order to decide whether to pay that
price and go all the way through, SMEs need guidance and
knowledge of what are the best practices when approaching
cloud computing technologies. This paper is about a work in
progress on this topic emphasizing the importance of cloud
computing for SMEs and the necessity to provide SMEs
decision makers with guidelines and best practices.

II. MOTIVATION

SMEs are socially and economically important, since
they represent 99% of all enterprises in the EU, employ more
than 90 million people, and contribute to entrepreneurship
and innovation [1], [2]. In Germany alone, there are about

3.2 million SMEs, most of them regionally anchored.
Significant international, social and economic changes like
globalization, market competition, technological innovation,
the European Union enlargement, and particularly, the last
financial crises affect the situation of SMEs; they need
innovative and sustainable approaches to survive and be
competitive. But most of European SMEs have shortage of
financial resources and of skilled staff, no sustainable ICT
(Information and Communication Technologies) strategies,
have difficulties with the management of missing
knowledge, and a low transfer of knowledge to improve the
effectiveness of their work tasks, have not enough
knowledge of policies of communication and cooperation in
research and production. SME staff is often frustrated of
constantly missing out on critical internal information due to
complicated existing collaboration tools requiring users a lot
of work to search out information necessary to their daily
work tasks and other needs [3], [4].

Last developments in cloud computing and a most
structured approach to social media in the work place can
change this situation. The managers can select employees to
form individual teams for given business activities, the teams
can work together with a greater efficiency, and employees
can seek expert advice across departments, share, and
download updated documents. The real-time collaboration
supported by the new approach of cloud computing and
social media enables individuals and teams to reduce the
time previously wasted searching through inboxes or in file
servers for important documents or content. Two studies
carried out in Germany (within the European-funded projects
ReadiSME – http://www.readisme.com, and NetKnowing
2.0 – http://www.netknowing.com) show that about 70% of
SMEs use standard software what is an advantage because
most services offered by CSPs are standard.

But in connection with Software as a Service (SaaS – see
also section III) [5], the results of the studies show that 30%
of ICT sector SMEs use SaaS, 75% of SMEs from other
sectors did not have plans for using SaaS till the end of 2011.

Some causes that are often mentioned are that in many
SMEs, particularly small ones, there is only one decision
maker, there are security problems of outsourcing (85%),
there is a lack of trust in what concerns the CSP (75%), there
are concerns related to the integration of SaaS with the
existing ICT in the company (30%), there is no support for
large bandwidth Internet connectivity in the company

7Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 20 / 282

(81.2%), there are no precise rules in the company about the
issue of social media and social networks.

European Network and Information Security Agency
(ENISA) is also conducting a security risk assessment of
cloud computing technologies aimed at giving advice to
SME's on the most important risks in adopting cloud
computing technologies, as well as ways to address those
risks. The timeframe of the survey was prolonged from 2010
to 2012 and will investigate in deep the actual needs,
requirements and expectations of the SMEs for cloud
computing services. Up to now the ENISA survey [1]
(published and updated regularly) focused on topics such as
the driving forces towards adopting the cloud, the size and
the geo-location of the company, the cloud models, types,
and services of potential interest, the possible use of multiple
CSPs, the recovery options in case of disasters and incidents,
and obviously the main concerns facing such a paradigm
shift.

III. CLOUD COMPUTING SERVICES FOR SMES

In literature, there are clearly delimited three main
classes of cloud computing services. Additionally, there exist
other newly-defined classes that appeared as variants or
reinterpretations of the main classes. Therefore, we have
Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), Software as a Service (SaaS). All these services are
available remotely via some communication channel and will
require a payment for use (even though there are some free
services available, especially in what concerns e-mail and
social media web-based applications).

The first service made available by most CSPs was IaaS.
In practice, it is a complete virtual machine running a
specific operating system. For SMEs the suspicion regarding
the multi-tenancy/sharing of resources is alleviated since the
level of control and the possibility to define perimeters of
resources among tenants is easier to achieve with this class
of service. As said, the fundamental unit in IaaS is the virtual
machine that is in most cases a server. A CSP may provide
depending on the specific business of a customer four
subclasses of IaaS: vendor-managed private cloud, dedicated
hosting, hybrid hosting, and cloud hosting.

In a vendor-managed private cloud, the client rents a
number of physical servers placed in the same area of the
data center so that they are as separate as possible with other
hardware and internetworking. This IaaS configuration is the
most expensive but also it is considered the most secure. The
flexibility and scalability of the solution are poor therefore
an SME should be able to estimate and know in advance the
needed infrastructure. All changes up the scale are slow and
require interaction and timely scheduling with the CSP. This
scenario works best for large enterprises building their own
data centers and not for SMEs.

Dedicated hosting is for clients requiring one or more
physical servers anywhere within a data center, available on-
demand. In this service configuration, even though the
hardware and internetworking is mixed with other servers
from the data center, a particular SME will not share its
rented servers with any other tenant in the CSP cloud. This is
less expensive than the previous configuration and is both

scalable and flexible as long as the CSP provisioning of
resources is well handled for the peak periods.

An intermediate service configuration between the two
above is hybrid hosting. With it, a client pays for a mix of
costly physical servers (they may be occasionally required to
be located in the same perimeter within the CSP’s data
center) and some inexpensive virtual server instances. The
sensitive data and the applications of the SME run on the
physical servers, while the rest of the data is stored in the
virtual servers. The solution is flexible and dynamically
scalable when it comes to renting more virtual server
instances during peak hours. Physical servers may be rented
but only if the customer accepted them to be anywhere
within the CSP’s data center.

The last IaaS configuration is what everyone expected
from the cloud, technical and environmental efficiency. Lots
of virtual server instances available on-demand with a high
degree of scalability and flexibility in use, and at a very low
price. The reverse of the medal is that a customer shares all
the hardware and internetworking resources with the other
tenants. A security and privacy perimeter can be achieved
only at virtual server instance. It is the best commercial offer
for SMEs and start-ups. SMEs may want to consider it since
they do not have the capital and (perhaps, they are not
willing to invest in) the know-how for the hardware-software
infrastructure and management. Start-up companies find
themselves in a happy scenario with the cloud since this
could be a perfect business incubator at a very low initial
investment cost.

PaaS is the second class of services in which SMEs may
acquire only the specific platform they need. It is an
extension of the IaaS to accommodate the middleware and to
improve the performance in using it. It may be for example a
web development platform containing the web/application
server, the integrated development environment, the
associated database and all additional utilities for
development and testing. The tenants are sharing a large part
of the middleware, and the CSPs can no longer distinguish
some clear perimeters among them. Problems typically
appear when the middleware is not as robust as expected or
the shared databases are not well configured. The downside
of this happening is that one customer may influence
negatively the quality of the PaaS observed by the others.

Many European-based SMEs and start-up companies in
the field of IT development and research may be interested in
renting such highly customized platforms at acceptable low
costs. Highly interested could be for example start-up firms
working to deliver mobile applications for the extremely
crowded market of smart mobile devices. They could then
use this cloud service and produce and eventually sell their
own on-line SaaS applications. Careful attention should be
paid by the SMEs to service level agreements (SLA), to
protection mechanisms enabled by the CSP for its tenants,
and to business continuity (BCP) and disaster recovery plans
(DRP).

SaaS is the third main class of services, and with it CSPs
offer SMEs the possibility of acquiring on-demand usage-
time for different types of software services. This includes a
wide range of applications: office tools, graphic utilities, data

8Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 21 / 282

storage facilities, etc. SaaS is dynamically scalable, device
independent (giving no access to the hardware for the tenant)
and most of the applications are collaborative, allowing thus
multiple users to share documents and work on them
concurrently. Adding social media services through SaaS can
only enhance this collaboration. The most common problems
with this type of service are generated by the authentication
mechanism, the management of authentication credentials by
end users, the access control, the lack of securely tunneled
communications, or intrinsic faults with the web applications
used.

A. Advantages

They can be summarized in remote accessibility,
flexibility, scalability, security, and environmentally
friendly. Flexibility and scalability means that SMEs will
only pay and use the resources they need and for the time
they need them. CSP promise that provisioning and de-
provisioning of resources will be transparent and easy to
handle. Then, accessibility means that the business of the
SME is no longer restricted to a particular location. Actually,
for certain areas of business this is even more beneficial for
the employees could work remotely and thus telecommuting
and contributing to green computing. Most internal company
servers use only approximately 30% of their capacity while
in a large cloud data center the percentage of utilization goes
up to circa 80% [8]. On a European scale this means that
energy and consequently, carbon footprint reductions can be
made. Furthermore, recent research in the field of
microprocessors (e.g. Intel Atom, AMD Geode, VIA C7,
etc.) proves that cloud computing users may use lower-
power computers that are performing sufficiently to run
cloud applications, thus cutting down the electricity bills and
individual carbon emission footprints. Security as strange as
it may sound has now a better chance to be well
implemented (right from the start) than in any previous
computing approach. In fact, Security as a Service is gaining
momentum since it may represent a worldwide
implementation of security standards, frameworks and
regulations that will eventually minimize the existing
security implementation differences or absence.

B. Concerns and challenges

First concern for SMEs is raised by the multi-tenancy
property of the cloud. As we have seen, there are ways to
counter this concern by acquiring only particular
configurations of IaaS. Then, there is the performance and
quality of the services offered by the CSP. On this issue,
SMEs adopting the cloud into their business should carefully
elaborate on the SLAs signed with the CSP. Another security
concern is that users with administrative privileges on the
side of the CSP might take an unauthorized look at their data.
Procedures, frameworks, agreements and audits may
facilitate a reasonable level of trust between SMEs and CSP.
Associated with this last point are also de-provisioning of
data and the way in which data are handled when SMEs are
leaving the cloud plus the data geo-location. Data geo-
location might create legal and compliance problems for
SMEs when the CSP is not clear about where they have their

facilities. A Buy European approach would settle in a
positive manner this issue in tandem with a stimulus offered
to CSPs to have their installations on EU territory only [9].

IV. CLOUD ADOPTION RECOMMENDATIONS FOR SMES

In what follows we will try to delineate some of the
major areas of interest for SMEs when approaching the
cloud. This set of cloud adoption guidelines that will be
devised for European SMEs are based on the Security
Guidance of CSA (Cloud Security Alliance) [10], ENISA
cloud analyses, and Jericho Forum commandments [11], and
will further elaborate on other areas of interest for SMEs.
The cited documents are broad and thorough analyses of the
subject. We believe that SMEs in particular would be better
supported and encouraged to take advantage of the cloud if
there were some specific documents containing the best
practices and the guidelines for adopting the cloud into their
business. Furthermore, standards, frameworks, benchmarks
and regulations at EU level would help refining these
guidelines and perhaps, they will also benefit from the ideas
contained in these guidelines. CSA contributions in what
concerns cloud security and privacy (Trusted Cloud
initiative, Cloud Control Matrix, and Certification of Cloud
Security Knowledge) are giving hints that this is the
direction to be followed.

European SMEs are small in number of people employed
(up to a maximum of 250 persons). It goes without saying
that they would primarily invest their capital in improving
their business process (production, services, etc.) and they do
not always have the know-how to manage in-house the IT
support infrastructure. In fact, ENISA found out that
European SMEs are interested first of all in avoiding capital
expenditure in hardware, software, IT support, information
security (68.1% of the respondents). On the second place
were the scalability and flexibility of required IT resources
(63.9%), and on the third position were business continuity
and disaster recovery capabilities (52.8%). ENISA survey
proved that the highest percentage of SMEs willing to move
into

The SMEs decision makers must understand well and
fast what differences exist among different cloud computing
solutions available on the market, what their costs are, what
the security and privacy impacts are, and how their
availability and acquisition may add value to their particular
business. Decision factors must also decide what really
matters for the SME business from a data security and
privacy stand point and if there are any guarantees from the
CSP to ensure data security and privacy (if possible,
cryptography should be ubiquitous in the cloud or negotiated
when performance reasons demand so, such that all data at
rest or in transit be encrypted). This preliminary analysis
must be performed just before initiating any other step. A
related questionnaire for the decision makers would greatly
simplify putting the things in context and providing some
quick analytical results.

Certifications and benchmarking of the various CSPs
would also be helpful. CSP transparency and openness for
external auditing of their internal processes is also a sign of
trust and a great control mechanism for SMEs. Auditing

9Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 22 / 282

preserves the level of trust of customers, and SMEs should
investigate negotiate and pay attention to the terms agreed in
contracts and SLAs concerning audit, monitoring, event log
reviews, physical inspection of the CSP facilities, etc.

Special attention will be paid within the guidelines also
to the legal and compliance implications of moving into the
cloud for the SMEs. Proposals must be drafted towards a set
of common practices to be followed when signing contracts
and accepting SLAs. Awareness and dissemination
instruments (social media) will be used to publish and bring
into discussion the findings and real-case SME cloud
migration scenarios. Cloud migration must be investigated
not only at the first adoption of the paradigm, but also for
cases when an SME decides to switch and move from one
CSP to another. This investigation has legal, financial (on
short and long terms) and technical implications related to
deleting the data from the former cloud. Third trusted party
audits and confidentiality agreements must be enforced.

ENISA found out that SMEs are mainly concerned with
confidentiality of the corporate data, privacy, integrity and
availability of services and data. It is important that SMEs
rest assured by the CSP that their data will be private,
available, and untouched. SMEs will have to answer
themselves if they are ready to plan and enforce business
continuity in cooperation with the CSP. Incident response
and disaster recovery are related topics for which both CSPs
and SMEs will have to agree upon and put in practice. A
collection of best practices related to these topics will be
shared among SMEs.

V. CONCLUSIONS AND FUTURE WORK

It is expected that the European SMEs will lead the
global economic trend of adopting cloud computing
paradigm within their daily businesses. EU Commission
should further investigate through ENISA the need for a
clear legislation in the field of cloud computing as a public
utility of the following decade. Thus, a European Network of
Clouds can be built upon, and also, participating third party
CSPs could certify their services on various levels of
compliance with that EU cloud legislation. This would
encourage SMEs since trust is the base for economic
development and creating new opportunities.

We strongly believe that the cloud adoption by SMEs
could be further accelerated by establishing at least a set of
guidelines including some recommendations and a book of
good practices at European level. In our research, we have
not found anything similar so far.

Our next effort is thus aimed to developing a short
practical guide for using cloud computing and social media
within European SMEs and to discuss these guidelines by
conducting focused interviews with all the partners from the
NetKnowing 2.0 project. A second step will be to
disseminate these guidelines at European level also by using
the social media-based platform developed within the same
project and to organize moderated forums for discussing
(and further improving) the guidelines and other issues
concerning this topic. Last step is trying to apply the results
and findings in SMEs from project partner countries and to

identify specific areas of organizational improvements both
within European-based CSPs and SMEs consuming the
cloud-based services.

ACKNOWLEDGMENT

This work was supported by the strategic grant
POSDRU/89/1.5/S/61968, Project ID61968 (2009), co-
financed by the European Social Fund within the Sectorial
Operational Program Human Resources Development 2007
– 2013.

The studies have been carried out within the innovation-
transfer projects ReadiSME and NetKnowing 2.0 supported
by the EU LLP Leonardo da Vinci sub-programme.

REFERENCES

[1] I. Hamburg, “Supporting cross-border knowledge transfer
through virtual teams, communities and ICT tools”, in Robert
J. Howlett (ed.) “Innovation through knowledge transfer”,
Springer, 2011, Berlin, Germany, pp. 23 – 29.

[2] G. Attwell, D. Dirckinck-Holmfeld, P. Fabian, A. Kárpáti, P.
Littig, “E-Learning”, in “e-Learning in Europe – Results and
Recommendations”, Thematic Monitoring under the
European Union Leonardo da Vinci Programme, 2003, Bonn,
Germany.

[3] T. Hall, I. Hamburg, “Readiness for knowledge management,
methods und environments for innovation”, in Emma O'Brien,
Seamus Clifford, Mark Southern, (eds.): “Knowledge
management for process, organizational and marketing
innovation: tools and methods”, Hershey Information Science
Reference, 2011, pp. 1 – 15.

[4] I. Hamburg, “eLearning 2.0 and social, practice-oriented
communities to improve knowledge in companies”, in Ortiz
Bellot, G., Sasaki, H., Ehmann, M. & Dini, C. (eds.),
Proceedings of The Fifth International Conference on Internet
and Web Applications and Services (ICIW 2010), May 9 –
15, 2010, Barcelona, Spain, pp. 411 – 416.

[5] T. Haselmann, G. Vossen, “Software-as-a-Service in Small
and Medium Enterprises: An Empirical Attitude Assessment”,
Proceedings of the 12th International Conference on Web
Information Systems Engineering (WISE 2011), Springer,
October 12 – 14, 2011, Sydney, Australia.

[6] ENISA, “An SME Perspective on Cloud Computing – A
Survey,” November 2009, available on-line at
http://www.enisa.europa.eu/activities/risk-
management/files/deliverables/cloud-computing-sme-survey.

[7] R. Harms, M. Yamartino, “The economics of the cloud for the
EU public sector”, Microsoft white paper, November 2010,
available at http://www.microsoft.eu/Portals
/0/Document/EU_Public_Sector_Cloud_Economics_A4.pdf .

[8] J. Stanley, K.G. Brill, J. Koomey, „Four Metrics Define Data
Center Greennes”, Uptime Institute white paper, 2007,
available at http://uptimeinstitute.org/wp pdf/(TUI3009F)
FourMetricsDefineDataCenter.pdf .

[9] F. Etro, „The Economic Impact of Cloud Computing on
Business Creation, Employment and Output in Europe”,
International Think-Tank on Innovation and Competition
(INTERTIC), Review of Business and Economics, 2009,
available at http://www.intertic.org/Policy Papers/CC.pdf

[10] Cloud Security Alliance, „Security Guidance for Critical
Areas of Focus in Cloud Computing”, versiunea 3.0, 2011,
available at https://cloudsecurityalliance.org/guidance/
csaguide.v3.0.pdf

[11] Jericho Forum, „Jericho Forum Commandments”, available at
http://www.opengroup.org/jericho/commandments_v1.2.pdf

10Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 23 / 282

IDSaaS: Intrusion Detection System as a Service in Public Clouds

Turki Alharkan

School of Computing

Queen's University

Kingston, ON Canada

alharkan@cs.queensu.ca

Patrick Martin

School of Computing

Queen's University

Kingston, ON Canada

martin@cs.queensu.ca

Abstract - In a public cloud computing environment,

consumers cannot always just depend on the cloud provider’s

security infrastructure. They may need to monitor and protect

their virtual existence by implementing their own intrusion

detection capabilities along with other security technologies

within the cloud fabric. Intrusion Detection as a Service

(IDSaaS) targets security of the infrastructure level for a

public cloud (IaaS) by providing intrusion detection technology

that is highly elastic, portable and fully controlled by the cloud

consumer. A prototype of IDSaaS is described.

Keywords-Security; Cloud Computing; Intrusion Detection

System

I. INTRODUCTION

As the number of cyber attacks against social networks
and large internet enterprises continues to rise, organizations
are questioning the safety of moving their computational
assets toward the cloud [1]. Traditional network security
measurements face new challenges in the cloud such as
virtual machine intrusion attacks and malicious user
activities. New security measures are therefore needed to
increase users' level of trust in clouds. Currently, cloud
providers enforce data encryption for the storage containers,
virtual firewalls and access control lists [2]. However, cloud
consumers need to develop secure and customizable
solutions to comply with their application requirements. For
example, an attack classified as SQL injection with the
ability to control the host operating system targeting the
business application may wish to impose a combination of
application and system level policies [3]. The current
security mechanisms from the cloud providers are not
intended to enforce this level of constraints so additional
measurements are required.

In this paper, we propose the Intrusion Detection System
as a Service (IDSaaS) framework, which is a network and
signature based IDS for the cloud model. In particular,
IDSaaS is an on-demand, portable, controllable by the cloud
consumer and available through the pay-per-use cost model.
IDSaaS mainly targeting the IaaS level of the cloud.
However, other levels of the cloud can be monitored such as
the SaaS level. Therefore, the IDSaaS primary task is to
monitor and log suspicious network activities between
virtual machines within a pre-defined virtual network in
public clouds. A proof-of-concept prototype for the Amazon
EC2 cloud [4] is presented.

The major contribution for this work is a scalable and
customizable cloud-based service that provides cloud
consumers with IDS capabilities regardless of the cloud
model. IDSaaS administrators have the abilities to monitor
and react to attacks on multiple VMs residing within a
consumer’s Virtual Private Cloud (VPC) [5], and to identify
specific attacking scenarios based on their application needs.
Moreover, the system can adapt its performance to the traffic
load by activating the on-demand elasticity feature. For
example, the number of the available IDS Core components
can change based on the amount of traffic targeting the
protected business application. Furthermore, IDSaaS
components can be scaled to protect virtual machines
residing in different cloud regions. These features are
designed with the consideration of the cloud environment.

The rest of this paper is organized as follows: Section II
describes related work. Section III introduces the concept of
IDSaaS and outlines its main features. Section IV reviews
the IDSaaS main components and tools. A proof-of-concept
prototype implementation of IDSaaS in Amazon’s EC2
public cloud is presented in Section V. Section VI presents a
sample attack scenario and evaluates the operation of the
prototype IDSaaS. Finally, Section VII summarizes the paper
and discusses future work.

II. RELATED WORK

The introduction of IDS in the cloud is the focus of
several research projects. Each of these projects, however,
targets different service models of the cloud or pursues a
different goal. IDSaaS is intended to fill the gap in this
research area.

The Intrusion Detection based on Cloud Computing
(IDCC) architecture [6] was developed to achieve a global
monitoring view of the network resources and to help in
discovering coordinated attacks on local sites. This
architecture consists of two major parts, the local sites and
the global site. The purpose of the global site is to collects
the alerts generated by the local sites. When a threat is
detected by the global site, the particular local site security
administrator is informed so a proper action can be taken
such as blacklisting the source of the attack. This architecture
is more suitable for private clouds that are designed with the
needed infrastructure to allow global and local site nodes to
be communicated privately. As a result, cloud users at the
local sites are more dependent on the cloud provider's global
IDS administration. Furthermore, the process of

11Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 24 / 282

administrating the global and local sites raises some serous
security challenges.

The work by Mazzariello et al. [7] discusses various
deployments of existing IDS to an open source cloud
environment. The suggested model is to deploy multiple
IDSs next to every cloud physical controller, which monitors
a smaller portion of network traffic for a set of virtual
machines. The general setup for this approach requires deep
alteration of the physical implementation of the cloud assets,
which results in a strong dependency between the IDS
components and the cloud provider's infrastructure.
Consequently, the IDS administration process available to
the cloud consumers is limited and lacks customization.

The authors of Intrusion Detection In the cloud (IDC) [8]
introduce the concept of a partial IDS management for the
cloud users. The proposed architecture consists of several
sensors and a central management unit. This distributed-IDS
architecture is implemented in all of the three cloud
computing layers (Application layer, Platform layer and
System layer), which includes a combination of host-based
IDS (HIDS) and network-based IDS (NIDS) sensors. HIDS
is incorporated with every VM initialized by the user. On the
other hand, NIDS sensors are placed in each cloud layer to
monitor the management module of that layer. In the central
IDS management unit, alerts can be correlated and analyzed
from different sensors in different layers. Furthermore, cloud
users can configure which rules to use from the existing rule-
set based on their application needs. One of the main issues
with the IDC approach is the strong dependency between the
cloud users and the cloud provider substructure. The cloud
provider has to implement the main components of the
intrusion detection environment like the central management
unit, the integrated HIDS for each VM host, signature
databases, and the communication channels between VMs
and the IDS management unit. Cloud users are totally
dependent on the provider’s IDS infrastructure but they still
partially control the IDS management unit with limited
functionality. Moreover, there are serious privacy concerns
arising from integrating IDS components on every customer
virtual machine that is installed by the cloud provider.

Much of the proposed academic research on IDSs in the
cloud has focused on providing intrusion detection
mechanisms for specific security problems. The Autonomic
Violation Prevention System (AVPS) [9] concentrates on
self-protection against security policy violations generated
by privileged users. This goal is achieved by defining the
system's access policies and continuously monitoring the
internal traffic for any violations of these policies. The
authors of the AVPS framework suggest their system can be
deployed to virtual network environments like the cloud.
However, AVPS is not evaluated against many cloud
features. For example, scaling the system for multiple core
IDS nodes is needed to bear the increase in the traffic due to
heavy application requests. Moreover, the need to support
the distributed nature of the cloud by protecting multiple
applications in different cloud locations is absent.
Additionally, the work in [10] introduces a maneuvering
tactic to confront the denial of service attack on the cloud by
moving the attacked virtual machine to a safe datacenter.

Our main aim is to provide a general defense strategy by
protecting different levels of the cloud, and incorporating
tailored signatures for various security threats. IDSaaS is
intended to work in different cloud models and to provide
flexible user control of security.

III. IDSAAS IN THE CLOUD

A. Overview

Cloud consumers should not have to only depend on the
cloud provider’s security infrastructure. They need to be able
to monitor and protect their virtual existence by enforcing
additional security methods with other network security
technologies like firewalls, access control lists and data
encryption within the cloud fabric. Consequently, cloud
consumers require the capability to deploy IDSs within their
virtual boundaries.

IDSaaS, which is shown in Figure 1, assists cloud
consumers with securing their virtual machines by deploying
an intrusion detection system in public clouds. It protects
them against attacks initiated from any external source over
the internet in addition to those originating from inside the
cloud. Here, cloud consumers implement the applications
they want to protect in the form of Virtual Machine Instances
(VMI) within a secure virtual network (V-LAN).
Concurrently, IDSaaS components can be placed in the same
V-LAN to guard these valuable assets.

Figure 1. IDSaaS in the Cloud

B. IDSaaS Features

 IDSaaS provides the following features to cloud
consumers:

 On-demand Elasticity: Cloud consumers have
the ability to scale IDSaaS core components that
are responsible for discovering suspicious traffic
based on the traffic volume for the protected
business application.

 Portability: The IDSaaS model is implemented
as a collection of Virtual Machine (VM)
instances based on Xen virtualization [11].
Therefore, IDSaaS components can reside in
public or private clouds or even in multiple
regions within a single cloud.

12Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 25 / 282

 Full-Control: IDSaaS management,
functionality and architecture are independent
from the cloud provider. For example, an
IDSaaS administrator can deactivate a particular
IDS core node or enable a specific threat
signature definition.

 Customizable Signatures: IDSaaS is equipped
with predefined threat scenarios for faster and
more accurate detection rates. These scenarios
are represented in the form of rules. In addition,
IDSaaS users can write customized signatures
based on the nature of the defended application.
These rules can protect the application (SaaS),
the system (PaaS), and the network (IaaS) levels
of the cloud model. The grammar and examples
of threat signatures are given in Table I.

TABLE I. Signature Examples

 Reliability: IDSaaS has the ability to backup the
collected alerts with system configuration files
and store them in an off-cloud location. This
facilitates an efficient system recovery in the
case of failure.

IV. IDSAAS ARCHITECTURE

IDSaaS, as shown in Figure 2, consists of five main
components: the Intrusion Engine, the Output Processor, the
Events Database, the Alerts Management, and the Rule-set
Manager.

Figure 2. IDSaaS Components

A. Intrusion Engine:

Initially, the sensor taps into the network and collects
network packets, which are decoded for the analysis step.
The Intrusion Engine is the brain of the system. It
preprocesses the incoming packets and examines their
payload section looking for any matching pattern of a threat
defined in the loaded attacking rules. The processed packet is
logged only if it matches a rule. The output binary file is a
collection of captured alerts. The signature-based detection
model is selected because of its suitability to the cloud
environment. Simplicity, flexibility and ease of sharing
signatures are some of the advantages of this approach. Also,
it will enforce the elasticity feature by eliminating the
learning time for the system’s behavior required for the
anomaly-based approach.

B. Output Processor

 The main purpose of the Output Processor is to increase

the performance of the intrusion engine by formatting the

output log files and inserting them into the Events Database.

This allows the intrusion engine to focus on processing

network packets and logging alerts while leaving the

relatively slow process of database insertion to the Output

Processor component.

C. Events Database

 The Events Database stores the formatted events

generated from the Output Processer component. Also, the

database stores other relative information like sensor ID,

event timestamp and packet payload details.

D. Alert Management

 The Alert Management component is used as a GUI tool

to view the generated alerts and correlate them. It allows the

security administrator to extract events and relate them to

predefined attacking situations. Moreover, it provides the

ability to generate reports based on time, source of the

attack, or types of threat.

E. Rule-set Manager

 IDSaaS is a rule-based IDS system, and its rule base has

to be frequently updated to reflect the new threats and

attacking scenarios. The Rule-set Manager automatically

downloads the most up-to-date set of rules from multiple

locations. Rules are generally obtained either for free from

the public community service or through a subscription

service such as the SourceFire VRT [12].

V. PROOF-OF-CONCEPT IDSAAS

A proof-of-concept prototype of IDSaaS is implemented
in Amazon web services using the EC2 cloud. Although it is
tested on a public cloud, the IDSaaS framework can be
applied to other types of clouds that support V-LAN
implementation. All IDSaaS components are constructed and
bundled in the form of Amazon Machine Images (AMI). The
on-demand elasticity feature of IDSaaS can therefore be
enforced by starting the AMI instances on the fly.

13Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 26 / 282

A. Tools

The prototype of IDSaaS is built using a collection of
open source tools. Snort [13] is an open source network-
based intrusion detection system that is used in the Intrusion
Engine component. As for the Output Process component,
Barnyard2 [14] is used to act as the middle tier between the
Intrusion Engine and the Event Database. MySql is used as
the relational database to store the generated alerts. Snorby
[15] is used as a graphical interface for the system to display
various information and statistics about the collected
incidents. The Rule-set Manager is built using Oinkmaster
[16], which is a simple Perl script that compares locally
stored rules with the shared communities’ rules repository
and downloads updated rules based on user preferences.

B. Network Environment

The IDSaaS utilizes the Virtual Private Cloud (VPC)
service from Amazon. This V-LAN setup has the advantage
of creating a private network area that can only be controlled
by the application owner within the public cloud borders. In
the VPC space, both private and public subnets were created.
The private subnet maintains the protected business
application VMs. Any virtual machine that is placed in the
private subnet is isolated from the cloud traffic except the
traffic traveling from or to the public subnet of the VPC. The
public subnet hosts various IDSaaS VMs. Figure 3 illustrates
the general layout of the IDSaaS in the Amazon VPC.

C. IDSaaS VMs

1) IDSaaS Manager

 The Manager VM is the security administrator access

point where various supervision tasks can be performed. For

instance, it hosts the Alert Management component that

monitors traffic for any suspicious activity in the VPC. The

Event Database also resides in the Manager VM. The

Manager VM can be used as an access point to configure

other VMs in both public and private subnets.

2) IDS Core

 The IDS Core VM is the gatekeeper to the business

application VMs in the private subnet. It inspects all

incoming traffic using the Intrusion Engine component.

Based on the threat rule matching process, a request to the

business application VMs can be allowed or trapped by the

IDS Core VM. As a result, the Output Processor will send

generated alerts to the Event Database.

D. Security Groups (SG)

 Security Groups are used to define permissible network

services that can run on each VM in the Amazon EC2 cloud.

These virtual firewalls can decide the nature of the traffic

permitted for each VM in the form of inbound and outbound

allowable ports. Any VM that is attached to a particular SG

will comply with the services defined for that SG.

VI. IDSAAS EVALUATION

We conducted several experiments to evaluate the
effectiveness of our proof-of-concept prototype of IDSaaS in
EC2. We first present an attacking scenario and then show
the results of the experiments.

A. Attacking Scenario

In the scenario, a business application that consists of

web and database servers are placed into a private subnet of

the Amazon EC2 cloud in order to be accessed by the end

users via the IDS Core VM. On the other hand, the IDSaaS

VMs are placed on the public subnet. Figure 3 demonstrates

the network setup and the deployment of IDSaaS

components.

The business application can be accessed using the

exposed URL or IP address assigned to the IDS Core VM.

Experiments were conducted with different IDSaaS network

setups. Each setup experienced two attacking locations; an

External Attacker located outside the cloud and an Internal

Attacker located inside the Amazon EC2 Cloud. Each

attacker used two TCP protocols to attack the victim system.

First, they issued a series of HTTP requests to access the

registered users’ information page of the business

application. This area is restricted to the application

administrator, so an alert is released for non-authorized

access to this area. Second, they used the FTP protocol to

upload a suspicious file to the target server through the file

transfer service of the business application. Customized

rules were enabled in the IDSaaS to capture such a harmful

activity for each attacking type.

B. IDSaaS Components Overhead Experiment

The effectiveness of IDSaaS was evaluated by

measuring the overhead added by the different IDSaaS

components while protecting business applications in a

public cloud. By providing an extra level of protection,

IDSaaS improves the security element of the virtual

machines on the Amazon cloud. Our results so far indicate

acceptable increases in the response time for the business

application after adding the IDSaaS components (Figure 4).

For example, in the case of the FTP requests, IDSaaS

imposes 10.60% and 9.27% increases in response time for

traffic originating from outside and inside the cloud,

respectively. Similarly, for HTTP requests, it imposes

increases of 8.58% and 3.57% for traffic originating from

outside and inside the cloud, respectively. We believe this

size of increase in response time is justifiable given the

additional ability to enforce tailor-made attacking rules.

Table II shows the average response time for all network

setups of the experiment.

14Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 27 / 282

TABLE II. Components Overhead Experiment results

Figure 4. IDSaaS Components Overhead

C. IDSaaS Rules Overhead Experiment

The number of loaded attacking rules can also affect the

efficiency of the IDSaaS in capturing many threats. In this

experiment, we observed the performance of the intrusion

engine (IDS Core VM) against different rule set stages.

Stage one includes a complete set of rules (18,833 rules)

addressing different attacking situations. This rule-set

contains a collection of the intrusion engine’s preinstalled

rules as well as rules obtained from the public communities

like Emerging Threats team [17]. Stage two decreases the

rule set to 11 rules, which represents the Attack-Response

(A-R) rules. Finally, the last stage incorporates a single rule

to detect the Automatic Directory Listing (ADL) attack.

The IDS Core VM is used to compare the rules from the

rule repository with the captured traffic in the form of a

pcap file [18]. Intrusion engine performance was defined as

the run time to process incoming packets, compare them

with enabled rules and produce alerts in the form of binary

logs. Therefore, the smaller the run time to analyze traffic

packets, the better the performance of the intrusion engine.

Figure 3. IDSaaS in Amazon Cloud

15Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 28 / 282

Figure 5. IDSaaS Rule Overhead Experiment Results

Figure 5 shows that intrusion engine produced a single

alert in an average time of 24.77 seconds by enabling the

ADL rule (Stage 3). On the other hand, the intrusion engine

took an average of 28.46 seconds to discover 68 threats by

enabling the A-R subset. As a result, there was a 14.90%

increase in the overhead for the extra rules enabled between

stage 3 and stage 2. Similarly, stage 1 managed to capture

10,504 threats from the data sample within an average time

of 48.72 seconds. This can be translated into an increase of

71.19% of the overhead compared to stage 2. For that

reason, enabling all rules will degrade the performance of

the intrusion engine and it will increase the percentage of

false-positive alerts. Hence, fine-tuning the intrusion engine

component to reflect the nature of the protected application

is an important step when dealing with large number of

rules.

D. Distributed IDSaaS Experiment

We implemented a distributed version of IDSaaS (D-

IDSaaS) that has the ability to protect application VMs

residing in multiple cloud regions. This is achieved by

placing one or more IDS Core VMs in the same VPC as the

business application VMs and placing the Manager VM in a

centralized location. The security administrator can

therefore monitor multiple business applications in different

regions of the cloud from the central Manager VM.

We examined the cost of sending alerts from the IDS

Core VM to the Manager component in three network

configurations. Configuration 1, places the IDS Core VM

and the Manager VM in the same VPC of the same cloud

region. This typical IDSaaS setup is illustrated previously

in Figure 3. Configuration 2, positions the Manager VM in a

corporate network outside the cloud to meet with the

privacy concerns of storing alerts in the cloud as well as

reducing the storage costs of archiving historical alerts. In

configuration 3, the IDS Core VM and the Manager VM are

placed in different regions of the cloud. The business

applications and the IDS Core VM are placed in the EU

region of Amazon cloud and the Manager VM is positioned

in the US East region of the Amazon cloud. Figure 6

displays the network layout for configuration 2 and 3.

The intrusion engine component was configured to read

from a single pre-captured traffic file rather than from live

network traffic. This standardized the input traffic to be

analyzed by the intrusion engine for all network layouts.

The used pcap file contained 30,000 network packets, which

generates 145 alerts when enabling all installed rules

(18,833 rules). Both the IDS Core VM and Manager VM

were initialized using the small EC2 instances (OS Ubuntu,

1.7 GB memory, 1 virtual core CPU and 160 GB storage).

However, the Manager VM in the off-cloud network (OS

Ubuntu, 1.7 GB memory, 1 virtual CPU, 20 GB storage)

was initialized using the VMware software [19] as a guest

operating system.

The average dispatching time for 145 alerts from the

pcap file using 100 trails was 2.35 seconds in configuration

1. In configuration 2, the same number of alerts was

received on an average of 30.94 seconds. However, the

highest dispatching time was obtained from configuration 3

with 119.70 seconds. The results are demonstrated in Figure

7. We believe this high value is due to alerts transmission

time between the two Amazon regions.

Figure 6. Distributed IDSaaS in Public Cloud

Figure 7. Distributed IDSaaS Experiment Results

VII. SUMMARY

In this paper, we introduced IDSaaS, which is a
framework that enables consumers to protect their virtual

16Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 29 / 282

machines in public clouds. IDSaaS is compatible with many
cloud features, such as portability, elasticity, on demand
requests and pay-per-use service. The approach presented in
this paper is implemented as a collection of virtual machines
in order to comply with the cloud model.

Cloud consumers need to have customizable and
controllable security solutions in the clouds. The major
contribution for this work is a service to provide them with
IDS capabilities regardless of the cloud model. With IDSaaS,
users can define a virtual private area within the cloud space
for their applications that can be secured with application-
specific policies. Therefore, IDSaaS adds new levels of
security onto those already supplied by cloud providers.

Increasing system availability is a feature to be
implemented for future IDSaaS system. A replica of the IDS
Core VM can be created to distribute the traffic load to
prevent single point of failure situations. Therefore, a virtual
load balancer node can increase the accessibility of the
IDSaaS components in the cloud. Also, it can be responsible
for balancing the traffic load between multiple IDS Core
VMs.

ACKNOWLEDGMENT

This research is supported by the Ministry of Higher
Education in the Kingdom of Saudi Arabia, the Saudi
Arabian Cultural Bureau in Canada and Queen's University.

REFERENCES

[1] C. Burns, "Public cloud security remains MISSION
IMPOSSIBLE," Network World. Oct, 2011. [Online].
Available:
http://www.networkworld.com/supp/2011/enterprise5/101011
-ecs-cloud-security-250973.html, [Retrieved: June, 2012].

[2] Amazon Web Services: Overview of Security Processes.
[Online]. Available: http://aws.amazon.com/security,
[Retrieved: June, 2012].

[3] B. Damele and A. Guimaraes, "Advanced SQL injection to
operating system full control", Black Hat Europe 2009, April
2009

[4] Amazon Elastic Compute Cloud (Amazon EC2). [Online].
Available: http://aws.amazon.com/ec2/, [Retrieved: June,
2012].

[5] Amazon Virtual Private Cloud (Amazon VPC). [Online].
Available: http://aws.amazon.com/vpc, [Retrieved: June,
2012].

[6] W. Xin, H. Ting-lei, and L. Xiao-yu, "Research on the
Intrusion detection mechanism based on cloud computing,"
Intelligent Computing and Integrated Systems (ICISS), 2010
International Conference pp.125-128, 22-24 Oct. 2010

[7] C. Mazzariello, R. Bifulco, and R. Canonic, “Integrating a
Network IDS into an Open Source Cloud Computing
Environment,” Sixth Internationl Conference on Information
Assurance and Security (IAS), 2010

[8] S. Roschke, F. Cheng, and C. Meinel, "Intrusion Detection in
the Cloud", In Proceedings of Workshop Security in Cloud
Computing (SCC'09), IEEE Press, Chengdu, China, pp. 729-
734 (December 2009).

[9] F. Sibai and D. Menasce, "Defeating the Insider Threat via
Autonomic Network Capabilities," Communication Systems
and Networks (COMSNETS), 2011 Third International
Conference pp. 1-10, 4-8 Jan. 2011

[10] A. Bakshi and Y. Dujodwala, “Securing Cloud from DDOS
Attacks Using Intrusion Detection System in Virtual
Machine,” ICCSN ’10, pp. 260-264, 2010, IEEE Computer
Society, USA, 2010

[11] Feature Guide: Amazon EC2 User Selectable Kernels.
[Online]. Available: http://aws.amazon.com/articles/1345,
[Retrieved: June, 2012].

[12] The official Snort Rule-set, Sourcefire Vulnerability Research
Team (VRT). [Online]. Available: http://www.snort.org/vrt,
[Retrieved: June, 2012].

[13] Sourcefire, Snort (version 2.9.5). [Online]. Available:
http://www.snort.org, [Retrieved: June, 2012].

[14] The Barnyard2 Project. [Online]. Available:
http://www.securixlive.com/barnyard2, [Retrieved: June,
2012].

[15] Snorby (version 2.2.6). [Online]. Available:
http://www.snorby.org, [Retrieved: June, 2012].

[16] The OinkMaster Project. [Online]. Available:
http://oinkmaster.sourceforge.net, [Retrieved: June, 2012].

[17] Snort Rules, Emerging Threats Project. [Online]. Available:
http://rules.emergingthreats.net, [Retrieved: June, 2012].

[18] 1999 Training Data - Week 4, DARPA Intrusion Detection
Evaluation. [Online]. Available:
http://www.ll.mit.edu/mission/communications/ist/corpora/ide
val/data/1999/testing/week4/index.html, [Retrieved: June,
2012].

[19] VMware Inc, Wmware Player (version 4.0.2). [Online].
Available: http://www.vmware.com/products/player,
[Retrieved: June, 2012].

17Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 30 / 282

A Semantic Model to Characterize Pricing and Negotiation Schemes
of Cloud Resources

Giuseppe Di Modica, Orazio Tomarchio
Department of Electric, Electronic and Computer Science Engineering

University of Catania
Catania, Italy

Email: {Giuseppe.DiModica, Orazio.Tomarchio}@dieei.unict.it

Abstract—Cloud computing technology has reached a good
level of maturity. The market of cloud resources is still
dominated by proprietary solutions for what concerns resource
delivering, pricing models and Service Level Agreement. The
research community is working hard to define specifications
that try to standardize most of these aspects. When standards
will get mature, customers will no more be locked-up to any
proprietary technology, and full interoperability among clouds
will be a reality. In the future cloud resource market the
competition challenge will be played on the real capability of
providers to accommodate customers’ requests in a flexible
way and to supply high and differentiated QoS levels. In this
scenario a mechanism must be devised to support the match-
making between what providers offer and what customers’
applications demand. In this work we propose the definition of
a semantic model to support the supply-demand matchmaking
process in the future cloud markets. Leveraging on a semantic
description of the cloud resources’ features, customers will be
able to discover cloud offers that best suit their own business
needs. Tests conducted on an implementation prototype proved
the viability of the approach.

Keywords-Cloud computing; Price model; SLA negotiation;
Ontology.

I. INTRODUCTION

Cloud computing [1] has emerged as a paradigm able to
offer resources in a flexible, dynamic, resilient and cost-
effective way. Following the service-oriented paradigm, all
cloud resources, both physical and logical, are virtualized
and are offered “as-a-service”. The real success of the cloud
is mostly due to the considerable business opportunities that
it produces for both consumers and providers of virtualized
resources. On the one hand, the providers see in the cloud
model a way to maximize the use of their computing
assets and thus minimize the maintenance cost; on the other
hand, the “pay-per-use” business model allows consumers
to pay for only what they actually use, without any initial
investment.

However, today we are still far from an open and com-
petitive cloud and service market, where cloud resources are
traded as in conventional markets. The main technological
reason for this is the lack of interoperability of existing cloud
technology [2], which is also leading to the phenomenon of
vendor lock-in.

Another not technological, yet equally important reason
is that, to date, cloud resources are offered according to
strict pricing models and rigid Service Level Agreements
(SLA). In a future open cloud market, users (customers) will
demand for flexible pricing and resources’ usage schemes
to meet their specific computing needs; providers will have
to negotiate with the customers for differentiated levels of
quality of service.

In this paper we discuss about the need of more flexible
charging models for cloud resources’ usage, together with
advanced negotiation protocols that could better support the
public cloud model. We believe that, in order to build an
effective matchmaking process between supply and demand,
a structured model to describe resources’ business features
and applications’ requirements is needed. To this purpose,
we propose two ontologies for describing the resources
offered by cloud providers on the one hand, and the ap-
plication requirements expressed by customers on the other
one. The final aim is to efficiently include pricing models,
negotiation capabilities and service levels into resource pub-
lish/discovery mechanisms, that can then be enriched with
tools to enable providers to easily characterize and advertise
their resources, and customers to easily describe application
requirements. A semantic matchmaking algorithm has been
devised enabling customers to search for those cloud re-
sources that best meet their requirements. A first prototype
of the semantic discovery framework has been implemented.
Experimental results show that semantic technologies are a
powerful means that enhance the way resources’ supply and
demand are expressed and matched in the cloud markets.

The remainder of the paper is organized as follows.
In Section II the background context is introduced and
the issues inspiring this work are discussed. Section III
describes the approach proposed for the definition of a
cloud service discovery framework, and provides details on
the mapping and the matching processes respectively. The
implementation of a system prototype and results from tests
are described in Section IV. In Section V recent works in
literature are discussed, outlining the novelty of the idea
proposed in this paper. We conclude the work in Section
VI.

18Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 31 / 282

II. ANALYSIS OF CURRENT CLOUD OFFERING

The commercial success of cloud computing is witnessed
by the individual success of few, very big companies that,
by imposing their own proprietary solutions (e.g., Amazon’s
“.ami” and “EC2”), have made and are currently making
huge profits by leasing their unused computational resources.

In a desirable scenario, the customer should be able to
build up his own application independently of the specific
cloud that it is going to run onto, define the application
requirements in a standardized way, look for the cloud
provider that best meets the requirements, negotiate for
the service, deploy the application, monitor the application
performance, move it to another cloud in the case that the
service performance does not meet his expectation. However,
the road that leads to cloud interoperability is long, because
of several issues that still need to be addressed [2]. When
such a target will be accomplished, a new scenario of
business opportunities will open up to the old and the new
stakeholders that will want to profit from the open market
of cloud-based resources. Interoperability is the means by
which also small companies can federate to each other to
share their resources and propose themselves as an alterna-
tive to the big players. The European FP7 project Reservoir
[3] is one of the first successful attempts to create an
interoperable federation of cloud providers, spanning across
different administrative domains, aiming at sharing their
individual resources to respond to the customers’ demand.

In the following, we analyze the panorama of the cur-
rent cloud offerings by taking pricing models, negotiation
protocols and service performance levels as key factors. We
also take into account the customers’ point of view, by an-
alyzing how customers are used to characterize and specify
application requirements under their business perspective.

A. Price Models

The main cloud paradigm’s claimed strength is that re-
sources (computing, storage, network) can be accessed on an
On-Demand basis, and customers can be charged according
to the actual resources’ usage time. In particular, the CPU
is usually charged by the hour, the data storage service is
charged per GB/month, the data transfer service over the
network is charged per GB. Providers also propose their
customers an alternative pricing model based on Resource
Reservation, which on the cloud provider’s end provides an
instant economic benefit (they receive an immediate payment
for the reservation), and on the customer’s end allows to
save on the resource price provided that the resource itself
is intensively used. Other cloud providers, instead of leasing
“raw” computing resources, offers cloud-based services in
the form of developing and execution platforms (PaaS) and
applications (SaaS). Some decide to charge the customer
according to the usage that the provided service make of the
underlying raw resources. Others (mostly providing business
oriented services) adopt a model that is more suited to

those business applications that, once deployed, involve the
interaction of many end users. The customer is then charged
by month and by the number of end users that the application
will have to serve (we refer to this model as End-User-
Based). Finally, almost all commercial providers propose a
Free-Of-Charge model, which is nothing but a try-before-
buy strategy.

In the forthcoming cloud economy generation other
pricing models might result more attractive for both the
providers’ and the customers’ needs. In the process of
optimizing the usage of internal resources, providers might
want to encourage customers to access their resources during
specific periods of underutilization (at night, or during the
weekends), and thus would be willing to charge customers
according to ad-hoc, time-oriented models. Again, in the
same way like mobile phone operators do, providers might
even offer their customers pre-paid packages of resources to
be consumed as they like.

B. Negotiation Protocols

In the literature several proposals for the negotiation
and management of SLA have appeared in the context of
GRID and SOA, but many address the same issues in the
cloud computing context too. Actually most of them provide
limited or no support for dynamic SLAs negotiation, which
we believe to be a strict requirement for the future cloud
markets. As for the negotiation protocol, the OGF’s WS-
AgreementNegotiation [4] is the most notable standardiza-
tion effort. The proposal is an extension of the former WS-
Agreement recommendation, and is still in progress. It just
supports the one-to-one negotiation scheme and the very
simple offer/counter-offer dynamics. The approach is not
efficient and flexible enough for complex application areas.
Alternatives (such as auctions[5]) are also suggested as
more appropriate for highly dynamic context. One of the
objectives of the SLA@SOI European FP7 project [6] was
to provide negotiation mechanisms for exchanging offers and
counter offers between customers and providers in a SOA
context. The implemented framework (SLAM) promises
support for both one-to-one and one-to-many negotiations,
allows for multiple rounds of negotiation, and can be adopted
in agent marketplace as well as broker based architectures.
The Vienna Service Level Agreement Framework (VieS-
LAF) architecture for cloud service management [7] intro-
duces the concept of meta-negotiations to allow two parties
to reach an SLA on what specific negotiation protocols,
security standards, and documents to use before starting the
actual negotiation.

In the actual market of virtualized resources, we notice
that Amazon has launched the Spot Instances model, which
can be seen as an example of a particular negotiation
model that has been adopted to resolve the customers’
competition on the provider’s unused resources. Depending
on the provider’s business strategies and on the amount

19Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 32 / 282

of unused resources, other negotiation models might be
employed. We claim that auction-based models would bring
benefits to providers and to customers as well. The latter
will have the chance to search for resources according to
the associated negotiation scheme that best suite their own
business strategies and needs.

C. Service Performance Levels

The performance features that cloud providers advertise
are usually vague, just focusing on virtual machines com-
putation speed.The only parameter which is quantitatively
expressed and granted by all the commercial providers is the
availability of resources. All providers guarantee a very high
level of resource availability (from 99% upwards), prevent
any user data loss by allocating extra back-up storage, sup-
port customers to face any technical issue. The competition
among the providers is played on both the price at which
the resources are sold and the capability of sustaining the
promised, guaranteed service levels. Some providers further
differentiate their service offer. Besides provisioning what
we call a standard basic service level, which is the core
activity of their business, some of them also offer a premium
service level, which provides more guarantees than the basic
and adds extra services.

In the future, in order to satisfy the customers’ het-
erogeneous and dynamic business requirements, the cloud
providers might be encouraged to propose new models. To
cater for more fine-grained customer requirements, providers
might want to propose customizable plans of service levels,
that will enable customers to build their own desired service
level provisioning.

D. Application Requirements

Every application needing some computing power could
technically run on a cloud. Still security is a big concern that
prevents service providers from unconditionally deploying
their applications on the cloud. Generally speaking, before
moving an application to the cloud a cost/benefit analysis
must be carefully done. The decision concerns both whether
to move onto the cloud or not, and to select the cloud offer
that fits.

One should verify, according to the company’s business
objectives to be accomplished and to how much mission-
critical the application is, whether the application to be
deployed requires a guaranteed service level or a best effort
is enough. If the former is to be chosen, again, depending
on the business requirements of the application, a choice
has to be made between a basic or a premium service level.
Further on, the choice of the pricing model that best fits
must be made according to the application’s profile, i.e., the
application’s specific usage pattern: if such pattern is “dense”
(resources are continuously used within a time frame),
reserved-based solutions are to be preferred; otherwise, the
on-demand pricing model will result more convenient.

All the choices must be made checking that the budget
they require is compatible with the company’s investment
capability. For example, a service level might fit a given
application’s profile, but might not be affordable for the
company; on the contrary, a more affordable service level
would make the company save money, but might not fit the
strict application’s requirements. In most cases a compro-
mise must be searched for.

III. CLOUD SERVICE DISCOVERY FRAMEWORK

The previous analysis of current cloud offering has shown
that provider and customer perspectives are quite different.
The former seeks to maximize the profit and the utilization
level of the IT asset that they have invested on. The latter
just needs to make fine-tuned searches in the market in order
to discover the service fitting their specific business needs.
We have then designed a service discovery framework that
exploits semantic mechanisms to favour the matchmaking
of the providers’ offer and the customers’ demand. Two
OWL-based ontologies have been developed to characterize
respectively the provider and the customer perspectives.
In particular, the first ontology semantically describes the
features of the resources being offered by cloud providers
(see Figure 1), the second one describes the application’s
business requirements demanded by customers (see Figure
2). For a detailed description of these ontologies refer to [8].
Since each ontology contains semantic concepts belonging to
two different domains, we have devised a mapping process
that transforms application requirements into “semantically”
equivalent resource features, i.e., features that best represent
the application requirements in the domain of resources. The
mapping’s purpose is to put application requirements and
resource features on a common semantic ground (that of
cloud resources) on which a semantic procedure will try to
make the match.

Offer
PriceModel

NegotiationModel

ServicePerformanceLevel

Service

IaaS SaaS
PaaS

OneToOne OneToMany

AlternateOffer SpotLike

FreeOfCharge

EnglishAuction

DutchAuction
ContractNet

Charged

OnDemand

Reservation

EndUserBased

BestEffortGuaranteed

Basic Premium

Customized

provides hasPriceModelhasPerformanceLevel

hasNegotiationModel

hasNegotiation

Figure 1. Resource features ontology

Figure 3 depicts the two semantic domains, along with
the mapping and matchmaking processes. In the figure, the

20Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 33 / 282

Request

Computing

Platform

Software

Price

ChargedFree

ConsumptionPlan

UtilizationPlan

�Short�, �Long�

�High�, �Low�

PriceNegotiation
Model

Public Private

BudgetAmount

�High�, �Low�

hasValue

hasUtilizationPlan

hasDuration

hasConsumptionPlan

hasDensity

hasPrice

canNegotiate
hasBudgetAmount

MissionCriticality

hasMissionCriticality

�High�, �Low�

hasValue

Figure 2. Application requirements ontology

filled circles represents, respectively, real requests issued by
customers (within the application requirements’ domain) and
real offers advertised by service providers (resource features’
domain). Through the mapping process the application re-
quirement AR4 is transformed into its “equivalent” resource
feature offer RF6 (empty circle) in the offers domain.
Such resource feature does not necessarily coincide with a
real offer, but rather represents the ideal offer that would
perfectly match the considered application requirement. In
the next step, the matchmaking procedure will explore the
resource features’ domain in order to search for concrete
offers that show a semantic affinity to RF6 (those covered
by the gray area in the figure). The final outcome of the
entire process will be a list of concrete offers, sorted by
the semantic affinity degree, that may satisfy the needs
represented by AR4.

In the following subsections we provide some details on
how the mapping and matchmaking processes work.

����������	
��������	��
�����	 ��������
��������
�����	

���

���

��� ���

���
��� ������

���

��� ���

���

���

���

���

����

��������	�
���	�

���������

Figure 3. Mapping and matching

A. Mapping

The mapping process is a simple procedure that applies a
list of mapping rules. Rules have been defined using the
Semantic Web Rule Language (SWRL) [9]. SWRL was
chosen since it is a W3C specification and it copes well
with OWL-based ontologies. The objective of each rule is
to transform a specific application requirement into the ideal,
best matching resource feature.

A group of chained semantic rules drive the mapping
from individuals of the Application requirements’ ontology
to individuals of the Resource features’ ontology. A rule
engine takes a request in input, applies the sequence of rules
and, according on the rules that match, incrementally builds
up the ideal offer. For the sake of brevity, we report only a
significant subset of rules:

1) request : Request(?request) ∧ offer : Offer(?offer)
→ hasMatchedOffer(?request, ?offer)

2) hasMatchedOffer(?request, ?offer) ∧
request : Computing(?request) ∧
offer : provides(?offer, ?service)
→ offer : IaaS(?service)

3) hasMatchedOffer(?request, ?offer) ∧
request : Platform(?request) ∧
offer : provides(?offer, ?service)
→ offer : PaaS(?service)

4) hasMatchedOffer(?request, ?offer) ∧
request : Software(?request) ∧
offer : provides(?offer, ?service)
→ offer : SaaS(?service)

Rule 1 just states that, given a generic request in the
application requirements’ domain, a corresponding ideal
offer exists in the resource features’ domain. Rules 2 through
4 handle the different type of cloud services that can be
requested. The rules are very intuitive, and states that a
request for Computing resource is mapped onto an offer of
the type IaaS, a request for a Platform resource is mapped
onto a PaaS offer, and a request for a Software resource
maps to an offer of the type SaaS.

B. Matchmaking

After the mapping process has elaborated the ideal offer,
the matchmaking process will start exploring the domain of
the real offers in order to find those ones whose features best
meet the initial application requirements. In particular, for
each offer advertised in the market, the matchmaking process
will evaluate the semantic affinity between that offer and
the ideal one. The semantic affinity will reveal how close
a real offer is to the customer expectations. The semantic
affinity will be a value in the range [0,1], being 1 the highest
achievable affinity. The function that calculates the semantic
affinity is the following:

A = Serva ∗ Wserv + Pricea ∗ Wprice + Perfa ∗ Wperf +

Nega ∗Wneg

The overall affinity between the ideal offer and a real
offer is obtained by summing up the sub-affinities evaluated
on each offer’s feature: service, price model, performance
level and negotiation model. So, for instance, the addendum
Pricea ∗Wprice represents the sub-affinity evaluated on the
price feature. In particular, Pricea is the outcome of the
semantic comparison between the price concepts exposed
by the two individuals (the offers), while Wprice is a weight
factor. We plan to use the weight factor to let the customer
tune the affinity algorithm according to customizable priority
criteria.

21Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 34 / 282

We now provide some details on the semantic comparison
of concepts. Let Oj be a generic offer, characterized be the
semantic concepts: Servo−j , Priceo−j , Perfo−j , Nego−j .
In order to evaluate the overall semantic affinity of two offers
Oideal (the ideal offer that is the outcome of the mapping
process) and Oreal (a real offer in the market place), couples
of homologous concepts must be compared.

The semantic affinity values for all the possible cases are
shown in the following:

• 1, if the two concepts are semantically equivalent;
• 1, if Co−ideal is the father of Co−real;
• 0.5, if the two concepts are siblings and the father is

the root concept in the considered branch;
• 0.75, if the two concepts are siblings and the father is

a non-root concept in the considered branch;
• 0, if Co−ideal is not expressed;
• 0.5 in any other case.
The algorithm assigns the highest value to equivalent

concepts, or to concepts that are in a father-son relationship.
Instead, it penalizes two concepts that are direct descendants
of a root concept, as in our ontology siblings concepts
whose father is root usually represent opposite concepts
(e.g., Charged vs FreeOfCharge, Guaranteed vs BestEffort).
Conversely, siblings whose father is a non-root concept are
considered different but someway “close” concepts (e.g., On-
Demand vs Reservation, EnglishAuction vs DutchAuction),
therefore they are given a higher grade of affinity.

IV. IMPLEMENTATION AND TESTS

A prototype of the framework has been implemented and
tested. The core of the framework consists of an ontology
mapper, that makes use of a rules engine provided by
the Jess library, a matchmaker supported by a semantic
reasoner powered with the Pellet library, and a repository of
advertised cloud offers. Customers are then provided with
a front-end tool to build and submit cloud requests, while
at this stage the repository of cloud offers was populated
by hand. In the future we plan to implement a tool that
will help providers to build their offers and push them
to the repository. For the test purpose, we generated a
complete set of offers spanning the whole semantic domain
of resources’ features. Afterwards, several different requests
were generated, each of them asking for a specific cloud
service. For each submitted request, the framework replied
with a list of fitting offers. In the following we describe
two sample requests and analyze the corresponding results
provided by the discovery procedure. In the first request the
customer asks for a service of type Platform, for whose price
he is willing to negotiate in the context of a public auction:

R1(Type : Platform,PriceModel : Charged,

NegotiationModel : Public)

After submission, the mapping process transformed R1 into
the following ideal offer:

O1ideal(Service : PaaS, PriceModel : EndUserBased,

ServicePerformanceLevel : Guaranteed,

NegotiationModel : OneToMany)

For that offer, the matchmaking process produced the
results depicted in Table I.

Table I
LIST OF MATCHING OFFERS FOR REQUEST R1

Offer # Service PriceModel SPL NegModel Affinity
39 PaaS EndUserBased Basic ContractNet 1.0
49 PaaS EndUserBased Premium EnglishAuction 1.0
48 PaaS EndUserBased Premium DutchAuction 1.0
...
36 PaaS EndUserBased Customized n.a. 0.875
35 PaaS EndUserBased Basic n.a. 0.875
...
3 SaaS FreeOfCharge BestEffort n.a. 0.5
1 IaaS FreeOfCharge BestEffort n.a. 0.5

As the list is very long many results have been omitted.
On the top of the list the perfectly matching concrete offers
appear. The offers with an affinity value of 0.875, have
a partial matching, as those offers do not provide any
negotiation. The offers at the bottom do not match because
of differences in both the service type and the service
performance level. Here is the second request that we tested:

R2(Type : Computing,

UtilizationP lan− > hasDuration : long,

ConsumptionP lan− > hasDensity : high)

After submission, the mapping process transformed R2 into
the following ideal offer:

O2ideal(Service : IaaS, PriceModel : Reservation,

ServicePerformanceLevel : Premium,

NegotiationModel : no)

For that offer, the matchmaking process produced the
results depicted in Table II.

Table II
LIST OF MATCHING OFFERS FOR REQUEST R2

Offer # Service PriceModel SPL NegModel Affinity
10 IaaS Reservation Premium n.a. 1.0
...
33 IaaS Reservation Premium DutchAuction 0.9375
32 IaaS Reservation Premium ContractNet 0.9375
...
12 IaaS OnDemand Basic ContractNet 0.8125
...

As expected, offers proposing the reservation-based price
model have the best matching; in fact, they perfectly fit the
application requirements concerning the utilization plan and
the resource consumption plan. Offers that propose auctions
are lightly penalized. Offers proposing a basic performance
level get penalized even more.

V. RELATED WORK

Several standard organizations are working hard to pro-
pose specifications that will enable future scenarios of

22Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 35 / 282

interoperable cloud services. An exhaustive review of the
research efforts dealing with interoperability issues in
cloud computing systems was produced in the context of
Cloud4SOA project [10]. Some attempts to design on-
tologies for the definition of cloud-related concepts and
relationships have recently appeared in the literature. Still,
there is no proposal that has reached a broad acceptance
from the community, nor all features of the cloud domain
have been fully covered, so far, by existing proposals. Some
works([11], [12]) have tried to define taxonomies for cloud-
based systems. They mostly identify and classify cloud
delivery models, services and resources; some also deals
with requirements like fault tolerance and security. One of
the most complete cloud taxonomy is maintained and contin-
uously updated by OpenCrowd([13]): in this project, existing
cloud providers and cloud-related software are classified
according to a specific scheme. In the aim of defining an
open and standardized cloud interface for the unification of
cloud APIs, the Unified Cloud Interface (UCI) Project [14]
has proposed and released an RDF-OWL cloud data model
mostly covering the definition of resources in the cloud
domain. To our knowledge, the mOSAIC ontology([15]) is
the most complete ontology that was proposed so far. It
inherits most of the elements defined in other proposals
(OCCI, NIST, IBM), and covers aspects like deployment
models, service models, resources, services, actors, con-
sumers, functional and non functional properties, languages,
APIs. The ontology was developed in OWL and is used for
semantic retrieval and composition of cloud services in the
mOSAIC project.

The work discussed in this paper aims at discussing
aspects of cloud interoperability not covered by any of the
works cited above. The proposed perspective is that of a
global market of cloud resources, where there is the need
of a characterization of what is offered and demanded by
actors in terms of business profit and utility respectively.
The proposed ontology, therefore, covers a new portion of
the cloud’s domain of knowledge; nonetheless, it can be
integrated to existing ontologies/taxonomies.

VI. CONCLUSION AND FUTURE WORK

The future market of cloud services will have to provide
novel and advanced matchmaking processes in order to
account for the providers’ and the customers’ dynamic and
heterogeneous business requirements, respectively in terms
of profit and utility. The work presented here aims to
define a cloud offer discovery framework based on semantic
technologies. A matchmaking procedure has been devised to
semantically search the offers’ domain in order to provide
the customer with a list of most profitable offers. Tests were
run on a prototype of the framework and proved the viability
of the proposed model. In the future, we are planning to
enhance the semantic model by extending the ontologies and
accordingly enriching the semantic rules.

REFERENCES

[1] R. Buyya, C. S. Yeo, and S. Venugopal, “Market-oriented
cloud computing: Vision, hype, and reality for delivering it
services as computing utilities,” in High Performance Com-
puting and Communications, 2008. HPCC ’08. 10th IEEE
International Conference on, Sep. 2008, pp. 5 –13.

[2] A. Parameswaran and A. Chaddha, “Cloud Interoperability
and Standardization,” SETLabs Briefings, vol. 7, no. 7, pp.
19–26, 2009.

[3] Reservoir Consortium, “The Reservoir Project,” http://www.
reservoir-fp7.eu/, [Last Retrieved: July 2012].

[4] The Open Grid Forum, “WS-Agreement Negotiation Spec-
ification,” http://forge.gridforum.org/sf/go/projects.graap-wg/,
2011, [Last Retrieved: July 2012].

[5] V. Krishna, Auction Theory. Academic Press, 2002.

[6] The SLA@SOI Consortium, “SLA@SOI Negotiation Plat-
form,” http://sla-at-soi.eu/publications/, [Last Retrieved: July
2012].

[7] I. Brandic, D. Music, P. Leitner, and S. Dustdar, “Vieslaf
framework: Enabling adaptive and versatile sla-management,”
in Proceedings of the 6th International Workshop on Grid
Economics and Business Models, ser. GECON ’09. Berlin,
Heidelberg: Springer-Verlag, 2009, pp. 60–73.

[8] G. Di Modica and O. Tomarchio, “A semantic discovery
framework to support supply-demand matchmaking in cloud
service markets,” in 2nd International Conference on Cloud
Computing and Services Science (CLOSER 2012), Apr. 2012.

[9] Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S.,
Grosof, B., and Dean, M., “SWRL: A semantic web rule
language combining OWL and RuleML,” http://www.w3.org/
Submission/SWRL/, 2004, [Last Retrieved: July 2012].

[10] N. Loutas, V. Peristeras, T. Bouras, E. Kamateri, D. Zeginis,
and K. Tarabanis, “Towards a reference architecture for se-
mantically interoperable clouds,” in IEEE Int. Conf. on Cloud
Computing Technology and Science (CloudCOM 2010), 2010,
pp. 143–150.

[11] B. Rimal, E. Choi, and I. Lumb, “A taxonomy and survey of
cloud computing systems,” in INC, IMS and IDC, 2009. NCM
’09. Fifth International Joint Conference on, Aug. 2009, pp.
44 –51.

[12] L. Youseff, M. Butrico, and D. Da Silva, “Toward a unified
ontology of cloud computing,” in Grid Computing Environ-
ments Workshop, 2008. GCE ’08, Nov. 2008, pp. 1 –10.

[13] OpenCrowd, “The OpenCrowd Cloud Taxonomy,” http://
cloudtaxonomy.opencrowd.com/, [Last Retrieved: July 2012].

[14] Cloud Computing Interoperability Forum, “UCI Cloud OWL
Ontology,” http://code.google.com/p/unifiedcloud/, [Last Re-
trieved: July 2012].

[15] F. Moscato, R. Aversa, B. Di Martino, T. Fortis, and
V. Munteanu, “An analysis of mOSAIC ontology for Cloud
resources annotation,” in Computer Science and Information
Systems (FedCSIS), 2011 Federated Conference on, Sep.
2011, pp. 973 –980.

23Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 36 / 282

Controlling Data-Flow in the Cloud

Mandy Weißbach and Wolf Zimmermann
Institute of Computer Science, University of Halle

06120 Halle (Saale), Germany
Email: {weissbach, zimmermann}@informatik.uni-halle.de

Abstract—A big obstacle for using cloud services is that
users have no control over the locations where their data
are stored or processed, respectively. This paper presents a
program analysis approach that enables clients to negotiate
services with undesired locations. Clients may only use services
that guarantee not to use (directly or indirectly) services on
undesired locations for processing or storing the clients’ data.
In order to increase trust in the answers given by services
during the negotiation process, a cryptographic approach
similar to Web page certification is proposed. We show that
a static data-flow analysis combined with a cryptographic
approach ensures that clients’ data do not reach undesired
locations in the cloud.

Keywords- data-flow; service-level agreement; cloud security.

I. INTRODUCTION

One major obstacle in using cloud services is that clients
have no control where their data are being stored and
processed. National data protection laws may require from
clients to satisfy some standards. For example, EU-directives
imply that it is illegal to pass personal data to environments
where the access to data cannot be controlled [1]. Recently,
there is an even stronger proposal [2]. This may apply
towards storing data as well as to the results from processing
data. However, if cloud servers located at different locations,
they need to obey national laws on the server’s location, and
these might be rather different than the location of the cloud
users and therefore there might be unauthorized access to
clients’ data that might be legal in the cloud servers country.

Unfortunately, encryption of data is only a solution when
data are just stored (see, e.g., [3]), but it is currently not
a solution when they are being processed [4] (some work
on directly processing encrypted data exist, but it is just
at the beginning and it is not clear whether this research
will be successful at the end). Therefore, it is crucial that
cloud service users can require that their data are stored
in certain locations or exclude some locations for storing
and processing their data. But, cloud service providers
themselves prefer where to store the data of the service
users. Even worse, they may use other cloud services which
themselves may use other services and so on. Thus, it seems
almost impossible to control where data are processed and
stored. Thus, several authors see this issue as one of the
major challenges in cloud computing [5], [6], [7].

In this paper, we propose a service-level agreement ap-
proach to ensure that the data of cloud service users are not

processed or stored at undesired locations. Typical service-
level agreement (SLA) approaches such as, e.g., reliability
or response time can be measured by service users. If the
chosen service violates its assured service quality, the service
user is enabled to use alternative services. However, the
problem in this work has different characteristics: (i) it is not
measurable whether data are not being stored and processed
at undesired locations, (ii) a violation cannot be observed
by service users, and (iii) if a cloud service violates directly
or indirectly the SLA, there already is a possible threat for
the service user, i.e., the damage is sustained. Thus, service
violations in the context of this work should be avoided, and
service users have to trust the agreement.

We tackle the problem of avoiding storing or processing
data at undesired location by data-flow analysis. In par-
ticular, this analysis ensures that either data do not leave
the cloud server hosting the cloud service or the data
are only transferred (possibly in processed form) to cloud
services ensuring that the data received are neither stored
nor processed at undesired locations. This approach enables
the cloud service to provide the correct agreement. However,
a malicious service may give the wrong answer. We propose
cryptographic methods analogous to web page certification
in order to increase the trust into the negotiated service-level
agreement.

The paper is organized as follows: an example of a service
model is provided and explained in Section II. In Section
III, a data-flow analysis with respect to the given example is
done. Section IV proposes a cryptographic approach in order
to increase the trust in the answer given by the service model
of Section II. On top of that, Section V presents an approach
to choose dynamically a service that can be trusted. Section
VI disscuses related work and Section VII concludes this
work.

II. APPROACH

This section demonstrates the underlying approach. In our
service model, we assume that each service A provides a set
of functions, denoted by ProvidedA. This might be given as
a WSDL-description (Web Services Description Language).
Furthermore each service A might use other services. We
assume that this is not hard-coded in the implementation
of A, but there is a variable I a where I contains the
set of functions that is called on a, and a can be bound

24Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 37 / 282

negotiateVOID

mainVOID

s.f (mydata);

(mydata,mydata’);read

s.g(mydata’);
}

gVOID (T x){

(T x){

IC

IC

private LOC myloc=BLoc ∈FriendCountry

(T x){fVOID

private LOC myloc=CLoc ∈TrustedCountry

(T u){kVOID d.p(u); }

d.q(v); }(T v){lVOID

BOOL undesired (SET(IC) r,SET(LOC) locs){

//Discussed in Section III
}

ID ID

private LOC myloc=DLoc ∈SpyCountry

(TVOID p w){ store(w); }

(TVOID q w){ store(w); }

BOOL undesired (SET(ID) r,SET(LOC) locs){

//Discussed in Section III
} IE e

IE

y −1); }(

BOOL undesired (SET(IE) r,SET(LOC) locs){

//Discussed in Section III
}

IBIB

BOOL undesired (SET(IB) r,SET(LOC) locs){

hVOID (INT y){

IC

IC ICinterface : {BOOL undesired (SET(IC),SET(LOC)); }

interface {

interface : {

fVOID (T); VOID g (T); }IB

IB IB BOOL undesired (SET(IB),SET(LOC)); }

interface {

interface : {

pVOID (T); VOID q (T); }ID

ID D BOOL undesired (SET(ID),SET(LOC)); }

A
repeat

s = Reg.choose(IB)
(undesired)until s.hasInterface

and B,Locs.undesired(I)
}

() {

() {

T mydata,mydata’;

INT y 0;

if (x ≠ null) {y

=

=1;
else c.k(process(

c.h(y);}
x));

}

f (x); c.l(x); }

private T process return x; }

B

 c

C

 d

D

E

VOID m(INT y){ write

private LOC myloc=ELoc ∈SpyCountry

 s

//Discussed in Section III
}

+1); }ye.m(

interface { hVOID (INT), VOID k (T), VOID l (T); }

interface {

interface : {

mVOIDIE

ID EE BOOL undesired (SET(IE),SET(LOC)); }

(T); }

Figure 1. Storing Data at Undesired Locations

(dynamically) to a service X that provides at least I , i.e.,
I ⊆ ProvidedX . Functions in I are called required functions
of A w.r.t. a. The set of candidate services must be published
and we assume that a registry Reg maintains all published
services. For the purpose of this and the next section, we
assume that the use structure is acyclic. Section IV shows
how this assumption can be dropped.

Example 1: Consider services A and B in Fig. 1. A.s is
bound to service B and B.c is bound to service C. The
provided interface of B is ProvidedB = {f, g, undesired}.
The required functions of A w.r.t. s are {f, g}. The required
functions of B w.r.t. c are {h, k, l}. �
Remark: It is part of service-level agreement approaches
that negotiations bind services to these variables. For sim-
plicity, we only consider a set of functions for the selection
of candidate services. However, this can easily be replaced
by other match-making approaches, e.g., it can be based on
contracts or adapters can be included. �
In the context of this paper a client would like to negotiate
an agreement that a selected service guarantees to avoid
data-flow from the client’s data to a set Loc of undesired
locations. This ensures that the client’s data are not stored at
undesired locations. For the purpose of negotiation, service
A may offer a function undesired ∈ ProvidedA that returns
true iff data flows via some operations o from the provided
interface of A to services at undesired locations. It is
sufficient to take into account only the set S ⊆ ProvidedA

of operations used by the client. If A uses another service
B, it needs to ask B (via B’s function undesired) whether
it can guarantee that A’s data do not flow to a location in
l ∈ Loc. Obviously, this needs only to be guaranteed for
those operations of B where B passes (possibly processed)
data of A. For simplicity, we assume that each service X
knows its location and this location is stored in a constant
X.myloc.

Example 2: Consider the services A, B, C, D, and E in
Fig. 1. Service A would like to use service B. Service B is
located in FriendCountry. B itself uses service C located in
TrustedCountry while C uses serviced D and E located in
SpyCountry . For the example, we assume that all services
(except possibly A) are published.

Suppose that client A wants to avoid storing its data
neither in their original nor in processed form at servers
in SpyCountry. Thus, before client A actually uses service
B it would like to know whether data passed to B are
never stored (neither in original nor in processed form)
at a server in SpyCountry . Let Loc be the set of servers
in SpyCountry . The procedure negotiation searches for a
published service B offering at least the operations specified
in IB where IB is the set of functions of the required service
that are called from A. For the purpose of negotiation, A
calls undesired(IB ,Loc) because A calls b.f(mydata) and
b.g(mydata ′), if b is bound to service B. B calls functions
h, k, l ∈ ProvidedC if c is bound to a service C. A call
of B.f implies that data of A flow to the calls c.k(z) and
c.l(x), but there is no flow from data of A to the call c.h(y).
Thus, the call undesired(IB ,Loc) must return true only
if B .myloc 6∈ Loc and undesired({k, l},Locs) = true .
Note that function h needs not to be considered because
mydata does not flow to y in the call c.h(y). The functions
k, l ∈ ProvidedC call p, q ∈ ProvidedD if C.d is bound to a
service D. The arguments of the calls c.k(z) and c.l(x) flow
to the calls d.p(u) and d.q(v), respectively. Thus, there is a
flow from the data of A to service D located in SpyCountry
which could store these data. Therefore, the negotiation
must fail. C.undesired({k, l},Locs) must return false and
therefore B.undesired(IB ,Loc) returns false , i.e., A cannot
use B.

Suppose there would be an alternative service D′ with
the same implementations of p and q, but its location

25Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 38 / 282

is in MyCountry . Then, if C.d is bound to D′ in-
stead of D, D′.undesired({p, q},Loc) returns true be-
cause D′ does not use other services. Thus, in this case
C.undesired({k, l},Locs) can return true and therefore also
B.undesired(IB ,Loc) returns true . Hence, A can use B.
Note, that C.e is still bound to service E in SpyCountry
but there is no flow from the data of A to E because E is
only used in h and there is no flow from data of A to the
call c.h(y) in B. �

In general, if a service A negotiates with a service B
for avoiding undesired locations Loc, A must additionally
provide the set of functions O ⊆ ProvidedB used by A. If
B calls functions provided by other services, and data from
A flow to B then, B must ensure that these services are
neither located in an undesired location nor passed directly
or indirectly to a service located in an undesired country.
Therefore, B has to negotiate with the required services for
assuring that the data of A are never passed to services in
an undesired location.
Remark: A cyclic use-relation would lead to non-
terminating negotiations. One possibility to overcome this
problem is that after a certain time, the negotiation with a
service B is interrupted and another service is considered
for negotiation, i.e., the function undesired terminates after
a certain time and returns false . �

III. DATA-FLOW ANALYSIS

For the implementation of undesired , the data-flow from
the provided functions to the required functions needs to
be analyzed. For such a data-flow analysis, we refer to
[8] (an interprocedural def-use-chain is needed). Let x be
a parameter of a function f ∈ ProvidedA provided by a
service A. The result of the program analysis is a predicate
DEPe,x for each argument e of a call f of a required
function of A. DEPe,x is true if the value of e depends
on x.

Example 3: Consider services A and B in Fig. 1. The
function f ∈ ProvidedB has a parameter x of type T . If
x is not null the function h ∈ ProvidedC is called. So
DEPx,y = false because the value of the argument y does
not depend on x.
Remark: The program analysis is conservative, i.e., the
value of e might be independent of x although the pro-
gram analysis computes DEPe,x = true . However, if
DEPe,x = false , then it is guaranteed that the value of e is
independent of x. An exact computation of DEPe,x would
be undecidable. �
Let T f(T1 x1, . . . , Tn xn) ⊆ ProvidedA. Then, the slice
of f consists of all set of required functions of A that are
called with an argument depending on one of the parameters
xi, i.e.,

Slicef , {p : ∃s.p(e1, . . . , ek) ∈ A • ∃i, j •DEPei,xj}
The slice of a set of functions S ⊆ ProvidedA is defined by

SliceS ,
⋃
f∈S

Slicef

Let B be a service that is used by A and S ⊆ ProvidedA.
Then

CalledS,B , SliceS ∩ ProvidedB

is the set of functions of B called by A that may depend on
a parameter of a function in S. For these functions, it must
hold that B doesn’t pass the data directly or indirectly to
a service at undesired locations. Thus, the requirement for
service B is
UnDesB,S,L , CalledS,B = ∅∨

B.undesired(CalledS,B , L) = true
Example 4: Consider service B in Fig. 1. The Slice of

the function f ∈ ProvidedB and g ∈ ProvidedB are
defined by

Slicef , {k} and Sliceg , {l}
because there is no dataflow from x to y (DEPx,y = false),
which means h /∈ Slicef . With Slicef and Sliceg , it is
Slicef,g = {k , l}.

So only the functions k and l are called with data stemming
from A by service B. Hence,
Called{f,g},C , {k , l}.

In the next step the slices Slicek and Slicel are computed:
Slicek = {p} and Slicel = {q}.

Therefore, p and q are called with data from A over B:
Slicek,l = {p, q}.

Considering Slicek,l and the provided functions of the
service D and E, only service D is called with data from
A:
Called{k,l},D , {p, q} and Called{k,l},E , ∅.

Now, we can compute if there exists a data-flow to an
undesired location. Thus,

UnDesD,{k,l},SpyCountry , false
because of

D.myloc ∈ SpyCountry and Called{k,l},D /∈ ∅.
Hence,

UnDesE,{k,l},SpyCountry , true
because of

Called{k,l},E = ∅.
So,

UnDesC,{f,g},SpyCountry , false
because of

Called{f,g},C /∈ ∅ and
C.undesired(Called{f,g},C , SpyCountry) = false.

We can conclude that there is a data-flow from service
B over C to D. And D is a service with an undesired
location. This violation is produced by service D. Note that
although E is called and E.myloc ∈ SpyCountry, this is
not omitted, as no data flows from A to E.

Thus, for a service A, the function undesired can be
implemented as shown in Fig. 2.

Theorem 1: Let X be a service with an undesired location
X.myloc ∈ L. If there is a data-flow from a parameter x of a
function f ∈ S ⊆ ProvidedA to X , then undesired(S,L) =
false .

26Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 39 / 282

/∗@return : false− > data− flow to undesired location(s)
true− > data− flow only to desired locations∗/

BOOL undesired(SET(ProvidedA) S,SET(Locations) L) {
if myloc ∈ L return false;
foreach service X used by A do

if ¬UnDesX,S,L return false;
return true;

}

Figure 2. Implementation of undesired

C

public key:
private key: s

k

analyze

Certified

Program Analysis

PA

undesired
Client Web Service

I

A

Figure 3. Trusted Agreement

Proof: Let X be a service with X.myloc ∈ L, i.e., the
location of X is undesired. The maximal distance d(Y,X)
of a service Y to X is the length of the longest cycle-free
path from Y to X w.r.t. the use relation. We prove the claim
by induction on the maximal distance to X .
BASE CASE: d(Y,X) = 0. Then Y = X and therefore
Y.myloc ∈ L. For this case, undesired returns false .
INDUCTIVE CASE: d(Y,X) > 0. Let be S ⊆ ProvidedY

such that there is a data-flow from a parameter x of a
function f ∈ S to X . Thus, there must be a data-flow
(internal to Y) to argument e of function call z.g(· · · e · · ·)
where z is bound to Z and there is a data-flow from the cor-
responding parameter x of g ∈ ProvidedZ to X . Obviously
d(Z,X) < d(Y,X). Thus, by induction hypothesis it holds
undesired(S′, L) returns false for each S′ ⊆ ProvidedZ

with g ∈ S′. By definition, it is DEPe,x = true , thus,
g ∈ Slicef and therefore g ∈ SliceS . Since g ∈ ProvidedZ ,
it holds g ∈ CalledS,Z . Thus, CalledS,Z 6= ∅ and therefore
the induction hypothesis implies UnDesZ,S,L = false . Since
undesired(S,X) only returns true if Y.myloc 6∈ L and
UnDesZ,S,L = true for all services used by A, it must
return false .

IV. TRUSTED AGREEMENT

The approach of Sections II and III makes some ide-
alistic assumptions: First, it assumes that each service is
not malicious, i.e., it gives the correct answer according to
Theorem 1. Second, there are no cycles in the use-relation.
In this section, we present an approach to increase the trust
in the answer given by a service that is also able to deal
with cycles in the use-relation.

The main idea is similar to the verification of web pages,
cf. Fig. 3: there is an independent certified program analysis

service PA that performs the program analysis and computes
the result of undesired . The following negotiation protocol
increases the trust of the client to the analysis result:

Step 1: Client tells A that it would like to negotiate
undesired locations

Step 2: A selects a certified program analysis PA and
returns PA’s public key k to Client .

Step 3: Client uses k to check whether PA is certi-
fied. If this is the case, Client encrypts its query
undesired(S,L) with k and passes it to A. If k
does not belong to a certified program analysis,
then Client may refuse to choose A or request
another program analysis.

Step 4: A passes the encrypted query undesired(S,L)
together with its source text to PA. For security
reasons, the source text is also encrypted with k.

Step 5: PA first decrypts the query and the source text
of A. Then it performs the program analysis ac-
cording to Section III. Finally, it signs the query
undesired(S,L) and the result with its private key
s and passes it to A.

Step 6: A passes the signed result to Client .
Step 7: Client decrypts the signed result with the public

key k of PA. Then Client verifies whether its
query was being analyzed and whether the answer
is true . If yes, then it accepts A, otherwise it
refuses to choose A.

Since Client obtains the public key k of a program
analysis, it can verify whether the program analysis can be
trusted. Furthermore, the encryption of the query in Step
3 keeps it secret to A. Thus, A needs more effort to be
malicious because the private key s of PA is required to
decrypt the query, which is needed for the manipulation of
the query. A possibility of A to be malicious would be that
it creates its own (malicious) query q, encrypts it with k
and passes it to PA. However, in Step 5 the analysis result
together with the query is signed by PA’s private key s.
Since this key and the original query are secret to A, A is
unable to replace the responded and manipulated query q of
the PA by the original query. Client would discover such a
manipulation at Step 7.
Remark: At first glance, it seems to be a severe restriction
that A must pass its source text to PA. However, A can
choose a program analysis PA that it trusts before offering
PA to Client . �
Sections II and III demonstrate that PA might itself query
services B used by A while performing the program anal-
ysis. In this case PA has the role of a client and B has
the role of the service being queried. Hence, the above
protocol can be used to negotiate with B. As PA is able
to keep track of the analysis requests of A, it can check for
cycles before processing the analysis request. In particular, it
checks whether a query undesired(S,L) for A is currently

27Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 40 / 282

BOOL undesired(SET(ProvidedA) S,SET(Locations) L) {
if myloc ∈ L return false;
foreach service variable Ix x of A do

while ¬x.hasInterface(undesired) ∨ ¬UnDesx,S,L do {
x = Reg.choose(Ix)
if x = null return false;

}
return true;

}

Figure 4. Choosing an Adequate Service

being analyzed, i.e., whether there is an open analysis
request undesired(S′, L) with S′ ⊆ S. If yes, it can return
immediately true . This is valid because if there is a data-
flow from S′ to an undesired location l, then there must be
another call of a provided function to a service B with a
data-flow to an undesired location.

Remark: We assume that the services are installed cor-
rectly and that we can use the advantages of trusted cloud
federations [9], [10] in order to avoid that hackers change
the implementation of the services. �

V. DYNAMICALLY CHOOSING A SERVICE

In the scenarios of the previous sections, if a client
requests a service A for avoiding data-flow to undesired
locations and A itself may request for avoiding data-flow
to undesired locations, then the chosen service B is not
changed. However, service A might decide to choose an
alternative service that fulfills the requirements for A. Thus,
instead of returning false if a possible data-flow to an
undesired location is discovered, cf. Fig. 2, it can be searched
for a service that guarantees that there is no data-flow to an
undesired location, cf. Fig. 4. If there is no such service
(i.e., Reg .choose(Ix) = null) then false is returned. If
undesired(S,L) returns true each service variable x of A is
bound to a service X . Thus, for each call x.f(· · ·) ∈ SliceS ,
there is no data-flow to an undesired location.
Remark: The search for an adequate service in the registry
Reg might take a long time. An alternative would be to
bound the number of tries to find an adequate service. �

The problem with this approach is that the service A
needs to know the undesired locations. Thus, encrypting
the analysis request with PA’s public key prevents A from
choosing alternative services according to Fig. 4. However,
the program analysis PA could choose an alternative service
on behalf of A. Thus PA could tell A which services it can
choose. This dynamic choice can be achieved by changing
the last step of Step 5 in Section IV: A positive answer
is passed to A as in Step 5. However, if PA’s answer is
negative, it performs the procedure in Fig. 4. Any query
undesired(CalledS,b, L) to services b used by A is passed
by A to the service bound to b. The result is passed back to
PA which can tell A whether to bind the chosen service to
b. If PA finishes the procedure in Fig. 4, it passes its final
answer to A.

Thus, the answer is partially not being kept secret to the

service being analyzed. However, the final answer is still
kept secret and the client can still verify the final answer.
The undesired locations and functions used by the client are
still kept secret to the service being analyzed.

VI. RELATED WORK

There is a lot of work on data security in the cloud. These
works ensure data integrity ([11], [12], [13], [14], [15]), i.e.,
no malicious service or cloud attack changes the client’s data
or that this can be discovered by the client, respectively.
These works assume (similar to our work) that there is an
independent auditor. The works [12], [14] discuss privacy
issues w.r.t. the auditor. [11] considers data-flow. They do
not perform a static data-flow analysis but monitor data-flow
between services in order to detect malicious services.

Works on privacy leaks on smart phones are closer to this
work [16], [17]. These works analyze whether private data
leave smart phone applications. While [16] uses a monitoring
approach, [17] uses a static data-flow analysis approach. In
contrast to our approach, they analyze the software executed
on the smart phone, but they also forbid data leaving the
smart phone that are stored in trusted locations.

Song et al. [18] investigates data-flow analysis in the
context of service computing. In contrast to our work, they
analyze data-flow correctness, e.g., whether each business
process implementing a service receives the data it needs.

VII. CONCLUSIONS

In this work, we have shown how static data-flow analysis
can ensure that clients data don’t reach undesired locations
(directly or indirectly) via software services. For this, an
independent trusted program analysis is required. The ap-
proach turns out to be a negotiation approach similar to
service-level agreements. The client sends a request to a
service candidate whether it can guarantee to avoid data-flow
to services on undesired locations. For this, an independent
program analysis service signs the analysis result with its
private key. Therefore, the client can verify whether a trusted
program analysis has being performed. In order to prevent
malicious services, the analysis request (in addition to the
analysis result) is kept secret by encrypting it with the public
key of the certified program analysis.

If we assume that no service is malicious (but possibliy
erroneous), then there is no need for keeping the analysis
request secret. If a service uses other services, it can look
for alternatives that ensure themselves the avoidance of data-
flow to undesired locations. In order to keep the analysis
request secret to the services being analyzed, the service
selection can be performed by the program analysis.

One might argue that a drawback of our approach is
that the services must pass their source code to a certified
program analysis. However, this certified program analysis
is the only service that knows the source code and its the
service that can choose the program analysis it trusts.

28Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 41 / 282

A more serious problem is that extremely malicious ser-
vices send a source text to a certified program analysis that
differs from their implementation. This could be prevented
by two different approaches: first, there might be other
program analyzes (e.g., that the service is doing something
reasonable) and this analysis requests are also encrypted. If
a service does not know what property is being analyzed,
it is more difficult to prepare itself for cheating. A second
possibility would be a combination of a monitoring approach
(e.g., similar to [16]) with a randomized testing approach
as used for checking data integrity (see, e.g., [15]): For the
latter, the program analyzer can generate test cases (based on
the source text it knows) and tests the service using these test
cases. The monitoring approach monitors the data leaving
the service and their corresponding destination services. Any
difference between the data-flow analysis results and the
destination services is a hint that the analyzed service is
malicious, and the certified program analysis can give a
negative answer to the client. It is subject to future work to
detail these ideas. To check the performance of the proposed
approach, the implementation of a tool is also a subject for
future work.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their helpful comments.

REFERENCES

[1] European Commission and others, “Directive 95/46/ec of the
european parliament and of the council of 24 october 1995
on the protection of individuals with regard to the processing
of personal data and on the free movement of such data,”
Official Journal of the European Communities, vol. 23, p. 31,
1995.

[2] European Commission,
http://eur-lex.europa.eu/LexUriServ/, 2012,
last accessed May 2012.

[3] R. Seiger, S. Groß, and A. Schill, “Seccsie: A secure cloud
storage integrator for enterprises,” in 13th IEEE Conference
on Commerce and Enterprise Computing (CEC). IEEE,
2011, pp. 252–255.

[4] L. Wei, H. Zhu, Z. Cao, W. Jia, and A. Vasilakos, “Sec-
cloud: Bridging secure storage and computation in cloud,” in
Distributed Computing Systems Workshops (ICDCSW), 2010
IEEE 30th International Conference on. IEEE, 2010, pp.
52–61.

[5] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Ma-
suoka, and J. Molina, “Controlling data in the cloud: outsourc-
ing computation without outsourcing control,” in Proceedings
of the 2009 ACM workshop on Cloud computing security.
ACM, 2009, pp. 85–90.

[6] M. Dikaiakos, D. Katsaros, P. Mehra, G. Pallis, and A. Vakali,
“Cloud computing: Distributed internet computing for it and
scientific research,” IEEE Internet Computing, vol. 13, no. 5,
pp. 10–13, 2009.

[7] S. Pearson, “Taking account of privacy when designing cloud
computing services,” in ICSE Workshop on Software Engi-
neering Challenges of Cloud Computing, 2009. IEEE, 2009,
pp. 44–52.

[8] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers:
Principles, Techniques, and Tools (2nd Edition). Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
2006.

[9] A. Celesti, F. Tusa, M. Villari, and A. Puliafito, “Federation
establishment between clever clouds through a saml sso
authentication profile,” International Journal on Advances in
Internet Technology, vol. 4, no. 12, pp. 14–27, 2011, ISSN:
1942-2652.

[10] A. Celesti, F. Tusa, M. Villari, and A. Puliafito, “Evaluating
a distributed identity provider trusted network with delegated
authentications for cloud federation,” in PROCEEDINGS of
The Second International Conference on Cloud Computing,
GRIDs, and Virtualization (Cloud Computing 2011). IARIA,
2011, pp. 79–85, ISBN: 978-1-61208-153-3.

[11] J. Du, W. Wei, X. Gu, and T. Yu, “Runtest: assuring integrity
of dataflow processing in cloud computing infrastructures,”
in Proceedings of the 5th ACM Symposium on Information,
Computer and Communications Security. ACM, 2010, pp.
293–304.

[12] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-preserving
public auditing for data storage security in cloud computing,”
in INFOCOM, 2010 Proceedings IEEE. IEEE, 2010, pp. 1–
9.

[13] M. Tribhuwan, V. Bhuyar, and S. Pirzade, “Ensuring data stor-
age security in cloud computing through two-way handshake
based on token management,” in 2010 International Confer-
ence on Advances in Recent Technologies in Communication
and Computing (ARTCom). IEEE, 2010, pp. 386–389.

[14] Z. Hao, S. Zhong, and N. Yu, “A privacy-preserving remote
data integrity checking protocol with data dynamics and
public verifiability,” IEEE Transactions on Knowledge and
Data Engineering, vol. 23, no. 9, pp. 1432–1437, 2011.

[15] Y. Liang, Z. Hao, N. Yu, and B. Liu, “Randtest: Towards more
secure and reliable dataflow processing in cloud computing,”
in 2011 International Conference on Cloud and Service
Computing (CSC). IEEE, 2011, pp. 180–184.

[16] W. Enck, P. Gilbert, B. Chun, L. Cox, J. Jung, P. McDaniel,
and A. Sheth, “Taintdroid: An information-flow tracking
system for realtime privacy monitoring on smartphones,” in
Proceedings of the 9th USENIX conference on Operating
systems design and implementation. USENIX Association,
2010, pp. 1–6.

[17] M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “Pios: Detect-
ing privacy leaks in ios applications,” in Proceedings of the
Network and Distributed System Security Symposium, 2011.

[18] W. Song, X. Ma, S. Cheung, H. Hu, and J. Lü, “Preserving
data flow correctness in process adaptation,” in Services
Computing (SCC), 2010 IEEE International Conference on.
IEEE, 2010, pp. 9–16.

29Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 42 / 282

A Security Architecture for Cloud Storage
Combining Proofs of Retrievability and Fairness

Aiiad Albeshri∗†, Colin Boyd∗ and Juan Gonzalez Nieto∗
∗Information Security Institute, Queensland University of Technology, Brisbane, Australia.

{c.boyd, j.gonzaleznieto}@qut.edu.au, a.albeshri@student.qut.edu.au
†Faculty of Computing and IT, King Abdulaziz University, Jeddah, Saudi Arabia

Abstract—We investigate existing cloud storage schemes and
identify limitations in each one based on the security services that
they provide. We then propose a new cloud storage architecture
that extends CloudProof of Popa et al. to provide availability
assurance. This is accomplished by incorporating a proof of
storage protocol. As a result, we obtain the first secure storage
cloud computing scheme that furnishes all three properties of
availability, fairness and freshness.

Keywords- Cloud Computing; Cloud Storage; Cloud Secu-
rity.

I. INTRODUCTION

Cloud computing is essentially a large-scale distributed and
virtual machine computing infrastructure. This new paradigm
delivers a large pool of virtual and dynamically scalable
resources, including computational power, storage, hardware
platforms and applications, which are made available via
Internet technologies. There are many advantages for private
and public organisations that decide to migrate all or some of
their information services to the cloud computing environment.
Examples of these benefits include increased flexibility and
budgetary savings through minimisation of hardware and soft-
ware investments [7], [8], [15]. However, while the benefits of
adopting cloud computing are clear, there are also associated
critical security and privacy risks that result from placing data
off-premises. Indeed, it has been observed that data owners
who outsource their data to the cloud also tend to outsource
control over their data [8].

Consumers have the option to trade the privacy of their
data for the convenience of software services (e.g., web based
email and calendars). However, this is generally not applicable
in the case of government organisations and commercial
enterprises [15]. Such organisations will not consider cloud
computing as a viable solution for their ICT needs, unless
they can be assured that their data will be protected at least
to the same degree that in-house computing offers currently.
Yet, none of today’s storage service providers in the cloud
(e.g., Amazon Simple Storage Service (S3) [2] and Google’s
BigTable [12]) guarantee any security in their service level
agreements. Moreover, there have been already security breach
incidents in cloud based services, such as the corruption of
Amazon S3, due to an internal failure caused by mismatching
files with customers’ hashes [1].

This paper focuses on designing a secure storage archi-
tecture for cloud computing. As discussed below, important

security requirements that a cloud storage architecture should
satisfy are confidentiality, integrity, availability, fairness (or
non-repudiation) and data freshness. Examination of the lit-
erature shows that there is no single complete proposal that
provides assurance for all of these security properties. Also,
some existing secure cloud storage schemes are designed only
for static/archival data and are not suitable for dynamic data.

Proof of storage (POS) protocols are a key component in
most secure cloud storage proposals in the literature. A POS is
an interactive cryptographic protocol that is executed between
clients and storage providers in order to prove to the clients
that their data has not been modified or (partially) deleted
by the providers [15]. The POS protocol will be executed
every time a client wants to verify the integrity of the stored
data. A key property of POS protocols is that the size of the
information exchanged between client and server is very small
and may even be independent of the size of stored data [8].

We investigated different types of existing cloud storage
schemes and identified limitations in each one of them based
on the security services that they provide. We identified
a scheme by Popa et al. [18], called CloudProof, as one
satisfying the majority of the security requirements. However,
it does not provide assurance on data availability, i.e., it does
not guarantee that the entire data is indeed stored by the cloud
provider. Our goal then is to provide a cloud storage architec-
ture that extends CloudProof in order to provide availability
assurance, by incorporating a proof of storage protocol.

The rest of this paper is organised as follows: the second
section elucidates the set of security properties that a secure
cloud storage application must fulfill; the third section pro-
vides an analysis of existing secure cloud storage proposals
from the literature; the fourth section introduces the proposed
architecture; finally, in the fifth section, the paper draws some
conclusions and points at future work.

II. SECURITY REQUIREMENTS

We consider a cloud storage scenario where there are four
kinds of parties involved: the data owner, the cloud provider,
clients and an optional third party auditor (TPA). The data
owner pays for the cloud storage service and sets the access
control policies. The cloud provider offers the data storage
service for a fee. Clients request and use the data from the
cloud. In the cloud environment we assume that there is no
mutual trust between parties. Thus, several security properties

30Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 43 / 282

need to be assured when storing the data in the cloud, as
discussed in many related works (e.g., [16], [22]).

a) Data Confidentiality: ensures that only authorised
clients with the appropriate rights and privileges can access
the stored information. The most effective way to ensure the
confidentiality of the client’s data is by using encryption,
even though the cloud provider may still be able to predict
some information based on monitoring the access patterns of
clients [18]. Most existing secure storage proposals provide
data confidentiality by allowing clients to encrypt their data
before sending it to the cloud. However, critical issues such
as key management may be problematic, especially when we
have a multiple user scenario.

b) Data Integrity: ensures that the stored data has not
been inappropriately modified (whether accidentally or delib-
erately). Data integrity becomes more challenging when adopt-
ing cloud computing where cloud customers outsource their
data and have no (or very limited) control over their stored
data from being modified by the storage service provider.
Thus, cloud customers are aiming to detect any unauthorized
modification of their data by the cloud storage provider.

c) Data Availability: ensures that users are able to obtain
their data from the cloud provider when they need it. Cloud
customers want to be sure that their data is always available
at the cloud storage. To this end, a number of proof of storage
protocols have been devised that allow the cloud provider
to prove to clients that their entire data is being stored,
which implies that the data has not been deleted or modified.
Section III discusses some of these schemes.

d) Public Verifiability: means that service providers al-
low a TPA to perform periodical availability verifications on
behalf of their customers. In cloud computing environments,
customers may need to allow a TPA to verify the integrity
of the dynamic data stored in the cloud storage [21]. Public
verifiability allows the cloud customers (or their TPA) to chal-
lenge the cloud server for correctness of stored data. In fact,
security requirements can be inter-related. For instance, when
a TPA is delegated to perform verification, the confidentiality
may be compromised. However, this issue could be resolved
by utilising a verification protocol that allows TPA to verify
without knowing the stored data [21].

e) Freshness: ensures that the retrieved data is fresh, i.e.,
it contains the last updates to the data. This is very important in
shared and dynamic environments where multiple clients may
simultaneously update data. Cloud customers need to ensure
that the retrieved data is the latest version. To the best of our
knowledge, CloudProof [18] is the only cloud storage scheme
that addresses freshness.

f) Fairness: or non-repudiation ensures that a dishonest
party cannot accuse an honest party of manipulating its data
[24]. If a dispute arises between a client and storage provider
regarding whether the correct data is stored then it may be nec-
essary to invoke a judge to decide who is right. Fairness will
typically be implemented by using digital signatures. Clients
may want to have a signature from the provider acknowledging
what data is stored. Providers may want signatures from clients
whenever the stored data is altered, with deletion being an
important special case.

III. PROOF OF STORAGE SCHEMES (POS)

Cloud storage schemes can be categorised into two types,
static and dynamic. In static schemes, clients store their data
and never change or update it. In dynamic schemes clients can
update the stored data. In the following two subsections, we
review existing proposals for POS protocols. Table I lists the
schemes reviewed and indicates the security requirements that
are satisfied by them. The entry with the dagger (†) indicates
that the property is only partially satisfied. It can be seen
that no single proposal encompasses all security requirements
identified in Section II. The security requirements in the table
are Confidentiality (C), Integrity (I), Availability (A), Public
Verifiability (PV), Freshness (Fr) and Fairness (Fa).

Table I
OVERVIEW OF THE PROMINENT PROOF OF STORAGE (POS) SCHEMES.

POS Scheme C I A PV Fr Fa Type

Proof of
Retrievability (POR)
[13]

! ! ! ! % % Static

Provable Data
Possession (PDP)[3]

! ! ! ! % % Static

Compact POR [19] ! ! ! ! % % Static
Tahoe [23] ! ! % % % % Static
HAIL [5] % % ! ! % % Static
POR (experimental
test) [6]

! ! ! ! % % Static

Framework for POR
protocols [9]

! ! ! ! % % Static

POS from HIP [4] ! ! ! ! % % Static
DPDP [10] ! ! ! % % % Dynamic
POR with public
verifiability [21]

! ! ! ! % % Dynamic

Depot [17] % ! ! ! % % Dynamic
Wang et al. [20] % ! ! ! % % Dynamic
CloudProof [18] ! ! % ! ! ! Dynamic
Fair and Dynamic
POR [24]

! ! ! % % %† Dynamic

A. POS for Static Data

There are several POS schemes that support storage of static
data. Juels and Kaliski [13] introduced proof of retrievability
(POR). In POR the Encode algorithm firstly encrypts all
the data. Additionally, a number of random-valued blocks
(sentinels) are inserted at randomly chosen positions within the
encrypted data. Finally, an error correction code is applied to
the resulting new data. Clients challenge the service provider
by identifying the positions of a subset of sentinels and
asking the service provider to retrieve the requested values.
The VerifyProof process works because, with high probability,
if the service provider modifies any portions of the data,
the modification will include some of the sentinels and will
therefore be detected. If the damage is so small that it does
not affect any sentinel, then it can be reversed using error
correction.

POR [13] only allows a limited number of executions of
the Challenge algorithm (for the whole data). The verification
capability of POR is limited by the number of precomputed
sentinels embedded into the encoded file. This is improved by

31Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 44 / 282

the scheme of Shacham and Waters [19], which enables an
unlimited number of queries and requires less communication
overhead. In this scheme, in addition to encoding each file
block, the client appends a special type of authenticator to
each block. The encoded blocks and authenticators are stored
on the server. The verifier challenges the service provider by
sending a set of randomly selected block indexes. The response
from the service provider is a compact proof that combines the
challenge blocks and authenticators and which can be validated
very efficiently by the verifier. Likewise, Bowers et al. [6],
Ateniese et al. [4] and Dodis et al. [9] provided POR schemes
which provide probabilistic assurance that a remotely stored
file remains intact.

Table I lists other prominent POS examples. All POS
schemes mentioned above were designed to deal with static or
archival data only and are not suitable for dynamic environ-
ments. The efficiency of these schemes is mainly based on the
preprocessing of the data before sending it to remote storage.
Any modification to the data requires re-encoding the whole
data file, so it has associated a significant computation and
communication overhead.

B. POS for Dynamic Data
It is natural that clients may want to update their files

while they are in storage without having to resubmit the
whole data set to the server. Therefore, it is desirable to offer
an option to update files in such a way that the proof of
storage for the whole data still applies. POS for dynamic
data is more challenging than static data. There are several
dynamic POS schemes. Erway et al. [10] introduced what
they called “Dynamic Provable Data Possession” or DPDP,
which extends the static PDP [3]. Their approach uses a
variant of authenticated dictionaries, which allows insertion
and deletion of blocks within the data structure. A limitation
of DPDP is that it does not allow for public verifiability of the
stored data; in addition it does not consider data freshness or
fairness. Wang et al. [21] improve on DPDP by adding public
verifiability, thus allowing a TPA to verify the integrity of the
dynamic data storage. Now the authenticated data structure
employed is the classic Merkle Hash Tree (MHT). Still, data
freshness and fairness are not considered.

Popa et al. [18] introduced CloudProof, which provides
fairness by allowing customers to detect and prove cloud
misbehaviour. This is achieved by means of digitally signed
attestations. Each request and response for reading (get) and
writing (put) data is associated with an attestation. This
attestation will be used as proof of any misbehaviour from both
sides. CloudProof [18] is the only POS scheme that provides
assurance of data freshness by using hash chains. For each put
and get attestation, the hash chain is computed over the hash
of the data in the current attestation and the hash value of the
previous attestation. More details are provided in Section IV.

In addition, CloudProof emphasises the importance of "fair-
ness". If the cloud misbehaves, for example it deletes some
user blocks, then the owner has the ability to prove to a judge
that the cloud was at fault. At the same time, if the owner
claims falsely that a file was deleted, the cloud can prove to
the judge that the owner asked for this to be done.

It should be noted that fairness in CloudProof does not
extend to the meaning normally expected in protocols for fair
exchange. In particular, Feng et al. [11] have pointed out that a
provider could omit sending its signature once it has received
the signature of the client on an update. Consequently the
provider has an “advantage” in the sense that it can prove to a
judge that the client asked for an update but the client cannot
provide any evidence that the provider received the update
request. Arguably this advantage has limited consequences
because the client can retain the update details pending the
receipt of the provider’s signature. If the provider does not
send the signature then this is inconvenient for the client but
he can recover from it; meanwhile, the client can seek other
remedies. In any case, ensuring fairness in the stronger sense
that neither party ever gets an advantage can only be achieved
in general using an online trusted third party which is likely
to be too costly to justify.

Zheng and Xu [24] have a rather different definition of
fairness for their dynamic scheme. They require only that
clients are not able to find two different files which both
will satisfy the update protocol. The idea is that a malicious
client can then produce a different file from that which the
server can produce and claim that the server altered the file
without authority. Zheng and Xu do not require that the update
protocol outputs a publicly verifiable signature so a judge can
only verify this fact by interacting with the client using public
information. In addition, they do not consider the situation
where a server does maliciously alter the file - for example
deletes it. In this case, the client may no longer have anything
to input to the verification equation.

In fact, the security model for CloudProof is quite weak.
Auditing is only done on a probabilistic basis to save on
processing. The data owner (or TPA) assigns to each block
some probability of being audited, so an audit need not check
every block. Thus, for parts that are rarely touched by users,
this means that it could be a long time before it is noticed
if something has been deleted. Whether or not a block will
be audited is known to any user who has access to it, but
is hidden from the cloud. Blocks which are not audited can
be changed at will (or deleted) by the cloud. Popa et al. [18]
state that “We do not try to prevent against users informing the
cloud of when a block should be audited (and thus, the cloud
misbehaves only when a block is not to be audited)”. This
seems too optimistic - if even a single user can be corrupted
by the cloud, then the cloud can delete all the blocks to which
that user has access without any chance of detection. it is clear
therefore that CloudProof does not provide the availability
assurance. However, as seen in Table I, it is the scheme that
provides the most security services. In the next section, we
extend CloudProof to provide availability of the whole stored
data. We do so by combining CloudProof with the dynamic
POR of Wang et al. [21].

IV. PROPOSED ARCHITECTURE

We now describe a new architecture which combines the
idea of CloudProof [18] and Dynamic Proofs Of Retrievability
(DPOR) [21] as it provides data availability for dynamic data
along with must of other security requirements. The proposed

32Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 45 / 282

Data

Data

Data

Cloud

Storage

Servers

Cloud Service Provider

Clients

Data Owner

1 .
1
F i
, Φ

i
, K

e y
Bl
oc
k
Ta
bl
e ,

s i
g(
ro
ot
)

2.1. Request: get (i, Nonce)

2.2. Response: E(mi) + Cloudget Att + chain hash

3.2. Request: put { “update = type + Ek(m’i) +

i + σ’ I ” + ClientputAtt }

2.3. VERIFY σi & CloudgetAtt

3.1PrepareUpdate→ m’i

3.5 VerifyUpdate(pk,

update, Pupdate) + VERIFY

CloudputAtt

Client store all Cloud

get/put att. until end of

epoch

3.4. Response: Cloudput Att + chain hash + Pupdat e

4
.1
.
s
e
n
d
a
ll

C
lo
u
d
a
tt.

@
 epoch end

4 .
2 .
up

da
te
AC

L
&
Fa
m
ily

ke
y b

lo
c k
 @
 ep

oc
h
en
d

4.3. Audit att_cloud

for each block

@ epoch end

5.
1.

 c
h

al
le

n
g

e
re

q
u

es
t

m
es

sa
g

e
 ‘
ch

al
’

5.
3.

 R
es

p
o

n
se

 ‘P
’

3.
3.

V
er

if
y

&
 E

xe
cU

p
d

at
e(

F
, Φ

, u
p
d
at
e)

5.
2.

 (
P

)
←

 G
en

P
ro

o
f

(F
, Φ

, c
h

al
)

TPA

3.6. new root's signature sigs k(H(R'))

5.
4.

 V
er

if
yP

ro
o

f(
p
k,

 c
h
al

, P
)

Data

Figure 1. Proposed Architecture

POS architecture tackles the limitations of both schemes.
Thus, the limitation of CloudProof of being unable to check
data availability at the whole data set level is overcome by
employing DPOR.

DPOR consists of the following protocols/algorithms:
1) KeyGen: is a randomized algorithm that is used to

generate cryptographic key material.
2) Encode: is used for encoding data before sending it to

the remote storage.
3) GenProof: the service responds to the client’s challenge

request by generating a proof which is sent to the
verifier.

4) VerifyProof: upon receiving the proof from the service
provider, the client executes this protocol to verify the
validity of the proof.

5) ExecUpdate: this protocol is used in dynamic schemes
and is executed by the cloud provider. This protocol may
include a proof by the service provider of the successful
update of the data, so that the customer can verify the
update process.

6) VerifyUpdate: this is executed by the client in order to
verify the proof sent by the service provider after an
update.

As in CloudProof, we consider different time periods or
epochs. At end of each epoch the data owner or TPA performs
a verification process to assure that the cloud storage possesses
its data. In this way we obtain a design that satisfies all
the desirable properties discussed in Section II. Figure IV
describes the proposed architecture and identifies its parties
and the different protocols that are executed between them.

g) Key Management: we assume that the data owner
will divide the plaintext data file into blocks F ′′ =
{m′′1 ,m′′2 , ...,m′′n}. Each data block is assigned to an ACL
(set of users and groups) and blocks with similar ACL are
grouped in a single block family. In addition, for each block
family there is a family key block that contains a secret
(signing) key sk (known only to clients with write access in
the ACL), read access key k (known only to clients with read

access in the ACL), public (verification) key pk (known to
all clients and the cloud provider), version of pk and k keys,
block version, and signature of the owner. The data owner
will create the family key block table in which each row in
this table corresponds to an ACL (Fig. 2). The data owner
maintains the key production while the key distribution process
is offloaded to the cloud service provider but in a verifiable
way. The key distribution process involves two cryptographic
tools; broadcast encryption EF which is used to encrypt
the secret key (EF (sk)) and read access key (EF (k)). EF (k)
guarantees that only allowed clients and groups in the ACL’s
read set can decrypt the key and use it to decrypt the blocks
in the corresponding family. sk is used to generate update
signatures for blocks. EF (sk) guarantees that only users and
groups in the ACL’s write set can decrypt the key and use it
to generate update signatures for blocks in the corresponding
family. The key rotation scheme is another cryptographic tool
which is used to generate a sequence of keys using an initial
key with a secret master key [14]. Thus, only the owner of the
secret master key can produce the next key in the sequence.
Also, by using key rotation, the updated key allows computing
of old keys. Thus, there is no need to re-encrypt all encrypted
data blocks [18]. The data owner will keep the family key
block table and every time there is a change of membership,
the data owner will re-encrypt the key and update the family
key block table.

h) Pre-Storage Processing: the data owner encodes each
block in the data file F ′′ using Reed-Solomon error correction
F ′ = encodeRS(F ′′). Then, each block in F ′ is encrypted
using the corresponding k of that block family; F = Ek(F ′) =
{m1,m2, ...,mn}. The data owner creates a Merkle Hash Tree
(MHT) for each block family. The MHT is constructed as a
binary tree that consists of a root R and leaf nodes which are
an ordered set of hashes of the family data blocks H(mi).
MHT is used to authenticate the values of the data blocks.
As in DPOR [21], the leaf nodes are treated in the left-to-
right sequence thus, any data block (node) can be uniquely
identified by following this sequence up to the root (Fig. 4).

33Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 46 / 282

DPOR [21] uses BLS or RSA in such a way that multiple
signatures verification can be done very efficiently. Thus,
for each block family F , the data owner runs the signature
generatour algorithm (Φ, sigsk(H(R))) ←− SigGen(sk, F)
which takes the signing key of the family (sk) and the en-
crypted block family F and generates the signature set for this
family Φ = {σ1, σ2,, σn}; where σi ← (H(mi) · umi)sk

for each family block mi; u ← G is a random element
choosed by the data owner. In addition, a signature of the
root that associated MHT is generated sigsk(H(R)). Then,
each block mi will be associated with its signature σi and
some metadata such as block version and version of k and pk;
bi = {mi||block V er||k V er||pk V er||σi} (Fig. 2). Finally,
the data owner sends to the cloud storage the block family
{b1, b2,, bn}, its signature set Φ, the family key block
table, and the root signature of this block family sigsk(H(R))
(Message 1.1 of Fig. IV).

Figure 2. Data block and family key block table sent to the cloud

sk

Figure 3. Attestations of Popa et al. [18]

Figure 4. Merkle Hash Tree

i) Attestations: As in CloudProof [18] we build a hash
chain from all data changes and requires signing from both
parties on all updates. Thus, any misbehaviour could be de-
tected and proved by exchanging attestations for each request
or response between data owner, clients and cloud provider.
The structure of exchanged attestations includes metadata such
as the block version and current hash which are used to
maintain the write-serialisability (when each client placing an

update is aware of the latest committed update to the same
block) and the hash chain value which is used for freshness
(Fig. 3). The hash chain is computed over the hash of the data
in the current attestation and the chain hash of the previous
attestation. Thus it is a sequence of hashes which contains
current attestation and all history of attestations of a specific
block as follows: chain hash = hash(data, previous hash chain
value). Thus, if the sequence of attestations is broken this
means there is a violation of freshness property. In addition,
during each epoch clients need to locally store all received
attestations and forward them to the data owner for auditing
purposes at end of each epoch (Fig. IV). For simplicity, in
our proposal we assume that all data blocks will be audited,
however, in practice a probabilistic approach as in CloudProof
would be advantageous.

j) Get block: in the get (read) request for a specific
data block, clients need to send to the cloud provider the
block index (i) for that block and a random nonce (Message
2.1 of Fig. IV). The cloud provider will verify the client
by checking the ACL and make sure that only clients with
read/access permission (of the block) can gain access to this
block. If the client is authorised then it will respond by sending
the requested block (bi) with its signature (σi), the cloud
get attestation CloudgetAtt and signature of the attestation
Sign(CloudgetAtt) (Message 2.2 of Fig. IV). The client will
verify the retrieved attestation and make sure that it was
computed over the data in the block and the nonce. Also, the
client will verify the integrity signature (σi) of the received
block. Clients need to locally store these attestations and their
signatures and forward them at the end of each epoch for
auditing purposes.

k) Put block: suppose the client wants to update a
specific block (mi) into (m′i). First, the client needs to generate
the corresponding signature σ′i. Also, the client prepares the
update (put) request message update = (type, i, m′i, σ

′
i);

where type denotes the type of update (Modify M , In-
sert I or Delete D). In addition, the client will use sk
to compute its put attestation (ClientputAtt) and sign it
signsk(ClientputAtt). Then client sends update message,
ClientputAtt and signsk(ClientputAtt) to the cloud servers
(Message 3.2 of Fig. IV). On the cloud side, cloud provider
will verify the client by checking the ACL and make sure
that only clients with write permission (of the block) can
update this block. In addition, cloud provider will verify
the client’s attestation. If the client is authorised then it
runs (F ′, Φ′, Pupdate)← ExecUpdate(F, Φ, update) which
replaces the block mi with m′i and generates the new block
family F ′; and replaces the signatureσiwith σ′i and gener-
ates new signature set of the family Φ′; and updates the
H(mi) with H(m′i) in the MHT and generates the new
root R′ (in MHT scheme as a new block added into or
deleted from a file these new nodes are added to MHT as
described in DPOR [21] and the tree is rearranged according
to this update). The cloud responds to the update request
by sending a proof for the successful update (Pupdate =
{Ωi, H(mi), sigsk(H(R)), R′}; where Ωi is used for authen-
tication of mi). Also, the cloud constructs the put attestation
(CloudputAtt) and signs it signsk(CloudputAtt) and send

34Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 47 / 282

them to the client (Messages 3.3 and 3.4 of Fig. IV). In
addition, the cloud provider will store the received client
attestations to be used if any misbehaviour detected. The
client verifies the cloud put attestation and check the chain
hash. Also, client verify the received update proof by run-
ning this algorithm: {(TRUE , sigsk(H(R′))), FALSE} ←
VerifyUpdate(pk, update, Pupdate) which takes pk, the old
root’s signature sigsk(H(R)), the update message request
(update), and the received proof (Pupdate). If verification
succeeds, it generates the new root’s signature sigsk(H(R′))
for the new root R′and send it back to the cloud (Messages 3.5
and 3.6 of Fig. IV). In addition, client need to store all received
cloud put attestation (CloudputAtt) and forward them to the
data owner for auditing purposes.

l) Auditing: the auditing process is carried out at the
end of each epoch and consists of two parts. In the first part
the attestations produced within the given epoch are verified
as per CloudProof. In the second part, the integrity of the
whole data set as in DPOR [21]. For each family block the
TPA picks random c-element subset I = s1, ..., sc. For each
i ∈ I , the TPA selects a random element vi ← Z. Then TPA
sends the message chal which identifies which blocks to be
checked (chal = {(i, vi)}s1≤i≤sc). When the cloud provider
receives the chal message, prover will compute: 1. µ =∑sc

i=s1
vimi ∈ Z; and 2. σ =

∏sc
i=s1

σvi
i ∈ G. The prover runs

P ← GenProof (F, Φ, , chal) algorithm to generate the proof
of integrity P = {µ, σ, {H(mi),Ωi}s1≤i≤sc , sigsk(H(R))};
where Ωi is the node siblings on the path from the leave i
to the root R in the MHT. The verifier will verify the re-
ceived proof by running this algorithm {TRUE ,FALSE} ←
VerifyProof (pk, chal , P). This way we are able to check
data availability at the whole file level.

V. CONCLUSION AND FUTURE WORK

We have investigated the different type of existing cloud
storage schemes and identified limitations in each one of
them based on the security services that they provide. We
have then introduced a cloud storage architecture that extends
CloudProof in order to provide availability assurance. This
is accomplished by incorporating a proof of storage protocol
such as DPOR. The proposed POS architecture overcomes the
weaknesses of both schemes. In this way we obtain a design
that satisfies all the identified desirable security properties.

Both schemes are considered secure and work efficiently
individually and it is reasonable to assume that they should
work in a secure and an efficient way when combined.
However, it may be interesting to perform a detail performance
and security analysis of the proposed architecture.

REFERENCES

[1] Amazon S3 availability event: July 20, 2008.
http://status.aws.amazon.com/s3-20080720.html. [retrieved: Feb,
2012].

[2] Amazon Web Services. Amazon simple storage service FAQs, Mar 2011.
Available at: http://aws.amazon.com/s3/faqs. [retrieved: Dec, 2011].

[3] Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Lea
Kissner, Zachary Peterson, and Dawn Song. Provable data possession
at untrusted stores. In Proceedings of the 14th ACM conference on
Computer and communications security, CCS ’07, pages 598–609, New
York, NY, USA, 2007. ACM.

[4] Giuseppe Ateniese, Seny Kamara, and Jonathan Katz. Proofs of storage
from homomorphic identification protocols. In Proceedings of the 15th
International Conference on the Theory and Application of Cryptology
and Information Security: Advances in Cryptology, ASIACRYPT ’09,
pages 319–333, Berlin, Heidelberg, 2009. Springer-Verlag.

[5] K.D. Bowers, A. Juels, and A. Oprea. HAIL: A high-availability and
integrity layer for cloud storage. In Proceedings of the 16th ACM
conference on Computer and communications security, pages 187–198.
ACM, 2009.

[6] Kevin D. Bowers, Ari Juels, and Alina Oprea. Proofs of retrievability:
theory and implementation. In Proceedings of the 2009 ACM workshop
on Cloud computing security, CCSW ’09, pages 43–54, New York, NY,
USA, 2009. ACM.

[7] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud
computing and emerging it platforms: Vision, hype, and reality for
delivering computing as the 5th utility. Future Generation Computer
Systems, 25(6):599–616, 2009.

[8] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Masuoka,
and J. Molina. Controlling data in the cloud: outsourcing computation
without outsourcing control. In Proceedings of the 2009 ACM workshop
on Cloud computing security, pages 85–90. ACM, 2009.

[9] Yevgeniy Dodis, Salil Vadhan, and Daniel Wichs. Proofs of retrievability
via hardness amplification. In Proceedings of the 6th Theory of
Cryptography Conference on Theory of Cryptography, TCC ’09, pages
109–127, Berlin, Heidelberg, 2009. Springer-Verlag.

[10] Chris Erway, Alptekin Küpçü, Charalampos Papamanthou, and Roberto
Tamassia. Dynamic provable data possession. In Proceedings of the
16th ACM conference on Computer and communications security, CCS
’09, pages 213–222, New York, NY, USA, 2009. ACM.

[11] J. Feng, Y. Chen, D. Summerville, W.S. Ku, and Z. Su. Enhancing Cloud
Storage Security against Roll-back Attacks with A New Fair Multi-Party
Non-Repudiation Protocol. In The 8th IEEE Consumer Communications
& Networking Conference, 2010.

[12] Google. Security and privacy FAQs, Mar 2011. Available at:
http://aws.amazon.com/s3/faqs. [retrieved: Jan, 2012].

[13] Ari Juels and Burton S. Kaliski, Jr. PORs: proofs of retrievability for
large files. In Proceedings of the 14th ACM conference on Computer
and communications security, CCS ’07, pages 584–597, New York, NY,
USA, 2007. ACM.

[14] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu. Plutus:
Scalable secure file sharing on untrusted storage. In Proceedings of
the 2nd USENIX Conference on File and Storage Technologies, pages
29–42, 2003.

[15] Seny Kamara and Kristin Lauter. Cryptographic cloud storage. In
Radu Sion, Reza Curtmola, Sven Dietrich, Aggelos Kiayias, Josep Miret,
Kazue Sako, and Francesc Sebé, editors, Financial Cryptography and
Data Security, volume 6054 of Lecture Notes in Computer Science,
pages 136–149. Springer Berlin / Heidelberg, 2010.

[16] R.L. Krutz and R.D. Vines. Cloud Security: A Comprehensive Guide to
Secure Cloud Computing. Wiley, 2010.

[17] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin, and
M. Walfish. Depot: Cloud storage with minimal trust. In Proc. OSDI,
2010.

[18] R.A. Popa, J.R. Lorch, D. Molnar, H.J. Wang, and L. Zhuang. Enabling
security in cloud storage slas with cloudproof. Microsoft TechReport
MSR-TR-2010, 46:1–12, 2010.

[19] Hovav Shacham and Brent Waters. Compact proofs of retrievability.
In Proceedings of the 14th International Conference on the Theory
and Application of Cryptology and Information Security: Advances in
Cryptology, ASIACRYPT ’08, pages 90–107, Berlin, Heidelberg, 2008.
Springer-Verlag.

[20] Cong Wang, Qian Wang, Kui Ren, and Wenjing Lou. Ensuring data
storage security in cloud computing. In Cloud Computing, pages 1 –9,
july 2009.

[21] Qian Wang, Cong Wang, Jin Li, Kui Ren, and Wenjing Lou. Enabling
public verifiability and data dynamics for storage security in cloud
computing. In Proceedings of the 14th European conference on Research
in computer security, ESORICS’09, pages 355–370, Berlin, Heidelberg,
2009. Springer-Verlag.

[22] M.E. Whitman and H.J. Mattord. Principles of Information Security.
Course Technology Ptr, 3rd edition, 2009.

[23] Z. Wilcox-O’Hearn and B. Warner. Tahoe: the least-authority filesystem.
In Proceedings of the 4th ACM international workshop on Storage
security and survivability, pages 21–26. ACM, 2008.

[24] Q. Zheng and S. Xu. Fair and dynamic proofs of retrievability. In
Proceedings of the first ACM conference on Data and application
security and privacy, pages 237–248. ACM, 2011.

35Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 48 / 282

The Optimal Resource Allocation Among Virtual Machines in Cloud Computing

Marjan Gusev
Faculty of Information Sciences and Computer Engineering

Ss. Cyril and Methodius University
Skopje, Macedonia

Email: marjan.gushev@finki.ukim.mk

Sasko Ristov
Faculty of Information Sciences and Computer Engineering

Ss. Cyril and Methodius University
Skopje, Macedonia

Email: sashko.ristov@finki.ukim.mk

Abstract—Virtualization is a key technology for multi-tenant
cloud computing enabling isolation of tenants in one or
more instances of virtual machines and sharing the hardware
resources. In reality, modern multi-core multiprocessors also
share the last level cache among all cores on one chip. Our goal
will be to enable an optimal resource allocation by avoiding
cache misses as much as possible, since this will lead to per-
formance increase. In this paper, we analyze the performance
of single and multi-tenant environments in cloud environment
installed on a single chip multi core multiprocessor with
different resource allocation to the tenants. We realize a series
of experiments with matrix multiplication as compute intensive
and memory demanding algorithm by varying the matrix size
to analyze performance behavior upon different workload and
variable cache requirements. Each experiment uses the same
resources but it is orchestrated differently. Although one might
think that virtualization and clouds include software overhead,
the results show how and when cloud computing can achieve
even better performance than traditional environment, both in
a single-tenant and multi-tenant resource allocation for certain
workload. The conclusions show that there are regions where
the best performance in the cloud environment is achieved
for cache intensive algorithms allocating the resources among
many concurrent instances of virtual machines rather than in
traditional multiprocessors using OpenMP.

Keywords-Cache memory; Cloud Computing; Matrix Multipli-
cation; Shared Memory; Virtualization.

I. INTRODUCTION

Cloud Service Providers (CSPs) rent on-demand scalable
hardware resources. The customers can use CPU, memory,
and storage with arbitrary size and type in virtual ma-
chines (VMs) whenever they need. This flexibility results
in dynamic resource workload. CSPs foster it even more by
consolidating VMs on smaller number of physical servers
in order to save power consumption. In such dynamic
environment, customers’ VMs are not totally isolated. They
share same physical resources, especially CPU, memory
and network. This paper focuses on CPU utilization when
sharing among many concurrent VMs.

Cache memory is the CPU’s key element in compute
and memory intensive algorithms. Due to the performance
impact of the cache, we define these algorithms as cache
intensive algorithms. Matrix multiplication is an example
of such algorithm that today’s computations are using.

This algorithm is compute intensive O(n3) and memory
demanding O(n2).

Producers of modern multiprocessors must adopt caches
for cloud computing especially in the multitenant, multipro-
cess and multithreading dynamic environment. For example,
Intel introduces Intel Smart Cache [1] to improve the perfor-
mance. Sharing the last level cache among multiprocessor’s
cores allows each core dynamically use the cache up to
100%. This technology can be used to increase the overall
performance in cloud computing multi-tenant environment.
Machina and Sodan in [2] developed a model that describes
the performance of the applications as a function of allocated
cache size, even if the cache is dynamically partitioned.

The fundamental driver for Multi-tenancy is Virtualiza-
tion. It introduces additional layer and can provide better
performance. The cache intensive algorithms run faster in
distributed than shared cache memory virtual environment.
Gusev and Ristov in [3] found that matrix multiplication
algorithm can run faster in virtual environment compared
to traditional, both by sequential and parallel executions
(for problem sizes that fit in distributed L1 and L2 caches
correspondingly). However, virtualization produces huge
performance drawback for shared cache memory, even if
it is dedicated per chip in multi chip multiprocessor. In
this paper, we continue the performance analysis in cloud
solution, compared to both virtual environment in guest op-
erating system and traditional operating system. We expect
that there are regions where the experiments will prove
that cloud virtualization produces better performance and
achieves better performance.

Koh et al. [4] describe the phenomenon that running the
same VM on the same hardware at different times among
the other active VMs will not achieve the same performance.
They predict the performance scores of the applications
under performance interference in virtual environments. VM
granularity has a significant effect on the workload’s perfor-
mance for small network workload [5].

The experiments performed in this paper address several
VM instances in a cloud system using different number of
CPUs (assuming all cores are utilized). The introduction
of a virtualization in the cloud is supposed to decrease
the performance [6]. Our plan is to check validity of the

36Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 49 / 282

Figure 1. Test Cases in Traditional Environment

following hypotheses:

• Is there a region where cloud environment achieves
better performance than traditional and virtual environ-
ment, and

• What is the performance of cloud computing with
multi-VM environment in comparison to allocation of
all resources to only one VM?

The rest of the paper is organized as follows: The testbed
for three workload environments is described in Section II.
Sections III and IV present the results of the experiments
performed to determine the best environment for cache
intensive algorithm and best resource allocation among
process, threads and tenants correspondingly, while Section
V presents the performance when the algorithm is executed
sequentially on a single core. The results of the cache misses
analysis are presented in Section VI to prove the causes for
better / worse performance in L2 / L3 region for traditional
and cloud environment. The final Section VII is devoted to
conclusion and future work.

II. THE WORKLOAD ENVIRONMENTS

This section describes the testing methodology and defines
the workload environments for experiments. Matrix multi-
plication algorithm is used as test data for both sequential
and parallel execution. For all different environments, we
plan to use the same hardware and operating system. The
only difference is inclusion of virtual machines and enabling
cloud environment.

A. Traditional Environment

This environment consists of Linux Ubuntu Server 11.04
installed on Dell Optiplex 760 with 4GB DDR2 RAM and
Intel(R) Core(TM)2 Quad CPU Q9400 @ 2.66GHz [7].
The multiprocessor has 4 cores, each with 32 KB 8-way
set associative L1 cache dedicated per core and 8-way set
associative L2 cache with total 6 MB shared by 3MB per
two cores.

Three different parallel executions are defined as test cases
1.1, 1.2 and 1.3 in this environment, as depicted in Fig. 1.
The sequential execution is determined as test case 1.4.

1) Case 1.1: 1 process with 4 (max) threads on total 4
cores: In this test case the matrix multiplication is executed
by one process using 4 parallel threads as presented in
Fig. 1 a). Each thread runs on one core multiplying the whole
matrix AN ·N and a column block of matrix BN ·N/4.

2) Case 1.2: 2 different processes with 2 threads per
process on total 4 cores: In this test case two concurrent
processes execute matrix multiplication. Each process uses
two parallel threads as shown in Fig. 1 b). Each process
multiplies the whole matrix AN ·N and a half of matrix
BN ·N/2 divided vertically. Each thread multiplies matrix
AN ·N and half of BN ·N/2, i.e., BN ·N/4.

3) Case 1.3: 4 different processes with 1 thread per
process (sequentially) on total 4 cores: In this test case
4 concurrent processes execute matrix multiplication as de-
picted in Fig. 1 c). Each process multiplies the whole matrix
AN ·N and a quarter of matrix BN ·N/4 divided vertically.

4) Case 1.4: 1 process sequentially on 1 core: In this test
case, one process executes matrix multiplication sequentially
on one core, i.e., three cores are unused and free. The process
runs on one core multiplying the whole matrix AN ·N with
the whole matrix BN ·N .

B. Virtual Environment

This environment consists of the same hardware and
operating system as described in Section II-A. Additionally
new VM is installed with same Linux Ubuntu Server 11.04
using VirtualBox and Kernel-based Virtual Machine virtu-
alization standard (KVM). All available resources (4 cores)
are allocated to the only one VM for parallel execution and
only one core for sequential execution.

Two test cases are performed in this environment one with
parallel and the other with sequential execution.

1) Case 2.1: 1 VM with 1 process with 4 (max) threads on
total 4 cores: In this test case one process executes matrix
multiplication by 4 parallel threads, all in the VM. Each
thread runs on one core multiplying the whole matrix AN ·N
and a column block of matrix BN ·N/4.

2) Case 2.2: 1 VM with 1 process sequentially on total 1
core: In this test case one process executes matrix multipli-
cation sequentially in VM on one core, i.e., three cores are
unused and free. The process runs on one core multiplying
the whole matrix AN ·N with the whole matrix BN ·N .

C. Cloud Virtual Environment

Cloud virtual environment is developed using OpenStack
Compute project [8] deployed in dual node as depicted in
Fig. 2. KVM virtualization standard is also used for VMs.
One Controller Node and one Compute Node are used.

This cloud virtual environment consists of the same hard-
ware and operating system as described in Section II-A for
Compute Node server. Virtual Machine described in Section
II-B is instantiated in one or more instances for the four test
cases that are performed in this environment.

37Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 50 / 282

Figure 2. OpenStack dual node deployment [9]

Figure 3. Test Cases in Cloud Virtual Environment

Three test cases 3.1, 3.2 and 3.3 are performed as parallel
executions in this environment depicted in Fig. 3. The test
case 3.4 for sequential execution is defined as one instance
of VM with one sequential process.

1) Case 3.1: 1 instance of VM with 1 process with 4 (max)
threads per process on total 4 cores: This case is similar as
cases 1.1 and 2.1, i.e., one instance of VM is activated in
the Cloud allocated with all 4 cores as depicted in Fig. 3 a).
One process in VM executes matrix multiplication with 4
paralllel threads. Each thread runs on one core multiplying
the whole matrix AN ·N and a column block of matrix
BN ·N/4.

2) Case 3.2: 2 concurrent instances of VM with 1 process
per VM with 2 threads per process on total 4 cores: In
this test case two concurrent instances of same VM are
activated in the Cloud allocated with 2 cores per instance
as depicted in Fig. 3 b). One process in each VM executes
matrix multiplication concurrently with 2 parallel threads per
process (VM). Each process (in separate VM) multiplies the
whole matrix AN ·N and a half of matrix BN ·N/2 divided
vertically. Each thread multiplies matrix AN ·N and half of
BN ·N/2, i.e., BN ·N/4.

3) Case 3.3: 4 concurrent instances of VM with 1 process
per VM with 1 thread per process (sequentially) on total 4
cores: In this test case, 4 concurrent instances of same VM
are activated in the Cloud allocated with 1 core per instance
as depicted in Fig. 3 c). Each process (in separate VM)

multiplies the whole matrix AN ·N and a column block of
matrix BN ·N/4.

4) Case 3.4: 1 instance of VM with 1 process sequentially
on total 1 core: This case is similar as test case 3.1. The
difference is that only one core is dedicated to the only VM,
i.e., three cores are unused and free. The process runs on
one core multiplying the whole matrix AN ·N with the whole
matrix BN ·N .

D. Test Goals

The test experiments have two goals:
• The first goal is to determine if the additional virtu-

alization layer in cloud drawbacks the performances
compared to traditional or virtualized operating system
when all the resources are dedicated to only one tenant
and multi-threading is used.

• The second goal is to determine which resource allo-
cation among tenants and threads provides best perfor-
mance in the traditional environment and in the cloud.

Different sets of experiments are performed by varying
the matrix size changing the processor workload and cache
occupancy in the matrix multiplication algorithm.

III. TRADITIONAL VS VIRTUAL VS CLOUD
ENVIRONMENT PERFORMANCE WITH ALL RESOURCES

ALLOCATED

This Section presents the results of the experiments
performed on three workload environments when all the
resources (CPU cores) are rented to one tenant, i.e., test
cases 1.1, 2.1 and 3.1 as described in Section II.

Fig. 4 depicts the speed in gigaflops that matrix multipli-
cation achieves for different matrix size N when executing
one process concurrently using 4 threads on 4 cores on three
same hardware resources, but different system environments
as described in Section II. The curves are identified by V(4)T
for traditional environment, V(4)V for environment with
virtual and V(4)C with cloud environment. Fig. 5 shows only
the differences of achieved speeds in Fig. 4 using relative
presentation of the ratio to the default speed value obtained
by traditional environment.

Two regions with different performance for all three test
cases are clearly depicted in Fig. 4; the left one with higher
speed and the right one with lower speed. The first region is
the L2 region as defined in [3] (the region for such matrix
size N that will enable storage of all memory requirements
in L2 cache and avoid generation of cache misses for reusing
the same data on L2 level). The second region is the region
where the matrices can not be stored completely in the L2
cache and many L2 cache misses will be generated due to
re-using of data, but memory requirements will fit in the L3
cache (if it exists). This region is called the L3 region. We
must note that those matrices that fit in L1 region are too
small to produce higher speed.

38Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 51 / 282

Figure 4. Speed comparison for traditional / virtual machine allocated
with all hardware resources (4 threads)

Figure 5. Relative speed comparison for Fig. 4.

Analyzing the performance by comparing the three curves
in figures 4 and 5, we can conclude that cloud virtualization
performs the algorithm better than other two environments
in the L2 region. Virtualization also performs better than
traditional environment in the same L2 region, but produces
worse performance in points where performance drawbacks
appear due to cache set associativity described in [10]. Cloud
and traditional environments provide similar performance
in L3 region, i.e., shared main memory, much better than
virtual environment. The conclusion is that in this region
virtualization provides the worst performance and cloud
environment achieves the best performance.

Another important conclusion is the fact that the speed
increases in the L2 region where the cache memory is
dedicated per core (group of 2 cores) for virtual and cloud
environments. However, the speed decreases in the shared
memory L3 region when matrix size N increases demanding
more memory requirements, generating higher cache miss
penalty and increasing the overall memory access time.

Based on results of these experiments, we can conclude
that cloud virtual environment achieves better performance
compared to traditional environment for cache intensive

Figure 6. Speed comparison for traditional machine allocated with different
resources per thread

algorithms in the L2 region using dedicated L2 cache per
core and shared L3 cache and main memory. Section VI
describes the causes for this phenomenon.

IV. MULTIPROCESS, MULTITHREAD AND MULTITENANT
ENVIRONMENT PERFORMANCE

This section presents the results of the experiments per-
formed on traditional and cloud workload environment when
the resources (cores) are shared among processes, threads
and tenants in different ways.

A. Multiprocessing and Multithreading in Traditional Envi-
ronment

This Section presents the results of the experiments that
run test cases 1.1, 1.2 and 1.3 described in Section II,
i.e., different resource allocation per process in traditional
environment.

The achieved speed for the matrix multiplication algo-
rithm is presented in Fig. 6 in gigaflops for different matrix
size N executing with 1, 2 and 4 processes using total 4
threads on all 4 cores on the same traditional environment.
By V(1x4)T, we denote the results obtained for environment
defined in the test case 1.1, V(2x2)T the test case 1.2 and
V(4x1)T the test case 1.3.

The same two regions (L2 and L3) are depicted in Fig. 6
identified by different speed performance for all 3 test cases.

The relative ratio of achieved speeds in comparison to
the traditional environment defined in test case 1.1 with 1
process and 4 parallel processes is presented in Fig. 7.

Comparing the obtained curves in figures 6 and 7 we can
conclude that environment for test case 1.3 is the leader in
the speed race in front of case 1.2 and 1.1 for the L2 region.
All test cases provide similar performance in the L3 region
where the best performance is achieved by test case 1.3.

The fact that the speed is almost linear in the L2 region
where cache memory is dedicated per core (group of 2
cores) is also an important conclusion. However, the speed
decreases for all 3 test cases in the shared memory L3 region

39Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 52 / 282

Figure 7. Relative speed comparison for Fig. 6.

when the matrix size N is increased and higher cache miss
penalty is generated.

We can conclude that dividing the problem in separate
processes is the best solution for cache intensive algorithms
in the L2 region. The OpenMP handles better in the L3
region by allocating all the resources to one process that
executes concurrently with maximum number of threads
equal to the number of cores.

B. Multi-tenant / Multi-threading in Virtual Cloud Environ-
ment

This section presents the results of the experiments that
run test cases 3.1, 3.2 and 3.3 described in Section II
with different resource allocation per tenant in cloud virtual
environment.

The speed achieved for the matrix multiplication algo-
rithm is presented in Fig. 8 for different matrix size N of
the matrix multiplication executing on one, two and four
VM using total 4 threads on all 4 cores on the same cloud
virtual environment. The curves are identified by V(4)C for
test case 3.1, V(2x2)C for test case 3.2 and V(4x1)C for test
case 3.3. The relative differences to the default speed V(4)C
are presented in Fig. 9.

Fig. 8 presents that the same two regions L2 and L3 can
be identified by different performance for all 3 test cases.

Analyzing the performance behavior presented in figures 8
and 9 we can conclude that the environment defined by test
case 3.3 is the leader in the speed race in front of the test
cases 3.2 and 3.1 for the left part of the L2 region, and the
environment for test case 3.2 is the leader for the speed race
in front of the test cases 3.3 and 3.1 in the right part of the
L2 region. All test cases provide similar performance in the
L3 region with test 3.1 as a leader.

We can also conclude that the speed increases in the L2
region where cache memory is dedicated per core (group of
2 cores) for all three test cases. However, the speed decreases
for all test cases in the shared memory L3 region when the
matrix size N is increased enough and higher cache miss

Figure 8. Speed comparison for virtual machine(s) in cloud allocated with
different resources per machine and per thread

Figure 9. Relative speed comparison for Fig. 8

penalty is generated increasing the overall memory access
time.

Dividing the problem in separate concurrent VMs is the
best solution for cache intensive algorithms in the L2 region
for dedicated L2 caches. The best solution for the L3 region
with shared main memory is to allocate all the resources
to one process (VM) to be executed concurrently with
maximum threads as number of cores.

V. TRADITIONAL VS VIRTUAL VS CLOUD
ENVIRONMENT PERFORMANCE FOR SEQUENTIAL

EXECUTION

This section presents the results of the experiments
performed on three workload environments for sequential
execution, i.e., test cases 1.4, 2.2 and 3.4 as described in
Section II.

The achieved speed for execution of the matrix multipli-
cation algorithm is shown in Fig. 10. The figure depicts
the speed in gigaflops for different matrix size N when
executing one process sequentially on one core on three
different system environments as described in Section II. The
curves are identified by V(1)T for traditional environment,

40Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 53 / 282

Figure 10. Speed comparison for sequential execution in the three
environments

Figure 11. Relative speed comparison for Fig. 10.

V(1)V for environment with virtual and V(1)C with cloud
environment.

The performance analysis of the curves in figures 10 and
11 shows that cloud virtualization achieves better perfor-
mance for the algorithm execution in the L2 region. Virtu-
alization also performs better than traditional environment
in the same L2 region. Cloud and traditional environments
provide similar performance in the L3 region, better than
virtual environment. The conclusion is that in this region
virtualization provides the worst performance and cloud
environment the best performance.

VI. CACHE MISS ANALISYS

This section presents the results of the experiments re-
alized using Valgrind [11] to prove why the algorithm
runs better in cloud environment in L2 region and runs
better in traditional environment in L3 region. L1 and L2
cache misses are analyzed for both L2 and L3 regions for
sequential execution in traditional and cloud environment.
Table VI presents the results of these experiments. L1DT
and L1DC identifies the number of L1 data cache misses
for traditional and cloud environment correspondingly, and

Figure 12. Relative comparison for L1 data cache misses

L2DT and L2DC for the number of L2 data cache misses
for both environments correspondingly.

Table I
NUMBER OF L1 AND L2 DATA CACHE MISSES IN CLOUD AND

TRADITIONAL ENVIRONMENT IN SOME POINTS IN L2 AND L3 REGIONS

N L1DT L1DC L2DT L2DC
100 145,572 142,344 11,553 9,176
200 1,039,954 1,036,676 22,807 20,432
300 3,448,511 3,445,020 41,580 48,158
320 33,600,548 33,597,359 46,329 72,598
340 5,011,438 5,006,561 51,501 83,472
360 5,941,929 5,936,645 60,225 94,021
380 7,093,110 7,087,590 100,675 106,888
400 68,438,786 68,435,517 113,818 119,676
500 113,364,842 113,385,000 187,027 666,141
600 244,545,355 244,541,890 765,609 27,234,248

A. L1 Data Cache Misses

The relative ratio of L1 data cache misses in comparison
to the traditional environment is depicted in Fig. 12. We can
conclude that cloud environment achieves smaller number of
L1 data cache misses than the traditional environment in the
L2 region, and comparable number of L1 data cache misses
in the L3 region.

B. L2 Data Cache Misses

The relative ratio of L2 data cache misses in comparison
to the traditional environment is depicted in Fig. 13. We can
conclude that cloud environment achieves smaller number
of L2 cache misses than the traditional environment in the
L2 region, but much more than traditional environment in
the L3 region.

VII. CONCLUSION AND FUTURE WORK

Several experiments including sequential and parallel ex-
ecutions are performed with different resource allocation
in traditional, virtual and cloud environments on the same
multiprocessor. The testing methodology addresses each
environment with full utilization to all CPU cores with

41Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 54 / 282

Figure 13. Relative comparison for for L2 data cache misses

different techniques: mono-process with multi-threading,
multi-processes with multi-threading and multi-processes
with single threads.

Cache intensive algorithm is the algorithm which is com-
putationally intensive and memory demanding, i.e., utilizes
the cache with data reuse to perform several computations.
Simple matrix multiplication algorithm is used for sequential
execution and 1D blocking matrix B for parallel execution
to efficiently utilize cache performance. Our goal is not to
create a new algorithm which exploits super linear speedup
in cloud environment, but to examine the cache memory
usage phenomenon and its performance impact in cloud.

The conclusions brought from the experiments performed
in this paper are summarized to the impact of the resource
allocation. Dividing the algorithm to parallel cores enables
usage of more L1 and L2 cache for parallel version in
comparison to the traditional environment, phenomenon ex-
plained in [3] for L1, L2 and L3 regions for multiprocessors
using shared L2 cache and distributed L1 cache.

The experiments performed in this paper address several
virtual machine instances in a cloud system using different
number of CPUs (assuming all cores are utilized). Each
experiment orchestrates the CPU cores differently. The con-
tribution of the paper can be summarized as:

• The experiments prove that there is a region (L2 region)
where cloud environment achieves better performance
than traditional and virtual environment, both for par-
allel and sequential process execution, and

• The experiments prove that cloud computing provides
better performance in a multi-VM environment, rather
than allocating all the resources to only one VM.

The best resource allocation for traditional environment
for cache intensive algorithms is the usage of multiple
processes with single threads. Multiple VMs with single
threads is the best resource allocation for cloud environment.
Comparing the environments, cloud computing provides the
best performance.

Future multiprocessors will have more cores and cache on
chip with different cache types and results of this research
will have higher impact. Our plan for further research is
to continue with performance analysis of cloud computing
on different hardware and cloud platforms with different
hypervisors to analyze CPU behavior with different cache
organization and the best platform for cache intensive al-
gorithms. Experiments with MPI for inter VM instance
communication are planned as future research.

REFERENCES

[1] Intel. Intel smart cache. [retrieved: May, 2012].
[Online]. Available: http://www.intel.com/content/www/us/
en/architecture-and-technology/intel-smart-cache.html

[2] J. Machina and A. Sodan, “Predicting cache needs and
cache sensitivity for applications in cloud computing on
cmp servers with configurable caches,” in Proceedings of the
2009 IEEE International Symposium on Parallel&Distributed
Processing, ser. IPDPS ’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 1–8. [Online]. Available:
http://dx.doi.org/10.1109/IPDPS.2009.5161233

[3] M. Gusev and S. Ristov, “Matrix multiplication performance
analysis in virtualized shared memory multiprocessor,” in
MIPRO, 2012 Proc. of the 35th Int. Convention, 2012, pp.
264–269.

[4] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, and
C. Pu, “An analysis of performance interference effects in
virtual environments,” in Performance Analysis of Systems
Software, 2007. ISPASS 2007. IEEE International Symposium
on, april 2007, pp. 200 –209.

[5] P. Wang, W. Huang, and C. Varela, “Impact of virtual machine
granularity on cloud computing workloads performance,” in
Grid Computing (GRID), 2010 11th IEEE/ACM International
Conference on, oct. 2010, pp. 393 –400.

[6] B. Xiaoyong, “High performance computing for finite element
in cloud,” in Future Computer Sciences and Application
(ICFCSA), 2011 International Conference on, June 2011, pp.
51 –53.

[7] cpu world. Intel(r) core(tm)2 quad cpu q9400. [retrieved:
May, 2012]. [Online]. Available: http://www.cpu-world.com/
sspec/SL/SLB6B.html

[8] Openstack. Openstack compute. [retrieved: May, 2012].
[Online]. Available: http://openstack.org/projects/compute/

[9] ——. Openstack dual node. [retrieved: May,
2012]. [Online]. Available: http://docs.stackops.org/display/
documentation/Dual+node+deployment

[10] S. Ristov and M. Gusev, “Achieving maximum performance
for matrix multiplication using set associative cache,” in Next
Generation Information Technology (ICNIT), 2012 The 3rd
International Conference on, 2012, pp. 542–547.

[11] Valgrind. Valgrind. [retrieved: May, 2012]. [Online].
Available: http://valgrind.org/

42Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 55 / 282

A Framework for the Flexible Deployment of
Scientific Workflows in Grid Environments

Javier Fabra, Sergio Hernández, Pedro Álvarez, Joaquı́n Ezpeleta
Aragón Institute of Engineering Research (I3A)

Department of Computer Science and Systems Engineering
University of Zaragoza, Spain

Email: {jfabra,shernandez,alvaper,ezpeleta}@unizar.es

Abstract—Scientific workflows are generally programmed
and configured to be executed by a specific grid-based system.
The integration of heterogeneous grid computing platforms in
order to build more powerful infrastructures and the flexible
deployment and execution of workflows over them are still
two open challenges. Solutions based on meta-scheduling have
been proposed, but more flexible and decentralized alternatives
should be considered. In this paper, an alternative framework
based on the use of a tuple-based coordination system and a
set of mediation components is proposed. As a use case, the
First Provenance Challenge has been implemented using two
different workflow technologies executed over the framework,
Nets-within-Nets and Taverna, and transparently deployed
on two different computing insfrastructures. The proposed
framework provides users with scalability and extensibility
mechanisms, as well as a complete deployment and scheduling
environment suitable for a wide variety of scenarios in the
scientific computing area.

Keywords – middleware for integration; scientific workflow
deployment; grid-based systems.

I. INTRODUCTION

Grid computing emerged as a paradigm for the development
of computing infrastructures able to share heterogeneous and
geographically distributed resources [1]. Due to their compu-
tational and networking capabilities, this type of infrastructure
has turned into execution environments suitable for scientific
workflows. Scientific workflows are a type of workflow char-
acterized for being composed by a large number of activities
whose execution requires a high computation intensity and
complex data management.

Currently, many efforts are being carried out in the field of
scientific computing to execute their experiments taking full
advantage of grid technologies. Two important open challenges
in this area are the integration of heterogeneous grid comput-
ing platforms in order to build more powerful infrastructures
and the flexible deployment and execution of workflows over
them. Some authors have proposed solutions based on the use
of meta-schedulings without considering dynamic behaviours
or workloads. However, in order to tackle with the nature of
grids, it is required to consider more flexible and decentralized
alternatives.

In this paper, a framework able to tackle the previous
challenges is proposed. As shown in [2], [3], the use of a
broker based on the Linda coordination model [4] and a set of

mediators facilitates the flexible integration of heterogeneous
grid computing environments, addressing the challenge of
creating more powerful infrastructures. These components
encapsulate and handle specific features of various com-
puting environments integrated into our framework, being
programmers unaware of this heterogeneity. As a result, the
tasks that compose a workflow can be executed in a flexible
way using different computing environments. Unlike current
proposals the framework is not based on the use of a meta-
scheduler to perform global scheduling decisions, but each
computing environment competes to execute jobs according
to the availability of its own grid resources. In order to
implement this alternative scheduling model, each one of these
computing environments is represented in the broker by a
specific mediator able to achieve suitable scheduling decisions.
Hybrid computing environments could be easily integrated
implementing new mediators. On the other hand, scientific
workflows can be programmed independently of the execution
environment in which they will be executed. The Net-within-
Nets paradigm [5] and the Renew tool [6] have been used for
programming this type of workflows. This is also compatible
with other existing workflow programming languages. Indeed,
Taverna workflows can be programmed using the framework
services or translated to our programming language and then
executed.

The remainder of the paper is organized as follows. Section
II introduces some related work. In Section III, the architec-
ture of the framework is presented. The role of the Linda-
based broker, its implementation details and task dispatching
mechanisms are described in Section IV. The flexible integra-
tion of heterogenous grid middlewares and grid management
components with the broker is then detailed in Section V.
The features and new capabilities are shown by means of an
example that implements the First Provenance Challenge in
Section VI. Finally, conclusions are depicted in Section VII.

II. RELATED WORK

A considerable progress has been made in the understand-
ing of the particular nature of scientific workflows and the
implementation of grid-based systems for their specification,
scheduling, and execution. A detailed survey of existing grid
workflow systems is presented in [7], [8]. The comparison of
several systems shows relevant differences in the building and

43Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 56 / 282

execution of workflows that causes experiments programmed
by scientists and engineers to be strongly coupled to the
underlying grid-based execution system. This coupling forces
grid administrators to perform relevant configuration and inte-
gration efforts in most of the scientific workflow deployments.
Therefore, some interesting challenges are still open: the
ability to program scientific workflows independently of the
execution environment, the portability of scientific workflows
from one execution environment to another, or the integration
of heterogeneous execution environments to create more pow-
erful computation infrastructures, for instance. Consequently,
research efforts should concentrate on the definition of new
high-level programming constructs independent of specific
grid technologies and also on the provision of execution
infrastructures able to interface multiple providers. This type
of infrastructure should integrate software adaptation layers for
translating generic management operations to provider-specific
APIs. Additionally, new strategies of resource brokering and
scheduling should be integrated into these execution environ-
ments to facilitate the utilization of multiple-domain resources
and the allocation and binding of workflow activities to them.

Let us briefly resume some of the current proposals for
provisioning flexible and extensible execution infrastructures.
On the one hand, different grid-based systems built on a meta-
scheduler have been proposed [9], [10], [11]. A meta-scheduler
is a middleware component that provides advanced schedul-
ing capabilities on a grid consisting of different computing
platforms. The software architecture of all these solutions is
very similar and is composed of the following components:
a resource monitoring system to collect information from
integrated computing platforms, a meta-scheduler to distribute
jobs among grid resources using different scheduling policies
[12] and, finally, a set of adaptation components to achieve
mediation between middleware components and computing
platforms. On the other hand, architectures based on the
integration of meta-schedulers have been adapted for taking
advantage of Cloud technologies [11], [13], [14]. Result-
ing computing environments comprise of virtualized services
usage-based payment models in order to achieve more efficient
and flexible solutions, where the supported functionality will
be no longer fixed or locked to underlying infrastructure.

III. AN OPEN FRAMEWORK FOR PROGRAMMING AND
EXECUTING SCIENTIFIC WORKFLOWS

In short, the main goals of our approach are:

• To execute scientific workflows programmed using a
High-level Petri nets formalism or other standard lan-
guages widely accepted by the scientific community.

• To simultaneously work with different and heterogeneous
grid middlewares or with middlewares implemented us-
ing different technologies (e.g., Web services). At this
respect, workflow execution engines must be uncoupled
from specific grid technologies.

• To allow the addition or removal of resources without
previous announcement.

• To support different scheduling strategies and policies
in the execution environment. The use of a particular
scheduling strategy or policy should depend on the char-
acteristics and requirements of each workflow applica-
tion.

Fig. 1. Architecture of the execution environment.

Figure 1 shows the high-level architecture of the proposed
framework. As shown, the architecture consists of three layers:
the modelling layer, the execution layer and the computing
infrastructure layer. In the following, each layer as well as its
main components and interfaces are described in detail.

Firstly, the modelling layer consists of a set of tools
for the programming of workflow applications. A workflow
can be developed using the broker services, which are ex-
posed through its Web service interface, using a workflow
modeling tool such as Taverna [15], for instance. Also, we
propose the use of Reference nets, a subclass of Petri nets,
to implement workflow applications from the perspective of
the Nets-within-Nets paradigm [5]. Nevertheless, other high-
level programming languages for workflows could be also
used by scientific communities (e.g., physicists, biologists or
astronomers) for programming their workflows. With respect
to this issue, plugins can be added to the modelling layer to
support existing or new modelling approaches, such as the
Taverna plugin shown in Figure 1, for instance. This plugin
allows to import workflows programmed with Taverna, which
are automatically translated to the workflow format in the
workflow editor and then directly executed. A good repository
for these type of workflows is the scientific community hosted
at MyExperiment.org. In this work, Renew [6] is used as a
workflow editor. Renew is an academic open-source tool that

44Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 57 / 282

allows the direct execution of Reference nets without any
additional coding process and which represents a worth benefit
for the final user.

Secondly, the execution layer is composed of the core com-
ponents. The workflow execution environment is responsible
for controlling the execution of workflows and submitting
tasks to the resource broker when they must be executed.
Internally, the broker consists of a message repository and
a set of mediators. Messages are used to encapsulate any
information that is passed through the components of the
system. A message can describe a task to be executed or
the result of its execution, for instance. Mediators encapsulate
the heterogeneity of a specific grid middleware, having a
complete knowledge of its capabilities. This knowledge is used
for making dispatching decisions (which specific computing
infrastructure will execute a pending task?). Subsequently,
the grid middleware of the selected computing platform will
schedule the set of resources needed for executing the task.
As a result, the broker uncouples the workflow execution
environment from the specific details about the grid-based
computing infrastructures where tasks will be executed. This
design avoids the need for a close integration of the workflow
execution environment with specific grid middlewares used for
the execution of tasks.

Let us now go deeper into the description of the two com-
ponents of the broker. On the one hand, the Linda coordination
model [4] has inspired the implementation of the message
repository. Messages are encoded as tuples and stored into
a tuple space. The interface of the repository provides a set
of operations for accessing the tuples stored in the tuple
space according to the semantics of Linda. In Section IV, we
will depict the advantages of using a Linda-based repository
and provide details about its implementation. On the other
hand, mediators are required for achieving the aforementioned
uncoupled integration. In general, a mediator is an entity that
directly communicates with the tuple repository, matches and
retrieves special-tagged tuples and processes them. In our
approach, each grid middleware is represented by a media-
tor. Internally, this mediator is responsible for: i) having a
complete information of the grid resource it represents; ii)
interacting with the tuple repository to find at run-time tasks
that could be executed by the set resources of its middleware;
iii) dispatching the task to the middleware for its execution
and controlling the input and output data transference; and,
finally, iv) storing the results of the executed task in the tuple
repository as tuples. Mediators of different and heterogeneous
grid middlewares could compete for the execution of a specific
task. Currently, as it will be described in Section V, different
mediators have been implemented for the grid middleware we
have access to (Condor and gLite) and then integrated into the
infrastructure of mediators.

On the other hand, a set of management components has
also been integrated into the execution layer to support the
execution of workflow applications: the fault management
component, the data movement component or the advanced
scheduling component, for instance. The integration procedure

of these components is similar to the one used by mediators.
A management component interacts with the tuple repository
in order to match and retrieve special-tagged tuples and then
processes them. Therefore, the action of these components can
be triggered as a result from the previous processing, which
allows to dynamically compose complex action chains. In
Section V the component for the fault management subsystem
and its integration will be detailed.

Finally, the computing infrastructure layer is composed of
different and heterogeneous computing platforms. The inter-
action with these platforms is managed by the corresponding
grid middlewares. Currently, three computing platforms are
integrated in the framework we manage: the HERMES cluster
hosted by the Aragón Institute of Engineering Research (I3A),
which is managed by the Condor middleware; and the two re-
search and production grids managed by the gLite middleware
and hosted by the Institute for Biocomputation and Physics
of Complex Systems (BIFI) belonging to the European Grid
Initiative (EGI), namely AraGrid and PireGrid.

To sum up, the open nature of the proposed solution is
provided by the resource broker, composed of a Linda-based
repository and a set of mediators, providing scientists with
a high level of abstraction and flexibility when developing
workflows. On the one hand, workflow programmers must
concentrate on the functional description of workflow tasks
and corresponding involved data. Specific details about the
computing platforms where these tasks will be executed are
ignored from the programmer perspective. On the other hand,
the message repository facilitates the integration of mediators
and management components and the scalability of the overall
framework. Currently, its dispatching model is based on the
functional capabilities of the computing platforms managed
by the set of mediators. And, finally, these mediators are
responsible for encapsulating the technological heterogeneity
of the different types of grid middlewares and resource-
access technologies (e.g., Web services). New mediators may
be easily added in order to integrate new middlewares or
technologies.

IV. LINDA-BASED TASK DISPATCHING

As previously stated, the resource broker is composed of
a message repository and a set of components (mediators)
that interact through this space by means of the exchange
of messages. In this section, the role of the Linda-based
message repository and the corresponding task description and
dispatching mechanisms are presented.

Linda [4] is a coordination model based on two notions: tu-
ples and a tuple-space. A tuple is something like [”Gelernter”,
1989], a list of untyped values. The tuple space is a collection
of tuples stored in a shared and global space that can be
accessed with certain operations, that allow processes to read
and take tuples from and write them into it in a decentralized
manner. For instance, the operation in(x,["Gelernter",
?]) tries to match the template ["Gelernter", ?],
which contains a wildcard, with a tuple in the shared space. If
there is a match, a tuple is extracted from the tuple space and

45Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 58 / 282

assigned to variable x; otherwise, the process blocks until a
matching tuple appears. The matching is free for the wildcard,
but literal for constant values. The Linda matching mecha-
nism allows easily programming distributed synchronization
processes.

Linda-based coordination systems have been widely used
for communicating and coordinating distributed processes.
Their success in distributed systems is due to a reduced set
of basic operations, a data-driven coordination and a space
and time uncoupled communication among processes that can
cooperate without adapting or announcing themselves [16].

Let us now introduce how tuples are describe and dispatched
in our appraoch. Tuples are used to code the information
needed for submitting a job to a grid middleware or re-
covering the result (or an exception) of an executed job.
A tuple structure based on the Job Submission Description
Language standard, JSDL [18], has been adopted. From the
job submission point of view, this representation includes the
specification of the application to be executed, the references
to input and output data (represented by the corresponding
URIs), a description of the host required for its execution
(operating system, CPU architecture and features, memory,
network bandwidth, etc.), QoS parameters and, optionally, the
grid middleware responsible for its execution. In case the target
grid platform is not specified, different mediators compete for
the job execution in base to certain policies. On the other
hand, a result tuple contains a reference to the original request,
a reference to the output data and the execution log (grid
and host used for the job execution, execution costs and QoS
results, mainly). If an error occurs, the result tuple will contain
the information about it. The fault handling component, which
handles these faults, will be depicted in Section V.

Once the tuple representing a job has been created, the
workflow execution environment puts it into the message
repository by means of an out operation. Each grid computing
platform is connected to the platform by means of a mediator,
which knows the applications that could be locally executed by
its grid and the description of the available internal resources.
Each mediator is then waiting for tuples that encode such job
requests able to be executed by its grid. Obviously, this waiting
will depend on the availability at run-time of the grid and its
capabilities. An in operation is invoked by the mediator in
order to retrieve a tuple of its interest, using the Linda match-
ing mechanism. Then, the retrieved tuple is locally processed
by the mediator to perform the corresponding invocation to
the grid middleware it represents.

If many grid computing platforms are able to execute a
job, their mediators will compete to retrieve the job request
tuple. The Linda matching mechanism is non-deterministic
and, therefore, it does not offer any further guidance about
which mediator will retrieve the job request tuple. In this
work, the use of WS-PTRLinda, an extension of a previous
distributed Linda-based implementation of a message bro-
ker, called DRLinda [17], is proposed. As DRLinda, WS-
PTRLinda was developed using Nets-within-Nets and the
Renew tool, the same technologies we used for programming

workflow applications. WS-PTRLinda provides a new Web-
service based interface (SOAP 1x. SOAP2 and REST), sup-
port for persistence of the tuple space (for high-availability
demanding environments), and a timeout mechanism useful
for failure detection. Currently, a basic and non-deterministic
scheduling is being used for dispatching job requests to
grid mediators. In [17], we proposed and implemented some
alternative matching mechanisms to solve specific problems.
Similarly, new grid-oriented matching mechanisms could be
defined to extend the scheduling policies of the broker (e.g., a
QoS-based scheduling policy). Let us finally comment on two
relevant advantages of this Linda-based brokering. Firstly, the
cooperation is uncoupled because the execution environment
does not have any prior knowledge about mediators and vice
versa. The interaction style is adequate enough to be used in
environments where it is very important to reduce as much as
possible the shared knowledge between different components.
Also, writing and reading components can cooperate without
adapting or announcing themselves. New mediators could
be added/removed without affecting the rest of components
integrated into the framework.

V. FLEXIBLE INTEGRATION OF GRID MIDDLEWARES

Following the presented approach, different types of re-
sources and components (execution engines, management
components or mediators, for instance) can be integrated in
an easy and uncoupled way. The only requirement for these
components is to implement the Linda coordination API in
order to put and remove tuples. Besides, components can be
added or removed dynamically and transparently to the rest of
the system, facilitating this way the scalability and adaptation
of the framework.

In this section, two different types of integrated components
are presented. The first one is a mediator able to interact with
the Condor middleware, whereas the second one is a fault
management component. When a fault is detected during the
execution of a job, this component will re-schedule the job
according to different policies. Our aim is to illustrate how
this solution is able to interact with grid computing platforms
managed by heterogeneous grid middlewares.

A. Interaction with the Condor middleware

As previously described, the framework is able to interact
with several underlying grid infrastructures. Let us depict
how a mediator has been developed to integrate a Condor
middleware. Specifically, this mediator is responsible for the
interaction with the HERMES cluster. Figure 2 shows the
functional components of the mediator required for supporting
such interaction. Additionally, this mediator can be reused for
interacting with any computing platform managed by Condor.

The Job Manager interacts with the Linda-based broker
depicted in the previous section in order to read job requests
and write their results. Obviously, all request types that could
be fulfilled by the cluster must be known by the manager.
For this purpose, the Internal Resource Registry knows the
list of applications that could be locally executed and the

46Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 59 / 282

Fig. 2. Components of the Condor mediator.

description of available internal resources. This registry should
monitor the cluster and dynamically update its information,
but at this first implementation of the Condor mediator this
information is static. Once a job request has been retrieved,
the manager sends it to the Middleware Adapter component
that is responsible for translating the request into a Condor job.
Before submitting the job to the cluster via the SSH protocol,
the adapter internally carries out two important tasks. First,
it assigns an identifier to the job (Job ID) and sends it to the
Job Monitor component. This ID will be used to correlate jobs
and tuples. In case the input data required by a job are stored
in an external computing platform, the adapter interacts with
the Data Movement component for moving them (or making a
copy) into the Condor cluster. After that, the adapter submits
the job to the Condor middleware.

Internally, Condor can schedule the execution of submitted
jobs depending on the local state of its resources. The goal is
to achieve the best possible throughput. Therefore, a double
scheduling can be done in the approach, similarly to the
hierarchical scheduling model described in [19]. Once the
job execution has been completed, results are sent through
a logging mechanism (in our case, SMTP-IMAP) service
integrated in the Job Monitor. This component maps received
results with job requests and forwards them to the job manager.
Finally, results are written in the broker so they can be then
taken by the workflow application that submitted the original
request.

This design and implementation is quite flexible and pro-
vides reusability. For instance, we have also developed a me-
diator to interact with the gLite middleware used in AraGrid.
Its design is similar to the previous one. In fact, most internal
components have been reused, as the job manager and the
internal resource registry, and others components have been
adapted, as the middleware adapter or the job monitor, for
instance.

B. Fault handling

When dealing with scientific workflows, failures can arise
at several levels. In this work, we will focus on those faults
and exceptions that happen at the execution level. When the

execution of a job fails, the corresponding mediator captures
the fault and puts an error tuple into the message repository.
This tuple, which will be processed by the Fault management
component, contains information about the cause of the fault
that will be used by the manager to take a decision with respect
to the job execution. Different decisions could be taken: to
submit the job again to the same grid computing platform, to
submit the job to an alternative and reliable grid computing
platform or to notify the error to the workflow executing
environment in case the error persists, for instance. In the last
case, most grid solutions offer two different ways to manage
the fault: corrective actions or alternative workflows.

Fig. 3. Components of the fault management component.

Figure 3 shows the internal design of the fault management
component. A Fault Manager interacts with the message
repository in order to retrieve error tuples and to write the
corresponding decision tuple. When an error tuple is found,
the fault manager processes it and creates a decision request
that is sent to a decision maker. We have used a rules engine
as the decision maker. Rules are encoded in RuleML (the
standard Web language for rules using XML markup [20])
and describe the corrective actions that will be executed in
case of each type of error. These actions can be changed and
modified at runtime, providing adaptation capabilities based
on specific scenarios. Normally, the job will be sent again for
a new execution on the corresponding infrastructure. However,
in case it fails again or even if the error tuple contains some
critical information, a usual action is to send the job request to
a reliable grid middleware (our ultimate goal is the successful
execution of job requests). Reliable grid middlewares have
special characteristics (number of nodes, throughput, rejection
rate, etc.), which turn them into more suitable candidates for a
difficult job execution. For this purpose, a Reliable Resource
Registry has been implemented and integrated in the fault
management component. The current version of the registry
contains a list of reliable grid middlewares. This list is used
by the rules engine to decide in which middleware the failed
job request will be executed. Finally, the fault manager puts
a new job request tuple into the broker, specifying the grid
middleware responsible for its execution.

VI. A CASE STUDY: THE FIRST PROVENANCE CHALLENGE

As a case study we present a workflow implementing the
First Provenance Challenge [21].

47Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 60 / 282

The goal of the First Provenance Challenge (FPC) workflow
is to create a brain atlas from an archive of four high
resolution anatomical data and a reference image. Some image
processing services are required for the workflow execution.
These services have been deployed into heterogenous grid
middlewares (more specifically, into the Condor cluster hosted
by the I3A Institute and the gLite grids hosted by the BIFI
Institute). In this example we show the flexibility of our
proposal: some jobs are programmed to be executed by a spe-
cific computing platform, and other jobs may be executed by
any available computing platform able to invoke the required
service.

The workflow requires seven input parameters, whose
specific values are implemented as the initial markings
of places Grid_Environment, Reference_image,
Input_image_{1..4}, and Images_directory. Their
meanings are, respectively: the URL of one of the clusters
where the workflow is going to be executed (more specifically,
the cluster hosted by the I3A), the URI of the reference image,
the URIs of the four images to be processed and the directory
where the intermediate and final image files will be stored.

Figure 4 shows the implementation of the workflow using
the Renew tool. Due to space limitations, only the first image
processing flow is detailed in the figure, although the remain-
ing branches for anatomy Image2, Image3 and Image4 are
similar. Alternatively, Figure 5 depicts the implementation of
the same workflow using Taverna. Job requests and results
are encoded as Linda tuples. A request tuple is a nested
tuple composed of four elements: the application or service
to be executed and the URIs of the input and output data, the
file descriptors for standard streams, QoS parameters and the
computing platform where the request is going to be executed,
respectively. Let us explain a tuple example, specifically the tu-
ple depicted in transition Align_warp_1(out). By putting
that tuple in the message repository, the Align_warp service
is invoked by the corresponding mediator using as input data
an anatomy image, a reference image and their headers. The
output is a warped image. For the sake of simplicity, file
descriptors and QoS parameters are omitted in the tuple.
Finally, the initial marking of the grid_environment
place determines the value of the grid variable and, therefore,
the computing platform selected for the job execution (the first
field of this last tuple contains the access information required
by the platform).

Tuples are either built and put into the message repos-
itory by means of the Broker.out action (as in the
Align_warp_1 (out) transition, for instance) or
withdrawn from the broker by means of the Broker.in
action (as in the Align_warp_1 (in) transition,
for instance). The sequential execution of these couple of
transitions for a given image corresponds to an asynchronous
call to the Align_warp service: first, the tuple with the
information is put into the message broker, then the corre-
sponding mediator takes it and invokes the service, putting
the invocation result into the broker as a tuple and finally the
result is captured and put into the workflow net by means of

Fig. 4. Nets-within-Nets based implementation of the First Provenance
Challenge workflow.

the second transition. Given the semantics of Petri nets, the
processing of the input images can be done in any interleaved
way, since tuples are put/removed into/from the broker as soon
as resources are available. In this first stage the job request is
executed in the cluster specified by the initial marking (the
grid variable is an input parameter of the request submitted
to the broker by the Align_warp (out) transition).

Once stages 1 and 2 are finished, Stage 3 takes the whole
set of images from the directory specified by the parameter
Images_directory, and executes the softmean method
with these images as an input. At this stage the service
deployed in one of the grids hosted by the BIFI institute
is explicitly invoked. The last job request and its result are

48Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 61 / 282

Fig. 5. Taverna implementation of the First Provenance Challenge workflow.

carried out by means of the Broker.outIn action: from the
workflow point of view this corresponds to a synchronous call
to the service described in the tuple. Then, softmean results are
distributed so that stages 4 and 5 could be executed in parallel
to compute the atlas data set for each dimension in axis x, y
and z. The slicer and convert jobs could be executed by any
available computing platform. Therefore, different executions
of the workflow could invoke services deployed in different
platforms. Finally, firing of transition eow (end-of-workflow)
terminates the workflow. The resulting images will have been
stored in the images directory.

Figure 5 depicts the workflow implemented with Taverna
(some flow symbols in the top of the figure have been removed
to improve readability). As shown, the structure is similar
to the Nets-within-Nets implementation, although in this case
the workflow is composed of several subworkflows, each of
them implementing the previous invocations to the broker in
order to put and withdraw tuples. Due to space limitations, the
description of these subworkflows is left out of this paper.

A. Flexible deployment and execution

In order to analyze and test the transparency and flexibility
of the proposed approach, the First Provenance Challenge
workflow was executed using the framework. The target com-
puting infrastructure for the execution of each stage (which
can be specified in out transitions at each stage in Figure
5) was left unset, meaning that the mediators compete for
each submitted task. At this respect, both HERMES and
AraGrid were setup to separately allow the execution of the
FPC workflow. However, as the aim of this experiment was
to improve the overall execution cost of the workflow, the
advanced scheduling component was programmed to perform
a meta-scheduling process considering the load of the under-
lying computing infrastructures and the history of previous
executions. Therefore, at every moment the best suitable
candidate is estimated, avoiding the dispatching of a task to
an overloaded infrastructure. This means that each task is first
captured by the advanced scheduling component and then the

target infrastructure is set (so, the corresponding mediator will
retrieve the task for its execution). However, the whole process
is transparent from the user’s perspective.

To do that, the advanced scheduler also considered the
average load of each infrastructure at every moment. Figure 6
depicts the daily average load (% of the maximum load) in the
HERMES and AraGrid computing infrastructures. As it can be
observed, both computing infrastructures have different load
models. Their trends during the day as well as the previous
execution time are used to decide the most suitable candidate
for each task deployment.

Fig. 6. Hermes and AraGrid daily utilization (in percentaje).

Figure 7 depicts the results obtained for 900 executions of
the FPC workflow deployed on the framework. Average exe-
cution times (in seconds) are shown for each separated infras-
tructure (HERMES and AraGrid) and also for the framework
for each stage of the First Provenance Challenge workflow.
The overall execution time (average) is better when using
the framework. This is due to the best candidate selection
performed by the advanced scheduler (in most cases). The
analysis of each separated stage depics that most of the time
(70%) the HERMES cluster computing infrastructure gets a
better execution time that AraGrid, which is related to the fact
that the framework execution time is closed to the HERMES
one.

Fig. 7. Experimental results for the First Provenance Challenge workflow.

If we consider the average execution times for the complete
workflow, AraGrid got the worst results with 777 seconds,

49Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 62 / 282

HERMES got 362 seconds and the framework got 260 sec-
onds. Obviously, using the most adequate infrastructure to get
the better execution time is not a trivial process from the
researcher’s point of view. However, by means of the use of
the framework, this is done in a flexible and transparent way.
Other possibilities are to reduce access costs (for instance,
if each computing hour has an asssociated cost), resource
usage, etc. Regarding the time to move data between the two
infrastructures (as output from a stage is used as input of the
following one), the average time for each workflow execution
was less than 55 seconds (so the average framework execution
time goes to 315 seconds).

VII. CONCLUSION AND FUTURE WORK

In this paper, a framework to solve some of the open chal-
lenges in the application of grid-based solutions to scientific
workflows has been presented. This framework is uncoupled
from specific grid technologies, able to work simultaneously
and transparently with different and heterogeneous grid mid-
dlewares, providing scientists with a high level of abstraction
when developing their workflows. The integration of the
execution environment with different grid middlewares has
been carried out by means of a resource broker composed
of a Linda-based coordination system and a set of media-
tors. Thanks to the aforementioned broker, this integration
is flexible and scalable. On the other hand, regarding the
workflow programming point of view, the proposal is also open
and flexible. As it has been shown, workflows programmed
using standard languages or existing service-oriented workflow
management systems (e.g., Taverna) can also be executed in
the framework.

Currently, the proposed framework is being applied to solve
some complex and high time-consuming problems, such as
the behavioural analysis of semantically-annotated scientific
workflows, or the analysis of existing data connections into
the Linked data cloud, for instance. These solutions will allow
improving the capabilities of the presented approach and also
analyzing its performances.

We are also working on the integration of Cloud-related
solutions, such as using the Amazon Elastic Cloud Computing
Simple Queue Service (Amazon EC2 SQS) in order to have an
alternative message repository, as well as providing specific
high-performance computing capabilities (indeed, currently
Amazon EC2 offers a mechanism to virtualize a HPC ma-
chine, able to handle critical and complex computation tasks).
Related to this last point, we are adding some external reliable
computing platforms by means of virtualization technologies.
In [2] we sketched the implementation of a similar mediator
able to support the execution of business tasks. Similarly, a
new mediator able to submit job requests to the EC2 interface
with the required policies has been implemented.

ACKNOWLEDGMENT

This work has been supported by the research project
TIN2010-17905, granted by the Spanish Ministry of Science
and Innovation.

REFERENCES

[1] I. Foster and C. Kesselman, The Grid 2: Blueprint for a new computing
infrastructure. Second edition, Morgan Kaufmann Publishers, 2004.

[2] J. Fabra, P. Álvarez, J.A. Bañares, and J. Ezpeleta, DENEB: A Platform
for the Development and Execution of Interoperable Dynamic Web
Processes. Concurrency and Computation: Practice and Experience, Vol.
23, Issue 18, pp. 2421-2451, 2011.

[3] R. Tolosana-Calasanz, J.A. Bañares, P. Álvarez, and J. Ezpeleta. Vega:
A Service-Oriented Grid Workflow Management System. In 2nd Interna-
tional Conference on Grid computing, High Performance and Distributed
Aplications (GADA’07), vol. 4805, pp. 1516-1523, 2007.

[4] N. Carriero and D. Gelernter, Linda in context. Communications of the
ACM, Vol. 32, Num. 4, pp. 444-458, 1989.

[5] O. Kummer, Introduction to petri nets and reference nets. Sozionik
Aktuell, Num. 1, pp. 19, 2001.

[6] O. Kummer and F. Wienberg, Renew - the Reference Net Workshop.
Tool Demonstrations. In 21st International Conference on Application
and Theory of Petri Nets (ICATPN 2000), pp. 87-89, 2000.

[7] M. Rahman, R. Ranjan, and R. Buyya, A Taxonomy of Autonomic
Application Management in Grids. In 16th IEEE International Conference
on Parallel and Distributed Systems (ICPADS 2010), 2010.

[8] J. Yu and R. Buyya, A taxonomy of workflow management systems for
Grid Computing. Journal of Grid Computing, Vol. 3, Issues 3-4, pp. 171-
200, 2005.

[9] E. Huedo, R.S. Montero, and I.M. Llorente, A Framework for Adaptive
Execution on Grids. Software - Practice and Experience , Vol. 34, Issue
7, pp. 631-651, 2004.

[10] M. Heidt, T. Dornemann, J. Dornemann, and B. Freisleben, Omnivore:
Integration of Grid meta-scheduling and peer-to-peer technologies. In
8th IEEE International Symposium on Cluster Computing and the Grid
(CCGrid 2008), pp. 316-323, 2008.

[11] J. Tordsson, R.S. Montero, R. Moreno-Vozmediano, and I.M. Llorente,
Cloud brokering mechanisms for optimized placement of virtual machines
across multiple providers. Future Generation Computer Systems, Vol. 28,
pp. 358-367, 2012.

[12] J. Yu and R. Buyya, A novel architecture for realizing Grid Workflows
using Tuple Spaces. In 5th IEEE/ACM International Workshop on Grid
Computing (GRID 2004), Pittsburgh, USA, pp. 119-128, 2004.

[13] G. Mateescu, W. Gentzsch, and C.J. Ribbens, Hybrid computing: Where
HPC meets grid and Cloud computing. Future Generation Computer
Systems, Vol. 27, pp. 440-453, 2011.

[14] Y. Zhang, C. Koelbel, and K. Cooper, Hybrid re-scheduling mechanisms
for workflow applications on multi-cluster grid. In 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid (CCGrid
2009), pp. 116-123, Shanghai (China), 2009.

[15] Taverna: an open source and domain independent Workflow Manage-
ment System. Available at http://www.taverna.org.uk/ [retrieved: May,
2012]

[16] P. Álvarez, J.A. Bañares, and P.R. Muro-Medrano, An Architectural
Pattern to Extend the Interaction Model between Web-Services: The
Location-Based Service Context. In 1st International Conference on
Service Oriented Computing (ICSOC 2003), Lecture Notes in Computer
Science, Vol. 2910, pp. 271-286, 2003.

[17] J. Fabra, P. Álvarez, and J. Ezpeleta, DRLinda: A distributed message
broker for collaborative interactions among business processes. In 8th
International Conference on Electronic Commerce and Web Technologies
(EC-Web 2007), Lecture Notes in Computer Science, Vol. 4655, pp. 212-
221, 2007.

[18] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly,
S. McGough, D. Pulsipher, and A. Savva, Job Submission De-
scription Language (JSDL) Specification, Version 1.0. Available at
http://www.gridforum.org/documents/GFD.56.pdf [retrieved: May, 2012]

[19] R. Sharma, V.K. Soni, M.K. Mishra, and P. Bhuyan, A survey of job
scheduling and resource management in grid computing. World Academy
of Science, Engineering and Technology, Issue 64, pp. 461-466, 2010.

[20] H. Boley, Rule Markup Language, RuleML Specification. Version 1.0..
Available at http://ruleml.org/ [retrieved: May, 2012]

[21] L. Moreau, B. Ludscher, I. Altintas , R.S. Barga, S. Bowers, and S.
Callahan, The First Provenance Challenge. Concurrency and Computa-
tion: Practice and Experience, Vol. 20, Issue 5, pp. 409-418, 2008.

50Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 63 / 282

Semi-shared storage subsystem for OpenNebula

Sándor Ács, Péter Kacsuk, Miklós Kozlovszky

MTA SZTAKI Computer and Automation Research Institute,

H-1518 Budapest, P. O. Box 63, Hungary

[acs, kacsuk, m.kozlovszky]@sztaki.hu

Abstract— To address the limitations of OpenNebula storage

subsystems, we have designed and developed an extension that

is capable of achieving higher I/O throughput than the prior

subsystems. The semi-shared storage subsystem uses central

and distributed resources at the same time. Virtual machine

instances with high availability requirements can run directly

from central storage while other virtual machines can use local

resources. As I/O performance measurements show, this

technique can decrease I/O load on central storage by using

local resources of host machines.

Keywords - cloud computing; OpenNebula; storage

subsystem; I/O performance.

I. INTRODUCTION

Cloud computing opens a new way of thinking about

distributed information technology (IT) infrastructures [1].
The paradigm is based on virtualization technologies (server,
storage, network, etc.) and it uses multiple experiences
gathered from grid and cluster computing as well. In the
three layered cloud model (Software/Platform/Infrastructure
as a Service), the IaaS is the bottom layer that provides
fundamental computing resources to consumers [2]. IaaS can
be built from traditional IT hardware components and cloud
middleware software.

OpenNebula [3] is an open source software stack, born
from a research project and became one of the best-known
IaaS cloud solution. The main components of OpenNebula
are the front-end, compute nodes, image repository and
networking infrastructure. The front-end machine is
responsible for the core services (user authentication,
scheduling, etc.) and provides an entry point for consumers.
Compute nodes are hosts of virtual machines (VMs). The
image repository handles virtual disk images and its storage
subsystem contains physically the images. Compute nodes
reach disk images directly via shared storage or copied
through the network. If compute nodes use shared storage,
VMs will consume the same resource that can cause
decreased I/O performance for VMs. If compute nodes use
non-shared storage, they will suffer from some
disadvantages (e.g., slower VM deployment).

There are several open issues in cloud computing and one
of them is related to the virtualized I/O performance [4].
Related studies [5] expose that the storage subsystem can
play the key role from efficiency point of view in a cloud.

The main contribution presented in this paper is the
concept of semi-shared storage subsystem that tries to
alleviate the negative effects and find a trade-off between
shared and non-shared storages. The semi-shared storage

subsystem can provide benefits from both of the storage
subsystems at the same time. It can share disk images
between compute nodes for fast and flexible deployment and
it can decrease the load with distributed non-shared
resources.

We designed, implemented and tested the semi-shared
storage subsystem for OpenNebula. I/O performance of the
prototype is investigated in a local cloud installation and its
values are compared to results of other existing storage
subsystems. We present a technique that is able to achieve
higher I/O throughput in OpenNebula than its prior solutions.

This paper is organized as follows: first, we introduce the

related research results in Section II. Then, we present

image management and features of the storage subsystems

in OpenNebula in Section III. Next, we detail the semi-

shared storage subsystem that helps to reduce the load in a

cloud infrastructure. Afterwards, in Section V, we present

the test infrastructure and results of the performance

benchmarks. In Section VI, a production use case is

introduced. Finally, we conclude our research in Section

VII.

II. RELATED WORK

As related works have been already started to investigate

the I/O performance of cloud infrastructures. Goshal et al.

[5] introduced the Magellan project that explored some IaaS

clouds from High Performance Computing (HPC) suitability

point of view. The paper discloses that the performance of

communication intensive applications is degraded by the

virtualized I/O subsystem. Benchmarks were used on

different types of clouds (e.g., Amazon EC2) and compared

the results with local infrastructure measurements. Their

results pointed out the major performance bottleneck which

can be caused by virtualized environment.

Lihtium [6], a distributed storage system, was designed in

order to avoid the limitation of centralized shared storage

systems of cloud infrastructures. This solution is complex

and specialized for virtualization workloads aimed at the

large-scale cloud infrastructures and data-centers. The semi-

shared storage solution for OpenNebula is lightweight and it

can enhance the I/O throughput in small and middle-scale

cloud infrastructures as well.

Ousterhoutet et al. [7] presented that the disk-oriented

storage systems are problematic in a dynamic cloud

environment. A new storage system was designed in order

to achieve lower access latency and higher bandwidth. The

solution is based on the main memories aggregation of the

nodes. This new approach called RAMCloud, where all

51Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 64 / 282

information (disk images as well) is kept in DRAM. This

solution promises 100-1000x faster throughput than disk-

based systems and 100-1000x lower access latency. Using

RAM based storages for improving the I/O performance of

clouds has many benefits, however traditional disk based

storages cost much less for the same capacity.

Sheepdog [8] is a distributed storage system that is

integrated into QEMU/KVM [8]. It provides block level

storage volumes redundantly based on distributed resources.

Sheepdog supports volume management features such as

snapshot and it can be scaled up without single point of

failure to several hundred nodes. However, it cannot

guarantee high bandwidth and low latency storage.

III. STORAGE SUBSYSTEMS AND DISK IMAGES

The image repository, accessible by the compute nodes,

serves as a store for disk images in IaaS. The compute nodes

can create copies from the disk images or they can use the

images directly in order to create virtual machine instances.

1) Storage subsystem

In OpenNebula, the compute nodes can reach the disk

images in different ways: (i) via shared storage or (ii) by

copying it through the network from the image repository.

a) Shared storage

In Fig. 1, a compute node and an image repository with

virtual disk images can be seen, where shared storage is

available from the compute node, which can start the virtual

machine instances.

With shared storage, the VMs can be started without

copying it through the network and live migration is

available for instances. The live migration is a procedure

when a VM instance is moved from one host to the other

without outage which can be sensed by end users.

The disadvantage of the shared storage is that all of the

deployed virtual machines could use the same resource

(storage subsystem of image repository) concurrently. The

decreased I/O throughput causes performance loss for VM

instances.

Compute Node with

Shared Storage

VM

inst.

Disk images

Image Repository

Figure 1. Compute node with shared storage

Disk images

Image Repository

Compute Node with

Non-shared Storage

VM

inst.

Local disk

Figure 2. Compute node uses local copy from disk images

b) Non-shared storage

In Fig. 2, shared storage is not available, so the compute

node cannot attach disk images directly from the image

repository. The disk images should be copied through the

network (broken line in Fig. 2) and stored in local storage.

The virtual machine instances are created from local copies.

The non-shared storage can cause peaks on I/O load while

disk images are copying, however these peaks can be

ignored if the VM instances are used long-term (days). In

this paper, we investigate this option.

This storage subsystem can reduce the load on image

repository with distributed resources however VM

deployment and image sharing (copying and saving) takes

more time and the live migration is not available.

2) Disk images

OpenNebula uses two types of disk images from

volatility point of view. The state of the disk images can be

persistent or non-persistent. If a virtual machine runs with

persistent disk, the changes will be stored after shutdown. If

a virtual machine uses non-persistent disk, the disk image

will be deleted after shutdown.

Persistent and non-persistent disks can be used with

shared- (Fig. 1) and non-shared (Fig. 2) storages as well.

These options are detailed in the next two sections.

3) Disk images with shared storage

a) Persistent disk:The Virtual machines deployment is

fast (compared to the overall process time of copy image

from repository to local disk and from local disk until

deployment). It is not needed to write back the changes after

shut down because the disk image is attached directly to the

image repository. The live migration is available in this

option.

b) Non-persistent disk:These disk images are copied

from the image repository, that takes more time than in

option (a), however it is still faster than using non-shared

storage. After shut down, the disk images are deleted,

except if they were forced to be saved that means a copy

from the instances in this case. The live migration is also

available.

Summarized: With shared storage the fast VM deployment

and live migration can be achieved. On the other hand,

many VM instance with I/O intensive workloads can cause

heavy load on the image repository.

52Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 65 / 282

4) Disk images with non-shared storage

a) Persistent disk:The Disk images are copied two

times (for starting and saving) in the life of a virtual

machine instance. The procedure of moving the VM

instance from a compute node to another, takes more time

than acceptable for live migration.

b) Non-persistent disk:These disk images are copied

through the network from the image repository as well.

They are deleted after shut down (except if they were forced

to be saved by the user). The live migration is not available

because of the non-shared storage.

Summarized: There is an overhead on the disk image

sharing however the I/O workloads of the VM instances are

distributed on the compute nodes. However, in this case just

the slower cold migration is available instead of live

migration for VM instances.

IV. THE SEMI-SHARED STORAGE SUBSYSTEM

As related works pointed out in Section II, the shared

storage can be a bottleneck in a cloud and it can cause

decreased I/O performance for VM instances. In this paper,

we focused on the disk I/O. As presented in Section III, non-

shared storage subsystem can be used to decrease the load

on the image repository and to increase the VMs’ disk

performance because the VM instances use (distributed)

local copies from the disk images instead of the shared

storage.

In order to avoid the high load on image repository and

increase the performance of the virtual disks, we propose

the notion of semi-shared storage. As a proof of concept it

was elaborated and implemented to OpenNebula.

The basic ideas were the following: the image repository

component practically has more reliable storage subsystem

than compute the nodes. Some VMs (e.g. database or

firewall servers) may need to be migrated without outages.

These VM instances should have persistent disk images

based on shared storage because it takes time to copy the

disk images trough the network and resume the operation of

the VM instance. The loss of the fast start and live migration

opportunities can cause that the non-shared storage is not

sufficient to be used in high available production systems.

However not all of the VM instances require features like

live migration, fast deployment and having persistent disk

images. These instances can be used with non-shared

storage. (Of course, the non-persistent disk can be saved as

well by the users.)

Our contribution to OpenNebula is the Semi-shared

storage subsystem, which uses shared storage for persistent

disk images and local copies with non-persistent disk

images for creating VM instances. The benefit of this

solution is that the shared- and non-shared files-systems can

be used at the same time on the same compute node. The

semi-shared storage subsystem can satisfy high availability

requirements (like the original shared storage subsystem).

Figure 3. Semi-shared storage using local and shared resources

concurrently

Figure 4. Semi-shared storage is using local- and shared resources at the

same time

Moreover, it is able to decrease the load on image

repository by using local storages of compute nodes. These

may increase the performance of the disk images, especially

in an over-provisioned cloud (like the original non-shared

storage).In Fig. 3, the compute node uses shared- and non-

shared storage at the same time. Shared storage is used for

VM instances deployed with persistent disk image and local

copies (non-shared storage) are used for VM instances

deployed with non-persistent image. Fig. 4 summarizes the

original (left side) and the new (right side) storage

subsystems for OpenNebula.

V. TEST INFRASTRUCTURE AND PERFORMANCE

BENCHMARKS

Experiments were carried out on an installation of

OpenNebula (version 3.2) that consists of two compute

nodes and one image repository. Technical details are

summarized in “TABLE I”.

TABLE I. CONFIGURATION OF THE TEST BED

Components of the test infrastructure

Role Type CPU HDD MEM

Image-

Repository

Front-end

Sun Fire

X2200

M2

2xQuad-

Core

Opteron
2.3G

Seagate

ST32500N

SATA

12G

DDR2

2XCompute

Nodes

Sun Fire

X2200
M2

2xDual-Core

Opteron
1.8G

WDC

WD2500JS
SATA 250G

8G

DDR2

53Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 66 / 282

1) Testing of semi-shared storage

In order to prove that higher I/O performance is

achievable by using the semi-shared storage subsystem than

the prior (shared and non-shared) solutions could provide,

I/O benchmarks were performed on the test cloud. The

benchmarks were sequential read throughput tests because

sequential read is a typical storage parameter [6]. At the

same time, 8 exactly the same virtual machine instances

were used to stress and load the I/O subsystem, while the

performance was measured inside the virtual machine and

directly on the physical block device with the iostat tool.

Iostat is an I/O performance monitoring tool for Linux based

systems. During the tests, the virtualization hypervisor was

KVM and caches as well as buffers were disabled on every

layer (files-system, hypervisor, etc.) for more accurate

results [5]. The first diagram (Fig. 5) presents the results

when a shared storage server and one compute node use

semi-shared storage for benchmarking. The available I/O

performance was measured in the image repository,

compute node and individually in the VM instances as well.

The benchmark values are the sequential read throughputs

when all the 8 virtual machines are running. The first test

batch has 9 pairs of columns. The pairs are distributions of

VM instances between local and remote resources. In a pair,

the first column is the aggregated I/O performance of the

VMs and the second is the aggregated I/O performance of

image repository and compute node.

54Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 67 / 282

In the first test (column one and two), all of the VM

instances are using the local storage of the compute node,

which is special because it is the default distribution when

non-shared storage subsystem is used. In the second test (7

VM instances running from local storage and one instance

directly from image repository), the aggregated I/O

performance is increased almost by three times compared to

the first test, because the shared storage (image repository)

was dedicated to only one VM. The last test in the batch is

special as well, because all the VM instances running from

image repository which is default when shared-storage

subsystem is used for the OpenNebula cloud. The results

show that the semi-shared storage subsystem can serve

higher aggregated I/O performance than the original storage

subsystem solutions in OpenNebula.

In the second test batch (Fig. 6), one image repository

server (as shared storage) and two compute nodes are used

and benchmarked. In the diagram, it can be seen that highest

aggregated and individual (from VM instance point of view)

I/O performance can be achieved if the VM instances can

use exclusively a local- or the shared storage. If more

computing nodes were added to test-bed, bigger

performance gap would be measured between the shared-

and semi-shared storage subsystems. These points to the fact

that the non-persistent VM instances (running from local

disk of compute nodes) are preferred and the number of the

persistent VM instances (running from image repository)

should be kept low if the image repository consists of a

single machine. In this paper, we do not investigate and

discuss the clustered or distributed storage technologies

which can expand the capacities of the image repository.

VI. PRODUCTION USE CASE

Some early tests with OpenNebula showed us that I/O

throughput can be problematic if VMs generate I/O

intensive workloads. In order to protect our production

services, we wanted to isolate production, developer and

tester VMs. Separated clouds can be build for these

purposes, however the utilization of the cloud components

would be worse in that case. Some of our VMs require live

migration which excludes to use non-shared storage

subsystem for OpenNebula.

After tests were successfully running in the test-bed,

semi-shared storage subsystem was put production in MTA

SZTAKI. Our second cloud installation has 64 CPU cores,

152GB RAM and ~5 TB storage. Usually, there are 40-60

VM instances are running concurrently. ~10 instances of

them are in production, about 20 instances are used by

developers and the others are running for testing purposes.

Production VMs are using only persistent disk images and

the testing VMs are using only non-persistent disk images.

(Developers are using both of them.) With this distribution,

we managed to solve the high utilization of our resources

without compromising the production services.

VII. FUTURE WORK

For IOPS-critical server workload, flash based storages

are preferred to use, like SSDs or traditional DRAM [10].

We already have performed some experiments with VMs

running in DRAM. We considered expanding OpenNebula

with DRAM based storage solution and combined it with

semi-shared storage subsystem as well. Going forward, we

are planning to explore different file-system solutions for

image repository. Ceph [11] could enhance scalability and

provide software based redundancy for image repository of

OpenNebula. In this paper, we did not investigate the I/O

performance from a networking point of view, however we

plan to explore the effects on the network by using different

types of storage subsystem for OpenNebula.

VIII. CONCLUSION

In this paper, the performance of virtualized I/O

subsystems was discussed, which is one of the most

considerable limitations of cloud infrastructures. The

investigation is focused on OpenNebula and its storage

subsystem solutions. In this cloud middleware, we

experienced scalability and I/O throughput problems. To

relieve the problem, OpenNebula provides distributed

storage option however fast VM deployment and live

migration features are lost with that option. We presented

the semi-shared storage subsystem that is able to achieve

higher I/O throughput than other storage solutions do in

OpenNebula by using central and local resources at the

same time. Finally, test results and the production use case

showed that we managed to expand I/O performance related

bottlenecks in OpenNebula.

ACKNOWLEDGMENT

The authors would like to thank Márk Gergely, Péter
Kotcauer, Zsolt Németh and Gábor Kecskeméti for their
input and comments that helped to shape and to improve this
paper. This work is supported in part by the EDGI EU FP7
project (RI-261556).

REFERENCES

[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud
computing and emerging itplatforms: Vision, hype, and reality for
deliveringcomputing as the 5th utility. Future GenerationComputer
Systems, 2009.

[2] P. Mell and T. Grance. NIST definition of cloud computing. National
Institute of Standards and Technology. Oct. 2009.

[3] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster. Virtual
Infrastructure Management in Private and Hybrid Clouds. IEEE
Internet Computing, vol. 13, no. 5, pp. 14-22, Sep. 2009.

[4] V. O. Póserné: Comparing the webservers of the opensource and the
closed source operation systems, in Proc of the 5th International
Symposium on Applied Computational Intelligence and Informatics,
Timisoara, Romania, 2009, pp. 169-172

[5] D. Ghoshal, R. S. Canon and L. Ramakrishnan. I/O Performance of
Virtualized Cloud Environments. DataCloud-SC '11, Nov. 2011.

[6] J. G. Hansen and E. Jul. Lithium: virtual machine storage for the
cloud. In SoCC ’10: Proceedings of the 1st ACM symposium on
Cloud computing, pp. 15–26, New York, NY, USA, 2010.

55Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 68 / 282

[7] J. Ousterhout , P. Agrawal , D. Erickson , C. Kozyrakis , J. Leverich ,
D. Mazières , S. Mitra , A. Narayanan , G. Parulkar , M. Rosenblum ,
S. M. Rumble , E. Stratmann and R. Stutsman. The case for
RAMClouds: scalable high-performance storage entirely in DRAM,
ACM SIGOPS Operating Systems Review, v. 43 n. 4, Jan. 2010.

[8] Sheepdog project. http://www.osrg.net/sheepdog/.

[9] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. KVM: the
Linux virtual machine monitor. In Ottawa Linux Symposium, 2007.

[10] A. M. Caulfield , L. M. Grupp , S. Swanson. Gordon: using flash
memory to build fast, power-efficient clusters for data-intensive
applications. Proceeding of the 14th international conference on
Architectural support for programming languages and operating
systems, Washington, DC, USA, Mar. 2009.

[11] Sage Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long,
Carlos Maltzahn, Ceph: A Scalable, High-Performance Distributed
File System, Proceedings of the 7th Conference on Operating
Systems Design and Implementation (OSDI ’06), Nov. 2006.

56Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 69 / 282

A Fast Virtual Machine Storage Migration Technique Using Data Deduplication

Kazushi Takahashi and Koichi Sasada
Graduate School of Information Science and Technology

The University of Tokyo
Dai-building 1301, Sotokanda 1-18-13,

chiyoda-ku, Tokyo, Japan 101-0021
Email: {kazushi, ko1}@rvm.jp

Takahiro Hirofuchi
National Institute of Advanced Industrial

Science and Technology (AIST)
Central 2, Umezono 1-1-1, Tsukuba, Japan 305-8568

Email: t.hirofuchi@aist.go.jp

Abstract—In this paper, we proposed a fast virtual machine
(VM) storage migration technique. Virtual machine storage
migration can migrate entire VM states to other hosts, includ-
ing VM disk images. It is widely used for cross-data-center
load management. However, VM disk images generally have
large file sizes (typically 1-30GB). Thus, storage migration was
time-consuming. To address this problem, we introduce the
deduplication technique into traditional VM storage migration.
We focused on the fact that it is possible to return VMs from
the new VM hosts. For example, a VM first migrates from
host A to host B. Next, the VM returns from host B to host A.
There will then be additional reusable disk pages in host A.
Consequently, to expedite the operation, we only return to host
A the disk pages that have been updated while in host B. We
implement this idea to a QEMU/KVM (kernel virtual machine).
To track the reusable disk pages, we developed a DBT (Dirty
Block Tracking) mechanism and a new diff format to store
the tracking result. In this paper, we discuss the design and
implementation of our prototype. Our technique successfully
reduced the transfer time for storage migration from 10
minutes to about 10 seconds in some practical workloads.

Keywords- Virtual Machine Monitor; VMM; VM Live Migration;
VM Storage Migration

I. I NTRODUCTION

Live migration involves the migration of virtual machines
(VMs) from one physical host to another even while the
VM continues to execute. Live migration has become a key
ingredient for data center management activities such as load
balancing, failure recovery, and system maintenance.

Recently, a new live VM migration mechanism has been
developed. Live VM (virtual machine) storage migration
allows us to move entire VM states, including VM disk
images to another physical machine without stopping the
VM. Traditional VM live migration mechanisms transport
only machine states such as CPU registers and NIC registers,
and require file sharing systems such as NFS [1] and iSCSI,
to share VM disk images between the source and destination
hosts. However, VM storage migration achieves VM live
migration without the file sharing systems.

VM storage migration enables flexible VM deployment
across physical computers. First, VM storage migration is
widely used in many data centers because it does not require
file sharing systems. For example, cross-data-center load

management, and VMs can evacuate quickly to other data
centers in other regions when the data center is unavail-
able due to maintenance. Second, we believe that storage
migration will be used for personal computer environments
in future. Some researchers [2] have studied virtual machine
migration for personal computing. However, since they used
traditional virtual machine migration, as opposed to storage
migration, the system forces users to use file sharing systems
that have network connections. However, by introducing
VM storage migration, VMs become portable without the
need for file sharing systems. VM storage migration has
significant potential for future computing.

However, VM disk images are large (typically 1-30GB
in size) and VM storage migration is time-consuming. Even
when using fast gigabit network environments, the transfer
time was significant. For example, a VM which has a disk
size of 20 GB requires about 10 minutes in a 1Gbps LAN
environment. This is unacceptable by users because it is
inconvenient.

We proposed a fast VM storage migration mechanism
usingdata deduplicationto reduce the transfer time and to
reduce the volume of transferred data. Our fast VM storage
migration works as follows: assume that two physical hosts,
A and B, are located in different regions. Initially, a VM
is migrated from source hostA to destination hostB.
Thereafter, the VM returns toA from B. We can then
leverage disk pages which were not updated while in host
B to reduce the transfer time and the volume of transferred
data. Although the initial transfer cost fromA to B is
large, VM migration will be faster in the subsequent round.
Consequently, we can achieve faster VM storage migration
than traditional VM storage migration techniques.

We implemented this idea to a QEMU/KVM (kernel vir-
tual machine) to develop a prototype. QEMU/KVM already
has a storage migration mechanism. Thus, we improved the
storage migration mechanism to support data deduplication
by tracking all disk-writing operations on the disk by the
VM, and to identify the disk pages that are reusable. To
track the disk pages that are reusable, we developed aDBT
(Dirty Block Tracking)mechanism and new diff format to
store the tracking result.

57Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 70 / 282

We examined our prototype on several machines which
have difference workloads. After developing our prototype,
we compared our storage migration with traditional storage
migration to determine the difference in the volume of data
transferred and time taken are reduced. Our result shows
the effectiveness of our deduplication mechanism for fast
storage migration.

This paper is based on our previous work which has
been presented at a local symposium in Japan (written in
Japanese) [3] In this paper, we have substantially improved
our previous work by conducting further experiments and
making more detailed discussions which is mentioned in
Section V.

II. RELATED WORK

There have been related work that enables VM live-
migration with VM disk images. Studies by Luo et al. [4]
and Bradford et al. [5] enable VM storage migration in Xen
[6] using their special back-end drivers, and they achieve
VM live-migration without a file sharing system. However,
they did not discuss re-using disk pages, and if there are
reusable disk blocks in the destination host, the hypervisor
can perform data deduplication to reduce the volume of data
and time. Therefore, their research is somewhat different
from ours. Hirofuchi et al. [7] implemented a NBD (Network
Block Device) protocol server. In this system, a user use
/dev/nbd0 to enable VM storage migration without the
file sharing system. When the user wants to boot a VM,
he executes the VM with/dev/nbd0 instead of a nor-
mal VM storage file. When VM storage migration occurs,
/dev/nbd0 copies the disk image to the destination host.
This is also different from our approach since we focus on
the application of data deduplication to reduce transfer data
and time while Hirofuchi did not discuss data deduplication
for VM storage migration, as is the case with our approach.

VMFlocks Project [8] proposed a data deduplication
mechanism for VM storage migration between data centers.
This project was implemented as a user-level file system
on a host OS. This user-level file system inspects VM disk
images without hypervisors, and it deduplicates data disk
blocks of VM disk images using fingerprint algorithms such
as SHA-1 [9] Our research is different in that we implement
our deduplication mechanism by modifying a hypervisor. On
the other hand, VMFlocks is implemented as a user-level file
system on a host OS. Our approach using the DBT within
a hypervisor is beneficial since it can leverage raw level
hardware commands such as the ATA TRIM command to
optimize disk pages, For example, garbage collection for
disk pages.

Sapuntzakis et al. [10] proposed several techniques for
speeding up virtual machine migration in various user sce-
narios. More specifically, they proposed a tree structured
based VM disk management system as follows: First, a
user creates a root VM storage image in a destination host.

Second, the user checks out a VM image from the root VM
storage image on a source host. Finally, the approach reduces
the amount of data transferred by exploiting similarities
between the transferred image on the source host and the
root image on the destination host. Our proposal is different
since we use a simpler approach in which the DBT records
dirty block information into a simple dirty map in order to
reduce the amount of transferred data.

Intel Research proposed ISR (Internet Suspend/Resume)
techniques [11] [12] ISR is a cold VM migration technique
and is explained as follows: First, before a VM transfer
takes place, a user suspends the VM. Next, the suspended
VM image that includes a VM disk image migrates to a
destination host. Finally, after migrating the VM image, the
VM resumes in the destination host. Kozuch et al. [11]
and Tolia et al. [12] proposed a VM storage migration
technique using Coda [13], which is a traditional distribution
file system. To enable VM storage migration, they store the
entire VM status (including VM disk images) to Coda, and
frequently download the VM status on the destination host
on demand. In fact, this approach supports VM cold migra-
tion. Coda has an excellent caching and reading prediction
mechanism. Thus, a user can eventually obtain the entire
VM status without having a network connection to a Coda
server. However, a constant network connection is required
to access the Coda file system until file caching is filled.
On the other hand, our approach only requires a temporary
network connection while transferring the VM. Also, our
approach supports VM live-migration.

VMware’s VMware Storage VMotion [14][15] supports
VM migration including VM file images. Unlike our ap-
proach, they do not leverage re-usable disk pages on a
destination host to reduce transferred data or time.

The Shrinker project [16] focuses on reducing the trans-
ferred data to minimize transfer time. To reduce the transfer
time, they share VM memory pages between a destination
host and a source host using a distributed hash table (DHT).
They focus on using memory pages to reduce migration time
while we focus on disk pages.

III. M OTIVATION

In this paper, we proposed fast VM storage migration
using data deduplication. As mentioned above, our idea
would be effective if VMs are transferred between specific
physical hosts.

In this section, we discuss the kinds of scenarios in which
VMs can be transferred between specific physical hosts,
and the kinds of situations for which our deduplication
mechanism would be suitable.

In today’s cloud computing environments, we believe that
the transfer of VMs between specific physical hosts is very
likely. Two scenarios are as follows:

58Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 71 / 282

VM

Computer A Computer B

Home On the way to work Office

Computer C

migration migration

VM’ VM’’

Figure 1. Live-migration for personal use.

A. VM storage migration for personal computer environ-
ment

Recently, the use of computing systems that provide VMs
instead of physical computers has increased. In this case,
users cannot use physical computers directly, but can use
virtual machines that are isolated from each other. We refer
to such a system as apersonal virtual machine system.
Personal VM systems are more convenient than traditional
physical computers and have the following benefits: First,
we can easily store entire VMs on portable storage devices
such as USB memory, and it is therefore portable. Personal
computer environments can therefore be used at any loca-
tion. Secondly, Personal VM systems can provide highly
secure computing, because backups of personal computing
environments can easily be made as virtual machine images.
If a VM is contaminated by a malicious program, the
computing environment can be quickly recovered using a
backup VM image. As previously mentioned, personal VM
systems have many benefits. Moka Five [17] has developed a
personal VM system which is widely used, and it is believed
that personal VM system usage will rapidly spread.

We believe that by introducing storage migration tech-
nologies to personal VM systems, we can realize more
convenient computing environments. Figure 1 shows an
image of VM storage migration in a personal VM system.
This image was inspired by Shivani Sud et al. [2], whose
work we summarized as follows:

Jane uses her home computer to check her email
and reviews a presentation she needs to deliver
later that morning. As the day progresses, she
seamlessly migrates her work environment from
her home PC to her mobile device before leaving
home. While traveling she continues reviewing the
presentation, adding notes as she rides the subway
to work. Soon it is time for her to dial into a
teleconference. On reaching her desk, her work
environment seamlessly migrates from her mobile
device to the office PC, and she can now use the
office PC to continue reviewing the presentation,
while she continues her teleconference from her
mobile device.

However, as mentioned above, VM disk images are large
(typically 1-30GB in size). Consequently, VM storage mi-
gration is time-consuming. For example, a 20GB disk image,
requires about 10 minutes in a gigabit LAN environment.
Traditional VM live-migration including storage migration
focuses mainly on reducing the down-time in extreme cases.
In fact, pre-copy and post-copy live-migration algorithms
are designed in an effort to reduce the down time. However,
in the assumed personal VM, it is important to minimize
the entire migration time as opposed to the down-time.
This is because for personal VM live-migration, the most
important thing is that when a user wants to migrate a
VM to another device, the VM moves immediately to the
another device without subsequent network communication.
Our fast storage migration using data deduplication can
reduce the entire transfer time, and is therefore considered
to be effective.

B. Follow the “moon” data center access model

To reduce the electricity bill and cooling cost in data
centers, some companies have proposed a strategy to deploy
server computers to regions in the world which have night-
fall. Using this approach, it is possible to maximize the use
of inexpensive off-peak electricity and lower temperatures.
By taking this approach, VMs are frequently deployed in
the data centers which are located in nighttime regions.
In fact, a VM may be migrated to a host to which it has
previously been deployed. By introducing our fast storage
migration, we can reduce transfer time. Additionally, in
today’s multi-tenant cloud computing environments, many
customers’ VMs are consolidated into a single data centers.
If many VMs concurrently migrate to a night-time data
center with their large disk images, the bandwidth of the
data center may become saturated. However, our fast storage
migration approach can reduce the volume of transferred
data for VM migrations.

As previously mentioned, in today’s cloud computing
environments, VM would alternate between particular phys-
ical hosts. Thus, our fast storage migration using data
deduplication is an effective way of achieving this goal.

IV. SYSTEM OVERVIEW

We implement a simple prototype for VM storage migra-
tion mechanisms using data deduplication. More precisely,
we implement DBT (Dirty Block Tracking) on a hypervisor.
DBT is a tracking module for the writing of a guest OS
on a VM. In order to achieve fast storage migration, DBT
works as follows : First, a VM disk image is divided into
fixed chunks using DBT. Next, DBT tracks all written disk
page blocks. DBT leverages a bitmap to manage the disk
pages that have been updated by the guest OS. Then, when
VM live-migration from a hostA to a hostB occurs, the
hypervisor executes normal slow VM-live migration if there
are no available reusable disk page blocks in the destination

59Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 72 / 282

0

20000

40000

60000

80000

100000

120000

0 1 2 3 4 5 6 7 8 9 10

D
ir

ty
 s

e
c
to

rs

Days

0

200000

400000

600000

800000

1000000

1200000

0 1 2 3 4 5 6 7 8

D
ir

ty
 s

e
c
to

rs

Days

0

2000000

4000000

6000000

8000000

0 1 2 3 4 5 6 7 8

D
ir

ty
 s

e
c
to

rs

Days

(a) kazushi (b) leela

(c) aist-test-1

Figure 2. Three machines and three different workloads.

hostB. Entire VM disk images are translated. On the other
hand, if there are reusable disk pages in the destination host
B, only dirty pages which have been updated on the source
hostA are transferred. With this mechanism, we can achieve
our fast VM storage migration using data deduplication.

V. PRE EXAMINATION

To examine the efficiency of deduplication transfer for
storage migration, we investigate for several days the number
of disk pages that are updated in the average daily operation
of a computing environment. We examined three computers
which have different workloads. Three computer setups are
shown in Table I. With the exception of aist-test-1, all of
the machines are physical machines. Kazushi consisted of a
hard disk drive that is 300GB in size, and which executes
Ubuntu 11.04 (32bit) with the ext4 file system format. Leela
consisted of a solid state drive that was 160GB in size, and
which executes Windows 7 (32bit) with the NTFS format.
Aist-test-1 consisted of a hard disk drive that was 60GB in
size, and which executes CentOS 6.2 (64 bit) with the ext4
file system format.

Aist-test-1 is a server which works as a web-based group-
ware. Kazushi is a laptop computer which executed web-
browsing operations including the playback of YouTube
videos and text editing. Leela is also a laptop computer

Table I. Pre examination environments

Name Type Size OS FS

(a) kazushi HDD 300GB Ubuntu 11.04 (32bit) ext4

(b) leela SSD 160GB Windows 7 (32bit) NTFS

(c) aist-test-1 HDD 60GB CentOS 6.2 (64bit) ext4

which executed only web-browsing operations, including the
playback of YouTube videos.

Our results are shown in Figure 2. For all of the test
machines, we find that changes were made to only a few
disk pages in the entire physical disks. First, in the case
of kazushi, a maximum of only 0.49 GB disk space was
updated, out of 300 GB. This accounts for only 0.16% of
the 300 GB disk. A minimum of, only 0.25 GB of the 300
GB disk space was updated. This accounts for only 0.08% of
the disk. Secondly, in the case of leela, a minimum of only
0.49 GB of the 160 GB disk space was updated, accounting
for only 0.33% of the disk, while a maximum of only 3.14
GB of the 160 GB disk space was updated, accounting for
only 2.11% of the disk. Thirdly, for aist-test-1, a minimum
of only 0.01 GB of the 60 GB disk space was updated,
accounting for only 0.07% of the disk, while a maximum of
0.04 GB of the 60 GB disk space was updated, accounting
for only 0.31% of the virtual disk.

60Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 73 / 282

DBT (Dirty Block Tracking)

DirtyPageMap

write()

Virtual Machine

(Running)

diff image

On memory

QEMU

Source

11 00 22 00 22

DirtyPageMap

11 00 33 00 22

DBT (Dirty Block Tracking)

write()

Virtual Machine

(Standby)

On memory

DirtyPageMap

00 00 00 00 00

DirtyPageMap

diff image

11 00 11 00 11

QEMU

Destination

Figure 3. Our prototype system overview.

This examination shows that our deduplication transfer
mechanism for virtual machine storage migration is efficient.

VI. D ESIGN

In the previous section, we showed the deduplication
system for storage migration is efficient. Thus, we designed
a system for the deduplication of storage migration. An
overview of our system is shown in Figure 3.

1) Dirty Block Tracking:DBT is a mechanism that traces
entire disk pages written by a guest OS, and records the
tracking result into the dirty map structure. DBT within a
hypervisor hooks the writing by a guest OS. DBT simply
divides entire disk images at block boundaries, and allocates
8 bits of space for each block. This 8 bit space is updated
by DBT with a generation number, which is an identifier
for VMs. When a VM moves to another host by storage
migration, this value is increased. Consequently, we can
identify the disk pages that should be transferred when
storage migration takes place.

2) Diff Image Structure:Diff image is a new VM image
format that supports deduplication for VM storage migration
by managing the structured dirty map with DBT. The diff
image structure is shown in Figure 4. The diff image
consisted of G, which is the generation number, S, which
is the seed number, and the freeze flag, which indicates
whether or not the VM image is able to boot, and the dirty
page map, which indicates which blocks have been updated
by the guest OS. The generation number is increased when
the VM migrates to another host, and this number is initially
one. The seed number is a unique number which is allocated
when the disk image is created.

3) Migration Algorithm: The migration procedures are as
follows:

(a) When a diff disk image is created, the diff structure is
initialized. The seed number is a unique number, the
generation number is 1, the freeze flag is 0, and the
dirty page map is all zeros.

SEED : S

Generation : G

Freezed : freeze

DirtyMap: map

Diff disk

Image header

010101010010111110

101010110101011101

01111101010011…..

Figure 4. The structure of diff disk image.

(b) A guest OS writes to the disk. Using DBT, all writings
by the guest are tracked and recorded. The blocks
updated by the guest are tracked and recorded. The
recording is conducted by writing the generation num-
ber into the dirty page map.

(c) The guest OS migrates to a hostA. This is a slow stor-
age migration process because it is an initial transfer.
The generation number G is incremented when this
migration is completed.

(d) A hostB, which is the destination, acquires ownership
of the guest OS. Thus, the VM image in the hostA
is frozen, and it is temporarily not bootable.

(e) The guest OS writes to the disk in the hostB.
DBT records the disk pages that are updated in the
generation number G.

(f) The guest OS migrates the hostB to hostA. Now,
fast deduplication storage migration is possible. DBT
compares the generation number in the hostA with
generation numbers in the dirty map in the hostB.
If a generation number in the dirty map in hostB
is greater than the generation number G in hostA,
the disk block which corresponds to the generation
number in the dirty map is transferred.

A. Discussion

We also considered another approach to achieve data
deduplication for storage migration. In our prototype, we
proposed a simple method to track disk block writing with
dirty maps using DBT. On the other hand, other methods
using fingerprints such as SHA-1 [9] and Rabin-fingerprint
[18] are available. In fact, as in rsync [19], we can use
the Compare-by-hash[20], [21] method to achieve data
deduplication.

According to Jacob et al. [22], hand-optimized SHA-1
implementation, running on a single Intel Core-2 CPU core
is able to hash more than 270 MB of data per second, which
is almost enough to saturate the full write bandwidth of three
SATA disk drives. Thus, although DBT calculates SHA-1
hash when disks are written to by a guest OS, the guest OS

61Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 74 / 282

does not incur loss of speed.
However, our goal in this paper is to show that our dedu-

plication VM storage migration method is practical. Thus,
in this paper, we adopt a more simple method which uses
the dirty page map with generation numbers. As described
later, we believe that the use of SHA-1 hash has some side
effects. We now plan to develop a deduplication VM transfer
mechanism using SHA-1

VII. I MPLEMENTATION

We implement the previously mentioned DBT and the diff
format to Linux/KVM (QEMU) [23], [24] We divide entire
VM image files into chunks. DBT constructs a dirty page
map using an 8-bit space for each of the chunks. Currently,
for the bitmap, one chunk is 2,048 sectors, where one sector
is 512 bytes. This is a constant value for QEMU. A bitmap
that is in 4 Kbytes is generated for 4 GB. VM disk images.
Although a VM image that is 20 GB is generated, a bitmap
that is about 20 KB is generated. Thus, the bitmaps do not
place additional stress on the physical hard disk drive. This
bitmap is deployed in memory when the guest OS executes
on the VM. When the guest OS exits, the bitmap is updated
on the diff image.

Additionally, we implement two APIs to communicate
the dirty block information between the disk driver layer
and the live migration mechanism layer in QEMU, and to
increment the generation number when storage migration is
completed. QEMU implementation is a structured design,
For example, vmdk, qcow, and qcow2, which are formats
of the QEMU’s disk images, are updated as device drivers
in QEMU. In order to develop new QEMU disk formats,
developers implement only the specific handlers in QEMU.
Developers, who are desirous of adding new QEMU disk
image formats, can implement a new QEMU format by im-
plementing only the specific callback handlers. BlockDriver
structure in blockint.h source header file of QEMU defines
the callback handlers to implement QEMU disk image in
QEMU. We add two callback handlers to QEMU because
there are no APIs to increment the generation number and,
to communicate the dirty map between the disk driver layer
and live-migration implementation layer.

VIII. E VALUATION

We evaluate and analyze the impact of our deduplication
migration mechanism. First, we examine whether or not
writing to the disk has slowed. Secondly, we conduct mea-
surements for the speed and efficiency of the data transfer
using several machines which have different workloads.

A. Evaluation for the DBT cost

In this subsection, we show that DBT does not incur a
loss of speed by tracking the disk writing operations. Our
setup consisted of a ThinkPad X220 laptop computer that
was booted up with an Intel Core i5-2430M @ 2.40GHz,

0

5

10

15

20

25

30

35

40

1 3 5 7 9 1113151719212325272931333537394143454749

W
ri

ti
n

g
 s

p
e

e
d

 [
M

B
y

te
s/

se
c]

(h
ig

h
e

r
is

 b
e

tt
e

r)

Count of writing

DirtyTracking enabled

DirtyTracking disabled

Figure 5. The result of writing benchmark.

and which has 4 GB of memory. This machine is attached to
a Seagate 7200rpm HDD with a cache memory of 16 MB.

To realize the impact of DBT on the performance, we
compare two benchmark results: First, the write speed of
the diff format with DBT. Secondly, the write speed for the
raw-format, which is the primitive VM format for QEMU.
We measure only the write cost and not the read cost because
DBT only works with guest disk writing. We use UNIX dd
commands to measure the disk write cost. Using dd, we
write 1 MB blocks 100 and 50 times.

The evaluation result is shown in Figure 5. The x-axis
indicates the write speed in Mbytes/sec, and The y-axis in-
dicates the writing count. We find that the hypervisor without
DBT achieved 32.304 Mbytes/sec, and the hypervisor with
DBT achieved 29.656 Mbytes/sec. Because DBT leads to a
decrease in the write speed of only 8%, it is not thought to
be significant.

B. Migration speed with different workloads

In this subsection, using a series of benchmarks, we show
the speed and the efficiency of data transfer for migration.

We assume practical workloads as follows: First, a user
downloads an MS Office power point file, views, edits,
and saves the file. Secondly, the user downloads from a
Japanese literary website a literary creation “Kokoro” by
Souseki Natume, who is a famous Japanese scholar in the
field of Literature. The user then views, edits, and saves the
information. Next, the user views the video on YouTube with
a Firefox web-browser. Fourthly, the user downloads a 3 MB
PDF file and views it. We run these practical workloads on
both Windows 7 (32bit) and Ubuntu 11.04 (32bit) operating
systems. After each user performs these actions for five min-
utes on both virtual machines, we conduct our deduplication
procedure for both VM storage migration and normal VM
storage migration. Finally, we compare the times taken for
our deduplication storage migration and normal VM storage
migration.

The source host consists of a ThinkPad X60 laptop
computer booted with an Intel Core Duo CPU T2400 @ 1.83
G Hz with 2 GB of memory. The destination host consists

62Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 75 / 282

Table II. Storage migration measurement result on Ubuntu 11.04 desktop (32bit)

No deduplication PDF Presentation YouTube Kokoro
Whole Migration Time (sec) 919.358 29.139 30.141 28.720 25.900
Transferred size (MBytes) — 101 104 111 90

Table III. Storage migration measurement result on Windows 7 Professional (32bit)

No deduplication PDF Presentation YouTube Kokoro
Whole Migration Time (sec) 991.044 89.028 68.892 78.450 86.703
Transferred size (MBytes) — 933 613 927 907

of a DELL LATITUDE D630 laptop computer booted with
an Intel Core 2 Duo T7300 @ 2.0 GHz with 2 GB of
memory. Both computers are connected in a 1 Gbps LAN
environment.

The result for Ubuntu 11.04 (32 bit version) is shown in
Table II. The longest migration time was 30.141 seconds
for the presentation benchmark. On the other hand, the
best migration time was 25.900 seconds for the Kokoro
benchmark. We found that our approach was able to reduce
the migration time. All of the benchmark results lasted about
10 minutes. However, they lasted only about 10 seconds
after introducing our approach. We also found that using
our method, the volume of transferred data had been reduced
from 20 GB to several hundreds of megabytes.

Next, the result for Windows 7 Professional (32 bit
version) is shown in Table III. When compared with the
result for Ubuntu, in the case of Windows, the number
of dirty disk blocks was larger. and the volume of data
that was transferred was also larger. The longest migration
time was 89.028 seconds for the PDF benchmark. On the
other hand, the best migration time was 68.892 seconds
for the presentation benchmark. Windows was shown to
generate a greater number of dirty disk blocks than Ubuntu.
Additionally, we found that the Presentation benchmark
consumed the most migration time in the case of Ubuntu
while the PDF benchmark consumed the most migration
time in the case of Windows. The best time in the case of
Ubuntu was 28.720 seconds for the YouTube benchmarks,
while for Windows, the best time was 68.892 seconds for
the presentation benchmark. All of the benchmarks results
in Windows achieved a migration time of about 1 minute.

It was found that the introduction of the deduplication
for storage migration led to greater efficiency. For all of
the benchmarks, we were able to achieve faster storage
migration than traditional storage migration techniques.

IX. FUTURE WORK

As mentioned above, we can use fingerprint algorithms
such as SHA-1 and Rabin fingerprint to deduplicate VM
disk pages. In fact, we divide the VM image files into
chunks, and calculate fingerprints for all chunks. VM images
are transferred, we can compare fingerprints in the source
VM image with those in the destination VM image to

exploit deduplicated VM disk blocks. This approach also
provides deduplication on local VM disk storage to reduce
the volume of local storage data. Although this approach
somewhat complicated, it is better than our bitmap approach.
Therefore, we will implement the deduplication system
using a fingerprint algorithm.

X. CONCLUSION

In this paper, we proposed a fast VM storage migration
technique using data deduplication. In the pre-examination
results, we show that data deduplication for fast VM is
an effective approach because only a few disk blocks are
usually updated in daily computing operations. Thus, we
implement a prototype that realizes fast VM storage migra-
tion using data deduplication. For all of the benchmarks,
we achieve storage migration that is faster than traditional
storage migration.

REFERENCES

[1] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow,
C. Beame, M. Eisler, and D. Noveck, “Network file system
(nfs) version 4 protocol,” 2003.

[2] S. Sud, R. Want, T. Pering, K. Lyons, B. Rosario, and
M. X. Gong, “Dynamic migration of computation through
virtualization of the mobile platform,” inMobiCASE, 2009,
pp. 59–71.

[3] K. Takahashi and K. Sasada, “A fast vm transport mechanism
that consider generations with disk dirty page tracking,” in
53th Programming Symposium. IPSJ, January 2011, pp. 37–
45.

[4] Y. Luo, B. Zhang, X. Wang, Z. Wang, Y. Sun, and H. Chen,
“Live and incremental whole-system migration of virtual
machines using block-bitmap.” inCLUSTER’08, 2008, pp.
99–106.

[5] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schiöberg,
“Live wide-area migration of virtual machines including
local persistent state,” inProceedings of the 3rd international
conference on Virtual execution environments, ser. VEE ’07.
New York, NY, USA: ACM, 2007, pp. 169–179. [Online].
Available: http://doi.acm.org/10.1145/1254810.1254834

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen
and the art of virtualization,”SIGOPS Oper. Syst. Rev.,
vol. 37, pp. 164–177, Oct. 2003. [Online]. Available:
http://doi.acm.org/10.1145/1165389.945462

63Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 76 / 282

[7] T. Hirofuchi, H. Ogawa, H. Nakada, S. Itoh, and S. Sekiguchi,
“A live storage migration mechanism over wan for relocatable
virtual machine services on clouds,”Cluster Computing and
the Grid, IEEE International Symposium on, vol. 0, pp. 460–
465, 2009.

[8] S. Al-Kiswany, D. Subhraveti, P. Sarkar, and M. Ripeanu,
“Vmflock: virtual machine co-migration for the cloud,”
in Proceedings of the 20th international symposium on
High performance distributed computing, ser. HPDC ’11.
New York, NY, USA: ACM, 2011, pp. 159–170. [Online].
Available: http://doi.acm.org/10.1145/1996130.1996153

[9] National Institute of Standards and Technology,FIPS
PUB 180-1: Secure Hash Standard, Apr. 1995, supersedes
FIPS PUB 180 1993 May 11. [Online]. Available:
http://www.itl.nist.gov/fipspubs/fip180-1.htm

[10] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S.
Lam, and M. Rosenblum, “Optimizing the migration of
virtual computers,” SIGOPS Oper. Syst. Rev., vol. 36,
pp. 377–390, December 2002. [Online]. Available: http:
//doi.acm.org/10.1145/844128.844163

[11] M. Kozuch, M. Satyanarayanan, T. Bressoud, and Y. Ke, “Ef-
ficient state transfer for internet suspend/resume,”Intellectual
Property, no. May, 2002.

[12] N. Tolia, N. Tolia, T. Bressoud, T. Bressoud, M. Kozuch,
M. Kozuch, and M. Satyanarayanan, “Using content address-
ing to transfer virtual machine state,” Tech. Rep., 2002.

[13] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki,
E. H. Siegel, David, and C. Steere, “Coda: A highly available
file system for a distributed workstation environment,”IEEE
Transactions on Computers, vol. 39, pp. 447–459, 1990.

[14] VMware, Inc., “VMware Storage VMotion: Non-disruptive,
live migration of virtual machine storage,” http://www.
vmware.com/products/storage-vmotion/

[15] A. Mashtizadeh, E. Celebi, T. Garfinkel, and M. Cai, “The
design and evolution of live storage migration in vmware
esx,” in Proceedings of the 2011 USENIX conference on
USENIX annual technical conference, ser. USENIXATC’11.
Berkeley, CA, USA: USENIX Association, 2011, pp.
14–14. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2002181.2002195

[16] P. Riteau, C. Morin, and T. Priol, “Shrinker: Efficient
Wide-Area Live Virtual Machine Migration using Distributed
Content-Based Addressing,” INRIA, Research Report RR-
7198, Feb. 2010. [Online]. Available: http://hal.inria.fr/
inria-00454727/en/

[17] MokaFive, “MokaFive Player,” http://www.moka5.com/

[18] M. O. Rabin, “Fingerprinting by random polynomials.” TR-
CSE-03-01, Center for Research in Computing Technology,
Harvard University, Tech. Rep., 1981.

[19] A. Tridgell and P. Mackerras, “The rsync algorithm,”
Australian National University, Department of Computer
Science, Technical Report TR-CS-96-05, Jun. 1996,
http://rsync.samba.org.

[20] J. Black, “Compare-by-hash: a reasoned analysis,”Proc 2006
USENIX Annual Technical Conference, pp. 85–90, 2006.
[Online]. Available: http://www.usenix.org/event/usenix06/
tech/full papers/black/black.pdf

[21] V. Henson and R. Henderson, “Guidelines for using compare-
by-hash,” 2005.

[22] J. G. Hansen and E. Jul, “Lithium: virtual machine
storage for the cloud,” inProceedings of the 1st ACM
symposium on Cloud computing, ser. SoCC ’10. New York,
NY, USA: ACM, 2010, pp. 15–26. [Online]. Available:
http://doi.acm.org/10.1145/1807128.1807134

[23] F. Bellard, “Qemu, a fast and portable dynamic
translator,” in ATEC’05: Proceedings of the USENIX
Annual Technical Conference 2005 on USENIX
Annual Technical Conference. Berkeley, CA, USA:
USENIX Association, 2005, p. 41. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1247401

[24] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori,
“KVM: the Linux Virtual Machine Monitor,” in Proceedings
of the Linux Symposium, 2007, pp. 225–230.

64Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 77 / 282

Network Performance-Aware Virtual Machine Migration in Data Centers

Jun Chen, Weidong Liu, Jiaxing Song

Department of Computer Science and Technology

Tsinghua University

Beijing, China

chenjun09@mails.tsinghua.edu.cn

{liuwd, jxsong}@tsinghua.edu.cn

Abstract—Virtual machine (VM) consolidation and migration

technology in data centers greatly improve the utilization of

the server resource. While the previous work focuses on how to

use VM migration to balance physical host utilization or

optimize energy consumption, little attention has been given to

network performance factors, such as link traffic load and

inter-traffic between VMs in data centers. In this paper, we

present MWLAN (Migration With Link And Node load

consideration), a novel automatic data center VM migration

system that can detect hotspots (e.g., network congestion and

physical host over-loaded) and dynamically remap VMs to

improve the network performance. The VM migration

approach proposed in MWLAN can efficiently balance the

network link load and relieve the local data center network

congestion as well as considering physical host constraints.

Moreover, experimental evaluations indicate that the proposed

approach reduces the packet loss by up to 50% and improves

the average application TCP transfer rate by up to 24%

compared to the other approaches when the data center

network overloaded.

Keywords-virtualization; virtual machine migration; data

center; load balancing

I. INTRODUCTION

With the development of technology, virtualization has

been widely used in data centers. It allows a single physical

host to run multiple isolated virtual machines. When a

physical host is overloaded, virtual machine migration can

dynamically remap virtual machines onto physical hosts in

data centers, which greatly improves physical host resource

utilization. At the same time, network scalability is

becoming more and more crucial in data center network

system. Many new network architectures [2][3] have been

proposed for data centers to solve the network problems. As

the server virtualization on data centers, the VMs placed in

data center physical hosts are applications or application

components (multi- tier applications). There are usually

high traffic rate and increasing trend towards more

communication due to the inherent coupling among VMs

(e.g., scientific computing, web search, MapReduce). The

VMs arrive/depart dynamically and their location is not

fixed. In such environments, VMs with large

communication or belonging to the same application tier are

very likely to be scattered into different network segments.

We call it service fragmentation, which consumes large

inter-node bandwidth. The research [15] shows that service

fragmentation can heavily affect the data center network

performance. Thus, how to schedule and place the VM to

improve the data center network performance is a

meaningful topic.

However, in recent years, many work focus on using

virtual machines (VMs) consolidation and migration to

improve the efficiency of physical host or power

management in data centers. Little attention has been given

to the network performance influence of VM migration in

data centers.

In this paper, we present a novel migration system,

MWLAN (Migration With Link And Node load

consideration), a dynamic migration scheduling system in

data centers. MWLAN collects the load information on

physical host and switch links, detects and finds hotspots.

After that it chooses a VM candidate and a physical host

candidate for VM migration, taking the underlying data

center network performance factors into count, as well as

the physical host constraints. However, the VMs migration

problem with resource constraints on physical node and link

can be reduced to virtual network embedding/mapping

(VNE) problem which is proven to be NP-complete [4]. In

this paper, a heuristic algorithm is proposed to solve the

migration problem efficiently. The ultimate goal is to

balance the network traffic load and improve the network

resource utilization while satisfying VMs and physical host

resource constraints in data centers. Furthermore, the

experiment results demonstrate that the proposed approach

reduces the packet loss by up to 50% and improves the

average application transfer rate up to 24% compared to the

other approach when the data center network overloaded

according to scheduling 10% VMs.
Our contributions can be summarized as follows:

 We address the problem of network link load
dynamic adaption and formulate the cost of network
link load in data centers in order to avoid network
congestion or overload.

 We propose a novel VM dynamic migration idea by
efficiently utilizing network resources as well as
considering physical host constraints.

 We evaluate the proposed algorithms by simulators
and the results prove that they can significantly

65Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 78 / 282

relieve network congestion and improve the traffic
rate when network overloaded.

The rest of this paper is organized as follows. Section II
provides some background and gives an overview of the
migration system MWLAN. Section III presents our core
system architecture of MWLAN. In Section IV, we evaluate
the proposed methods using simulations. Then Section V
discusses the related work. Finally, Section VI presents our
conclusion and future work.

II. BACKGROUND

The existing data center VM migration approaches are

used to eliminate the overloaded physical host, which move

a virtual machine from the overloaded physical host to

another underloaded one. This migration policy can balance

the utilization of physical host resource. But no one

considers using VM migration to balance the data center

network link traffic load and prevent network performance

degradation. This paper designs a data center virtual

machine migration management system MWLAN.

MWLAN is used in virtualized data center. Generally, a

virtualized data center is composed by network and physical

hosts (or server). The interconnected switches formulate the

data center network [2][3], while the physical hosts are

connected by data center network. One physical host can

hold one or more VMs which are allocated some parts of

physical host resource, such as CPU, memory. Each VM

runs an application or an application component (multi-tier

application). All storage is thought to be on a network file

system (NFS) or a storage area network (SAN), thus,

MWLAN can avoid storage migration.

More specifically, MWLAN has full knowledge of the

network topology, network configuration (routing info), the

switch link bandwidth, the physical host capacity and the

mapping of applications to physical host. By taking a global

view of routing and VM traffic demands, MWLAN can

identify the load of physical host and the switch link in data

centers. If a hotspot occurs (e.g., network congestion and

physical host overloaded), MWLAN can use VM migration

to balance the overloaded resources (e.g., physical host or

links). Figure 1 shows the virtualized data center and

MWLAN.

Figure 1. The virtualized data center and MWLAN architecture.

Figure 2. The MWLAN architecture.

MWLAN is consisting of three components: Node

Controller, Network Controller and VM Migration Manager.

Node Controller is responsible for gathering VM resource

usage statistics on each physical host and VMs, doing

demand estimation (physical host resource demand and

bandwidth demand) and detecting physical host hotspot.

Network Controller periodically gathers link bandwidth

usage statistics of data center network and the routing info,

and then does the link load hotspots detecting process. VM

Migration Manager is responsible for choosing the

migration VM candidate and the destination physical host

candidate. Therefore we propose the MWLAN architecture

depicted in Figure 2, the principal components and their

interplay are described in more detail in the following

architecture section.

III. MWLAN SYSTEM ARCHITECTURE

The below section will discuss the detail function of

MWLAN’s components which can be divided into four

steps. First, host and network resource usage monitoring in

date centers, such as physical host usage, VM resource

usage and the traffic load at the switches. Next, it describes

the hotspot detection. And then, demand estimation and VM

migration cost analysis. Finally, VM migration schedule.

A. Monitoring

Monitoring is not only responsible for tracking the

resource usage of physical host and VMs, but also gathering

the link bandwidth consumed information of switches in

data centers. Thus, monitoring is composed by two parts:

host monitoring and network monitoring.

Host monitor runs on each physical host and VM. It

gathers the host resource usage, such as the CPU usage, the

transfer data rate of VMs. As shown in Figure 2, the node

controller gathers all hosts’ resource usage information from

host monitor.

Network monitoring is running on each switch in data

centers. It periodically measures the link load of the switch

(such as switch logs) and sends the link load information to

the network controller.

66Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 79 / 282

B. Hotspot Detection

Hotspot detection is used to find out the hotspot on

physical host and switch link. As shown on Figure 2, the

host controller has a hotspot detector which is responsible

for detecting hotspot on physical host. The network

controller has a hotspot detector which is responsible for

detecting hotspot on the switch link in data centers.

1) Host Hotspot Detection

The physical host load metric contains CPU, memory,

network facts. A physical host may be overloaded on one or

more facts. So, we use volnode [5] as the quantification of the

physical host load. If the physical resources are more

overloaded, the volnode will be higher.

31 2 *
1 1 1

node

node

Vol
cpu memory net

ωi: the weight of CPU, memory and network load.

cpu: the physical host CPU utilization.

memory: the physical host memory utilization.

netnode: the physical host network port utilization.

n: the continues observation times.

k: the threshold of overload times.

λnode: the threshold of volnode.

If there are more than k times volnode>λnode in the last n

detections, the physical host may be thought to be

overloaded [5], a hotspot is detected. Then, it schedules the

VM migration manager to do a VM migration to eliminate

the hotspot.

2) Network Hotspot Detection

The network resource of a data center is the switches’

link bandwidth. Thus, the utilization of the link bandwidth

is the load of each switch link traffic load. volnet is used to

be the quantification of switch link load. If the utilization of

the link is high, the volnet will be high.

(2)
1

link

net

link

Vol
net

αlink : The weight of switch link, if some of the switch

link is much more valuable (such as the bottleneck link of

the data center network), the weight netlink of this link will

be bigger.

netlink: The link bandwidth utilization.

Similar to host hotspot detection, a network hotspot is

flagged only if volnet exceeds a threshold λnet for a sustained

time k in the recent n time observations.

C. Demand Estimation and VM Migration Cost Analysis

As the VM’s current used resource may not reflect the

actual demand, MWLAN must estimate the VM’s actual

resource demand before migration. There are many multi-

tier applications models to estimate the multi-tier

application resource demand. The queuing model [10] is

used as the basic of the VM demand estimation. By using

the monitored information of application VMs (Gray-box

monitoring [5]) and the model for multi-tier applications,

MWLAN can estimate the VM physical resource demand

(e.g., CPU demand) and VM’s actual bandwidth demand.

VM migration scheduling is responsible for choosing

which VM to migrate and which physical host to hold the

migration VM. And our ultimate goal is to balance the

network traffic load and improve the network resource

utilization.

If a VM is moved from one physical host to another host,

the flows which related to the migration VM will switch too.

So when we schedule VMs, a key challenge is to estimate

the migration impact to the traffic loads on links. To solve

this problem, the system quantifies the impact of the virtual

machine migration on network. It considers the bandwidth

consumed and the link load by the flows related to the VM

before and after the migration.

The VMw consumed network resource in data centers can

be defined as:

{ | (,)! 0} (,)

(,) (3)
p i E w i w p

E w p

VM VM C VM VM e E VM VM

Cost C VM VM

The variables in the Equation are defined as Table I

shown.

TABLE I. THE DEFINITION OF VARIABLES IN THE EQUATION

Variable Description

CE(VMw,VMP) The transfer data rate between VMw and VMp.

CN(VMw) The amount of physical resource which is

allocated to VMw on physical host.

E(VMw,VMP) The switch link set of transfer data path

between VMw and VMp.

E’(VMw,VMp) The switch link set of transfer data path

between VMw and VMp if VMw is migrated to

physical host PMk.

RE(e) The remaining available bandwidth on link e.

RN(PMw) Physical host PMw remaining available

resource.

αe The weight of switch link e.

β The weight of physical host.

δ Constant, to make ensure the denominator is

bigger than zero.

{ VMi |

CE(VMw,VMi)!=0 }

The VM set which has network traffic with

VMw.

Since our objective is to balance the link traffic load, the

utilization of links should also be taken into account. So if

the VMw is migrated from physical host PMw, the effect to

the network traffic load can be defined as:

{ | (,)! 0} (,)

() (,) (4)
()

p i E w i w p

e

w E w p

VM VM C VM VM e E VM VM E

Revenue VM C VM VM
R e

67Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 80 / 282

Revenue (VMw) considers both the consumed network

resource of VMw and the utilization of related switch links.

If moving VMw away from physical host PMw, the traffic

load of the switch links used by VMw will be relieved. So (4)

denotes the positive effect to the data center network by

moving VMw away from original physical host.

Similarly, the network cost of placing a VM VMw on

physical host PMk can be defined as:

'

'

{ | (,)! 0} (,)

() (,)
()

p i E w i w p

e

w E w p

VM VM C VM VM e E VM VM E

Cost VM C VM VM
R e

For each VMw, if it is moved from the original physical

host to a candidate host, we denote the benefit of this

schedule by Benefit(VMw).

() () () (6)w w wBenefit VM Revenue VM Cost VM

And if taking physical host load into consideration, we

define the benefit of a VM VMw migration from physical

host PMw as:

'

{ | (,)! 0} (,)

(,)
()

() ()
()

p i E w i w p

e

E w p

VM VM C VM VM e E VM VM E

N w

N w

Revenue C VM VM
R e

C VM
R PM

 Similarly, the cost of a VM VMw is placed on physical

host PMk can be defined as:

'

' '

{ | (,)! 0} (,)

'

(,)
()

()
()

p i E w i w p

e

E w p

VM VM C VM VM e E VM VM E

N w

N k

Cost C VM VM
R e

C VM
R PM

D. VM Migration Schedule

According to the above migration cost and revenue

equations, the intuitive migration manager policy proceeds

as follows: At first, compute the migration revenue of each

candidate VM which is located on the overloaded physical

host or which traffic flows are forwarded by the overloaded

link. After that, referring to the above migration revenue (4),

we sort the VM migration revenue in decreasing order. The

policy chooses the candidate VM of the maximum revenue

as the one to migrate. By considering VMs in revenue order,

the algorithm attempts to migrate the VM which has the

biggest potential to relieve the link load and the bandwidth

cost. And then, according to the above migration cost (5),

the migration manager first computers the candidate VM

migration cost on each underloaded physical host. And

again we sort the VM migration cost of the each physical

Algorithm 1 virtual machine migration (MWLAN1)

Require: the overload physical machine(PM) PMw

1: For each VMi ∈ PMw

2: R(VMi) = Revenue(VMi,PMw)

3: end for

4: //Note: Revenue computed by (4)

5: sort VMi ∈PMw in decreasing order Revenue (VMi))

6: for each VMi ∈PMw in decreasing order Revenue (VMi))

7: VMmigration= VMi, PMdest = NULL

8: Min_cost = inf

9: for each PMj in a data center

10: if (!check_pm_constrain (PMj, VMmigration))

11: continue // pm can’t hold the vm

12: end if

13: //Note: Cost computed by (5)

14: cost(PMj)= Cost (VMmigration, PMj)

15: if (cost(PMj) <Min_cos)

16: PMdest = PMj

17: Min_cost = cost(PMj)

18: end if

19: end for

20: if(PMdest == NULL)

21: continue

22: else

23: break

24: end if

25: end for

26: if(PMdest == NULL)

27: no physical machine can hold a migration VM

28: return

29: else

30: return { VMmigration , PMdest }

31: end if

host in increasing order. The policy chooses the minimize

cost physical host as the destination physical host for the

candidate VM, which also aims to minimize the network

cost. The main steps of this strategy are listed in Algorithm

1. The complexity of the Algorithm 1 is O (max (m,n)),

where m denotes the candidate VM number, and n denotes

the number of physical host which can hold the migration

VM.

While the Algorithm 1 takes into account both migration

revenue and cost, it can’t make sure that the migration gets

to maximum benefit which is defined on (6).

The Algorithm 2 merges the process of VM candidate

and destination physical host choosing. As the total

migration should both consider the revenue and cost, the

Algorithm 2 chooses the migration VM and destination

physical host which maximizes benefit (6) among all

candidate VMs on overload PM and all candidate physical

host in data centers. The complexity of algorithm 2 is O

(mn), where m denotes the candidate VM number, and n

denotes the number of physical host which can hold the

migration VM.

68Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 81 / 282

Algorithm 2 virtual machine migration (MWLAN2)

Require: the overload physical machine(PM) PMw

1: Max_benefit =0 ,Total_benefit = 0

2: Current_benefit = 0, Min_cost = inf

3: Current_pm = NULL,VMmigration= NULL

4: PMdest = NULL

5: for each VMi ∈PMw

6: //Note: Revenue computed by (4)

7: R(VMi) = Revenue (VMi,PMw)

8: Current_pm = NULL

9: for each PMj in a data center

10: If(!check_pm_constrain(PMj,VMi))

11: continue // pm can’t hold the vm

12: end if

13: //Note: Cost computed by (5)

14: Current_cost = Cost (VMi , PMj)

15: If(Current_cost < Min_cost)

16: Min_cost = Current_cost

17: Current_pm = PMj

18: end if

19: end for

20: if(Current_pm = =NULL)

21: continue

22: else if((R(VMi)- Min_cost) > Max_benefit)

23: VMmigration= VMi

24: PMdest = PMj

25: end if

26: end for

27: if(PMdest == NULL)

28: no physical machine can hold a migration VM

29: return;

30: else

31: return { VMmigration , PMdest }

32: end if

If we also consider the physical host load balancing as

well as link load balancing, we can use (7)(8) as the VM

migration revenue and cost to replace (4)(5).

IV. EVALUATION

This section describes the evaluation of MWLAN and

other migration schemes on simulated data center. The goal

of these tests is to compare data center link load on different

migration schemes and analyze the impact of different

migration schemes on application’s TCP transfer rate. The

simulated data center is implemented by using ns-3

simulator. Ns-3 [1][11] is a discrete-event network

simulator and used in lots of research work [12][13]. What’s

more, ns-3 is free software, licensed under the GNU GPLv2

license.

A. Evaluation Setup

We use ns-3 to generate a three-layer tree structure of

the data center network. Each leaf node is a physical host.

Each non-leaf node is a 10-port switch which is connected

with sub-node. This data center network has 1 0-level

switch which link bandwidth is 5MB/S, 10 1-level switches

which link bandwidth is 1MB/S, 100 physical hosts, so the

0-level switch will be the bottleneck of data center network.

In order to compare the efficiency of migration schemes on

different data centers’ link load, we increase the number of

VMs placed in the data center from 0 to 360. All the VMs

are 2 tier multi-tier application components. Each VM only

transfers data with the other VM which belongs to the same

multi-tier application. The default transfer protocol is TCP.

The detail simulation parameters are noted in Table II.

TABLE II. PARAMETER FOR SIMULATIONS

Variable Distribution Mean Var
Capacity (PM) Normal 1.8 0.1

Demand (VM) Normal 0.2 0.1,0.2

Rate (VM) Normal 0.2,0.4 0.1

Arrival of VMs Poisson 20(s) 20(s)

The initial placement of

arrived VMs

Random,

Same switch,

Different switch

Num of VMs 0-360

VM migration schedule

interval

200(s)

Data center network
topology

Tree

Because the efficiency of migration schemes may vary

with different traffic patterns caused by the initial placement

of VMs before migration, we run the compared test on three

different VM initial placement patterns. In the first pattern,

the initial placement of arrived VM is random (Random

Pattern). And the VMs which have traffic are placed in the

same 1-level switch in the second pattern (Same Pattern).

And in the last pattern, the VMs which have traffic are

placed in different 1-level switches (Different Pattern).

The benchmark tests are running as follows: we assume

the VM requests arrive in a Poisson process with an average

rate of 1 VMs per 20 seconds units. Each VM sends data to

another VM using TCP protocol. VM migration occurs

periodically every 200 seconds. This configuration can

make sure the percentage of the migration VM is about 10%.

Considering the VM migration cost, 10% is an appropriate

migration proportion. The experiment lasts until the number

of VMs larger than 360 in the data center. We implement

MWLAN 1 and MWLAN 2 which are presented in Section

III. The test compares MWLAN 1 and MWLAN 2 with

previous migration scheme Sandpiper [5] which moves the

VM from the most overloaded physical host to the least

overloaded physical host. All VM migration schemes make

sure total load of VMs on a physical host that doesn’t larger

than its capacity. In this paper, the experiments employ

several network performance metrics: the average TCP

transfer rate and the total link packet loss in the data center.

69Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 82 / 282

Figure 3(a) Random Pattern Figure 3(b) Same Pattern Figure 3(c) Different Pattern

Figure 3. Average VM transfer rate in three initial VM placement patterns

Figure 4(a) Random Pattern Figure 4(b) Same Pattern Figure 4(c) Different Pattern

Figure 4. Total packet loss in three initial VM placement patterns

B. Evaluation Results and Analysis

Figure 3 shows the application average TCP transfer rate

of Sandpiper and MWLAN as time changes on different

VM placement patterns. The result indicates that the

application performance of MWLAN2 is better than the

other scheme as the VM load increasing. The average

improvement of application rate is up to 24% compared to

Sandpiper. As shown in Figure 3, the average TCP rate is

nearly the same in the beginning. And as the VM load

increases, the TCP average rate differs to each other for

three VM migration approaches. The traffic rate declines

more obviously when using Sandpiper compared to our

approaches. The reason is that there is no network

congestion when the traffic load is not heavy in data cent

network. So the VMs can achieve the demand TCP rate.

But as the VM load is increasing, the link traffic load is

becoming heavier. When network congestion occurs, the

TCP rate decreases, as what we see in Figure 4. And

MWLAN1 and MWLAN2 consider the link load cost. So

they will move the traffic flows from the loaded links to the

underloaded links by using VM migration or move the VMs

with heavy traffic near to each other for saving link

bandwidth cost. Thus MWLAN1 and MWLAN2 not only

eliminate the local traffic congestion but also improve the

utilization of network resources. These two factors make

MWLAN 1 and MWLAN 2 have better network

improvement compared to Sandpiper. The Figure 3 also

indicates that MWLAN2 has better network performance

improvement than MWLAN1. The reason is that MWLAN1

consider the migration revenue and cost separately, it can’t

make sure the VM migration achieves the maximum benefit,

while MWLAN2 always chooses the VM and destination

physical host which can get the maximum benefit.

The experiments also make a comparison on the link

load when using different VM migration schemes in the data

center. We use the packet loss amount as a comparison

object. The link packet loss amount can reflect the load of

link traffic in the data center. It can be seen from the Figure

4, MWLAN2 outperforms MWLAN1 and Sandpiper,

decreasing total link packet loss up to 50% compared to

Sandpiper. It reflects that MWLAN2 policy can be more

efficient to avoid network congestion in contract to the other

policies. Because MWLAN1 can’t get maximum migration

benefit, it is not as good as MWLAN2. The MWLAN1 only

takes load revenue into account when it chooses candidate

VM to migrate, the VM which has high migration revenue

may also have high migration cost. As a result, MWLAN1

may burden link load and cause network congestion. On the

other hand, MWLAN2 always choose the candidate VM and

physical host which can get maximum migration benefit.

Thus, MWLAN2 can find the best approach to change link

load dynamic to avoid and relieve network congestion.

V. RELATED WORK

As VM migration is transparent to the application

[14][16][17], virtual machines consolidation and migrations

based on data centers have attracted significant attention in

recent years [5][6], many works focus on improving the

5 10 15 20 25 30 35
time 200 s

40 000

50 000

60 000

70 000

80 000

rate bps

MWLAN2

MWLAN1

Sandpiper

5 10 15 20 25 30 35
time 200 s

60 000

65 000

70 000

75 000

80 000

85 000

rate bps

MWLAN2

MWLAN1

Sandpiper

5 10 15 20 25 30 35
time 200 s

60 000

65 000

70 000

75 000

80 000

85 000

rate bps

MWLAN2

MWLAN1

Sandpiper

5 10 15 20 25 30 35
time

5.0 106

1.0 107

1.5 107

2.0 107

2.5 107

bytes

MWLAN2

MWLAN1

Sandpiper

5 10 15 20 25 30 35
time

1 106

2 106

3 106

4 106

5 106

6 106

bytes

MWLAN2

MWLAN1

Sandpiper

5 10 15 20 25 30 35
time

1 106

2 106

3 106

4 106

5 106

6 106

bytes

MWLAN2

MWLAN1

Sandpiper

70Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 83 / 282

efficiency of physical host or power management in data

centers.

The work in [6] employs dynamic VM consolidation to

reduce the number of working physical host in data centers.

Wood et al. implement a system that automates the task of

monitoring and detecting hotspots, eliminating physical host

hotspots by using VM migration [5]. However, this

proposed migration algorithm only considers physical host

and virtual machine node-resource load (such as CPU,

memory)), which ignores the impact of inter-communication

between virtual machines and the data center network

factors (link bandwidths, the distance between physical

machine). Verma et al. [7] discuss the issue between the

physical resource utilization and the data center power

consumption. It analyzes the application workload and

makes consolidation for power saving. Again, these above

approaches do not take the effects on underlying network

traffic and link load into account when doing VM

consolidation and migration in data centers.

Recent proposals [8][9] for VM placement and

migration consider network traffic among virtual machines,

But they only consider the total transfer data between virtual

machine and the distance between physical machines when

doing migration. This network factor is too coarse-grained

to effectively use the data center network resources, while

our migration system considers not only the traffic among

VMs but also link traffic load of data centers.

In contrast to our work, none of the approaches

mentioned above addresses the problem of network link

load dynamic adaption in order to avoid network congestion

or overload.

VI. CONCLUSION AND FUTURE WORK

Previous VM consolidation and migration strategy

mainly focus on the physical host resource utilization or

physical host load balancing, but ignore the factors of data

center network and the traffic between VMs. As the network

performance is becoming more and more important in data

centers, how to use VM migration to improve the data

center network traffic load is a meaningful research topic.

This paper proposes a novel migration strategy MWLAN. It

quantifies the benefit of VM migration and the cost of VM

placement to the network link load in data centers. This

migration strategy takes the data center network link load

and link bandwidth cost factor into account to solve the

migration problem efficiently. What’s more, the

experimental results demonstrate that MWLAN has better

network performance compared to the other schemes.

MWLAN not only reduces data center network congestion

but also improves the application transfer data rate. For

future work, we look forward to implementing and

evaluating our scheme on different kinds of data center

network. Moreover, we plan to coordinate the VM

placement and VM migration policy for network load

balancing in data centers.

REFERENCES

[1] T. R. Henderson, M. Lacage, and G. F. Riley. Network
Simulations with the ns-3 Simulator. Demo paper at ACM
SIGCOMM'08, August 2008.

[2] Radhika Niranjan Mysore, Andreas Pamboris, Nathan
Farrington, Nelson Huang, Pardis Miri, et al. PortLand: a
scalable fault-tolerant layer 2 data center network fabric,
Proceedings of the ACM SIGCOMM 2009 conference on
Data communication, August 16-21, 2009, Barcelona, Spain

[3] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan
Zhang, et al. BCube: a high performance, server-centric
network architecture for modular data centers, Proceedings of
the ACM SIGCOMM 2009 conference on Data
communication, August 16-21, 2009, Barcelona, Spain

[4] D.G. Andersen. Theoretical approaches to node assignment.
http://www.cs.cmu.edu/~dga/papers/andersen-assign.ps 2002.

[5] T. Wood, P. J. Shenoy, A. Venkataramani, and M. S. Yousif.
Black-box and gray-box strategies for virtual machine
migration. In Proc. of the 4th Symposium on Networked
Systems Design and Implementation (NSDI). USENIX, 2007.

[6] Fabien Hermenier, Xavier Lorca, Jean-Marc Menaud, Gilles
Muller, and Julia Lawall. Entropy: a consolidation manager
for clusters, Proceedings of the 2009 ACM
SIGPLAN/SIGOPS international conference on Virtual
execution environments, March 11-13, 2009, Washington, DC,
USA.

[7] Verma, P. Ahuja, and A. Neogi. pMapper: Power and
migration cost aware application placement in virtualized
systems. Technical report, IBM, 2008.

[8] X. Meng, Y. Pappas, and L. Zhang. Improving the scalability
of data center networks with traffic-aware virtual machine
placement. IEEE INFOCOM, 2010.

[9] V. Shrivastava, P. Zerfos, K. won Lee, H. Jamjoom, Y.-H.
Liu, and S. Banerjee. Application-aware virtual machine
migration in data centers. In Proc. of IEEE INFOCOM Mini-
conference, Apr. 2011.

[10] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A.
Tantawi. An Analytical Model for Multi-tier Internet Services
and Its Applications. In Proc. of the ACM SIGMETRICS,
Banff, Canada, June 2005.

[11] http://www.nsnam.org/

[12] Jahanzeb Farooq and Thierry Turletti. An IEEE 802.16
WiMAX module for the NS-3 simulator, Proceedings of the
2nd International Conference on Simulation Tools and
Techniques, March 02-06, 2009, Rome, Italy.

[13] Thomas R. Henderson, Sumit Roy, Sally Floyd, and George F.
Riley. ns-3 project goals. Proceeding from the 2006 workshop
on ns-2: the IP network simulator, October 10-10, 2006.

[14] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield. Live migration of virtual machines.
In Proc. NSDI '05, May 2005.

[15] Y. Zhang, A. Su and G. Jiang. Evaluating the Impact of
Datacenter Network Architectures on Application
Performance in Virtualized Environments, Proceedings of
18th IEEE International Workshop on Quality of Service
(IWQoS), 2010.

[16] M. Nelson, B. Lim, and G. Hutchins. Fast Transparent
Migration for Virtual Machines. In Proc. USENIX 2005.

[17] Sherif Akoush, Ripduman Sohan, Andrew Rice, An-drew W.
Moore, and Andy Hopper. Predicting the performance of
virtual machine migration. Modeling, Analysis, and
Simulation of Computer Systems, International Symposium
on, 0:37–46, 2010.

[18] N.M.M.K. Chowdhury, M.R. Rahman, and R. Boutaba.
Virtual network embedding with coordinated node and link
mapping, IEEE INFOCOM, 2009.

71Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 84 / 282

Performance Influence of Live Migration on Multi-Tier Workloads in
Virtualization Environments
Xiaohong Jiang, Fengxi Yan, Kejiang Ye

College of Computer Science, Zhejiang University
Zheda Road 38#, Hangzhou 310027, China

{jiangxh, yanfengxi, yekejiang}@zju.edu.cn

Abstract—Live migration is a widely used technology for load
balancing, fault tolerance, and power saving in cloud data
centers. Previous research includes significant research work
in the performance improvement of live migration. However,
little work has been done to investigate the influence of live
migration on virtual machine workloads that users care about
most. We notice that these workloads can be classified into two
categories: single-tier workloads and multi-tier workloads
which is a typical type for internet applications. We conduct a
series of deliberate experiments to investigate the influence of
live migration on multi-tier workloads in a cloud environment
and also on traditional physical machines for comparison. Our
experimental results show that multi-tier workloads on virtual
machines can work as well as those on traditional physical
machines. However, in an unstable environment, if virtual
machines migrate constantly, live migration will cause a
profound performance decrease on multi-tier workloads. Also,
it is best to avoid migrating virtual machines that are hosting
memory intensive workloads in a virtualization environment
due to bad downtime performance. Further, we perform
experiments trying to find the turning point of the
performance of a virtual machine, which might provide
support evidence for future research on live migration policy.

Keywords-virtualization; live migration; XEN; Muti-tier
workload.

I. INTRODUCTION
In a cloud datacenter, virtualization technology is widely

preferred because of its impressive advantages in cost
savings, easy resource management, high resource
utilization, high availability, and good scalability. Live
migration [1] is a core technique to implement load
balancing, fault tolerance, and power savings in a
virtualization environment. Most virtualization systems such
as XEN [2], KVM [3], and VMware [4] support the live
migration of virtual machines. Many researchers have been
attracted to the investigation of live migration performance
[5, 6]. However, the influence of live migration on virtual
machine workloads, especially complex interactive
workloads, hasn’t been considered. What type of workloads
will be affected most by live migration? Which virtual
machine (VM) should be migrated so that the influence on
workloads will be as small as possible? These questions are
important for data center management as they directly affect
the Quality of Service (QoS).

There are many kinds of workloads in a cloud datacenter.
We classify them into two categories: single-tier workloads
and multi-tier workloads. A single-tier workload runs on one

single host and does not exchange data with workloads on
other hosts. Most traditional single machine applications
belong to this category. Multi-tier workloads are composed
of a set of workloads running on different hosts and are
constantly interacting with each other through the network.
Multi-tier workloads have the following obvious features:

• Group work.
Multi-tier workloads are not alone. They are a group
of workloads running on different hosts connected
to each other and work together in a multiple tier
architecture.

• Interactive.
Multi-tier workloads interact with each other. For
example, Tier A transfers data to Tier B, Tier B
analyzes the data and transfers the result back to
Tier A.

• Sensitive of Single-Node Failure.
If one of the nodes in a multi-tier workload fails, the
remaining workloads should be stopped and wait for
the failed node to resume again.

A dynamic website is an example of a typical multi-tier

workload, which is composed of a frontend web server and a
backend database server. Dynamic websites are the main
form of websites on the internet as they provide better
communication between web users and the website. A
dynamic website can capture web users’ input, search or
retrieve data from the database, return the data to the web
server and display the data in the web browser in an easily
understandable way. When a web user sends a HTTP
request containing some parameters to the web server, the
web server will execute scripts based on the parameters,
make queries to the database, and format the result into
HTML files, which will be transferred back to the client.
Figure 1 shows the architecture of a dynamic website. In fact,
most internet applications fall into the category of multi-tier
workloads.

Some research work has been done to measure the
influence of live migration on single-tier workloads [5, 6]
instead of

Figure 1. Architecture of Dynamic Website

multi-tier workloads. However, in a real Cloud data center,
multi-tier workload is one of the most commonly used

Client

Internet

Web Server DB Server

HTTP HTTP SQL

72Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 85 / 282

application types other than the single-tier one. Research
about the influence of live migration on multi-tier workloads
has profound guiding significance to the choice of live
migration policy. This paper is trying to determine how
multi-tier workloads will behave when the host virtual
machine is migrated to another physical machine in a
virtualization environment. We conduct a series of
experiments in a XEN virtualization environment with
RUBiS [7, 8], a dynamic website benchmark. The
experimental results show some useful information on
virtual machine management that can be used as support
evidence for a live migration policy.

The main contributions of this paper are summarized as
follows:

• We study the performance effects of live migration
on multi-tier workloads, including both web server
and database server. And we analyze the migration
overhead from downtime, total migration time, and
the workload performance.

• We investigate the migration point issue or turning
point issue at which the virtual machines should be
migrated to other physical machines to avoid the
performance degradation. It is the best migration
point to reduce both the migration overhead and
workload overhead.

• The experimental results show some meaningful
suggestions to real cloud computing environments,
and it is also meaningful to the further migration
strategy development. For example, the memory-
intensive workloads should avoid migrating first.

The rest of this paper is organized as follows. Section 2
gives a brief introduction to the benchmark “RUBiS” and
the XEN hypervisor. Section 3 describes our experimental
design. Section 4 describes the experimental results and our
analysis. Finally, we summarize our conclusion in Section 5.

II. BACKGROUND

A. RUBiS Benchmark
RUBiS (Rice University Bidding System) [7, 8] is a free

and open source benchmark of dynamic websites developed
by Rice University. Its prototype is eBay and it is designed
to evaluate application design patterns and the scalability of
application servers using MySQL as its database.

The benchmark implements the main functions of an
auction website: browsing, registering, selling, and bidding.
There are three kinds of user sessions: visitor, buyer, and
seller. A visitor does not need to register and is only
permitted to browse. Buyers and sellers need to register. A
buyer can bid on items and check the list of his or her
current bids as well as any competitive bidding and
comments left by other users. A seller can register an item
for sale, sometimes with a reserve price, and view the list of
his or her selling list.

RUBiS can be accessed by users from a browser, but for
convenience, RUBiS implements a client emulator tool,
which can emulate common users of this auction site. In fact,
the client emulator can create many user sessions randomly.
During a user session, RUBiS mass generates URLs for this

user based on a pre-defined workload, and sends HTTP
requests based on these URLs. With this mechanism, the
client emulator behaves just like a real user: browses the
homepage, browses items from categories and regions,
registers to become a user, bids or buys an item, registers an
item for sale and views his or her bidding and selling history.

There are three versions of RUBiS: a PHP version, a
Java servlets version and an EJB version, which are for
different usage. In our experiment, we use the PHP version
for three reasons. First, this version is easy to install,
maintain and use, so we can concentrate on our experiments.
Second, PHP is one of the most popular languages used in
web applications nowadays. Third, the PHP server Apache
and its database server MySQL have the typical architecture
of a dynamic website.

B. XEN and Live Migration Technique
In our experiment, we use XEN [2, 9] as our virtual

machine monitor (or called Hypervisor). XEN is an open
source project developed and maintained by Xenoserver
research project at Cambridge University. It is a layer of
software running directly on computer hardware replacing
the operating system, thereby allowing the computer
hardware to run multiple guest operating systems
concurrently. Because of its support for x86, x86-64,
Itanium, Power PC, and ARM processors, XEN hypervisor
is able to run on a wide variety of computing devices and
supports various operating systems (for example, Linux,
NetBSD, FreeBSD, Solaris, Windows, and other common
operating systems) as guest operating systems running on
the hypervisor.

A virtual machine running on XEN hypervisor can be
migrated to another physical machine, using the cold
migration or the live migration technique. Cold migration
needs the migrated virtual machine to be shut down
completely in order to transfer the virtual machine disk
image to the destination physical machine. The migrated
virtual machine is restarted only after the disk image
transfer is completed. This kind of migration takes too
much time and the migrated virtual machine is not available
during the period of migration. If the migrated virtual
machine is undertaking some interactive workloads with
other virtual machines, all workloads must stop running
because of the disconnection to the migrated virtual
machine.

Live migration handles the migration of a virtual
machine in three aspects: network, disk, and memory. The
network migration is just an IP address redirection, and the
disk migration can be solved with storage net-share
technology (for example, NFS[10], SAN[11], and
NAS[12]). The main problem is the memory migration. It is
done in 4 phases:

Phase 1: Pre-migration and Reservation
Assume a virtual machine is about to migrate from host

A to host B. The XEN hypervisor first makes sure that host
B has enough resources to hold the virtual machine, and

73Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 86 / 282

then reserves an empty VM container on host B for the
virtual machine to be migrated

Phase 2: Iterative Pre-Copy
Dirty memory is transferred to host B in time intervals

called iterations. During the first iteration, all memory
pages will be transferred from host A to host B. Subsequent
iterations only transfer the dirtied memory generated during
the previous iteration.

Phase 3: Stop-and-Copy
This phase comes when the XEN hypervisor thinks that

the remaining dirty memory can be transferred in a very
short time interval or that there have been too many
iterations of pre-copy in the previous phase. The virtual
machine on host A will be shut down and its remaining
dirty memory and CPU state will be copied to the virtual
machine on host B. Now there are 2 copies of the virtual
machines, one on A and the other on B.

Phase 4: Commitment and Activation
Host B informs Host A that it is ready to start the new

virtual machine, and some post-migration code runs to
attach the disk driver and IP address to the new virtual
machine. The new virtual machine starts and the migration
is complete.

Live migration can proceed seamlessly when the
migrated virtual machine is running, and the virtual
machine only stops for a very short time to restart. This
period of time is called downtime which is so short that
users and workloads on the virtual machine would not even
be aware of it.

III. EXPERIMENT DESIGN
Our experiments are conducted on 4 physical machines

(PM1, PM2, Client Emulator Server and Storage Server),
which are connected by an Ethernet with the bandwidth of
1000Mbps. A network with such a high bandwidth will not
become a bottleneck in the network transmission in our
experiments. Every physical machine has enough memory
so that memory will not become a bottleneck, either. Each
machine has 8 CPU cores, with a clock rate of 2.27GHz.

We use Apache as our Web Server, MySQL as the
Database (DB) Server, Debian Linux as the Operating
System (OS). On PM1 and PM2, we deploy XEN
hypervisor 4.0 to manage the virtual machines in the
experiments. The virtual machines are also installed with
Debian Linux as their OSes.

The Storage Server is a SAN server. All the virtual
machine images are stored in this SAN server which is
shared by PM1 and PM2 with an iSCSI access interface.

Our experiments are conducted in 4 phases:
In phase 1, we measure the performance of RUBiS on

physical machines. We turn off 6 CPU cores on PM1 and
PM2 respectively so that we have 2 CPU cores left on each
of them. The RUBiS Web Server is deployed on PM1 and
the RUBiS DB Server on PM2. The Client Emulator Server
runs the RUBiS Client Emulator program to emulate
common users who would visit the RUBiS website through

HTTP connections. The architecture is shown in Figure 2.
We call this phase PHYSICAL MODE.

In phase 2, we measure the performance of RUBiS on
virtual machines. In order to compare with the previous set
of experiments, we allocate two VCPUs for each virtual
machine to get an equivalent configuration compared with
the PHYSICAL MODE. A virtual machine with 2 VCPUs
will be created on PM1, running the RUBiS Web Server, we
call this virtual machine VM1; another virtual machine with
2 VCPUs will be created on PM2, running the RUBiS DB
Server, we call this virtual machine VM2. Then enough
memory is allocated for VM1 and VM2, so that memory
will not become a bottleneck. The Client Emulator Server
still runs the RUBiS Client Emulator program. The
architecture is shown in Figure 3. We call this phase
VIRTUAL MODE.

Figure 2. Experiment overlay of PHYSICAL MODE

Figure 3. Experiment overlay of VIRTUAL MODE

In phase 3, we measure the performance of RUBiS on

virtual machines under live migrations. The experiment
overlay is just the same as that in phase 2 (see Figure 3). But
in the middle of every experiment, we conduct a live
migration for VM2 which holds the RUBiS DB Server.
VM2 migrates from PM2 to PM1. After the migration, we
collect the migration time and downtime. This phase is
named MIGRATION-DB MODE.

Phase 4 is similar to phase 3. The difference is that VM1
is migrated instead of VM2. VM1 is migrated from PM1 to
PM2. We collect the migration time and downtime of every
single migration. This phase is named MIGRATION-WEB
MODE.

We collect the RUBiS throughput (requests per second)
and the CPU usage rate in each experiment in all of the
above 4 phases. Then we compare the collected data and

74Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 87 / 282

make a further analysis of the performance of multi-tier
workloads in virtualization environment.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Comparison of PHYSCIAL MODE and VIRTUAL
MODE
The throughputs of RUBiS increasing with the number

of clients in PHYSICAL MODE and VIRTUAL MODE are
shown in Figure 4 and Figure 5 separately.

We can figure out from Figure 4 that the throughput of
RUBiS benchmark in the PHYSICAL MODE goes up
quickly before the number of clients reach 1400, slows
down after reaching the number of 1400, and finally
stabilizes after the number 1600.

Compared with Figure 4, it’s easy to determine in Figure
5 that throughput in VIRTUAL MODE goes up almost the
same way as that in PHYSICAL MODE. It implies that
virtual machines with equivalent configuration of hardware

resources can achieve equivalent performance compared
with traditional OS instances running on physical machines.
In this circumstance, virtualization technology does not
cause any obvious performance decrease for the multi-tier
workloads.

Throughput reaches its maximum value when the
number of clients is 1600, as the concurrent connections
with RUBiS Web Server reaches the Apache Server’s
configured “MaxClients” attribute. In both PHYSICAL
MODE and VIRTUAL MODE, CPUs with 2 cores is
powerful enough to run the RUBiS system, so CPU will not
be a bottleneck.

The two curves shown in the graph series in Figure 6 and
Figure 7 are CPU usage ratios of “Web Server” in the upper
side and of “DB Server” in the lower side. From Figure 6
and Figure 7, we can determine that both the RUBiS Web
Server and the DB Server use a small fraction of CPU even
if throughput reaches its peak value.

Figure 4. Throughput of RUBiS in PHYSICAL MODE Figure 5. Throughput of RUBiS in VIRTUAL MODE

 Figure 6(a). CPU usage when clients = 1300 Figure 6(b). CPU usage when clients = 1400

Number of Clients

Th
ro

ug
hp

ut
 in

 R
eq

ue
st

s /
 se

co
nd

Number of Clients

Th
ro

ug
hp

ut
 in

 R
eq

ue
st

s /
 se

co
nd

75Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 88 / 282

 Figure 6(c). CPU usage when clients = 1500 Figure 6(d). CPU usage when clients = 1600

Figure 6(e). CPU usage when clients = 1700 Figure 6(f). CPU usage when clients = 2300

Figure 6. CPU usage ration as a function of time in seconds in PHYSICAL MODE

Figure 7(a). CPU usage when clients = 1300 Figure 7(b). CPU usage when clients = 1400

76Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 89 / 282

Figure 7(c). CPU usage when clients = 1500 Figure 7(d). CPU usage when clients = 1600

 Figure 7(e). CPU usage when clients = 1700 Figure 7(f). CPU usage when clients = 2300

Figure 7. CPU usage ratio as a function of time in seconds in VIRTUAL MODE

Images in Figure 6 and Figure 7 are too small and it is

hard to tell the number of CPU usage ratio, so we drew
some sub lines to indicate the average CPU usage ratio
comparatively. Figure 6 shows that the CPU usage ratio
increases with the number of clients and reaches the
maximum value when the client number reaches 1600 or
more. The peak value of CPU usage is 31% for the RUBiS
Web Server and 6% for the DB Server.

Figure 7 shows that in VIRTUAL MODE, the CPU
usage ratio is very similar to that in PHYSICAL MODE. It
also increases to the peak value when the client number
reaches 1600 at about 31% for the RUBiS Web Server and
6% for the RUBiS DB Server.

From the above figures, the virtual machines show
demonstration of wonderful performance: with equivalent
configuration of hardware, they perform as well as the
physical machines and do not consume more CPU
resource than physical machines, even when running

multi-tier workloads. We conclude that when multi-tier
workloads are deployed on virtual machines, they can
work as well as that on physical machines, without any
extra CPU consumption.

However, we notice that the above conclusion for the
VIRTUAL MODE can be drawn only in a somewhat
stable circumstance. What will the result be if workloads
run in an unstable circumstance? For example, how will
the performance of multi-tier workloads be influenced
when the host virtual machine is migrated? Experiments
comparing MIGRATION-DB MODE and MIGRATION-
WEB MODE try to answer this question and provide
evidence support for a migration policy.

B. Comparison of MIGRATION-DB MODE and
MIGRATION-WEB MODE
In this subsection, we analyze the migration

performance of virtual machines running RUBiS Web

77Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 90 / 282

Server and DB Server respectively. These two migration
experiments show very different effects in migration time,
downtime and throughput when migrating Web Server
and DB server.
 We first analyze the migration time difference. Figure
8 shows the memory usage in VIRTUAL MODE. We
obtain the memory usage when the client number is 1600
which is the turning point of the throughput. From Figure
8, we can see that the RUBiS Web Server (upper curve in
Figure 8) consumes more memory than the DB Server
(lower curve in Figure 8). So it is clear that the Web
Server is more memory intensive than the DB Server. As
mentioned in Section II, memory migration is the main
task in virtual machine migration compared with network
migration and disk migration, and is the decisive factor
for migration time, downtime and throughput. So it’s easy
to jump to the conclusion that migration of virtual
machine hosting memory intensive workloads will lead to
longer migration time and downtime due to the migration
of more dirty memory. However, experiment results turn
out to be different from the above imprudent conclusion.

Figure 8. The memory usage graph when client=1600 in VIRTUAL

MODE

Figure 9 shows the migration time both in
MIGRATION-DB MODE and MIGRATION-WEB
MODE.

The migration time in MIGRATION-WEB MODE is
longer than that in MIGRATION-DB MODE when the
client number is less than 1100, which is in accord with
our prior intuitive conclusion. However, the migration
time in MIGRATION-WEB MODE becomes the shorter
one when the client number increases larger than 1100.
Given the fact that the RUBiS Web Server is more
memory intensive and more memory can be dirtied during
the migration in the Iterative Pre-Copy phase in migration,
the RUBiS Web Server will spend more time to copy the
dirty memory than the DB Server. So it’s very easy to
understand why MIGRATION-WEB MODE has longer
migration time. But why does it becomes the shorter one
when the client number grows larger than 1100? In order
to answer this question, we need to analyze the phases
occurring in the live migration.

There are in total 4 phases in the live migration: 1) Pre-
migration and reservation; 2) Iterative pre-copy; 3) Stop-
and-Copy; 4) Commitment and Activation. Especially two
conditions in the 2nd phase can trigger the 3rd Stop-and-
Copy phase. One is the number of small dirty pages
falling below the threshold; usually the dirty pages will
become less when the dirty pages migrate by round. The
second condition is the restriction of the number of
iterations, in which when the number of iterations reaches
a threshold, the virtual machine has to stop and copy all
the remaining dirty memory. This happens when the dirty
memory cannot be diminished as the iterative migration is
performed.

In our experiment, as shown in Figure 9, there are very
few clients accessing the Web Server at the beginning, so
the memory used is very little. But when the client number
increases, the dirty memory also increases and finally
becomes a very large overhead. Because the RUBiS Web
Server is memory intensive, the RUBiS Web Server has
much more memory dirtied during the migration than the
DB Server. The first condition of Stop-and-Copy that
achieves a small dirty memory working set cannot be
satisfied because dirty memory is generated faster than the
memory has been migrated. So the virtual machine hosting
Web Server ends the Iterative Pre-Copy phase in advance
and makes the total migration time relatively shorter than
the DB virtual machine when the client number increases
more than 1100.

It can also be validated in Figure 10, from which we
find the downtime in MIGRATION-WEB MODE is much
longer than that in MIGRATION-DB MODE because the
dirty memory working set of the Web server is larger than
the DB server. It consumes more time to migrate the last
of the dirty memory and incurs longer downtime. On the
other hand, the DB server iterates more round cycles and
the dirty memory can be relatively less, so the downtime
can be short.

 Based on the above evidence, we can conclude,
contrary to our intuition, that the migration time of a VM
hosting Web server is shorter than that of a VM hosting
DB server when the client number is larger than a specific
size. Nevertheless, it’s better not to migrate the virtual
machine hosting memory intensive workloads as the Web
server in our experiment due to longer downtime.

In realistic situations, to achieve different goals of
migration, we should use different methodologies
accordingly. If we need to keep a stable performance of
the workload involved, we should migrate the VM that is
not memory intensive, because this would guarantee
shorter downtime. Otherwise, if we want to finish the
migration as soon as possible and keep a stable
performance from the entire Cloud datacenter’s sight, we
should migrate the memory intensive ones because shorter
migration time will occur.

Figure 11 depicts the throughputs in the last three
modes. The throughput in MIGRATION-DB MODE and
MIGRATION-WEB MODE is much smaller than that in
the first two modes. During the downtime, the migrating
virtual machine is entirely disconnected, and all clients’

78Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 91 / 282

accessing RUBiS will fail. What’s more, the throughput in
MIGRATION-WEB MODE is much less than that in the
MIGRATION-DB MODE because of its longer

downtime in migration. So it’s better to avoid migrating
virtual machines running memory intensive workloads (the
Web server virtual machine in our experiment).

Figure 9. Migration Time as the Client Number Increases Figure 10. Downtime Time as the Client Number Increases

Figure 11. Throughput in VIRTUAL MODE, MIGRATION-DB MODE and MIGRATION-WEB MODE

Based on the above analysis of MIGRATION-DB
MODE and MIGRATION-WEB MODE, we can
determine that live migration indeed has an adverse effect
on the running of multi-tier workloads. It’s better to avoid
the live migration of virtual machines as much as possible.
When live migration cannot be avoided on demand of
load balancing, fault tolerance, or power saving, it’s better
to not migrate the virtual machine hosting memory
intensive workloads.

C. Analysis of Live Migration Point
From the above experiments, we can conclude that the

performance of multi-tier workloads running on a virtual
machine can be affected by the live migration process
with different degrees. However, live migration of virtual
machines indeed happens frequently in cloud computing

environments to achieve the goals of dynamic resource
management. For example, when the physical machine is
nearly exhausted of CPU resource, it is better to migrate
some of the virtual machines on this physical machine to
other physical machines, because the lack of CPU
resource also decreases the workloads’ performance and
might even lead to application failure. After the virtual
machine is migrated to the physical machine rich with
CPU resource, the performance of the physical machine
will return to the normal level, and eventually avoid
server or application failure. In this subsection, we will
investigate performance issues in such scenarios.

In order to make the most of the CPU and start
migration only when necessary, we should find a
performance turning point(we name it T) of the
application when the physical machine is about to be fully

M
ig

ra
tio

n
Ti

m
e

in
 S

ec
on

ds

Number of Clients

MIGRATION-DB MIGRATION-WEB

D
ow

nt
im

e
in

 m
s

Number of Clients

MIGRATION-DB MIGRATION-WEB

Th
ro

ug
hp

ut
 in

 R
eq

ue
st

s /
 se

co
nd

Number of Clients

MIGRATION-DB MIGRATION-WEBVIRTUAL

79Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 92 / 282

loaded. The applications running on virtual machines
work well before point T, and will turn bad after T. The
turning point T might be a proper point to migrate the
virtual machine on the nearly fully loaded physical
machine. We conduct the following experiment to
determine the T point specifically in our system.

Figure 12. Throughput under different CPU usage rate when client=1600

First, we run VM1 on PM1 and VM2 on PM2 with

both PM1 and PM2 having abundant CPU resource. The
RUBiS Client emulates 1600 client sessions. And we can
get a throughput of 281 requests per second.

Then, we start running a CPU intensive program on
PM1, which can use up as much of the CPU resource as
we set. We conduct a series of experiments under
different CPU usage rates, and get the throughput
accordingly. The results are shown in Figure 12. The x
axis indicates the CPU usage rate of the physical machine
hosting the virtual machines running the benchmark
RUBiS. The y axis indicates the throughput of the multi-
tier workloads.

From Figure 12, we can determine that the throughput
of the virtual machine hosting RUBiS starts to decrease at
80%. So 80% CPU usage rate might be the T point. So
Xen’s migration policy might be improved to start live
migration only when necessary at the turning point of
80% CPU usage rate. It is better for a Cloud administrator
to find the turning point specifically in his Cloud data
center to make the live migration policy more efficient.
This experiment provides a basis for further research
work in finding a proper T point of live migration in the
cloud data center, which might be more precisely defined
as the sub-healthy state of the virtual environment.

V. RELATED WORK
The workload performance issue incurred by

virtualization technology in cloud computing
environments has been widely investigated. Researchers
have studied the performance overheads from both a single
virtual machine perspective [2, 13, and 14] and a multiple
virtual machine perspective [15, 16]. However, there is
relatively little work referring to multi-tier workloads with
interactive characterization.

A Multi-tier application is a typical kind of internet
workload and has specific characterization. Urgaonkar et
al. presented an analytical model for this application by
using network of queues [17]. Bi et al. employed a hybrid
queuing model to understand the performance of
virtualized multi-tier applications and determine the
number of virtual machines at each tier in a virtualized
application [18]. However, they didn’t consider the factors
of live migration.
 Live migration of virtual machines is used widely in
today’s cloud data center to achieve the goal of load
balancing, fault tolerance, and saving energy. Xen and
VMware primarily use the pre-copy technology to
implement the live migration of virtual machines [1, 19].
After that many efforts have been made to improve the
performance of live migration. Hines et al. presented a
post–copy technique to implement the live migration of
virtual machines which is different with the pre-copy
technique [20]. Jin et al. proposed an adaptive memory
compression method to reduce the overhead of memory
transfers and improve the migration performance [21]. Liu
et al. used the technique of full system trace and replay to
optimize the migration efficiency [22]. Luo et al. solved
the problem of whole-system migration in which both the
memory and disk states were migrated [23]. Ye et al.
investigated the issue of multiple virtual machine
migration and proposed a method based on resource
reservation to optimize the overall migration efficiency
[24]. In order to evaluate the performance of different live
migration techniques, Huang et al. designed a benchmark
for live migration [25]. However, all the above work has
not considered the characteristics of the multi-tier virtual
machine workloads.

VI. CONCLUSION
We have made a deliberate analysis about multi-tier

workloads and found that very little work has been done to
measure the influence of virtualization technology
especially live migration on multi-tier workloads running
on VMs. Because multi-tier workloads comprise most of
the workloads in a real Cloud data center, determining the
influence detail is significant to the choice of live
migration policy.

To achieve this goal, we have conducted a
comprehensive performance analysis of multi-tier
workloads in a virtualization environment, especially the
performance characterization under the live migration.
Based on the experimental analysis, we find that
virtualization technology, especially the live migration
technique, has some hidden influences on multi-tier
workloads. The experimental results tell us that virtual
machines can achieve nearly equivalent performance with
the same system configuration compared with traditional
OS instances running on physical machines. That is to say
that multi-tier workloads can work well in a virtual
machine environment. However, the live migration of
virtual machines can cause some performance decrease

CPU Usage Rate of the physical machine

Th
ro

ug
hp

ut
 in

 R
eq

ue
st

s /
 se

co
nd

80Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 93 / 282

due to migration overhead and the downtime during which
the migrating virtual machine should be shutdown. This
decrease is especially obvious to those virtual machines
running memory intensive multi-tier workloads. It is
necessary to balance the migration benefits and overheads.
In order to answer the question when the virtual machines
should be migrated, we designed an experiment to find the
proper migration point under different hardware resource
configuration (for example, CPU utilizations in the
experiment). Experimental results show that at the turning
point of 80% CPU usage rate, the migration can benefit the
workloads’ performance. A Cloud administrator should
determine the turning point of their Cloud data center
specifically and adjust the live migration policy.

Future work will include developing adaptive
migration framework for cloud computing and designing
intelligent live migration strategies to improve the overall
workloads’ performance.

VII. ACKNOWLEDGMENT
This work is funded by the National High Technology

Research 863 Major Program of China
(No.2011AA01A207) and MOE-Intel Information
Technology Foundation (No.MOE-INTEL-11-06). We
would like to thank the reviewers for their insightful
comments. We would also like to thank Mr. Jeff Wood
for his careful revision of our paper.

REFERENCES
[1] C. Clark, K. Fraser, S. Hand, J.G. Hansen, E. Jul, C. Limpach, I.

Pratt, and A. Warfield, “Live migration of virtual machines”, in
Proceedings of the 2nd conference on Symposium on Networked
Systems Design & Implementation - Volume 2 (NSDI'05), Vol. 2.
USENIX Association, Berkeley, CA, USA, pp. 273-286, 2005.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” ACM SIGOPS Operating Systems Review, vol. 37,
no. 5, pp. 164–177, 2003.

[3] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “KVM:
the Linux virtual machine monitor”, in Proceedings of the Linux
Symposium, vol. 1, pp. 225-230, 2005.

[4] C. Waldspurger, “Memory resource management in VMware ESX
server”, ACM SIGOPS Operating Systems Review, vol. 36 (SI),
pp. 194, 2002.

[5] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya, “Cost of
virtual machine live migration in clouds: A performance
evaluation”, in Proceedings of the international conference on
Cloud Computing (CloudCom), pp. 254-265, 2009.

[6] S. Akoush, R. Sohan, A. Rice, A.W. Moore, and A. Hopper,
“Predicting the performance of virtual machine migration”, 2010
IEEE International Symposium on Modeling, Analysis &
Simulation of Computer and Telecommunication Systems
(MASCOTS), pp. 37-46, 2010.

[7] RUBiS home page. http://rubis.ow2.org/, [retrieved: March, 2012]
[8] C. Amza, A. Chanda, A.L. Cox, S. Elnikety, R. Gil, K. Rajamani,

W. Zwaenepoel, E. Cecchet, and J. Marguerite, "Specification and
implementation of dynamic Web site benchmarks," 2002 IEEE
International Workshop on Workload Characterization, pp. 3-13,
2002.

[9] XEN community. http://www.XEN.org/, [retrieved: March, 2012]

[10] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon,
“Design and Implementation of the Sun Network Filesystem”,
USENIX, 1985.

[11] J. Tate, F. Lucchese, and R. Moore, “Introduction to Storage Area
Networks- Exhaustive Introduction into SAN”, IBM redbook.
www.redbooks.ibm.com/redbooks/pdfs/sg245470.pdf

[12] G. A. Gibson and R. V. Meter, "Network Attached Storage",
Communications of the ACM, vol. 43, no. 11, pp. 37-45, 2000.

[13] B. Clark, T. Deshane, E. Dow, S. Evanchik, M. Finlayson, J. Herne,
and J. Matthews, “Xen and the art of repeated research,” USENIX
annual Technical Conference, pp. 135-144, 2004.

[14] A. Menon, J. Santos, Y. Turner, G. Janakiraman, and W.
Zwaenepoel, “Diagnosing performance overheads in the xen
virtual machine environment,” in VEE: Proceedings of the 1st
ACM Conference on Virtual Execution Environments, pp. 13-23,
2005.

[15] M.F. Mergen, V. Uhlig, O. Krieger, and J. Xenidis, “Virtualization
for high-performance computing”, ACM SIGOPS Operating
Systems Review, vol. 40(2), pp. 8-11, 2006.

[16] K. Ye, X. Jiang, S. Chen, D. Huang, and B. Wang, “Analyzing and
modeling the performance in xen-based virtual cluster
environment”, 12th IEEE International Conference on High
Performance Computing and Communications (HPCC), pp. 273-
280, 2010.

[17] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi,
“An analytical model for multi-tier internet services and its
applications”, ACM SIGMETRICS Performance Evaluation
Review, vol. 33(1), pp. 291-302, 2005.

[18] J. Bi, Z. Zhu, R. Tian, and Q. Wang, “Dynamic provisioning
modeling for virtualized multi-tier applications in cloud data
center”, in Proceedings of the 2010 IEEE 3rd International
Conference on Cloud Computing (CLOUD), pp. 370-377, 2010.

[19] M. Nelson, B. Lim, and G. Hutchins, “Fast transparent migration
for virtual machines,” in Proceedings of the annual conference on
USENIX Annual Technical Conference, p. 25, 2005.

[20] M. Hines and K. Gopalan, “Post-copy based live virtual machine
migration using adaptive pre-paging and dynamic self-ballooning,”
in Proceedings of the 2009 ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments, pp. 51-60, 2009.

[21] H. Jin, L. Deng, S. Wu, X. Shi, and X. Pan, “Live virtual machine
migration with adaptive memory compression,” in Proceedings of
the IEEE International Conference on Cluster Computing, pp. 1-10,
2009.

[22] H. Liu, H. Jin, X. Liao, L. Hu, and C. Yu, “Live migration of
virtual machine based on full system trace and replay,” in
Proceedings of the 18th ACM international symposium on High
performance distributed computing, pp. 101-110, 2009.

[23] Y. Luo, B. Zhang, X. Wang, Z. Wang, Y. Sun, and H. Chen, “Live
and incremental whole-system migration of virtual machines using
block-bitmap,” in Proceedings of the IEEE International
Conference on Cluster Computing, pp. 99-106, 2008.

[24] K. Ye, X. Jiang, D. Huang, J. Chen, and B. Wang, “Live migration
of multiple virtual machines with resource reservation in cloud
computing environments”, in Proceedings of the 2011 IEEE
International Conference on Cloud Computing (CLOUD), pp. 267-
274, 2011.

[25] D. Huang, D. Ye, Q. He, J. Chen, and K. Ye, “Virt-LM: a
benchmark for live migration of virtual machine”, in Proceeding of
the second joint WOSP/SIPEW international conference on
Performance engineering, pp. 307-316, 2011.

81Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 94 / 282

About the flexible Migration of Workflow Tasks to Clouds

Combining on- and off-premise Executions of Applications

Michael Gerhards, Volker Sander

Faculty of Medical Engineering & Technomathematics

FH Aachen, University of Applied Sciences

Jülich, Germany

{M.Gerhards|V.Sander}@fh-aachen.de

Adam Belloum

Institute of Informatics

University of Amsterdam

Amsterdam, Netherlands

A.S.Z.Belloum@uva.nl

Abstract - An increasing number of applications target their

executions on specific hardware like general purpose Graphics

Processing Units. Some Cloud Computing providers offer this

specific hardware so that organizations can rent such

resources. However, outsourcing the whole application to the

Cloud causes avoidable costs if only some parts of the

application benefit from the specific expensive hardware. A

partial execution of applications in the Cloud is a tradeoff

between costs and efficiency. This paper addresses the demand

for a consistent framework that allows for a mixture of on- and

off-premise calculations by migrating only specific parts to a

Cloud. It uses the concept of workflows to present how

individual workflow tasks can be migrated to the Cloud

whereas the remaining tasks are executed on-premise.

Keywords - Cloud Computing; Cloud Service Broker; Grid

Computing; Workflow; Workflow Orchestration

I. INTRODUCTION

An increasing number of applications target their
execution on specific hardware. Field Programmable Gate
Arrays (FPGAs) and free programmable general purpose
Graphics Processing Units (GPUs) are existing approaches to
use cost-effective high performance computational power in
specific applications. Image processing and image guided
interventions are well-known examples for use cases in
which both platforms compete with each other [1].

However, not all parts of those applications are equally
suitable for the usage of this hardware. Of course, related
applications follow an approach in which only specific parts
of a program were optimized for the specialized computation
resources that are therefore only used during specific time
slots. As a consequence, there is the risk that these resources
are otherwise idling so that an own purchase might not be
cost-effective. Therefore, for many scenarios it appears to be
opportune to outsource computation intensive parts off-
premise with easy-scale and dynamic provisioning whereas
the other parts are executed on-premise on local available
general-purpose computational resources.

Grid and Cloud Computing are potential infrastructures
that support this scenario since both provide special
resources for suitable application parts, whereas the
remaining application parts can be executed on general
resources. This concept can be extended to software in
deploying software with expensive licenses on only some

computers on Grids and Clouds. These computers were used
to execute the application parts that require the deployed
software, whereas the remaining parts might be executed
elsewhere to make the computers available for other
applications that rely on the related software.

But, not every organization has access to a Grid or does
want to use it because it requires joining a related virtual
organization [2]. Cloud Computing offers a promising
alternative infrastructure for using scalable on demand
resources with specific hardware. Providers such as Amazon
allow users to allocate virtualized general purpose GPU-
resources. Of course, those providers allow for porting the
full application including the parts that rely on specific
hardware to their premises. However, as described above,
this might not be the most cost-effective solution. This paper
addresses the demand for a consistent framework that allows
for a mixture of on- and off-premise calculations. The
proposed solution is based on workflows. The motivation
scenario can therefore be viewed as an example for a concept
that applies to a much broader application domain.

Modeling a complex application as workflow supports its
division into simpler individual parts that are executed as
interacting tasks by a workflow management system. These
tasks are reusable for other workflows in the same way that
software libraries are reusable in applications. Workflows are
frequently used in e-Science for “climate modeling,
earthquake modeling, weather forecast, astrophysics and
high energy physics” [3] but also in the e-Business domain
for Business Process Management (BPM).

The remaining of this paper is organized as follows:

Section II introduces workflows with related definitions. It
also provides an example in which parts of the workflow rely
on specific hardware resources. Further on, it briefly
describes the differences between Grids and Clouds
according to workflow integration. Since the support of
workflows in Cloud infrastructures is surprisingly rather
limited, Section III introduces a novel approach to handle
workflows in the Cloud computing domain. It provides
technical descriptions, discusses possible alternatives, and
provides more complex extensions. Section IV describes the
related work and delimits the suggested architecture from an
existing approach. Finally, the last section concludes the
results and describes future work.

82Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 95 / 282

II. WORKFLOWS IN GRIDS AND CLOUDS

Complex processes are often modeled as workflows
described using a specific workflow modeling language. A
workflow is composed of several tasks, which could depend
on each other. Therefore, a workflow can be illustrated as
directed graph composed of tasks as nodes and task
dependencies as directed edges. Directed edges connect the
predecessor task with its successor task. A task can only start
its execution if its predecessor has finished its own
execution.

The example workflow illustrated in Figure 1 was
designed for the Shape Retrieval Contest 2010 (SHREC'10)
aiming to classify a set of proteins based on their 3D
structure [4]. It consists of five tasks, illustrated as
rectangles. The arrows illustrate the dependencies of the
tasks. In this workflow data are only fed in at the beginning
of the two task pipelines and are then handed over from task
to task.

The tasks APURVA and Sort are computation intensive
and well parallelizable. Therefore, they are candidates for a
migration to off-premise computation resources like the
Cloud, potentially by using specific High Performance
Computing (HPC) hardware such as general purpose GPUs
or FPGAs. In the following such tasks are called Cloud
Tasks. The pre-processing of the PP tasks and the item
duplication of the X 1000 task should stay for execution on
on-premise computation resources to reduce data movements
and avoid costs. In the following such tasks are called Local
Tasks.

A so-modeled workflow is called a workflow template
that describes the behavior of a process; thus, it can be
referred to as a general workflow definition. It is comparable
with a program’s source code. Such templates are deployed,
instantiated, and executed on a workflow management
system [5] that takes care of the individual tasks’ progress
and dependencies. Workflow instances follow the behavior
of their assigned workflow template for a particular incident.
It is comparable to a program’s execution.

A particular challenge arises when workflows are
mapped to resources at different organizations, each
providing a heterogeneous system with non-uniform
interfaces to access these resources. Thus, the submission of
workflow jobs is more difficult due to the fact that different
administrative domains have different accounting
mechanisms.

Grid middleware platforms support the execution of
workflows in virtual organizations, where the distributed
resources are owned by multiple organizations. Abstract
Grid workflows are described independently of specific
resources because new resources can be established or
existing ones can be omitted or blocked. The binding of
workflow tasks to Grid resources is done at runtime.

The Grid concept of considering only physical resources
is gone in the Cloud vision of infinite resources that just have
to be activated. The allocation of resources is different than
in Grids. Any number of Cloud resources can be instanced
on demand. "With the emerging of the latest Cloud
Computing paradigm, the trend for distributed workflow
systems is shifting to Cloud Computing based workflow
systems [6].”

Cloud resources are not automatically part of a virtual
organization and therefore not integrated into a trusted
domain. The resource allocation mechanism differs from
provider to provider. To execute a workflow task in a Cloud,
the software must be deployed on a Cloud instance and be
accessible from the workflow management system via a
remote procedure call (RPC) mechanism like a web service.
Cloud Computing per se does not impose any specific
limitations with respect to the usage API while Grid
Computing needs a middleware using a particular API that
complies to the rules of the virtual organization.

The National Institute of Standards and Technology
(NIST) [7] distinguishes the three Cloud service models:
Software as a Service (SaaS), Platform as a Service (PaaS),
and Infrastructure as a Service (IaaS). SaaS providers often
focus on standard applications like text processing or
customer relation management and will not cover the whole
variety of possible tasks. The current existing PaaS offerings
only provide standard hardware for general purpose. IaaS is
currently the only service model which enables executing
programs on specific hardware in the Cloud. Therefore, the
rest of the paper will only consider IaaS resources. This
should not limit the generality since suitable SaaS or PaaS
offerings can be used instead.

NIST [7] also distinguishes four different deployment
models: Private Cloud, Community Cloud, Public Cloud,
and Hybrid Cloud. Since the example scenario assumes that
the specific hardware is not used frequently, a Private Cloud
providing such hardware is not feasible. However, the
Private Cloud can be used to provide general on-premise
resources for the execution of Local Tasks. Sharing the
specific hardware of a Community Cloud is only possible if
such a community exists but this cannot be assumed. Since
the paper focuses on outsourcing calculations, renting Public
Cloud special resources fulfills all hardware requirements for
off-premise calculations. A Hybrid Cloud as combination of
a Private Cloud for general on-premise resources with a
Public Cloud for special off-premise resources is the required
environment for the combination of on- and off-premise
calculations.

The rest of paper will only focus on the integration of
Cloud Tasks that should be executed on IaaS in a Public
Cloud.

Figure 1. Example workflow with the two computation intensive

tasks APURVA and Sort.

83Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 96 / 282

III. WORKFLOWS WITH CLOUD TASKS

A simple approach to migrate a workflow task to the
Cloud is the usage of a service-oriented approach by
deploying the task software as web service on the Cloud
instance and binding the workflow task to this web service.
Web services provide standardized uniform interfaces which
supports interoperability of heterogeneous systems. The data
to be processed are typically passed as parameter from the
workflow task to the assigned web service. An alternative
approach for passing larger sets of data is that the web
service loads the requested data itself using a onetime access
ticket granted by the workflow management system.
Independent of the data transfer mechanism, the data should
not be stored permanently on the computing Cloud instance
because the data are not automatically saved persistently on
Cloud images so that a reboot of the resource will result in
data loss. On-premise databases or storage Clouds provide
permanent, secure, and persistent data storage for the results
of the calculation.

Since IaaS resources are frequently provided following a
pay-per-time billing structure, any Cloud instance should be
terminated after each use to avoid unnecessary costs while
the resource is idling. The consequence is that the Cloud
instance has to be started again before a re-use is possible.
The task execution idles during the bootup of the Cloud
instance. Preconfigured machine images contain only the
required software to speed up the instantiation. Each abstract
Cloud Task could use its own machine image or a basic
machine image including all necessary basic systems could
be loaded and setup with the task software dynamically on
bootup. The required task software is identified using the
workflow template. The installation of the software can be
done automatically using Secure Shell (SSH).

For a just in time start and termination of the Cloud
instance, an automatic mechanism must be available.
Otherwise the workflow task idles till the Cloud instance
service is available or the Cloud instance service is still
available after the workflow task’s execution. The Cloud
instance start and termination can be included into the
workflow template by adding the administrative tasks Create
and Destroy which start and terminate the Cloud instances
using a Cloud unification layer or a Cloud agnostic
Application Programming Interface (API) like the Open
Cloud Computing Interface (OCCI) [8]. The Cloud Task is
bounded fix to the Cloud instance web service that is only
available in the time span between the Create and Destroy
tasks. The usage of automatic template modifications has
been already validated in [9].

The concept of the workflow template extension has the
benefit of being interoperable with other workflow
management systems without individual source code
modifications. This makes it even usable for proprietary
systems. The same template extension application can be
used by different workflow management systems if the same
modeling language is supported. Standard workflow
modeling languages like XPDL [10] and WS-BPEL [11]
benefit most of this approach.

The main disadvantage is that the modeling of workflows
becomes more complex because the execution semantic is
integrated. Workflows must consider administrative tasks
instead of focusing on worker tasks.

Therefore, it is much more comfortable to the user when
the administrative tasks are integrated automatically into the
template during the workflow instantiation. Because the
deployment environment cannot decide where a task should
be executed, the usage of task annotations in the template
specifies where the task has to be executed. This is similar to
MAUI [12] where developers annotate which methods of an
application can be offloaded for remote execution.

Figure 2 shows the extended example workflow of
Figure 1. The two Cloud Tasks APURVA and Sort now have
administrative predecessor and successor tasks. The so
modified workflow is executed instead of the original one.
The end user will not notice the difference.

Many users instantiate workflows but not each of them
should be able to start arbitrary Cloud resources. Otherwise it
would not be possible to map caused costs to individual
Cloud usages and an abuse of resources would be possible.
Therefore, an authentication service is required on workflow
side. This service maps the authentication mechanism of the
organization to the authentication mechanism of the Cloud
Service Provider. The user privileges can be assigned
considering many strategies, e.g., a user could have access
only a limited time to a Cloud or she/he could have access
only to specific Clouds or for specific workflows. SAML
[13] assertions can be used for this. The granularity of user
privileges is not in focus of this paper. A standard based
security system like WS-Trust [14], Simple Authentication
and Security Layer (SASL) [RFC 4422], oAuth [RFC 5849],
or OpenID can be integrated into the workflow management
system.

Figure 2. Example workflow extended with administrative Create and Destroy tasks for the two computation intensive tasks APURVA and Sort.

84Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 97 / 282

The process of executing a workflow with Cloud Tasks is

summarized in the following with reference to Figure 3
where the numbers in circles indicate the order. First the user
requests an assertion token (1) with only limited use at the
secure token service by providing her/his own identification
together with the identification of all Cloud Tasks she/he
wants to use. The secure token service evaluates the request
and decides if the assertion can be granted. If the result is
positive, the user instantiates the workflow (2). The Create
Task uses this assertion at the factory (3) to proof its
eligibility. The factory then loads the Cloud account
authentication data from a secure storage (4) and starts the
Cloud instance (5) with the deployed web service. The
assertion is now invalidated. The APURVA Cloud Task
invokes the web service (6) that is running on the Cloud
instance. The web service processes the data on the high
performance Cloud hardware. After the web service returns
its results, the Destroy Task shuts down the Cloud instance.

A. Reuse of Web Services

In scenarios like parameter studies, the same workflow
task is executed frequently. Other examples of reusing the
same task are loops, multiple workflow instances, and
different workflows instances using the same Cloud Task.
The simple approach introduced above starts a new Cloud
instance for each Cloud Task instance and terminates the
Cloud instance after the web service’s execution. The Cloud
instance starting overhead slows down the workflow’s
execution but can be reduced for future invocations by
keeping alive the Cloud instance for reusability. A single
Cloud web service is then used multiple times by different
Cloud Task instances of the same abstract Cloud Task like
APURVA in Figure 4.

The implementation is described in the following: The
Destroy Task only notifies the Factory that the web service is
no longer needed by the Cloud Task. The integrated
scheduler keeps alive the Cloud instance if it expects future
web service invocations. Otherwise, the scheduler shuts
down the Cloud instance as usual. The prediction is possible
by evaluating the assertion requests at the Secure Token
Service.

Listing 1. Shell script to install the web service
#/bin/bash

scp -B ~/program.jar user@instance:~/program.jar

ssh user@instance java -jar program.jar parameter

B. Multiple Web Services on the same Cloud Instance

To reduce Cloud instance staring overhead and to avoid
costs, additional web services can be deployed on the same
Cloud instance if they are suitable for the hardware. Figure 4
depicts the IaaS Instance that hosts both: APURVA Service
and Sort Service. This optimization is most suitable for
workflows with different Cloud Tasks that can then be
executed in a pipeline on the same Cloud instance. Using this
optimization, static machine images cannot be instantiated
because additional software must be installed during the
uptime of the Cloud instance. The installation can be done
using SSH in a shell script like in Listing 1. The first line
copies the program via secure copy scp. The second line uses
ssh to start the remote program that will publish its web
service as an own endpoint on the Cloud instance by
considering the parameter. The password prompt is
suppressed using public/private key based authentication.

C. Dynamic Assignment of Tasks to Cloud Resources

The idea of outsourcing only single parts of an
application to the Cloud can be extended with a dynamic
assignment of the Cloud Task to the most suitable Cloud
resource at runtime that is illustrated as an example in Figure
5. The selection process is similar to the three-phase cross-
cloud federation model described in [15]. In the discovery
phase, the Cloud Service Broker creates a table in a database
which provides information about Assured Properties
offered by the Cloud Service Providers like in the first three
columns of TABLE I. Possible properties are special hardware
like general purpose GPUs, best performance, lowest price,
performance/price ratio, available volume resources of non-
pay-as-you-go contracts, and location of the Cloud for liable
reasons or for data nearness as well as data sensitiveness.
This table must always be kept up to date. In the workflow
template each abstract Cloud Task specifies its Required
Properties. In the example in Figure 5, APURVA has the
properties a and b whereas Sort has the property c. These
Required Properties are sent to the Cloud Service Broker
before the assignment of the Cloud Task to its Cloud

Figure 3. Relationship between workflow instance, Cloud instance,

and authentification center.

Figure 4. Reuse of Cloud web services and sharing of an IaaS

instance.

85Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 98 / 282

resource. Now in the match-making phase, the Cloud Service
Broker compares the Cloud Task’s Required Properties with
the Cloud Service Providers’ Assured Properties. The Cloud
Service Providers that assure all Required Properties of the
requesting task are potential task owners. The last two
columns of TABLE I indicate which resources are the potential
owner of which Cloud Task. In Figure 5, these potential
owners are encircled. In the authentication phase, the Cloud
Service Broker selects the cheapest potential owner as the
current owner for each Cloud Task: Resource 2 for APURVA
and Resource 3 for Sort.

D. Provenance

The importance of validating and reproducing the
outcome of computational processes is fundamental to many
application domains. It is exposed that there is a need to
capture extra information in a process documentation that
describes what actually occurred. The automated tracking
and storing of provenance information during workflow
execution could satisfy this requirement [16]. The amount
and the kind of data to be stored are always user and
implementation dependent. Provenance traces enable the
users to see what has happened during the execution of the
workflow. This also enables failure analysis and future
optimization. Provenance becomes even more important in
distributed environments because workflow tasks are loosely
bound to computational resources. Using provenance in the
Cloud-workflow domain enables the identification of Task to
Cloud assignments so that it is visible where the Cloud Task
has been executed and where its data have been stored.

TABLE I. ASSURED PROPERTIES OF CLOUD RESOURCE

Cloud
Resource

Assured
Properties

Price Potential Owner of

APURVA Sort

Resource 1 a 3

Resource 2 a, b 4

Resource 3 a, b, c 6

Resource 4 b, c 7

Provenance also shows at which time the Cloud instance
was running and therefore causing costs. Based on
provenance traces, statistics can be created showing which
workflows cause which costs, which users cause which
costs, which Clouds cause which costs, which users
instantiate which workflows, which Clouds execute which
Cloud Task, etc.. Also the runtime of Cloud Tasks can be
examined in the provenance trace to optimize future Cloud
Task to Cloud resource assignments.

A provenance model describes how the gathered
provenance data are interpreted and stored in the provenance
trace. Several provenance models exist and two of them are
described briefly in the following. A detailed comparison is
done in [17]. The Open Provenance Model (OPM) [18] is
very prominent in the e-Science domain. It provides a
comprehensive set of concepts to capture how things came
out to be in a given state and is designed to achieve inter-
operability between various provenance systems. Another
provenance model is the so-called History-tracing XML
(HisT) [9]. It was developed within the HiX4AGWS project
[19] and provides provenance following an approach that
directly maps the workflow graph to a layered structure
within an XML document. The Create and Destroy
workflow tasks can be used to identify and transmit the
provenance data according to the Cloud instances. HisT
directly supports the integration of digital signatures and is
therefore optimized for the e-Business and cross-
organizational domain where responsibility and liability play
an important role.

IV. RELATED WORK

Cloud Computing is the greatest IT hype of the last ten
years. Therefore, many publications deal with Cloud
Computing. Surprisingly the combination of Cloud
Computing with workflows is little addressed. The
integration of single off-premise Cloud Tasks into on-
premise workflows is not supported yet. In comparison to the
mobile smartphone domain, approaches like CloneCloud
[20] already exists to dynamically partition applications
between weak devices and Clouds. Some workflow
management systems claim to be ready for the Cloud but
they are mostly ported from the Grid domain and only
support running in the Cloud as extension to running in the
Grid. The flexible selection and interaction with Cloud
resources is not implemented in the workflow management
systems considering the requirements identified in section
III. One approach is presented in the following and then
delimited to the approach presented in this paper.

The Generic Workflow Execution Service (GWES) [21]
is an open source workflow management system and was
developed by Frauenhofer-Gesellschaft for the management
and the automation of complex workflows in heterogeneous
environments. The service orchestration goes through five
abstraction levels: User Request, Abstract Workflow, Service
Candidates, Service Instances, and Resources. The formal
described User Request represents an abstract operation and
is automatically composed into an infrastructure independent
non-executable Abstract Workflow. This Abstract Workflow
is mapped at runtime down to available Resources. During

Figure 5. Dynamic assignment of Cloud Tasks to Cloud resources.

86Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 99 / 282

this process Service Candidates web services are searched
and optimally selected to become Service Instances. GWES
was originally developed basing on Grid technologies like
Globus Toolkit as Grid Workflow Execution Service (also
GWES) and was then adjusted to the Cloud domain.

The proposed approach of this paper differs from the
basic GWES concept. GWES is a specific workflow
management system with an own workflow description
language. In contrast the interoperable approach of this paper
bases on an extension for existing modeling languages of
arbitrary workflow management systems by the integration
of the Cloud administrative tasks Create and Destroy which
connect the workflow instance with the Cloud Service
Broker to select, start, and stop the Cloud instance. By
choosing a workflow management system independent
approach the usage of the already known system is given for
the end-user. The approach is the migration of only
individual workflow tasks to the Cloud whereas the
remaining tasks stay in the local environment for execution.

V. CONCLUSION AND FUTURE WORK

This paper presented a general concept for the hybrid
execution of workflows by allowing the off-premise
execution of specific tasks in the Cloud whereat the
remaining tasks stay on-premise to avoid unnecessary costs.
The proposed architecture has the advantage that it is neither
depending to a particular workflow engine nor to a particular
workflow description language. It follows the approach of
automatically modifying workflow templates to incorporate
the steps for assigning the appropriate off-premise resource
in a flexible manner. This approach has been already
validated in the domain of provenance [9]. The Cloud
Service Broker automatically selects the most suitable Cloud
resource to guaranty the fulfillment of all task requirements.
The end users’ interfaces are not changed so that workflows
can be used the same way as before.

Next steps of work will be the implementation of the
introduced Cloud Service Broker including an analysis of an
according selection metric. The occurred costs of a partial
off-premise execution will be compared with the costs of a
full off-premise execution to calculate a costs reduction ratio.
The time overhead for migrating tasks across Cloud and
organizational boundaries has to be measured and set it into
relation with the avoided costs to figure out if the costs
reduction is worth the time overhead. Even data movement
strategies have to be implemented.

The security of the whole architecture plays an important
role which is minor addressed in this paper. The Secure
Token Service and the Factory are together the single point
of access. Unauthorized Cloud resource instantiations and
unauthorized Cloud web service invocations must be
protected against requests without permission to avoid a
misuse.

ACKNOWLEDGMENT

This work was carried out in the context of HiX4AGWS
[19]. HiX4AGWS is supported of the Federal Ministry of
Education and Research in Germany. Grant No.: 17N3409.

References
[1] S. Asano, T. Maruyama, and Y. Yamaguchi; “Performance

comparison of FPGA, GPU and CPU in image processing“,
International Conference on Field Programmable Logic and
Applications, 2009. FPL 2009, pp. 126-131.

[2] W. H. Davidow and M. S. Malone; “The virtual Corporation”. New
York: HarperBusiness, 1992.

[3] E. Deelman, D. Gannon, M. Shields, and I. Taylor: „Workflows and
e-science: an overview of workflow system features and capabilities“,
Future Gener. Comput. Syst., 25 (2009), pp. 528–540.

[4] BIOWIC, Bioinformatics Workflow for Intensive Computation,
http://biowic.inria.fr/workflows/shrec.html 05.05.2012.

[5] J. Yu and R. Buyya, “A Taxonomy of Workflow Management
Systems for Grid Computing”, Journal of Grid Computing, Vol. 3,
No. 3-4, pp. 171-200, 2005.2. Oxford: Clarendon, 1892, pp.68–73.

[6] X. Liu, D. Yuan, G. Zhang, W. Li, D. Cao, Q. He, J. Chen, and Y.
Yang; “The Design of Cloud Workflow Systems”, SpringerBriefs in
Computer Science.

[7] P. Mell and T. Grance, National Institute of Standards and
Technology (NIST), “The NIST Definition of Cloud Computing”,
Special Publication 800-145, September 2011.

[8] Open Grif Forum (OFG), Open Cloud Computing Interface (OCCI),
June 2011.

[9] M. Gerhards, A. Belloum, F. Berretz, V. Sander, and S. Skorupa: “A
History-tracing XML-based Provenance Framework for Workflows”,
The 5th Workshop on Workflows in Support of Large-Scale Science
(WORKS), November 2010.

[10] R. M. Shapiro, Workfl ow Management Coalition Working Group
One, “XPDL 2.1 Integrating Process Interchange & BPMN”, January
2008.

[11] D. Jordan and J. Evdemon, “Web Services Business Process
Execution Language Version 2.0 (BPEL)”, OASIS Standard, April
2007.

[12] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A Survey of Mobile
Cloud Computing: Architecture, Applications, and Approaches”,
Wireless Communications and Mobile Computing.

[13] S. Cantor, J. Kemp, R. Philpott, and E. Maler, “Assertions and
Protocols for the OASIS Security Assertion Markup Language
(SAML) V2.0”, OASIS Standard, 15 March 2005.

[14] K. Lawrence and C. Kaler, “WS-Trust 1.3 OASIS standard”, March
2007.

[15] A. Celesti, F. Tusa, M. Villari, A. Puliafito: "How to Enhance Cloud
Architectures to Enable Cross-Federation”, 3rd International
Conference on Cloud Computing (CLOUD), 2010, pp. 337-345.

[16] Y. L. Simmhan, B. Plale, and D. Gannon, “A Survey of Data
Provenance in e-Science”, SIGMOD RECORD, vol. 34, 2005.

[17] M. Gerhards, V. Sander, T. Matzerath, A. Belloum, D. Vasunin, A.
Benabdelkader: “Provenance Opportunities for WS-VLAM: An
Exploration of an e-Science and an e-Business Approach”, The 6th
Workshop on Workflows in Support of Large-Scale Science
(WORKS), November 2011, pp. 57-66.

[18] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth, N.
Kwasnikowska, S. Miles, P. Missier, J. Myers, B. Plale, Y. Simmhan,
E. Stephan, and J. Van den Bussche, “The Open Provenance Model
Core Specification (v1.1),” Future Generation Computer Systems,
vol.27(6) pp.743-756, June 2011.

[19] History-tracing XML for an Actor-driven Grid-enabled Workflow
System, http://www.fh-aachen.de/en/research/projekt-hixforagws/
05.05.2012

[20] B. Chun, S. Ihm, P. Maniatis, M. Naik, A. Patti: “CloneCloud: Elastic
Execution between Mobile Device and Cloud”, Proceedings of the
sixth conference on Computer systems (EuroSys '11), 2011, 301-314.

[21] Generic Workflow Execution Service (GWES)
http://www.gridworkflow.org/kwfgrid/gwes/docs/ 05.05.2012.

87Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 100 / 282

HPCCA: Is efficient in Mobile Cloud Environment (MCE)?

Dr. Khalid Mohiuddin, Asharul Islam, Ashiqee
Rasool Mohammad

Department of Information System
College of Computer Science, King Khalid University

Abha, Saudi Arabia
(drkhalidmk70, ashar.islam, ashique.rasool)@gmail.com

Aftab Alam
Department of Computer Science

College of Computer Science, King Khalid University
Abha, Saudi Arabia
aftabjh@gmail.com

Abstract—Integrating cloud infrastructure and services
into the Mobile Communication Environment (MCE) is
an intensive research area nowadays. Mobile cloud
computing provides interesting research opportunities to
resolve the boundaries between mobile and cloud
computing. Studies show that mobile devices are limited
in resources: memory, network bandwidth, availability
and specifically processing power. It does not meet the
demand of high performance applications for mobile
users. One obvious solution to this requirement is to get
the processing power as a service from a resource-rich
environment. Cloud computing is a service-based
approach which provides the required computing
resources to its subscribed users: on-demand, scaled
elastically, and economically feasible in response to
user’s requirement. The cloud services which facilitate
mobile environment describes as Mobile Cloud
Computing (MC2). Existing advanced mobile devices
can perform various multimedia applications (e.g., M-
Commerce, Health Care, Games, Rich Media, etc.) and
provide a number of utilities; they are not efficient for
executing intensive computing applications such as
advanced 3D Games, scientific calculations, result
optimizer, high definition weather forecasting and many
more. These applications require high processing power,
intensive memory mapping and sufficient network
support for efficient execution. Currently some IT giants
like IBM, Rackspace, Penguin Computing, Sara,
PureWeb and Sabalcore are providing High
Performance Cloud Computing Applications (HPCCAs)
over the cloud infrastructure. The HPCCAs shall be
potential services for existing smart mobile device users.
In this paper our focus is to analyze and present a
comprehensive study to observe: Is utilization of
HPCCA efficient in mobile environment? In our
analysis, we considered different aspects and
consequences of High Performance Computing (HPC) in
mobile cloud environment. For example, High
bandwidth, Signal quality, Mobility, Service availability
and Security concerns. Through this analysis, we found
HPCA is efficient in mobile cloud environment.

Keywords- Mobile Cloud Computing; High Performance
Cloud Computing Applications; High Performance Computing;
Smartphones.

I. INTRODUCTION

More than decades of research on computational
performance in traditional Information Technology (IT), the
focus is now shifted towards the computation and
communication resources as a service on-demand, over the
internet, pay-on-usage. Availability is the vital metric for
these resources; near 100% availability is becoming
mandatory for both intensive users and service providers.
Computational needs of users (desktop and mobile)
increasing to the alarming stage. They need strong support of
technology and its providers to meet their needs; particularly
for High Performance Computing Applications (HPCAs).
The conventional computing technology does not have
enough potential in mobile environment with resource
limited devices. Technology evolves and new integrated
service-centric technologies emerged to offer high quality
services specifically for HPCA in mobile environment.

Cloud computing has been emerged as a new service-
centric technology. Offers service on-demand, elastic
provisioning, reliability, security and pay-per-uses economic
model. Cloud computing exists if tasks and data are kept on
the internet rather than on individual devices, providing on-
demand access. Data is provided and managed by the service
providers. Applications run on a remote server and then sent
to the user [1]. According to NIST cloud offered services in
the form of Software as service (SaaS), Platform as a service
(PaaS) and Infrastructure as Service (IaaS). Cloud users may
access the server resources using a computer, netbook, tablet,
pad computer, smart phone, or other device. In cloud
computing, applications are provided and managed by the
cloud server and data is also stored remotely in the cloud
configuration [2]. Cloud subscriber need not to invest on
high configuration hardware and expensive licensed
software. Processing and storage maintained by the cloud
service provider with the integration of local service provider
on economically feasible model. Cloud extends its service
domain with the integration of mobile computing
technology. This integrated technology refers as Mobile

Mobile Cloud Computing (MC2), becomes a convenient
alternative to personal computers by integrating mobility,
communication, software functionality, and entertainment
[3]. It offers mobile users great opportunities and turns from
resource limited device into a resource-rich environment. It
enables mobile cloud users to execute high computing
application in potential and flexible environment such as 3D
games, scientific calculations, result optimizer, high
definition weather forecasting, and many more. With the
influential growth of intensive mobile applications,

88Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 101 / 282

developers are shifting from desktop computing to mobile
cloud computing environment.

The remaining structure of this paper as follows: In
Section II, we explain existing infrastructure of HPCAs, in
both fixed/static and mobile cloud environment. Section III
discusses the importance of offloading for HPCCAs in
desired environment. Section IV describes the required
service-architecture of HPCCA in mobile environment.
Section V presents HPCAs offerings by different service
providers. In Section VI, we also discuss HPCCA
economics. In Section VII, we discuss the much needed
security and challenges issues and best suited solutions;
result analysis. Finally, we conclude with our findings and
future work.

Figure 1. A software system that integrates mobile and cloud computing
services.

II. EXISTING INFRASTRUCTURE FOR HPCA

HPCA basically needs intensive computing,
accelerations, efficient parallel computing algorithms, and

bridge between software and hardware; includes a primary
HPC and a backup HPC connected by a robust
communications and secured IT infrastructure. In the early
age of computing, the high performance computing is done
by supper computers. It requires a large amount of electrical
power for its infrastructure and need significant cost to
maintain. In general, scientific and commercial organizations
handle the HPCAs by the operating system in powerful
computers or by the cluster-servers. High-performance
analytics enable organizations to quickly and confidently
seize new opportunities in order to make better choices
ahead of competitors and create new value from big data. It
enables organizations to handle their most
difficult challenges, quickly generate high-impact insights
and transform their operations [4]. With the computing
technology evolution, the infrastructure keeps on changing.
Large organizations like IBM releases technically configured
powerful systems to meet the increasing demand of HPC.
The world increasingly global and highly interconnected
planet; needs communication and computation technology
on move, anywhere, any time. In the present information
age, acceleration of data processing is growing dynamically
and influenced markets to deploy HPC for their applications.

The HPC architecture requires intensive applications to
rum on multiple processors, rather than on single, to achieve
the desired performance. Virtualization, parallel and vector
processing, multi and co-processing are the fundamentals of
HPC. Applications such as, 3D- imaging processing,
financial commerce, medical imaging, data compression,
seismic data interpretation, search, security, and many more
have been efficient in desktop environment. Shall be the
same in mobile environment? Today, many service providers
offer HPCA as a service, available for enterprise users,
community users, and individual subscribers in mobile cloud
environment.

Figure 2. Percentage of users who uses wearable devices for each activity and shows content consumption [5].

89Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 102 / 282

A. HPCAs in Mobile Cloud Environment

In present scenario, the usage of mobile phone
applications is potentially increased, due to the integration of
mobile technologies with the cloud. Cloud delivers services
to its remote users over the IP network often through a web
browser without referring to the boundaries. Mobile
computing technology whereas connects its users in mobile
or non-static environment across the network(s). This is
accomplished by connecting mobile computing activities
wirelessly through the internet or a private network. This
connection ties the mobile device to centrally located
information and application software by using battery
powered, portable, and wireless computing and
communication devices. This encourages manufactures,
vendors, and service provides to develop an efficient mobile
environment for intensive computations and quality-
communications. Present mobile phones are heavily used for
executing high performance applications such as 3D
applications and scientific calculations. However the
limitations exist in resources are the basic obstacles to
execute these applications efficiently. These limitations can
be removed or minimized with the integration of resource-
rich, reliable, service-centric cloud technology.

The integrated (mobile and cloud) technology describes
as MC2 deploys in heterogeneous radio access environment
such as WiFi, 3G, WLAN, WiMax, GPRS. It is implemented
through wireless connectivity. The prime features are access
24X7, on-demand, energy efficient, and economically
feasible even for low data rate cloud controlling signals.
Mobile applications can be launched on the device or cloud,
and can be migrated between them according to dynamic
changes of the computing context or user preferences [6].
Smartphone and tablets are quickly becoming the
information worker’s most valuable tools. Young workers
and their strong affinity for go-anywhere technology is
changing the shape of the enterprise right here, right now!!
Enterprise Mobility is becoming more and more Anytime,
Anywhere service in a true sense!! Smart-phones [7].

Figure 3. Block Diagram for HPCCA Services.

The most frequent and intensive users of HPC systems
are researchers from academic and research oriented
business establishments, investigating and specific
government agencies; whereas the common users heavily use
HPCAs for communication, entertainment and such many
more activities. All need effective, improved, convincing,

reliable and efficient performance in both, fixed/static and
mobile cloud-based environment.

Figure 4. Expected growth of usage of mobile internet [8].

B. Performance Parameters for efficient Mobile Cloud
Environment

Advancing the efficient HPC architecture is a big challenge,
particularly in mobile cloud environment. It includes
processing, managing, using existing architecture, mobility,
and offering services anywhere anytime from individual user
to enterprise subscription locally and globally. The following
features are most desirable for efficient HPCCA:
Availability: HPC system needs to be clock-driven; highly
available (99.9%), network, data centers, and at much lower
cost.
Scalability: It needs to have an infrastructure that provides
expandable resources to accommodate heavier load, high
throughput, scalable storage, and reliable communication.
Intensive-scale computing: It is the ability to run massively
parallel code of instructions with the simulation of data.
Life cycle management: The efforts to maximize the
efficiency of the transition operations throughout the
processing cycle.
Software configuration and management: Updates and adopt
the software standards that accommodate sharing of code
internally and externally with other partners.
According to Lawrence Berkeley National Laboratory, the
following features are vital in mobile cloud environment:
 A global shared memory abstraction
 Support dynamic updates
 A high-bandwidth, low-latency network
 Ability to exploit fine-grained parallelism
 Support for light-weight synchronization
 Massively Multithreaded architectures
Symmetric multiprocessors

III. OFFLOADING ESSENTIAL FOR HPCCA IN MOBILE

ENVIRONMENT

 Offloading is the process of using complementary
devices which are resource-rich, for accelerating the
processing originally targeted for resource-limited mobile
devices. Offloading technology must be an essential tool in
the desired environment. Offloading of a mobile computing

90Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 103 / 282

task is a tradeoff between the energy used for local
processing and the energy required for offloading the task,
uploading its data, and downloading the result, if necessary.
One can express the offloading energy trade-off with the
formula Etrade = Elocal - Edelegate > 0, where Elocal is the energy
used for complete local execution, and Edelegate is the energy
used from the perspective of the mobile device if the task is
offloaded. If Etrade is greater than zero, then there is an energy
benefit for delegating the task to the cloud [9].

A. Factors affecting offloading

Network traffic: High bandwidth is required for fast
connection to the cloud through internet.
Security Aspects: Secured service access mechanism should
be ensured.
Business Models: Business models need to be modified to
adopt the cloud computing standards.
Accessibility: Robust Infrastructure needs to be placed for
providing high accessibility to the services.

B. Parameters for offloading decision

Power Consumption: Power consumption can be a vital
parameter for offloading decision as battery life time is the
major concern for mobile devices.
Processing Requirement: Processing requirement is an
important parameter for offloading decision. The
applications requiring intensive processing shall be
offloaded.
Storage and memory requirement: Memory and storage
requirement is a major parameter. Applications requiring
huge memory and storage cannot be executed on mobile
devices as they are generally poor in the resources; these
applications need to be offloaded.

Latency and bandwidth: Latency also plays an important role
in offloading decision. The interactive applications cannot
support high latency. Offloading decision shall be taken on
the available bandwidth.
As shown in figure 5, percentage of total mobile data traffic
from handsets and tablets, mobile offload will be 31 percent
(3.1 Exabyte/month) in 2016.

Figure 5. Offloading trend in mobile cloud environment [10].

IV. HPCCA SERVICE ARCHITECTURE

The service architecture shown in Figure 5 describes how
the cloud resources can be utilized by mobile devices for
executing high performance applications.

Figure 6. Service Architecture in Mobile Cloud Environment.

91Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 104 / 282

The mobile device sends request to the cloud through
mobile cloud interface available in the device itself. The
request is first verified and authenticated by the verification
and authentication module then it passes to the service
identification module. This module categorizes the request as
per the nature of processing, if the request requires parallel
processing then the parallel segments shall be assigned to
individual virtual machines else it will be assigned to any of
the available clone. Once the process is done, the individual
results shall be forwarded to the result optimizer. It combines
the individual results, formulates it, and sends back to the
mobile client through the service navigation module. The
virtual machines are created with the help of hypervisor and
virtualization software; it is controlled and monitored by the
monitoring and control unit. The clones can be created using
any of the existing cloning technology shown in Figure 6.

V. HPCA SERVICES OFFERED IN MOBILE CLOUD

ENVIRONMENT

In the technically advanced competent environment, many
cloud service providers offer huge benefits for their users in
response to their growing needs of HPCAs in mobile
environment. Focus is gradually shifting, services offer on-
demand, over the internet, through web-browser, pay-as-you-
consume, at very low economic subscription. All most all the
providers emphasis on HPC, software, infrastructures, data
storage, networking, and special attention to privacy,
integrity, and security of data, shown in the table1. In the
table, column1 shows the services offered by the respective
providers. A substantial number of providers have
contributed to the development of this technology and many
in the adoption process shown in Table 1.

TABLE 1. SERVICES OFFER BY THE RESPECTIVE PROVIDERS IN CLOUD-BASED MOBILE ENVIRONMENT

Services
Service Providers-HPCCAs in Mobile Environment

Sara PureWeb Rackspace Sabalcore BlueCoat Penguin
Computation HPC, Grid HPC HPC HPC HPC HPC

Software ADF, BLAS,
HDF, BLACS,
DMF, FFTW,

Software
Transformation

KITs

Software as a
Service for
Business

Open source
software

Bespoke
Service

Scyld
ClusterWare

Infrastructures Grid, CPU
cluster, Lisa

Huygens,
System

Cyber
Infrastructure

High
Performance
configuration

High
Performance
configuration

Proxy AB
1400-2400,

AND,
MACH5

POD, Hybrid,
Private and
dedicated

Cloud

Data Storage Grid
Permanent,

Data Services

Data Storage Hosting
Storage

Ample
Permanent

Storage

- HPC
Datacenter,

POD

Networking High
Performance
Networking

High
Performance
Networking

High
Performance
Networking

High
Performance
Networking

High
Bandwidth

300X

High
Performance
Networking

Security Data Security Mobile Data
Security

Data Security - ProxySG,
web filtering

solutions

Strong
Security

A. Efficiency Parameters of HPCCAs in Mobile
Environment

As we discussed earlier, the limitations of executing
HPCAs in mobile environment shall be minimize
significantly by implementing cloud service-model in turn
maximize efficiency. The nature of cloud services is best
suited for efficient processing of HPCAs in mobile cloud
environment. The following are the most promising features
need to be considered for an efficient mobile environment:
 High Data Rate
 Quality of Service (QoS)
 Scalability
 Availability
 Mobility
 Security

 Network latency

B. Service characteristics of HPCCAs in Mobile
Environment

1) HPC Ubiquitously: By the subscription of HPCCA
services, user can access intensive HPAs on their smart
mobile devices in heterogeneous environment, without
considering processing burden. During the process mobile
devices act as interface, send the instructions, and request
processing is done on cloud infrastructure. Users have full
advantages of access these services from resource limited
device to a resourceful environment conveniently.

2) Right to use – anyplace, anytime: Cloud computing
with the integration of mobile computing provides services
anywhere anytime with the application of adequate Service

92Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 105 / 282

Level Agreement (SLA). It includes flexible mechanism for
delivering IT services at each level of the computing stack:
from hardware level to application level [11]. Initially,
HPCCA software was supporting desktop environment and
users are free to work anywhere through the internet. With
the amount of mobile applications increased, the developers
extend its reach for mobile access with the devices like
laptops, notepad, tablets and smartphones. In the present, era
any software application can be execute by mobile cloud
users anywhere anytime.

3) Platform Support: Another promising feature of cloud
is HPCAs can execute irrespective of platform dependencies.
PureWeb integrates directly into your existing Microsoft
Foundation Class, C#, C++ or Java code, bringing the web to
your application rather than your application to the web.
Furthermore, adding support for the latest mobile touch-
based devices such as an Apple iPad, iPhone or Google
Android devices is seamless [12].

4) Data Security and Compliance: Major concern of
mobile cloud users is security; data is mostly secured in
static environment and remains uncertain in mobile
environment. Service providers do not comprise on any less
secure system for securing and handling data.

VI. ECONOMICS FOR HPCCA

According to Microsoft, the overall cost of IT is
determined not just by the cost of capacity, but also by the
degree to which the capacity is efficiently utilized. It is
needed to assess the impact that demand aggregation will
have on costs of actually utilized resources (CPU, network,
and storage) [13]. Many organizations realized the impact of
low cost offering by the deployment of cloud services. Cloud
Computing has been emerged as an economic service-centric
technology; combines the best economic properties of
mainframe and client/server computing, and shifting the
economics of traditional IT. The architecture of cloud
facilitates elastic consumption and pay-as-you-consume
pricing model. Resource-intensive computing is offloaded to
the cloud to leverage the cost advantages of massive data
centers [14]. Efficient multi-tenancy is a major factor,
increases number of tenants, maximize application
processing, minimize the applications management and
server cost. Recently, Microsoft joined Google and Amazon
Web Services in cutting the cost of cloud services. Microsoft
dropped the price on its Azure Storage Pay-as-you-Go
service and lowered the price of its six-month storage plan.
The cost to use Azure Extra Small Compute has dropped in
half [15]. In cloud paradigm, resource-intensive computing is
offloaded to the cloud to leverage the cost advantages of
massive data centers. Researchers are working on different
techniques that minimize the cost of using cloud resources,
provide efficient and seamless environment while
maintaining user satisfaction. According to PureWeb, the
following activities slash down the cost significantly:
 HPCC will slash web migration cost
 The risk & expense of traditional migration
 Fast & straightforward with HPCC
 No need for expensive & risky rewrites

 No licensing fees or proprietary downloads
 Significant hardware saving
 High speed for any high performing application

VII. SECURITY CONCERNS

Security, privacy, and integrity, of data and applications
are major concerns in mobile cloud environment. It is quit
known fact, data is more secure in static rather than in
mobility. To design an efficient HPCCA-service system in
mobile environment, various challenges such as high
computation, scalability, availability, mobility, and cost
restrictions need to be addressed. Cloud computing fits well
as an enabling technology in this scenario as it presents a
flexible stack of computing, storage and software services at
low cost [16]. These challenges can be tackled by leveraging
various cloud services in HPCCA-service system. The major
constraints, HPCAs require significant computing power,
need to process from a limited energy source mobile device.
It is essential to outsource intensive computing applications
to cloud. Offloading seems to be simple solution; it is non-
trivial, since wireless network bandwidth and latency are
also big challenge need to be address. According to Alcatel-
Lucent and Techzine, four key strategies should be
considered to overcome the challenges of mobile cloud
computing are 1) Processing time at the data center 2)
Processing time on the device 3) Network latency 4) Data
transport time.

VIII. EFFICIENCY RESULT ANALYSIS OF MOBILE VS FIXED

DEVICES

Connectivity is almost guaranteed in fixed/static networks
and potentially rich in resources; whereas mobile
environment intensely depend on network bandwidth and
latency. In processing of HPCAs, both mobile and fixed
devices require intensive computation, significant amount of
energy; and consume heavy resources. Efficiency exists in
fixed/desktop environment and shall be improve for mobile
environment also with the integration of mobile technology
with cloud. Although the current generation mobile devices
have significantly improved in technology and support
Service Oriented Architecture (SOA), need for efficient
performance in mobile cloud environment. Market updates,
eying the users need and requirements, especially for
HPCAs. A comparative study shown by Kyung Mun, of a
Dell Inspiron 580 desktop with the iPhone 4 and iPad, for
example, reveals the tradeoff cost of mobility. As compared
to a fixed device, mobile devices in general have:
 3 times less processing power
 8 times less memory
 5 times less storage capacity
 10 times less network bandwidth

While mobile device performance will continue to
improve in absolute terms (Figure 7), the disparity between
the resource constraints of mobile and fixed devices will
remain and must be accounted for in the types of application
selected for mobile cloud computing [17].

93Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 106 / 282

Figure 7. Mobile device computing storage and display trends [18].

CONCLUSION AND FUTURE FOCUS

In this work, our interest was to measure the processing
performance of HPCAs on existing infrastructure in
fixed/static and mobile environment. Compare the efficiency
and investigate: shall HPCAs be potential for existing mobile
device users in cloud-based environment. Accordingly, we
presented HPCA architecture, resources consumption on
both traditional PC and mobile platform. The efficiency shall
be achieved on resource-limited devices for HPCAs with the
integration of service-centric cloud technology. We
presented service architecture for high performance
computing applications in mobile cloud environment.
Further we analyzed the HPCCA services offered by cloud
providers and the characteristics in mobile environment. One
of the common interests of HPCCAs mobile device users and
providers is the business-economic, discussed in detail. We
compared the efficiency performance in our result analysis
and concluded with the concerns of security and challenges;
common for both users and cloud service providers.

REFERENCES

[1] http://www.smartdevelopments.org/?p=84, [retrieved: May, 2012]
[2] http://www.smartdevelopments.org/?p=84, [retrieved: May, 2012]
[3] Hyun Jung La and Soo Dong Kim, “A Conceptual Framework for

Provisioning Context-aware Mobile Cloud Services”, 978-0-7695-
4130-3/10 $26.00 © 2010 IEEE DOI 10.1109/CLOUD.2010.78.

[4] High-Performance Analytics from SAS,
http://www.sas.com/software/high-performance-analytics/index.html,
[retrieved: May, 2012]

[5] Morgan Stanley blue paper, February 14, 2011.
http://www.morganstanley.com/views/perspectives/tablets_demand.p
df, [retrieved: May, 2012]

[6] Le Guan, Xu Ke, Meina Song, and Junde Song, “A Survey of Mobile
Cloud Computing”, 2011 10th IEEEACIS International Conference
on Computer and Information Science (2011).

[7] http://www.smartcloudinfotech.com/enterprise_mobility.php,
[retrieved: May, 2012].

[8] Morgan Stanley blue paper, February 14, 2011.
http://www.morganstanley.com/views/perspectives/tablets_demand.p
df

[9] Eemil Lagerspetz, and Sasu Tarkoma “Mobile Search and the Cloud:
The Benefits of Offloading”,
http://www.cs.helsinki.fi/u/lagerspe/publications/mobile-cloud.pdf,
[retrieved: May, 2012]

[10] CISCO White paper,
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/
ns705/ns827/white_paper_c11-520862.html, [retrieved: May, 2012]

[11] Christian Vecchiola, Suraj Pandey, and Rajkumar Buyya, “High-
Performance Cloud Computing: A View of Scientific Applications”,
2009 10th International Symposium on Pervasive Systems,
Algorithms, and Networks, 978-0-7695-3908-9/09 $26.00 © 2009
IEEE DOI 10.1109/I-SPAN.2009.150.

[12] “Calgary Scientific Revolutionizes Application Sharing and
Advanced Collaboration with PureWeb® 3.0”
http://webcache.googleusercontent.com/search?q=cache:2ZF0D9mzE
fwJ:www.getpureweb.com/files/Infotables/pureweb-[retrieved: June,
2012], df+&cd=1&hl=en&ct=clnk&gl=sa, [retrieved: June, 2012]

[13] “The economics of the cloud by Microsoft, November 2010.”
http://www.microsoft.com/en-us/news/presskits/cloud/docs/The-
Economics-of-the-Cloud.pdf, [retrieved: June, 2012]

[14] Kyung Mun, “Mobile Cloud Computing Challenges” Corporate
Technology Strategist, Alcatel-Lucent- SEP 21 2010.

[15] Nancy Gohring, “Cloud economics improving for users in wake of
price cuts, March 09, 2012” http://www.infoworld.com/d/cloud-
computing/cloud-economics-improving-users-in-wake-of-price-cuts-
188386.

[16] Suraj Pandeya, William Voorsluys, Sheng Niua, Ahsan Khandokerb,
and Rajkumar Buyya, “An autonomic cloud environment for hosting
ECG data analysis services”, 15-05-2011 Elsevier B.V.

[17] Kyung Mun, “Mobile Cloud Computing Challenges” Corporate
Technology Strategist, Alcatel-Lucent- SEP 21 2010.

[18] Kyung Mun, “Mobile Cloud Computing Challenges” Corporate
Technology Strategist, Alcatel-Lucent- SEP 21 2010.

94Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 107 / 282

Intercloud Object Storage Service: Colony

Shigetoshi Yokoyama, Nobukazu Yoshioka

GRACE Center, National Institute of Informatics, Tokyo, Japan

{yoko, nobukazu} @nii.ac.jp

Motonobu Ichimura

NTT DATA Intellilink, Tokyo, Japan

ichimuram@intellilink.co.jp

Abstract— Intercloud object storage services are crucial

for inter-organization research collaborations that need

huge amounts of remotely stored data and machine image.

This study introduces a prototype implementation of wide-

area distributed object storage services, called colony, and

describes a trial of its cloud storage architecture and

intercloud storage services for academic clouds.

Keywords-Cloud computing; Object storage service;

OpenStack; Intercloud; Cloud federation.

I. INTRODUCTION

Cloud computing has the potential to dramatically change

software engineering. It allows us to manage and use large-

scale computing resources efficiently and easily. Moreover, it

makes it possible to develop new software by using these

resources for scalability and lowering costs.

For example, users can prepare machine images of standard

education environments on Infrastructure as a Service to

manage the environments efficiently. We have developed

edubase Cloud [1], a cloud platform based on open-source

software and using a multi-cloud architecture.

We are now developing a research cloud based in part on

our experience in managing the edubase Cloud service during

the disaster recovery efforts after the Tohoku earthquake and

tsunami in March, 2011. Intercloud object storage services

that can store machine images and research data remotely are

crucial for such a development. Furthermore, if academic

clouds are independently deployed and managed, there would

be no way for users to continue working within clouds

affected by disasters or other outages. By using intercloud

object storage services, users can utilize machine images in

other clouds operating normally.

We have developed an intercloud storage service

architecture and a working prototype called colony [2]. This

paper describes this development. Section 2 describes user

scenarios on how to use intercloud object storage services.

Section 3 presents a comparison with other storage services.

We discuss the design and prototype of the intercloud object

storage architecture in section 4 and 5, and conclude in

Section 6.

II. USER SCENARIOS

The following are academic–cloud-user scenarios for

intercloud storage services. In the scene depicted in Figure 1,

there are two academic clouds, A and B, providing the

intercloud storage service. The users of these clouds can store

objects in local storage, i.e., storage-A or storage-B, or in the

remote object storage, storage-I. Users just have to change the

container attribute from local to remote or vice versa.

Storage-I should be geographically distributed for the sake

of availability.

Figure 1. Intercloud object storage service.

A. Access one’s own objects from remote clouds

Academic cloud users can access their own containers and

objects from clouds that are remote from the one they usually

use. The machine images stored as objects in storage-I can be

used to launch virtual machines in these remote clouds.

Machine image conversion might be needed before the launch,

depending on the heterogeneity of the source and destination

clouds.

B. Access objects of other users

Academic cloud users can share containers and objects with

other users who may access them from remote clouds. The

objects could be, for example, machine images or research

data.

C. Single sign-on to object storage services

Each object storage service manages its own users but if

each manages its users independently, users would have to

login to a service every time they want to receive it. To deal

with this problem, we support single sign-on among services

by using a standardized identity management service such as

shibboleth [2].

Storage-I

Cloud-A

Storage-A

Container A1

Container A2

Container A3

Inter-cloud Container I1

Inter-cloud Container I4

Object A1-1

Object A1-2

Object A1-3

Object I4-1

Object I4-2

Object I4-3

Cloud-B

Container B1

Container B2

Container B3

Inter-cloud Container I1

Inter-cloud Container I8

Object B1-1

Object B1-2

Object B1-3

Object I1-1

Object I1-2

Object I1-3

Inter-cloud object storage service

Cloud Services

Inter-cloud Container I1

Inter-cloud Container I2

Inter-cloud Container I3

Inter-cloud Container I13

Inter-cloud Container I10

Inter-cloud Container I4

Storage-B

Geographically

Distributed
Object I4-1

Object I4-2

Object I4-3

Object I1-1

Object I1-2

Object I1-3

95Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 108 / 282

III. RELATED WORK

We thought that we should not start developing our

intercloud storage service from scratch and that it would be

better to utilize existing open source object storage service

software. Figure 2 compares the various candidates that we

examined in focusing on AWS S3 type Web API base object

storage open source projects. S3 is a de-facto standard among

object storage services, and there is a software eco system

around it.

.

Figure 2. Object storage service projects comparison.

 Baltic-avenue [3], boardwalk [4], fs3 [5], sinatra-s3 [6] are

effectively development test beds for S3, because they are not

designed to have redundancy mechanisms. Because of this

limitation, they cannot support huge intercloud object storage

services.

Radosgw [7] is a web API front-end of the ceph distributed

file system [8]. Walrus is a component of Eucalyptus [9], and

although it is compatible with S3, it does not have a

redundancy mechanism either.

Swift [10] supports large object storage services in

commercial public clouds.

The above considerations led us to study OpenStack swift

and modify it for our intercloud object storage service.

IV. DESIGN

A. OpenStack swift

OpenStack Object Storage (code-named Swift) is open

source software for creating redundant, scalable data storage

using clusters of standardized servers to store peta-bytes of

accessible data. It is not a file system or real-time data system,

but rather a long-term storage system for large amounts of

static data that can be retrieved, leveraged, and updated.

Object Storage uses a distributed architecture with no central

point of control, providing greater scalability, redundancy and

permanence.

Objects are written to multiple hardware devices, with the

OpenStack software responsible for ensuring data replication

and integrity across the cluster. Storage clusters scale

horizontally by adding new nodes. Should a node fail,

OpenStack works to replicate its content from other active

nodes. Because OpenStack uses software logic to ensure data

replication and distribution across different devices,

inexpensive commodity hard drives and servers can be used in

lieu of more expensive equipment.

Swift has proxy nodes and auth nodes acting as the front-

end and storage nodes acting as the back-end for accounts,

containers, and object storage.

Figure 3. OpenStack swift.

B. Intercloud object storage architecture

Let us begin by discussing the intercloud object storage

service architecture by categorizing how to allocate swift

components such as proxy nodes, auth nodes, and storage

nodes. The proxy nodes and auth nodes categorized as front-

end. The storage nodes are categorized as back-end. We

examined the suitability of the following architectures.

1. All-in-one architecture

The front-end and back-end nodes are all on one site.

2. Fan architecture

One front-end node is on the central site, and the back-

end nodes are on each site.

3. Peer-to-peer architecture

Each site has its own front-end nodes and back-end

nodes. The front-end nodes communicate to synchronize

the swift rings.

4. Zone architecture

The front-end nodes have a hierarchical structure similar

to the DNS hierarchy and use it to locate storage nodes.

5. Dispatcher add-on architecture

Dispatchers that can recognize the destination front-end

nodes are deployed as an add-on to the front-end.

 All-in one, fan, and zone architectures have a single point of

failure. The dispatcher add-on architecture is better than a peer

–to-peer one because it require fewer servers at each site.

Some sites only need to have the dispatcher. These

considerations led us to choose the dispatcher add-on

architecture.

 This architecture has the following advantages:

 Easy to modify swift codes with it

 Easy to extend to more than two swift federations

baltic-

avenue

board

walk

fs3 Rado

sgw

sinatra

-s3

swift
Walrus

Redundancy

mechanism
△ △ - △ - × -

Max data size 1M ∞ ∞ ∞ ∞ 5G 5G

Max number

of data
1000 ∞ ∞ ∞ ∞ ∞ finite

Error

correcting
× × - × - × -

ACL × - × × × × ×

Cache

mechanism
- - - - - - -

×: OK, - : NG, △: redundacy mechanism with S3

Object Server

Container Server

Account Server

96Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 109 / 282

V. PROTOTYPING

We are now prototyping intercloud object storage service

and make the code public as the colony project in github [11]

by using the dispatcher add-on architecture which is described

in the previous section.

Figure 4 shows an overview of the colony architecture. New

components such as swift dispatcher, VM info converter, and

caching module were developed by analyzing this prototype.

The dispatcher calls the local swift or intercloud swift

depending on the container attributes. The VM info converter

is used to convert the virtual machine image metadata for one

cloud to metadata for another cloud in order to launch the

machine image in the other cloud. The content cache helps to

make the data transfer efficient.

Figure 4. Colony overview.

The swift client can send requests to swift-A and swift-I

through the swift dispatcher. In the prototype, the dispatcher

can find the destination swift by looking at the prefix string in

the container names. In the example in Figure 5, the prefix ‘A:’

indicates that the container resides in the local cloud, which is

‘cloud-A.’ The prefix ‘I:’ specifies that the containers having

this prefix are located in the intercloud, which is ‘cloud-I.’

When swift sends responses to the client, it merges the

response from each swift, as described in Figure 5.

Figure 5. Swift dispatcher.

Swift dispatcher can use a cache proxy per swift proxy to

retrieve objects from remote swifts (Fig. 6). In the prototype,

the cache is implemented using a squid content proxy cache

mechanism [12]. This sort of simple caching mechanism

works because the swift proxies in the swift-I are located

remotely from the swift client.

Figure 6. Colony cache.

We implemented a prototype of our intercloud storage

service using colony and have started evaluating the

performance and usability in three geographically distributed

sites. So far, we can say that the colony load balancing seems

to contribute to the performance of the intercloud object

storage service. We located inter-region swift between three

regions, i.e., Tokyo, Chiba, and Hokkaido, and investigated its

performance in relation uploading/downloading objects.

Throughputs between Tokyo and Chiba were about 1 Gbits/s

while throughputs between Hokkaido and Tokyo/Chiba were

about 7 Mbits/s.

In this case, uploading of objects is always the worst case

because swift proxy puts objects in three zones, sets

replication to default, and waits until all objects are uploaded.

In contrast, the worst case of downloading objects is one-third

of all transactions because the swift proxy randomly chooses

one of three object servers. When downloading objects

through web cache proxy l, the first download will likely be

the worst case, but the results nonetheless show the cache

proxy is effective (see Fig. 7).

Figure 7. Uploading and downloading objects performance.

Swift Proxy Swift Dispatcher

Cache(Proxy)

Glance

Upload/Retrieve

VMImage meta information

Swift Proxy Swift Proxy

Swift-A

(for local use)

Swift-I (for intercloud use)

VM info converter

A: container 1

A: container 2

I: container 1

I: container 2

Request to multiple Swifts

Swift Client

New

Components

Send request through Proxy server

Load balancing feature

Requests to local storage

Swift Proxy

Swift Dispatcher

Swift Proxy Swift Proxy

Swift-A (local) Swift-I (intercloud)

A: container 1

A: container 2

I: container 1

I: container 2

Swift Client

Requests modified in order to

merge responses.

•Account Info

•Container List

•X-Copy-from/to

Response merged by

Swift Dispatcher has a

prefix to indicate which

Swift is used to store.

Swift Proxy

Swift Dispatcher

Swift Proxy Swift Proxy

Swift-A (for local case) Swift-I (for intercloud case)

A: container 1

A: container 2

I: container 1

I: container 2

Swift Client

Cache(Proxy)

Swift

@Tokyo Swift@
Chiba

Swift
@Sapporo

6.15 Mbits/sec

6.29 Mbits/sec

941.23 Mbits/sec

929.15 Mbits/sec

7.80 Mbits/sec

7.73 Mbits/sec

1 2 3 4 5

1K 1,755 2,165 395 3,178 1.375

1M 431,840 446,824 537,768 412,542 43,307

10M 710,179 741,350 737,565 723,446 731,824

100M 780,548 775,131 788,620 782,503 786,224

1 2 3 4 5

1K 11,608 13,293 12,916 14,691 12,126

1M 3,427,827 3,427,402 3,455,788 673,614 3,386,009

10M 958,018 959,098 7,188,901 974,072 949,389

100M 1,109,440 98,400,555 99,641,184 15,411,221 92,400,774

• Upload – Always the worst case

• Download – without cache

Client

10G

1G

network performance
(netperf)

1 2 3 4 5

1K 398,133 415,753 397,979 446,576 406,510

1M 9,238,473 202,193,598 177,694,628 161,992,275 134,450,057

10M 55,186,177 288,776,403 319,892,614 331,691,392 307,500,293

100M 473,135,008 471,484,134 467,654,981 412,153,419 451,464,516

• Download - with cache

97Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 110 / 282

Swift should be zone-aware for geographically distributed

use. For example, swift dispatcher can choose the best swift

proxy to transfer a request to if it knows the network latency

(see Fig. 8).

Figure 8. Colony load balancing.

The swift code of the prototype was modified as follows:

 Uploading

Calculate the number of unfinished tasks in the send queue

for each area and when one area has much more than the

others stop uploading jobs to it.

 Downloading

 Check the connection performance of the object servers

and try to retrieve an object from the fastest one. Uploading

performance improves by utilizing zone awareness (Fig. 9).

object
size

1 2 3 4 5

1K 11,356 13,157 13,074 12,758 12,680

1M 9,824,750 11,205,249 7,599,312 10,931,206 11,199,982

10M
52,294,403 51,437,092 51,050,686 52,641,471 52,300,141

100M 97,937,987 101,847,002 102,385,002 102,413,801 101,462,855

Figure 9. Uploading performance with zone awareness.

The VM info converter can be used to share virtual machine

image metafiles and is implemented as a swift dispatcher filter

(Fig. 10). This implementation enables the shared machine

images stored in intercloud storage service to be launched in

user specified cloud compute services.

Figure.10. Colony virtual machine image metadata converter.

VI. CONCLUSION

We described an intercloud storage service architecture and

prototype using code of the project called colony. The

architecture looks feasible, and we will continue to evaluate it

in a real environment and enhance the code for better

performance.

We already know that there are points in the intercloud

object storage service we could tune to get better performance.

These points and their evaluations will be reported in the

future.

REFERENCES

[1] Nobukazu Yoshioka, Shigetoshi Yokoyama, Yoshionori
Tanabe, and Shinichi Honiden , “edubase Cloud: An
Open-source Cloud Platform for Cloud Engineers,”
SECLOUD '11 Proceedings of the 2nd International
Workshop on Software Engineering for Cloud Computing,
2011.

[2] Shibboleth: http://www.shibboleth.net/ [retrieved: June, 2012]

[3] Baltic-avenue : http://code.google.com/p/baltic-
avenue/[retrieved: June, 2012]

[4] Boardwalk :https://github.com/razerbeans/boardwalk [retrieved:
June, 2012]

[5] Fs3: http://fs3.sourceforge.net/ [retrieved: June, 2012]

[6] Sinatra-s3: https://github.com/nricciar/sinatra-s3 [retrieved: June,
2012]

[7] Radosgw: http://ceph.newdream.net/wiki/RADOS_Gateway

[8] Ceph: http://ceph.newdream.net/ [retrieved: June, 2012]

[9] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano
Obertelli, Sunil Soman, Lamia Youseff, and Dmitrii
Zagorodnov, “The Eucalyptus Open-source Cloud-
computing System,” 2009 J. Phys.: Conf. Ser. 180 012051.

[10] OpenStack Swift: http://openstack.org/downloads/openstack-object-
storage-datasheet.pdf and http://docs.openstack.org/cactus/openstack-
object-storage/admin/os-objectstorage-adminguide-cactus.pdf [retrieved:
June, 2012]

[11] Colony: https://github.com/nii-cloud/colony [retrieved:
June, 2012]

[12] Squid:http://www.squid-cache.org/ [retrieved: June, 2012]

Swift Dispatcher

Swift Proxy 3

Swift-I

A: container 1

A: container 2

I: container 1

I: container 2

Swift Client

Swift Proxy 1

Swift Dispatcher checks network latency (using ping

for now) periodically to find the best swift proxy.

Swift Dispatcher has swift proxy list for each Swift

swiftA.txt
•Swift proxy 1

•Swift proxy 2

•Swift proxy 3

- If one of the swift proxies fails to respond,

try to request another one.

Swift Proxy 2

OpenStack B

Swift Dispatcher

Swift Proxy

Swift -I

Glance A

VM info converter (for OpenStack)

Swift Dispatcher

Glance B

VM info converter (for OpenStack)

VM Image Metadata

VM Image

OpenStack A

Swift Dispatcher

Other C

VM info converter (for Other Cloud Stack)

Other Cloud Stack C

Share image

Share image

98Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 111 / 282

Mobile Cloud Computing Environment as a Support for Mobile Learning

Stojan Kitanov, Danco Davcev
University for Information Science and Technology (UIST) “St. Paul the Apostle”

Ohrid, Republic of Macedonia
stojan.kitanov@uist.edu.mk, dancho.davchev@uist.edu.mk

Abstract—This paper presents a new model of mobile distance
learning system (MDL) in an extended mobile cloud computing
environment (MCC) by using High Performance Computing
(HPC) Cluster Infrastructure, as well as some existing
videoconferencing technologies enriched with mobile and
wireless devices. This MCC model can be applied everywhere
where there is need of fast and intensive computing and
analysis of huge amount of data, such as modeling of 3D
graphics visualization and animation in ecology, global climate
solutions, financial risks, healthcare and medical learning,
decoding genome projects, etc. After the MCC model
presentation, the experimental system architecture will be
provided, as well as its possibilities, with particular reference
to mobile learning environment and its potential issues. In this
architecture the mobile device may optionally use the open
source e-learning course management system platform
Moodle, to access the learning material and the relevant data
that needs to be transferred to the HPC Cluster Infrastructure
for further computing. In order to provide higher q uality of
presenting the learning material, the Cisco WebEx application
will be used to test the distance learning in both fixed and
mobile environment. Then, a Quality of Experience (QoE)
evaluation of such mobile distance learning system will be
provided. Finally, it will be concluded that this MCC model
that incorporates HPC Cluster Infrastructure can be applied
anywhere where there is need of fast and intensive computing
and analysis of huge amount of data which cannot be
performed by a conventional PC, Laptop or Mobile Device.

Keywords-Cloud Computing (CC); Distance Learning (DL);
Mobile Cloud Computing (MCC); Mobile Distance Learning
(MDL); High Performance Computing (HPC) Cluster.

I. INTRODUCTION

Together with the explosive and rapid growth of Internet,
mobile networks, mobile applications, and cloud computing,
mobile cloud computing is introduced as a potential
technology for mobile devices. As mobile network
infrastructures continuously improve, their data transmission
becomes increasingly available and affordable, and thus they
are becoming popular clients to consume any internet web-
based applications. Cloud computing provides delivery of
services, software and processing capacity over internet,
reducing cost, increasing, automating systems, decoupling of
service delivery from underlying technology, and providing
flexibility and mobility of information. Mobile Cloud
Computing (MCC) integrates the cloud computing into the
mobile environment and overcomes the obstacles related to
the performance (battery life, storage, and bandwidth),
environment (heterogeneity, scalability and availability), and

security (reliability and privacy) [1]. One future potential
application of MCC is the Mobile Distance Learning (MDL),
where the students can get the knowledge from centralized
shared resources at any place and any time [1], [2].

This paper presents a new Model of Distance Learning
System in Mobile Cloud Computing Environment, by using
High Performance Computing (HPC) Cluster Infrastructure
[3], [4] as well as some existing videoconferencing
technologies enriched with mobile and wireless devices. This
MCC model can be applied everywhere where there is need
of fast and intensive computing analysis of huge amount of
data, such as modeling of 3D graphics visualization and
animation in ecology, global climate solutions, financial
risks, healthcare and medical learning, decoding genome
projects, etc. Then, the experimental system architecture of
Mobile Distance Learning (MDL) system in Mobile Cloud
Computing (MCC) environment will be presented. In this
architecture the mobile device may optionally use the open
source e-learning course management system platform
Moodle [5], [6] to access the learning material and the
relevant data that needs to be transferred to the HPC cluster
infrastructure for further computing. In order to provide
higher quality of presenting the learning material, this
architecture uses Cisco WebEx application [7], as well as
some existing videoconferencing technologies enriched with
mobile and wireless devices such as smart phones, or tablets.
The main contribution of the paper is the Quality of
Experience (QoE) evaluation of such MDL system in MCC
environment.

The paper is organized as follows. Section II summarizes
the related work. Section III presents the new model of
distance learning system in mobile cloud computing
environment. Section IV provides the system architecture of
MDL in MCC environment. Section V gives an overview of
the Quality of Experience (QoE) aspects of MDL in MCC
environment. Section VI presents the QoE evaluation
scenarios, while Section VII gives the comparison QoE
evaluation results for MDL in MCC environment with
respect to the Distance Learning (DL) in the conventional
CC Environment. Finally, Section VIII concludes the paper
and provides information about future work.

II. RELATED WORK

Cloud computing in mobile platforms has invoked a new
wave of evolution in the rapidly developing mobile world.
Many mobile devices such as smart phones, PDAs, tablets,
pockets PC have been added to the Mobile Cloud Computing
(MCC) Environment. Today these mobile cloud applications

99Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 112 / 282

(like Google’s Map, Gmail for iPhone, and Cisco’s WebEx
on iPad and iPhone, etc.) are already available [8].

The Mobile Cloud Computing Forum defines MCC as
follows [1], [9]:

“Mobile Cloud Computing at its simplest refers to an
infrastructure where both the data storage and the data
processing happen outside of the mobile device. Mobile
cloud applications move the computing power and data
storage away from mobile phones and into the cloud,
bringing applications and mobile computing to not just
smartphone users but a much broader range of mobile
subscribers”.

Mobile Cloud Computing will provide many benefits for
cloud computing, mobile network operators, such as
increased reach, reduced costs, and reduced reliance on
hardware and software equipment. Mobile cloud computing
has many advantages among the few listed below:

• Sharing information and applications without the
need of complex and costly hardware and software
since computations are run in the cloud [10];

• Enhanced features and functionalities of mobile
devices through new cloud applications [10];

• Ease of access and development since the access
point to mobile cloud computing is through a
browser and not a mobile operating system [10];

• Cheaper for cloud computing vendors to build
mobile cloud applications because of access to all
mobile devices, i.e. one application can be shared
and accessed by many mobile device users [10];

• Broader reach, since mobile cloud applications can
be accessed through a browser, the cloud computing
applications can be reached by all mobile device
users, as long as the mobile device has an internet
access [10];

• Extending battery lifetime for mobile devices [1],
[11], [12], [13];

• Improved data storage capacity and processing
power since MCC enable mobile users to
store/access the large data on the cloud through
wireless networks [1], [14], [15], [16], [17]; and

• Improved reliability since data and computer
applications are stored and backed up on a number
of computers [1], [18], [19].

However, there are still many obstacles for MCC,
including service availability, mobility management,
security, privacy, energy efficiency, etc. These problems
must be carefully addressed before MCC could become
completely operational.

Mobile Distance Learning is seen as one of the potential
future applications of MCC [1], [2]. Mobile Learning (m-
learning) is one of the applications that can be supported by
MCC. Traditional m-learning applications have limitations in
terms of high cost of devices and network, low network
transmission rate, and limited educational resources [20],
[21], [22]. Cloud-based mobile learning (m-learning)
applications are introduced to solve these limitations. For
example, utilizing a cloud with the large storage capacity and
powerful processing ability, the applications provide learners

with much richer services in terms of data (information) size,
faster processing speed, and longer battery life.

One MCC model that is made up of complex network
and relationships of and in between Infrastructure Providers,
Application/Services Providers, End-Users and Developers
all producing and/or consuming applications and/or services
on internet is given in [23]. Of a particular interest in this
model are the developers that offer their applications and
services on the web via Software as a Service (SaaS) models
running on other’s hardware (HW) and software (SW)
infrastructure providers. However since MCC can be applied
in many areas, this model is too general and does not specify
any details about MCC implementation.

Microsoft has proposed an HPC Server and Cloud
Platform [24]. This platform uses Windows HPC Server
2008 Service Pack 1 that enables service oriented, HPC jobs
to be executed as a service using Windows Azure datacenter.
High Performance Computing (HPC) gives analysts,
engineers, and scientists the computation resources they need
to make better decisions, fuel product innovation, speed
research and development, and accelerate time to market.
Some examples of HPC usage include: decoding genomes,
animating movies, analyzing financial risks, streamlining
crash test simulations, modeling global climate solutions,
computational fluid dynamics (CFD) and other highly
complex problems. However this platform is specified only
for Conventional Cloud Computing Environment.

Therefore, we propose a new Mobile Cloud Computing
Model for Mobile Distance Learning that uses HPC cluster
infrastructure. The advantage of the presence HPC cluster
infrastructure in the MCC model is that it can be used in
situations where the necessary computing cannot be
performed by a mobile device, or a conventional PC, or
laptop. This model is described in the next section.

III. MOBILE CLOUD COMPUTING MODEL

Our proposed Mobile Cloud Computing Model for
Mobile Distance Learning is given on Fig. 1. This Model
incorporates High Performance Computing (HPC) Cluster
Infrastructure. The communication between the end-user
devices (terminals) and the HPC Center is in a cloud
computing environment due to the various service requests.

The terminals can be connected to the HPC Cluster
Infrastructure inside the University Local Area Network
(LAN), or they can be connected on external network
(internet). The University Moodle Platform Server (Moodle
Course Management System) [5], [6] hosts educational
resources and it is connected on the University LAN. The
user may access the Moodle platform directly from the
University LAN or through the Internet in order to collect the
necessary data that needs to be computed by the HPC center.
Alternatively, the data that needs to be computed can be
collected by the HPC cluster infrastructure throughout the
University LAN if the data is too large and cannot be
collected by the mobile terminal. When the user wants some
data to be computed by the HPC cluster infrastructure it
sends request to the HPC center. When the HPC
acknowledges the request it receives the data directly from
the user terminal or from the University Moodle Platform.

100Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 113 / 282

Figure 1. Mobile Cloud Computing (MCC) Model with High Performance Computing (HPC) for Mobile Distance Learning (MDL)

The user can access the HPC center either from University
LAN, or directly from internet, through the HPC
Management System (HPC Controller). The HPC Controller
manages the authorized access to the HPC Center, and it is
directly connected on both passive and active server. Like
that a redundancy is provided in case the active server goes
Out Of Service (OOS). The passive and the active servers are
connected to the Load Balancer, which determines which
server is active. The Load Balancer also determines which
server needs to manage the load (either the active, or both),
i.e. the incoming service request from the user.

Both active and passive servers are connected to the
storage area network and the cluster network infrastructure.
The server takes additional data from the storage area
network that needs to be processed (computed), and then it
forwards all the necessary data to the cluster network
infrastructure for further computing. The cluster network
infrastructure consists of N interconnected computer nodes.
One of these nodes is the main node, or master node, and it
determines which nodes should perform the computing of
data. Like that parallel processing is enabled. Once the data
computation is completed, the final information is sent back
to the user. If the master node fails to operate normally, then
another node becomes master node. Like that a redundancy
among the nodes is achieved.

The advantage of this model is that it offers new services
on mobile devices, as a special benefit from using the HPC
center within the mobile cloud environment. In our case, we
have provided many statistical calculations connected to the
MDL by using HPC center. HPC Cluster infrastructure is
useful in situations where the necessary computing cannot be
performed by a mobile device, or a conventional PC, or
laptop. Another advantage of this model is that it provides
service continuity, or seamless mobility as the user
handovers from external network to the University Local
Area Network.

The next section will present the Experimental System
Architecture for m-learning that supports Mobile Cloud
Computing. In order to provide higher quality of presenting

the learning material, the Cisco WebEx application will be
used as an end-user application on the mobile devices.

IV. Experimental System Architecture

The experimental system architecture for Mobile
Distance Learning (MDL) that supports Mobile Cloud
Computing (MCC) with High Performance Computing is
given on Fig. 2. According to this architecture the University
classroom is connected to the University Moodle Server
Platform, internet and HPC Platform. The University
Classroom usually should have the following equipment: PC,
or laptop, microphone, speakers, tablet, webcam, projector,
and a monitor, or screen. At the University Classroom the
instructor presents and delivers the content of the learning
material to the students in a classical manner, or via internet
to the students that are at home, at work, or simply they are
mobile (on the road). The students that are at home, or at
work connect to the course by using their PC, or laptop using
the high speed internet from their home, or their office. On
the other hand, the mobile students (students on the road) use
their mobile devices (mobile smartphones, or tablets) to
connect to the course via their mobile networks (such as
GPRS, UMTS, HSPA, WiFi, WiMAX or LTE).

The University Moodle Server Platform provides
possibility to host the digital educational resources, which
can be accessed by the instructor and all students either
locally, or throughout internet connection. Additionally all
students, as well as the instructor over the internet can access
the University Moodle Server Platform to collect, or
download the data that needs to be computed and to forward
it to the HPC platform, for huge amount of data processing
in a cloud computing environment. Alternatively, the HPC
cluster infrastructure may download the necessary data from
the University Moodle Platform, when it receives a request
from the authorized user. In the HPC platform, the HPC
controllers process the users’ requests. The HPC Data center
provides the hardware and software facility, as well as the
infrastructure for cloud computing service providers. At the

101Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 114 / 282

Figure 2. Mobile Cloud Computing (MCC) System Architecture with High Performance Computing (HPC) for Mobile Distance Learning (MDL)

HPC Data centers, several servers are linked with high speed
networks to provide services requested by users.

Particularly the overall theoretic performance of the HPC
cluster in Macedonia is 9 TFlops, and achieved peak
LINPACK performance is 7.776 TFlops, that is 86%
efficiency. It consists of 84 computational blade servers with
2 Six core L5640 CPUs and 24 GB RAM. The 6
management servers have also 2 Six core L5640 CPUs and
24 GB RAM, four of which act as storage servers and are
connected in a failover configuration to a Serial Attached
Small Computer System Interface (SCSI) storage with
60x600 GB Dual channel Serial Attached SCSI (SAS) disks.
The HPC cluster provides possibility for deployment of any
needed library, or software pack for any research
community.

One potential application that delivers the information
(learning content) from the course lecturer to the distance
student and vice versa with a very high presenting quality is
the Cisco WebEx application. WebEx suite, compared to
other tools, offers a broad range of Web conferencing, and
content sharing [25]. No software download is required for
participants, and WebEx will run on any Internet server, or
mobile devices such as smart phones, or tablets. A summary
of WebEx Key features is given in [26].

WebEx can be used for different educational scenarios.
For example the WebEx Whiteboard is a suitable tool for
teachers in distance learning sessions. Also there is a
possibility of annotations of the browser’s application while
sharing a map. WebEx is also a suitable tool for sharing and
highlighting medical images in Telemedicine. WebEx offers
possibility for sharing a presentation, where either can be
used the WebEx annotation tools, or better the Power point
annotation tools that are available in the presenter mode.

V. QUALITY OF EXPERIENCE (QOE) ASPECTS OF MDL IN

MCC ENVIRONMENT

Mobile Distance Learning in a Mobile Cloud Computing
Environment can be tested on both QoS and QoE aspects.
Below is provided a short description for each of these
aspects.

QoS refers to the technical aspects. It is defined as the
ability of the network to provide a service at an assured
service level. QoS encompasses all functions, mechanisms

and procedures in the network and the terminal that ensure
the provision of the negotiated service quality between the
User Equipment (UE) and the Core Network (CN). QoS is
measured, expressed and understood in terms of networks
and network elements, which usually has little meaning to a
user. The reliability in service concerns throughput, delay,
jitter and loss in data during transmission of data; service
availability, security in terms of authentication as well as
authorization, coverage area, and service setup time of the
related bearer service; service retain ability, in general
characterizes connection losses [27].

QoE refers to the perception of the user about the quality
of a particular service, or network, i.e. it depends on
customer satisfaction in terms of usability, accessibility,
retain ability and integrity of the service. QoE means overall
acceptability of an application, or service, as perceived
subjectively by the end-user. Quality of Experience includes
the complete end-to-end system effects (client, terminal,
network, services infrastructure, multimedia learning
content, etc.). Overall acceptability may be influenced by
user expectations and context.

However, the overall QoE (user perception) is influenced
by both technical performance of the network (QoS aspects)
and the non-technical aspects of the service. QoE refers to
the personal feelings of the customer about the quality of a
service, and it expresses using perceptive words like ‘good’,
‘excellent’, ‘poor’ [28].

Since High Speed reliable and secured internet access is
used at the University Campus Network it can be assumed
that the network has excellent technical performances, .i.e.
no QoS technical issues are present. Therefore the main
focus in this paper is directed towards the non-technical
aspects of QoE evaluation of the mobile distance learning
system in MCC environment, and its comparison to the
conventional distance learning system in CC environment.

The QoE will be evaluated through answering the survey
questions by the participants after the completion of the
distance learning course. The survey consists of the
following questions:

• What is the user’s satisfaction in using the system
from quality of presentation of learning documents?

• Is it easy to understand the presented concept?
• Did the user focus very easy to the presentation?

102Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 115 / 282

Figure 5. A Screenshot from the testing of WebEx on International

Distance Learning Conference

Figure 6. HTC Sensation as a Part of the Learning System

Figure 3. iPhone 4 as a Part of the Learning System

Figure 4. iPad as a Part of the Learning System

• How interactive is the system for communication
with the presenter, asking the questions, etc.?

• Did the user find the Human Computer Interaction
(HCI) friendly for himself/herself?

• How available is the learning system to the user?
• Did you find the usage of High Performance

Computing (HPC) Center useful?

VI. QOE EVALUATION SCENARIOS

In order to provide the QoE evaluation results (section
VII), the system has been tested in the following two
environments: the Distance Learning (DL) system in the
conventional Cloud Computing (CC) environment and MDL
system in MCC environment. These two scenarios are
described in subsections A and B.

A. QoE Evaluation of DL System in a Convetional CC
Envrionment

The test of WebEx Communication System for the DL
system in the Conventional CC Environment was performed
in the following two distance learning conference scenarios:
Local Conference and International Conference. This
corresponds to the scenario Student at Home, Student at the
Office, or Student in a Distant Classroom, described in Fig.
2. The test was performed in the following two conference
scenarios: the local scenario and the international scenario.

The local distance learning conference was performed
locally within the University in Ohrid, in order to verify
whether the WebEx can be used for distance learning, as
well as to discover the possibilities and features of WebEx.

The international distance learning conference was
performed between the University for Information Science
and Technology from Ohrid, Macedonia and the Norwich
University from Vermont, USA. A screenshot from this test
is given on Fig. 3. It can be noticed that during this test there
was a course presentation about Network Security prepared
by the University of Norwich. Students were able easily to
follow the presentation, to ask questions, or to exchange
some ideas using the WebEx features. Several professors and
students participated from both Universities.

Both scenarios were several times performed and were
successfully completed.

B. QoE Evaluation of MDL System in MCC Environment

After the successful tests in subsection A, the WebEx
Application was tested in a MDL System. This scenario
corresponds to the mobile students’ category (a situation
when the students are on the road), described in Fig. 2. In
order to perform the tests of this scenario one user used the
following mobile devices: Motorola Milestone, HTC
Sensation, iPhone 4 and iPad. The tests were successfully
performed locally within the University, or regionally
between the cities Ohrid and Skopje, at a distance of around
175 km. Screenshots from these tests are given on Fig. 4, 5,
and 6.

103Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 116 / 282

Figure 7. Comparison of QoE Evaluation Results in %

VII. COMPARISON OF QOE EVALUATION RESULTS

The survey questions were answered by 30 students that
participated in the distance learning sessions of both CC and
MCC environment. They answered the questions after their
participation in the distance learning course. For simplicity
we made the answers to have two options: ‘good’ or ‘bad’,
i.e. ‘yes’, or ‘no’. Each student’s vote for each question has a
weight of 10/3 by 30 participants. A summary of the QoE
evaluation results is given in Fig. 7. The following things can
be concluded.

The mobile devices provide higher and easier availability
of the MDL system in MCC environment, since the
conventional DL system in CC environment cannot provide
the learning content for the mobile students. Additionally the
usage of High Performance Computing (HPC) Center is
more useful for MDL system in MCC environment, rather
than DL in CC environment. HPC Cluster infrastructure is
useful in situations where the necessary computing cannot be
performed by a mobile device, or a conventional PC, or
laptop. This MCC model can be applied everywhere where
there is need of fast and intensive computing and analysis of
huge amount of data, such as modeling of 3D graphics
visualization and animation in ecology, global climate
solutions, financial risks, healthcare and medical learning,
decoding genome projects, etc.

Additionally, the following was concluded. For the DL
system in CC environment was noticed a perfect
communication, without any delay, or noise interference,
since a high speed secured reliable internet access was used.

For the MDL system in MCC environment the network
may not have good performances if the user uses the network
on a high speed train. Additionally, the mobile devices have
limited capabilities compared to conventional Laptop, or PC.
Laptop, or PC can provide audio and video conversation,
chat, and data sharing option. The tablet (iPad) supports

audio and video conversation, and chat. The mobile phone
supports audio conversation and chat. Currently data sharing
(content sharing) from the mobile devices is not supported.
These constraints are due to the capabilities of the mobile
devices as well as the features that are supported by the
current WebEx version. However, the smart phone and the
tablet (iPad) can only view the data (content) that is shared
from a PC or Laptop. This is sufficient for mobile students
(students on the road) to listen, to view and follow the
lecture, since it not expected from them to make any
presentation.

VIII. Conclusion and Future Work

This paper provided a new Model of Distance Learning
System in Mobile Cloud Computing environment, by using
High Performance Computing (HPC) Cluster infrastructure,
as well as some existing videoconferencing technologies
enriched with mobile and wireless devices. After the
introduction and the related work, the new MCC model was
presented. Then new system architecture was proposed for
the Mobile Distance Learning System in Mobile Cloud
Computing Environment that uses the Internet Access. Then
some QoE aspects of such distance learning system were
addressed. Finally QoE evaluation was performed by
comparing the MDL system in MCC environment with
respect to the DL system in CC environment. It was
concluded that mobile devices provide higher and easier
availability of MDL system in MCC environment, since the
conventional DL system with CC environment cannot
provide the learning content for the mobile students. The
smart phone and the tablet (iPad) can only view the data
(content) that is shared from a PC, or Laptop, which is
sufficient for the mobile students (students on the road).
They have to listen, to view and to follow the lecture, since it
is not expected from them to make any presentation.
Additionally, the usage of High Performance Computing

104Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 117 / 282

(HPC) Center is more useful for the MDL system in MCC
environment, rather than for the DL system in CC
environment. HPC Cluster Infrastructure is useful in
situations where the necessary computing cannot be
performed by a mobile device, or a conventional PC, or
laptop. This MCC model can be applied everywhere where
there is need of fast and intensive computing and analysis of
huge amount of data, such as modeling of 3D graphics
visualization and animation in ecology, global climate
solutions, financial risks, healthcare and medical learning,
decoding genome projects, etc.

In future, we plan to address some additional issues for
the MCC, such as, Low Bandwidth, that could be solved
with 4G (5G) and/or Femtocells, Network Access
Management, QoS (from technical point of view such as
network delay by using cloudlets, clonecloud, etc.), billing
and standardization of the interface. However our main
interest is to provide more services on a Software as a
Service (SaaS) basis for mobile learners and/or more
efficient MDL by using HPC center. We plan to include
services based on simulation, or experiments performed by
the HPC center on behalf of mobile users, particularly in
healthcare and medical education and learning, where
extremely is necessary to perform quick data analysis of 3D
medical images.

ACKNOWLEDGMENT

Many special thanks to the respected Dr. Frank Vaneck
and Dr. Phil Susmann from Norwich University, Vermont,
USA for their participation in this international distance
learning educational project. Also many special thanks to
Aleksandar Karadimce, Dijana Nikolovska and Daniela
Boshnakoska, and all UIST students for their support during
this project.

REFERENCES
[1] T. H. Dihn, C. Lee, D. Niyato, and P. Wang, “A Survey of Mobile

Cloud Computing: Architecture, Applications, and Approaches,”
Wireless Communications and Mobile Computing – Wiley,
DOI:10.1002 WCM/1203, pp. 1 – 38, 11 October 2011.
http://www.eecis.udel.edu/~cshen/859/papers/survey_MCC.pdf
[retrieved: 05, 2012]

[2] N. M. Rao, C. Sasidhar, and V. S. Kumar, “Cloud Computing
Through Mobile Learning,” (IJACSA) Internationa Journal of
Advanced Computer Science and Applications, Vol 1, No. 6, pp. 42 –
46, December 2010.

[3] High Performance Computing, Coraid solutions.

http://www.coraid.com/solutions/high_performance_computing
[retrieved: 05, 2012]

[4] Maryland CPU-GPU Cluster Infrastructure.

http://www.umiacs.umd.edu/research/GPU/facilities.html

[retrieved: 05, 2012]

[5] Moodle, Course Management System. www.moodle.org

[retrieved: 05, 2012]

[6] Course Management Site of the University for Information Science
and Technology, Ohrid, Macedonia. http://uistmoodle.servehttp.com/
[retrieved: 05, 2012]

[7] Cisco WebEx website. http://www.webex.com [retrieved: 05, 2012]

[8] S. S. Qureshi, T. Ahmad, K. Rafique, and S. U. Islam, “Mobile
Computing as Future for Mobile Applications – Implementation

Methods and Challenging issues,” Proceedings of IEEE CCIS, pp.
467 – 471, November 2011.

[9] Mobile Cloud Computing Forum.

http://www.mobilecloudcomputingforum.com/ [retrieved: 05, 2012]

[10] M. Tantow, “Cloud Computing and Smartphones,” article in Cloud
Times, 01 March 2011. http://cloudtimes.org/cloud-computing-and-
smartphones/ [retrieved: 05, 2012]

[11] A. Rudenko, P. Reiher, G.J. Popek, and G. H. Kuenning, “Saving
portable computer battery power through remote process execution,”
Journal of ACM SIGMOBILE on Mobile Computing and
Communications Review, Vol. 2, No. 1, pp. 19 - 26, January 1998.

[12] U. Kremer, J. Hicks, and J. Rehg, “A Compilation Framework for
Power and Energy Management on Mobile Computers,” in
Proceedings of the 14th International Conference on Languages and
Compilers for Parallel Computing, pp. 115 – 131, August, 2001.

[13] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu, R.
Chandra, and P. Bahl, “MAUI: Making Smartphones Last Longer
with Code offload,” in Proceedings of the 8th International
Conference on Mobile Systems, applications, and services, pp. 49-62,
June 2010.

[14] http://aws.amazon.com/s3/ [retrieved: 05, 2012]

[15] http://www.flickr.com/ [retrieved: 05, 2012]

[16] http://www.shozu.com/portal/index.do [retrieved: 05, 2012]

[17] http://www.facebook.com [retrieved: 05, 2012]

[18] P. Zou, C. Wang, Z. Liu, and D. Bao, “Phosphor: A Cloud Based
DRM Scheme with Sim Card,” in Proceedings of the 12th
International Asia-Pacific on Web Conference (APWEB), pp. 459,
June 2010.

[19] J. Oberheide, K. Veeraraghavan, E. Cooke, J. Flinn, and F. Jahanian,
“Virtualized in-cloud Security Services for Mobile Devices,” in
Proceedings of the 1st Workshop on Virtualization in Mobile
Computing (MobiVirt), pp. 31 – 35, June 2008.

[20] X. Chen, J. Liu, J. Han, and H. Xu, “Primary Exploration of Mobile
Learning Mode under a Cloud Computing Environment,” in
Proceedings of the International Conference on E-Health Networking,
Digital Ecosystems and Technologies (EDT), vol. 2, pp. 484 – 487,
June 2010.

[21] H. Gao and Y. Zhai, “System Design of Cloud Computing Based on
Mobile Learning,” in Proceedings of the 3rd International
Symposium on Knowledge Acquisition and Modeling (KAM), pp.
293 – 242, November 2010.

[22] J. Li, “Study on the Development of Mobile Learning Promoted by
Cloud Computing,” in Proceedings of the 2nd International
Conference on Information Engineering and Computer Science
(ICIECS), pp. 1, December 2010.

[23] Ceo, “On (Mobile) Cloud Computing – Multiple Perspectives to its
Benefits, Drivers, and Economics,” 25 December 2009.
http://weblog.cenriqueortiz.com/mobility/2009/12/25/on-mobile-
cloud-computing-angles-to-benefits-drivers-and-economics/
[retrieved: 05, 2012]

[24] Microsoft Server and Cloud Platform (Windows HPC Server 2008
R2). http://www.microsoft.com/en-us/server-cloud/windows-
server/high-performance-computing-hpc.aspx [retrieved: 05, 2012]

[25] Socialbrite “Virtual Meeting Smackdown! 15 Top Web Conferencing
Services Compared,” Social Tools for Social Change, 19 January
2011. http://www.socialbrite.org/2011/01/19/comparison-top-web-
conferencing-services/ [retrieved: 05, 2012]

[26] Cisco WebEx Key Features. http://www.webex.com/lp/keyfeatures
[retrieved: 05, 2012]

[27] D. Sharma, R.K. Singh, “QoS and QoE Management in Wireless
Communication System,” International Journal of Engineering
Science and Technology (IJEST), ISSN: 0975-5462, Vol. 3, No. 3,
pp. 2385 – 2391, March 2011.

[28] N. Muhammad, D. Chiavelli, D. Soldani and M. Li, “QoS and QoE
Management in UMTS Cellular Systems,” John Wiley & Sons, Ltd.
ISBN: 0-470-01639-6, pp. 1-8, 2006.

105Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 118 / 282

Provenance in the Cloud: Why and How?

Muhammad Imran
Research Group Entertainment Computing

University of Vienna, Austria
Email: imran.mm7@gmail.com

Helmut Hlavacs
Research Group Entertainment Computing

University of Vienna, Austria
helmut.hlavacs@univie.ac.at

Abstract—Provenance is an important aspect in the ver-
ification, audit trails, reproducibility, privacy and security,
trust, and reliability in many fields ranging from art, food
production, medical sciences, in-silico experiments, and dis-
tributed computing. On the other hand, Cloud computing is
the business model of distributed computing and is considered
the next generation of computing and storage platforms.
Cloud computing requires an extension of the architecture
of distributed and parallel systems by using virtualization
techniques. Key to this extensible architecture is to support
properties such as compute “on demand” and “pay as you go”
model. Clouds are in use since a few years and they already ex-
panded in the business domain (Amazon EC2, Microsoft Azure,
IBM SmartCloud) and research environments (EUCALYPTUS,
OpenNebula, Nimbus). Many research domains have already
adopted Cloud technology into their existing computational and
storage platforms and, thus, a shift of technology is in progress.

In this paper, we present provenance description in comput-
ing sciences. Then, we give an overview of Cloud architecture
and answer why provenance is important for Cloud computing.
We introduce a mechanism to include provenance in the
Cloud which requires minimal knowledge and understanding
of underlying services and architecture. Therefore, we detail
the importance along with the characteristics identified and
present a framework for provenance in Cloud computing.
We assure trust by augmenting a Cloud infrastructure with
provenance collection in a structured way and present first
performance results of the extended architecture. Finally, we
discuss the results and summarize challenges and open issues
of provenance in Clouds.

Keywords-provenance; research or open Clouds.

I. INTRODUCTION

Oxford dictionary [1] defines provenance as “the place
of origin or earliest known history of something”. In many
fields including art, science and computing, provenance is
considered as the first class data of importance for tracing
an object to its origin. Provenance is defined by a set of
different properties about the process, time, and input and
manipulated data. Provenance is used to answer a few basic
questions such as when the object was created, the purpose
of creation, and where the object originated from (e.g., the
creator of the object).

In computing sciences, a provenance system is used
to collect, parse, and store related metadata. Such data
is used for verification and tracking back, assurance of
reproducibility, trust, and security, fault detection, and audit

trials. These metadata include functional data required to
trace back the creation process of objects and results, but
also non-functional data such as the performance of each
step including, e.g., energy consumption.

Since Cloud is an evolving technology which is based on
virtualization and offer, on-demand computing, pay-as-you-
go model, and is highly scalable and more abstract. There
is a strong need to propose a provenance scheme for this
dynamic, abstract and distributed environment. In addition
to challenges for distributed computing, the abstraction and
highly flexible usage pose new demands, i.e., a provenance
framework for Clouds has to support these issues. Rajendra
Bose et al. [2] present a detailed survey of computational
models and provenance systems in distributed environment,
specifically workflows execution. However, none of the
approaches support provenance in the Cloud environment.
These existing schemes rely on the support of native ser-
vices from distributed or workflow computing, e.g., process
schedulers. Generally, provenance systems in grid, workflow,
and distributed computing are either strongly part of the
enactment engine or they use Application Programming
Interfaces (APIs), which are enactment engine specific [3].

Cloud infrastructure is not extensible by nature and
therefore, existing techniques are not a good fit to Cloud
environment and to address Cloud specific challenges. A
better approach is to follow an independent and modular
provenance scheme as described in [4]. Such a scheme is
possible by extending the middleware of Cloud infrastructure
where various components and services are deployed (exten-
sion of third party tools and libraries). This scheme which
is a loosely coupled (domain and application independent)
works independently of Cloud infrastructure, client tools and
is of high importance to support future e-science.

In this paper, we provide a general discussion of prove-
nance in different fields with a particular focus on open
or research Clouds. We present underlying architecture of
open Cloud, and propose a framework for provenance data
collection in the Cloud. Hereby, we address the most impor-
tant properties of a provenance system that is, independence
of the Cloud architecture, low storage and computational
overhead of provenance data, and usability. Provenance for
Clouds to the best of our knowledge has not been fully
addressed yet. The major contributions of this paper are

106Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 119 / 282

following:
• analysis of provenance in distributed computing, giving

reasons of the importance and highlight challenges of
provenance in the Clouds and distributed environment;

• a novel proposed scheme which can be deployed to the
Cloud environment while addressing different vendors
and architectures;

• first performance test results of the provenance frame-
work.

The rest of the paper is organized as follows. In Section II,
we discuss the related work in computing sciences. In
Section III, Cloud architecture is discussed along with a pre-
sentation of Eucalyptus Cloud and its dependencies tools and
applications. Section IV presents challenges and provenance
data applied to Cloud computing. In Section V, we discuss
the proposed framework, configuration of provenance sys-
tem to Cloud middleware and its main components. Sec-
tion VI describes first test results and Section VII concludes
our work and details future implementation directions.

II. RELATED WORK

Numerous techniques and projects have been proposed
during the last few years for provenance systems in com-
putational sciences for validation, reproduction, trust, audit
trials and fault tolerance. These techniques range from
tightly coupled provenance system to loosely coupled sys-
tems [5]–[8]. Provenance Aware Service Oriented Architec-
ture (PASOA) [9], [10] uses Service Oriented Architecture
(SOA) [11] for provenance collection and its usage in
distributed computing for workflow management systems.
myGrid [12] and Kepler [13] are examples of projects for
executing in-silico experiments developed as workflows and
they use Taverna [14] and Chimera [15] schemes respec-
tively for Provenance data management in these compu-
tational systems. However, none of these approaches were
designed specifically for Cloud computing architecture. Re-
cently, Muniswamy-Reddy et al. [16] discussed the impor-
tance of provenance for Cloud computing services offered
by AMAZON EC2 [17] using Provenance-Aware Storage
Systems (PASS) [18] system.

In the e-science domain, experiments are performed in
dry labs (in-silico); provenance system has to address
data collection and availability in distributed environment.
Provenance systems use different methods and approaches
to address these challenges. Each approach has pros and
cons which are related properties of a provenance system
in distributed computing. Distributed computing challenges
in general and Cloud specific challenges in particular are
discussed in detail in Section IV-B, where Section IV-C gives
a brief overview of Cloud specific provenance data.

III. CLOUD ARCHITECTURE

Cloud vision is to address a complex engineering, medical
or social problem by mega scale simulation and handling

huge amount of data with a massive computation power.
Clouds are generally categorized as business cloud, research
or private cloud and hybrid cloud. IaaS (Infrastructure as a
Service), PaaS (Platform as a Service) and SaaS (Software as
a Service) are the terms heavily used in a Cloud computing
paradigm and is mostly broken into these three segments.

IaaS: a service provided for the infrastructure (hardware
and software) over the internet. Such an architecture pro-
vides servers, virtualized operating systems and data storage
units. Elastic Cloud is a commonly used term for IaaS and
users pay for required resources as they go. Amazon Elastic
Compute Cloud (Amazon EC2), Nimbus [19], OpenNeb-
ula [20] and EUCALYPTUS [21] are the leading examples
of IaaS. PaaS and SaaS are built on top of IaaS. PaaS
provides an interface for software developers to build new or
extend existing applications, e.g., Google App Engine and
Microsoft Azure. SaaS is an application service provided to
the end user by a vendor, e.g., google mail.

Private Cloud IaaS schemes are mostly used in a research
environment and small businesses by using open source
technologies. They are rapidly growing in the size and
magnitude and expanding in different domains. With the
new technologies and advancements, a private Cloud can
be part of other public or private Clouds thus, providing the
functionality of a hybrid Cloud.

A. EUCALYPTUS

Eucalyptus is an open source implementation of Cloud
computing IaaS scheme using JAVA and C/C++ for vari-
ous components. Users can control an entire Virtual Ma-
chine (VM) instance deployed on a physical or virtual
resource [22]. It supports modularized approach and is
compatible with industry standard in Cloud, i.e., Amazon
EC2 and its storage service S3. It is one of the most used
platforms to create scientific and hybrid Clouds. Eucalyptus
gives researchers the opportunity to modify and instrument
the software which is been lacking in the business offerings,
e.g., Amazon EC2.

Figure 1 presents the extended architecture of Eucalyptus
Cloud. There are three main components involved: Cloud
Controller (CLC, i.e., middleware), Cluster Controller (CC)
and Node Controller (NC). CLC, CC and NC communicates
with each other and outside applications using Mule [23]
and Apache Axis2/C framework. CLC interacts with CC,
where CC is the part of Cloud used to manage clusters
in the network. CC interacts and controls different NCs by
associating and differentiating them using unique addresses
and also balancing load in the cluster. NC assign a VM for
the job execution submitted by a user. Walrus is web service
used for distributed storage management of virtual images
and users metadata. All the communications between differ-
ent components of Eucalyptus Cloud is achieved by using
SOAP, XML, WSDL, and HTTP communication protocols
via Axis2/C and Mule framework.

107Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 120 / 282

IV. PROVENANCE IN CLOUD: Why
There are various definitions of Cloud computing (utility

computing, autonomic computing) and is used as per the
understandings, knowledge and requirements by different
companies and users. Yes, there are some differences from
previous computing technologies specifically to mention
virtualization, on demand, pay as you go model, extremely
flexible and more abstract. Ian Foster et al. [24] present an
overview of the major differences between Cloud and grid
and mentions the most important feature of Cloud technol-
ogy is the total dependence on services (SOA architecture).
There is underlying architecture for networking of software
and hardware but, to the end user it is completely abstract
and hidden. The abstraction allows the end user to send data
to Cloud and get data back, without bothering about the
underlying details. This behavior is fine for a normal user
but, in research environment, scientists are more interested
in the overall process of execution and a step by step
information to keep a log of sub-data and sub-processes to
make their experiments believable, trust able, reproducible
and to get inside knowledge. With improvements of in-silico
experiments, most of the computation and processing is done
by using computing resources and not in a real lab.

Users of Cloud environment may not be interested in the
physical resources, e.g., brand of computer but, surely they
are interested in the invoked service, input and output pa-
rameters, time stamps of invocation and completion, overall
time used by a process, methods invoked inside a service and
the overall process from start to finish. This metadata which
provides the user an ability to see a process from start to
end or simply track back to find the origin of a final result is
called provenance. Generally provenance is used in different
domains by scientists and researchers to trust, track back,
verify individual input and output parameters to services,
sub process information, reproducibility, compare results and
change preferences (parameters) for another simulation run.
Provenance is still missing in Cloud environment and needs
to be explored in detail as mentioned in [16], [25].

A. Implication of a Provenance Enabled Cloud
Introducing the provenance data into Cloud infrastructure

would result in following advantages:
• Patterns: The use of provenance data to find patterns

in the Cloud resources usage. These patterns can be
further utilized to forecast a future request.

• Trust, reliability and data quality: The final data output
can be verified based on the source data and transfor-
mation applied.

• Resources utilization: In Cloud, provenance data can
be used to utilize the existing running resources by
allocating copy of a running resource. This will be
achieved by comparing a new request to the already
running resources and this information is available in
provenance data.

CLC(Cloud

Controller)

LAN/WAN

Computing resources

Eucalyptus Cloud

Storage Center

(Users, Images)

Communication resources

Euca2ools/

ApplicationController API

Walrus (Storage

Controller)

Storage API

Node Controller

VM VM

KVM/XEN

hypervisor

Cluster A

CC(Cluster

Controller)

Node

Controller

Node

Controller

Cluster B

CC(Cluster

Controller)

Node

Controller

Node

Controller

VM: virtual machine

REST web

service

Deployed

using mule

framework

Deployed

using Axis2C

Figure 1. Extended architecture of Eucalyptus Cloud.

• Reduced cost and energy consumption: Provenance
data results in a cost and energy efficiency by using
patterns to forecast a future request and by utilizing
existing running resources.

• Fault detection: Provenance data can pinpoint the exact
time, service, method and related data in case of a fault.

B. Provenance Challenges in Cloud

Usual provenance challenges include: collecting prove-
nance data in a seamless way with a modularized design and
approach, with minimal overhead to object identification,
provenance confidentiality and reliability, storing provenance
data in a way so it can be used more efficiently (energy
consumption) and presenting such information to the end
user (query, visualization). Cloud brings more challenging
to these existing challenges because we have to address the
scalable, abstract and on demand architecture of Cloud. A
provenance system in Cloud should address the following
challenges:

• Domain, Platform and Application independence: How
the provenance system works with different domain
(scientific, business, database), platforms (windows,
linux) and applications.

• Computation overhead: How much extra computation
overhead is required for a provenance system in a
particular domain.

• Storage overhead: How and where is the provenance
data stored. It depends on the type, i.e., copy of original
data or a link reference to original data, granularity

108Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 121 / 282

(coarse-grained or fine-grained) and storage unit (SQL
server, mySQL, file system) of provenance data.

• Usability: It determines the ease of use of a prove-
nance system from a user and Cloud resources provider
perspective. How to activate, deactivate and embed a
provenance system into existing Cloud infrastructure
and services, e.g., is it completely independent or
modification is required on Cloud services layer.

• Object identification: Identify an object in the Cloud
and link the provenance data to source by keeping a
reference or by making a copy of the source object.

• Automaticity: With huge amount of data and process
computation within Cloud, collecting and storing prove-
nance data should be automatic and consistent.

• Cloud architecture: Addressing the on-demand, abstract
and scalable structure of Cloud environment with avail-
ability and extensibility of different components.

• Interaction with Cloud services: Cloud services are not
extensible therefore, they cannot be modified. Business
Clouds are propriety of organizations and open source
Clouds needs understanding of every service if change
is required. The better approach is to provide an inde-
pendent provenance scheme which requires no change
in the existing services architecture.

C. Provenance Data

A provenance system should address two different per-
spectives in collecting metadata for Cloud architecture. Ap-
plications running on Cloud as SaaS or PaaS and provenance
of Cloud infrastructure (IaaS). Users of Cloud are more in-
terested in their application provenance where, providers are
interested in IaaS services provenance to observe resource
usage and find patterns in applications submitted by users
to provide with a more sophisticated model for resources
usage. Following, is the list of mandatory metadata in a
Cloud environment:

1) Cloud process data: Cloud code execution and control
flow between different processes (web services), e.g.,
in EUCALYPTUS are CLC, CC and NC services. Web
service and method name in particular.

2) Cloud data provenance: Data flow, input and output
datasets which are consumed and produced and pa-
rameters passing between different services.

3) System provenance: System information or physical
resources details, e.g., compiler version, operating
system and the location of virtualized resources.

4) Timestamps: Invocation and completion time of Cloud
services and methods.

5) Provider and user: Details about Cloud users and
services provider, e.g., location of clusters and nodes.
Different providers have different trust level and there
could be laws against usage of resources for a partic-
ular geographical area.

V. PROVENANCE FRAMEWORK: How

A Cloud infrastructure is deployed and it relies on the
open source third party tools, libraries and applications.
Eucalyptus Cloud in particular depends on the Apache Axis,
Axis2/C, and Mule framework. These third party libraries
are used for the communication mechanism between various
components of Cloud infrastructure. Cloud infrastructure is
the orchestration of different services and the third party
libraries works as a middleware to connect these services.
The purpose of Cloud computing is more abstraction than
previous technologies like Grid and Workflow computing
and therefore, Cloud services are not extensible.

One method to implement provenance into the Cloud
infrastructure is by changing the source code. This could
be very cumbersome as deep understanding of the code is
required. This will also restrict the change to the particular
version of the Cloud. This method is not feasible to address
the provenance challenge for various Cloud providers, do-
mains and applications. The second method is to capture
the provenance data on the middleware of a Cloud. This is
possible by extending the third party libraries used by Cloud
infrastructure and add custom methods to collect provenance
data at various different levels. Such a scheme will lead
to the minimum efforts and can be deployed across any
Cloud scheme. Further, there will be no change required in
Cloud services architecture or signature. To understand this
techniques and hence the proposed provenance framework,
we give a brief overview to the most important Mule and
Axis2/C architecture.

A. Mule Enterprise Service Bus

Mule is a lightweight Enterprise Service Bus (ESB) writ-
ten in JAVA and is based on Service Oriented Architecture
(SOA). Mule enables the integration of different application
regardless of the communication protocol used by those
applications. Eucalyptus CLC services are deployed using
Mule framework. CLC services are divided into different
components including core, cloud, cluster manager, msgs,
etc. These different components are built and deployed as
jar files and they use Mule framework messaging protocols
(HTTP, SOAP, XML, etc.) to communicate with each other
and with other Eucalyptus services (NC and CC).

Extending Mule: Mule framework is based on layered
architecture and modular design. Mule offers different kind
of interceptors (EnvelopeInterceptor, TimeInterceptor and
Interceptor) to intercept and edit the message flow. Since,
provenance is metadata information flowing between differ-
ent components (services) and we do not need to edit the
message structure; therefore, we use EnvelopeInterceptor.
Envelop interceptors carries the message and are executed
before and after a service is invoked.

Configuring Mule Interceptor: There are two steps in-
volved for configuring a Mule interceptors to Cloud services.
First step is to built a provenance package (JAVA class files)

109Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 122 / 282

and copying to the Cloud services directory. Second step
requires editing Mule configuration files used by different
CLC components. Interceptors can be configured globally
to a particular service or locally to a particular method of
a service. Listing 1 is a sample “eucalyptus-userdata.xml”
mule configuration file used to verify user credentials and
groups.

Listing 1. Configuration of Provenance into Mule
<?xml version="1.0" encoding="UTF-8"?>
<mule xmlns="http://www.mulesource.org/...">
<interceptor-stack name="CLCProvenance">

<custom-interceptor class="eucalyptus.CLC
provenance"/>

!.. indicating path of the package and class name
for CLC services provenance data
</interceptor-stack>
<model name="eucalyptus-userdata">

<service name="KeyPair">
<inbound>

<inbound-endpoint ref="KeyPairWS"/>
</inbound>
<component>

<interceptor-stack ref="CLCProvenance"/>
!.. configuring "keypair service" to provenance
module

<class="com.eucalyptus.keys.KeyPair
Manager"/>

</component>
<outbound>

<outbound-pass-through-router>
<outbound-endpoint ref="ReplyQueue

Endpoint"/>
</outbound-pass-through-router>

</outbound>
</service>

</model>
</mule>

B. Axis2/C Architecture

Eucalyptus NC and CC services are exposed to other
components by using Apache Axis2/C framework. Axis2/C
is extensible by using handlers and modules [26]. Handlers
are the smallest execution unit in Apache engine and are
used for different purposes, e.g., web services address-
ing [27] and security [28]. A message flow between different
components of CC and NC go through Axis2/C engine and
we deploy custom handlers for provenance data collection
inside Axis2/C. Similar concept is used in [29] for workflow
services deployed in a tomcat container. This framework
is not extensible to Cloud services and architecture. We
differ from that work in many factors including interceptors
for Mule, Apache Axis and Apache Axis2/C. There is no
tomcat container available for Cloud services to deploy the
provenance framework and Cloud services use HTTP, XML,
SOAP and REST based protocols. Further, Our framework is
developed for Cloud services provenance data collection and
therefore, parsing, storing, and accessing provenance data is
different than their architecture.

Configuration: Axis2/C modules and handlers can be
configured globally to all services by editing axis2.xml

file, or to a particular service and method by modifying
servies.xml file. Listing 2 describes the configuration of
provenance module to Eucalyptus NC service.

Listing 2. Configuration of Provenance into Axis2/C
<?xml version="1.0" encoding="UTF-8"?>
<service name = "EucalyptusNC">
<module ref="NCprovenance"/>

!..this will configure provenance to all methods
in NC
<Operation name="ncRunInstance">

<Parameter name = "wsmapping">
EucalyptusNCncRunInstance

</Parameter>
</Operation>
<Operation name="ncAttachVolume">

<module ref="NCprovenance"/>
!..this will configure provenance to this
particular method

<Parameter name = "wsmapping">
EucalyptusNCncAttachVolume

</Parameter>
</Operation>

</Service>

C. Framework Components

Proposed framework is divided into the following com-
ponents to address the modularity and layered architecture:

• Provenance collection: Collecting important prove-
nance data in a seamless and modular fashion using
Mule, Apache Axis and Axis2/C interceptors.

• Provenance storage: Provenance data can be stored as
part of Cloud storage unit or, to a dedicated database
system. Properly indexing and linking provenance data
to original data objects is compulsory.

• Provenance query and visualization: Providing an inter-
face to query provenance data and visualize the results
in a graph or chart form.

• Provenance usage: Using collected provenance data to
enhance the trust on Cloud environments, reproducibil-
ity of applications and fault detection etc. Provenance
usage is the extension of provenance query by pro-
viding with a standard output to make it compatible
with other systems. Particular usage of provenance data
is to find access pattern in resources usage, resources
utilization (energy consumption) and faults detection.

Figure 2 describes the extended architecture of Axis2/C
(particular version of Apache Axis used by EUCALYPTUS)
and Mule, the main components of proposed framework and
the deployment of provenance module.

VI. TESTING AND EVALUATION

Test cases are performed on Mule and Axis2/C framework
with provenance module for collection, parsing and logging
metadata. Here, we present results for time increase with
provenance module in Axis2/C for the execution chains
called Inflow and Outflow. The underlying architecture and
system details are following:

110Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 123 / 282

SOAP

Provenance

framework

collection

visualization

storage

query

T
ra
n
s
p
o
rt

lis
te
n
e
r

T
ra
n
s
p
o
rt

s
e
n
d
e
r

In
flo
w
/In
fa
u
ltflo

w

M
o
d
u
le

P
ro
v
e
n
a
n
c
e

M
o
d
u
le

O
u
tflo
w
/O
u
tfa
u
ltflo

w

M
o
d
u
le

P
ro
v
e
n
a
n
c
e

M
o
d
u
le

Message

receiver

Axis2/C

engine

CC and NC

services

Eucalyptus

Cloud

CLC

services

Service

Component

Inbound router

Outbound

router

M
u
le

M
e
s
s
a
g
e

M
u
le

M
e
s
s
a
g
e

Provenance Interceptor

surrounding service

component

Mule

framework

HTTP, SOAP, XML etc.

Figure 2. Framework components.

Operating system: Ubuntu 10.04, Processor: Intel Core 2
(2 GHz), RAM: 2 GB, Axis2/C version: 1.6.0, Web service:
Echo

Echo service is invoked 100 times in a row for getting
real data for comparison. Five multiple runs are performed
for the calculation of best time, worst time and average
time of execution. The process is executed by considering
overall (Inflow and Outflow), only Inflow and only Outflow
provenance. Apache Axis2/C engine is extended by using
custom handlers and modules in the corresponding flows.

Figure 3 presents the performance of these different
execution runs on Axis2/C engine. Left side of the figure
details multiple runs of echo service without provenance,
with provenance (Inflow and Outflow), only Inflow and only
Outflow provenance. Y-axis represents the time required for
execution. Right side of the figure shows the increase in
time by comparison to without provenance. This increase
in time is calculated for overall provenance, only Inflow
provenance and only outflow provenance. The comparison is
done for average values by using formula 1, where T2 is time
including provenance and T1 is time excluding provenance.

Time increase = T2 − T1 (1)

The average increase in time for 100 simulation runs of
echo service for collecting and logging overall provenance
data is only 0.017 ms when compared to the execution with-
out provenance. The average increase in time for only Inflow
provenance is 0.009 ms and for only Outflow provenance
is 0.013 ms when compared to without provenance. The
individual Inflow and Outflow provenance was collected for
experimental purposes to observe the respective overhead.
In a real lab experiment the overall provenance of process

is essential. The increase in time is too less and negligible
when considering the advantages like fault tracking, resource
utilization, patterns finding and energy consumption of a
provenance enabled Cloud. Furthermore, the successful de-
ployment of provenance collection to Axis2/C and Mule
frameworks support our theory of a generalized and inde-
pendent provenance framework

1.28

1.3

1.32

1.34

1.36

1.38

1.4

1.42

T
im

e
 i
n

 m
s

Provenance Scenarios

Best Case

Worst Case

Average Case

0

0.005

0.01

0.015

0.02

T
im

e
 i
n
 m

s

Time Increase

Figure 3. Test results of Echo service.

VII. CONCLUSION AND FUTURE WORK

Provenance is an important aspect in e-science. With the
technology shift and changes, open Clouds are becoming
an important part of e-science. Open Clouds are used in
research and private business domain for storage, com-
putation and execution of complex scientific applications.
This paper considers provenance as an important metadata
for Cloud environment and present provenance properties,
Cloud architecture, open Clouds dependencies, and finally
propose a framework. Proposed framework can be deployed
to any Cloud scheme without modifying the basic ser-
vices architecture or source code. Further, we gave a brief
overview for the need of provenance in Cloud and present
the major challenges and properties of such a framework.
An independent system is proposed with advantages being
simple, easy to use, easy to deploy, and works with open
Cloud providers.

In future work, we will give insight details of the frame-
work, simple user interface to configure provenance to Cloud
service, evaluation of provenance framework for Cloud
services and working example of provenance usage for fault
detection and resources utilization (energy consumption).

REFERENCES

[1] Oxford dictionaries. [retrieved: may, 2012]. [Online]. Avail-
able: http://oxforddictionaries.com/definition/provenance

[2] R. Bose and J. Frew, “Lineage retrieval for scientific data
processing: a survey,” ACM Comput. Surv., vol. 37, no. 1, pp.
1–28, Mar. 2005.

[3] Y. L. Simmhan, B. Plale, and D. Gannon, “A Survey of Data
Provenance Techniques,” Computer Science Department, In-
diana University, Bloomington IN, Tech. Rep., 2005.

111Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 124 / 282

[4] A. Marinho, L. Murta, C. Werner, V. Braganholo, S. M.
S. d. Cruz, E. Ogasawara, and M. Mattoso, “Provmanager:
a provenance management system for scientific workflows,”
Concurrency and Computation: Practice and Experience,
2011.

[5] M. Szomszor and L. Moreau, “Recording and reasoning
over data provenance in web and grid services.” in Coop-
IS/DOA/ODBASE, ser. Lecture Notes in Computer Science,
R. Meersman, Z. Tari, and D. C. Schmidt, Eds., vol. 2888.
Springer, 2003, pp. 603–620.

[6] Y. Cui and J. Widom, “Lineage tracing for general data
warehouse transformations,” in Proceedings of the 27th Inter-
national Conference on Very Large Data Bases, ser. VLDB
’01. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2001, pp. 471–480.

[7] P. Buneman, S. Khanna, and W. chiew Tan, “Why and
where: A characterization of data provenance,” in ICDT ’01:
Proceedings of the 8th International Conference on Database
Theory. Springer, 2001, pp. 316–330.

[8] M. Imran and K. A. Hummel, “On using provenance data
to increase the reliability of ubiquitous computing environ-
ments,” in Proceedings of the 10th International Conference
on Information Integration and Web-based Applications &
Services, ser. iiWAS ’08. New York, NY, USA: ACM, 2008,
pp. 547–550.

[9] S. Miles, P. Groth, M. Branco, and L. Moreau, “The re-
quirements of recording and using provenance in e-Science
experiments,” University of Southampton, Tech. Rep., 2005.

[10] pasoa. [retrieved: may, 2012]. [Online]. Available:
http://www.pasoa.org/

[11] oasis. [retrieved: may, 2012]. [Online]. Available:
http://www.oasis-open.org/

[12] mygrid project. [retrieved: may, 2012]. [Online]. Available:
http://www.mygrid.org.uk/

[13] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher,
and S. Mock, “Kepler: an extensible system for design
and execution of scientific workflows,” in Scientific and
Statistical Database Management, 2004. Proceedings. 16th
International Conference on, Jun. 2004, pp. 423–424.

[14] Taverna workflow management system. [retrieved: may,
2012]. [Online]. Available: http://www.taverna.org.uk/

[15] I. Altintas, O. Barney, and E. Jaeger-frank, “Provenance col-
lection support in the kepler scientific workflow system,” in In
Proceedings of the International Provenance and Annotation
Workshop (IPAW). Springer-Verlag, 2006, pp. 118–132.

[16] K.-K. Muniswamy-Reddy, P. Macko, and M. Seltzer, “Making
a cloud provenance-aware,” in First workshop on on Theory
and practice of provenance, ser. TAPP’09. Berkeley, CA,
USA: USENIX Association, 2009, pp. 12:1–12:10.

[17] Amazon elastic compute cloud. [retrieved: may, 2012].
[Online]. Available: http://aws.amazon.com/ec2/

[18] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. I.
Seltzer, “Provenance-aware storage systems.” in USENIX An-
nual Technical Conference, General Track. USENIX, 2006,
pp. 43–56.

[19] Nimbus. [retrieved: may, 2012]. [Online]. Available:
http://www.nimbusproject.org/

[20] Opennebula. [retrieved: may, 2012]. [Online]. Available:
http://opennebula.org/

[21] Eucalyptus. [retrieved: may, 2012]. [Online]. Available:
http://open.eucalyptus.com/

[22] S. Wardley, E. Goyer, and N. Barcet, “Ubuntu enterprise cloud
architecture,” Technical White Paper, Aug. 2009.

[23] Mule esb. [retrieved: may, 2012]. [Online]. Available:
http://www.mulesoft.org/what-mule-esb

[24] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud Computing
and Grid Computing 360-Degree Compared,” in 2008 Grid
Computing Environments Workshop. IEEE, Nov. 2008, pp.
1–10.

[25] M. A. Sakka, B. Defude, and J. Tellez, “Document prove-
nance in the cloud: constraints and challenges,” in Pro-
ceedings of the 16th EUNICE/IFIP WG 6.6 conference on
Networked services and applications: engineering, control
and management, ser. EUNICE’10. Berlin, Heidelberg:
Springer-Verlag, 2010, pp. 107–117.

[26] A. S. Foundation, “Apache axis2/java - next generation web
services,” Website http://ws.apache.org/axis2/, 2009.

[27] Axis2- ws-addressing implementation. [retrieved: may, 2012].
[Online]. Available: http://axis.apache.org/axis2/java/core
/modules/addressing/index.html

[28] Apache axis2/c manual. [retrieved: may, 2012].
[Online]. Available: http://axis.apache.org/axis2/c/rampart
/docs/rampartc manual.html

[29] F. A. Khan, S. Hussain, I. Janciak, and P. Brezany, “Enact-
ment engine independent provenance recording for e-science
infrastructures.” in Proceedings of the Fourth IEEE Inter-
national Conference on Research Challenges in Information
Science RCIS’10, 2010, pp. 619–630.

112Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 125 / 282

A Secure Data Access Mechanism for Cloud Tenants

Chunming Rong
Department of Electronic Eng & Computer Science
University of Stavanger, 4036, Stavanger, Norway

Stavanger, Norway
Chunming.rong@uis.no

Hongbing Cheng
Department of Computer Science & Technology

Nanjing University
Nanjing, China

cheng.hongbing@uis.no

Abstract—As the future big data storage center for tenants,
cloud computing has been a hot issue recently, it consists of
many large datacenters which are usually geographically
distributed and heterogeneous, secure data access from cloud
computing platform is a big challenge for cloud tenants. In this
paper, we present a secure data access mechanism based on
identity-based encryption and biometric authentication for
cloud tenants. We review briefly about identity-based
encryption and biometric authentication firstly and then we
proposed a data access mechanism for cloud tenants, the
mechanism set double protection for confidential data of cloud
tenants, encryption will make the tenants data secure against
the peekers and biometric authentication will eliminate the
maloperations over tenants data by root administrator in cloud
service. We compared the proposed mechanism with other
technology and schemes through comprehensive analysis and
experiment data; the results show that the proposed data
access mechanism is feasible and suitable for cloud tenants.

Keywords—Cloud computing; Big data center; Data access;
Data security.

I. INTRODUCTION

As the big data center for tenants, cloud computing [1]
platforms have many particular types of datacenters, or most
commonly, groups of datacenters. Cloud service providers
not only offer applications including search, entertainment,
email and other services that Internet can provide, but also
they have expanded offerings to include compute-related
capabilities such as virtual machines, storage, and complete
operating system services for science computing and
research. At the same time, cloud computing has been
proven to be a hopeful application platform and paradigm to
provide potential consumers with valuable information
technology services over the Internet and these services
should be efficient, secure and rapid. In order to meet the
above services requirement, cloud computing resources
should be rapidly deployed and easily scaled. In cloud
computing all processes, applications and services supplied
“on demand,” no need to regard user’s geographic location
and computer devices.

Currently, many public and private cloud services are
available for tenants. Generally, private cloud computing
platforms are for special intention and will not offer
servicefor others, but public cloud computing platforms are
available to every one with Internet access. According to the

type of service provided, public cloud platform include
Software as a Service (SaaS) clouds like IBM LotusLive™
[2], Platform as a Service (PaaS) includes Google
AppEngine [3], Infrastructure as a Service (IaaS) like the
Amazon Web Services (AWS) [4] and famous Apache
hadoop [5]. Hadoop includes some subprojects such as
Mapreduce and hadoop distributed file system (HDFS) and
has developed many open-source software’s for reliable,
scalable, distributed computing. Private clouds are owned
and used by a single organization or department. They
provide many of the same services as public clouds, and
they give the owner organization greater flexibility and
control. What is most important is that private clouds can
provide lower latency than public clouds during rush time of
Internet occupation. Considering the benefits of the two
kinds of clouds, many organizations embrace both of them
by integrating the two platforms into hybrid cloud
computing models. These hybrid clouds are designed to
meet some specific commercial, science and technology
requirements, helping to optimize security and privacy for
customers in minimum investment

Cloud storage is an excellent solution for tenants’ big
data, and it is a promising technology and the benefits of it
are obvious, but, as a commercial platform, security is the
most important. To develop proper security mechanisms for
cloud implementations is a big challenge. Except for the
usual challenges of developing secure information
technology systems, cloud computing is under some special
risk [6], because essential services are often performed by a
third party that .is unknown to cloud computing platform or
users. These “unknown” aspects of cloud outside
environment make it harder to maintain data integrity and
privacy. In fact, cloud computing always transfers much of
the control over data and applied operations from the tenant
organization to their cloud providers, in some extent, it is
similar with that organizations entrust part of their
information processing operations to outsourcing other
companies or agent platforms. Even the basic tasks
processing, such as applying data updating and configuring
network protocols may become the responsibility of the
cloud service providers, not the tenants. So, in this
circumstance, tenants must establish trust relationships with
cloud computing service providers and understand security
risk in terms of how these service providers should

113Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 126 / 282

undertaketheir responsibility, deploy and manage security
on their behalf. This kind of relationship between cloud
service providers and tenants is critical because the tenants
are obliged to be ultimately responsible for integrality and
protection of their critical data and information, even if that
tasks processing or programs have moved to the cloud
computing platforms. In fact, it is the most difficult to
determine the physical location where tenant data is stored
inside the cloud computing environment. Security processes
and issues that were once visible for tenants are now hidden
behind fuzzy structure by cloud computing. This invisibility
can arouse a number of security and compliance problems.
On the other hand, the massive sharing of infrastructure
with cloud computing creates an evident difference between
cloud data security and other traditional platforms data
security. Tenants who come from different organizations
with different security anticipation and privilege often
interact with the same set of cloud computing computation
resources. On the other side, data-access security concern,
cloud resource balancing, changing service-level
agreements and other updating dynamic information
technology environments will provide intentional-destroyer
with more opportunities for misconfiguration. At the same
time, data compromise and malicious conduct [7] by
adversary, root users or administrator are the risk that the
tenants must face. Data access calls for a high degree of
standardized and strict operating rules, which can help
improve data access security by eliminating the risk of
supervisor operator error and intended maloperation.
Therefore, the risks inherent with a massively shared
infrastructure mean that cloud computing platforms and
their secure data access have to pay more attention on
identity and authentication.

The rest of the paper is organized as follows; in Section
II, security concern on data access is described and in
Section III, a secure data access for cloud tenants is
proposed. In Section IV, we give a detail analysis and
experiment results of the proposed mechanism. Conclusions
are drawn in Section V.

II. SECURITY CONCERN ON DATA ACCESS

Generally, in terms of the service level agreements
(SLAs) between tenants with Internet Service Providers
(ISPs) or Cloud Service Providers (CSPs), we can
categorize Internet or cloud services as below [8]:

 Infrastructure as a Service (IaaS): Under this kind of
service model, ISPs allows tenants to use their
database and some public services, at the same time,
the tenants can rent computation, storage, networks,
and other resources what they do not have to perform
science research and commercial operations, such as
Amazon and Hadoop. The tenant can directly deploy
and run the guest OS and applications provided by
ISPs. In general, the tenants have not the privilege to

manage or control the underlying cloud infrastructure
but have privilege tocontrol OS, storage, deployed
applications, and networking components
configuration.

 Platform as a Service (PaaS): This service model can
provide the tenants to deploy and run their tasks and
application program onto the platform infrastructure.
For example, IBM also provides the tenants this kind
of cloud service platform to build their programs based
on some popular programming languages and software
tools. The tenants can not manage or control the
underlying cloud system when they perform their tasks
on the platform.

 Software as a Service (SaaS): It is a common model
that has been adopted by most of ISPs. In this mode,
the tenants are passive and only can use what the
providers provide. Such as websites browsing, email,
and others, service providers undertake all of the
responsibilities and develop attractive software and
services for the tenants, the tenants make use of these
services under some risk because the service providers
maybe leak their information or critical data kept on
the servers of the infrastructure The advantage of using
this kind of service is that there is no upfront
investment in servers or software licensing.
Cloud tenants do not want others to access or fetch

their confidential data stored in cloud storage [9], so secure
data access control is even more critical for data integrity
and privacy. On the other hand, in general, there are two
critical roles in clouds computing service called privileged
users and the third-party system, privileged users refer to
root users or administrators who working for the cloud
providers. Privileged-users perform physical monitoring,
resource scheduling, background checking. Privileged-users
must have the capabilities to coordinate authentication and
authorization with the tenants and enterprise back-end or
third-party systems. The third-party system is a partner of
the cloud service providers, it cooperates with cloud
provider to easily and quickly leverage cloud services for
end users.

It is evident that most famous organizations,
enterprises and even general tenants cite data protection as
their most important security consideration when using
cloud computing service. Typical security concerns [10]
include the way how data is stored, accessed and released.
Tenant sensitive or regulated data needs to be properly
segregated and kept on the cloud storage infrastructure,
including important archived data. Finding a suitable way of
encrypting and managing encryption keys of data in transit
to the cloud platforms or the service provider’s data center
are critical to protect data privacy ,integrity and usability.
The encryption of data and the ability to securely share
those encryption keys between the cloud service provider
and consumer is an important way that ensures security of
data access. On the other hand, it is very expensive to
transfer large volumes of data quickly over the Internet, so,

114Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 127 / 282

it is very critical to protect the data security when
transferring the data from tenants to cloud storage platform.
When sending data to the cloud service providers, it is
critical that the data is encrypted and that only the cloud
service providers and tenants have access to the encryption
keys. But when the cloud service providers stealthily violate
the agreement and to obtain some information about the
transferring data using the encryption keys. So, some
significant restrictions regarding with secure data access
must be established for both sides to comply with.

How to set the restrictions depends on the feature of
the data and the importance of the data to tenants, such as
commercial value, personal privacy et. Several member
states[11] of the European Union (EU) have set rules to
forbid the nonpublic personal information of its citizens to
leave their state borders. So, in a full shared cloud
computing environment, all parties of the cloud computing
participators must agree on their responsibilities to secure
data and perform these security policies on a regular basis.
These parties must take the responsibilities to make a secure
data access environment for each participator in the cloud
computing.

III. THE PROPOSED DATA ACCESS MECHANISM

Firstly, we review the identity-based encryption and
biometric authentication technology and then we show the
proposed data access mechanism for cloud tenants.

3.1. PRELIMINARY
A. Identity-based Encryption

Adi Shamir proposed the concept of identity-based
cryptography [12] in 1984 firstly. Shamir’s original
motivation for identity-based encryption was to simplify
certificate management in e-mail systems. When Alice
sends mail to Bob at bob@company.com she simply
encrypts her message using the public key string
“bob@company.com”. There is no need for Alice to obtain
Bob’s public key certificate. When Bob receives the
encrypted mail he contacts a third party, which we call the
Private Key Generator (PKG). Bob authenticates himself to
the PKG in the same way he would authenticate himself to a
Center of Authentication (CA) and obtains his private key
from the PKG. Bob can then read his e-mail. Note that
unlike the existing secure e-mail infrastructure, Alice can
send encrypted mail to Bob even if Bob has not yet setup his
public key certificate. Also, note that key escrow is inherent
in identity-based e-mail systems: the PKG knows Bob’s
private key.

The distinguishing characteristic of identity-based
encryption is the ability to use any string as a public key.
The functions that compose a generic IBE can be specified
as follows.

In 2001, Boneh and Franklin proposed a practical
algorithm[13] firstly, based on IBE technique. To describe
the Boneh and Franklin IBE algorithm, from here on, we

use qZ to denote the group {0, 1}q under addition

modulo q . For a group G of prime order we use *G to

denote the set * |G G O where O is the identity element

in the group G . We use Z to denote the set of positive
integers We give first some definitions and then the basic
IBE scheme.

Definition 2.1 A map 1 1 2ˆ :e G G G is called a bilinear

pairing if, for all 1,x y G and all ,a b Z , we

have ˆ ˆ(,) (,)a b abe x y e x y .
Definition 2.2 The Bilinear-Diffie-Hellman problem

(BDH) for a bilinear map GGGe 211:ˆ such

that qGG |||| 21 is prime is defined as follows:

given Ggggg cba
1,,, , compute),(ˆ gge abc

, where g is

a generator and Zcba ,, . An algorithm A is said to solve
the BDH problem with advantage if

]),(ˆ),,,(Pr[ggeggggA abccba

where the probability is over the random choice of
,,,, gcba and the random bits of A

Definition 2.3 A randomized algorithm G that takes as input

a security parameter k Z is a BDH parameter
generator if it turns in time polynomial in k and outputs the

description of two groups 1G , 2G and a bilinear function

1 1 2ˆ :e G G G , with 1 2G G q for some prime q .

Denote the output of the algorithm

by 1 2 ˆ(1) , , ,kG G G e q .

Definition 2.4. We say that G satisfies the BDH assumption
if no probabilistic polynomial algorithm A can solve BDH
with non-negligible advantage.

The detail on the basic identity-based encryption
algorithm can obtain in [13]

B. Biometric Recognition
Biometric recognition is a process of automatically

recognizing the identity of a person based upon one or more
intrinsic physiological or behavioral traits that the person
possesses. Physiological characteristics are related to the
shape of the body and the widely deployed ones include
fingerprint, face, iris and hand geometry[14]. Behavioral are
related to the behavior of a person and voice and gait are
among the mostly researched.

From the viewpoint of pattern recognition, biometric
recognition is a typical classification problem, which
generally includes two main modules: feature extraction and
classification. Through feature extraction, discrimitive and
compact digital representation of biometric sample is

115Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 128 / 282

generated. In classification, statistical techniques are
generally applied to learn biometric pattern for each person
during training, and make decision on identity during test by
using the learned patterns.

A biometric recognition system can operate in two
modes: verification and identification. Verification
(orauthentication) accepts or rejects the identity claim of a
person (for example, Bob). Identification determines which
of the registered persons a given biometric data comes from.
The idea can be described as follows, when any person say,
q, want to use authentication system, first, he must get a
legal ID from system and pass the system check by
sys_checker. Then, uses the ID to create his biometric
template, all of the created templates are storied in system
database such as sys_database. In verification phase, q’s
template is sent to the system matcher to match with the
extracted biometric feature from q. Otherwise, in
identification phase, the q’s extracted biometric feature will
have a match with all the storied templates in the system
database. Algorithm 1 describes the process of biometric
authentication.

__

Algorithm 1. Biometric authentication process for the
Person q

Bio_Au_process(Person q){
 sys_checker ←q.ID

 if (sys_checker){
 for(i=0; ;i++)
 {Template[i]←Extract Biologic feature of q
 sys_database ←Template[i]}
 }
 //create personal biologic feature template
 if someone p claims that he or she is q
 {p.tmp←Extract Biologic feature of p

 matcher ←p.tmp
 matcher ←Template[i]

//send p’s biologic feature template to matcher
 If matcher (p.tmp == Template[i])
 p is q
 }

else {p.tmp←Extract Biologic feature of p

 matcher ←p.tmp
 matcher ←Template

//send all biologic feature templates to matcher
 for(j=0; ;j++)

{If matcher (p.tmp == Template[j])
 p has passed authentication
 }

 }
return

}

__

Biometric authentication is a statistical hypothesis
testing problem involving in a tradeoff between two error

types: false reject and false alarm. The performance
measures of such system are the false reject rate (FRR) and
the false alarm rate (FAR) which can be adjusted by an
acceptance threshold. FRR is the proportion of genuine
users that are incorrectly rejected. FAR is the proportion of
impostors that are incorrectly accepted as genuine users.

The performance of identification is measured
asidentification rate which is significantly influenced by
population size among other things. For face recognition, it
is found that identification rate decreases linearly in the
logarithm of the population size.

Being easy-to-use and non-intrusive, biometric
recognition technology is widely deployed to control access
to restricted services, for example, banking and databases.
In the initial phase, users are required to enroll in a system,
namely, to give examples of their biometric data to the
system so that it can build models for them and this should
be done only once. This is similar to the sign up procedure
to establish ID and password. In the verification phase, the
identity claim is accepted or rejected; or in identification
phase, the identity is determined. Each time when a user
accesses to the service, verification or identification is
performed.

Design of a biometric system needs to take into
consideration such factors as the available sensors, the
performance of various biometric recognition technology,
existing security infrastructure, and cost and user acceptance.

With the recent advance in biometric recognition
techniques and low-cost sensors, we can expect the
increasing deployment of biometric recognition in many
fields including cloud computing.

3.2. THE PROPOSED DATA ACCESS MECHANISM

We design a secure data access mechanism for cloud
tenants based on Boneh-Franklin IBE algorithm and
biometric authentication, the detailed mechanism is as
follows.

Step1: Setup cloud side parameters
1. initialization

On the cloud service side, given a security parameter

k Z , the algorithm works as follows:

Run G on input k to generate a prime q , two

groups 1G , 2G of order q , and an admissible bilinear map

1 1 2ˆ :e G G G .Choose a random 1G .Pick a

random *
qs Z and set s . Choose cryptographic

hash functions for

some n , * *
1 1:{0,1}H G , 2 2: {0,1}nH G ,

*
3 :{0,1} {0,1}n n

qH Z , 4 :{0,1} {0,1}n nH .For

the security proof, we view all the hash functions as random

116Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 129 / 282

oracles. The message space is {0,1}nM . The ciphertext

space is *
1 {0,1}nC G . The output system parameters

are },,,,,,,ˆ,,,{ 432121 HHHHneGGq . The

master key is Zs q
* . Where q is a prime number, 1G

and 2G are two groups of order q , 1 1 2ˆ :e G G G is a

bilinear map, n is the length of plaintext, 1G ,
s , *

qs Z is the master key, 1H , 2H , 3H , and

4H are four hash functions with random oracles

respectively. The master key should be kept in a secret place
and the parameters can be distributed to all nodes.

2. key generation
When tenants are registered in cloud computing

providers, each tenant will obtain a unique identity to
identify him or her. In our proposed mechanism, the
obtained identity is same with the one used in IBE algorithm.

For a given tenant identity *{0,1}ID (ID is the cloud

tenant’s public key. It could be a random string and so it is
very convenient and easily realized). According to IBE
algorithm, the private key of the tenant can be calculated as
following:

Compute *
1 1()IDQ H ID G .Set the private key of

the tenant IDK to be ()s
ID IDK Q ,where s is the master

key.

The phase generates private key corresponding to given
registered ID of every tenant in cloud computing.

Step2: Generate tenant’s biometric template

Cloud computing is a pervasive service environment for
tenants, different tenants have different security requirement.
To these tenants who have special security concern on data
can generate their biometric template and be stored in cloud
database. Biometric authentication must be needed when
someone wants to access the data. Modern mobile and video
technology make the generation of tenant’s biometric
template very convenient and easy, many tenants can finish
the process on the cloud interface through iphone and other
mobile devices. The process of generation tenant’s
biometric template is described in part of Algorithm 2.

Step3: Encrypt cloud data

Input: cloud data (which is created by cloud tenants and
stored in the database of cloud platform), a private key (the
cloud service providers), and an ID (the cloud tenant who
want to access the data); output: encrypted cloud data. The
detailed operation is as following.

Input: A cloud data message }1,0{ *m , a private key Ad ,

an identity BID , and the system parameters. Choose a

random {0,1}R n , compute 3(,)r H m and

2: (, ())As e d H B then output the encrypted cloud data

ciphertext
41 (): , (,), ()Hc r H r s E m .

Step4: Biometric authentication

As an excellent storage scheme for tenants’ big data, cloud
computing has been a hot issue for a lot of consumers,
generally, tenants’ different data should be processed by
different security modes. Biometric authentication has the
advantage of exclusive for tenant in data access. When any
registered cloud tenant say, p, want to access the data stored
in cloud, first, he must pass the cloud system check such as
cloud_sys_checker. Then, cloud tenants use registered
identity ID to create their biometric template and all of the
created templates are stored in cloud_sys_database. In cloud
data access, cloud tenant p must pass the biometric
authentication performed by biometric matcher in cloud
computing. Part of algorithm 2 describes the process.

__

Algorithm 2. Biometric authentication for tenant p to access
cloud data

Cloud_Bio_Au(Person p){
 //generation of cloud tenant p biometric template
 Cloud_sys_checker ←p.ID

 if (Cloud_sys_checker){
 for(i=0; ;i++)
 {Template[i]←Extract Biologic feature of tenant p
 Cloud_sys_database ←Template[i]}
 }
 //biometric authentication for cloud data access
 If cloud tenant p want to access cloud data

 { p.tmp←Extract Biologic feature of p

 matcher ←p.tmp
 matcher ←Template
 for(j=0; ;j++)

{If matcher (p.tmp == Template[j])
 p has passed authentication
 }

 }
return

}

__

Step5: Decrypt cloud data

Input: encrypted cloud data ciphertext (which is
generated in Step3), an ID (the cloud service provider’s), a
private key (the cloud tenant who want to access the data),
and output: the corresponding plaintext i.e. cloud data. The

117Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 130 / 282

detailed operation is as follows.

Input: An encrypted cloud data c, an identity AID , a private

key Bd . Compute 2: ((),)Bs e H A d ,

1: (,)V H U s ,
4 (): ()Hm D m . Check

whether 3(,)U H m holds. If not, reject the ciphertext;

otherwise output the plaintext m i.e. the cloud data that
tenantaccess. Consistency is clear since

2 2 2 2(, ()) ((), ()) ((),)a
A Be d H B e H A H B e H A d

by bilinearity.

IV. ANALYSIS AND COMPARISON

In this section, we mainly focus on analysis of feasibility
and security of our mechanism. At the same time, we will
compare our mechanism with other relational technology
including cryptography and Role Based Access Control
(RBAC) scheme.

1) Feasibility analysis and comparison
(1) Cloud computing will provide its legal tenants with
pervasive communication service anytime and anywhere.
Recent development of wireless communication technology
has gained a rapid progress, many wireless standards and
modes emerged, including 3G, Wi-Fi, et. At the same time,
wireless communication devices also have made a quick
development; some advanced wireless communication
devices, such as iphone and iPod, equipped with many high-
class functions that only possessed by lap-top class device
before. All of these advances make access of Internet by
wireless connection become more and more dominant. In
many public places, more and more people rely on such
mobile devices to browse web page, to download
multimedia and to interact with Internet.

When applied our data access mechanism in cloud
computing, latest communication technology can support
the running of the proposed data access mechanism well.
Users can operate mobile devices on touch screen and push
technology. On the other side, the advanced wireless
communication devices can be used as camera, can deal
with massive multimedia data packet and run a lot of
complicated software and program. All of these are
fundamental for the proposed data access mechanism and it
is possible for the mechanism to be applied in practice.
 (2) In the proposed data access mechanism, biometric
authentication is an important secure measure for cloud data.
On general impression, biometric authentication is
complicated and costly for common applications, it is only
available in some crucial situations, such as bank counter,
airport security, etc., but it is not true now, rapid progress of
electronics technology make it realistic to produce cost-
efficient and multifunctional mobile communication devices
which can read and process tenant’s some feature
information such as fingerprint, face and iris, etc. It is

reported that only the users of iphone in the world will
exceed 100 million till 2012 [15]. Now, in some public
places of many countries, these kind of advanced
multimedia mobile devices are available for tenants free to
use. Therefore, all of these prosperous situations make it
feasible and convenient to apply the proposed data access
mechanism in cloud computing environment.
2) Security analysis and comparison
(1) As we know, except for key leaking, the security of key
not only is related with key length, but also depends on
encryption algorithm. Symmetric encryption algorithm DES
with 64-bit key (DES-64) has been cracked for about 20
years and RSA algorithm with 768-bit key (RSA-768) was
cracked in 2009 by some scientists in Switzerland [16]. So,
for the sake of making data access secure in cloud
computing, we have to find suitable secure encryption
algorithm and secure key length. Identity based encryption
algorithms are based on Elliptical curve cryptography
(ECC). Related research results [17] show that the
traditional asymmetric RSA algorithm with 1024-bit key
(RSA–1024) provides the currently accepted security level,
in order to reach the same security level, ECC key length is
160-bit (IBE-160) and symmetric key length is 80 bits. On a
PC with Redhat Linux 9.0, P42.8G processor and 512M
DDR,we tested the average encryption and decryption time
for different encryption algorithm, these time cost does not
include keys distribution and parameters setup, the
comparison is listed in Table 1.

TABLE 1 COMPARISON OF DIFFERENT ENCRYPTION ALGORITHM

algorithm key

(bit)

Average encryption

cost(s)

Average decryption

cost(s)

Has been

cracked

RSA 1024 21.2261 34.4025 RSA-768

IDES 80 0.0028 0.0028 DES-64

IBE 160 0.1279 0.1279 NO

From the results in Table 1, we can conclude that the
proposed data access mechanism is the safest for cloud
tenants. Although symmetric encryption algorithm has some
advantage in key bit and time cost, the fatal weakness is that
encryption key and decryption key are same and kept by
different parties, in addition, the RSA encryption and
symmetric encryption had been cracked and the attempt for
cracking more bits of them will continue.
(2) Biometric authentication technology has been developed
for decades and many of them have been applied in some
security scenarios successfully. In detection of criminals,
biometric authentication such as finger-print and face
recognition have made many pernicious cases come out in
the wash. As the rapid development of social economy and
technology, biometric authentication can be applied in more
and more situations. Of all the biometric authentication
technology, the face recognition is a convictive
representative. In 1993, the American government launched
a project called FERET [18] to found a series of technology
development efforts and evaluation cycles, the face

118Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 131 / 282

recognition community benefited a lot from this project and
built a large datasets collected to test face recognition
technology, the large datasets push the research of
technology forward quickly. Figure 1 show that from the
beginning of the Facial Recognition Technology (FERET)
program to the Face Recognition Vendor Test 2006 (FRVT
2006). The remarkable improvement of face recognition has
five important milestones since 2003. To each
representative algorithm, they wereevaluated on the false
reject rate (FRR) at a false accept rate (FAR) of 0.001 (1 in
1000). The algorithm for 1993 was Turk and Pentland’s
eigenface algorithm [18] and for 1997 is Sept97 FERET
evaluation [19]. The 2002 evaluation result is from the
FRVT 2002 and the 2006 and 2010 is from the FRVT 2006
and FRVT 2010.

Figure 1 Improvement of face recognition from 1993 to 2010

From the evaluation results in Figure 1, we can
conclude that as the representative of the biometric
authentication technology, the face recognition attained an
enormous improvement these year, especially, from 2002 to
2010, the improvement was very evident. The factors on the
improvement due to advancement in algorithm design,
advanced multimedia devices and more deep understanding
of image processing. So, the low false reject rates (FRR) at a
false accept rate (FAR) of the biometric authentication will
enhance the security of the proposed data access mechanism.

V. CONCLUSIONS AND FUTURE WORK

Cloud computing has been a hot issue recently, as the
future big data storage center for tenants, cloud computing
is an Internet-based pervasive information infrastructure to
provide tenants with data storage and service on demand it
consists of many large datacenters which are usually
geographically distributed and heterogeneous, secure data
access from cloud computing platform is a big challenge for
cloud tenants., how to design a secure data access
mechanism for cloud computing is a main concern for
service providers and their tenants.

In order to seek a secure data access method for cloud
tenants, we presented a secure data access mechanism based
on identity-based encryption and biometric authentication in
this paper, the mechanism set double protection for
confidential data of cloud tenants, encryption will make the

tenants data secure against the peekers and biometric
authentication will eliminate the maloperations over tenants
data by root administrator in cloud service. We compared
the proposed mechanism with other technology and schemes
through comprehensive analysis and experiment data, the
results show that the proposed data access mechanism is
feasible and suitable for cloud tenants. In future work, We
will make our proposed scheme more efficient and put it
into practice.

ACKNOWLEDGMENT

This work was supported in part by the 973 Project
under the Grant No. 2011CB302903, the National Natural
Science Foundation of China under Grant No. 60873231, by
the “Six Kinds Peak Talents Plan” project of Jiangsu
Province under Grant No. 11-JY-009 ; the Nature Science
Foundation of Jiangsu Normal Higher University under
Grant No. 11KJB510003; China Postdoctoral Science
Foundation funded project under Grant No.2012M511252
and Jiangsu Province Postdoctoral Science Foundation
funded project Grant No.1102014C.

References

[1] “Cloud Computing- The BlueCloud Project “,
www.ibm.com/developerworks/websphere /zones /hipods /, Oct. 2007.

[2] http://www.ibm.com/developerworks/lotus/library/lotuslive-intro/.
[retrieved; June, 2012].

[3] http://code.google.com/intl/zh-CN/appengine/.[retrieved; June, 2012].
[4] http://aws.amazon.com/ . [retrieved; June, 2012].
[5] http://hadoop.apache.org/.[retrieved; June, 2012].
[6] Cloud Security Alliance, “Security guidance for Critical Areas of

Focus in Cloud Computing”, April 2009.
[7] J. Girard and J. Pescatore, “ Teleworking in Cloud: Security Risks

and Services” – A Gartner Report, May 15 2009.
[8] J. Viega, “Cloud Computing and the Common Man”, IEEE Computer

Magazine, Aug. 2009, pp. 106-108.
[9] R.L. Grossman, “The Case for Cloud Computing,” IT Professional,

vol. 11, no. 2, 2009, pp. 23–27.
[10] P. Mell and T. Grance, “Effectively and Securely Using the Cloud

Computing Paradigm,” Nat’l Inst. of Standards and Technology
(NIST), 2009.

[11] http://europa.eu/legislation_summaries/consumers/consumer_informa
tion/l21253_en.htm, [retrieved; June, 2012].

[12] A. Shamir, “Identity-based cryptography and signature schemes,”
[J].Advances in Cryptology, CRYPTO’84, Lecture Notes in
Computer Science, vol. 196, 1985, pp. 47-53.

[13] D. Boneh and M. Franklin, “Identity-based encryption from the Weil
pairing,” [J]. in Advances in Cryptology, CRYPTO 2001, Lecture
Notes in Computer Science, vol. 2139, 2001,pp. 213-229.

[14] A.K. Jain, “Biometric recognition,” Nature, vol. 449, 2009, pp. 38-
40.

[15] http://tech.sina.com.cn/t//03246615270.shtml. [retrieved; June, 2012].
[16] A.Kleinjung, K.Franke, F.Lenstra. Factorization of a 768-bit RSA

modulus, v 1.0. International Association for Cryptologic Research
ePrint archive. January 7 2010.

[17] K.Lauter, “The advantages of elliptic curve cryptography for
wireless security,” [J].IEEE Wireless Communications, vol. 11, no. 1,
Feb 2004, pp. 62-67.

[18] M. Turk and A. Pentland, “Eigenfaces for recognition,” J. Cognitive
Neuroscience, vol. 3, no. 1, 1991, pp. 71–86.

[19] L. Wiskott, J.-M. Fellous, N. Kruger, and C. von der Malsburg, “Face
recognition by elastic bunch graph matching,” IEEE Trans. PAMI,
vol. 17, no. 7, 1997, pp. 1-23.

119Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 132 / 282

Dynamic Scenarios of Trust Establishment in the Public Cloud Service Market

Soyoung Kim
Technology Opportunity Research Team

Korea Institute of Science and Technology Information
Seoul, Korea

e-mail: sykim8171@kisti.re.kr

Junseok Hwang, Jörn Altmann
Technology Management, Economics and Policy

Program
Seoul National University

Seoul, Korea
e-mail: Junhwang@snu.ac.kr, jorn.altmann@acm.org

Abstract—The adoption of the public cloud by firms and
individuals has been slowed because of the lack of trust. This
research seeks the rules of trust establishment between the
public cloud providers and users through signaling game
theory, analyses dynamic scenarios in which the pervasive
distrust arises, and suggests policy guidelines. The theoretical
analysis results suggest that the most critical task is to make a
pool of trustworthy public cloud service providers to establish
an efficient market. The results also show that prudent policy
design is desirable. Specific case studies and simulations will be
conducted as further studies.

Keywords-public cloud computing; trust; signaling;
equilibrium; dynamic.

I. INTRODUCTION
The public cloud has been a valuable tool for firms and

individual users to reduce their Information Technology
costs. A number of public cloud services such as Amazon’s
AWS or HP’s cloud service have been launched. Even
telecom vendors, contents providers, web portals and small
Information Technology solution vendors are participating in
the race between public cloud services. A few companies
have been started to compete on price as competition has
intensified [1].

However, the users may not select a cloud service only
by its price and performance. The criteria for selecting a
cloud service are not only these two factors. Trustworthiness
and reliability are also important criteria for selecting a cloud
service. Therefore, the establishment of trust is one of the
major challenges for the growth of the public cloud market
[2]. The users’ concerns about security and privacy threats
hinder the diffusion of the public cloud [3]. The public cloud
market now needs policy solutions to address the users’
concerns rather than technological solutions [4].

This study analyses, with game theoretical insights, the
process of trust establishment and distrust pervasiveness
when users select a public cloud service. In particular, the
signaling game is adopted to find several types of the
equilibrium and to analyze several dynamic paths from
equilibrium. Policy guidelines are also discussed with the
dynamic scenarios.

The remainder of the paper is organized as follows. The
next section reviews the related literature. Section III
proposes the trust signaling game in the public cloud market.
Section IV investigates the dynamic scenario of trust

establishment. Section V suggests preliminary results and
discussion. Finally, Section VI provides a conclusion and a
future work.

II. LITERATURE REVIEW
Research on trust establishment and management related

to cloud services has increased as more kinds of cloud
computing have been provided to personal users and private
companies. Researchers have focused on the issues of
possible risks and threats, such as data loss and personal
information disclosure [3]. Some researchers have pointed
out that these risks and threats to security and privacy had
slowed down the adoption of cloud computing services [5].
Some researchers have proposed identity management and
authentication systems [6] for mitigating those risks and
threats or have suggested a reputation mechanism based on a
trust management framework [7].

Research on trust management related to network based
transactions between unknown users has a history of decades
[8, 9]. These trust management frameworks mostly have
their theoretical background in game theory, particularly ‘the
prisoners’ dilemma’ [10].

 Another type of game, ‘the signaling game [11]’ would
be useful to analyze the process that could help a user select
the most trustworthy (or productive) provider among several
of them, especially when information asymmetry exists
between a user and a provider so that a user cannot know the
exact type of a provider. Several studies adopted the
signaling game to develop the autonomous agents’ strategies
for selecting their partners on a network [12, 13]. Most of
these studies focused on finding the best strategy of an
individual agent rather than finding policies that make a
socially efficient equilibrium.

A particular piece of research in the political science field
adopted the signaling game to analyze the dynamics of
general trust in society [14]. It showed how society’s trust
tends to oscillate between high and low levels in the long run.
However, the study more focused on scrutinizing in the
cycles of the general trust levels in a society rather than
finding a solution to address problems of pervasive distrust.

Based upon previous research, this paper focuses more
on finding policies and solutions to make a socially efficient
equilibrium and to address an emergence of generalized
distrust.

120Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 133 / 282

III. TRUST SIGNALING GAME IN THE PUBLIC CLOUD
MARKET

Recently, the public cloud service market has had a
number of providers, so it is almost a competitive market.
Vendors try to increase the probability of being selected by
users through advertising their performance, service prices,
or trustworthiness. Users make their decisions based on these
signals from vendors. This section firstly investigates the
criteria for the existence of a stable equilibrium when a
number of providers and users send and receive signals and
make partnerships.

A. Process of Trust Establishment
The criteria for selecting partners for users are price,

performance, trustworthiness, and so on. This theoretical
analysis focuses on trustworthiness.

The process of trust establishment has roughly three steps
[15]. The first step is when the market initiates before the
trust develops concretely. A user faces the signaling game
situation in which a user meets an unknown cloud service
provider. The provider sends a characteristic signal to the
user and the user makes a decision of selecting a partner by
investigating the provider’s signals with proper price. Then
the connected partners transact or communicate.

The second step is the process of trust formation. As the
first step is repeated, the transaction history and a trust
relationship are accumulated. The total trust level of the
market can increase or decrease with specific paths of trust
formation.

The third step is the steady-state. Once the trust
establishment reaches a stable equilibrium, a small loss or
disturbance of trust cannot affect the equilibrium. This study
focuses on what factors make a successful path from the
second step to the third step and what factors make the
transition a failure.

B. Fundamental Rules of Trust Establishment
In the first step, a service provider intends to increase the

probability of being selected by users by signaling his/her
trustworthiness in various ways. Simultaneously, a user
observes those signals and decides whether or not to trust the
provider. Our previous work briefly analyzed this signaling
game model and suggested three propositions about
signaling cost structures and market environment conditions
in network based transactions [16].

Service providers, or cloud providers in this case, are
divided into two types. One type is the good provider who
observes the promised rules and the other type is the bad
provider who violates the rules or does damage to the partner.
The proportion of bad type providers in the total provider
population is denoted by πB (0 ≤ πB ≤ 1). A provider sends
signal e (0 ≤ e ≤ 1) to users, and a single signal costs c(e).

Users are all the same type. A user receives a signal from
a provider, examines the signal, estimates the type of the
provider, and suggests a charge for the trustworthy
transaction, w(e).

Once the partner and the charge are determined and the
transaction conducted, the payoff for the user is subsequently
fixed. The payoff for a user varies with the type of partner. If

a user meets a good type provider, the user receives the
proper value of cloud service, v (v ≥ 0) and the provider also
receives the proper payoff, v. However, a bad type partner
does not deliver the proper value of cloud service and does
damage to the user with an amount of ‘L’ (L ≥ 0). Therefore,
the bad type provider extort the payoff v and the additional
value L from the user. What is important here is that the user
cannot be aware of the type of his/her partner.

The total expected utility for the bad type provider is
determined by the following equation: uB(e)=v+L+w(e)-cB(e)
and the for good type provider is determined by the
following equation: uG(e)=v+w(e)-cG(e).

Without a signal, the user suggests the fee to the
unknown provider for the cloud computing service as the
following equation: w̄ = −πB(v+L)+(1−πB)v = v−πB(2v+L).
This means the expected payoff for a single transaction.

In this model, the following three propositions are
concluded.

· Proposition 1. (The separating equilibrium) When
the level of trustworthiness of a participant is used as
the signal, the signal can be effective in
distinguishing one provider from another, assuming
the cost of the trust level signaling is sufficiently
distinct from each other.

· Proposition 2. (The pooling equilibrium) The
equilibrium in which the two types of providers
select the same trustworthiness level as a signal is
not stable if the signaling cost structure is distinct.

· Proposition 3. The effectiveness of the
trustworthiness level signaling depends on the
proportion of bad type participants in the market.

For example, if the trust signaling cost of the bad type
provider is cB(e)=e and the cost of good type provider is
cG(e)=γe (0<γ<1), the user distinguishes the good type
provider from the bad type provider with only their signals,
as long as the equilibrium signal e* falls into the following
range in Equation (1). In this equilibrium the good type
provider selects e=e* and the bad type provider selects e=0.

 * vv e
g

£ £ (1)

If two types of provider select their signals in the range
of Equation (2), they can select the same level of signal as
equilibrium. However, it is an unstable state.

 * (2)Be v v Lp£ - + (2)

Proposition 3 means that the costly signaling regime is
useful only if the proportion of bad type providers falls into
the range of Equation (3).

2 2B

v v
v L v L

g p< <
+ +

 (3)

121Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 134 / 282

IV. DYNAMIC SCENARIO OF TRUST ESTABLISHMENT
The trust signaling game described in Section III is a

static and single round situation. The second process of trust
establishment is a dynamic process in which the trust
relationships stay in equilibrium or leave it.

A. Potential for a Pareto Improvement in the Equilibrium
When the separating equilibrium has been reached, the

equilibrium signal of a good type provider is e* and the
signaling cost is γe. A bad type provider does not send a
signal and pay any cost. In a dynamic situation, bad type
providers gradually leave the market and the ratio of bad
type providers, πB, decreases.

If πB decreases down to this level, good type providers
have incentives to lower their signaling costs so that
increases the total payoff. In terms of individual rationality,
the expected payoff of a good type provider if he/she decides
not to send a signal in this situation is shown in the following
Equation (4).

0() | 2 (2)G e Bu e v v Lp= = - + (4)

The expected payoff of Equation (4) is more than 2v-γe*.
There is potential for a Pareto improvement when πB
decreases gradually. It means that the expected payoff of one
player can increase without decrease of the other’s expected
payoff. It reaches the Pareto efficient state when πB finally
falls to zero. However, users stay with the same payoffs
because of the assumption of the zero profit condition.

The situations where providers and users believe each
other to conduct themselves properly and choose each other
as partners make the transactions and communications more
efficient. This is the benefit of an economy of trust.

B. The Countinuous Needs of Costly Signals
The Pareto optimum described in the previous subsection

is not stable, because a good type provider can become a
traitor or change his/her type in the real world market. Or, a
newcomer provider of bad type can enter the market.

When a single bad type provider appears in the market
with no signaling, πB turns into a higher value than zero. This
traitor or newcomer can gain a higher payoff than any other
good type providers with an amount of ‘L’. The users lose
their payoff by the same amount. The sum of payoffs of all
market participants does not change; however the share of
users transfers to the share of traitors or newcomers.

Once this transformation happens, users calculate the
proportion of bad type providers again, and introduce the
price related to the proportion, and finally the market adopts
the costly signaling regime.

C. The Dynamics of the Trust Equilibrium Shift
The last situation of dynamic trust transition is when the

proportion of bad type providers exceeds the range defined
by the third proposition of Section III. The separating
equilibrium with costly signaling is in stable equilibrium;
therefore users can still distinguish a good type provider
from a signal only if the value of πB is in the range defined

by Equation (3). When the damage from a bad type
provider’s behavior increases exceptionally, the separating
equilibrium in which the two types of providers select the
different trustworthiness level as a signal fails to stay stable.
Figure 1 illustrates the relationship between the dynamic
states of trust establishment and the proportion of bad type
providers. Part (a) indicates the possible region of separating
equilibrium, part (b) is the transition region of separating
equilibrium and non-signaling pervasive trust and (c) is the
market reduction region.

Figure 1. Dynamic states of trust establishment

V. SIMULATION DESIGN AND DISCUSSION
The dynamics of trust can be more clearly understood

with a simulation based on parameters which reflect the
market conditions in the real world. Figure 2 shows the
causal loop diagram of a dynamic model of trust
establishment in the public cloud service market. The
proportion of bad type providers, πB, is the most central
variable which affects many other variables and receives
feedback. This variable can be controlled by these exogenous
variables which are denoted by ‘E’ with policy decisions.

The ratio of a good type provider’s signaling cost to a
bad type provider’s cost, γ, affects the signaling costs of two
type providers and the levels of signals are affected by these
costs. The probability of being selected by a user and the
signaling cost affect the utility of a provider as well as the
non-signaling price, w̄. The utility of a provider affects the
entrance and leaving rate of a provider. The amount of
damage from misbehavior by a bad type provider, L affects
the utility of a bad type provider

Figure 2. The causal loop diagram of a dynamic model of trust

establishment in the public cloud service market

122Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 135 / 282

The results of designed simulation is expected to show
the quantitative relationship between the variables which are
illustrated in the Figure 2.

It is obvious that non-signaling pervasive trust is the
optimal state of the market. The second best state is when
users can easily distinguish the good type providers with
signaling in the separating equilibrium. The best or second
best states can be realized by prudent policy design which
can control several related variables in the causal loop
diagram.

The basic condition is to increase the signaling cost for
bad type providers more than for good type providers.
Reputation based mechanisms or third party authorization
mechanisms can be possible methods to increase the
signaling cost of a bad type provider.

If the costly signaling is maintained after most of the bad
type providers have retired, the conversion of good type
providers into bad ones or the entrance of new bad type
providers can be blocked. However, costly signaling is
inefficient when the proportion of bad type providers is
substantially low. Then, it is worth considering the
community of good type providers or their agreement for an
efficient market. Either monitoring and penalty contracts or
agreements have to exist in such communities [17].

VI. CONCLUSION AND FUTURE WORK
The fundamental rules and dynamic scenario of trust

establishment are important factors that should influence the
decision makers in the industry sector or a government
which intends to promote the public cloud service market.

The theoretical analysis results of this research suggest
that the most critical task is to make a pool of trustworthy
public cloud service providers to establish an efficient
market. The results also show that prudent policy design,
which makes signaling costs different for different types of
providers is desirable. It also shows that even in a
trustworthy market, minimum monitoring and penalty
contracts are needed and individual users have to invest in
security at an optimal level.

Future work will verify the theoretical model of this
paper with simulations and specify the dynamic scenarios of
trust establishment and transition with several case
investigations into various types of cloud computing services.
In particular, the presented causal loop diagram will be
validated and its parameters will be examined.

ACKNOWLEDGMENT
This research was supported by the KCC (Korea

Communications Commission), Korea, under the CPRC
(Communications Policy Research Center) support program
supervised by the KCA (Korea Communications
Agency). (KCA-2012-(11-941-1-005))

REFERENCES

[1] Larry Dignan, Cloud's price race to zero: Microsoft cuts Azure
pricing, eyes Amazon, article of www.zdnet.com, March 9, 2012.
http://www.zdnet.com/blog/btl/clouds-price-race-to-zero-
microsoft-cuts-azure-pricing-eyes-amazon/71246

[2] S. M. Habib, S. Ries, and M. Mühlhäuser, "Cloud Computing
Landscape and ResearchChallenges regarding Trust and
Reputation," in Symposia and Workshops on Ubiquitous,
Autonomic andTrusted Computing, Xi'an, China, 2010, pp.
410–415.

[3] S. Pearson, “Taking account of privacy when designing cloud
computing services.” In ICSE Workshop on Software
Engineering Challenges of Cloud Computing, Vancouver,
Canada, May 2009, pp. 44-52.

[4] M. Nelson,”The Cloud, the Crowd, and Public Policy,” Issues
In Science And Technology, vol. 25, no. 4, 2009.

[5] H. Takabi, J.B.D. Joshi and G.J. Ahn. ”Security and Privacy
Challenges in Cloud Computing Environments.” IEEE
Security & Privacy, vol. 8, no. 6, 2010, pp. 24-31.

[6] L. Yan, C. Rong, and G. Zhao. “Strengthen cloud computing
security with federal identity management using hierarchical
identity-based cryptography,”. In The First International
Conference on Cloud Computing, pp. 167–177, 2009.

[7] K. Hwang, S. Kulkarni, and Y. Hu, “Cloud Security with
Virtualized Defense and Reputation-Based Trust
Management,” IEEE Int’l Conf. Dependable, Autonomic, and
Secure Computing (DASC 09), IEEE CS Press, 2009.

[8] P. Resnick and R. Zeckhauser, “Trust among strangers in
Internet transactions: Empirical analysis of eBay’s reputation
system,” working Paper for the NBERWorkshop on Empirical
Studies of Electronic Commerce, 2000.

[9] A. Jøsang, R. Ismail, and C. Boyd, “A survey of trust and
reputation systems for online service provision,” Decis.
Support Syst. Vol. 43, 2007, pp. 618–644.

[10] R. Axelrod, The Evolution of Cooperation, Basic Books: New
York, 1984.

[11] A. M. Spence, (1973). “Job market signaling,” Quarterly
Journal of Economics, vol. 87, no. 3, pp. 355–374.

[12] A. Lopez-Paredes, M. Posada, C. Hernandez, and J. Pajares,
“Agent based experimental economics in signaling games in
Complexity and artificial markets,” Lecture Notes in
Economics and Mathematical Systems, vol. 614, 2008,
pp.121–129.

[13] A. Patcha and J. Park, “A Game Theoretic Formulation for
Intrusion Detection in Mobile Ad Hoc Networks, ”
International Journal of Network Security, vol.2, no2, 2006,
pp.131–137.

[14] T. Ahn, and J. Esarey “A Dynamic Model of Generalized
Social Trust," Journal of Theoretical Politics, vol. 20, no. 2,
2008, pp. 151–180.

[15] M. Head, and K. Hassanein, “Trust in e-Commerce:
Evaluating the Impact of Third-Party Seals”, Quarterly
Journal of Electronic Commerce, vol. 3, no. 3, 2002, pp. 307-
325.

[16] S. Kim, and J. Hwang, “Theoretical Analysis and Simulation
to Investigate the Fundamental Rules of Trust Signaling
Games in Network-based Transactions”, The Third
International Conference on Future Computational
Technologies and Applications, 2011.

[17] J. Hwang, S. Kim, H. Kim and J. Park, “An optimal trust
management method to protect privacy and strengthen
objectivity in utility computing services,” International
Journal of Information Technology & Decision Making, vol.
10, issue 02, 2011, pp. 287-308.

123Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 136 / 282

De-replication: A Dynamic Memory-aware Mechanism

Manu Vardhan, Paras Gupta, Dharmender Singh Kushwaha
Department of Computer Science and Engineering

Motilal Nehru National Institute of Technology Allahabad
Allahabad, INDIA

e-mail: {rcs1002, cs1006, dsk}@mnnit.ac.in

Abstract—Resource replication in distributed environment
produces issues of secondary storage. De-replication of
resources is required when replication mechanism is hindered
due to lack of secondary storage. This paper introduces de-
replication approaches that depend upon last modification
time, number of replica available and resource size.
Comparative study shows that de-replication can be used to
overcome the space overhead issue and reduces the de-
replication time. Result shows that in case the space required is
same but number of files to be de-replicated varies, de-
replication time also varies depending on number of files to be
de-replicated. De-replication time will be more for case having
large number of files. With the proposed approach, if file size
increases by the multiple of 7, de-replication time will get
increase just by the multiple of 1.5. This shows that de-
replication time is decoupled from size of files that are de-
replicated on the fly dynamically and does not increase
proportionally with respect to file size.

Keywords-De-replication; Distributed Systems; Replication

I. INTRODUCTION

Use of computer systems and Internet is becoming the
part of day to day life, with the increasing demand for the
services provided by them. To fulfill the requirement of
services requested by an individual, service availability is an
important issue. Distributed systems provide the
environment to various experts, where services, resources
and information are distributed and can be accessed by the
members of that environment, as compared to the centralized
systems.

A basic definition of a distributed system in [1] is that a
distributed system is a collection of independent entities that
cooperate to solve a problem that cannot be individually
solved. This is a term that describes a wide range of
computers, from weakly coupled systems, such as wide area
networks, to strongly coupled systems, such as local area
networks, to very strongly coupled systems such as
multiprocessor systems [2].

Replication is a mechanism of service or resource
placement to provide their availability in case of
unavailability of resources and services. Replication is how
to replicate data and request actors using adaptive and
predictive techniques for selecting where, when and how fast
replication should proceed [3].

De-replication is a mechanism to de-replicate / garbage-
collect data or request actors and optimizes utilization of
distributed storage based on current system load and
expected future demands for the object [3].

De-replication is done to optimize the utilization of
storage space when the demand for a resource arises. The file
to be de-replicated must be carefully taken into consideration
of the future demands of a file. File currently being serviced
cannot be de-replicated. The number of previously replicated
files selected for de-replication can fulfill the requirement for
storage space need of the upcoming file to be replicated. De-
replication is considered as a part of resource management
process where as replication is considered as a part of
resource placement process.

The rest of the paper is organized as follows. The next
section discusses a brief literature survey of existing theories
and work done so far. Section III discusses the problem
definition. Section IV describes the proposed solution,
followed by the results and discussion section. Finally,
Section V concludes the work followed by references.

II. RELATED WORK

Various resource management policies and mechanisms
are globally available that represent a step towards the
adaptive resource management techniques, thus improving
the utilization of resources, which results in improving the
overall performance of the system by reducing several
overheads. Venkatasubramanian [3] discusses about the
security and timeliness application requirements using a
customizable and safe middleware framework called
CompOSE|Q. He describes the design and implementation of
CompOSE|Q, which is a QoS-enabled reflective middleware
framework. Also, to improve the performance of the system
in the field of continuous media application, resource
management technique is helpful in improving the utilization
of resources. Chou [4] describes various resource
management policies on threshold basis in context of
continuous media (CM) servers in the area of multimedia
application. Venkatasubramanian[5] discusses the two
replication policies, these are static and dynamic. The
division is based upon the number of copies of a file which is
termed as degree of replication. In static replication policies,
the degree of replication is constant, while dynamic
replication policies allow it to vary with time. Santry [6]
identified four file retention policies for Elephant and have
implemented these policies in their prototype. The policies
are viz. Keep One, Keep All, Keep Safe and Keep
Landmarks. Keep One provides the non versioned semantics
of a standard file system. Keep All retains every version of
the file. Keep Safe provides versioning for undo but does not
retain any long term history. Keep Landmarks enhances
Keep Safe to also retain a long-term history of landmark
versions. Hurley and Yeap [7] propose a file de-replication

124Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 137 / 282

method based on beta time interval that decides the
frequency of invoking the de-replication operation. Over
time, all files will eventually be candidates for
migration/replication. Although many exist, the one we
choose is as follows: every beta time units (where beta is a
uniform time interval which defines the time between de-
replication events), storage sites will decide which file
qualifies for de-replication. The de-replication policy chosen
applies the least recently used concept (i.e., the file selected
for de-replication is the file which was not requested for the
longest period of time at the storage site). Once the file has
been selected, it will be removed from this storage site.
Using beta, it is possible to create a variety of de-replication
policies: the smaller the value of beta, the greater the
frequency of de-replication, and the larger the value of beta,
the longer a file copy remains in the system. Resource
replication is basically of two types, active and passive. In
passive replication, all the resources are fixed in advance
depending upon the application requirement. In active
replication, mutual information about the peer nodes is
maintained and the replicated resources can be accessed at
any site. The traditional resource replication is passive and
does not participate in the decision on when to replicate,
where to replicate and the number of copies to replicate. In a
blind-replica service model proposed by Tang [10], request
routing is independent of where the replicas are located.
Each replica simply serves the requests flowing through it
under a given routing strategy. Various replication strategies
have been proposed on the basis of the relative popularity of
individual files, based on their query rate. Helen [8]
proposed a query-based file popularity approach for
replication. Common techniques include the square-root,
proportional, and uniform distributions. File clustering-based
replication algorithm in a grid environment is proposed by
Hitoshi [9], which presents the location based replication
mechanism. The files stored in a grid environment are
grouped together based on the relationship of simultaneous
file accesses and on the file access behavior.

III. PROBLEM DEFINITION

During replication, when a File Replicating Server (FRS)
creates a replica of file on the peer nodes, space
management issue arises, i.e., whether space is available or
not in the secondary storage of the peer nodes on which the
file needs to be replicated. If space is available, the file will
get copied, but if space is not available de-replication of
previously replicated files needs to be done in the secondary
storage of that peer node.

De-replication of files will take place in a manner such
that it will fulfill the size requirement of upcoming files.
While maintaining the space management overhead,
decision for deleting a file, depends on three criteria that are
discussed in Section III-A.

A. Parameters to be Used

Solution to this problem will be represented on the basis
of three parameters of a file which are last modification time
of the file, number of replica available of a file and file size.

 Last Modification Time of a File: Last modification
time is the time at which the file was last modified or
last used.

 Number of Replicas Available of a File: Number of
replicas available of a file is a count on number of
copies available for a particular file. Whenever a
copy of file is created, it will increase the number of
replicas available of a file.

 Size of a File: File size is the size of a file required
on a disk.

IV. PROPOSED SOLUTION

With everything being lodged on Internet, computing
paradigm is changing fast to harness this capability. Many
information servers and files are resident on various
machines and this can be effectively utilized by the users.
We present a scenario discussed in Section IV-A, although
on a smaller scale where geographically disparate clusters
interact with each other for information sharing through
replication. Each of these clusters are owned by respective
organizations.

In our proposed model, we talk about space overhead in
replicating file on the storage site. If space is available, the
file will get replicated; otherwise, de-replication of
previously replicated files needs to be done in that directory.

A. Architecture Used

One node in each cluster is designated as FRS. FRS can
also be replicated on some other node in the cluster for
backup and recovery. The scenario presented in the paper is
illustrated in Figure 1 and is elaborated subsequently.

Figure 1. Architecture

The proposed architecture consists of loosely coupled
systems, capable of providing various kinds of services like
replication, storage, I/O specific, computation specific and
discovery of resources. Based on the application
requirement, the resources are made available to other
nodes. Figure 1 shows a network of three clusters that are
connected to each other via intercommunication network.
Each cluster consists of a group of trusted nodes and a File
Replicating Server (FRS) assigned to these nodes. A FRS

125Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 138 / 282

can be ‘local’ or ‘remote’. A FRS is assigned to a subset of
nodes known as local FRS and FRS positioned outside that
cluster, will be called as remote FRS. Each subset of nodes
(denoted as requesting nodes) receives the list having IP-
address of remote FRS, to increase fault tolerance
capability. But, the nodes of a cluster will send the file
request only to the local FRS. In case of the failure of the
local FRS, a node can automatically select a remote FRS
from the list and file request will be routed to the selected
remote FRS. This makes the model robust and capable of
handling crashes in case of local or even remote FRS fails.
The system will keep functioning under all circumstances
and will never come to halt. Each FRS maintains two tables:

 File request count table with the following attributes:
<file_id, file_name, request_count, meta data>.

 Peer FRS table with the following attributes:
<FRS_IP, FRS_PORT>.

Each FRS is informed whenever a new FRS is added to
the network, to updates its peer FRS table. FRS does not
monitor and maintains the status of remote FRS, instead
FRS request for the current status of remote FRS on-
demand. FRS status can either be ‘busy’ or ‘ready’.

Threshold based file replication works as follows:
Each local FRS is responsible for accepting the file

request and based on its current status (checks if the number
of requests currently serving for a particular file is below the
threshold or not), in the following manner:

 If the status of local FRS is ‘ready’, the local FRS
will fulfill the request.

 If the status of local FRS is busy, it looks for a
remote FRS that can handle the request, by one of
the following manner, described as under:

The local FRS contacts the remote FRS that can handle
the request by the available copy of the requested file i.e. the
status of remote FRS is ready. If not so, the local FRS
contacts those remote FRS on which the requested file is not
available. In that case file replication will be initiated, by the
local FRS of the cluster and the file replica will be created
on remote FRS on which the file is not available. For both
the cases mentioned above, IP address of the remote FRS
that can handle the request will be send to the requesting
node. On receiving the IP address, the requesting node will
connect to the remote FRS and receives the file, without any
user intervention. Thus the overhead of polling and
broadcasting is reduced.

B. Approaches Proposed for De-replication

De-replication of files will take place in a manner such
that it will fulfill the size requirement of upcoming files.
While maintaining the space management overhead, three
approaches for file de-replication are discussed below.

1) Last Modification Time Based Approach: In this
approach, files are sorted on the usage basis file that was not
requested for longest period of time will be selected for de-
replication. A drawback of this approach is that if only one
requested file is there before deletion, it causes loosing of
information. So, a check is performed before de-

replicationwhich will be done on number of replica
available basis approach.

2) Number of Replicas Available of a File Based
Approach: In this approach, files having many copies or the
files with more than one replica are de-replicated only when
there is not sufficient space available for new replicated
files. Files with one replica are not de-replicated to avoid
losing information of the file. In this case, before the de-
replication of file, a check is performed, whether or not
there are other copies of file available or not. If only single
copy of file exists in the system, in that case next probable
file for de-replication will be selected from the sorted file
list on the basis of last modification time.

3) File Size Based Approach: File size based de-
replication approach is used when time required for de-
replication considered as important factor. When there is a
very little difference in the last modification time of the two
files and number of replicas available of both files is more
than one, de-replication of file with minimum file size
among them will take place to avoid the delay in the process
and complete it in the less time.

The proposed approach for de-replication will be
described in Figure 2. The detailed description of the
number labeled arcs will be described in sequential manner
as follows:

1. Node A of cluster1 sends connection request to
FRS1.

2. FRS1 sends ip addresses of peer FRS and resource
list to node A of cluster1.

3. Node A of cluster1 sends request for file f1 to FRS1
at time t0.

4. Node A of cluster1 starts receiving requested file f1

from FRS1.
5. Node D of cluster1 sends connection request to

FRS1.
6. FRS1 sends IP addresses of peer FRS and resource

list to node D of cluster1.
7. Node D of cluster1 sends request for same file f1 to

FRS1 at time t1.

Cluster1

FRS1

A
D

B C

3

2 5

6

8

9

10

File Replica Table
of FRS 1

11

12

File Replica Table
of FRS 2

13

1417

18

Cluster2

FRS2

A

B

C

1

4

7

15

16

File Threshold
on FRS1=1

Figure 2. Proposed Model

126Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 139 / 282

8. As FRS1 can fulfill only one request at a time
because the threshold value for a particular file on
FRS1 is 1, so node D of cluster1 will receive the
requested file from another FRS in the system, here
FRS2, to fulfill its request. To fulfill the request of
node D of cluster1, replication of requested files is
initiated by FRS1 as the requested file is not present
on FRS2. This is because the FRS does not
maintain any information about the “requesting
node (e.g. node D)” at any point of time. So
FRS1will replicate the requested file to other FRS
as its shared resource information is being
maintained, as discussed in section IV-A. Now,
FRS1sends the size of the file to be replicated to
FRS2.

9. FRS2 does not accept the file replication request
because of space/storage scarcity. FRS2 initiates
de-replication operation on set of previously
replicated files. The required amount of space is
made available on FRS2. If the secondary storage
on FRS2did not contains any replicated files then
user interruption will come, as de-replication of
non-replicated file is not allowed.

10. FRS2 sends message ‘ready to receive file f1’ to
FRS1.

11. FRS1 starts replicating the file f1 to FRS2.
12. FRS2 sends message ‘replication of file f1to be

done successfully’ to FRS1.
13. FRS1 updates its file replica table.
14. FRS2 updates its file replica table.
15. FRS1 sends IP address and port of FRS2 to node D

of cluster1informing that the file f1 is now available
on FRS2.

16. Request of node D of Cluster1 for file f1 will now
be fulfilled by peer FRS, FRS2.

17. After some time node A of cluster1 request same
file f1from FRS1.

18. In case file with the same name already exists on
the node A of Cluster1,file de-replication will be
done on that node then the file transfer from FRS1
to node A of cluster1 will be initiated.

C. Stability Analysis

According to Figure 3, the communication between a
requesting node and a FRS (Source A and FRS1) is
described as follows: Source A sends a file request to
FRS1through .FRS1 will receive the request of Source A
represented as M1. In return, FRS1 sends file to Source A
shown by M3 received on Source A using .

The total communication between requesting node
Source A and FRS1 with internal actions () will be given
by equation 1 as follows:

SourceA≝ SourceAMM ... 31 (1)

M
3

M 5

M
1

M
1

File
_s

ize

Figure 3. File De-replication Model Flow Graph in Process Algebraic

Approach

Also as shown in Figure 3, communication between the
two existing FRS in the architecture (FRS1 and FRS2) is
described as follows: FRS1 will send file size of the file to
be replicated using _ which will be received at FRS2
end by _ . When file size is received by FRS2, it
initiates de-replication operation on set of previously
replicated files which will be represented by
. _ , which is file de-replication with internal

actions (). After the successful completion of de-
replication operation, the required size for replication will
be available on FRS2. Now, FRS2 will send ‘ready to
receive replicated file’ message to FRS1 represented
through . FRS1 received this message using M4. After
receiving the message, FRS1 will send the file to be
replicated to FRS2 represented by message . FRS2 will
receive the file send by FRS1 represented as M2. When the
file will be replicated successfully on FRS2, it will send a
message ‘successful replication done’ to FRS1 by which
was received by FRS1 using M5.

1) Illustration of State Transition of Source Node: As
shown in Figure 3, FRS1 will act as a source node. Status
change illustration of source node (FRS1), as shown in
Figure 4, will be described as follows:

Figure 4. State Transition Diagram of Source Node (FRS1)

After the action of sending file size of the file to be
replicated through message _ , source node (FRS1)
transit to state B of FRS1 shown in equation 2,

127Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 140 / 282

1FRS ≝ BsizeFile ._ (2)

State B of FRS1 switch to state C of FRS1 through
message M4, which represents the action of receiving ‘ready
to receive replicated file’ message by FRS1shown in
equation 3,

B ≝ CM .4 (3)

State C of FRS1 switch to state D of FRS1 through
message which represents the action of sending the file
to be replicated by FRS1 shown in equation 4,

C ≝ DM .2 (4)

State D of FRS1 upon the action of receiving message
‘successful replication done’ by FRS1through message M5
switch to starting state FRS1 shown in equation 5,

D≝ 15.FRSM (5)

From the equations 2, 3, 4 and 5 of various states of
FRS1, we can build the definition of FRS1, which is defined
as by the equation 6:

1FRS ≝ 135241_. FRSMMMMsizeFileM (6)

2) Illustration of State Transition of Destination
Node:As shown in Figure 3, FRS2 will act as a destination
node. Status change illustration of destination node (FRS2) as
shown in Figure 5 will be described as follows:

After the action of receiving file size of the file to be
replicated through message _ , destination node (FRS2)
transit to state E of FRS2 shown in equation 7,

2FRS ≝ EsizeFile ._ (7)

State E of FRS2 switch to state F of FRS2 through
message _ which represents the action of
de-replication on previously replicated files by FRS2 shown
in equation 8,

E ≝ Ffileedereplicat ._ (8)

Figure 5. State Transition Diagram of Destination Node (FRS2)

State F of FRS2 upon some internal actions () by FRS2
switch to starting state FRS2 shown in equation 9,

F ≝ 2.FRS (9)

 From the equations 7, 8 and 9 of various states of FRS2,
we can build the definition of FRS2 which is defined as by
the equation 10:

2FRS

≝ 2524_.._ FRSMMMfileedereplicatsizeFile

(10)

From the equations 1, 6 and 10, we can build the
complete system as defined by the equation 11:

FDM ≝ nDestinatioFRSSource |||| (11)

V. RESULTS AND DISCUSSION

To overcome from the overhead of space management
issue, a data structure consisting of a table considered which
is described in Table 1. The proposed model is simulated on
linux platform and LAN having speed of 100.0 Mbps.

TABLE I. ATTRIBUTES

Attribute Name Type

Last Modification Date yyyy-mm-dd

Last Modification Time hh:mm

File Name String

File Size Long

File replica Integer

Replicated files on the storage site will be sorted based on
least recently used parameter which will be obtained using
the combination of both last modification date and last
modification time. The list of replicated files will be sorted
in descending order. Example of a data structure of available
files maintained at the storage site is described in Table 2.

TABLE II. DATA STRUCTURE EXAMPLE FOR COMPARISON BETWEEN
APPROACHES

Last
Modification

Date

Last
Modification

Time

File
Name

File Size
(in MB)

File
replica

2011-12-21 20:08 a.mp3 3 4
2011-12-08 22:48 b.mp3 500 1
2011-11-23 16:36 c.mp3 100 2
2011-11-23 16:03 d.mp3 250 1
2011-11-09 20:11 e.mp3 50 1
2011-11-09 18:47 f.mp3 5 4
2011-11-09 18:43 g.mp3 10 2

The Figure 6 plots efficiency of all the three approaches

versus load based on the data shown in Table 2 and the three
approaches based on least recently used parameter, replica
counts and file size parameters. Efficiency calculated is
proportional to the reciprocal of extra memory size vacated
during de-replication based on low, low-medium, medium-
high and high load for which range of file size (Rf) is
Rf<20MB, 20MB<Rf<60MB, 60MB<Rf<100MB, and
Rf>100MB, respectively.

Figure 6. Comparison of the Three Approaches

128Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 141 / 282

Unlike 2nd and 3rd approaches (i.e., number of replica
available of a file basis and file size basis respectively),
1stapproach(i.e. last modification time basis) is based only on
least recently used parameter and disregards the replica
counts and file size parameters. Thus it may even delete the
last replica of file present in system. While 2ndapproach is
based on both least recently used and replica counts
parameters and disregards the file size parameter. The 3rd
approach is based on all the three parameters, least recently
used, replica counts parameters and file size parameter. Most
of the time, the percentage efficiency of the 2nd and 3rd
approach is equal and better than of the 1st approach, except
in case low-medium load. Only in case of low load
percentage efficiency of 3rdapproach is better than
2ndapproach. All the three approaches said to be 100%
efficient only when space required before and after de-
replication is exactly the same.

De-replication time increases, as the number of files not
accessed for the longest period and smaller in size, are more
as compared to the files that are larger in size. Table 3 shows
when the space required is same but the number of files to be
de-replicated varies, de-replication time also varies
depending on the number of files to be de-replicated. De-
replication time will be more for the case having large
number of files. Table 3 shows that if file size increases by
the multiple of 7, i.e., from 6 MB to 43.9405 MB, de-
replication time will get increase by the multiple of 1.5, i.e.,
from 60millisecond to 98 millisecond. This shows that the
de-replication time is decoupled from the size of files that are
de-replicated dynamically and does not increase
proportionally with respect to the file size.

TABLE III. DE-REPLICATION TIME IN REQUIRED SPACE

Number
of Files

de-replicated

Space
Required
(in MB)

Space
Freed

(in MB)

De-replication
Time

(in msec)
1 6 6.0523 60
2 7.8607 13.1792 75
3 20.0399 21.0399 77
3 36.2634 39.7985 79
5 36.2634 59.7151 96
5 43.9405 51.0140 98

Finally, equation 11 establishes a relationship between

the formal aspect of file de-replication server and its
architectural model through process algebra approach. The
stability analysis ensures that the system will run in the
finite sequences of interaction and transitions. On the basis
of these equations, a transparent, reliable and safe file de-
replication model is build.

VI. CONCLUSION

This paper proposed an approach that tackles the issue of
space overhead in a distributed system environment. The
proposed solution resolves this issue of space overhead. De-

replication time increases, as the number of files increases
that are not accessed for the longest time period and smaller
in size as compared to the files that are larger in size. Result
shows that, in case when the space required is same but the
number of files to be de-replicated varies, de-replication time
also varies depending on the number of files to be de-
replicated. De-replication time will be more for the case
having large number of files. With the proposed approach, if
file size increases by the multiple of 7, de-replication time
will get increase just by the multiple of 1.5. This shows that
the de-replication time is decoupled from the size of files that
are de-replicated on the fly dynamically and does not
increase proportionally with respect to the file size.

REFERENCES
[1] A. D. Kshemkalyani and M. Singhal, "Distributed

Computing: Principles, Algorithms, and Systems”, ISBN:
9780521189842, paperback edition, Cambridge University
Press, March 2011 (corrects the errata in the 2008 edition).
756 pages.

[2] M. Gupta, M. H. Ammar, and M. Ahamad, "Trade-offs
between reliability and overheads in peer-to-peer reputation
tracking,” Computer Networks, pp. 501-522, 2006.

[3] N. Venkatasubramanian, “CompOSE|Q-a QoS-enabled
customizable middleware framework for distributed
computing,” Electronic Commerce and Web-based
Applications/Middleware. in 19th IEEE International
Conference on Distributed Computing Systems, pp. 134-139,
1999.

[4] Cheng-Fu Chou, L. Golubchik, and J. C. S. Lui, “Striping
doesn't scale: how to achieve scalability for continuous media
servers with replication,” in 20th International Conference on
Distributed Computing Systems, pp. 64-71, 2000.

[5] N. Venkatasubramanian, M. Deshpande, S. Mohapatra, S.
Gutierrez-Nolasco, and J. Wickramasuriya, “Design and
implementation of a composable reflective middleware
framework,” in 21st International Conference on Distributed
Computing Systems, pp. 644-653, Apr 2001.

[6] D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C. Veitch, R.
W. Carton, and J. Ofir, “Deciding when to forget in the
Elephant file system,” vol. 33, issue 5, pp. 110-123, Dec
1999.

[7] R. T. Hurley, and Soon Aun Yeap, “File migration and file
replication: a symbiotic relationship,” IEEE Transactions on
Parallel and Distributed Systems, vol. 7, no. 6, pp. 578-586,
Jun 1996.

[8] S. Helen, “IRM: Integrated file replication and consistency
maintenance in P2P Systems”, IEEE Trans. on Parallel and
Distributed Systems, Vol. 21, No. 1, pp. 100-113, 2010.

[9] S. Hitoshi, S. Matsuoka and T. Endo, “File Clustering Based
Replication Algorithm in a Grid Environment”, 9th
IEEE/ACM Int. Sym. on Cluster Computing and the Grid, pp.
204-211, 2009.

[10] X. Tang, C. Huicheng, and S. T. Chanson, “Optimal Replica
Placement under TTL-Based Consistency”, IEEE
Transactions on Parallel and Distributed Systems, vol.18, no.
3, pp. 351-363, March 2007.

129Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 142 / 282

Evaluating Eucalyptus Virtual Machine Instance Types: A Study Considering

Distinct Workload Demand

Erica Teixeira Gomes de Sousa, Paulo Romero Martins Maciel, Erico Moutinho Medeiros, Débora Stefani Lima

de Souza, Fernando Antonio Aires Lins, Eduardo Antonio Guimaraes Tavares

Center of Informatics

Federal University of Pernambuco

Recife, Brazil

{etgs,prmm,emm2,dsls,faal2,eagt}@cin.ufpe.br

Abstract—Cloud computing paradigm provides virtualized

computing resources as a service on demand. This paradigm

allows companies focus on their business issues rather than

conceiving and managing complex infrastructures. As a

consequence, performance evaluation of cloud computing

infrastructures has been receiving considerable attention by

service providers as a prominent activity for improving service

quality infrastructure planning, and selection of software

platforms (e.g., Eucalyptus). This paper presents the

performance evaluation of virtual machines on Eucalyptus

platform considering different workloads. This study provides

insights about Eucalyptus system infrastructure suitability for

applications with high processing and storage performance

requirements. This work provided the evaluation of virtual

machine instances types from a private cloud, which was

configured with Eucalyptus platform.

Keywords-cloud computing; eucalyptus platform;

performance evaluation.

I. INTRODUCTION

Cloud computing is a combination of technologies that
have been developed over the last several decades, which
includes virtualization, grid computing, cluster computing
and utility computing. Due to market pressure, cloud
computing technologies have rapidly evolved in order to let
users focus on business aspects rather than complex
infrastructures issues, hence fostering business
competitiveness [1][2].

Currently, cloud providers provide guarantees on their
service levels and when service failures occur, they only
offer to refund their customers regarding the infrastructure
outages. However, service providers are not inclined to pay
penalties that would refund customers for loss of business
revenue [3][4]. Cloud providers are not only required to
supply correct services but, also, to meet their expectations
in the context of performance. Indeed, cloud computing
services have been massively expanding, thus demanding
companies to offer reliable services, high availability,
scalability and security at affordable costs. In such a case,
performance evaluation is a prominent activity for improving
service quality, infrastructure planning, and for tuning
system components [5][6].

Some software systems, such as credit and debit
processing applications require different performance levels,
quality of services, reliability, and security, which are
generally not guaranteed by a public cloud. In these clouds,
computing resources are shared with other companies. These
companies do not have any knowledge or control of where
the applications run. Private cloud is an alternative to
companies that need more control over that data. In private
clouds, data-center resources of a company are controlled by
company's IT staff [7][8]. Eucalyptus is an open source
cloud computing platform that implements infrastructure as a
service (IaaS) on a collection of server clusters, and such
platform allows the creation of private clouds [9].

Different works [10][11] propose an evaluation of the
performance of various public cloud computing
infrastructures for suitability in scientific applications. Some
other papers [12][13] present the performance evaluation of
public and private cloud computing storage resources.

In this work, we evaluate the performance of different
virtual machines types on the Eucalyptus platform [9] to
determine its suitability for applications that demands
different processing and storage performance. More
specifically, the aim of this work is to evaluate these virtual
machines according to a specified workload. Different from
presented papers, this work proposes the evaluation of the
Eucalyptus virtual machine instance types considering
distinct workload demand.

This paper is structured as follows: Section 2 presents
related works on performance evaluation in cloud computing
environments. Section 3 introduces basic concepts on
Eucalyptus platform and Performance Evaluation. Section 4
presents the adopted methodology for performance
evaluation and Section 5 shows a real case study. Finally,
Section 6 presents concluding remarks and presents future
works.

II. RELATED WORKS

In the last few years, some works have been conducted to
evaluate performance of public cloud computing
infrastructures for scientific applications. Ostermann et al.
[10] present a performance analysis of Amazon EC2
platform for scientific computing using benchmarks.
Similarly, in [11], the authors propose a performance
evaluation of four commercial cloud computing services

130Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 143 / 282

using benchmarks. These clouds computing are Amazon
EC2, GoGrid (GG), Elastic Hosts (EH) and Mosso [11].
These papers compare only the performance and cost of
clouds with scientific computing alternatives such as grids
and parallel production infrastructures. The result is that the
current cloud computing services are insufficient for
scientific computing at large, but it may still be a good
solution for the scientists who need resources instantly and
temporarily [10][11].

Some papers focus on performance evaluation of storage
resources from public and private clouds for scientific
application. In [12], the Eucalyptus Platform is tested in a
variety of configurations to determine its suitability for
applications with high I/O performance requirements, such
as the Hadoop MapReduce framework for data-intensive
computing. Applications running in the Eucalyptus cloud
computing framework suffer from I/O virtualization
bottlenecks in KVM and Xen. The default configurations that
use fully virtualized drivers and on-disk files perform poorly
out of the box. Even using the best default configuration
(with the Xen hypervisor), the guest domain can achieve
only 51% and 77% of non-virtualized performance for
storage writes and reads, respectively [12]. In [13], a public
cloud platform and a private cloud platform are evaluated.
The authors select the Amazon as the public cloud platform
and the Magellan cloud testbed as the private cloud
computing. Such a work compares the I/O performance
using IOR benchmarks. The I/O performance results clearly
highlight that I/O can be one of the causes for bottleneck on
virtualized cloud environments. Performance in VMs is
lower than on physical machines, which may be attributed to
an additional level of abstraction between the VM and the
hardware [13].

Differently from previous works, this paper presents the
performance evaluation of different virtual machines on
Eucalyptus platform, focusing on processing and storage
infrastructures.

III. PRELIMINARIES

This section presents a summary of concepts for a better
understanding of this work. Initially, an overview of
Eucalyptus platform is provided. Finally, performance
evaluation concepts are presented.

A. Eucalyptus Platform

Eucalytpus is an open-source cloud computing platform
that allows the creation of private clusters in enterprise
datacenters [14]. Eucalyptus provides API compatibility with
the most popular commercial cloud computing infrastructure,
namely, Amazon Web Services (AWS), which allows
management tools to be adopted in both environments. This
framework is designed for compatibility across a broad
spectrum of Linux distributions (e.g., Ubuntu, RHEL,
OpenSUSE) and virtualization hypervisors (e.g., KVM,
Xen). Figure 1 shows the Eucalyptus architecture.

Eucalyptus system is composed of several components
that interact through interfaces [14]. There are five
components, each with of which its own Web-service
interface, that comprise a Eucalyptus system [15]:

 Cloud Controller (CLC). The CLC is the entry-
point into the cloud for users and administrators. It
queries node managers for information about
resources, performs high-level scheduling decisions,
and implements them by making requests to cluster
controllers.

 Cluster Controller (CC). The CC acts as a gateway
between the CLC and individual nodes in the data
center. This component collects information on
schedules and execution of virtual machine (VM) on
specific node controllers, and manages the virtual
instance network. The CC must be in the same
Ethernet broadcast domain as the nodes it manages.

 Node Controller (NC). The NC contains a pool of
physical computers that provide generic computation
resources to the cluster. Each of these machines
contains a node controller service that is responsible
for controls the execution, inspection, and
terminating of virtual machine (VM) instances. This
component also configures the hypervisor and host
OS as directed by the CC. The node controller
executes in the host domain (in KVM) or driver
domain (in Xen) [9][15].

 Storage Controller (SC). The SC is a put/get
storage service that implements Amazon's S3
interface, providing a mechanism for storing and
accessing virtual machine images and user data.

Figure 1. Eucalytus platform.

Eucalyptus platform supports different virtual machine

(VM) [9][15]. The supported virtual machines and the

131Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 144 / 282

respective characteristics are presented in Table 1. The
computational resources can be allocated to these virtual
machines according to the client demand.

TABLE I. VIRTUAL MACHINE INSTANCE TYPES

VM CPU (Core) Memory
(MB)

Disk (GB)

m1.small 1 192 2

c1.medium 1 256 5

m1.large 2 512 10

m1.xlarge 2 1024 20

c1.xlarge 4 2048 20

B. Performance Evaluation

Performance evaluation consists of a technique set
classified as those based on measurement and based on
modeling, which provide means for deciding about suitable
configurations concerning further customers’ demands,
fluctuations and attaining assured service levels [16].

Modeling is usually adopted in early stages of the
design process, when actual systems are not available
for measurement. Measurement is utilized for understanding
systems that are already built or prototyped. Measurement is
an essential activity for tuning the systems, validating the
performance models, and for improving the design of future
systems [5][17].

A variety of different benchmark programs have been
developed over the years to measure the performance of
many different types of computer systems in different
application domains. A natural benchmark consists of
programs that mimic a real workload. Synthetic benchmark
programs are artificial programs. These programs perform a
mix of operations that are carefully chosen to match the
relative mix of operations observed in some class of
application [6][16].

Bonnie++ and LINPACK [5][16][18] are benchmarks
adopted in this paper to provide workload to disk and
processor components, respectively. Bonnie++ is a
benchmark suite that executes a number of hard drive and
file system performance tests [18]. LINPACK is a
benchmark that solves dense system of linear equations in
double precision and is commonly used for performance
evaluation of parallel computers as a cluster. LINPACK is a
benchmark that allows defining the size of the system of
linear equations in order to evaluate the performance
computer systems [5].

Linux monitoring tools IOstat and MPstat [19] are
adopted in this work to collect professor and disk figures,
respectively.

IV. PERFORMANCE EVALUATION METHODOLOGY

This section presents the methodology used for
performance evaluation adopted for analyzing the
Eucalyptus platform. Figure 2 shows the activity diagram of
the adopted methodology.

Figure 2. Methodology.

The methodology consists of five activities, which are

system understanding, measurement planning, measurement,
analysis of performance metrics and statistical analysis. The
first activity concerns understanding the system, its
components, their interfaces and interactions. This activity
should provide the set of metrics that should be evaluated.
Among such metrics, some might be highlighted such as
utilization, average service time, average response time,
average queue time, average queue length.

The second activity results in a document that describes
how the measurement should be performed, the tools
calibration, the frequency of data collection and how to store
the measured data.

The measurement activity (see Figure 3) consists of five
steps, which were implemented through a script. These steps
are described below.

The first step instantiates the virtual machines. The
second step starts the performance monitoring tools IOstat
and MPstat on virtual machines. The third step configures
the benchmarks Bonnie++ and LINPACK on virtual
machines. The fourth step executes the benchmarks. These
benchmarks are the workload adopted. When benchmarks
execution end, in the fifth step, the monitoring processing
finishes. Then, the virtual machines are shutdown. Next, logs
with the measured data are created. After, the measurement
process is restarted.

Figure 3. Measurement activity.

In each measurement process, the monitoring tools are

started before the benchmarks execution. These measured
data must be removed; therefore, the fourth activity analyzes
the measured data.

Finally, the fifth activity applies statistical methods in
measured data with the aim of providing accurate
information about the evaluated system.

V. EXPERIMENTAL RESULTS

This section presents the conducted experiments to
evaluate bottlenecks regarding processing and storage

132Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 145 / 282

resources running over Eucalyptus system virtual machines.
This case study allows the performance evaluation of default
virtual machine instances types from a private cloud
configured with the Eucalyptus system. The performance of
the processing and storage infrastructures is evaluated with
benchmarks.

These experiments aim to evaluate the performance of
cloud infrastructure presented in Figure 1 assuming a
workload based on benchmarks Bonnie++ and LINPACK.
These experiments consisted of some steps, which are
described in Section IV, as shown in Figure 2.

In this case study, Cloud Controller (CLC), Cluster
Controller (CC) and Storage Controller (SC) are running on
the same computer, whereas Node Controllers (NC) are
distributed on different computers. The front-end node and
the back-end nodes were equipped with Intel

R
 Core

TM
 Duo

CPU E6550, 2.33GHz, 2GB DDR2 RAM, 160 GB Hard
Disk and 100MB Ethernet interface. These computers were
configured to run the CLC, CC, SC and NC services. The
front-end node was configured to run the CLC, CC and SC
services. The back-end nodes were configured to run the NC
service and all virtual machine images.

In this case study, the virtual machine environment is
based on Eucalyptus system 2.0.0 and Ubuntu Enterprise
Cloud 10.10. The Eucalyptus was configured with kernel-
based virtual machines (KVM) as a hypervisor.

The virtual machine types evaluated were m1.small,
c1.medium, m1.large and m1.xlarge (see TABLE I). These
virtual machines have different processing and storage
infrastructures, which can be allocated and released
according to users demand.

The scenarios evaluated in the performance experiments
are described in TABLE II. This table shows the types and
number of virtual machines in each scenario analyzed. The
numbers of virtual machines for each scenario varies
according to the processing and storage resources of these
machines and node controllers processing and storage
infrastructures.

TABLE II. SCENARIOS

Scenario VM Number VM Types

1 8 m1.small

2 8 c1.medium

3 4 m1.large

4 4 m1.xlarge

As previously mentioned, we adopt the benchmarks

LINPACK and Bonnie++ and the performance monitoring
tools IOstat and MPstat in order to obtain the desired
performance metrics. TABLE III shows the relationship
between the benchmarks adopted to provide workload to
processor and disk and monitoring tools adopted in order to
provide processor and disk metrics.

TABLE III. BENCHMARK AND MONITORING TOOL

Resource Benchmark Tool

Disk Bonnie++ IOstat

Processor LINPACK MPstat

After setting up and stabilizing the environment,

measurements of performance metrics were initiated through
the IOstat and MPstat. During the measurements, processes
that are not strictly necessary for the experiments were
removed so as to avoid interference in the collected data [5].

Measurements of processor metrics were performed for a
period of 12 hours with an interval of 1 minute between data
collections. The processor experiments considered the
LINPACK benchmark as workload, where the number of
linear equations adopted to evaluate the system was N =
1000 [5].

Measurements of disk metrics were performed for a
period of 24 hours considering reading and writing tests in
which files with 512MB and 1GB were considered. On the
other hand, reading and writing tests considering files with
1.5GB and 2GB sizes were performed for a period of 12
hours. Each sample was collected considering an interval of
1 minute between data collections. The Bonnie++
benchmark stresses the system by performing reading and
writing operations on a file system. For this experiment, files
with 512MB, 1GB, 1.5GB and 2GB sizes were created for
all evaluated scenarios. These files are created when the
benchmark Bonnie++ is running. Furthermore, these files
aim to evaluate the performance of the disk in the scenarios
described in TABLE II.

These collected data were stored in logs generated
through the scripts. The collected data were stored on a disk
partition isolated from the measuring environment in order to
prevent the measured data from being affected.

These collected data were statistically analyzed to
remove possible outliers [20]. TABLE IV presents the
execution times of the performance tests. The processor
performance tests were performed during 12 hours and the
disk performance tests occurred according to files sizes
adopted in reading and writing testes.

TABLE IV. PERFORMANCE TEST

Benchmark File Size Execution Time
(hour)

Bonnie++ 512 MB 24

Bonnie++ 1 GB 24

Bonnie++ 1.5 GB 12

Bonnie++ 2 GB 12

LINPACK - 12

Table V shows the performance metrics evaluated in this

case study.

TABLE V. PERFORMANCE METRICS

Resource Metric

Disk Utilization, Service Time,
Response Time

Processor Utilization

133Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 146 / 282

Figure 4 presents the processor utilization for each virtual
machine (see TABLE II). This work adopts 80% as threshold
[21].

Processor results reveal that the processor utilization of
virtual machines exceed 80% for all scenarios [21], hence
these processing infrastructures should be updated or the
processor resource of the node controllers should be replaced
as a preventive measure for taking into account further
workload demands.

Figure 4. Processor.

Figure 5, Figure 6 and Figure 7 show the results of disk

metrics which are utilization, average service time and
average response time, respectively. The values of these disk
metrics vary proportionally to the testing of reading and
writing considering files with 512MB and 1GB sizes. These
tests were performed for all scenarios evaluated (see TABLE
II).

Figure 5. Utilization.

Figure 5 shows a percentage reduction in the disk

utilization level when analyzing the Scenarios 1 to 4 for all
reading and writing tests (files with 512MB, 1GB, 1.5GB
and 2GB sizes). This metric indicates the percentage of time
that the disk was used. If the disk utilization is high, the
resource must be carefully evaluated. The threshold for this
disk metric is close to 100%. Hence, this metric should be
investigated if it is close to 100% [21].

These disk results reveal that the disk utilization level of
Scenario 1 exceed 90% when considering tests of reading
and writing adopting files with 1GB, 1.5GB and 2GB sizes.
In a similar way, the disk utilization level of Scenario 2

exceed 90% when considering tests of reading and writing
adopting files with 1.5GB and 2GB sizes. These results
demonstrate that the storage infrastructure must be carefully
analyzed to avoid a bottleneck and hence degradation in
service levels [21].

Figure 6. Average service time.

Figure 6 presents a decrease in the average service time

(in milliseconds) for Scenarios 1 to 4 and all reading and

writing tests performed by benchmark Bonnie++. This

metric describes how long time the disk is taking to fulfill

the requests. When more time is spent on fulfilling the

requests, slower is the disk controller. It is recommended that

the values of these metric be less than 270 ms [21]. The

results show that the storage resources do not exceed the

threshold of this disk metric.

Figure 7. Average response time.

Figure 7 presents a decrease in the average response time

(in milliseconds) for Scenarios 1 to 4 when considering all

reading and writing tests (files with 512MB, 1GB, 1.5GB

and 2GB sizes). This disk metric includes the time spent by

the requests in queue and the time spent servicing them. If

the average response time is high, the resource must be

carefully evaluated. The threshold for this disk metric is 2.7

seconds [21]. The average response time of Scenario 1

exceed 2.7 seconds when considering tests of reading and

134Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 147 / 282

writing performed by benchmark Bonnie++ adopting files

with 512MB and 2GB sizes [21].

Processing infrastructures results had lower

performance, considering Scenarios 1 and 2, in relation to

the others, for the same workload. Scenario 1 shown a

storage with lower performance in comparison to the others

scenarios, for the same workload.

This analysis permits the planning of processing and

storage infrastructure of the private cloud in the enterprise.

VI. CONCLUSIONS AND FUTURE WORK

This work presented the performance evaluation of

different virtual machines on Eucalyptus platform taking into

account workload based on benchmarks.

This paper analyzed the performance of critical levels of

virtual machine instances types on private cloud, which is

configured with Eucalyptus system. This analysis permits

sustain the quality of service and prevents the performance

degradation related to the workload fluctuations in private

clouds. In addition, this performance analysis is intended to

support suitable hardware and software configurations for

ensuring performance agreements of applications with high

level of processing and storage requirements.

The results allowed evaluation of performance figures,

such as disk response time, disk service time, disk utilization

and processor utilization, for planning the Eucalyptus system

processing and storage infrastructures.

Other performance issues related to Eucalyptus system

can be studied and analyzed as well as other metrics than

those discussed in the paper. As future work, we intend to

analyze the performance of processing and storage

infrastructures of virtual machine instances types from a

private cloud, considering credit and debit transactions

(Electronic Funds Transfer) as workload.

REFERENCES

[1] Velte, A., Velte, T., Elsenpeter, R., and Babcock, C., Cloud
computing: a practical approach. McGraw-Hill, 2010.

[2] Chee, B. and Franklin Jr, C., Cloud computing: technologies and
strategies of the ubiquitous data center. CRC Press, 2009.

[3] Hugos, M. H. and Hulitzky, D., Business in the Cloud: What Every
Business Needs to Know About Cloud Computing. Wiley, 2010.

[4] Chorafas, D. and Francis, T., Cloud computing strategies. CRC Press,
2011.

[5] Jain, R., The art of computer systems performance analysis, vol. 182.
John Wiley & Sons New York, 1991.

[6] Menasce, D. A., Almeida, V. A. F., Dowdy, L. W., and Dowdy, L.,
Performance by design: computer capacity planning by example.
Prentice Hall, 2004.

[7] Shroff, G., Enterprise Cloud Computing: Technology, Architecture,
Applications. Cambridge Univ Pr, 2010.

[8] Rosenberg, J. and Mateos, A., The cloud at your service. Manning,
2010.

[9] Johnson, D., and Murari, K., Raju, M., Suseendran, R. B., and
Girikumar, Y., “Eucalyptus Beginners Guide - UEC Edition,” 2010.

[10] Ostermann, S., Iosup, A., Yigitbasi, N., Prodan R., Fahringer, T., and
Epema, D., “A Performance Analysis of EC2 Cloud Computing
Services for Scientific Computing,” pp. 115–131, 2010.

[11] Iosup, A., Ostermann, S., Yigitbasi, N., Prodan, R., Fahringer, T., and
Epema, D., “Performance Analysis of Cloud Computing Services for
Many-Tasks Scientific Computing,” IEEE Transactions on Parallel
and Distributed Systems, pp. 1–16, 2010.

[12] Shafer, J., “I/O virtualization bottlenecks in cloud computing today,”
in Proceedings of the 2nd conference on I/O virtualization, pp. 5–5,
USENIX ssociation, 2010.

[13] Ghoshal, D., Canon, R., and Ramakrishnan, L., “Understanding I/O
performance of virtualized cloud environments”, The Second
International Workshop on Data Intensive Computing in the Clouds
(DataCloud-SC11), 2011.

[14] Amazon Web Services, “Eucalyptus open-source cloud computing
infrastructure - an overview. technical report, eucalyptus, inc.,” 2011.

[15] Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S.,
Youseff, L., and Zagorodnov, D., “The eucalyptus open-source cloud-
computing system,” in Proceedings of the 2009 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid, pp.
124–131, IEEE Computer Society, 2009.

[16] Lilja, D. J., Measuring computer performance: a practitioner’s guide.
Cambridge Univ Pr, 2005.

[17] John, L. K. and Eeckhout, L., Performance evaluation and
benchmarking. CRC Press, 2006.

[18] Coker, R., “The bonnie++ benchmark,” 2001. URL http://www.
coker. com. au/bonnie+ Last visit in April 2, 2012.

[19] Godard, S., Sysstat:System performance tools for the Linux OS.
2004.

[20] Montgomery, D. and Runger, G., Applied statistics and probability
for engineers. Wiley, 2010.

[21] Ciliendo, E. and Kunimasa, T., Linux Performance and Tuning
Guidelines. ibm.com/redbooks, 2007.

135Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 148 / 282

Towards a SLA-compliant Cloud Resource
Allocator for N-tier Applications

Aaron McConnell, Gerard Parr, Sally McClean, Philip Morrow and Bryan Scotney
School of Computing and Information Engineering

University of Ulster
Coleraine, Northern Ireland

Email: a.mcconnell@ulster.ac.uk, gp.parr@ulster.ac.uk, si.mclean@ulster.ac.uk, pj.morrow@ulster.ac.uk, bw.scotney@ulster.ac.uk

Abstract—Cloud vendors commonly offer users IaaS where vir-
tual machines (VMs) can be created and run on cloud resources.
The resource allocation for each VM is defined by the user and
the VM is created on a physical machine (PM) where ample
resources exist to support the VM’s operation at its maximum
capacity. There are a number of opportunities for improvement
when allocating host resources to VMs. VM-resident applications
are often n-tier, with different VMs responsible for parts of the
distributed application. It may be important that these VMs are
placed within a given network proximity to one another. The
network proximity to the user may also be an issue for some
applications. Resource allocation to VMs should also be such that,
rather than a user over-provisioning the VM, the VM’s minimal
operational requirements are specified so that the VM can be
resource-throttled at times of heavy load. This paper presents
an outline for a system called Innkeeper, which aims to allocate
resources to a VM in a way that ensures the VM will always
function adequately, but where the VM is not over-provisioned.
Innkeeper also aims to place VMs so that a VM ”family” are
kept within a necessary network proximity to one another and
where the proximity to the user is also considered when placing
VMs.

Keywords-cloud computing; resource allocation; virtualisation.

I. INTRODUCTION

Cloud Computing offers virtualised data centre resources to
users as a service. Organisations can use cloud platforms to
outsource their IT infrastructure, resulting in reduced Capital
Expenditure (CAPEX) and Operating Expediture (OPEX) and
dynamically scaling capacity. Cloud providers offer pay-per-
use pricing schemes where users pay an amount to reserve
certain resources and a further amount for the amount of
a resource used, e.g., bandwidth. Allocating physical host
resources to users and their VMs is carried out on-the-fly and
is often achieved using greedy algorithms. It is necessary for
a set of operational constraints to be established before any
optimisation method can be successful. PMs have finite sets
of resources and VMs have operational requirements in terms
of resources. A VM should only be placed on a physical host
where the physical host has sufficient resources to satisfy the
demands of all resident VMs. VMs also have a set of network
requirements that are often ignored when defining a VM’s
resource needs. Cloud applications are often n-tier applications
[1], with one element of the application residing within a
separate VM from other elements. The network distance (in

terms of bandwidth and latency) between application elements
should be short enough that the entire application functions to
the user’s requirements. This is especially a concern in the
situation where a cloud provider has resources in more than
one geographic location, or where the user migrates part of his
organisation’s application to the cloud, whilst retaining other
parts within the organisation.
The work presented in this short paper is at an early stage and
is ongoing. The proposed solution provides a system, which
1) provides a Service Level Agreement (SLA) framework for
n-tier cloud applications, 2) provides an automated scalable,
three-tiered approach for assessing the suitability of distributed
resources for VM placement, 3) considers network links
between all application entities and the user.
The next section discusses related work, followed by a de-
scription of the proposed model and its design. Results from
some initial experiments are presented in section IV.

II. RELATED WORK

Existing literature details that cloud computing offers dif-
ferent models for VM consumption in cloud environments [2],
reservation, on-demand and spot market [3], with each model
catering for a different need. Placing VMs in each model
requires that a decision is made about placing the VM on
an appropriate host [4], [5] or migrating a VM from one host
to another in order to provide some kind of optimisation (e.g.,
performance increase, financial cost saving). The current state-
of-the-art focuses heavily on optimisation of VM placement
with various types of focus on different constraints; there are
systems aimed at cloud resource provisioning for existing VMs
[6], [7], [8], but there is no work on providing an open, scal-
able platform for assessing host, cluster and cloud capability,
particularly for SLA-compliant n-tier VM placement.

III. MODEL DESCRIPTION

Innkeeper is designed to provide three brokers, one for each
host, one for each cluster of hosts and one for the cloud of
clusters (see Fig. 1). The function of each broker is as follows:

a) Host Innkeeper: Each Host Innkeeper (HIk) responds
to a request for VM placement with either accept or refuse
depending on whether or not the host can accommodate the
VM. This decision is based upon a VM SLA, which defines

136Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 149 / 282

Fig. 1. The Three-tier Innkeeper structure

metric thresholds for minimal VM performance, e.g., a VM
may require a minimum of 800 Mhz of CPU share and 1 GB of
virtualised memory in order to perform adequately. For each
metric, the HIk subtracts the SLA value from the currently
available resources for the host, e.g., if the host has 4 GB of
memory remaining and the VM’s SLA is requesting 1 GB then
the HIk would calculate that accepting the VM means 3 GB of
free memory would remain for the host. The HIk would define
host-level thresholds as well, meaning that it would never be
the case that 100% of any host-level metric is ever consumed.
In the case that some metric request in a to-be-placed VM
caused the host to consume levels of that metric at host level,
then the VM would not be placed and a refuse response would
be generated.

b) Cluster Innkeeper: Each Cluster Innkeeper (CIk) acts
as a placement broker at the cluster level. The CIk aims to
place VMs on hosts, in the cluster it is responsible for, by
interfacing with each HIk and querying whether or not the
host can accept a VM with a given SLA. Three outcomes
are possible when a CIk attempts to place a VM. Either one
of the HIks accepts the VM, more than one HIk accepts the
VM or none of the HIks accepts the VM. The first case is
straight-forward and the VM is placed via the accepting HIk.
In the second scenario, where there are multiple hosts on,
which the VM may be placed, there is room for employing
some intelligence when choosing which host to place the VM
with, e.g., one host may offer more of a desired resource than
another. The third scenario, where no hosts can accommodate
the VM, presents a situation where either another CIk is
used or an optimisation is attempted in order better place
existing VMs and free up capacity so that a new VM can be
added to a host. This type of optimisation is discussed in sub-

section III-B. CIks also provide knowledge about the network
proximity, in terms of bandwidth and latency, between CIks.
This is necessary in order to ensure that VMs are placed within
adequate proximity to other VMs they communicate heavily
with, and with the end-user, as defined in the VM’s SLA.

c) Cloud Innkeeper: The Cloud Innkeeper (CLIk) is a
central system, which acts as a broker for the entire cloud.
The CLIk is presented with a user’s VM SLA and attempts to
place the VM on a cluster by interfacing with each CIk. There
are again three possible scenarios, one CIk can accommodate
that VM, multiple CIks can accommodate the VM, or no CIks
can accommodate the VM. The second scenario again presents
an opportunity to place the VM at a host where some benefit
may be had over placement at other hosts, e.g., an important
resource is more abundant. The third scenario, where no CIks
can accommodate the VM, presents a further opportunity to
optimise the placement of existing VMs at one or more CIk. It
is also possible that the CLIk will be presented with a n-tier set
of VMs to place, each with constraints regarding the network
proximity to others. An optimisation problem is created in this
instance, which may be solved with the implementation of a
greedy algorithm.

These brokers provide a highly dynamic and scalable hi-
erarchy for SLA-compliant VM placement. A common Ap-
plication Programming Interface (API) is shared between the
HIk, CIk and CLIk as shown in Table I. An API relevant to
network metrics is unique only to CIks, where bandwidth and
latency values between a queried CIk and another address,
e.g., another CIk or an end-user I.P. address, are returned.

A. Monitoring

Host and VM monitoring is carried out by accessing the
monitoring Web services of the underlying virtualisation plat-
form. This monitoring is carried out by each HIk. CIks and
the CLIk access monitoring information via the HIk API.
Network monitoring, of the links between CIks and with end-
users, is carried out by using Bwping [9] to acquire bandwidth
and monitoring statistics. Host and VM real-time monitoring
statistics are stored in a database within each HIk with network
monitoring statistics stored with each CIk.

B. Optimisation

Optimisation opportunities exist when a scenario occurs
where a HIk, CIk or the CLIk cannot accommodate a new
VM. It may be possible to free up resources at a host by
attempting to reconfigure the hosting of existing VMs so that
the overall capacity utilisation of a given host is higher while
not breaching utilisation thresholds for any given host-level
metric. This type of optimisation can be viewed as the Multi-
objective Knapsack Problem (MKP), which is a combinatorial
optimisation problem [10], [11], [12]. The MKP requires
that a compromise or trade-off is made when considering
multiple optimisational sub-objectives. Therefore MKP cannot
guarantee an optimal solution for each sub-objective. Chu et
Beasley [13] formulate the MKP as:

137Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 150 / 282

TABLE I
THE INNKEEPER COMMON API

Interface Description

GetAggCPU (Return Integer) Returns the aggregated CPU capacity for the broker’s hosts (MHz)
GetAggMem (Return Integer) Returns the aggregated memory capacity for the broker’s hosts (MB)
GetAggDisk (Return Integer) Returns the aggregated disk capacity for the broker’s hosts (GB)
GetMaxCPU (Return Integer) Returns the single largest amount of CPU available at a host (MHz)
GetMaxMem (Return Integer) Returns the single largest amount of Memory available at a host (MB)

GetVmAllocation (Return Integer) Returns the current allocation of VMs for the broker’s hosts
CanHostVM(VMSLA *sla) (Return Boolean) Is passed VM’s SLA and returns true or false indicating the ability to host the VM

AddVM(VMID *vmId) (Return Boolean) Is passed an ID for the VM so an attempt can be made to place it at the appropriate host
RemoveVM(VMID *vmId) (Return Boolean) Is passed an ID for the VM so an attempt can be made to remove the VM from cloud/cluster/host

maximise
n∑

j=1

pj xj ,

subject to
n∑

j=1

rij xj ≤ bi, i = 1, ...,m,

xj ∈ {0, 1}, j = 1, ..., n,

where each of the m constraints is defined as a knapsack
constraint. The MKP attempts to place a subset of n items
such that the total value of all items is as high as possible
within given constaints. The value of each item is defined as
p, with x defining whether or not item pj is placed (x is
assigned a value of 1 if the item is placed and 0 if it is not).
The constraint value for pj is rij , with i referring to a given
constraint, e.g., for placing a VM it might be CPU or memory.
The total constraint value for the sum of constraints for all
placed items must not exceed the maximum allowed value for
that constraint bi. This problem is often solved using a greedy
algorithm, e.g., a genetic algorithm.

IV. INITIAL RESULTS

Some initial experimentation was carried out in order to
assess host metric utilisation as VMs are placed on a host.
These experiments were carried out using a Fujitsu Siemens
Celsius R550 servers, with two Intel Xenon E5440 processors
(2.8 GHz, 6 MB L2 cache) and with 8 GB of main memory.
This host ran VMware ESX 4.0 [14] and was used to host
VMs, containing a standard Joomla v1.5.20 Web Server [15],
each with a resource allocation of 2 virtual CPUs, 512 MB
of main memory and an 8 GB thin-provisioned virtual hard
drive. Load was placed on each VM’s application (two page
requests per second) using OpenLoad [16] on the Web Server
over port 80 (the standard HTTP port). Fig. 2 illustrates the
resource usage for both the host and the first VM placed. The
host’s CPU runs at 100% utilisation when four loaded VMs
(each one had a VM CPU load of≈ 95%) are placed on it. This
host CPU load causes resource contention between VMs. It is
interesting to note that, after 3 heavily-loaded VMs are placed
on the host, the CPU resource consumption of the monitored
VM appears to drop. This decrease in CPU consumption by
the VM is because it is starved of access to the underlying

Fig. 2. Host and VM Resource Consumption

host resources and is forced to queue for CPU resources. This
creates the illusion, in the reported VM performance metrics,
that the VM is not consuming resources due to lack of demand
on the VM when in fact the drop in CPU consumption is
because the VM does not have the opportunity to consume
the host’s CPU. This is backed up the graph in Fig. 3 where
OpenLoad reports an increasing response time, as the number
of VMs on the host is increased, for the monitored VM. The
horizontal dashed line on Fig. 2 illustrates a potential host CPU
utilisation threshold beyond which no further VMs should be
added. With this threshold defined within a HIk, the HIk would
prevent further VMs being added beyond the second VM, as
illustrated by the vertical dashed line in Fig. 2.

V. CONCLUSIONS AND FUTURE WORK

This model attempts to provide a system for SLA-compliant
placement of n-tier VMs in a cloud computing environment.
Initial experimentation illustrates a need for such a system, to
ensure near-optimal use of distributed cloud resources while
enforcing SLA constraints. There is also a need to ensure

138Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 151 / 282

Fig. 3. VM Response Times

that communicating VMs are placed within a relatively close
network proximity, in order that they perform adequately.
A key requirement for cloud-based systems is the ability to
provide scalability. The Innkeeper design offers this scalability
and ensures that each of the three tiers is agnostic to the
function of the other tiers. This design reduces complexity
and provides a relatively simple but powerful means by which
hosts can be monitored and VMs placed. One of the key
motivators for this work is to create a platform for cloud
monitoring and orchestration where intelligent optimisation,
with various focuses, e.g., power-saving, reduction in network
load, can be easily implemented.

A. Future Work

This body of work presents challenges and opportunities, all
of which will be explored in the near future so that a live alpha
prototype system is in place before the end of the calendar
year. The impending implementation of the prototype system
requires that the means of monitoring live VMs, hosts and
network links are in place within a cloud test-bed environment.
This will most likely be carried out on a VMware test-bed with
a number of clusters of industry-standard, multi-core hosts.
Network degradation will be created between these clusters
(and between clusters and emulated end-users) using WANem
[17]. A standardised means of n-tier VM SLA definition
remains a challenge, with an associated problem of optimally
placing multiple, communicating VMs. An associated issue
with n-tier VM placement is that heavy VM load, on existing
VMs, may force SLA failure despite the SLA metric thresholds
being set for a given amount of maximum load. Failure to
ensure that a VM’s load does not exceed that for which its
SLA is defined may result in the HIk’s resource provisioning
calculations becoming pointless. A methodology must be
developed to ensure that a VM is resource-throttled when its
load causes it to consume resources to the extent that resource
contention is caused for other VMs on the same host. The

other perspective is that this throttling shouldn’t be a constant
- if host resources are unused then they should be available to
VMs, in the hope of increasing the quality of user experience,
rather than the host experiencing low utilisation. However,
optimisation opportunities exist to place VMs such that, with
VM resource-throttling in place, low utilisation on hosts does
not occur.

REFERENCES

[1] P. Xiong, Z. Wang, S. Malkowski, Q. Wang, D. Jayasinghe, and C. Pu,
“Economical and robust provisioning of n-tier cloud workloads: A multi-
level control approach,” in Distributed Computing Systems (ICDCS),
2011 31st International Conference on, June 2011, pp. 571 –580.

[2] K. Mills, J. Filliben, and C. Dabrowski, “Comparing vm-placement
algorithms for on-demand clouds,” in Cloud Computing Technology and
Science (CloudCom), 2011 IEEE Third International Conference on, 29
2011-Dec. 1 2011, pp. 91 –98.

[3] I. Fujiwara, K. Aida, and I. Ono, “Applying double-sided combinational
auctions to resource allocation in cloud computing,” in Applications and
the Internet (SAINT), 2010 10th IEEE/IPSJ International Symposium on,
July 2010, pp. 7 –14.

[4] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of
data center networks with traffic-aware virtual machine placement,” in
INFOCOM, 2010 Proceedings IEEE, March 2010, pp. 1 –9.

[5] J. Xu and J. Fortes, “Multi-objective virtual machine placement in
virtualized data center environments,” in Green Computing and Com-
munications (GreenCom), 2010 IEEE/ACM Int’l Conference on Int’l
Conference on Cyber, Physical and Social Computing (CPSCom), Dec.
2010, pp. 179 –188.

[6] N. Bonvin, T. G. Papaioannou, and K. Aberer, “Autonomic
SLA-driven Provisioning for Cloud Applications,” 2011 11th
IEEEACM International Symposium on Cluster Cloud and
Grid Computing, pp. 434–443, 2011. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5948634

[7] R. N. Calheiros, R. Ranjan, and R. Buyya, “Virtual Machine
Provisioning Based on Analytical Performance and QoS in
Cloud Computing Environments,” 2011 International Conference
on Parallel Processing, pp. 295–304, 2011. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6047198

[8] W. Iqbal, M. N. Dailey, D. Carrera, and P. Janecek, “Adaptive resource
provisioning for read intensive multi-tier applications in the cloud,”
Future Generation Computer Systems, vol. 27, no. 6, pp. 871–879,
2011. [Online]. Available: http://dx.doi.org/10.1016/j.future.2010.10.016

[9] O. Derevenetz, “Bwping - open source bandwidth measurement tool,”
http://bwping.sourceforge.net/, Jun. 2011, [retrieved: April 2012].

[10] C. Cheng, Y. Huang, Z. Chen, X. Zhang, and J. Xu, “Solving the 0-
1 multi-objective knapsack problem using self-assembly of dna tiles,”
in Bio-Inspired Computing, 2009. BIC-TA ’09. Fourth International
Conference on, Oct. 2009, pp. 1 –9.

[11] Z. Shurong, W. Jihai, and Z. Hongwei, “Multi-population cooperative
ga and multi-objective knapsack problem,” in Management and Service
Science (MASS), 2010 International Conference on, Aug. 2010, pp. 1
–4.

[12] D. Vianna and J. Arroyo, “A grasp algorithm for the multi-objective
knapsack problem,” in Computer Science Society, 2004. SCCC 2004.
24th International Conference of the Chilean, Nov. 2004, pp. 69 – 75.

[13] P. C. Chu and J. E. Beasley, “A genetic algorithm for
the multidimensional knapsack problem,” Journal of Heuristics,
vol. 4, no. 1, pp. 63–86, Jun. 1998. [Online]. Available:
http://dx.doi.org/10.1023/A:1009642405419

[14] Vmware, “Virtualization overview,” whitepaper,
http://www.vmware.com/pdf/virtualization.pdf, Jan. 2010, [retrieved:
April 2012].

[15] Turnkey-Linux, “Joomla 1.5 appliance - cutting edge content
management — turnkey linux virtual appliance library,” online,
http://www.turnkeylinux.org/joomla15, Nov. 2011, [retrieved: April
2012].

[16] P. Johnsen, “Openload,” online, http://freecode.com/projects/openload,
Jun. 2001, [retrieved: April 2012].

[17] WANem, “Wanem - the wide area network emulator,” online,
http://wanem.sourceforge.net, Dec. 2009, [retrieved: April 2012].

139Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 152 / 282

Simulation-based Evaluation of an Intercloud Service Broker

Foued Jrad, Jie Tao and Achim Streit

Steinbuch Centre for Computing, SCC

Karlsruhe Institute of Technology, KIT

Karlsruhe, Germany

{foued.jrad, jie.tao, achim.streit}@kit.edu

Abstract—The lack of common standards in a fast emerging

Cloud computing market over the last years resulted in

“vendor lock in” and interoperability issues across

heterogeneous Cloud platforms. Therefore, the Cloud user is

facing now a challenging problem of selecting the Cloud

provider that fits his needs. A new promising research

approach is the use of intermediate broker services to assist the

user in finding the appropriate Cloud resources that satisfy his

requirements. In this paper, we present a generic simulation

framework based on the CloudSim toolkit for the validation

and evaluation of a Cloud service broker deployed on an

Intercloud environment. A unique feature of the framework is

the integration of several state of the art technologies and

standards, which makes it easy to deploy on real production

Clouds. After presenting the framework fundamental

architecture, we discuss in detail the solved implementation

challenges. Finally, we present some initial evaluation results.

Keywords—Cloud Brokering, Intercloud Computing,

Simulation Environment, Cloud Interoperability, ClouSim

Toolkit.

I. INTRODUCTION

The on-demand delivery of Cloud computing services
over the Internet is now a needed reality rather than only a
new marketing hype. Due to the fast emerging Cloud
computing market over the last years, the number of Cloud
service providers has significantly increased. On the other
hand, “vendor lock in” issues and the lack of common Cloud
standards hindered the interoperability across these
providers. Thus, today the Cloud customer is facing a
challenging problem of selecting the appropriate Cloud
offers that fit his needs. Therefore, standardized interfaces
and intermediate services are needed to prevent monopolies
of single Cloud providers.

One of the promising use cases of the Intercloud vision
defined in [1] is market transactions via brokers. In such a
use case, a broker entity acts as a mediator between the
Cloud consumer and multiple interoperable Cloud providers
to support the former in selecting the provider that better
meets his requirements. Another value-added broker service
is the easy deployment and management of the user’s service
regardless of the selected provider through a uniform
interface.

The lack of standardization across Cloud providers
makes the deployment of Cloud service brokers on real

production Clouds a challenging task for Cloud developers
and researchers. Amongst others, many vendor compatible
adapters are needed by the broker to interface the
heterogeneous Cloud platforms. Furthermore, the evaluation
of the broker using a real testbed is usually cost- and time-
consuming, as a large number of Cloud resources is required
to achieve realistic results. A more promising and cost-
saving approach for the broker evaluation is the use of
simulation environments.

Motivated by the above considerations, we present in this
paper an extensible simulation-based framework to evaluate
Cloud service brokers. The contribution from the developed
framework is threefold: (1) It implements a Cloud service
broker featuring automatic Service Level Agreement (SLA)
negotiation and service deployment; (2) It enables through a
standardized abstraction layer the monitoring and
management of services deployed on heterogeneous Cloud
providers while hiding their technical details; (3) It allows
the easy integration and evaluation of custom resource
matching policies.

The remainder of the paper is organized as follows: In the
next section, we discuss prior works related to Cloud service
brokering frameworks. We also identify how our work
differs from related work. This is followed by the framework
fundamental architecture in Section III. The simulation
environment details are discussed in Section IV. In Section V
and VI, we present and discuss initial evaluation results,
respectively. Finally, we conclude the paper in Section VII
with a brief summary and describe our future research
directions.

II. RELATED WORK

The idea of service brokering in Cloud is currently a
subject for many research works.

A well-known research project is the Cloudbus toolkit [2]
that defines a complete architecture for market-oriented
Cloud computing. The three key components of this
architecture are a Cloud Broker, a Market Maker and an
InterCloud [3]. The Cloud Broker schedules applications on
behalf of the user by specifying the desired Quality of
Service (QoS) requirements, whereas the Market-Maker acts
as a mediator bringing together Cloud providers and
customers. It aggregates infrastructure demands from the
Cloud Broker and matches them against the available
resources published by the Cloud providers. The InterCloud
provides a scalable federated computing environment

140Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 153 / 282

composed of heterogeneous interconnected Clouds enabling
the Intercloud resource sharing.

The above envisioned architectural framework is still
under development. However, first experimental results with
Aneka [4] and Amazon EC2 [5] based Clouds demonstrated
that the market-oriented Cloudbus architecture brings
benefits to user’s application performance in optimizing the
cost and execution time.

CloudAnalyst [6] is a graphical simulation tool built on
top of the CloudSim toolkit [7], developed by the Cloud
Computing and Distributed Systems (CLOUDS) laboratory
at university of Melbourne to model and analyze the
behavior of large social network applications. The Internet
traffic routing between the user bases located in different
geographic locations and the datacenters, is controlled in
CloudAnalyst by a service broker that decides which
datacenter should serve the requests from each user base
based on different routing policies. The current version of
CloudAnalyst implements three different routing policies,
which are network-latency-based routing, response-time-
based routing and dynamic-load-based routing. A
CloudAnalyst simulation case study of the social network
application Facebook [8] proved how load balancing
managed by a service broker optimizes the performance and
cost of large scale Cloud applications.

The EU funded OPTIMIS [9] project drives the
development of a toolkit to optimize the full service lifecycle
in the Cloud. Its proposed flexible multi-Cloud architecture
includes a service broker that allows a decision making
taking into account of many business aspects like trust, cost
and risk. Although the toolkit is still not implemented, the
conducted simulation experiments with real workload traces
prove the benefits from the use of cost and risk aspects as
elasticity policies in the decision making.

The work in [10] proposed an SLA-based Service
Virtualization (SSV) architecture, which is built on three
main components: a Meta-Negotiator responsible for
agreement negotiations, a Meta-Broker for selecting the
proper execution environment and an Automatic Service
Deployer for service virtualization and on-demand
deployment. The proposed service virtualization architecture
has been validated in a simulation environment based on
CloudSim using a real biochemical application as a case
study. The simulation results showed the performance gains
in terms of execution time from the SSV architecture
compared to a less heterogeneous Grid meta-brokering
solution.

Comparing the previous mentioned service brokering
approaches, their implementation on real production Clouds
is still ongoing and their current validations and evaluations
are mostly based on simulation methodologies. The
presented Cloud service broker framework in this paper is
also implemented based on a simulation approach. However,
its high-level generic architecture combined with the
integration of state of the art Cloud technologies and
standards prepares a realistic testbed for developers and
researchers to easily test and evaluate service brokers before
their deployment on real production Clouds. Moreover, the

framework implements all the value-added broker services
included in previous solutions like SLA negotiation, match
making, service deployment and monitoring.

III. FRAMEWORK ARCHITECTURE

As shown in Figure 1, the framework architecture is
composed of three main parts: the Client, the Cloud Service
Broker and the Cloud provider Intercloud Gateway. The
internal components of every architecture part and their
provided functionalities are discussed in the following
subsections.

A. Client

The Client provides Cloud users with an interactive user
interface to submit their service requests to the broker by
describing the functional and non-functional service
requirements. Moreover, the user is able to manage and
monitor the service after its deployment through a single
management console. If the requested service requires the
involvement of other services, a workflow engine could be
deployed to assist users in building and executing complex
Cloud services.

B. Cloud Service Broker

The Cloud Service Broker builds the heart part of our
implemented framework by offering attractive value-added
services to users. Its main task is to find the most suitable
Cloud provider while satisfying the users’ service
requirements in terms of functional and non-functional
Service Level Agreement parameters. Additionally, its high-
level architecture design allows the deployment and
monitoring of services on top of heterogeneous Cloud
providers. More detailed descriptions on the internal broker
design can be read in [11].

Figure 1. Framework architecture.

141Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 154 / 282

The different components of the broker and their roles
are briefly described below:

 Identity Manager: It handles the user authentication
and admission control.

 The SLA manager: It negotiates the SLA creation
and handles the SLA provisioning.

 Monitoring and Discovery Manager: It queries
resource information and monitors the SLA metrics.

 Match Maker: It selects the best Cloud providers for
user requests using different matching algorithms.

 Deployment Manager: It deploys the service on the
selected provider.

 Persistence: It stores broker specific data (e.g.,
monitoring, SLA templates and resources data).

 Abstract Cloud API: A standard abstract API used to
manage Cloud resources on different Cloud
providers.

C. Provider Intercloud Gateways

The Intercloud Gateway is the key component of our
framework hosted on the provider side to interface the
vendor Cloud platform. It acts as a standardized service
frontend for the Cloud provider and adds the needed
abstraction layer to interact with the broker. Its main role is
to provide the broker with common management and
monitoring interfaces while hiding the internal provider
policies.

IV. SIMULATION-BASED IMPLEMENTATION

We implemented a simulation environment for the
framework presented in the previous section. This allows us
to validate and evaluate a Cloud service broker without the
setup of a testbed with real Cloud providers, which is
extremely time- and cost-consuming. The implementation
details and the simulation flow are described in the next
subsections.

A. Simulation Environment

The simulation environment for the Cloud service broker
framework built on top of the CloudSim 2.2.1 simulation
toolkit is depicted in Figure 2. In the following subsections
we go through all the implemented components by
describing the used technologies and tools.

1) CloudSim Toolkit
CloudSim is a scalable open source simulation tool

offering features like support for modeling and simulation of
large scale Cloud computing infrastructures including
datacenters, brokers, hosts and virtual machines (VMs) on a
single host. In addition, the support for custom developed
scheduling and allocation policies in the simulation made
CloudSim an attractive tool for Cloud researchers.
Additional information about CloudSim can be found in
[12].

In our simulation environment CloudSim is used to
model large scale and heterogeneous Cloud providers. This
allows us, for the purpose of evaluation, to easily configure
the amount of Cloud provider resources accessible by the
broker. However, some CloudSim extensions are needed to

Figure 2. Simulation environment.

allow the dynamic creation, destroying and monitoring of the
VMs during simulation runtime and therefore to enable the
automatic service deployment in the broker.

2) Cloud Service Broker Implementation
Until the writing of this paper, most core broker services

including the Deployment Manager, the Match Maker and
the Monitoring Manager have been fully implemented. The
SLA Manager is currently under development. Furthermore,
two persistence classes named ServiceRegistry and
ProviderRegistry are used to store and query all the service
and provider data during the simulation.

While looking for an abstract Cloud API to access
different Cloud platforms, we found that the Open Cloud
Computing Interface specification (OCCI) [13] is the most
suitable for our framework. OCCI is an extensible
specification for remote management of Cloud
infrastructures, allowing the development of interoperable
tasks over heterogeneous Clouds. The current OCCI
specification, focusing on IaaS Cloud provisioning, defines
three abstract resource types, which are compute, storage and
network. All the operations on resources can be requested on
a REST manner over HTTP methods (GET, POST, PUT and
DELETE). The use of OCCI as abstract Cloud API allows
the broker to act as OCCI client against the Intercloud
Gateway, which runs as OCCI-server on the provider side.

The implemented Match Maker functionality of the
broker is extensible enough to permit the easy integration of
custom resource matching policies. In order to demonstrate

142Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 155 / 282

this feature, we implemented the following primitive match
making policies:

 RandomCloudMatcher: It selects randomly a
provider regardless of the users’ service
requirements.

 FunctinalSLACloudMatcher: It selects the provider
that fits all the functional SLA service requirements.

 LocationAwareCloudMatcher: It selects a provider
located at the same region given in the service
request.

 CostAwareCloudMatcher: It selects the cheapest
provider below a given cost limit.

 HybridCloudMatcher: It combines both functional
SLA and location-aware matching.

3) OCCI-based Intercloud Gateway
In order to simulate the Intercloud Gateway component

serving as standard service frontend for Cloud providers, we
implemented, based on the open source Java implementation
for OCCI called OCCI4JAVA [14], an OCCI frontend for
CloudSim. In this way, the entire communication between
broker and providers is forwarded to the native CloudSim
DatacenterBroker class through standard OCCI-interfaces. In
contrast to the OCCI specification, as CloudSim simulations
usually run on one host, the broker communicates with the
Intercloud Gateway through simple Java object calls instead
of using the defined REST-like methods. Furthermore, we
extended OCCI4JAVA with an OCCI monitoring mixin to
allow the broker to query resource properties like datacenter
static information (e.g., location, supported OS, CPU
architecture) and current monitoring metrics values from
CloudSim.

4) Request Generator
The simulation-based evaluation of the broker requires

the submission of real world service requests by the client to
achieve valuable evaluation results. Thus, we implemented a
service Request Generator helper class that continuously
generates VM provisioning requests similar to real Amazon
EC2 compute instances at a configurable rate. Some sample
VM requests are provided in the next section.

B. Simulation Flow

The needed simulation flow to process the incoming
client service requests to the service broker is illustrated by
the flow diagram in Figure 3.

The simulation is done as follows: In a first step,
CloudSim is initialized according to the desired simulation
scenario. Then, the Request Generator starts to generate
continuously VM provisioning service requests with a
variable request arrival rate. All the request and provider data
are maintained in the corresponding ServiceRegistry and
ProviderRegistry classes during the simulation. The broker,
after receiving the request, asks the Match Maker, if the
service can be deployed with the specified requirements. For
this, the Match Maker starts a match making process to find
the best suitable provider by matching the gathered resource
information from the Monitoring Manager with the service
requirements and by applying the pre-configured matching
algorithms. Upon the existence of a match, the service is

automatically deployed and the requested VM is created and
started on the selected CloudSim datacenter with the
modeled workload traffic (Cloudlet). During the execution
time, the VM status is queried periodically by the Monitoring
Manager until the VM is destroyed. If none of the providers
can be matched, the request is discarded by the broker.

All the aforementioned simulation steps are repeated
until reaching the preset maximum number of requests or
simulation time limit. In this case, the simulation is
terminated and the output results are displayed in the Client.

V. EVALUATION RESULTS

In this section we discuss first evaluation results acquired
using the previous implemented simulation framework. We
describe in the following subsections the experimental setup
and then present the evaluation results.

A. Experiemental Setup

In order to model heterogeneous Cloud providers, we
configured six heterogeneous CloudSim datacenters. Each
datacenter has a unique identifier (ID) and is located into a
different geographical zone. As shown in Table I, we define
six different compute zones presenting the six world
continents. Each zone has been given a unique code. The
detailed configuration for each datacenter is gathered in
Table II. The six datacenters have different pricing policies
and can support one of two defined operating systems
(Linux or Windows) and CPU architectures (x86 or x64).
Furthermore, each datacenter is made up of 50 hosts, which
are equally divided between two different host types. As can
be seen in Table III, the used hosts’ setup allows at least the

TABLE I. COMPUTE ZONES

Zone
North

America

South

America
Europe Asia Africa

Austr-

alia

Code 0 1 2 3 4 5

TABLE II. DATACENTERS CONFIGURATION

Name
Datacenter Configuration

ID OS Arch
Region

Code

Cost

$/hour

Provider_A 0 Linux x64 0 0.3

Provider_B 1000 Linux x64 0 0.45

Provider_C 2000 Windows x64 2 0.75

Provider_D 3000 Linux x64 2 0.55

Provider_E 4000 Linux x64 3 0.15

Provider_F 5000 Windows x86 5 0.04

TABLE III. HOSTS SETUP

Host Type
Host Configuration

CPU

MHZ

Cores

number

RAM

GB

Bandwidth

Gbit/s

Storage

TB

Xeon 3040 1860 2 4 1 1

Xeon 3075 2260 2 8 1 1

143Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 156 / 282

Figure 3. Simulation flow.

deployment of one VM instance per host.
All the experiments are done on a notebook with CPU

Intel Core i5 560M 2.67 GHZ, RAM 4 GB and using
Windows 7 operating system. The default CloudSim simple
VM provisioning policy is used as internal datacenter
scheduling policy. This policy allocates VMs to the host
with most free cores. In order to permit the dynamic sharing
of CPU cores among VMs, we configured CloudSim to use
a time-shared VM scheduler policy.

B. Initial Results

We conducted a first experiment to evaluate the broker
scalability. We continuously generate VM service requests
(at a random rate varying from 0 to 60 seconds) and let the
broker randomly select a provider from the six datacenters

and then deploy the VM on it. The generated VM requests
are equally distributed between four Amazon EC2 instance
types and require Linux as operating system and x64 CPUs.
Table IV gives the specific requirements of each VM type.

TABLE IV. VM REQUEST TYPES

VM Type
Host Configuration

CPU

GHZ

Cores

number

RAM

GB

Region

Code

Cost

$/hour

CPU high 2.5 2 1.7 0 0.17

large 2 2 7.5 2 0.34

small 1 1 1.7 3 0.085

micro 0.5 1 0.63 4 0.02

144Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 157 / 282

TABLE V. BROKER DEPLOYMENT PERFORMANCE (%)

Provider

number

Requests number

50 250 500 1000 1500 2000

1 98 78 44.4 28 22.1 17.8

3 100 81.6 78.6 61,8 44 36.3

6 100 98.3 82.8 78.6 77.2 62.1

While maintaining the number of datacenters constant,

we measured the deployment rate, which is defined as the
percentage of successfully deployed VMs, by varying the
request number from 50 to 2000. We repeated the same
experiment by decreasing the number of datacenters from six
to three and then to only one. The results presented in Table
V after one day simulation time, show that the broker
deployment rate scales well with the increasing number of
service requests and Cloud providers.

We conducted another experiment to evaluate the match
performance of the four implemented primitive matching
policies. We repeated the previous experiment using all six
datacenters and by changing each time the matching policy
and then we measured the match rate, defined as the
percentage of successfully matched requests.

As depicted in Figure 4, when using cost or location as
matching policy the match rate remains constant at 75 %, as
the requested cost limit and location for the micro VM
instance type usually has no match. However, with the
functional SLA and hybrid matching policies the match rate
decreases continuously with the rising service demand due to
the limited capacity of the provided datacenter resources.

VI. DISCUSSION

The previous experiments show that an increase of the
number of concurrent providers results in more resource
heterogeneity and therefore improves the broker match rate.
Furthermore, the results prove that the accuracy of the
queried monitoring information by the Monitoring Manager
heavily impacts the performance of the matching policy,
especially for the functional SLA matching.

In fact, the support of more than one SLA parameter in
the matching increases the customer satisfaction, but at the
cost of a low match rate. Thus, the matching algorithm
should optimize this trade-off by modeling the dependency
between the customer utility function and his requested
functional and non-functional SLA parameters, while
considering the current provider monitoring information.

Figure 4. Broker matching performance.

VII. CONCLUSIONS AND FUTURE WORKS

The deployment and evaluation of intermediate broker
services on production Clouds is today a challenging task
due to the lack of interoperability and the heterogeneity in
current Cloud platforms.

In this paper, we described the fundamental architecture
and the implementation details of a simulation-based
framework used to evaluate a Cloud service broker. We
presented also the first simulation results in evaluating the
broker scalability and match making policies.

In our future work, we will use the simulation framework
to investigate and evaluate more complex SLA-aware match
making algorithms to improve the broker matching
performance. Furthermore, we will investigate the use of real
workload traces instead of using generated requests to get
more realistic results.

REFERENCES

[1] Golobal Intercloud Technology Forum GICTF, “Use Cases
and Functional Requirements for Inter-Cloud Computing,”
White paper, August 2010.

[2] R. Buyya, S. Pandey, and C. Vecchiola, “Market-Oriented
Cloud Computing and the Cloudbus Toolkit,” in Large Scale
Network-centric Computing Systems, March 2012, in press.

[3] R. Buyya, R. Ranjan, and R. N. Calheiros, “InterCloud:
Utility-Oriented Federation of Cloud Computing
Environments for Scaling of Application Services,” in
ICA3PP 2010, 10th International Conference on Algorithms
and Architectures for Parallel Processing, pp. 13–31, 2010.

[4] “Aneka enterprise Cloud platform,” [online], March 2012,
http://www.manjrasoft.com.

[5] “Amazon Elastic Compute cloud EC2,” [online], March 2012,
http://aws.amazon.com/ec2.

[6] B. Wickremasinghe, R. N. Calheiros and R. Buyya,
“CloudAnalyst: A CloudSim-based Visual Modeller for
Analysing Cloud Computing Environments and
Applications,” in AINA 2010, 24th IEEE International
Conference on Advanced Information Networking and
Applications, pp. 446–452, April 2010.

[7] “CloudSim Toolkit 2.1.1,” CLOUDS Lab, Unversity of
Melbourne, [online], http://www.cloudbus.org/cloudsim/.

[8] Facebook, [online], March 2012, http://www.facebook.com.

[9] A. J. Ferrer, et al., “OPTIMIS: A Holistic Approach to Cloud
Service Provisioning,” in Future Generation Computer
Systems, vol. 28, pp. 66–77, January 2012.

[10] A. Kertesz, G. Kecskemeti and I. Brandic, “Autonomic SLA-
aware Service Virtualization for Distributed Systems,” in
PDP2011, 19th Euromicro International Conference on
Parallel, Distributed and Network-based Processing, pp. 503–
510, February 2011.

[11] F. Jrad, J. Tao and A. Streit, “SLA Based Service Brokering
in Intercloud Environments,” in CLOSER 2012, 2nd
International Conference on Cloud Computing and Services
Science., pp. 76–81, April 2012.

[12] R.N. Calheiros, R. Ranjan, A. Beloglazov, C. De Rose and R.
Buyya, “CloudSim: a Toolkit for Modeling and Simulation of
Cloud Computing Environments and Evaluation of Resource
Provisioning Algorithms,” in Journal of Sotware: Practice in
Experience, vol. 41, pp. 23–50, January 2011.

[13] “Open Cloud Computing Interface specification OCCI,”
OCCI-WG, [online], March 2012, http://www.occi-wg.org.

[14] “OCCI4JAVA JAVA-based OCCI Implementation,” [online],
March 2012, https://github.com/occi4java.

145Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 158 / 282

A Study of Cloud Mobility in a Mobile Cloud

Network based on Future Internet Approach

Dongha Kim, Hyunjun Kim, Gijeong Kim, Sungwon Lee

Department of Computer Engineering

Kyung Hee University

Young-in, South Korea

{dongha, kimhyunjun, kimgijeong, drsungwon}@khu.ac.kr

Abstract— In this paper, we extend the limited functionality of

the GENI Cloud project as follows. First, we use the

OpenStack cloud platform instead of the Eucalyptus cloud

platform used in the GENI Cloud. Second, we develop the

FiRST Cloud aggregate manager (AM) based on GENI AM

Application Programming Interface (API) for the federation

between a future internet test-bed and the OpenStack cloud

platform. Third, we develop a Cloud Mobility Server and

Client for mobile cloud management in order to control the

zero-client service. Thus, we confirm that the proposed FiRST

Cloud AM is feasible through zero-client mobile cloud service.

Keywords-cloud; mobile cloud; cloud mobility; future

internet; FiRSTCloud AM.

I. INTRODUCTION

Since 1974, when the Internet was first proposed, the
Internet has become a global network. Since 2000, however,
rapid change of communication environments and various user
requirements trigger numerous researches for Future Internet to
overcome conventional Internet’s problems [1].

A new trend of these Future Internet research is
harmonization between the conventional Future Internet and
cloud computing. Disadvantages of current cloud computing
include limited bandwidth and highly variable latency due to
the conventional Internet limitations is able to complemented
by Future Internet concept [1].

Cloud computing includes aspects such as grid computing,
utility computing, thin-client based computing. Cloud
computing requirements for client hardware and software are
continually being simplified. Mobile handheld devices are able
to take special advantage of these simplified requirements.

An optimized, robust network is needed for cloud
computing, along with an optimized protocol for
communication between the client device and the cloud server.
Researchers are studying projects which use cloud computing in
large-scale global test-beds.

In this paper, we develop zero-client based mobile cloud
service with open-source cloud platform, Openstack [8].
Furthermore, to improve this service, we develop cloud
mobility server, client and FiRST cloud Aggregate Manager
(AM).

First, cloud mobility server and client support a client for
receives service not from ‘local site’ but from ‘remote site’.
Local site is an original server that has client’s data and remote
site is a closest cloud server to the client.

Second, FiRST Cloud AM is an API based on GENI AM
API to interwork with Future Internet test-bed.

As a result, we develop a Cloud Mobility server and client
for mobile cloud management to support the zero-client cloud
service and to confirm the feasibility of the proposed FiRST
Cloud AM with a zero-client mobile cloud service.

This paper organized as follows: related works are
introduced in following section. After that section, detailed
information about proposed cloud mobility and interaction with
future Internet are described. Next section presents result data
of performance evaluation. Finally, conclusion and future work
is presented

II. RELATED WORK

A. Future Internet Test-bed: GENI

The Global Environment for Network Innovations (GENI)
[3] is designed to support experimental research in network
science and engineering. This research challenges us to
understand networks broadly and at multiple layers of
abstraction, from physical substrates through architecture and
protocols to networks of people, organizations, and societies.
The intellectual space surrounding this challenge is highly
interdisciplinary, ranging from new research in networking and
distributed system design to understanding the theoretical
underpinnings of network science, policy, communication
networks and economics,. Such research may generate new
knowledge about the structure, behavior, and dynamics of the
most complex systems – networks of networks – with
potentially huge social and economic impacts [2][3].

B. GENI AM API

The GENI Aggregate Manager API is a common API for
reserving disparate resources from multiple GENI aggregates.
Prior to this API, each control framework specified a unique
interface between aggregates and experimenters.

The GENI Aggregate Manager API specifies a set of
functions for reserving resources and describes a common
format for certificates and credentials to enable compatibility
across all aggregates in GENI. The aggregate is an abstract
concept represents set of resources. This API has been
implemented in multiple control frameworks, and will serve as
the basis for ongoing integration among GENI control
frameworks and tools. Using this document, new GENI-
interoperable aggregate managers, tools, and clearinghouses
may be constructed [4].

146Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 159 / 282

C. Eucalyptus Cloud Platform

Eucalyptus [9] stands for ‘Elastic Utility Computing
Architecture Linking Your Programs To Useful Systems’ and is
an open source platform in the Infrastructure as a Service
(IaaS)-style based on Linux. Eucalyptus is software available
under GPL that helps in creating and managing a private or
publicly accessible cloud. It provides an EC2-compatible cloud
computing platform and a S3-compatible cloud storage
platform [9].

D. Openstack Cloud Platform

OpenStack is a global collaboration of developers and
cloud computing technologists aiming to produce a ubiquitous
open source cloud computing platform for public and private
clouds. The project aims to deliver solutions for all types of
clouds with simplicity, ease of implementation, scalability, and
feature selection.

Founded by Rackspace Hosting and NASA, OpenStack has
become a global software community of developers who
collaborate on a standard and massively scalable open source
cloud operating system. All of the code for OpenStack is freely
available under the Apach e 2.0 license, and anyone can run it,
add to it, or submit changes back to the project. An open
development model is the only way to foster badly needed
cloud standards, remove the fear of proprietary lock-in for
cloud customers, and create a large ecosystem that spans cloud
providers.

The current OpenStack project has been divided into two
kinds of software. The first, OpenStack Compute (Nova), is
cloud management software used to operate and manage the
infrastructure for large-scale provisioning of virtual machines.
Second, OpenStack Object Storage (Swift) is storage system
software that offers the reliable distribution of a store of
objects.

E. GENICloud

GENICloud’s goal is to allow the federation of
heterogeneous resources like those provided by Eucalyptus, an
open-source software framework for cloud computing, to
coexist with GENI. Under the federation of Eucalyptus and
GENI, a more comprehensive platform is available to users;
for example, development, computation and data generation
can be completed within the cloud, and deployment of the
applications and services can be conducted on the overlay (e.g.,
PlanetLab).

By taking advantage of cloud computing, GENI users can
not only dynamically scale their services on GENI depending
on demand, they can also benefit from other services and uses
of the cloud. GENICloud is complementary to Future Internet
test-bed by federating heterogeneous resources, for example, a
cloud platform with PlanetLab. Both PlanetLab and Eucalyptus
architectures offer some insights into some of the similarities
between the two seemingly disparate systems. PlanetLab
comprises nodes scattered around the globe, and Eucalyptus
consists of clusters. Both PlanetLab and Eucalyptus start out
with some computing resources, namely, physical machines
that can be provisioned to users [7].

F. PlanetLab

To provide a more realistic platform for researchers,
PlanetLab is a test-bed for exploring disruptive technologies on
a global scale. Testing distributed applications and network

services on a global scale has always been difficult because
deploying such applications and services could have adverse
effects on the Internet. Also, PlanetLab is built as an overlay
network to be positioned over the Internet. [5]

PlanetLab defines the treatment of a set of distributed
virtual machines as a single, compound entity called a slice.
The concept comes from the fact that, whenever a service is
running on PlanetLab, it receives a slice (virtual machines
running on different nodes) of the PlanetLab overlay network.
An individual virtual machine within a slice is called a sliver.
GENICloud has expanded the concept of slices to include
Eucalyptus virtual machines and, in the future, storage
capability. Therefore, a slice in GENICloud can have both
PlanetLab resources and virtual machines from a Eucalyptus
cloud. The users can log into individual slivers in a GENI
Cloud slice to conduct their experiments.

G. Eucalyptus Aggregate Manager

Most of the implementation effort of GENICloud is
concentrated on implementing the aggregate manager over
Eucalyptus. In addition, a resource specification format is
formulated for Eucalyptus.

The aggregate manager acts as a mediator between
PlanetLab and a Eucalyptus cloud. The manager manages the
creation of Eucalyptus instances for the slice and maintains a
map of the slices and instances so when the users query the
sets of resources allocated for their slices, the information is
readily available.

H. Resource Specification (RSpec)

The resource specification is an XML document that can be
used by the aggregate manager to return information to the
users. The users can then use the specification to send
information to the aggregate manager. Since the resource
specification is in XML format, the format of the RSpec for a
specific network is completely open for the network to define.
With such openness, the RSpec can encompass many different
types of resources and different network topologies. As a result,
many networks (e.g., PlanetLab, VINI, ProtoGENI) have
different RSpec formats [4][7].

GENICloud defined an RSpec for Eucalyptus, so that its
resources and requests from users can be expressed in XML
format. During the workflow, users interact with the slice
manager using RSpec devised for Eucalyptus.

I. Definition of the Problem

Mobile cloud service has problems like packet loss, low
bandwidth, bandwidth fluctuation, and delay fluctuation based
on broadband communication and delay based on WAN. These
problems obstruct users who want to use mobile cloud services.
GENI Cloud supports interaction among heterogeneous
resources on the Future Internet and Eucalyptus cloud
computing platform. It provides better communication
circumstance. However, the GENI Cloud project provides
limited functionality, which includes few features of cloud
computing capabilities.

III. CLOUD MOBILITY CONTROL FOR A MOBILE CLOUD

A. Key Features of Cloud Mobility Control

Mobile cloud service has problems like Packet loss, lower
bandwidth, bandwidth fluctuation and delay fluctuation based

147Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 160 / 282

on broadband communication and delay because of the WAN
area. To solve problems with mobile cloud service, we
proposed software which has a remote control function to
improve cloud service. Followings are explained based on
Eucalyptus as a cloud platform because of our first cloud
mobility concept is established using Eucalyptus. In fact, it’s
more easy and clear to explain our concept of cloud mobility
using Eucalyptus. However, the Openstack is very similar with
Eucalyptus; it’s very easy to apply this concept from
Eucalyptus to Openstack.

B. Cloud Platform Based on Remote Cloud Mobility

Control

In the mobile cloud platform based on a remote cloud, the
mobile cloud provides an on-demand/pre-reserved virtualized
service by incorporating the cloud server into the
telecommunications and wireless carrier networks rather than
using the server outside of the WAN, as shown in Figure 1.

Remote cloud’s environment-information managing
function is able to provide cloud service environment-
information (which is originally at the ‘local’ cloud server on
the outside of WAN) to cloud server in ‘remote’ mobile
operator network. When user requests cloud service, Cloud
Controller (CLC) determines the location of the new Virtual
Machine (VM) to create. If service is requested through a
mobile operator, CLC requests user environment-information
from the remote cloud server and uses the information to create
a VM. If service is terminated, CLC returns the user
environment-information to the cloud server. Both the local
cloud and the remote cloud provide mobile cloud services
which use proxy server software based on the Eucalyptus
cloud platform. It is simple software shown as ‘Remote
Launcher’ and ‘Local Launcher’ in Figure 1. Each launcher
substantially controls cloud mobility as explained in the next
sections.

C. Design of Cloud Mobility Control

We establish a design based on a remote cloud system for
the proposed cloud mobility control. Table I represents the
common message header for cloud mobility control. First, we
divide local and remote cloud systems into categories based on
‘Kind of cloud system.’ In addition, we should be able to
support seamless mobility control by including ‘Type of

component,’ ‘Type of message-passing,’ ‘Message order,’ and
‘Source and Destination IP addresses’ in the header.

We propose a design for cloud mobility control software
based on the following four basic functions for controlling
local and remote cloud systems.

D. Cloud Computing Mobility Environment Configuration

Local launcher is a gateway for administering the local
cloud system in a remote cloud architecture environment. Each
cloud system (local and remote) exchanges environment-
information with another cloud system and utilizes the
appropriate information from service requests and
communicates with another.

Fig. 1. The concept of proposed remote cloud based on mobile cloud architecture

TABLE I. COMMON MESSAGE HEADER FOR CLOUD MOBILITY

CONTROL

Component
Size

(Octet)
Default Meaning

Kind of

cloud system
1 0x00

0x00
Local cloud

system

0x01
Remote cloud

system

Source

component

type

1 0x00

0x00
Default(App

launcher)

0x01
CLC(Cloud
controller)

0x02
CC(Cluster

controller)

0x03
SC(Storage
controller)

0x04 Walrus

0x05
NC(Node

controller)

Type of

message

passing

1 0x00

0x00 Default

0x01 Request

0x02 Response

Message

order
1 0x00 Message order

Source IP 4 0x00000000
Source IP address of a

message

Destination

IP
4 0x00000000

Destination IP address of a

message

148Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 161 / 282

E. Mutual Recognition and Authentication between Cloud

Systems

The cloud systems also process mutual recognition and
authentication. If a remote user makes a request to the cloud
system, the local cloud exchanges authentication information
for remote cloud service between the local cloud and the
remote cloud. By exchanging authentication information, the
connection setting is established.

Each cloud system checks for available components on its
own system. CLC shows the process for periodically checking
for system components through Eucalyptus API to CC, SC,
Walrus, and NC. The remote launcher and local launcher return
information about the available system to CLC using a query.

F. Activation of the Remote Cloud Server

The remote cloud server’s activation function shows
remote cloud activation in the cloud environment. If a remote
user requests cloud service from the cloud system, the local
cloud system activates the remote cloud service function. After
a recognition step between the local cloud and the remote
cloud, each cloud’s connection settings are established, and the
remote cloud system activates cloud service. Connection is
established between the user and the remote cloud system.
Users can utilize cloud service in the remote cloud system.

If the user requests a service, the local cloud launcher uses
the user network. After that, the system request to the remote
cloud system regarding OS image information, the remote
cloud and local cloud synchronize the image list and transfer
image files. The local cloud system requested information from
the remote cloud system about the user requested application.

The user’s operating information consists of a kernel,
ramdisk, and image file. The remote application launcher
registers on the eucalyptus cloud system. If operating
information is registered on the system, the system returns the
ID values of EKI (Eucalyptus Kernel Image), ERI (Eucalyptus
Ramdisk Image), and EMI (Eucalyptus Machine Image).

If the operating image file completes registration on the
Eucalyptus system, the remote application launcher creates a
keypair with a key value for communication with each
Openstack instance. After creating the keypair, the remote
application launcher requests creation of an instance on the
Eucalyptus cloud system.

During generation of the instance, the Eucalyptus system
uses the appropriate needed parameters like key-pair’s name,
EMI ID and VM type. Upon completion of instance creation,
the Eucalyptus system returns the ID of the instance for
registration.

If the instance is normally driven on the cloud system, the
application launcher periodically checks the status of the
instance. In this process, the remote application launches a
connection with the instance and transfers the user’s
application. After this, the remote application launcher returns
an IP address for the instance from the local application
launcher to receive cloud services. A user re-requests the cloud
service based on the IP address, which returns the remote
application launcher.

Each cloud’s application launchers check the CPU usage,
RAM usage, and HDD usage for status information in order to
manage resources.

G. Deactivation of the Remote Cloud Server

If usage of cloud resources is low, the local cloud system is
deactivated from the remote cloud system, and the user requests
cloud service termination. After this, the instance in operation is
stopped on the remote cloud system, and the user’s image and
instance information is transferred to the local cloud system.

IV. FIRSTCLOUD FOR FUTURE INTERNET

A. Key Features of FiRSTCloud

In this section, we propose the FiRST Cloud AM based on
GENI AM API for the cloud computing platform to extend the
limited functionality of GENI Cloud project [4][6][7].

FiRST Cloud AM acts as a moderator between the
OpenStack cloud and the future internet test-bed. Also, FiRST
Cloud AM manages mapping from an instance to the slice
when a user queries about resource allocation on the slice.
Therefore, FiRST Cloud AM maintains this mapping
information between an instance and a slice. To moderate
between instance and slice, FiRST Cloud AM creates a
database of openstack instances and slice information, as in
Table II.

FiRSTCloud AM provides six APIs (all except
RenewSliver()) using GENI AM API: GetVersion(),
ListResource(), CreateSliver(), DeleteSliver(), SliverStatus()
and Shutdown(). Additional features may exist depending on
the existing API.

FiRSTCloud AM defines the RSpec which is submitted by
the user to describe instance-specific information and resource
information. RSpec is managed differently depending on the
items after parsing. The RSpec contains items such as cloud
image information that includes image id and state, key-pair,
instance and vm information.

B. GetVersion() API of FiRSTCloud AM

FiRST Cloud AM returns the version of the GENI
Aggregate Manager API supported by this aggregate. Version
information includes the OpenStack cloud version.

TABLE II. DB TABLE OF SLICE AND INSTANCE

Slice

Name Type Key

ID INTEGER PRIMARY KEY

Slice urn TEXT

Openstack Insatance

Name Type Key

ID INTEGER PRIMARY KEY

Instance ID TEXT

Kernel ID TEXT

Image ID TEXT

Ramdisk ID TEXT

Instance type TEXT

Key pair TEXT

Slice ID INTEGER
REFERENCES

Slice(ID)

149Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 162 / 282

C. CreateSliver() API of FiRSTCloud AM

FiRST Cloud AM is able to allocate resources to a slice.
Also, this operation is expected to asynchronously activate the
allocated resources after the operation has been successfully
completed.

Callers can check on the status of the resources using
SliverStatus API.

To connect with OpenStack Cloud, first, use the boto
library which is compatible with the EC2 proceeds. Then,
initialize the database information of instance and slice. Create
a new instance from RSpec by parsing the image information,
virtual machine type, and keypair information. Finally, return
the id of the created instance by creating a new RSpec.

D. ListResources() API of FiRSTCloud AM

FiRST Cloud AM returns information about available
cloud resources or resources allocated to a slice. To connect
with OpenStack Cloud, use the boto library which is
compatible with the EC2 to connect. Then, request the
available zone information, registered image information, and
keypair information; instances of OpenStack Cloud AM are
returned in the form of a list of values. Finally, return the cloud
information by creating a new RSpec.

E. DeleteSliver() API of FiRSTCloud AM

FiRST Cloud AM is able to stop sliver and delete if the
sliver is running. AM search instance information occurs in the
DB which is mapped to slices to be deleted. If AM finds an
instance, it can be terminated using the boto library, followed
by a DB update.

F. SliverStatus() API of FiRSTCloud AM

FiRST Cloud AM is given the status of a sliver.
Additionally, AM requests the connection to the OpenStack
Cloud that verifies the status of the instance as well as the
sliver. Returned status information is based on the instance
information for the corresponding slice_urn (uniform
resource name). Based on this instance information, the
final status of the sliver is determined and returned to the
client as in ListResources() API.

G. Shutdown() API of FiRSTCloud AM

FiRSTCloud performs an emergency shutdown of a
sliver. This operation is intended for administrative use. In
addition, this API is obtained from a database associated
with slice_urn and the instance, then terminates and
manages the instance.

V. PERFORMANCE EVALUATION AND ANALYSIS

A. Key Features of the Mobile Zero-Client

In this paper, we proposed the mobile zero-client based on
cloud mobility control and FiRSTCloud AM. For mobile cloud
service, we used Virtual Networking Computing (VNC) which
includes a graphic desktop share system through a Remote
Frame Buffer (RFB). Zero-client means end user device has no
local storage and just has weak process power to communicate
with server. Following evaluations, however, zero-client is
substituted by common laptop running VNC viewer only. On
the cloud server, there is a Linux OS installed instance to run
VNC server application.

Figure 2. System environment for proposed mobile zero-client.

150Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 163 / 282

B. Performance Analysis of the Mobile Zero-Client

Network topology is constructed for mobile zero-client
performance analysis as in Figure 2. In this performance
analysis, we want to present mobile zero-client on mobile
cloud performs better than normal mobile device.

There are two hypotheses before analyze performance of
our proposal. First, we assume that the cloud mobility server
and client are well operated. Therefore whole information and
data in local site downloaded to remote site already.

Second, we did not consider about interworking with
Future Internet test-bed in performance analysis. It’s for
comparison with normal mobile device and for convenience of
experiment.

The performance analysis is operated by receiving a file
from FTP server.

There are two different traffic cases. In the first case, no
traffic is generated on the network. In the second case, another
mobile device generates traffic at the second static AP. The
second mobile device also downloads the same file from the
FTP server. In these two network environments, the mobile
device downloads a 700MB video file using 802.11n WLAN.
Downloading occurs in two ways, through the use of a mobile
device to download directly from the FTP server and connects
to Openstack instance using VNC client as a mobile zero-client.
When using mobile zero-client, the mobile device does not
download from the ftp server but from an Openstack cloud to
which the mobile zero-client is connected.

Table III shows the result of performance evaluation. There
are four scenarios, and each row represents a scenario.
Scenario 1 means the data transfer rate of mobile devices when
downloading a video file from an FTP server with no traffic on
the network. In this scenario, data transfer rate is unstable
because of the wireless network environment. The average data
transfer rate measured 29.75 Mbps. Scenario 2 means the data
transfer rate of the mobile zero-client download video file from
an FTP server with no traffic on the network environment.
Data transfer rate is stable because the mobile zero-client
received the data through OpenStack cloud instance (VM).
Average data transfer rate measured 67.65 Mbps. When using a
mobile zero-client, we achieve a similar performance to that of
a wired network user in our wireless network environment.
Scenario 3 means the data transfer rate of the mobile device
when it is directly downloading a video file from the FTP
server. In addition, this and next scenario correspond to the
second traffic case which is mentioned. Therefore the data
transfer rate little bit decreased when wireless AP was shared
with another client, producing an average data transfer rate of

27.19 Mbps. Scenario 4 means the data transfer rate of a
Mobile Zero-Client downloading a video file from the FTP
server with traffic using another mobile device. The average
data transfer rate measures 65.89 Mbps.

VI. CONCLUSION AND FUTURE WORK

Future Internet research emphasizes harmonization of the
conventional system with Future Internet research, network
virtualization, and cloud computing. Providing high bandwidth
and low delay is possible, but computationally intensive
services or computing operations cannot be performed. A cloud
computing platform can perform many service and
computation operations. Its disadvantages include limited
bandwidth and highly variable latency.

Researchers have begun to test cloud computing
environments in large-scale global test-bed systems. In this
paper, we developed cloud mobility for mobile communication
between a device and the cloud server. Second, we developed
the FiRST Cloud aggregate manager (AM) based on GENI AM
API for interaction between the future internet test-bed and the
OpenStack cloud platform. Third, we developed a Cloud
Mobility Client/Server for mobile cloud management in order
to control the zero-client service. We confirmed that the
proposed FiRSTCloud AM works with zero-client mobile
cloud service.

Through this work, mobile cloud service was shown to
have a consistent quality regardless of mobile device
performance or wireless environment.

ACKNOWLEDGMENT

This research was supported by Basic Science Research
Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Education, Science
and Technology (2012R1A1A1006620).

REFERENCES

[1] M. K. Shin, “Trend on the Future Internet Technologies and
Standardization,” Electronics and Telecommunications
Trends, vol. 22, no.6, pp.116-128, Dec. 2007.

[2] K. H. Nam, S.J. Jeong, M. K. Shin and H. J. Kim,
“Technology and Trends of GENI Control Framework,”
Electronics and Telecommunications Trends, vol. 25, no.6,
pp.157-166, Dec. 2011.

[3] GENI white paper, “GENI at a glance”, [Online]
http://www.geni.net/wp-content/uploads/2011/06/GENI-at-a-
Glance-1Jun2011.pdf, <link> 07.16.2012.

[4] GENI API wiki page,
http://groups.geni.net/geni/wiki/GeniApi, <link> 07.16.2012.

[5] PlanetLab, http://www.planet-lab.org, <link> 07.16.2012.
[6] S. W. Lee, S. W. Han, J. W. Kim, S. G. Lee, “FiRST: Korean

Future Internet Testbed for Media-Oriented Service Overlay
Network Architecture,” Journal of Internet Technology, vol.
11, no. 4, pp. 553-559, Jul. 2010.

[7] M. Yuen, “GENI in the Cloud”, University of Victoria, 2010.
[8] Openstack official homepage, [Online]

http://www.openstack.org, <link> 07.16.2012.
[9] Eucalyptus official homepage, [Online]

http://www.eucalyptus.com/, <link> 07.16.2012

TABLE III. AVERAGE DATA RATE ON 4 SCENARIOS

 Traffic load Client type
Average data rate

(Elapsed time)

Scenario 1 N/A Normal client
29.75 Mbps

(193.26 sec)

Scenario 2 N/A Zero-client
67.65 Mbps
(84.92 sec)

Scenario 3 Another device Normal client
27.19 Mbps
(211.40 sec)

Scenario 4 Another device Zero-client
65.89 Mbps

(87.23 sec)

151Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 164 / 282

Provenance Framework for the Cloud Environment (IaaS)

Muhammad Imran
Research Group Entertainment Computing

University of Vienna, Austria
Email: imran.mm7@gmail.com

Helmut Hlavacs
Research Group Entertainment Computing

University of Vienna, Austria
helmut.hlavacs@univie.ac.at

Abstract—Cloud providers can optimize resource utilization
and energy consumption by finding patterns in their usage.
One way of finding such patterns is to study the history of
Cloud resources activity. This approach is known as Cloud
provenance. Provenance can also be used to track errors and
faults in Cloud services. We have developed a provenance
framework for research Clouds in order to find the history
of the resources usage. Our framework collects provenance
data in response to the request of users for IaaS scheme. In
this paper, we discuss a provenance framework in the Clouds
and present different possible approaches of the provenance
collection process. To the best of our knowledge, provenance
is yet to be addressed in the Cloud environment. Hereby, we
provide details of our proposed framework and present its
performance evaluation. The experimental results show that
our provenance framework has a very low overhead (less than
milliseconds), which makes it ideal for the Cloud infrastructure.

Keywords-provenance framework; cloud IaaS.

I. INTRODUCTION

The vision of Cloud is to address a complex engineering,
medical or social problem. Cloud enables the end user
to process huge amount of data and/or satisfy his needs
for mass computational power via resource virtualization.
The experiments are performed on Cloud on a large scale
and shift of technology is already in progress [1], [2].
Infrastructure as a Service (IaaS) is the new paradigm for
researchers to deploy complex applications into Cloud. This
is different than Grid [3] and distributed environments where
a user had to adopt their application to the grid infrastructure
and policies. IaaS scheme provides a raw resource which
is hired and updated according to the requirement of the
application by a user without knowing the complexity and
details of the underlying architecture. A resource is hired
when a match is found based on a user and application
requirements such as memory, disk space, resource type
and/or Cloud provider. This is called on-demand computing
and in the process of resource allocation, a user is charged
with some price. Once a resource is updated and used, the
user may take a snapshot of the resource if the same resource
is to be used later on.

Workflow [4] is designed to execute activities in order
for a complex application in e-Science. Provenance of a
workflow activities [5] is the information about intermediate
data and processes to verify the execution of an application.

Provenance in general means; “the origin or source of an
object”. In Clouds, provenance can be broadly categorized
into user data (applications installed on a virtual machine),
instance type (memory, disk size, number of instances) and
resource type (image ID, location). Such information is
of high importance to utilize the cloud resources, e.g., a
resource already built and updated by one user can be used
by others with minimum or no change of the installed ap-
plications and components. Furthermore, mining provenance
data can be used to forecast a future request, e.g., Eddy
Caron [6] used string matching algorithm on recent history
data to forecast a next request. Similarly, networks in general
and Clouds in particular are prone to errors, and the history
data can be utilized in Clouds to resolve the errors with
minimum effort.

Clouds are still in the process of evolution and provenance
is yet to be implemented (addressed) in Clouds. Contribu-
tions of this paper are the following:

• A brief overview of research Clouds IaaS and a detailed
discussion of possible schemes to incorporate prove-
nance into Cloud environment.

• A use case of provenance usage and example metadata
from IaaS Cloud.

• Detailed architecture of our provenance framework for
Cloud IaaS and the evaluation of collecting and storing
provenance data.

The rest of the paper is organized as follows. Section II
summarizes the research Cloud architecture and discusses
the possible provenance schemes. Section III gives the
details of the underlying architecture (middleware) used by
the research Clouds and the extension of this architecture to
collect provenance data. Section IV gives a brief overview
to use the provenance data and utilize Cloud resources. In
Section V, we present the test results of the collection and
storage module. Section VI concludes our work and presents
the directions for the future implementations.

II. RESEARCH CLOUD IAAS ARCHITECTURE AND
DISCUSSION OF PROVENANCE SCHEMES

A. Research Cloud IaaS

Cloud computing is generally categorized into three types
which are business, Research or private and hybrid Clouds.

152Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 165 / 282

User

Cloud Tools

(Cloud API) Cloud

Cloud

Controller

Cluster

Controller

Node

Cotroller

Virtual

Machine

Storage

Controller

Uses

Cloud API

Cluster API

Storage API
Node API

Cloud

Storage

Manages

Figure 1. Generalized Cloud Architecture.

They are further subdivided into three schemes which are In-
frastructure as a Service (IaaS), Platform as a Service (PaaS)
and Software as a Service (SaaS). Three different Clouds,
i.e., EUCALYPTUS [7], Nimbus [8] and OpenNebula [9]
were explored to understand their internal architecture and
communication mechanism between various components.
This helped us to discuss the possible provenance schemes
for Cloud IaaS and implication of our proposed framework.
The main components of IaaS Cloud are summarized below:

• Application tools: Application Programming Interface
(API) available to communicate with Cloud services,
e.g., resource hiring, starting, stopping, saving and/or
describing the state of a particular resource.

• Cloud, Cluster and Node: The request of users is
handled by the Cloud and routed to Clusters and Nodes
respectively. The Node communicates with Virtual
Machine (VM) and the job of Cluster is to manage
different nodes in the network.

• Storage: Cloud offers storage unit (file system) to save
user data and raw disk images to be run as resources.
Communication with a storage unit is controlled by a
service, e.g., Walrus in Eucalyptus Cloud and a user
can save the updated state of a running machine. The
process of saving the updated machine into Cloud is
called snapshot.

Figure 1 presents a generalized architectural overview and
control flow from user to VM in Cloud IaaS.

B. Provenance as a Part of Cloud Services

In this scheme, the Cloud provider needs to provide a
service which will communicate with other Cloud services
including cluster, node and storage to collect provenance
data. This scheme proposes the application of provenance
as a part of overall Cloud Infrastructure. The following list
the advantages of provenance inside the Cloud IaaS.

• Easy to use as provenance is already a part of Cloud
infrastructure and a user can decide to turn it on/off
just like other Cloud services.

User

Cloud

Cloud

Services

Storage

Service

Provenance

service Provenance store

Cloud applicatoin

Application services

Service 1

Service 2

Service 3

Figure 2. Provenance Service as Part of Cloud Services.

• Users will prefer this scheme as they do not need to
understand the structure of provenance framework and
is the responsibility of the Cloud provider to embed
such a framework.

The following lists the disadvantages of such a provenance
scheme.

• Cloud providers cannot charge users for such a scheme
unless it has some benefits of resource utilization and
initialization for users.

• In case of Cloud services failure, provenance system
will also fail and there is no way to trace the reason
for the failure.

• There will be extra burden on the Cloud provider
because the usage of Cloud resources must increase
due to incorporating the provenance system as a part
of Cloud framework.

• Such scheme can only work with a particular version
of Cloud IaaS. Any change in Cloud model or services
signature needs an appropriate change in provenance
application.

In distributed, grid and workflow computing, there are many
examples of provenance data management and schemes
[10]–[13]. Each of these schemes is designed for a partic-
ular environment and they rely on the underlying services
model. Therefore, the existing techniques cannot be applied
to Cloud environment and further, Cloud services are not
extensible to third party applications. Figure 2 presents a
provenance system as a part of Cloud services.

C. Provenance is Independent of Cloud Services

A provenance scheme which adopts a modular and an
agent like approach to address cross platform, applications
and different Cloud providers is independent of Cloud infras-
tructure. Such a scheme must address on-demand, pay as you
go and extremely flexible Cloud architecture. Advantages of
an independent provenance scheme are:

• Independent of Cloud services and various applications
domain.

• Failure of Cloud will not affect provenance scheme as
it is not a part of Cloud.

153Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 166 / 282

User

Provenance

service

Cloud applicatoin Application services

Service 1

Service 2

Service 3

Cloud

Cloud

Services

Storage

Service

cloud store

Provenance

store

Prov
enan

ce

colle
ction

Figure 3. Provenance as an Independent Module

• The users and Cloud providers will be able to track
faults and errors if some Cloud services failed to work
properly.

• Usability and simplicity of such a scheme is very high
because the user has complete control of the provenance
system.

Disadvantages of such a scheme are as follows:
• Complete understanding of Cloud services is required

to make any changes and communicate with the Cloud
infrastructure.

• Trust is required on behalf of the Cloud provider
because of request, permission and response from the
Cloud services to the provenance module.

• Any change in Cloud services, their signature, or com-
munication mechanism will need an appropriate change
in provenance scheme.

In workflow computing, Karma [14] is using a notification
broker where all the activities are published to and stored in
a provenance store. The technique proposed by the Karma
service is not part of a workflow enactment engine and it
works as a bridge between the provenance store and the
enactment engine. Figure 3 gives a brief overview of an
independent provenance scheme in Cloud.

D. Discussion

Both of these approaches have their pros and cons. While
considering provenance for Cloud IaaS, the major challenge
is to address the Cloud extensibility. Clouds are not exten-
sible by nature and in case of open Clouds, a developer
needs a deep understanding of the source code in order to
make any changes. Keeping this point in view, we propose a
provenance framework which is independent of Cloud IaaS
provider and with minimal or no changes required in Cloud
services.

III. PROVENANCE FRAMEWORK

Research Clouds rely on the open source technologies to
provide an infrastructure (IaaS). These open source tech-
nologies includes JAVA and C/C++ languages, and Apache,
Axis and Mule [15] communication frameworks. A general
consensus is that Cloud would not be possible without these

open source technologies. Research Cloud, e.g., Eucalyptus
use Apache, Axis2/C and Mule engines to deploy Cloud ser-
vices as IaaS and built a communication mechanism between
different components. Apache is widely used for its speed,
lightweight engine and its support of SOAP, WSDL and
REST interfaces. Similarly, Mule is an integration platform
used to connect various applications and/or services. These
technologies are used to connect various Cloud components
and are called middleware.

This middleware is extensible and a developer can add
custom methods to the already deployed applications and
service. The proposed framework is based on this feature
of extensibility from Apache, Mule and other third party
tools and consists of the following components: Provenance
Collection, Provenance Parsing, Provenance Storage,
Provenance Query and Provenance Visualization. First,
the explanation of Apache architecture and its extension for
the development of the provenance framework is given.

A. Apache (Axis2/C)

To develop a provenance framework, the following com-
ponents of the Apache architecture are utilized.

Handler: or interceptor is the smallest execution unit
in the message passing system of the Apache Engine. The
idea is to intercept the flow of a message and perform the
additional task submitted by a user. Handler can read and
write to the message context (apache messaging system). A
handler has two parts: header and body. The header specifies
the name and body the operation. There are predefined
handlers in the Apache Axis execution chain and also
the ability to provide custom handlers developed by the
developers [16]. A group of handlers that is orchestrated
and deployed within the Apache engine is called a module.

Phase: is the concept in Apache Axis to support the
dynamic ordering of the handlers. It acts like a bucket in
which where the handler is put. A phase can have one or
more handlers. Apache provides different kinds of phases
spanning from global (for overall axis communication) to
operational (for a particular operation or web method).

Flow: is a collection of phases. Phase is more like a
logical collection where flow is a real execution chain. There
are four types of flows in Apache engine.

• InFlow
• OutFlow
• InFaultFlow
• OutFaultFlow
Similarly, other third party libraries and frameworks used

by Clouds are also extensible. Examples of such frameworks
are the use of Mule in Eucalyptus, Axis in Nimbus and
Apache xml-rpc in OpenNebula. The basic architecture of
these libraries is different but the main idea of an interceptor
or handler is the same. For example, in Mule, the message
context is referred to as Mule Message. Interceptors can
be deployed before and after a component is invoked in the

154Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 167 / 282

Mule framework. The Mule message before and after resides
in flows which are called inbound-router and outbound-
router respectively.

B. Provenance Collection
When a message enters Apache engine, it goes through

InFlow and invokes all the handlers inside. InFaultFlow is
similar and handles a faulty incoming request, e.g., sending
wrong arguments to the web service method or any other
unexpected condition that prevents the request to succeed.
OutFlow is invoked when a message is moving out of
Apache engine (invoking all handlers in OutFlow) and
the OutFaultFlow is invoked when something goes wrong
in the out path, e.g., a host is shut down unexpectedly.
Various Flows within Apache engine and the execution of
a service with input and output messages is described in
figure 4. The left side of figure details the different flows
and the right side gives an overview of one single flow
with phases and handlers concepts (both built in and user
defined). Custom handlers, using C/C++ for provenance
collection are deployed in four different Flows of the Apache
execution chain. When a component inside Cloud IaaS is
invoked, provenance collection module intercepts the flow,
collects and parses the message for provenance data in the
corresponding execution flow.

C. Provenance Parsing and Storing into XML File
SOAP message inside Apache engine is intercepted by the

collector module which passes this message to the parser.
The parser reads the SOAP message, parse it accordingly
and store the data in a well defined XML file. We used
XML schema for the collected provenance data because it
is widely used model for data representation. The XML can
be used to maximize the advantages of custom algorithms
and third party applications. To query the provenance data,
it is better to provide a standard schema and hence the usage
according to individual preferences.

TableI presents a sample of collected, parsed and stored
provenance data by our provenance framework. This data
represent user activity for methods of Eucalyptus clus-
ter service and detail the timestamps, resource type and
instance specific information. <UserData> is the list of
applications specified by user to populate the resource and
<TimeStamp> are corresponding start and finish time for a
web service method.

D. Provenance Query
Custom applications can query provenance data based on

the user requirements. We find the activity pattern in Cloud
IaaS based on a resource type, instance type, time used or
user ID in our example query. This information can be used
to monitor Cloud IaaS and the frequently used resources can
be moved to a faster CPU/disk unit for better performance.
Algorithm 1 is used to find activity patterns based on the
the resource-ID.

Algorithm 1 Solve Query Q: Q = Return Resource Types
(emi-IDs) in XML Store
Require: XMLStore, ClusterName
Ensure: XMLStore is not Empty

Begin
Array ResouceType[] T
OpenXMLFile(XMLStoreLocation)
FindCluster(ClusterName)
while ParentNode<MethodName> == RunInstance) do

T ← ChildNode(<ImageID>)
end while
End

Figure 5. User Interface for Engaging Provenance Module into Cloud

E. User Interface

Usability of the proposed provenance framework is very
high. Cloud providers can enable/disable the provenance
module according to their choice. Different options are
available to enable/disable the provenance module based
on the requirements of the Cloud provider. Some of the
options are: to enable/disable provenance module for all
clusters, a particular cluster, all nodes, a particular node, or
selected methods from a particular cluster or node. Figure
5 presents a prototype of user interface available to Cloud
IaaS provider.

F. Framework Experience

By extending the middleware (Apache and Mule) using
handlers, we are independent of Cloud provider and different
IaaS schemes. We followed a modular approach and divided

155Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 168 / 282

Web Service Execution Flow

InFlow

InFaultFlow

OutFlow

OutFaultFlow

Message

In
Message

Out

Message

In
Message

Out

Message

In

Message

In

Message

Out

Message

Out

Axis2C engine

P1 P2 P3 P4

H1 Hu Hn

Pi=phase

Hi=handler

Hu=custom handler

F
lo
w
w
ith
c
u
s
to
m
h
a
n
d
le
r

Figure 4. Apache Axis2C Architecture

<EucalyptusServiceName> ClusterController</EucalyptusServiceName>

<MethodName>StartNetwork</MethodName>
<TimeStamp> Start and End Time of Method</TimeStamp>
<ClusterAddress> 131.130.32.12</ClusterAddress>
<UserID>admin</UserID>

<MethodName>RunInstance</MethodName>

<ImageID>emi-392B15F8</ImageID> Instance Type
<KernelID>eki-AE1D17D7</KernelID> <Name>m1.small</Name>
<RamdiskID>eri-16981920</RamdiskID> <Memory>512</Memory>
<ImageURL>emi-URL</ImageURL> <Cores>1</Cores>
<RamDiskURL>eri-URL</RamDiskURL> <Disk>6</Disk>
<KernelURL>eki-URL</KernelURL> <UserData>DataFile</UserData>

<MethodName>StopNetwork</MethodName> <TimeStamp> Start and End Time of Method</TimeStamp>
<UserID>admin</UserID>

Table I
SAMPLE METADATA FOR CLOUD IAAS

our framework into different components. The future of
provenance in Cloud lies in a lightweight and independent
provenance scheme to address cross platform, Clouds IaaS
and application domains. The proposed framework can be
deployed without making any changes to the Cloud services
or architecture. Advantages of the scheme are:

• It is independent of Cloud services and platform and
it works with any Cloud IaaS which use the Apache,
Mule or similar frameworks.

• The proposed framework follows a soft deployment
approach and therefore, no installation is required.

• Some of the challenges offered by Cloud infrastructure
are virtualization, “on demand” computing, “pay as you
go” model, more abstract, extremely flexible and the
services are not extensible by nature. The proposed
framework address these challenges in automatic fash-
ion as being part of Cloud middleware.

Major Disadvantage of proposed framework is:

• Rely completely on the extension of the middleware
and cannot work on any other Cloud IaaS where
middleware is not extensible.

IV. CLOUD PROVENANCE: A USE CASE FOR EFFICIENT
RESOURCE INITIALIZATION AND ENERGY CONSUMPTION

Description: Resource utilization is critically important
both from the resource provider and Cloud performance
perspective. In the Cloud resource allocation process, a
user may request a resource with the input file of required
applications that is the same as a previously initialized
resource but will still need to build the resource from scratch.
The Cloud resource utilization can be maximized if one
is able to provide automatic discovery of already running
instances, saved volumes and snapshots. The automatic
discovery will not only help in resource utilization but will
also provide means to reduce the time and energy consumed.
Our proposed framework collects the metadata information
regarding time, user, cluster and location of newly created
volumes or snapshots and stores it in a provenance database.
To make the process of resource allocation efficient and
automatic, the broker (which takes input from user) com-
pares the user input file with existing provenance data. If
the comparison of input file results in an exact match then
instead of starting a new resource from scratch, the existing
resource volume and snapshot are deployed.
Actors: End-user and Cloud provider. A user benefits from

156Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 169 / 282

Table II
UNDERLYING ARCHITECTURAL COMPONENTS

Cloud provider Operating system Cloud services engine Languages Storage unit Virtualization Service tested
Eucalyptus 1.6.2 Linux Ubuntu 10.04 Server Axis2/C 1.6.0 C,C++ File system (XML) KVM/XEN Cluster controller

Resource broker

Provenance

data

Initialize existing

resource

Request for resource

Query provenance for pattern

Cloud

Match found

Start resource

Start new

resource
Match not found

Start resource

R
e
s
o
u
rc
e
a
s
s
ig
n
e
d

Figure 6. Resource Initialization Using Provenance

this scheme by saving his time and effort to build a resource
from scratch. On the other hand, the Cloud provider utilizes
existing deployed resources and saves energy.
Advantages:

• Faster resource initialization in case a match is found.
• Utilization of existing deployed resource (volumes,

snapshots) to save energy, cost and time.
• Overall Cloud performance will increase.

Figure 6 describes the process of using provenance data and
making Clouds more efficient and proactive.

V. EVALUATION

Different approaches are proposed in literature for collect-
ing and storing provenance data to reduce the computation
and storage overhead [17]. Mainly, there are two methods.
The first method proposes to collect provenance data and
store a copy of the parent object. The disadvantage of this
method is a huge storage overheard. The second method
proposes to store links of the parent object. This method is
faster and storage overhead is very low. Disadvantage of this
method is consistency in case a parent object is deleted or
moved.

To store provenance data we followed the second ap-
proach and the proposed framework stores only the link in-
formation about the activity of users and Cloud components.
The provenance data consists of information like: Cloud
images, snapshots, volumes, instance types and user data
etc. Real data is already stored in the Cloud storage unit
and we do not make a copy of this data. Since links are
lightweight, therefore computation and storage overhead for
the provenance data is negligible.

We evaluated the cluster controller service and results
were surprising for collection and storage module. To get
physical evidence, timestamps were calculated at the begin-
ning of provenance module invocation and later on when
the data is parsed and saved into XML file. Time overhead
including the provenance module for Inflow and Outflow
phases of Apache were less than milliseconds. To find the
storage overhead we calculated file size of provenance data
for individual methods. We chose a worst case scenario
where all the incoming and outgoing data was stored. This
process was performed for every method in Eucalyptus clus-
ter service and the average file size of stored provenance data
is about 5 KB for each method. Evaluation was performed
by using the underlying architecture detailed in table II.
Physical machine details for running IaaS Cloud are the
following:
Number of PCs: 2 (PC1 with Cloud, Cluster and Storage
Service, PC2 with Node service), Processor: Intel Core (TM)
2: CPU 2.13 GHz, Memory: 2GB, Disk Space: 250 GB

It is essential to note that the low computation and storage
overhead of the provenance frameworks is because of two
reasons. First, we used an approach where the extension
of the middleware is achieved by built in features. This
approach does not add any extra burden except the collection
of provenance data. Second, we store the provenance data
by using a link based approach. This approach saves on
duplicating the storage of huge amounts which already exists
in Cloud database.

VI. CONCLUSION AND FUTURE WORK

With the evolution of technology and IaaS, complex
applications are target environment for Clouds. Clouds offers
“on demand” computing and “pay as you go” model, where
applications discover resources at run time. The focus of this
paper is provenance data for Cloud IaaS scheme. A client
application hires resources from IaaS and populates them
according to the requirements. These populated resources
are saved in Cloud storage unit and can be used by other
applications having the same requirements. This process
requires storage of users or application activity. First, we
discussed general approaches to collect activity information
performed on Cloud IaaS with their pros and cons. By using
those approaches as the basis of our study, we developed
a framework which is not dependent on Cloud services or
underlying architecture. We divided our framework into dif-
ferent components and proposed a use case scenario where
the collected provenance data can be used to utilize Cloud
resources and to save cost, energy and time. Collecting and

157Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 170 / 282

storage overhead of the proposed framework is very low.
In the future we will extend the framework for resource
utilization in order to save cost, time and energy using
provenance.

REFERENCES

[1] C. N. Hoefer and G. Karagiannis, “Taxonomy of cloud com-
puting services,” in Proceedings of the 4th IEEE Workshop on
Enabling the Future Service-Oriented Internet (EFSOI’10),
Workshop of IEEE GLOBECOM 2010, Miami, USA, ser. 2010
IEEE GLOBECOM Workshops. USA: IEEE Communica-
tions Society, December 2010, pp. 1345–1350.

[2] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey,
B. Berriman, and J. Good, “On the use of cloud computing
for scientific workflows,” in Proceedings of the 2008 Fourth
IEEE International Conference on eScience, ser. ESCIENCE
’08. Washington, DC, USA: IEEE Computer Society, 2008,
pp. 640–645.

[3] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of
the grid: Enabling scalable virtual organizations,” Int. J. High
Perform. Comput. Appl., vol. 15, no. 3, pp. 200–222, Aug.
2001.

[4] I. J. Taylor, E. Deelman, D. B. Gannon, and M. Shields, Work-
flows for e-Science: Scientific Workflows for Grids. Secaucus,
NJ, USA: Springer-Verlag New York, Inc., 2006.

[5] R. S. Barga, Y. L. Simmhan, E. Chinthaka, S. S. Sahoo,
J. Jackson, and N. Araujo, “Provenance for scientific work-
flows towards reproducible research.” IEEE Data Eng. Bull.,
vol. 33, no. 3, pp. 50–58, 2010.

[6] E. Caron, F. Desprez, and A. Muresan, “Forecasting for
grid and cloud computing on-demand resources based on
pattern matching,” in Proceedings of the 2010 IEEE Second
International Conference on Cloud Computing Technology
and Science, ser. CLOUDCOM ’10. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 456–463.

[7] Eucalyptus. [retrieved: may, 2012]. [Online]. Available:
http://open.eucalyptus.com/

[8] Nimbus. [retrieved: may, 2012]. [Online]. Available:
http://www.nimbusproject.org/

[9] Opennebula. [retrieved: may, 2012]. [Online]. Available:
http://opennebula.org/

[10] M. Szomszor and L. Moreau, “Recording and reasoning over
data provenance in web and grid services.” ser. Lecture Notes
in Computer Science, R. Meersman, Z. Tari, and D. C.
Schmidt, Eds., vol. 2888. Springer, 2003, pp. 603–620.

[11] Y. Cui and J. Widom, “Lineage tracing for general data
warehouse transformations,” in Proceedings of the 27th Inter-
national Conference on Very Large Data Bases, ser. VLDB
’01. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2001, pp. 471–480.

[12] P. Buneman, S. Khanna, and W. chiew Tan, “Why and
where: A characterization of data provenance,” in ICDT ’01:
Proceedings of the 8th International Conference on Database
Theory. Springer, 2001, pp. 316–330.

[13] Y. L. Simmhan, B. Plale, and D. Gannon, “A Survey of Data
Provenance Techniques,” Computer Science Department, In-
diana University, Bloomington IN, Tech. Rep., 2005.

[14] Y. L. Simmhan, B. Plale, D. Gannon, and S. Marru, “Per-
formance evaluation of the karma provenance framework for
scientific workflows,” in in: International Provenance and
Annotation Workshop (IPAW). Springer, 2006, pp. 222–236.

[15] Mule esb. [retrieved: may, 2012]. [Online]. Available:
http://www.mulesoft.org/what-mule-esb

[16] A. S. Foundation, “Apache axis2/java - next generation web
services,” Website http://ws.apache.org/axis2/, Jul. 2009.

[17] D. Koop, E. Santos, B. Bauer, M. Troyer, J. Freire, and C. T.
Silva, “Bridging workflow and data provenance using strong
links,” in Proceedings of the 22nd international conference
on Scientific and statistical database management, ser. SS-
DBM’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp.
397–415.

158Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 171 / 282

Enhancing Mobile Device Security by Security Level Integration in a Cloud Proxy

Thomas Ruebsamen, Christoph Reich
Hochschule Furtwangen University

Faculty of Computer Science
Furtwangen, Germany

{Thomas.Ruebsamen, Christoph.Reich}@hs-furtwangen.de

Abstract—Smartphones, tablets, laptops and other mobile
devices dominate our every day life and became indispensable
for many businessmen. But at the same time the number of
security vulnerabilities have been increasing. To increase the
security of such devices the paper proposes a proxy running in
a cloud environment that controls the access for mobile device
to applications, enterprise services or Internet services. The
developed access management system based on the Role Based
Access Control (RBAC) model has been extended by 5 security
levels. These security levels are determined by a classification
of the user, the communication channel, and the device itself.

Keywords-security; cloud computing; mobile device; mobile
security

I. INTRODUCTION

Since 2009 a drastic increase of reported security vul-
nerabilities and exploits in operating systems for mobile
devices (e.g., Android, iOS, Windows Mobile, Symbian)
can be observed. Attacks, especially those using viruses,
worms and similar malware, have been relatively confined
to desktop PCs, laptops and servers but are now more
and more spreading into mobile platforms [1]. The main
reason for this trend is their widely adopted usage and
the fact that mobile devices are starting to become more
and more similar to classic PC-like computers in terms of
performance as well as field of application. A couple of years
ago, mobile devices had a limited range of applications.
Nowadays, expanding application stores and apps available
for download, drastically have changed this. Mobile devices
can easily be expanded in their functionality simply by
installing new apps. A side-effect is the increased probability
of being exposed by malware. With every new generation
of mobile devices, especially in the smartphone and tablet
sector, the performance regarding CPU, memory and net-
work bandwidth is increased. This makes mobile devices an
attractive target for attackers.

Another problem is the lack of security fixes for mobile
system software. Manufacturers of mobile devices often fail
to provide decent software-related support for their products.
This is for example shown by the apparent version fragmen-
tation which can be observed in the Android environment
[2]. If the manufacturer does not provide its customers with
software patches in time, devices become more vulnerable to
exploits. Keeping the operating system and crucial software

packages up to date is a well known best practice for
securing PCs, yet regarding mobile devices this is often not
possible due to lack of support. Using firewalls, anti virus
scanners, spyware scanners, rootkit detectors and intrusion
detection systems (IDS) on non mobile devices is not a
common practice. Adopting such tools to mobile devices
proves to be difficult, mainly because of lack of resources
like battery longevity, computing power and storage.

Securing mobile devices has become one of the main
concerns for companies, because they are adopting mobile
devices for improving productivity of their employees. Their
major concern is how to prevent attacks originating from
compromised devices targeted on their corporate networks
and their sensitive data.

To solve the problem of lacking resources on mobile
devices, offloading resource intensive tasks to the cloud is
one solution [3], [4]. Cloud Computing describes a technique
where resources like computation power and storage are
provided transparently over a network (usually the Internet).
One major advantage of cloud computing is the relatively
easy scaling of services. The results presented in this paper
rely heavily on leveraging cloud computing especially for
enabling scalability and providing sufficient resources to
effectively enhance security of mobile devices. Such secu-
rity mechanisms include but are not limited to anti virus,
intrusion detection and application analysis in the cloud [5],
[6].

In this paper a proxy, that controls the access of mobile
devices to applications and services is proposed. The proxy
is operated in the cloud which enables it to perform resource
intensive analysis tasks. Also, the proxy is the central control
component for evaluating the security as wells as the trusta-
bility of users, devices and communication channels. This
results in the assignment of security levels which themselves
are used to enable a more fine grained access control.

This paper is structured as follows: In this section, we
gave an introduction to the security problems which occur
with current mobile devices, such as smartphones and tablets
in today’s enterprise environments. In the next section, a
security classification framework for mobile devices will
be described. Based on this classification, we propose a
security level model. In section IV, we will propose two
different approaches for security level integration into the

159Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 172 / 282

RBAC model. Section V will highlight evaluation results
of the proposed security level model and the classification
framework using use cases. The last section includes the
conclusion of this paper as well as future work.

II. RELATED WORK

Portokalidis et al. [6] describe a system that implements
an intrusion detection for Android based systems called
Paranoid Android. Paranoid Android is based on a cloud
deployment model where intrusion detection is offered as
a service. By emulating whole devices in virtual machines
in the cloud, it is possible to apply resource intensive
anomaly detection mechanisms. This would not be possi-
ble to do on mobile devices because of the very limited
available resources. The clone is kept in sync with the
mobile device. Actions performed on the device are replayed
by the emulator. They also show that it is imperative to
optimize the synchronization and tracing processes because
having to collect and transmit data can very easily lead to
disproportionate exhaustion of the battery.

A very similar approach is taken by Zonouz et al. In their
framework [7], [8] a lightweight agent is deployed on the
mobile device, which collects user and sensor information.
Additionally a proxy server is used to duplicate all traffic
flowing between device and the internet. The collected traffic
gets sent to an emulator in the cloud. Using the collected
data from the agent and the proxy an analysis component
scans for anomalies. In case of an ongoing attack the system
informs the agent about countermeasures which need to be
taken.

Andromaly [9] is a framework for detecting malware
on mobile devices. Their approach is similar to those of
classic host based intrusion detection systems. Android
based devices are continuously monitored and attacks are
detected using machine learning anomaly detectors. One of
the main problems this approach are the limited resources on
mobile devices which prevents the use of more sophisticated
algorithms.

Schmidt et al. [10], [11] suggest using static analysis
of executables as well as the integration of a collaborative
system for detecting malware on Android based systems.
By inspecting files on the function call level and comparing
this data to already known malware files can be classified as
harmful or harmless. The analysis can either be performed
locally on the device or offloaded to a remote detection
server. Additionally, devices can exchange analysis results
with each other using the server. This leads to an improved
detection rate.

Another approach, specifically targeted on the Symbian
platform, is described by Bose et al. [12]. They are relying
on behavioral analysis for detecting malware on mobile
devices. Their idea is based on the assumption that a
single action performed by an application can be classified
as harmless, but in relation to other actions, which are

performed in the same context, malware behavior can be
exposed. Based on this assumption Bose et al. developed a
database of behavioral signatures for malware. By training
a support vector machine with normal behavior of applica-
tions, anomalies such as malware can be detected.

Kim et al. [13] analyze a very specific kind of malware
causing battery exhaustion. These kind of attacks have
already been described generally by Martin et al. in [14]
and more specific by analyzing a security vulnerability in the
MMS service by Radic et al. [15]. The core component of
Kim’s framework is a power monitor which monitors energy
consumption and generates a power consumption profile.
Using this profile it is possible to extract, analyze and detect
attacks.

A very similar framework has been developed by Nash
et al. [16]. Their system monitors mobile device parameters
like CPU utilization and accesses to local storage to measure
the used energy on a per process basis. Using this informa-
tion they try to detect malware which tries to perform battery
exhaustion attacks. This monitoring system is designed to
be very lightweight. As an extension they suggest to start
a fully-fledged intrusion detection system once an energy
depletion attack has been detected.

Another kind of intrusion, especially theft, is the core
concern of the work of Gupta et al. [17]. Basis for theft
detection are profiles consisting of typing patterns and his-
toric information like the history of made and received calls.
Using this information the probability of the device being
stolen or accessed by an unauthorized person is calculated.
Unless there is no sufficient authentication of the user, data
stored on the device remains encrypted. Additionally, if a
theft has been detected a central management instance is
notified.

The main differences of these approaches are whether the
system is deployed on device or offloaded on a separate,
dedicated system for analysis and detection. The system
described in this paper uses a proxy server in the cloud
for offloading most of the security related tasks. Also, the
security level concept shares the same goals with the afore-
mentioned projects, to enhance security and data protection
in mobile enterprise environments.

III. ENHANCING MOBILE SECURITY

To increase the security of mobile devices the access to
services and data is controlled by a proxy running in a cloud
(see Figure 1).

This architecture allows leveraging the advantages of
cloud computing having almost unlimited computing power
for analyzing the security status of the mobile system. The
mobile security of the entire system depends basically on
the security and trust level of a) the user, b) the mobile
device, c) the communication channel, and d) the backend,
the cloud. The proxy, which is under company control,
is used to collect as much security related information

160Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 173 / 282

Figure 1. Mobile System Architecture with Cloud Proxy

about the aforementioned components as possible (e.g.,
by analyzing network traffic, querying company databases
for organizational information et cetera). Additionally, the
proxy requests information directly from the mobile device,
which also monitors the aspects described in the following
taxonomy. How this information is to be trusted (e.g., the
device may send compromised data) is not in the scope of
this paper, but will be part of our future work.

Before a detailed description on security levels will be
made (see Section III-B), a mobile security taxonomy clas-
sifies the security domain.

A. Mobile Security Taxonomy

Figure 2 illustrates which properties have to be considered
for mobile security devices into the categories: user, mobile
device, communication channel, and backend.

Figure 2. Mobile Security Taxonomy Overview

1) User: The user classification is targeted at the user
of a mobile device. The primary function is to determine
whether or not an authorized user is using the device. Mobile
devices are inherently more prone to theft or unauthorized
access because of their portability. Knowing that the owner
or at least an authorized user is using the device is therefore
crucial, when allowing access to sensitive data.

The second function is to evaluate used authentication
mechanisms. For example, having no other authentication
mechanisms in place apart from entering a PIN at device
startup is very bad. There is no way to distinguish between

an authorized user and for instance a thief. If there are
other supported mechanisms like biometric identification in
use, the user is more trustable, because of the stronger
authentication.

Information which is used to evaluate the trustworthiness
of a user and therefore assign a security level can be
technical and non-technical:

Technical Information: These kinds of classification
characteristics are strongly related to device and mobile
operating software properties, especially supported authen-
tication mechanisms.

The most simple is the support and usage of user-
name/password combinations for additional user authentica-
tion. Most current mobile operating systems support at least
authentication via an user-defined password.

Another way to enhance authentication is to use one-
time passwords, which are generated on demand. These
passwords are usually generated using special devices which
are synchronized (based on the current time) with an authen-
tication service. Requiring the user to be in possession of
such a device reduces the risk the mobile device being used
unauthorized. Of course, it can happen that both devices get
stolen.

Similar to one-time password generators are dongles.
Dongles are special devices linked to the mobile phone. By
monitoring the proximity of the dongle, a mobile device can
be locked and access denied until proximity is re-established.

A more sophisticated technical information is the support
of biometric authentication by the mobile device. Devices
which posses biometric scanners can achieve a better rating
in user classification, assuming the biometric scanner and
related software is tamper-proof.

Another way to gather information for user classification
characteristics is to monitor location-related information.
Many mobile devices have integrated GPS sensors. By
tracking the location of a device and comparing it to a
database such as an employee’s schedule it could be detected
whether it got stolen or not. Of course, GPS location and
SSID are not 100% accurate, and further information is
required.

Another way to identify a user is to make use of im-
plicit authentication. Implicit authentication uses keystroke
analysis and user action analysis to identify a user. In [17]
a system is described which uses the analysis of typing
patterns for theft detection.

Non-technical Information: Non-technical information
is collected from internal company sources and usually
contains information about the organizational structure. Hi-
erarchical information can be used to classify users. For
example temporary employees are usually less trustworthy
than permanent ones. Management personnel might be more
trustworthy than others and thus are allowed to access more
sensitive data and services. Information about employees
like the length of the affiliation with the company, profes-

161Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 174 / 282

sional trainings (e.g., mobile security awareness trainings)
taken, can also be used to classify users. These kinds of
information can be used to classify users as well as in
downstream access control systems.

The combination of different characteristics, technical as
well as non-technical ones, enables a more accurate picture
of the person using the device.

2) Mobile Device: Security classification of devices is
used to evaluate the security and trustworthiness of mobile
devices from a technical point of view.

Configuration Monitoring: The configuration of mobile
devices includes operating system versions, variants and
patch levels as well as information about installed 3rd party
apps. Using this information, which is usually supplied by
mobile device management systems, it is possible to identify
security risks, e.g. non-up-to-date software. An up-to-date
system reduces the risks of security vulnerabilities. If there
are serious security issues in older software versions of a
mobile device a classification in higher security levels could
be prohibited.

Device Properties: Mobile devices differ in their hard-
ware configuration. Those features can make a difference in
the security of a device, therefore the support and use of such
device capabilities is also a factor in device classification.
Such device properties include smart card support, which
can be used to store digital certificates for authentication
purposes, hardware implemented kill pills, for remotely wip-
ing mobile devices, hardware supported encryption, which
allows secure storage on mobile devices without putting too
much of a burden on the CPU and biometric sensors, which
can be used to realize secure and trustworthy authentication.

In the future, virtualization support on mobile devices will
be a hot topic in terms of security. With virtualization build-
ing distinctly separated environments for parallel personal
and business usage of the same device will be possible.
This will improve security while handling corporate data
and services on mobile devices.

Another characteristic is the mobile device operating
systems. iOS and Android, for example, each support dif-
ferent security features and implement them differently. For
example the implementation of process isolation or data
encryption is done differently on those platforms.

Runtime Information: Runtime information includes
collected information about current and historical resource
utilization, like CPU load, memory utilization or battery uti-
lization. Using this information, malware could be detected.
Additionally, currently running processes and background
services should be monitored. This information is sent to
the proxy in regular intervals and is accounted for in device
security evaluation.

The proxy can be used to collect additional information
for security analysis. Network traffic, regardless if it is
internal traffic to the corporate intranet or public traffic to the
Internet, flows through the cloud-based proxy. This allows

for traffic analysis tools to be used. By leveraging deep
packet inspection for example, suspicious traffic generated
by bots or trojans which communicate with their control
instances, can be detected.

The proxy can also be used to create profiles of which
network protocols are commonly used and how they are
used (e.g., which service is usually used). Deviation from
those profiles can be a sign of malware infection.

The proxy is the primary interface of the mobile device
to security services like anti virus engines in the cloud. In
case those services detect a potential threat, the proxy is
informed and uses this information during device security
evaluation. One special case is proxy connectivity itself and
how it affects device security. It is very likely that there are
periods of time where there is no connectivity between proxy
and mobile device. This can be because of a GSM/UMTS
dead zone or a lengthy stay abroad without data roaming.
In these cases the duration between the last connection and
the first one after that, must be considered during evaluation,
mainly because the mobile device could have been tampered
with. Usually, after such a period a mobile device should be
regarded as untrusted until a full security check has been
performed (either manually or by an automated process).

3) Communication Channel: The communication chan-
nel is a critical part of the security evaluation and the
resulting security level classification. It is usually not under
control of the company but the mobile network operator
(MNO). The MNO’s data services are used to connect
to company intranets and the Internet. But there are also
other communication channels (e.g., public access points)
which need to be considered in a security evaluation, when
accessing company data and services over such channels.
The following characteristics have to be paid attention to:

1) MNO data services are generally not under the com-
pany’s control, thus they are to be regarded as inse-
cure. Connectivity to the proxy is established via the
Internet using GSM or UMTS. The actual technical
details of the network are hidden and usually there
is no detailed technical information about the infras-
tructure and used technologies (e.g., whether and how
NAT is used to connect mobile devices to the Internet)
available to the MNO’s customer.

2) Public access points like WLAN in public facilities are
also not under the control of the company. Therefore,
this communication channel must also be considered
as insecure and untrusted.

3) Known access points include access points where there
is technical information available and transparency is
better than in public access points (e.g., the corporate
WLAN infrastructure of a partner company). Depend-
ing on the actually available information, a better
communication security classification is possible when
using such access points.

4) Internal access points are under full control by the

162Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 175 / 282

company. There is full transparency about the tech-
nical infrastructure, technologies in use and imple-
mented security measures. Using such access points
allows maximum security.

Examining the access point alone is not a sufficient means
of security measurement of the communication channel. In
fact, the whole channel between mobile device, its access
point, stations in between and the proxy has to be taken
into consideration. This is especially the case, if a direct
connection to proxy is not possible and the connection has
to be established via the internet. Analyzing this problem
further is out of the scope of this paper. Therefore, an end-
to-end encrypted communication channel between mobile
device and the proxy is assumed. Examining the security
properties of stations in between becomes unnecessary in
this case, if the end-to-end encryption is secure and reliable.
End-to-end Encryption can be implemented in two ways:

1) VPNs are used to encrypt communication between
communication partners. Using VPNs to encrypt traf-
fic between mobile devices and their proxies provides
maximum security, even if inherently or possibly in-
secure access points are used (see access points 1-3).
In this case, communication security is depending on
the security of the deployed VPN technology.

2) Message encryption is an alternative to VPNs. In this
case not the whole communication is encrypted, but
only relevant messages.

A special case is unencrypted communication between
mobile device and proxy using an internal access point. This
is the only case where it is possible to pass on using VPN
or message encryption and still get a high communication
security classification. Nevertheless, this is only possible
if the communication channel between proxy and mobile
device is fully transparent to the company and secure.

4) Backend (cloud): The backend security of the infras-
tructure, the cloud, with the proxy and the access control
module, must be considered as well, but are traditional data
center security issues and will not be considered in this
paper.

Continuous evaluation of the mobile system based on the
taxonomy, security levels can be assigned to each category
which is later used for access control.

B. Security Levels

The aforementioned taxonomy influences the access con-
trol on company data and services in the cloud or the
Internet. Based on continuous evaluation of the particular
mobile system parts, security levels (see Figure 3) are
assigned and integrated with the classic access control
systems (e.g., RBAC, see section IV for further details)
to allow fine grained protection of services and data. The
overall security level of the mobile system is determined
as following: For each part of the mobile system a security
Level Lnsystem part where n = 0, 1, 2, 3, 4 is identified. The

total mobile system security Level (Lnsystem) is calculated
by the minimum of all three single security levels, as stated
in the following formula:

Lnsystem = min(Lnuser, Lndevice, Lncommunication)

with n = 0, 1, 2, 3, 4 levels of security.
The security levels either grant broader access rights or

deny them. The main decisions, which need to be made are:
• Is the user of the mobile device authentic (has he been

sufficiently authenticated)?
• Does the user have access to the requested data and

services?
• Does the used mobile device pose a security risk?
• Is the communication channel between device and

proxy or rather the requested data and services suffi-
ciently secured?

In the following, the security level state diagram, tran-
sitions between security levels as well as mechanisms for
applying security levels on access control decisions are
described.

1) Security Level Definition: The following section de-
scribes the five identified security levels (see Figure 3),
ordered by ascending security and trustability.

Figure 3. Security Levels

Level 0 (Critical):
The Level 0 security level is the lowest, which can be
assigned by the classification process. In this case a highly
critical security incident has occurred. If the user classifica-
tion signals theft or loss of a device, it automatically gets
assigned security Level 0. Access to the company’s network,
services and data is immediately and completely blocked.
Further, the removal of all data on the device gets initiated
(via a remote wipe of the device), as long there is still
connectivity between the proxy and the device. Depending
on the company’s security policy for lost devices an agent
on the device can either be directed to make the device

163Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 176 / 282

useless (blocking all communication channels) or to switch
into surveillance mode, where GPS location, camera and
video information is transmitted to the company for further
investigation. This information can be used to to try to re-
obtain the device or to initiate legal countermeasures. What
has to be done, has to be defined in the company’s security
policy.

Level 1 (Severe):
The Level 1 security level presumes that the device is
in possession of the legitimate owner. Theft or loss can
be counted out. Anyhow, there still is a critical security
incident. Usually, such incidents will be signaled by security
services in the cloud. For example the anti virus system flags
the device as compromised because of a detected malware
infection or the intrusion detection system throws an alert
because of an attempted or succeeded intrusion. Thus, the
security classification of the device has failed. A failed
security classification means that there is an incident, which
is clearly critical. A user installing an unknown app on his
device does not per se qualify for Level 1 assignment. Not
until the app has been identified as a threat. Just like in Level
0 connectivity to data and services is severely limited and
the device is cleaned.

Level 2 (Baseline):
The security level 2 is also known as baseline. User, de-
vice and communication classification have not detected a
critical problem. All basic services are available and there
is connectivity between the mobile device and its proxy
in the cloud, but access to data and services is limited,
because the full security and trustability of the device cannot
be warranted. This can be because the user did not use
a sufficiently strong authentication mechanism or there are
additional unknown apps installed, which could potentially
be dangerous. Another reason for Level 2 assignment is
connecting via a public access point without sufficient
additional security enhancements, like using a VPN. In Level
2 baseline services like e-mail, calendar and access to non-
classified documents are enabled.

Level 3 (Secure):
For accessing confidential services and documents, an el-
evated security level is required. Level 3 builds upon the
properties of Level 2, but requires additional security re-
quirements. This comprises the usage of a VPN, the policy
conform configuration of a device (e.g., only explicitly
approved apps installed). Of course, the user has to be
authenticated using a sufficiently strong mechanism (e.g.,
user and password combination).

Level 4 (Highly Secure):
The most restrictive security level is Level 4. It can only
be assigned if classification attests full compliance to the
security policy and additional security mechanisms are used.
Such additional mechanisms can be the authentication of the
user using biometric information, hardware supported full
device encryption and connecting to the network using an

internal access point. Only Level 4 allows access to highly
confidential internal services and data.

2) Security Level Transitions: The assignment of a se-
curity level does not happen linearly. In the following, the
transitions between security levels are described:

• L0 → L2 and upwards
This transition describes the case, where a stolen or
otherwise lost device gets regained. In this case, the
device is not to be trusted and therefore, has to be
classified as insecure and compromised. A full manual
audit or a full reset by an administrator is needed for it
to be assigned Level 2 or above. This evaluation process
must not be automated, but be conducted by a qualified
administrator.

• L1 → L2
A compromised device has to be audited manually.
Alternatively a full reset is also possible to reenter
a secure state. This process must also be conducted
manually by a qualified administrator.

• L2 ↔ L3 ↔ L4
Transitions between these three security levels can
happen automatically. For an assignment to the next
higher security level, its security requirements must be
fulfilled. For example deinstalling any not explicitly
approved apps and connecting to the company’s VPN
can lead to the automatic upgrade from security Level
2 to 3.

• L2, L3, L4 → L1
This downgrade usually happens when security services
detect critical problem like a virus infection or an
intrusion attempt. In this case, the user is informed
about the incident and the Level 1 is immediately
assigned.

• L* → L0
Level 0 is assigned if a theft or loss of a device is
detected.

IV. ACCESS CONTROL

The aforementioned classification of user, mobile device
and communication channels, resulting in a security level
of the overall system, has to be integrated into access
control systems for services and data. This way classic
access control can be enhanced with secure access control
for mobile devices. The following section describes two
approaches for integrating the security levels into the widely
used role based access control model (RBAC) [18].

A. Role-based Access Control

Access control models serve the purpose of limiting
access rights of authenticated subjects on certain objects.
Subjects can be users, or programs which act on behalf of
a user. All access attempts in a system are monitored and
evaluated against a rule set of the access control model. This
rule set describes which subjects are allowed to perform

164Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 177 / 282

which actions on objects protected by the system. One im-
portant aspect of classic access control models, like RBAC,
is the distinction between authentication of a subject and
the actual access control. Access control systems assume
that a subject is properly authenticated before a decision
about the authorization of an action is made [19]. Clas-
sic access control models are discretionary access control
(DAC), mandatory access control (MAC) and role-based
access control (RBAC). While DAC and MAC are important
models, RBAC seems to be the more interesting model for
the further discussion of integrating security levels. More
modern approaches like the usage control model (UCON)
have yet to prove their importance in real world systems.
The fact that RBAC provides an abstraction of real world
organizational structures, its wide adoption in software sys-
tems and the possibility to implement DAC as wells as MAC
models simply by adjusting the RBAC model [20], made it
the candidate of choice for further discussion.

The role-based access control model has been unified in
2000, based on the works of Ferraiolo, Kuhn and Sandhu
and formally adopted as an ANSI Standard in 2004 [21].
This ANSI standard serves as a basis for further analysis.
The basic elements of RBAC are users, roles, sessions
and permissions. Users of a system are assigned one or
more roles which they can assume. Depending on the role,
access to subjects is either granted or denied. Users are
assigned to roles using user assignments. Roles describe
a function within an organization and the rights and obli-
gations associated with it. Permissions describe operations
which can be executed on RBAC-protected objects [21]. This
is the foundation of the core RBAC model. Furthermore,
there are some extensions to this core model which make
it more flexible. One of these extensions is the RBAC 2
model, also called constrained RBAC. With this model it
is possible to implement separation of duty concepts into
the RBAC model. So called constraints allow a more fine-
grained control over the RBAC model.

Despite of the RBAC model already being released as
an ANSI standard, there is still research being conducted.
Neumann and Strembeck [22] describe an extension to
the RBAC 2 model, called context constraints. This type
of constraints is used to evaluate predefined conditions at
access control decision time. They allow the integration of
RBAC model external conditions into the system. Thus,
a context condition must be met, before an operation to
which it is linked can be performed. One or more context
conditions, which evaluate values of context attributes, form
a context constraint. Apart from the roles and operations
defined in the RBAC model, an unmet context constraint
can prohibit the execution of an operation, which would
otherwise be perfectly valid without context constraints. In
comparison to the constrained RBAC model, Neumann and
Strembeck enhance the concept of constraints in a way
that makes them more generally applicable, especially the

possibility of evaluating information from external databases
(e.g., literally an external company database which contains
employee records). An example for a context constraint is
that users are allowed to access a certain document only in
between 8am and 6pm, regardless of them assuming a role
which has enough rights to do so or not.

1) RBAC Security Level Integration: Following the basics
of the classic RBAC model this section will describe two
ways of integrating security levels for mobile devices in
RBAC. The first approach is based on extending the RBAC
model with previously described context constraints while
the second approach uses a two phase flow of access control.

Integration by RBAC Extension: This approach inte-
grates security level requirements into RBAC using context
constraints (see Figure 4 (S)ecurity (L)evel Check = Context
Constraints). This means in addition to needing a specific
role for accessing certain objects, a certain minimum secu-
rity level is also required. The minimum security level is a
context condition and the currently applied security level for
a device is a context attribute. Together they form a context
constraint which is bound to an operation. Before an actual
access decision, based on the user, his role and the object,
is made the context constraint is evaluated. If and only if
the context constraint is met, the access control decision is
made. During evaluation of the context condition, the current
security level is pulled from the proxy (see Figure 4 step 3).
The proxy is always informed about the currently applied
security level. Is the current security level (context attribute)
equal or higher than that defined in the context constraint of
the object, the evaluation of the access control decision may
continue. If the current security level is less than required,
no further evaluation takes place and access is blocked.

Figure 4. RBAC Security Level Integration - RBAC Extension

The main advantage of this approach is the tight inte-
gration of the security level concept into the RBAC model.
But, there are also difficulties like the reduced flexibility
by having to always integrate security levels into all access
control systems which are in use. The pull mechanism during

165Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 178 / 282

the context constraint evaluation can also be a problem.
As previously described, the assignment of a security level
can change abruptly because of the continuous security
evaluation of the user, device and communication channel.
Therefore, with each access control decision, the current
security level needs to be determined. This can happen quite
often and thus degrade performance significantly depending
on the deployment model (e.g., access control decision point
needs to communicate with the proxy via a network).

Integration by Two Phase Flow: The two phase flow
splits security level evaluation and actual access control
decision into two phases. Figure 5 illustrates this concept.
The proxy is the central component for accessing any
services on the intranet and the internet and also stores
the current security level assignment. Because of this it can
easily be used to control security level evaluation. Every
object (e.g., data object in Figure 5) possesses a minimum
security level, which needs to be matched to gain access via
a mobile device. This information is stored in the access
control system. Usually, this information is very static and
does not change too often. The proxy stores a copy of these
object/minimum level mappings. If the required minimum
level is changed, the updated mapping is pushed to the proxy.
Now, if a mobile device is requesting access to access control
protected data or services, the proxy first evaluates whether
the minimum security level requirement is met or not. If it
is, the request passes for further evaluation by the access
control system, if not the request is refused by the proxy.

Figure 5. RBAC Security Level Integration - Two Phase Flow

This approach has the advantage of being access control
model agnostic. It actually does not matter which system
is used for access control, as long as object’s requirements
are available to the proxy. Also, the proxy can be used to
terminate requests even before they reach the access control
system located behind it. Pushing object requirements on
update or in regular intervals also greatly reduces round trips
during fetching of the current security level assignment. A
problem of this approach is having to keep the same infor-
mation (minimum requirements for objects) synchronized in

two separate locations.
Both approaches have advantages and disadvantages.

Higher flexibility, compatibility and a better communication
flow are advantages of the two phase approach.

V. EVALUATION BY USE CASE

In this section an evaluation of the proposed security level
and classification concept is performed by using use cases
for a better illustration. The general context of these use
cases is the usage of mobile devices in a company. Sensitive
documents may be stored on mobile devices. There is also
an IT security policy in place, which sets the basic rules
for using mobile devices (e.g., VPN, user authentication
mechanisms, trusted software packages et cetera). Table I
presents a selected overview of the most interesting use
cases. The first column is used to describe preconditions
(the state of security classification before a specific incident
happens). The second column does the same for postcon-
ditions (the state of security classification after a specific
incident happened). The overall security level classification
is evaluated by choosing the current minimum security level
of user, device or communication. Certain requirements for
reaching a specific security level, e.g. having installed only
known apps for reaching level 3 in device classification, is
subject to concrete company security policies. Use cases
1 to 3 describe typical scenarios where the security level
is lowered because of a security incident detected by the
described system, whereas use cases 4 to 6 show how
security level upgrades work.

The use cases show, how the security level concept for
mobile devices allows to dynamically and continuously
adjust their security classification. This allows a more con-
trolled and more secure access of protected data as well as
the overall improvement of the security of mobile devices
in an enterprise environment.

VI. CONCLUSION AND FUTURE WORK

In this paper, we demonstrated why security of mobile
devices, like smartphones and tablets, in enterprise environ-
ments will be an important issue in the next couple of years.
We also proposed a framework based on security levels
and classification of user, device and communication which
could improve security when handling confidential company
data on such devices. Based on an ongoing classification
security levels are applied and are evaluated during access
on protected data. The integration of these two concepts
into the well known RBAC model was also an important
issue, discussed in this paper. We provide two possible
solutions: one, which integrates tightly with the RBAC
model using an extension called context constraints and
another approach based on two-phase evaluation. Two-phase
evaluation allows the decoupling of classic access control
system and additional access control for mobile devices. At

166Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 179 / 282

Table I
EVALUATION OF THE SECURITY LEVEL CONCEPT FOR MOBILE DEVICES USING USE CASES

No. Pre-Incident Security
Level

Post-Incident
Security Level

Use Case Description

1 min(L3, L3, L3) = L3 min(L0, L3, L3) = L0 The owner of the device is authenticated using PIN and additional username/password.
His device adheres to general policies but has a game app installed, which is known to
not contain malware but could lead to privacy problems. The connection to the proxy
is established via UMTS using the company’s VPN. Now, the device is stolen, while
the owner is distracted. The thief fails three times to enter username/password correctly
upon unlocking the screen. The mobile device agent reports this incident to the proxy
which starts countermeasures according to the security policy for stolen devices.

2 min(L3, L4, L3) = L3 min(L3, L1, L3) = L1 The owner of the device is authenticated using PIN and additional username/password.
His device configuration adheres strictly to the policies in place. Now, the user installs a
new app from the app store. This app is scanned for malware in the cloud. The scanning
engine detects a trojan inside the app and reports this incident to the proxy. The proxy
starts countermeasures to protect the company’s network.

3 min(L3, L4, L3) = L3 min(L3, L2, L3) = L2 Preconditions are the same as in the previous use case. The user installs an unknown
app. The app is checked for malware without a positive result. To protect the company’s
data and network from a potential 0day-attack the security level is lowered.

4 min(L3, L4, L4) = L3 min(L4, L4, L4) = L4 The user is authenticated using username/password. The device’s configuration matches
security policy 100%. The connection to the proxy is established using the company’s
internal WLAN and VPN. Maximum security is guaranteed and there are no restrictions
due to mobile access. The user now needs access to documents which are highly
confidential an therefore require security level 4. The user now chooses to authenticate
himself with additional biometric information using the fingerprint scanner. User
classification is now upgraded to level 4, which enables an overall classification of
4, allowing access to the protected documents.

5 min(L3, L2, L3) = L2 min(L3, L3, L3) = L3 The user is authenticated using username/password. The device’s configuration adheres
to general security policy, but an unknown app is installed. The user now needs access to
level 3 protected services. To achieve an upgrade, the user uninstalls the app. The proxy
now registers that the unknown was removed and upgrades the device classification to
level 3, resulting in an overall level 3 classification.

6 min(L4, L4, L2) = L2 min(L4, L4, L3) = L3 The user is authenticated using additional biometric information. The device’s configura-
tion matches security policy 100%. The connection to the proxy however is done using
a public access point without using the company’s VPN only relying on application
based communication encryption (e.g. using IMAPS, HTTPS). The user needs access
to internal documents requiring him to be classified as level 3. Therefore he establishes
a secure VPN connection, which grants communication classification upgrade to level
3, resulting in an overall classification of 3.

last, we provide an evaluation of our approach which is used
to demonstrate the feasibility using use cases.

In our future work we will concentrate on the process
of securely collecting data (e.g. with the help of trusted
infrastructure) about all the participants in our proposed
framework and using that data for security classification.
The proxy as well as data collected directly on the devices
and the trustworthiness of the data will be in the center of
our future examination. Another problem to solve will be
data privacy protection, because of the very restrictive laws
existing in Germany.

REFERENCES

[1] IBM Corporation, “IBM X-Force 2011 Mid-year Trend
and Risk Report,” https://www14.software.ibm.com/webapp/
iwm/web/signup.do?source=swg-spsm-tiv-sec-wp&S PKG=
IBM-X-Force-2011-Mid-year, 2011, [retrieved: May, 2012].

[2] Android Developers, “Android Platform Versions - Current
Distribution,” http://developer.android.com/resources/
dashboard/platform-versions.html, 2012, [retrieved: May,
2012].

[3] B.-G. Chun and P. Maniatis, “Augmented smartphone appli-
cations through clone cloud execution,” in Proceedings of
the 12th conference on Hot topics in operating systems, ser.
HotOS’09. Berkeley, CA, USA: USENIX Association, 2009,
pp. 8–8.

[4] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman,
S. Saroiu, R. Chandra, and P. Bahl, “Maui: making smart-
phones last longer with code offload,” in Proceedings of the
8th international conference on Mobile systems, applications,
and services, ser. MobiSys ’10. New York, NY, USA: ACM,
2010, pp. 49–62.

[5] J. Oberheide, K. Veeraraghavan, E. Cooke, J. Flinn, and
F. Jahanian, “Virtualized in-cloud security services for mobile
devices,” in Proceedings of the First Workshop on Virtualiza-
tion in Mobile Computing, ser. MobiVirt ’08. New York,
NY, USA: ACM, 2008, pp. 31–35.

[6] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos,
“Paranoid android: versatile protection for smartphones,” in
Proceedings of the 26th Annual Computer Security Applica-
tions Conference, ser. ACSAC ’10. New York, NY, USA:
ACM, 2010, pp. 347–356.

[7] S. A. Zonouz, K. R. Joshi, and W. H. Sanders, “Cost-aware
systemwide intrusion defense via online forensics and on-

167Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 180 / 282

demand detector deployment,” in Proceedings of the 3rd ACM
workshop on Assurable and usable security configuration, ser.
SafeConfig ’10. New York, NY, USA: ACM, 2010, pp. 71–
74.

[8] A. Houmansadr, S. Zonouz, and R. Berthier, “A cloud-based
intrusion detection and response system for mobile phones,”
in Dependable Systems and Networks Workshops (DSN-W),
2011 IEEE/IFIP 41st International Conference on, june 2011,
pp. 31 –32.

[9] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss,
“Andromaly: a behavioral malware detection framework for
android devices,” Journal of Intelligent Information Systems,
pp. 1–30, 2011.

[10] A.-D. Schmidt, R. Bye, H.-G. Schmidt, J. Clausen, O. Kiraz,
K. Yuksel, S. Camtepe, and S. Albayrak, “Static analysis of
executables for collaborative malware detection on android,”
in Communications, 2009. ICC ’09. IEEE International Con-
ference on, june 2009, pp. 1 –5.

[11] A.-D. Schmidt, F. Peters, F. Lamour, and S. Albayrak,
“Monitoring smartphones for anomaly detection,” in Pro-
ceedings of the 1st international conference on MOBILe
Wireless MiddleWARE, Operating Systems, and Applications,
ser. MOBILWARE ’08. ICST, Brussels, Belgium, Belgium:
ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), 2007, pp. 40:1–40:6.

[12] A. Bose, X. Hu, K. G. Shin, and T. Park, “Behavioral de-
tection of malware on mobile handsets,” in Proceeding of the
6th international conference on Mobile systems, applications,
and services, ser. MobiSys ’08. New York, NY, USA: ACM,
2008, pp. 225–238.

[13] H. Kim, J. Smith, and K. G. Shin, “Detecting energy-greedy
anomalies and mobile malware variants,” in Proceeding of the
6th international conference on Mobile systems, applications,
and services, ser. MobiSys ’08. New York, NY, USA: ACM,
2008, pp. 239–252.

[14] T. Martin, M. Hsiao, D. Ha, and J. Krishnaswami, “Denial-
of-service attacks on battery-powered mobile computers,” in
Pervasive Computing and Communications, 2004. PerCom
2004. Proceedings of the Second IEEE Annual Conference
on, march 2004, pp. 309 – 318.

[15] R. Racic, D. Ma, and H. Chen, “Exploiting mms vulner-
abilities to stealthily exhaust mobile phone’s battery,” in
Securecomm and Workshops, 2006, 28 2006-sept. 1 2006, pp.
1 –10.

[16] D. Nash, T. Martin, D. Ha, and M. Hsiao, “Towards an
intrusion detection system for battery exhaustion attacks on
mobile computing devices,” in Pervasive Computing and
Communications Workshops, 2005. PerCom 2005 Workshops.
Third IEEE International Conference on, march 2005, pp. 141
– 145.

[17] A. Gupta, D. Gupta, and N. Gupta, “Infosec-mobcop -
framework for theft detection and data security on mobile
computing devices,” in Contemporary Computing, ser. Com-
munications in Computer and Information Science, S. Ranka,
S. Aluru, R. Buyya, Y.-C. Chung, S. Dua, A. Grama, S. K. S.
Gupta, R. Kumar, and V. V. Phoha, Eds. Springer Berlin
Heidelberg, 2009, vol. 40, pp. 637–648.

[18] D. Ferraiolo and R. Kuhn, “Role-based access control,” in
In 15th NIST-NCSC National Computer Security Conference,
1992, pp. 554–563.

[19] R. S. Sandhu and P. Samarati, “Access control: Principles
and practice,” IEEE Communications Magazine, vol. 32, pp.
40–48, 1994.

[20] S. Osborn, R. Sandhu, and Q. Munawer, “Configuring role-
based access control to enforce mandatory and discretionary
access control policies,” ACM Trans. Inf. Syst. Secur., vol. 3,
pp. 85–106, May 2000.

[21] American National Standard Institue Inc., “American National
Standard for Information Technology - Role Based Ac-
cess Control,” http://profsandhu.com/journals/tissec/ANSI+
INCITS+359-2004.pdf, 2004, [retrieved: May, 2012].

[22] G. Neumann and M. Strembeck, “An Approach to Engineer
and Enforce Context Constraints in an RBAC Environment,”
in In Proc. of the 8th ACM Symposium on Access Control
Models and Technologies (SACMAT). ACM Press, 2003,
pp. 65–79.

168Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 181 / 282

Maximizing Utilization in Private IaaS Clouds with Heterogenous Load

Tomáš Vondra, Jan Šedivý
Dept. of Cybernetics, Faculty of Electrical Engineering, Czech Technical University

Technická 2, 166 27
Prague, Czech Republic

vondrto6@fel.cvut.cz, sedivja2@fel.cvut.cz

Abstract—This document presents ongoing work on creating a
computing system that can run two types of workloads on a
private cloud computing cluster, namely web servers and batch
computing jobs, in a way that would maximize utilization of
the computing infrastructure. The idea stems from the
experience with the Eucalyptus private cloud system, which is
used for cloud research at the Dept. of Cybernetics. This cloud
lets researchers use spare computing power of lab computers
with the help of our in-house queue engine called Cloud
Gunther. This application improves upon current practices of
running batch computations in the cloud by integrating control
of virtual machine provisioning within the job scheduler. In
contrast to other similar systems, it was built with the capacity
restrictions of private clouds in mind. The Eucalyptus system
has also been evaluated for web server use, and the possibility
of dynamically changing the number of servers depending on
user demand, which changes throughout the day, has been
validated. Although there are already tools for running
interactive services in the cloud and tools for batch workloads,
there is no tool that would be able to efficiently distribute
resources between these two in private cloud computing
environments. Therefore, it is difficult for the owners of
private clouds to fully exploit the potential of running
heterogenous load while keeping the utilization of the servers
at optimal levels. The Cloud Gunther application will be
modified to monitor the resource consumption of interactive
traffic in time and use that information to efficiently fill the
remaining capacity with its batch jobs, therefore raising the
utilization of the cluster without disrupting interactive traffic.

Keywords-Cloud Computing; Automatic Scaling; Job

Scheduling; Real-time Infrastucture.

I. INTRODUCTION

According to Gartner [1], private cloud computing is
currently at the top of the technology hype; but, its
popularity is bound to fall due to general disillusionment.

Why? While the theoretical advantages of cloud
computing are widely known – private clouds build on
the foundations of virtualization technology and add
automation, which should result in savings on
administration while improving availability, they provide
elasticity, which means that an application deployed to
the cloud can dynamically change the amount of
resources it uses, which is connected to agility, meaning
that the infrastructure can be used for multiple purposes
depending on current needs. Lastly, the cloud should

provide self-service, so that the customer can provision
his infrastructure at will, and pay-per-use, so he will pay
exactly for what he consumed.

The problem is that not all of these features are
present in current products that are advertised as private
clouds. Specifically, this document will deal with the
problem of infrastructure agility.

A private cloud can be used for multiple tasks, which
all draw resources from a common pool. This
heterogenous load can basically be broken down into two
parts, interactive processes and batch processes. An
example of the first are web applications, which are
probably the major way of interactive remote computer
use nowadays, the second could be related to scientific
computations or, in the corporate world, data mining.

When building a data center, which of course includes
private clouds, the investor will probably want to ensure
that it is utilized as much as possible. The private cloud
can help achieve that, but not when the entire load is
interactive. This is due to the fact that interactive load
depends on user activity, which varies throughout the
day, as seen in Figure 1.

Figure 1. Daily load graph of an e-business website [2]

In our opinion, the only way to increase the utilization
of a private cloud is to introduce non-interactive tasks
that will fill in the white parts of the graph, i.e., capacity
left unused by interactive traffic (which of course needs
to have priority over batch jobs).

HPC (High Performance Computing) tasks are
traditionally the domain of grid computing. Lately,
however, they also began to find their way into the cloud.
Examples may be Google’s data mining efforts in their
private cloud or Amazon’s Elastic MapReduce public
service [16]. The grid also has the disadvantage that it is
only usable for batch and parallel jobs, not interactive
use.

169Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 182 / 282

Currently, there is not much support for running of
batch jobs on private clouds. The well known scheduling
engines Condor [17] and SGE (Sun Grid engine) [18]
both claim Amazon EC2 (Elastic Compute Cloud) [19]
compatibility, they however cannot control the cloud
directly, they only use resources provisioned by other
means (See Section II.). (SGE seems to be able to control
cloud instances in a commercial fork by Univa, though
[3].)

That is why the Cloud Gunther project was started. It
is a web application that can run batch parallel and
pseudoparallel jobs on the Eucalyptus private cloud [4].
The program does not only run tasks from its queue; it
can also manage the VM (virtual machine) instances the
tasks are to be run on.

What the application currently lacks is support for
advanced queuing schemes (only Priority FCFS (First
Come First Served) has been implemented). Further
work will include integration of a better queuing
discipline, which will be capable of maximizing
utilization of the cloud computing cluster by reordering
the tasks as to reduce the likelihood of one task waiting
for others to complete, while there are unused resources
in the cluster, effectively creating a workflow of tasks (see
Section IV).

The scheduler will be fed with data about the average
amount of free resources left on the cluster by interactive
processes. This will ensure that the cluster is always fully
loaded, but the interactive load is never starved for
resources.

This document has five sections. After Section I,
Introduction, comes Section II, Related Work, which will
present the state of the art in the area of grid schedulers
and similar cloud systems. Section III, Completed Work,
summarizes progress done in cloud research at the Dept.
of Cybernetics, mainly the Cloud Gunther job scheduler.
Section IV, Future Work, outlines the plans for
expansion of the scheduler, mainly to accommodate
heterogenous load on the cloud computing cluster.
Section V, Conclusion, ends the paper.

II. RELATED WORK

As already stated, the most notable job control
engines in use nowadays are probably SGE [18] and
Condor [17]. These were developed for clusters and thus
lack the support of dynamic allocation and deallocation
of resources in cloud environments.

There are tools that can allocate a complete cluster
for these engines, for example StarCluster for SGE [9].
The drawback of this solution is that the management of
the cloud is split in two parts – the job scheduler, which
manages the instances currently made available to it (in
an optimal fashion, due to the experience in the grid
computing field), and the tool for provisioning the
instances, which is mostly manually controlled.

This is well illustrated in an article on Pandemic
Influenza Simulation on Condor [10]. The authors have
written a web application which would provision
computing resources from the Amazon cloud and add

them to the Condor resource pool. The job scheduler
could then run tasks on them. The decision on the
number of instances was however left to the users.

A similar approach is used in the SciCumulus
workflow management engine, which features adaptive
cloud-aware scheduling [11]. The scheduler can react to
the dynamic environment of the cloud, in which instances
can be randomly terminated or started, but does not
regulate their count by itself.

The Cloud Gunther does not have this drawback, as it
integrates job scheduling with instance provisioning. This
should guarantee that there is no unused time between
the provisioning of a compute resource and its utilization
by a task, and that the instances are terminated
immediately when they are no longer needed.

A direct competitor to Cloud Gunther is Cloud
Scheduler [13]. From the website, it seems to be a plug-in
for Condor which can manage VM provisioning for it.
Similarly to Cloud Gunther, it is fairly new and only
features FCFS queuing.

An older project of this sort is Nephele [14], which
focuses on real-time transfers of data streams between
jobs that form a workflow. It provisions different-sized
instances for each phase of the workflow. In this system,
the number and type of machines in a job are defined
upfront and all instances involved in a step must run at
once, so there is little space for optimization in the area of
resource availability and utilization.

Aside from cluster-oriented tools, desktop grid
systems are also reaching into the area of clouds. For
example, the Aneka platform [12] can combine resources
from statically allocated servers, unused desktop
computers and Amazon Spot instances. It can provision
the cloud instances when they are needed to satisfy job
deadlines. This system certainly seems more mature than
Cloud Gunther and has reached commercial availability.

None of these systems deals with the issue of resource
availability in private clouds and fully enjoy the benefits
of the illusion of infinite supply. To the best of our
knowledge, no one has yet dealt with the problem of
maximizing utilization of a cloud environment that is not
fully dedicated to HPC and where batch jobs would have
the status of “filler traffic”.

III. COMPLETED WORK

A. Eucalyptus

Eucalyptus [4] is the cloud platform that is used for
experiments at the Dept. of Cybernetics. It is an open-
source implementation of the Amazon EC2 industry
standard API (Application Programming Interface) [19].
It started as a research project at the University of
California and evolved to a commercial product.

It is a distributed system consisting of five
components. Those are the Node Controller (NC), which
is responsible of running virtual machines from images
obtained from the Walrus (Amazon S3 (Simple Storage
Service) implementation). Networking for several NCs is
managed by a Cluster Controller (CC), and the Cloud

170Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 183 / 282

Controller (CLC) exports all external APIs and manages
the cloud’s operations. The last component is the Storage
Controller (SC), which exports network volumes,
emulating the Amazon EBS (Elastic Block Store) service.
The architecture can be seen in Figure 2.

Figure 2. Eucalyptus architecture [4]

Our Eucalyptus setup consists of a server that hosts
the CLC, SC and Walrus components and is dedicated to
cloud experiments. The server manages 20 8-core Xeon
workstations, which are installed in two labs and 1/4 of
their capacity can be used for running VM instances
through Eucalyptus NCs. A second server, which is
primarily used to provide login and file services to
students and is physically closer to the labs, is used to
host Eucalyptus CC.

The cloud is used for several research projects at the
Cloud Computing Center research group [5]. Those are:

• Automatic deployment to PaaS (Platform as a
Service), a web application capable of automatic
deployment of popular CMS (Content
Management Systems) to PaaS.

• Effective scaling in private IaaS (Infrastructure
as a Service), a diploma thesis on adding
automatic scaling and load balancing support for
web applications in private clouds.

• Cloud Gunther, a web application that manages a
queue of batch computational jobs and runs them
on Amazon EC2 compatible clouds.

Aside from this installation of Eucalyptus, we also
have experience deploying the system in a corporate
environment. An evaluation has been carried out in
cooperation with the Czech company Centrum. The
project validated the possibility of deploying one of their
production applications as a machine image and scaling
the number of instances of this image depending on
current demand. A hardware load-balancer appliance
from A10 Networks was used in the experiment and the
number of instances was controlled manually as private
infrastructure clouds generally lack the autoscaling
capabilities of public clouds.

B. Cloud Gunther

While the Effective scaling in private IaaS project will
also be instrumental for further research, it is only just
starting. In contrast, the Master’s thesis on Cloud

Gunther has already been defended; the possibilities for
its further development are the main topic of this article.

The application is written in the Ruby on Rails
framework and offers both interactive and REST
(Representational State Transfer) access. It depends on
Apache with mod_passenger, MySQL and RabbitMQ for
operation.

It can control multiple Amazon EC2 [19] compatible
clouds. The queuing logic resides outside the MVC
(Model, View, Controller) scheme of Rails, but shares
database access with it. The communication scheme is on
Fig. 3.

Figure 3. Communication scheme in Cloud Gunther [6]

The Scheduler daemon contains the Priority FCFS
queuing discipline and is responsible for launching
instances and submitting their job details to the message
broker. The Agent on the instance then retrieves these
messages and launches the specified user algorithm with
the right parameters. It is capable of running multiple
jobs from the same user, thus saving the overhead of
instance setup and teardown.

The two other daemons are responsible for collecting
messages from the queue, which are sent by the
instances. The Instance Service serves to terminate
instances, which have run out of jobs to execute; the
Outputs daemon collects standard and error outputs of
user programs captured by the launching Agent. A
Monitoring daemon is yet to be implemented.

The web application itself fulfills the requirement of
multitenancy by providing standard user login
capabilities. The users can also be categorized into
groups, which have different priorities in the scheduler.

The cloud engine credentials are shared for each
cloud (for simpler cloud access via API and instance
management via SSH (Secure Shell)).

Each cloud engine has associated images for different
tasks, eg. image for Ruby algorithms, image for Java, etc.
The images are available to all users, however when
launched, each user will get his own instance.

The users can define their algorithm’s requirements,
i.e., which image the algorithm runs on and what
instance size it needs. There is also support for
management of different versions of the same algorithm.
They may only differ in command line parameters, or
each of them may have a binary program attached to it,
which will be uploaded to the instance before execution.

Individual computing tasks are then defined on top of
the algorithms. The task consists of input for the
algorithm, which is interpolated into its command line

171Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 184 / 282

with the use of macros, as well as the instance index and
total count of instances requested. These values are used
by pseudoparallel algorithms to identify the portion of
input data to operate on, and by parallel algorithms for
directing communication in message passing systems.

As one can see in Figure 4., the system is ready for
private clouds. It can extract the amount of free
resources from Eucalyptus and the scheduler takes it into
account when launching new instances.

Figure 4. Cloud Gunther – part of the New Task screen [6]

The Cloud Gunther has been tested on several real
workloads from other scientists. Those were production
planning optimization, recognition of patterns in images
and a multiagent simulation. They represented a
parameter sweep workflow, a pseudoparallel task and a
parallel task, respectively.

VM images for running the tasks were prepared in
cooperation with the users. Usability was verified by
having the users set up algorithm descriptions in the web
interface. The program then successfully provisioned the
desired number of VM instances, executed the algorithms
on them, collected the results and terminated the
instances.

The main drawback, from our point of view, is that
when there are jobs in the queue, the program consumes
all resources on the cluster.

This is not a problem in the experimental setting, but
in a production environment, which would be primarily
used for interactive traffic, and would attempt to exploit
the agility of cloud infrastructure to run batch jobs as
well, this would be unacceptable.

In such a setting, the interactive traffic needs to have
absolute priority. For example, if there was a need to
increase the number of web servers due to a spike in
demand, then in the current state, the capacity would be
blocked by Cloud Gunther until some of its tasks
finished. It would be possible to terminate them, but that
would cause loss of hours of work. A proactive solution to
the heterogenous load situation is needed.

IV. FUTURE WORK

Future work planned on the Cloud Gunther can be
split into two categories. First and more important is the
consideration of interactive load also present on the
cluster, see Subsection A. Second is integration of better
queuing disciplines to bring it up to par with existing
cluster management tools. Two ideas for that are
presented in Subsections B and C.

A. Estimation of the amount of interactive load in time

The interactive traffic needs to have priority over the
batch jobs. Therefore, once work is completed on the
general purpose autoscaler for private IaaS, it will be
possible to record the histogram of the number of
instances that the autoscaler is managing. From this
histogram, data on daily, weekly and monthly usage
patterns of the web servers may be extracted and used to
set the amount of free resources for Cloud Gunther.

The vision on the extraction method is that it will
employ machine learning techniques to approximate the
statistical distribution of the number of web server
instances at any hour of the year, probably breaking it
up to yearly, monthly, weekly and daily curves.

Instead of seeing only the current amount of free
resources in the cloud, the batch job scheduler could be
able to ask: “May I allocate 10 large instances to a
parallel job for the next 4 hours with 90% probability of
it not being killed?”

A similar problem exists in desktop grids. Article [15]
illustrates the collection of availability data from a
cluster of desktop machines and presents a simulation of
predictive scheduling using this data. The abstraction of
the cloud will shield away the availability of particular
machines or their groups, the only measured quantity
will be the amount of available VM slots of a certain size.

B. Out-of-order scheduling

This of course assumes a scheduler that will be
capable of using this information. Our vision is a queue
discipline that internally constructs a workflow out of
disparate tasks. The tasks, each with an associated
estimate of duration, will be reordered so that the
utilization of the cloud is maximized.

For example, when there is a job currently running
on 20 out of 40 slots and should finish in 2 hours, and
there is a 40 slot job in the queue, it should try to run
several smaller 2 hour jobs to fill the free space, but not
longer, since that would delay the large job.

These requirements almost exactly match the
definition of the Multiprocessor scheduling problem (see
[8]). Since this is a NP-hard class problem, solving it for
the whole queue would be costly. The most feasible
solution seems to come from the world of out-of-order
microprocessor architectures, which re-order
instructions to fully utilize all execution units, but only do
so with the first several instructions of the program. The
batch job scheduler will be likewise able to calculate the
exact solution with the first several jobs in the queue,
which will otherwise remain Priority FCFS.

172Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 185 / 282

C. Dynamic priorities

The estimation of job duration is a problem all for
itself. At first, the estimate could be done by the user.
Later, a system of dynamic priorities could be built on
top of that.

The priorities would act at the level of users,
penalizing them for wrong estimates, or better,
suspending allocation of resources to users whose tasks
have been running for longer time than the scheduler
thought.

Inspiration for this idea is taken from the description
of the Multilevel Feedback Queue scheduler used
historically in Linux [7]. However, the scheduler will set
priorities for users, not processes, and allocate VMs to
tasks, not jiffies to threads. It also will not have to be
real-time and preemptive, making the design simpler.

The scheduler’s estimate of process run time could be
based on the user estimates, but also on the previous run
time of processes from the same task or generally those
submitted by the same user for the same environment.
That would lead to another machine learning problem.

V. CONCLUSION

The cloud presents a platform that can join two
worlds that were previously separate – web servers and
HPC grids. The public cloud, which offers the illusion of
infinite supply of computing resources, will accommodate
all the average user’s needs, however, new resource
allocation problems arise in the resource-constrained
space of private clouds.

We have experience using private cloud computing
clusters both for running web services and batch
scientific computations. The challenge now is to join these
two into a unified platform.

Currently, Cloud Gunther, although not ready for
commercial deployment, already has some state of the art
features, like the automatic management of cloud
computing instances and a REST-compliant web
interface. It also differs from other similar tools by its
orientation towards private cloud computing clusters.

In the future, it could become a unique system for
managing batch computations in a cloud environment
primarily used for web serving, thus allowing to exploit
the dynamic nature of private cloud infrastructure and to
raise its overall utilization.

ACKNOWLEDGMENTS

Credit for the implementation of Cloud Gunther,
mainly the user friendly and cleanly written web
application goes to Josef Šín.

We thank the company Centrum for providing
material for our experiment and insights on private
clouds from the business perspective.

REFERENCES
[1] D. M. Smith, “Hype Cycle for Cloud Computing,” Gartner, 27

July 2011, G00214915.

[2] T. Vondra and J. Šedivý, “Od hostingu ke cloudu,” Research
Report GL 229/11, CTU, Faculty of Electrical Engineering,
Gerstner Laboratory, Prague, 2011, ISSN 1213-3000.

[3] T. P. Morgan, “Univa skyhooks grids to clouds: Cloud control
freak meets Grid Engine,” The Register, 3rd June 2011,
<http://www.theregister.co.uk/2011/06/03/univa_grid_engine_clo
ud/> 19 March 2012.

[4] “Installing Eucalyptus 2.0,” Eucalyptus,
<http://open.eucalyptus.com/wiki/EucalyptusInstallation_v2.0>
19 March 2012.

[5] J. Šedivý, “3C: Cloud Computing Center,” CTU, Faculty of
Electrical Engineering, dept. of Cybernetics, Prague,
<https://sites.google.com/a/3c.felk.cvut.cz/cloud-computing-
center-preview/> 19 March 2012.

[6] J. Šín, “Production Control Optimization in SaaS,” Master's
Thesis, CTU, Faculty of Electrical Engineering and University in
Stavanger, Department of Electrical and Computer Engineering,
Supervisors J. Šedivý and C. Rong, Prague, 20 December 2011.

[7] T. Groves, J. Knockel, E. Schulte, “BFS vs. CFS - Scheduler
Comparison,” 11 December 2011 <
http://slimjim.cs.unm.edu/~eschulte/data/bfs-v-cfs_groves-
knockel-schulte.pdf > 11 May 2012.

[8] “Multiprocessor scheduling,” in Wikipedia: the free
encyclopedia, San Francisco (CA): Wikimedia Foundation, 12
March 2012 ,
<http://en.wikipedia.org/wiki/Multiprocessor_scheduling> 19
March 2012.

[9] “StarCluster,” Massachusetts Institute of Technology, <
http://web.mit.edu/star/cluster/index.html> 11 May 2012.

[10] H. Eriksson, et al., “A Cloud-Based Simulation Architecture for
Pandemic Influenza Simulation,” AMIA Annu Symp Proc. 2011;
2011: 364–373, pp. 364–373.

[11] D. de Oliveira, E. Ogasawara, K. Ocaña, F. Baião and M.
Mattoso, “An adaptive parallel execution strategy for cloud-based
scientific workflows,” Concurrency Computat.: Pract. Exper.
(2011), doi: 10.1002/cpe.1880.

[12] R. N. Calheiros, C. Vecchiola, D. Karunamoorthya and R. Buyya,
“The Aneka platform and QoS-driven resource provisioning for
elastic applications on hybrid Clouds,” Future Generation
Computer Systems 28 (2012), pp. 861-870, doi:
10.1016/j.future.2011.07.005.

[13] “Cloud Scheduler,” University of Victoria,
<http://cloudscheduler.org/> 11 May 2012.

[14] D. Warneke and O. Kao, “Nephele: efficient parallel data
processing in the cloud,” MTAGS '09: Proceedings of the 2nd
Workshop on Many-Task Computing on Grids and
Supercomputers, November 2009, doi: 10.1145/1646468.1646476.

[15] K. Ramachandran, H. Lutfiyya and M. Perry, “Decentralized
approach to resource availability prediction using group
availability in a P2P desktop grid,” Future Generation Computer
Systems 28 (2012), pp. 854–860, doi: 10.1109/CCGRID.2010.54.

[16] R. Grossman and Y. Gu, “Data mining using high performance
data clouds: experimental studies using sector and sphere,” In
Proceedings of the 14th ACM SIGKDD international conference
on Knowledge discovery and data mining (KDD '08). ACM, New
York, NY, USA, 2008, pp. 920-927, doi: 10.1145/1401890.1402000.

[17] M. J. Litzkow, M. Livny and M. W. Mutka, “Condor-a hunter of
idle workstations,” 8th International Conference on Distributed
Computing Systems (1988), pp. 104-111.

[18] W. Gentzsch, “Sun Grid Engine: towards creating a compute
power grid,” Proceedings of the first IEEE/ACM International
Symposium on Cluster Computing and the Grid (2001), pp. 35-
36.

[19] “Amazon Elastic Compute Cloud (EC2) Documentation,”
Amazon, <http://aws.amazon.com/documentation/ec2/> 27 May
2012

173Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 186 / 282

Defining Inter-Cloud Architecture for Interoperability and Integration

1
Yuri Demchenko,

1
Canh Ngo,

1,2
Marc X. Makkes,

1,2
Rudolf Strijkers,

1
Cees de Laat

1
University of Amsterdam

System and Network Engineering Group

Amsterdam, The Netherlands

e-mail: {y.demchenko, c.t.ngo, delaat}@uva.nl

2
TNO

Information and Communication Technology

Groningen, The Netherlands

e-mail: {marc.makkes, rudolf.strijkers}@tno.nl

Abstract—This paper presents an on-going research to develop

the Inter-Cloud Architecture, which addresses the

architectural problems in multi-provider multi-domain

heterogeneous cloud based applications integration and

interoperability, including integration and interoperability

with legacy infrastructure services. Cloud technologies are

evolving into a common way to virtualize infrastructure

services and to offer on-demand service provisioning. In this

way, they add physical/hardware platform independency and

mobility to the existing distributed computing and networking

technologies. The paper uses existing standards in Cloud

Computing, in particular the recently published NIST Cloud

Computing Reference Architecture (CCRA) as the basis for

the Inter-Cloud architecture. The proposed Inter-Cloud

Architecture defines three complimentary components

addressing Inter-Cloud interoperability and integration: multi-

layer Cloud Services Model that combines commonly adopted

cloud service models, such as IaaS, PaaS, SaaS, in one

multilayer model with corresponding inter-layer interfaces;

Inter-Cloud Control and Management Plane that supports

cloud based applications interaction; and Inter-Cloud

Federation Framework. The paper briefly presents the

architectural framework for cloud based infrastructure

services provisioning being developed by the authors. The

proposed architecture intends to provide a basis for building

multilayer cloud services integration framework and to allow

optimised provisioning of computing, storage and networking

resources. In this way, the proposed Inter-Cloud architecture

will facilitate cloud interoperability and integration.

Keywords-Inter-Cloud Architecture; Cloud Computing

Reference Architecture; Architectural framework for cloud

infrastructure services provisioned on-demand; Cloud

middleware.

I. INTRODUCTION

Cloud computing technologies [1, 2] are emerging as
infrastructure services for provisioning computing and
storage resources on-demand in a simple and uniform way
and may involve multi-provider and multi-domain resources,
including integration with the legacy services and
infrastructures. Cloud computing represents a new step in
evolutional computing and communication technology
development by introducing a new abstraction layer for
general virtualisation of infrastructure services (similar to

utilities) and mobility. Current developments in cloud
technologies demonstrate the need to (1) develop an Inter-
Cloud architecture that provides a common/interoperable
environment and definition for moving existing
infrastructures and infrastructure services into cloud
environments and (2) integration tools to include existing
enterprise and campus infrastructures. More complex use of
cloud infrastructure services, such as in multi-domain
enterprise environments, require new service provisioning
and security models that allow on-demand provisioning of
complex project and group-oriented infrastructure services
across multiple providers.

Cloud based virtualisation enables easy upgrade and/or
migration of enterprise application, including also the whole
Information Technology (IT) infrastructure segments with
automation or infrastructure management tools This brings
significant cost savings compared to traditional infrastructure
development and management, which requires lot of manual
work. In particular, applications that use modern SOA
(Service Oriented Architecture) web services platforms for
services and integration benefit from cloud based
infrastructure services, such as elastic scaling and on-demand
provisioning. However, their composition and integration
into distributed cloud based infrastructure will require a
number of functionalities and services that can be jointly
defined as Inter-Cloud Architecture.

This paper presents an on-going research at the
University of Amsterdam to develop the Inter-Cloud
Architecture (ICA). The Inter-Cloud architecture addresses
the problem of (1) multi-domain heterogeneous cloud based
applications integration and interoperability, including
integration and interoperability with legacy infrastructure
services, and (2) intra-provider infrastructure interoperability
and measurability, and (3) cloud federation. The papers
refers to the architectural framework for provisioning Cloud
Infrastructure Services On-Demand [3] being developed by
authors as a result of cooperative efforts in a number of
currently running projects such as GEANT3 [4] and
GEYSERS [5]. The architectural framework provides a basis
for defining the proposed Inter-Cloud architecture. The
presented paper significantly extends the research results
initially presented as a poster paper at the IEEE
CloudCom2011 Conference [6].

174Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 187 / 282

The remainder of the paper is organized as follows.
Section II provides overview and detailed analysis of the
ongoing standardisation activities at NIST and IEEE that
have direct relation with and provide a basis for the proposed
ICA. Section III describes a basic use case for defining ICA,
and section provides motivation and defines the main
components of the proposed Inter-Cloud Architecture. In
Sections IV the Inter-Cloud definition and requirements are
described. Section V describes the abstract model for cloud
based infrastructure services provisioning. Section VI
describes the Infrastructure Services Modeling Framework
that provides a basis for complex infrastructure services
composition and management. The paper concludes with
future developments in Section VII.

II. CLOUD STANDARDISATION OVERVIEW

Two standardization activities form the basis of ICA and

will be analysed in detail. One, the Cloud Computing

technology and Cloud Computing Reference Architecture

definition by the National Institute of Standards and

Technology (NIST) and two, the IEEE standardisation

activity to define Intercloud Interoperability and Federation

framework. Suggestions are provided for the required

extensions in the context of the proposed Inter-Cloud

Architecture.

An overview of the standards that define internal cloud

management, components design and communications is

left out. This category of standards is well presented by

DMTF, SNIA and OGF standards that correspondingly

define standards for Open Virtual Machine Format (OVF)

[7], Cloud Data Management Interface (CDMI) [8], and

Open Cloud Computing Interface (OCCI) [9]. These

standards are commonly accepted by industry and provide a

basis for intra-provider infrastructure operation and services

delivery to customers.

A. NIST Cloud Computing related standards

NIST is active in fostering cloud computing practices

that support interoperability, portability, and security

requirements that are appropriate and achievable for

important usage scenarios. Since first publication of the

currently commonly accepted NIST Cloud definition in

2008, NIST is leading the internationally recognised activity

on defining a conceptual and standardised base in Cloud

Computing. The ongoing publications of their activities

create a solid base for cloud services development and

offering:

NIST SP 800-145, NIST definition of cloud computing [1]

NIST SP 500-292, Cloud Computing Reference

Architecture, v1.0 [2]

DRAFT NIST SP 800-146, Cloud Computing Synopsis and

Recommendations [10]

NIST SP500-291 NIST Cloud Computing Standards

Roadmap [11]

Draft SP 800-144 Guidelines on Security and Privacy in

Public Cloud Computing [12]

1) NIST Cloud Computing Reference Architecture

(CCRA)

NIST SP 800-145 document defines Cloud Computing

in the following way:

“Cloud computing is a model for enabling ubiquitous,

convenient, on-demand network access to a shared pool of

configurable computing resources (e.g., networks, servers,

storage, applications, and services) that can be rapidly

provisioned and released with minimal management effort

or service provider interaction. This cloud model promotes

availability and is composed of five essential characteristics

(on-demand self-service, broad network access, resource

pooling. rapid elasticity, measured Service), 3

service/provisioning models. (Software as a Service (SaaS),

Platform as a Service (PaaS), Infrastructure as a Service

(IaaS)), 4 deployment models (public, private, community,

hybrid clouds).”

The IaaS service model is defined in the following way:

“The capability provided to the consumer is to provision

processing, storage, networks, and other fundamental

computing resources where the consumer is able to deploy

and run arbitrary software, which can include operating

systems and applications. The consumer does not manage or

control the underlying cloud infrastructure but has control

over operating systems, storage, deployed applications, and

possibly limited control of selecting networking components

(e.g., host firewalls).”

Figure 1 presents a high level view of the NIST Cloud

Computing Reference Architecture (CCRA), which

identifies the major actors (Cloud Consumer, Cloud Service

Provider, Cloud Auditor, Cloud Broker, and Cloud Carrier),

their activities and functions in cloud computing. A cloud

consumer may request cloud services from a cloud provider

directly or via a cloud broker. A cloud auditor conducts

independent audits and may contact the others to collect

necessary information.

Figure 1. NIST Cloud Computing Reference Architecture (CCRA) [2]

The proposed architecture is suitable for many purposes

where network performance is not critical but needs to be

extended with explicit network services provisioning and

management when the cloud applications are critical to

network latency like in case of enterprise applications,

business transactions, crisis management, etc.

175Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 188 / 282

2) Extending Cloud definition and CCRA for ICA

NIST CCRA and Cloud Computing definition are well

suited for describing service, business, or operational

relations. However, it has limited applicability for design

purposes, i.e. defining basic functional components,

interfaces, and layers.

The recently published CCRA includes the Cloud

Carrier role, a role typical for telecom operators, which

provides network connectivity as a 3rd party service.

Despite the introduction of the Cloud Carrier role, there is

no well-defined service model how network connectivity as

a 3
rd

 parte service be achieved. The IaaS cloud service

model does not explicitly include provisioning of network

services and infrastructure. One reason is that cloud

computing has been developed primarily for provisioning

storage and computing resources in the assumption that

best-effort Internet connectivity is sufficient. However, this

situation presents serious limitations for large scale use of

cloud in enterprise applications that require guaranteed

network connectivity QoS and low network latency in

particular.

Another limitation of the current CCRA is that it is

unsuitable for defining a security infrastructure and its

integration with infrastructure services, which can be

potentially multilayer and multi-domain.

The following extensions and improvements should be

made to at least the Cloud IaaS model to meet requirements

of a wide range of critical enterprise services (other service

models such as PaaS, SaaS should also allow management

of network related parameters):

 Define a layered cloud services model suitable for

defining inter-layer and inter-service (functional)

interfaces,

 Define virtualisation of resources and services as cloud

features (in which virtualisation includes resource

abstraction, pooling, composition, instantiation,

orchestration, and lifecycle management),

 Include QoS provisioning and user / application control

over QoS in the network services definition,

 Define an infrastructure service that includes the

following attributes/features:

o Topology description of computing, storage

resources and their interconnection in the network

infrastructure,

o Infrastructure/topology description format that

allows topology transformation operations for

control and optimization (e.g., homomorphic,

isomorphic, QoS, energy aware etc.).

In the context of the above definition, cloud

infrastructure may include:

• Internal cloud provider infrastructure which is provided

as a service, and

• External or Inter-Cloud infrastructure that can be

provided by either a cloud operator or a network

services provider.

In relation to business/operational aspects, the CCRA

should be extended to address the following features:

 Better definition of the Cloud Carrier role, operational

model and interaction with other key actors,

 Extend the set of basic roles with roles typical for

telecom operators/providers as Cloud/infrastructure

Operator, and split Customer role on Customer and

User as representing customer organization and end-

user.

B. IEEE Intercloud Working Group (IEEE P2302)

IEEE P2302 Working Group recently published a draft

Standard on Intercloud Interoperability and Federation

(SIIF) [13] proposing an architecture that defines topology,

functions, and governance for cloud-to-cloud

interoperability and federation.

Topological elements include clouds, roots, exchanges

(which mediate governance between clouds), and gateways

(which mediate data exchange between clouds). Functional

elements include name spaces, presence, messaging,

resource ontologies (including standardized units of

measurement), and trust infrastructure. Governance

elements include registration, geo-independence, trust

anchor, and potentially compliance and audit.

However, the proposed approach has very limited scope

by attempting to address a hypothetical scenario when all

resources and applications will be located and run in

multiple clouds and they need to be federated similar to

Contend Distribution Network (CDN) [14]. The proposed

architecture tries to replicate the CDN approach but doesn’t

address the generic problems with interoperability and

integration of the heterogeneous multi-domain and multi-

provider clouds.

The proposed solutions are built around extended use of

the XMPP [15] as a base Intercloud protocol and introduce

Intercloud Root and Exchange Hosts to support Intercloud

communications, trust management and identity federation.

The proposed architecture originated from the position

paper published by Cisco in 2009 [16] that tried to leverage

the basic routing and messaging Internet protocols such as

BGP, OSPF, XMPP to address Inter-Cloud integration and

interoperability.

The limitation of the proposed architecture and approach

is that it tries to closely imitate Internet approach in building

hierarchical interconnected infrastructure for Internet

protocol based services to support Inter-Cloud

communication. But actually there is no need for such

additional Inter-Cloud layer or infrastructure because cloud

applications and infrastructure can use all Internet

technologies directly to support intra-provider

communications and user-customer-provider or inter-

provider communications, given the appropriate network

virtualisation and address translation technologies. Cloud

technologies provide a virtualisation platform for IT and

network services and allow entire infrastructure instantiation

together with related protocols and core infrastructure

services related to control and management functions. An

176Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 189 / 282

extreme use case that demonstrates the capabilities of cloud

technologies is to create managed virtual Internets [27]

using advanced programmable networking concepts [18].

III. GENERAL USE CASES FOR ICA

The two basic use cases for Inter-Cloud architecture can
be considered: large project-oriented scientific infrastructure
provisioning including dedicated transport network
infrastructure, and periodic semester based educational
course that requires computer laboratory facilities to setup,
operated and suspended till the next semester [19]. Both
cases should allow the whole infrastructure of computers,
storage, network and other utilities to be provisioned on-
demand, physical platform independent and allow integration
with local persistent utilities and legacy services and
applications.

Figures 2 illustrates the typical e-Science or enterprise
infrastructure that includes enterprise proprietary and Cloud
based computing and storage resources, instruments, control
and monitoring system, visualization system, and users
represented by user clients.

Control &
Monitoring

Sc. Instrument
(Manufactrg)

Grid
Storage T1

Grid CE
Data Filtering

Grid
Storage T0

Grid VO-A

Visuali-
sation

User
Group A

User

CE

Campus A

Visuali-
sation

User

CE User
Group B

Campus B

CE CE CE

SE SE

CSECSE CSECSECloudSE
T1

CE

Processed Data

Experimental
Data

Specialist
Data
Processing

Project based
Cloud Infrastructure

Data Filtering
Ctrl&Mngnt
Plane

Figure 2. Project oriented collaborative infrastructure containing Grid based
Scientific Instrument managed by Grid VO-A, 2 campuses A and B, and

Cloud based infrastructure provisioned on-demand.

Figure 2 also illustrates a typical use case when two or

more cooperative users/researcher groups in different
locations want to use high performance infrastructure. In
order to fulfill their task (e.g. cooperative image processing
and analysis) they require a number of resources and services
to process raw data on distributed Grid or Cloud data centers,
analyse intermediate data on specialist applications and
finally deliver the result data to the users/scientists. This use
case includes all basic components of the typical e-Science
research process: data collection, data mining, filtering,
analysis (with special scientific applications), visualisation,
and finally presentation to the users.

IV. ICA DEFINITION AND REQUIREMENTS

The developed Inter-Cloud Architecture should address
the interoperability and integration issues in the current and
emerging heterogeneous multi-domain and multi-provider

clouds that could host modern and future critical enterprise
infrastructures and applications.

The proposed ICA should address the following goals,
challenges and requirements:

 ICA should support communication between cloud
applications and services belonging to different service
layers (vertical integration), between cloud domains and
heterogeneous platforms (horizontal integration).

 ICA should provide a possibility that applications could
control infrastructure and related supporting services at
different service layers to achieve run-time optimization
(Inter-Cloud control and management functions).

 ICA should support cloud services/infrastructures
provisioning on-demand and their lifecycle
management, including composition, deployment,
operation, and monitoring, involving resources and
services from multiple providers.

Following the above requirements, we define the
subsequent complimentary components of the proposed
Inter-Cloud Architecture:

(1) Multilayer Cloud Services Model (CSM) for vertical
cloud services interaction, integration and compatibility;

(2) Inter-Cloud Control and Management Plane (ICCMP)
for Inter-Cloud applications/infrastructure control and
management, including inter-applications signaling,
synchronization and session management, configuration,
monitoring, run time infrastructure optimization including
VM migration, resources scaling, and jobs/objects routing;

(3) Inter-Cloud Federation Framework (ICFF) to allow
independent clouds and related infrastructure components
federation of independently managed cloud based
infrastructure components belonging to different cloud
providers and/or administrative domains; this should support
federation at the level of services, business applications,
semantics, and namespaces, assuming special gateway or
federation services.

At this stage of research, we define only multi-layer

Cloud Services Architecture that can be built using modern

SOA technologies re-factored to support basic cloud service

models as discussed below and in the following section.

Future research on ICCMP will leverage User

Programmable Virtualised Networks (UPVN) [20], and

Internet technologies such as provided by CDN and

Generalized Multi-Protocol Label Switching (GMPLS) [21].

The ICFF can be built using existing platforms for federated

network access and federated identity management widely

used for multi-domain and multi-provider infrastructure

integration.
Figure 3 illustrates the current relation between basic

Cloud service models IaaS, PaaS, SaaS that expose standards
based interfaces to users, services, and applications but use
proprietary interfaces to the physical provider platform. In
case the application or service spans multiple heterogeneous
cloud service providers, cloud services from different service
models and layers will need to interact. This motivates
definition of the Inter-Cloud Architecture that is depicted on
Figure 3b as multilayer architecture with interlayer
interfaces.

177Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 190 / 282

(a) Current relation between Cloud service models

(b) current relation between Cloud service models

Figure 3. Inter-Cloud Architecture for Cloud interoperability and

integration.

In the proposed Inter-Cloud layered service model, the

following layers can be defined (numbering from bottom
up):
(6) Customers and applications,
(5) SaaS (or cloud applications) as a top cloud layer that
represents cloud applications,
(4) PaaS provides middleware services to customers and
applications (6) or used as a platform for (5),
(3) IaaS provides infrastructure services to (6) or used for
hosting cloud platforms (4),
(2) Cloud virtualisation and management layer (e.g.
represented by VMWare as virtualisation platform, and
OpenNebula, OpenStack as cloud management software),
(1) Physical hardware (e.g. physical servers, network
devices).

V. ABSTRACT MODEL FOR CLOUD BASED

INFRASTRUCTURE SERVICES PROVISIONING

Figure 4 below illustrates the abstraction of the typical
project or group-oriented Virtual Infrastructure (VI)

provisioning process that includes both computing resources
and supporting network that commonly referred as
infrastructure services. The figure also shows the main actors
involved into this process, such as Physical Infrastructure
Provider (PIP), Virtual Infrastructure Provider (VIP), Virtual
Infrastructure Operator (VIO).

The required supporting infrastructure services are
pictured on the left side of the picture and includes functional
components and services used to support normal operation of
all mentioned actors. The Virtual Infrastructure Composition
and Management (VICM) layer includes the Logical
Abstraction Layer and the VI/VR Adaptation Layer facing
correspondingly lower PIP and upper application layer.
VICM related functionality is described below as related to
the proposed Composable Services Architecture (CSA).

The proposed architecture is SOA based and uses the
same basic operational principles as known and widely used
by SOA frameworks. Consequently, the proposed
architecture also provides a direct mapping to the possible
VICM implementation platforms such as Enterprise Services
Bus (ESB) [22] or OSGi framework [23].

The infrastructure provisioning process, also referred to
as Service Delivery Framework (SDF), is adopted from the
TeleManagement Forum SDF [24] with necessary extensions
to allow dynamic services provisioning. It includes the
following main stages: (1) infrastructure creation request
sent to VIO or VIP that may include both required resources
and network infrastructure to support distributed target user
groups and/or consuming applications; (2) infrastructure
planning and advance reservation; (3) infrastructure
deployment including services synchronization and
initiation; (4) operation stage, and (5) infrastructure
decommissioning. The SDF combines in one provisioning
workflow all processes that are run by different supporting
systems and executed by different actors.

Physical Resources (PR), including IT resources and
network, are provided by Physical Infrastructure Providers
(PIP). In order to be included into VI composition and
provisioning by the VIP they need to be abstracted to Logical
Resource (LR) that will undergo a number of abstract
transformations including possibly interactive negotiation
with the PIP. The composed VI need to be deployed to the
PIP which will create virtualised physical resources (VPR)
that may be a part, a pool, or a combination of the resources
provided by PIP.

The deployment process includes distribution of common
VI context, configuration of VPR at PIP, advance reservation
and scheduling, and virtualised infrastructure services
synchronization and initiation, to make them available to
Application layer consumers.

The proposed abstract model provides a basis for ICA
definition and allows outsourcing the provisioned VI
operation to the VI Operator (VIO) who is from the
user/consumer point of view provides valuable services of
the required resources consolidation - both IT and networks,
and takes a burden of managing the provisioned services.

178Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 191 / 282

Figure 4. Main actors, functional layers and processes in on-demand infrastructure services provisioning

It is important to mention that physical and virtual

resources discussed here are in fact complex software
enabled systems with their own operating systems and
security services. The VI provisioning process should
support the smooth integration into the common federated VI
security infrastructure by allowing the definition of a
common access control policy. Access decisions made at the
VI level should be trusted and validated at the PIP level. This
can be achieved by creating dynamic security associations
during the provisioning process.

VI. INFRASTRUCTURE SERVICES MODELING

FRAMEWORK

The Infrastructure Services Modeling Framework (ISMF)
provides a basis for virtualization and management of
infrastructure services, including description, discovery,
modeling, composition, and monitoring. In this paper we
mainly focus on the description of resources and the lifecycle
of these resources. The described model in this section is
being developed in the GEYSERS project [5].

A. Resource Modeling

The two main descriptive elements of the ISMF are the
infrastructure topology and descriptions of resources in that
topology. Besides these main ingredients, the ISMF also
allows for describing QoS attributes of resources, energy
related attributes, and attributes needed for access control.

The main requirements for the ISMF are, that it should
allow for describing Physical Resources (PR) as well as
Virtual Resources (VR). Describing physical aspects of a
resource means that a great level of detail in the description
is required while describing a virtual resource may require a
more abstract view. Furthermore, the ISMF should allow for
manipulation of resource descriptions such as partitioning
and aggregation. Resources on which manipulation takes
place, and resources that are the outcome of manipulation are
called Logical Resources (LR).

The ISMF is based on semantic web technology. This
means that the description format will be based on the Web
Ontology Language (OWL) [25]. This approach ensures the
ISMF is extensible and allows for easy abstraction of
resources by adding or omitting resource description
elements. Furthermore, this approach has enabled us to re-
use the Network Description Language [26] to describe
infrastructure topologies.

B. Virtual Resource Lifecycle

Figure 5 illustrates relations between different resource
presentations along the provisioning process that can also be
defined as the Virtual Resource lifecycle.

The Physical Resource information is published by a PIP
to the Registry service serving VICM and VIP. This
published information describes a PR. The published LR
information presented in the commonly adopted form (using

179Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 192 / 282

common data or semantic model) is then used by VICM/VIP
composition service to create the requested infrastructure
using a combination of (instantiated) Virtual Resources and
interconnecting them with a network infrastructure. In its
own turn the network can be composed of a few network
segments run by different network providers.

{LR0} -> LR2
Planning

Composition

Reservation

LR2 -> VR
VI Deployment

P
h

y
s
ic

a
l
R

e
s
o
u

rc
e

L
o
g
ic

a
l
R

e
s
o
u

rc
e

V
ir

tu
a
l
R

e
s
o
u

rc
e

Network Segment
Network Segment

LR0
Re-usable

(Published)

PRs

Topology Pool

Network Segment

PR-LR1
Config&

Instantiation

Registered PRs

Composed LRs

Deployed VRs .

V
ir

tu
a
l
In

fr
a
s
tr

u
c
tu

re

PIP1 PIP2

Figure 5. Relation between different resource presentations in relation to
different provisioning stages.

VII. FUTURE DEVELOPMENT

The paper presents an on-going research at the University
of Amsterdam to develop the Inter-Cloud Architecture (ICA)
addresses the problem of multi-domain heterogeneous Cloud
based applications integration and inter-provider and inter-
platform interoperability.

The presented research is planned to be contributed to the
Open Grid Forum Research Group on Infrastructure Services
On-Demand provisioning (ISOD-RG) [27], where the
authors play active role.

ACKNOWLEDGEMENTS

This work is supported by the FP7 EU funded Integrated
project The Generalized Architecture for Dynamic
Infrastructure Services (GEYSERS, FP7-ICT-248657) and
by the Dutch national program COMMIT.

REFERENCES

[1] NIST SP 800-145, “A NIST definition of cloud computing”, [online]
Available: http://csrc.nist.gov/publications/nistpubs/800-145/SP800-
145.pdf

[2] NIST SP 500-292, Cloud Computing Reference Architecture, v1.0.
[Online] http://collaborate.nist.gov/twiki-cloud-
computing/pub/CloudComputing/ReferenceArchitectureTaxonomy/N
IST_SP_500-292_-_090611.pdf

[3] Generic Architecture for Cloud Infrastructure as a Service (IaaS)
Provisioning Model, Release 1. SNE Techn. Report SNE-UVA-2011-
03, 15 April 2011. [Online] http://staff.science.uva.nl/~demch/
worksinprogress/sne2011-techreport-2011-03-clouds-iaas-
architecture-release1.pdf

[4] GEANT Project. [Online] http://www.geant.net/pages/home.aspx

[5] Generalised Architecture for Dynamic Infrastructure Services
(GEYSERS Project). [Online] http://www.geysers.eu/

[6] Demchenko, Y., R.Strijkers, C.Ngo, M.Cristea, M.Ghijsen, C. de
Laat, Defining Inter-Cloud Architecture. Poster paper. Proc. 3rd IEEE
Conf. on Cloud Computing Technologies and Science
(CloudCom2011), 29 November - 1 December 2011, Athens, Greece.
ISBN: 978-960-93-3482-2

[7] Open Virtualization Format (OVF), DMTF. [online]
http://www.dmtf.org/standards/ovf

[8] Cloud Data Management Interface, SNIA. [online]
http://www.snia.org/cdmi

[9] GFD.183 Open Cloud Computing Interface - Core
[online] http://www.ogf.org/documents/GFD.183.pdf DRAFT NIST
SP 800-146, Cloud Computing Synopsis and Recommendations.
[online] Available: http://csrc.nist.gov/publications/drafts/800-
146/Draft-NIST-SP800-146.pdf

[10] NIST SP 800-146, Cloud Computing Synopsis and
Recommendations. [online] Available:
http://csrc.nist.gov/publications/nistpubs/800-144/SP800-144.pdf

[11] NIST SP500-291 NIST Cloud Computing Standards Roadmap.
[online] Available: http://collaborate.nist.gov/twiki-cloud-
computing/pub/CloudComputing/StandardsRoadmap/NIST_SP_500-
291_Jul5A.pdf

[12] Draft SP 800-144 Guidelines on Security and Privacy in Public Cloud
Computing. [online] Available:
http://csrc.nist.gov/publications/nistpubs/800-144/SP800-144.pdf

[13] IEEE P2302 - Standard for Intercloud Interoperability and Federation
(SIIF). [online] http://standards.ieee.org/develop/project/2302.html

[14] Leung, K. and Lee, Y. (2011). Content Distribution Network
Interconnection (CDNI) Requirements. IETF draft, work in progress,
draft-ietf-cdni-requirement-00.

[15] RFC3920 Extensible Messaging and Presence Protocol (XMPP):
Core. [online] http://www.ietf.org/rfc/rfc3920.txt

[16] Bernstein, D., Ludvigson, E., Sankar, K., Diamond, S., Morrow, M.,
Blueprint for the Intercloud - Protocols and Formats for Cloud
Computing Interoperability. In Internet and Web Applications and
Services, 2009. ICIW '09. Fourth International Conference on, 24-28
May 2009, Venice, Italy.

[17] J. D. Touch, Y.-S. Wang, L. Eggert, and G. G. Finn, “A virtual
internet architecture,” ISI Technical Report, Mar. 2003.

[18] R. Strijkers, M. Cristea, C. de Laat, and R. Meijer, “Application
framework for programmable network control,” Advances in
Network-Embedded Management and Applications, pp. 37–52, 2011.

[19] Demchenko, Y., J. van der Ham, M. Ghijsen, M. Cristea, V.
Yakovenko, C. de Laat, "On-Demand Provisioning of Cloud and Grid
based Infrastructure Services for Collaborative Projects and Groups",
The 2011 Intern. Conf. on Collaboration Technologies and Systems
(CTS 2011), May 23-27, 2011, Philadelphia, Pennsylvania, USA

[20] Meijer, R. J., Strijkers, R. J., Gommans, L., and de Laat, C. (2006).
User Programmable Virtualized Networks. In e-Science and Grid
Computing, 2006. e-Science '06. Second IEEE International
Conference on (p. 43).

[21] RFC 3945. Generalized Multi-Protocol Label Switching (GMPLS)
Architecture. [online] http://www.ietf.org/rfc/rfc3945.txt

[22] D. Chappell, ENTERPRISE SERVICE BUS, O’Reilly, June 2004.

[23] OSGi Service Platform Release 4, Version 4.2. [online] Available:
http://www.osgi.org/Download/Release4V42

[24] TMF Service Delivery Framework. [Online] http://www.tmforum.org
/servicedeliveryframework/4664/home.html

[25] OWL 2 Web Ontology Language [online] Available:
http://www.w3.org/TR/owl2-overview/

[26] J. van der Ham, F.Dijkstra, P.Grosso, R. van der Pol, A.Toonk, C. de
Laat, "A distributed topology information system for optical networks
based on the semantic web", Elsevier Journal on Optical Switching
and Networking, Volume 5, Issues 2-3, June 2008, pp. 85-93

[27] Open Grid Forum Research Group on Infrastructure Services On-
Demand provisioning (ISOD-RG). [Online].
http://www.gridforum.org/gf/group_info/view.php?group=ISOD-RG

180Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 193 / 282

Cloud Network Security Monitoring and Response System

Murat Mukhtarov

Information Security Faculty

National Research Nuclear

University MEPhI

Moscow, Russia

Muhtarov.mr@gmail.com

Natalia Miloslavskaya

Information Security Faculty

National Research Nuclear

University MEPhI

Moscow, Russia

NGMiloslavskaya@mephi.ru

Alexander Tolstoy

Information Security Faculty

National Research Nuclear

University MEPhI

Moscow, Russia

AITolstoj@mephi.ru

Abstract — The public clouds network monitoring and

response system, based on flow measurements, open source

tools and CSMS (Cloud Security Monitoring System) module,

is to be introduced in this paper. The main goal of the research

is to develop an algorithm and to implement a system, which

automatically detects and makes a response to network

anomalies, occurring inside a Cloud infrastructure. In this

research is proposed approach of anomaly detection inside the

Cloud infrastructure which is based on a profiling method of

IPFIX (IP Flow Information Export) protocol data and idea of

negative selection principle is used for generating signatures of

network anomalies, which are named detectors. The automatic

response module makes a decision about network anomalies

origin, based on several iterative checks and creates a record

on the firewall rules table. The network traffic profiling

process automatically generates the firewall rules set for all

traffic classes, obtained during the learning process. Main

results of the research are development of the algorithms and

the way of the monitoring network attacks inside the Cloud.

Implementation of the algorithms is python-based script and

currently stays under hard-testing phase.

Keywords - Cloud computing; Cloud infrastructure; Virtual

Infrastructure; Application Hosting; Network Security.

I. INTRODUCTION

Cloud computing is a novel way to provide customers

with Information Technology services, but with

virtualization technologies in the background. Cloud

computing uses networked infrastructure; software and

computing power to provide resources to customers in an

on-demand environment. With cloud computing,

information is stored remotely in a centralized server farm

and is accessed by the hardware or software thin clients that

can include desktop computers, notebooks, handhelds and

other devices. Typically, Clouds utilize a set of virtualized

computers that enable users to start and stop servers or use

compute cycles only when needed (also referred to as utility

computing) [1]. In terms of information security, the cloud

computing threat model consists of three fundamental

issues: availability, integrity and confidentiality violations.

Availability is terminated via Denial of Service -attacks.

The likelihood and easiness of these attacks will increase as

the volume of information exchanged between a user and a

cloud provider increases. Integrity issues arise due to the

fact that users must be sure that the information they

retrieve is the same as that they store. This is a difficult task

for one reason: information changes over time as do users

themselves. But, also, it is important to separate users‟

information from the production information (for example

configuration files, system files integrity, and so on).

Finally, confidentiality issues may take place, for example

over (accidental) disclosure of information to third parties or

because of aggregation. Most computer compromises result

in information leakage, so this is also an important issue [2].

In this research, we focus on availability as a main issue

and the other issues that arise from it, so they are subsidiary

risks for us. One possible way for Cloud networks to be

monitored is to use a network telemetry principal with such

protocols as Cisco Netflow [3] or IPFIX (Internet Protocol

Information Export) [4]. Design of the open source

virtualization technologies provides an opportunity to use

Netflow/IPFIX probes on a hypervisor without performance

reduction. IPFIX protocol has some advantages while being

compared with the Netflow; it is not proprietary, it is open-

standard and has improvements [5] that can be used in open

source systems such as Linux or BSD (Berkley Source

Distribution) -derivate systems. IPFIX is a lightweight

network monitoring protocol for the connection control and

volume-based traffic estimation [6]. Here we propose an

approach to profile IPFIX data in such environment as a

Cloud infrastructure and also suggest ways to make an

automatic response to the detected anomalies inside a

network. The way described in the paper is applicable to the

Cloud solutions that provide their customers with such

services as Infrastructure as a Service, Platform as a Service.

In other words a Cloud Infrastructure consists of large

amount of virtual machines running inside virtual

infrastructure based on physical servers and network

equipment.

II. STATE OF ART AND RELATED WORKS

The main focus of the paper is a network security

monitoring approach in a Cloud infrastructure. We discuss

some network security threats and issues that may occur in

the virtual infrastructure clouds. All of them use shared

hardware, network [1] and hypervisor’s resources [2].

Security threats related to hosting application in a Cloud

Infrastructure are covered by Molnar and Schechter [7]. The

181Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 194 / 282

researches compare traditional and cloud hosting focused on

information security threats.

The Virtual Local Area Network (VLAN) separation

technique on a Cloud Infrastructure is mentioned by

Berger’s et al. [8]. They suggest a way of increasing virtual

infrastructure security by using a strong security policy

inside a cloud infrastructure – Trusted virtual data center

(TVDC). Their idea is based on the research of Bussani, et

al., Trusted Virtual Domains (TVD): Secure Foundations

for Business and Information Technology Services [9]. The

main idea of TVDC is a strong isolation and integrity

guarantee in virtualized, cloud computing environments [8].

To achieve this isolation researchers use network separation

techniques based on IEEE 802.1q [10], memory control

techniques and ―colorizing‖ each data flow inside a cloud.

Another approach to a Cloud infrastructure monitoring

called ―Private Clouds MONitoring Systems‖ (PCMONS)

was created by Chaves, et al. [11]. Their main goal was to

develop a modular and extensible monitoring system for the

private Clouds. PCMONS is implemented as a module for

the open source monitoring system Nagios and is

compatible with the open source IaaS platform Eucalyptus

[11]. But, it has several disadvantages: as PCMONS is a

Nagios module, it inherited Nagios performance and

scalability issues that eliminate applicability to the huge

Cloud infrastructure; also it is compatible only with one

solution. The described system monitoring approach is

focused on network security monitoring and response

actions inside a Cloud. The main advantages of the CSMS

approach are compatibility with the majority of operating

systems and network equipment due to IPFIX protocol,

ability of an automatic response to a network attack and

ability of identifying unknown network anomalies in some

cases.

III. PROFILING NETWORK TRAFFIC DATA

To monitor the network traffic anomalies, that in fact are

the result of DDoS-attacks or abuse traffic, we have to find

a way that will be applicable to the implementation inside a

network of a Cloud Infrastructure.

We worked out several requirements to this approach:

1) To be informative enough to analyze network traffic

volumes by traffic types;

2) To be lightweight;

3) To be easy to spread through a Cloud infrastructure

network and

4) To not impact production network performance.

The best way that satisfies all these requirements is to use

flow-based measurement protocols like Netflow or IPFIX

[6]. Here, we use IPFIX, because it is an open standard

protocol.

To profile IPFIX data, we use a maximum entropy

estimation approach, introduced in [12] and [13]. We have

to modify and improve an algorithm of profile estimation to

make it applicable to IPFIX data analysis (Fig. 1). For

designing an algorithm we have to classify a given pattern

of network traffic. Network traffic classification process is

needed because traffic patterns usually consist of large

amount of the different traffic packets and storing profile of

raw traffic data will require large amount of disk space.

Therefore, large volumes of data will require more

processor time for processing. So, we propose to use

preprocessing classification algorithm, which allows us to

work with volume-based estimation of network traffic data,

which is divided by classes. Result of preprocessing is a

significant reduction of the size of data which should be

processed by monitoring system. Amount of traffic classes

should be selected by user. Also, an expert should exclude

“anomalies” if they are present in a given pattern.

This algorithm checks in a cycle each traffic class with

maximum entropy approach and estimates weights of each

traffic class in a model. The algorithm’s result is the

network traffic profile in which only the most significant

traffic classes in a given pattern are stored.

Figure 1. Block diagram of IPFIX data profiling.

The algorithm stops when the next traffic class does not

improve the profile enough, in other words the decrease of

divergence should be less then threshold value.

To adapt the algorithm to a Cloud Infrastructure network,

we propose to make some special traffic classes that are

inherent to the network of a Cloud infrastructure. We placed

HTTP, HTTPS, DNS, SMTP, POP3, IMAP, POP3S,

IMAPS, RDP, VNC, SQL ports in the separate classes.

Also, we modified greedy algorithm to make it easier for

implementation. We propose to exclude network traffic

class from sampling process, after cycle pre-check with a

182Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 195 / 282

given pattern. This improvement allows avoiding additional

checks of the network traffic patterns due to IPFIX protocol

input data format.

IV. ANOMALY DETECTORS GENERATION

ALGORITHM

Another approach proposed in this paper is a special way

of generating a network anomaly detector. The idea of this

approach lays in a negative selection algorithm, introduced

by Forrest et al. [14]. According to the negative selection, a

network traffic profile, which is returned by the IPFIX data-

profiling algorithm (normal behavior profile), could be

modified in the manner proposed below. To create a set of

potential anomalies detectors, we increased the volumes of

the traffic classes in a normal behavior profile with the

random values in the range of Lower_Tr and Upper_Tr

variables. Also there are several settings for the detector

generating process: the amount of detectors needed, the

amount of affected positions in a profile and a threshold

value of divergence. The block diagram of the algorithm is

shown on the Fig. 2.

Figure 2. Anomaly detectors generation algorithm.

The algorithm randomly changes values of positions of

the network traffic classes inside a profile according to the

values of the Lower_Tr and Upper_Tr. The stopping criteria

is an achievement of the required number of anomaly

detectors. Detectors that are similar to the normal behavior

profile should be dropped. All other detectors should be

stored inside the database.

V. ANOMALY DETECTION AND RESPONSE

INSIDE CLOUD INFRASTRUCTURE

Anomaly detection is based on the set of detectors,

recorded in the database. Fig. 3 shows a detector life cycle,

called “maturing” while comparing it with an immune

system.

Figure 3. Anomaly detectors maturing process.

The probes are the exporting flows of IPFIX data to the

collectors. A collector consists of two parts: the first one

normalizes incoming data from the probes, and the second

one performs a comparison of a captured traffic pattern with

an anomaly detector. Each anomaly detector has “time-to-

live” (TTL) attribute. Normally we set its values as one

month. If a detector never matches any of the captured

traffic patterns within one month it will be marked for

deletion and it would be dropped at the end of the next

month. One month period seems reasonable to reduce

impact on the monitoring system performance and limit

number of detector, but depends on user settings. Deletion

of the detector does not mean that network anomaly which

should be covered with deleted detector would not be

handled properly. Generating of the anomaly detectors is a

pseudorandom process which allows the possibility of the

collisions. So such kind of anomaly possible could be found

with detectors from another generation with some

probability.

Another case is when a detector matched some of the

network traffic pattern. This detector changes its TTL

(“time-to-live”) attribute to one year and spreads it across all

probes. Hence, we could clean our detectors database from

the patterns that we will never observe in the network traffic

and collect patterns that are really useful for anomaly

detection.

Fig. 4 introduces our algorithm of anomaly detection and

response actions. IPFIX information has several attributes

referred to the IP packet header data. When a network

anomaly is detected, a Cloud monitoring system could tell

us what kind of traffic causes an anomaly. In this case, we

could find out a source IP address of anomaly traffic and

block it inside a firewall.

183Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 196 / 282

Figure 4. Block diagram of monitoring and response process.

To increase accuracy of the blocking system and to

preserve a normal traffic we use ―Whois‖ Database queries

to learn an origin of IP address, location and reverse DNS

queries to estimate the purpose of IP address usage. We

perform several checks: ―Is the IP address from our

network?”, “Is the IP address from our Country?”, “Is the

IP address from Digital Subscriber Line (DSL)/Dial Up

Line (DUL) network?”. So, if the IP address is outside of a

Cloud network and region, we propose that it probably

could be the reason for an anomaly and we block it for an

hour. We perform the same action if the IP address is from

DSL/DUL networks.

VI. INTEGRATING CSMS IN EXISTING CLOUD

INFRASTRUCTURE

To show integration process of CSMS module and IPFIX

sensors inside typical cloud datacenters, in this section we

demonstrate deployment example. For example, we have

already deployed cloud infrastructure based on open source

private Cloud Eucalyptus as shown on Fig 5.

Eucalyptus Cloud Controller usually runs on a Linux-

based computer with two network interface cards (NIC).

Cloud Controller is a front end of the Cloud Infrastructure

and it divides network on two parts: public local area

network (on Fig 5. Public switch) and private local area

network (on Fig 5. Private switch). We suggest to deploy

CSMS module on Cloud Controller as it is central part of

the Cloud Infrastructure and it is connected both private and

public networks. Also, we suggest deploying firewall

equipment, which is connected to the Public switch and able

to block outside IP addresses in case of receiving command

from CSMS.

Figure 5. CSMS deployment inside Eucalyptus Cloud infrastructure.

IPFIX sensors deployed in the Cloud Infrastructure

Nodes (component of the Cloud where runs Virtual

Machines of the End User) and send information to the

IPFIX collector, which is also deployed on the Cloud

Controller. In addition, IPFIX data is exporting from the

border routers. CSMS module analyzes incoming data from

the several sources (Nodes and Routers) and performs

anomaly recognition actions – compare anomaly detectors

patterns against observing network traffic data. In the case

when anomaly discovered, CSMS performing IP address

check process to be sure that traffic not from own or trusted

networks and then sends command to Firewall equipment in

order to block malicious IP address. Advantage of this

approach lies in possibility to deploy IPFIX sensors in every

operating system which supports traffic capturing. It means

that no matter which kind of Cloud or Virtualization

technology going to be used, the most important is the

ability to export IPFIX data from network equipment or

from virtual network interfaces of the Cloud nodes.

VII. CONCLUSION AND FUTURE WORKS

Flow-based measurement protocols such as IPFIX are an

appropriate source of network traffic information, which

allows us to analyze traffic with statistical frameworks and

approaches. In the paper we use the maximum entropy

estimation approach to obtain the normal behavior network

traffic profile based on IPFIX data. This way of monitoring

network security is more productive and easy to implement

in existing Clouds due to design and implementation of

open source-based virtualizing software. The suggested

approach of anomaly detection based on negative selection

algorithm seems to be an appropriate way of monitoring in

distributed environments such as a Cloud infrastructure

network. It is ready to detect DDoS-attacks and other abuse

184Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 197 / 282

traffic attacks, having an availability issue for Cloud

computing as a main concern. Automatic response ability of

the CSMS with the ―Whois‖ and reverse DNS information,

based on source IP address filtering, is a useful way to

preserve customers from false-positive errors.

The future developments of this research are testing and

implementing of proposed algorithms and approaches to

find a suitable way of integrating them inside the existing

open source Cloud infrastructures. Also an applicability of

the described proposal to the network attacks should be

analyzed.

REFERENCES

[1] Securing the Cloud: A review of Cloud Computing, Security
Implications and Best Practicies http://www.savvis.com/en-
us/info_center/documents/savvis_vmw_whitepaper_0809.pdf.
VMware Inc.(2009) (last access date 13/03/2012).

[2] Schoo P., Fusenig V., Souza V. at el. Chanlanges of Cloud
Networking Security. 2nd International ICST Conference on Mobile
Networks and Management, September 2010 Santandar Spain
(October 2010). HP Laboratories, HPL-2010-137 (2010).

[3] Claise B. RFC 3954 Cisco Systems Netflow Services Export Version
9 (2004).

[4] Claise B. RFC 5101 Specification of the IP Flow Information Export
(IPFIX) Protocol for the Exchange of IP Traffic Flow Information
(2008).

[5] Boschi E. and Trammell B. Bidirectional Flow Measurement, IPFIX,
and Security Analysis. pp. 8-10 (2006).

[6] Mukhtarov M., Miloslavskaya N., Tolstoy A. Netowrk security
Threats and Cloud Services Monitoring. ICNS 2011 May 22, 2011
Venice/Mestre Italy. pp. 141-145 (2011).

[7] Molnar D., Schechter S. Self Hosting vs. Cloud Hosting: Accounting
for the security impact of hosting in the cloud. WEIS 2010, pp.149-
164 (2010)

[8] Berger S., Caceres R., Goldman K. and others Security for the cloud
infrastructure: Trusted virtual data center implementation. IBM J.
RES & DEV. Vol. 53, No. 5, paper 6, pp.1-12 (2009).

[9] Bussani A., Griffin J. L., Jasen B., Julisch K., Karjoth G., Maruyama
H., Nakamura M., et al., „„Trusted Virtual Domains: Secure
Foundations for Business and IT Services,‟‟ Research Report
RC23792, IBM Corporation (November 2005) (2005).

[10] IEEE Standard 802.1Q for Local and Metropolitan Area Networks—
―Virtual Bridged Local Area Networks‖. IEEE 2005 see:
http://standards.ieee.org/getieee802/download/802.1Q-2005.pdf

[11] Chaves, S.A.; Uriarte, R.B. ; Westphall, C.B. "Toward an
Architecture for Monitroing Private Clouds," IEEE Communications
Magazine Vol. 49, Issue 12, pp. 130-137 (2011)

[12] Gu Y., McCallum A. and Towsley, D. Detecting anomalies in
network traffic using maximum entropy. Tech. rep., Department of
Computer Science, UMASS, Amherst, pp. 345-350 (2005).

[13] PietraS.D., Pietra V.D. and Lafferty J. Inducing features of random
fields. IEEE Transactions on Pattern Analysis andMachine
Intelligence 19, 4, pp. 380–393 (1997).

[14] Stephanie Forrest, Alan S. Perelson, L. Allen, and R. Cherukuri. Self
-nonself discrimination in a computer. In Proceedings of the 1994
IEEESymposium on Research in Security and Privacy. IEEE
Computer Society Press, pp. 360-365 (1994).

185Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 198 / 282

Analysis and Optimization of Massive Data Processing
on High Performance Computing Architecture

He Huang, Shanshan Li, Xiaodong Yi, Feng Zhang, Xiangke Liao and Pan Dong
School of Computer Science

National Univ. of Defense Technology, Changsha, China
{huanghe, shanshanli, xdyi, zhangfeng, xkliao, pdong}@nudt.edu.cn

Abstract—MapReduce has emerged as a popular and easy-
to-use programming model for numerous organizations to deal
with massive data processing. Present works about improving
MapReduce are mostly done under commercial clusters, while
little work has been done under HPC architecture. With high
capability computing node, networking and storage system, it
might be promising to build massive data processing paradigm
on HPCs. Instead of DFS storage systems, HPCs use ded-
icated storage subsystem. We first analyze the performance
of MapReduce on dedicated storage subsystem. Results show
that the performance of DFS scales better when the number
of nodes increases; but, when the scale is fixed and the I/O
capability is equal, the centralized storage subsystem can do
a better job in processing large amount of data. Based on the
analysis, two strategies for reducing the network transmitting
data and distributing the storage I/O are presented, so as to
solve the problem of limited data I/O capability of HPCs. The
optimizations for storage localization and network levitation
in HPC environment respectively improve the MapReduce
performance by 32.5% and 16.9%.

Keywords-high-performance computer; massive data process-
ing; MapReduce paradigm.

I. INTRODUCTION

MapReduce [1] has emerged as a popular and easy-to-use
programming model for numerous organizations to process
explosive amounts of data and deal with data-intensive
problems. Meanwhile, data-intensive applications, such as
huge amount of web pages indexing and data mining in
business intelligence nowadays have become very popular
and are among the most important classes of applications.
At the same time, High Performance Computers (HPCs)
often deal with traditional computation-intensive problems.
Though HPCs are very powerful when dealing with scientific
computation problems, the architecture currently is not very
suitable for running MapReduce paradigm and processing
data-intensive problems.

There have been works done by improving MapReduce
performance under HPC architecture. Yandong Wang et al.
[3] improves Hadoop performance through optimizing its
networking and several stages of MapReduce on HPC archi-
tecture. Wittawat et al. [4] integrates PVFS (Parallel Virtual
File System) into Hadoop and compare its performance to
HDFS and studies how HDFS-specific optimizations can be
matched using PVFS and how consistency, durability, and

persistence tradeoffs made by these file systems affect appli-
cation performance. However, specific issues related to HPC
architecture, especially the dedicated storage subsystem, are
seldom taken into consideration in these former works. In
the storage aspect these works are oriented to distributed file
system (DFS) which uses local disks of each node to store
data blocks, and it is not relevant to the centralized storage
subsystem of the HPC architecture.

In this paper, alternatively, we consider every aspect
of the HPC architecture, including processor, networking
and especially the storage subsystem. In our work, the
differences of DFS and centralized storage subsystem are
analyzed in detail, and optimizations are proposed for the
storage subsystem specifically in HPC environment. The
prior concern of this paper is the deploying of MapRe-
duce paradigm on HPCs and its overall performance. First
of all, the difficulty and the significance of the Massive
Data Processing problem on HPCs is described, and the
necessity, feasibility, and problems that may be encountered
of deploying MapReduce Paradigm on HPCs are analyzed.
Secondly, the performance of MapReduce Paradigm on
HPCs, especially the I/O capability of the dedicated storage
subsystem and the DFS is analyzed and evaluated. Following
that, two optimization strategies for relieving the I/O burden
of the system and improving the performance of MapReduce
on HPCs are presented, due to the limited data I/O capability
of HPCs, which probably cannot meet the requirements of
data-intensive applications.

Several challenges exist for deploying MapReduce
paradigm and dealing with data-intensive problems effec-
tively on HPCs. Firstly, data blocks are distributed and
stored on DFS but centrally stored on the storage subsystem
of HPCs. Therefore, how to decrease data transmission in
advantage of the centralized storage in order to improve
performance is a great challenge. Secondly, the IO and
buffering capability of centralized storage is not as good as
DFS. How to relieve the burden of storage I/O and improve
the overall performance is another challenge.

This paper explores the possibility of building Massive
Data Processing Paradigm on HPCs, and discusses how to
deal with Massive Data Processing applications efficiently
on HPCs and how to improve its performance. The main

186Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 199 / 282

contributions are:
(1) The performance of MapReduce Paradigm on HPCs,

especially the I/O capability of the dedicated storage sub-
system specific to HPCs is analyzed. Results show that the
performance of DFS scales better when the number of nodes
increases, but when the scale is fixed, the centralized storage
subsystem can do better in processing large amount of data.

(2) Two strategies for improving the performance of the
MapReduce paradigm on HPCs are presented, so as to solve
the problem of limited data I/O capability of HPCs. The
optimizations for storage localization and network levitation
in HPC environment respectively improve the MapReduce
performance by 32.5% and 16.9%.

The paper is organized as follows: related works of HPCs
and data-intensive applications are discussed in Section II.
In Section III, the specific issues of running MapReduce
paradigm on HPCs are analyzed. Following that, in Section
IV, two optimization strategies for improving the perfor-
mance of the MapReduce Paradigm on HPCs are presented,
in order to solve the problem of limited data I/O capability of
HPCs, which probably cannot meet the requirements of data-
intensive applications. Then, the effectiveness of these two
optimization strategies is demonstrated respectively through
experiments in Section V. Finally, we give a conclusion in
Section VI.

II. RELATED WORK

MapReduce is a programming model for large-scale ar-
bitrary data processing. The model popularized by Google
provides very simple but powerful interfaces, while hiding
complex details of parallelizing computation, fault-tolerance,
distributing data and load balancing. Its open-source imple-
mentation, Hadoop [2], provides a software framework for
distributed processing of large datasets.

A rich set of research has been published on improving
the performance of MapReduce recently. Originally, the
Hadoop scheduler assumed that all nodes in a cluster were
homogeneous and made progress with the same speed.
Jiang et al. [5] conducted a comprehensive performance
study of MapReduce (Hadoop), concluding that the total
performance could be improved by a factor of 2.5 to 3.5 by
carefully tuning the factors, including: I/O mode, indexing,
data parsing, grouping schemes and block-level scheduling.
Zaharia et al. [6] designed a new scheduling algorithm,
Longest Approximate Time to End (LATE), for heteroge-
neous environments where ideal application environment
might not be available.

Ananthanarayanan et al. [7] proposed the Mantri sys-
tem which manages resources and schedules tasks on the
MapReduce system of Microsoft. Mantri monitors tasks and
culls outliers using cause- and resource-aware techniques
and Mantri improves job completion times by 32%. Y. Chen
et al. [8] proposed a strategy called Covering Set (CS) to
improve the energy efficiency of Hadoop. It keeps only a

small fraction of the nodes powered up during periods of
low utilization, as long as all nodes in the Covering Set are
running. The strategy should ensure that there is at least one
copy of all data blocks in the Covering Set. On the other
hand, Willis Lang et al. [9] proposed All-In Strategy (AIS).
AIS uses all the nodes in the cluster to run a workload and
then powers down the entire cluster. Both CS and AIS are
efficient energy saving strategies.

The closest work to ours is Hadoop-A as proposed by
Yandong Wang et al. [3] and Reconciling HDFS and PVFS
by Wittawat et al. [4] The former paper improves Hadoop
performance through optimizing its networking and several
stages of MapReduce on HPC architecture. It introduces an
acceleration framework that optimizes Hadoop and describes
a novel network-levitated merge algorithm to merge data
without repetition and disk access. Taking advantage of the
InfiniBand network and RDMA protocol of HPCs, Hadoop-
A doubles the data processing throughput of Hadoop, and
reduces CPU utilization by more than 36%.

The second one, Reconciling HDFS and PVFS, explores
the similarities and differences between PVFS, a parallel file
system used in HPC at large scale, and HDFS, the primary
storage system used in cloud computing with Hadoop. It
integrates PVFS into Hadoop and compare its performance
to HDFS using a set of data-intensive computing bench-
marks. It also studies how HDFS-specific optimizations can
be matched using PVFS and how consistency, durability,
and persistence tradeoffs made by these file systems affect
application performance.

Nonetheless, not every aspect of the HPC architecture is
taken into consideration. For example, previous works claim
that due to the price and the poor scalability of the cen-
tralized storage subsystem, disk arrays are not suitable for
massive data processing. So in these works they simply use
the DFS built upon local disks of each node. Consequently,
in this paper a thorough study of dealing with massive data
processing on the HPC architecture is given. The impact of
every aspect on performance is checked, including processor,
networking, and especially the storage subsystem.

III. SPECIFIC ISSUES OF MAPREDUCE ON HPCS

This section mainly evaluates performance of MapReduce
paradigm on HPCs through experiments and analyzes the
problems of running MapReduce paradigm on both HPCs
and clusters of commercial machines, especially the differ-
ences caused by the centralized storage subsystem and the
DFS.

When running MapReduce paradigm on HPCs, the input
and output data are stored in a dedicated storage subsystem
(mainly composed of disk arrays and a parallel file system).
Meanwhile, when running MapReduce paradigm on clusters
of commercial machines, the Distributed File System (DFS)
is responsible for managing the input and output data, and
the data is actually stored on local disks of each node.

187Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 200 / 282

Table I
CLUSTER I/O PERFORMANCE UNDER DIFFERENT SIZES (MB/S)

#nodes
DFS Storage Subsystem

Read Write Read Write

4 2,960 408 13,300 1,024

7 4,690 630 15,500 1,010

10 6,400 860 19,000 1,020

20 12,120 1,680 29,044 1,022

40 23,760 3,280 31,100 1,200

80 44,000 6,400 31,000 1,190

100 62,200 8,080 31,093 1,160

Note that the read & write throughput of the cluster is evaluated by the Hadoop
benchmark TestDFSIO. The throughput of 2,960, e.g., denotes that the cluster has a
throughput of 2,960 MB/s for read.

In order to analyze the performance of MapReduce
paradigm on HPCs, it is needed to compare its performance
with the performance of MapReduce paradigm on cluster of
commercial machines under the same scale. So experiments
in this section are divided into two groups: the first group
store input and output data on dedicated storage subsystem
of HPCs, representing the HPC computing environment. The
second group uses the same scale of nodes, and differences
are that the data is actually stored on local disks of each
node and the DFS is responsible for managing data storage.

Data-intensive applications are different from traditional
scientific computation applications. They need much more
data accessing I/O bandwidth (i.e., disk accessing I/O band-
width and network accessing I/O bandwidth) than computa-
tion resources. For I/O bandwidth is so important, the I/O
capacity of the cluster should be evaluated first.

First of all, cluster I/O performance under different
sizes is evaluated. Evaluation is done respectively in
a commercial cluster and under the HPC environment.
Nodes in these two clusters are the same, but during each
assessment the number of nodes increases. The size of
the DFS increases as the cluster scales, but the size of
the centralized storage subsystem stays all the same: the
dedicated storage system is composed of 167 600 GB fiber
channel disks, and managed by Lustre [11] parallel file
system. The I/O capacity of the cluster under different
scales is listed in Table I.

From Table I, we can see that the I/O performance of
DFS can improve linearly as the number of nodes increases.
This is because as the number of nodes increases, the
number of local disks in the DFS also increases. Under the
management of the DFS, the I/O performance of the cluster
can take advantage of all local disks to achieve aggregation
I/O bandwidth, bringing linear performance improvement.

On the other hand, for dedicated storage subsystem, its
I/O performance depends on the scale of disk arrays in
the storage subsystem, and is almost not relevant with the

Table II
MAPREDUCE PERFORMANCE UNDER DIFF. AMOUNT OF DATA

60G 80G 100G 120G 140G

DFS

1 2’42 2’57 6’45 10’22 18’22
2 3’16 6’06 7’55 12’17 15’34
3 2’43 6’22 11’49 17’38 15’49

Disk
Array

1 4’17 6’30 7’27 8’47 10’32
2 4’49 6’51 8’08 9’52 11’40
3 5’02 6’43 8’09 9’40 11’25

Note that the job finish time is evaluated by the Hadoop benchmark Sort with
different amount of data. The finish time of 2’42, e.g., denotes that the job was
finished in 2 min 42 sec. The size of both clusters is fixed with 10 nodes. Every job
is evaluated for three times.

number of computing nodes. As in the current experiment
the size of the storage subsystem is fixed, the I/O bandwidth
it can provide for all compute nodes is limited. Therefore,
we get Analysis 1: the scalability of DFS is better than
that of the centralized storage system. The performance of
DFS improves when the number of nodes increases, and
the performance of centralized storage improves only when
new disk arrays are added.

Secondly, the performance of these two clusters under
the same scale is evaluated. Table II describes MapReduce
performance under different amount of data when the
system is composed of 10 nodes and the I/O capability of
DFS and centralized storage is nearly equal. From Table
II, we can see that when the amount of data is small (less
than 100 GB), the MapReduce performance of the DFS
is better than the performance of the centralized storage
subsystem. On the contrary, When the amount of data is
large (more than 100 GB), the MapReduce performance
based on centralized storage subsystem becomes much
better. Besides the disadvantage in scalability of the
centralized storage, this phenomenon reveals an advantage
of the disk arrays and we get Analysis 2: when the DFS
and the centralized storage subsystem can provide equal
I/O capability, the disk arrays of the centralized storage
subsystem are better at dealing with huge amount of data,
compared to disks of the DFS.

In general, the experiments show that compared to the
computation resources, the I/O accessing bandwidth is a
valuable resource under HPC architecture and may has
great impact on the performance of MapReduce. Firstly,
the scalability of DFS is better than that of the centralized
storage system. Meanwhile, the cost of enlarging the
scale of centralized storage is much higher than that of
DFS. Secondly, an advantage of the centralized storage
is, the disk arrays are better at handling large amount of
data, compared to the DFS. Based on the above analysis,
optimizations for relieving the burden of I/O system and
improving the overall performance are proposed in the next
section.

188Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 201 / 282

IV. OPTIMIZATIONS OF MAPREDUCE PARADIGM ON
HPCS

Based on the analysis of Section III, designs for improving
the performance of the MapReduce Paradigm on HPCs are
proposed, in order to solve the problem of limited data
I/O capability of HPCs, which probably cannot meet the
requirements of data-intensive applications. Therefore, two
optimizations for relieving the burden of I/O system and
improving the overall performance, Intermediate Results
Network Transfer Optimization and Intermediate Results
Localized Storage Optimization, are proposed in this section.

A. Intermediate Results Network Transfer Optimization

Data blocks are distributed and stored on DFS but
centrally stored on the storage subsystem of HPCs. The
main idea of Intermediate Results Network Transfer
Optimization is to decrease data transmission in advantage
of the centralized storage in order to reduce the time cost
on networking and improve performance.

HPCs use dedicated storage subsystem and parallel
file system to provide storage services for all computing
nodes. DFS handle data blocks that is physically distributed
on disks of each node, and logically organize these data
blocks into a unified name space. On the other hand, when
using dedicated storage subsystem, the difference is that
data blocks are stored in disk arrays that are physically
centralized. Therefore, the Map Output Files (MOFs) in the
MapReduce paradigm are centrally stored in the storage
subsystem, not distributed on every disk of each node,
which brings possibility of optimizing network transmission
of MOFs.

On clusters of commercial machines, after the Map
phase of a MapReduce job finishes, the intermediate
results (MOFs) are stored locally on the disk of the Map
task execution node. At the Shuffle phase, all nodes that
execute Reduce tasks must get the MOFs from the Map
task execution node. So, these data blocks (MOFs) must
be transmitted over the network between nodes. At this
time, the MOFs are stored on distributed nodes, and their
network transmission is inevitable.

Different from MapReduce jobs on clusters of commercial
machines, these jobs on HPCs store intermediate results
in the dedicated storage subsystem. Therefore, in this
case, Map tasks just need to transmit the division and
storage information of MOFs to all Reduce tasks, and then
the Reduce tasks themselves are responsible for reading
the corresponding intermediate results directly from the
dedicated storage subsystem. Intermediate Results Network
Transfer Optimization is illustrated in Figure 1.

From Figure 1, we can see that after Intermediate
Results Network Transfer Optimization, Map tasks just
transmit the division and storage information of MOFs to

Figure 1. Intermediate Results Network Transfer Optimization

all Reduce tasks, and then the Reduce tasks themselves go
for reading the corresponding intermediate results directly
from the dedicated storage subsystem. This eliminates the
process of transmitting the intermediate results to Reduce
tasks over network and can relieve the networking I/O
burden of the system. If the network is the performance
bottleneck of the system, this optimization can improve the
overall system performance.

B. Intermediate Results Localized Storage Optimization

Compared to the networking I/O resources, the storage
I/O resources provided by the centralized storage system are
more likely to become the performance bottleneck of the
system. The main idea of Intermediate Results Localized
Storage Optimization is to distribute the storage I/O to both
the centralized storage and local disks of each computing
node. By storing temporary data files on local disks of
computing nodes, the I/O pressure of centralized storage
can be reduced greatly.

The I/O capability which the dedicated storage subsystem
can provide is limited by the size of the storage subsystem
itself. On the other side, when the MapReduce paradigm is
initially designed, the intermediate results (MOFs) are not
written to DFS, but stored temporarily on the local disk of
each node. We can learn from this design, and store the
intermediate results temporarily on the local disk of each
node to reduce data I/O pressure of the centralized storage
system.

Furthermore, as the dedicated storage subsystem of HPCs
is expensive and limited in scale, the capacity and I/O
capability of the storage subsystem often become a kind
of scarcer resources, rather than network I/O bandwidth or
computation resources. Then it is more urgent to relieve the
I/O pressure of the storage system, rather than to optimize

189Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 202 / 282

Figure 2. Intermediate Results Localized Storage Optimization

the data transmission over the network to improve the
performance of MapReduce paradigm on HPCs.

In view of this, we can learn from the practice of
distributed file systems, and buffer the intermediate results
locally. As MOFs are temporary files and belong to specific
jobs, and are usually deleted after the completion of their
corresponding job, buffering the MOFs locally does not
affect the correct execution of MapReduce jobs. At the
same time, buffering intermediate results locally can relieve
the burden of the centralized storage greatly. Intermediate
Results Localized Storage Optimization is illustrated in
Figure 2.

From Figure 2, we can see that the job input and output
data are read and written to the centralized storage, but the
intermediate results are no longer written to the centralized
storage. Instead, they are buffered locally on disks of each
computing node. Therefore, the I/O of the whole system is
distributed and the burden of centralized storage is relieved
greatly.

V. EVALUATION

Experiments are done respectively in a commercial
cluster and the HPC environment. The commercial cluster
and HPC environment both have 100 compute nodes, each
node has dual-way six-core 2.93 GHz Intel Xeon processors
and 50GB memory. In the commercial cluster nodes are
connected by 1 GB Ethernet. In HPC environment nodes are
connected by 40 Gbps optical fiber channel and InfiniBand
[10] network. The dedicated storage system is composed
of 167 600 GB fiber channel disks, and managed by Lustre
[11] parallel file system.

Three groups of evaluation are done in this section. First
of all, the scalability of the DFS and the centralized storage

Figure 3. The Performance Scalability of DFS and CS

is evaluated and compared. Then, the effectiveness of the
Intermediate Results Network Transfer Optimization and
the Intermediate Results Localized Storage Optimization is
demonstrated respectively, when the networking or storage
I/O becomes the performance bottleneck of the overall
system.

Firstly, the Terasort benchmark of Hadoop is run to
evaluate the performance scalability of DFS and centralized
storage. 100 GB data is sorted on 10 nodes and 1TB data
is sorted on 100 nodes respectively. And the networking
of both groups is 40 Gbps InfiniBand. The results are
illustrated in Figure 3. In Figure 3, DFS represents the
distributed file system and CS represents the centralized
storage. The total time cost is composed of the time cost of
three MapReduce phases: Map, Shuffle and Reduce.

From Figure 3, we can see that, when 100 GB data is
sorted on 10 nodes, the performance of DFS and CS is
nearly equal. But when the system scales, that is, when 1
TB data is sorted by 100 nodes, the performance of CS
is worse than that of DFS. As the computation hardware
and networking are the same, the differences come from
distinctive storage system. This validates our analysis in
Section 3: the scalability of DFS is better than that of the
centralized storage system. In fact, the cost of enlarging
the scale of centralized storage is much higher than that of
DFS, as disk arrays are much more expensive than simple
disks attached to computing nodes.

Secondly, the effectiveness of Intermediate Results
Localized Storage Optimization is demonstrated. The
same from above, 1 TB data is sorted on 100 nodes with
centralized storage, for the first time without optimization
and the second time with storage localization optimization.
The networking of both tests is 40 Gbps InfiniBand. From
the former experiments we can see that the performance
bottleneck of the overall system lies on the storage I/O.
After Intermediate Results Localized Storage Optimization,
the MOFs are not written to the centralized storage system
anymore, and it greatly relieves the pressure of the disk
arrays of the storage subsystem. The results are illustrated
in Figure 4.

From Figure 4, we can see that after storage localization

190Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 203 / 282

Figure 4. Validation of Intermediate Results Localized Storage Optimiza-
tion

Figure 5. Validation of Intermediate Results Network Transfer Optimiza-
tion

optimization, the time cost decreases greatly, especially
the time cost of Map phase. Because during Map phase,
it is not needed any more to write intermediate results
to the centralized storage, the performance of Map phase
improves a lot. In fact, the Intermediate Results Localized
Storage Optimization in HPC environment can improve the
MapReduce performance by 32.5%.

Thirdly, the effectiveness of Intermediate Results Network
Transfer Optimization is demonstrated. The same from
above, 1 TB data is sorted on 100 nodes with centralized
storage, for the first time without optimization and the
second time with network levitation optimization. But the
networking changes to 1 GB/s Ethernet this time, in order
to see the networking as performance bottleneck. The
results are illustrated in Figure 5.

Different from the former experiments, we can see from
Figure 5 that the performance bottleneck of the overall
system this time lies on both the networking and the
storage I/O. Note that if the 40 Gbps InfiniBand is used
this time, the networking would not be the bottleneck and
the Intermediate Results Network Transfer Optimization
would become useless.

Figure 5 shows that when the networking capability turns
into the bottleneck of the system, the Intermediate Results

Network Transfer Optimization in HPC environment can
improve the MapReduce performance by 16.9%. In fact,
only the Shuffle phase consumes the networking resources,
and the Intermediate Results Network Transfer Optimization
improves the performance of the Shuffle phase a lot. Most
data transmitted over network is MOFs, and after the
networking levitation optimization most network flow of
the Shuffle phase is eliminated.

VI. CONCLUSION

This paper aimed at exploring the possibility of building
Massive Data Processing Paradigm on HPCs. The perfor-
mance of MapReduce Paradigm on HPCs, especially the
I/O capability of the dedicated storage subsystem specific to
HPCs is analyzed. Two optimizations for storage localization
and network levitation in HPC environment respectively
improve the MapReduce performance by 32.5% and 16.9%.
The conclusion is that when the corresponding I/O capability
is the performance bottleneck of the overall system, these
optimizations can help improve MapReduce paradigm under
HPC architecture.

ACKNOWLEDGMENT

The authors are thankful to the anonymous reviewers. This
work was supported by NSF China grant 61133005.

REFERENCES

[1] J. Dean, and S. Ghemawat, “Mapreduce: Simplified Data
Processing on Large Clusters,” In Proc. of OSDI, 2004, pp.
137-150.

[2] Hadoop, http://hadoop.apache.org/, retrieved: May, 2012.
[3] Y. Wang, X. Que, W. Yu, D. Goldenberg, and D. Sehgal,

“Hadoop Acceleration through Network Levitated Merging,”
In Proc. of Super Computing, 2011, pp. 57-66.

[4] W. Tantisiriroj, S. Son, S. Patil, S. Lang, G. Gibson, and R.
Ross, “On the Duality of Data-Intensive File System Design:
Reconciling HDFS and PVFS,” In Proc. of Super Computing,
2011, pp. 67-78.

[5] D. Jiang, B. Ooi, L. Shi, and S. Wu, “The Performance of
Mapreduce: An In-Depth Study,” In Proc. of VLDB, 2010, pp.
472-483.

[6] M. Zaharia, A. Konwinski, A. Joseph, R. Katz, and I. Stoica,
“Improving Mapreduce Performance in Heterogeneous Envi-
ronments,” In Proc. of OSDI, 2008, pp. 29-42.

[7] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica,
Y. Lu, and B. Saha, “Reining in the Outliers in Map-Reduce
Clusters using Mantri,” In Proc. of OSDI, 2010, pp. 265-278.

[8] Y. Chen, L. Keys, and R. Katz, “Towards Energy Effi-
cient Hadoop,” In UC Berkeley Technical Report, number
UCB/EECS-2009-109, 2009.

[9] W. Lang, and J. Patel, “Energy Management for MapReduce
Clusters,” In Proc. of VLDB, 2010, pp. 129-139.

[10] IBTA, “InfiniBand Architecture Specification, Release 1.0,”
http://www.infinibandta.org/specs/, retrieved: May, 2012.

[11] Lustre Parallel Filesystem, “The Lustre Storage Architecture,”
http://www.lustre.org/, retrieved: May, 2012.

191Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 204 / 282

Providing a Solution for Live Migration of Virtual Machines in
Eucalyptus Cloud Computing Infrastructure without Using a Shared

Disk

Shayan Zamani Rad
Mazandaran University of Science and Technology

Computer Engineering and IT Department
Babol, Iran

sh.zamani@ustmb.ac.ir

Morteza Sargolzai Javan
Amirkabir University of Technology

Computer Engineering and IT Department
Tehran, Iran

msjavan@aut.ac.ir
Mohammad Kazem Akbari

Amirkabir University of Technology
Computer Engineering and IT Department

Tehran, Iran
akbarif@aut.ac.ir

Abstract— Today, cloud computing is used as a model in most
scientific, commercial, military, other fields. In this model, the
main body of the system are virtual servers, which currently
provide services to customers around the world. In these
circumstances, since the servers are virtual, they can be
transferred as a file from one machine to another, which is
known as migration. Migration practice is done for a variety of
purposes, including load balancing, fault tolerance, power
management, reducing response time, increasing quality of
service, and server maintenance. Because the use of this
technique is highly dependent on cloud computing
infrastructure architecture, in some cloud infrastructures, such
as Eucalyptus, the virtual machine migration technique has not
been used yet. In this paper, we propose a solution for VM
migration technique on Eucalyptus Cloud environment. The
experiments show the validity of the proposed solution in non-
shared disk Cloud environments, where the total migration
time and transferred data have been significantly increased.

Keywords-Eucalyptus; Cloud computing infrastructure;
Virtual Machine; Migration.

I. INTRODUCTION
Cloud computing has been considered as a new way of

providing Information Technology services to individuals
and organizations. In addition, given the increase tendency
of users and companies, academic and research centers
strive to provide solutions and new tools in the Cloud
computing. While commercial products are offered with the
goal of cost reduction and customer satisfaction,
productivity tools in academic centers are to discover new
solutions based on open source technologies. Eucalyptus is
an open-source Cloud-computing framework that uses
computational and storage infrastructure which is
commonly available to academic research groups to provide
a platform that is modular and open to experimental
instrumentation and study [

7]. One of the weaknesses in this
Cloud framework is the lack of virtual machine (VM)
migration technique. Given that migration technique is done
for different purposes, such as load balancing, fault

tolerance, power management, reducing response time and
increasing quality of service, server maintenance, etc.
Therefore, there is not any mentioned algorithm in
Eucalyptus. In this paper, we implemented migration
technique by presenting solution in the Eucalyptus and
establish a basis for providing other security and
management algorithms.

The rest this paper is organized as follow: In S

ection 2,
we will describe different migration methods.

In Section 3,
we examine the architecture of Eucalyptus with its
components.

In Section 4, we will describe the proposed
method. Finally, in

Section 5, we evaluate our methods.

II. RELATED WORKS
Currently, there are some works on the migration which

can be referred to Pre-copy method in [

2] [

3] [

4]. This
method has three steps for migration a Virtual Machine: in
the first step, the virtual machine memory pages are
transferred in several rounds and then, in step two, the virtual
machine CPU states are sent to the destination. After that in
step three, the memory pages in source and destination are
synched with each other.

Also, Hines and Gopalan [

5] present a Post-copy
technique with optimization methods. In [

6], the method of
CR/TR has been presented, which aims to send Logs file
instead memory pages toward the destination.

Considering the benefits of Pre-copy approach, this is the
main migration method, which is supported in most
Hypervisors such as XEN and KVM. Thus, we used Pre-
copy for sending memory pages and CPU states of virtual
machines. However, Pre-copy approach has some
shortcomings; one of these shortcomings is the lack of disk
migration (transfer) algorithm. Hence, we cannot use default
Pre-copy method in the non-shared disk environments,
because the virtual machine disk must be transferred.

In this condition, our method has a disk transmission
algorithm which is not dependent on the shared disk and can
be used in the above-mentioned environments. In addition,

192Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 205 / 282

use of Pre-copy and other migration methods in Eucalyptus
is impossible, because it has certain challenges; therefore, in
our method, these challenges have been solved and this is an
important difference between our method and that of others.

III. EUCALYPTUS
Eucalyptus is an open source implementation of Cloud

computing infrastructure that has a particular architecture.
By using Eucalyptus, we can make public and private
Clouds. The architecture of the Eucalyptus system is simple,
flexible and modular with a hierarchical design, reflecting
common resource environments found in many academic
settings. In essence, the system allows users to start, control,
access, and terminate entire virtual machines using an

emulation of Amazon EC2’s SOAP and “Query” interfaces

[7]. That is, users of Eucalyptus interact with the system
using exactly the same tools and interfaces that they use to

interact with Amazon EC2 [

8].

Figure

1. Eucalyptus Architecture [

7]

The Eucalyptus is composed of five main components

[7]:

 Cloud Controller (CLC): This component is

frontend of the infrastructure and through a Web
interface interacts with users and provides
possibility of controlling virtual machine.

 Walrus: It is a put/get storage service that

implements Amazon’s S3 interface, providing a
mechanism for storing and accessing virtual
machine images and user data.

 Cluster Controller (CC): This component is
responsible for the management of one or more
node controllers. It also manages and sends the
order of running of the instances on them. In
Eucalyptus, Virtual Machine is known as Instance.

 Storage Controller (SC): This component provides
virtual disks for instances, allowing them to

permanently store and keep the information. This is
very similar to the EBS service.

 Node Controller (NC): It controls the execution,
inspection, and terminating of VM instances on the
host where it runs.

The Eucalyptus architecture and its components are
shown in

Figure 1.

IV. CHALLENGES
There are some challenges in implementing the migration

technique in Eucalyptus Cloud Infrastructure. These
challenges do not allow to implementing ordinary VM
migration methods; in fact, these challenges are the
properties of Eucalyptus.

A. Clearing the Instance Data after Turning it off
In Eucalyptus, when the instance is turned off even

temporarily, its information would be completely removed
from CC, NC and CLC. However, the instance would enter
in suspend mode

for a short time (60 milliseconds) in all
migration methods.

B. Operations Management is Performed by CLC
All operations and activities must be performed under the

CLC and the CC, and if any actions get implemented without
these two components, the structure of Eucalyptus will
change. But, in all migration methods, migration operations
are done under the hypervisor. Now, the NC and the
hypervisor are executive components in Eucalyptus, and all
operations will report to the higher administrative units.

C. Lack of Shared Disk
In most migration methods, the disk of virtual machine is

considered as a shared disk that is the source and destination
hypervisors have access to it. Therefore, during the migration
process, only memory pages and CPU states are displacing,
but if there is no shared disk available in Eucalyptus, the disk
must be transferred when moving a VM.

D. Some Common Mistakes
In Eucalyptus, when instances are displaced, some

information must be updated and changed, e.g., available
resources, the number of being established instances, the
number of running instances, etc. If any of this information
has incorrect content, Eucalyptus performance and overall
cloud would decrease and its structure might be out of
control.

E. Instance Death Zone Time
In Eucalyptus, if the running instance cannot send any

response (heart beat) to NC in ranged 20 to 24 seconds for
any reasons, CLC will assume that instance is terminated.
Then, CLC release it from the list of running instances and
delete all information about it. Consequently, API functions
will not be used for this instance, because the CLC would
not know an instance with this name. Therefore, migration
operation should be less than the mentioned time period
which we have named it the “Instance Dead Zone Time”.

Cluster B Cluster A

CLC and Walrus

Public
Network

CC

SC
Private

Network

N
C

N
C

N
C

N
C

CC

SC
Private

Network

N
C

N
C

N
C

N
C

193Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 206 / 282

V. SYSTEM ARCHITECTURE
In Eucalyptus, all commands are issued by the CLC, and

the CC and NC behave as an observer and a worker
(commands runner), respectively. Furthermore, the user
(client) and cloud administrator input their requests to the
CLC through running API functions. Therefore, in order to
create the migration capability in Eucalyptus, we first
created an API function that is responsible for the migration.
This function has the following format:

euca-migrate-instance -i instance_id –d destination_node

Through running euca-migrate-instance API, first, the
CLC finds node’s IP address that the instance is currently
running there. Then, these three values are transferred to
the related cluster controller (where the cluster is running

the instance). Figure 2 shows the process in the CLC.

Figure

2. CLC with defined API Function

After CC’s stub receives commands, it checks the
needed resource amounts and makes decisions about
sending migration command to the appropriate nodes.

After sending the migration command from CC to source
node (NC), created stub in the NC receives related

information (Figure 3). Next, it tries to communicate with
the destination node and its hypervisor. After establishing
relations, the source hypervisor would send memory pages
and CPU states with uses Pre-

copy method (Figure 4). After
a few seconds, the migration process ends. Now, the instance
is running on the destination node. Finally, the instance’s
information must be updated on the source and destination
NCs, the CC and the CLC.

Figure

3. Relationship of CC and NC through stubs

At this point, the destination NC updates instance’s

information, which is running on it. Afterward, source NC
removes instance’s name and information from the own list
of running instances. Next, the CC updates its information
and changes instance location. This change causes the
following executive orders to be sent to the destination NC.
These orders include terminate, reboot, attach and detach
volumes to instance.

Figure

4. Relationship between Source and Destination NCs for Migration
Operation

A. Disk Transfer Algorithm
In Eucalyptus, if there is no available shared disk, when

the instance is migrated, its disk must be transferred. So, if
the Xen hypervisor [

9] is used without any changes for
instance migration, instance moves with memory in
destination node and its disk is located in source node. As a
result, this is a fault in migration process. Therefore, it must
be used an algorithm to transfer instance’s disk. This
algorithm must be written within the hypervisor. At the
beginning of migration process, exactly before transferring
memory pages and CPU states, the instance’s disk must be
transferred to the destination node. In fact, transmission of
disk blocks lasts usually much longer than the transferring
memory pages and CPU states. Thus, the disk transfer must
be done before memory pages and CPU states transfer

Source Node Controller

Migrate
Instance Stub

Cluster Controller

Migrate Instance
Stub

Instance ID: xxxxxxxx
 Destination Node:xxx.yyy.zzz.www

Source Node Controller

Migrate Instance Stub

Xen Hypervisor

 (1)VM ID:
xxxxxxxx

Destination Server:
xxx.yyy.zzz.www

Destination Node Controller

Migrate Instance Stub

Xen Hypervisor

 (2)Migrate
Memory Pages
in Iteratively
Rounds

 (3) Suspend VM,
Transfer Dirty
Memory Pages +
CPU States

 (4)VM
Resume,
Update Info’s Cloud Controller

Cluster Controller

 Instance ID = xxxxxxxx
 (2) Source Node IP = aaa.bbb.ccc.ddd

 Destination Node IP = xxx.yyy.zzz.www

 (1) euca-migrate-instance -i xxxxxxxx -d
xxx.yyy.zzz.www

Admin

194Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 207 / 282

begin. In the following, we illustrate our proposed disk
transferring algorithm:

Pseudo-code of Disk Transfer Algorithm

Also, we have used LZO

[10] compression algorithm in
our disk transfer algorithm presented. The disk blocks in the
source node are compressed before transmission. And then,
they are sent to the destination node to be decompressed.
This action causes optimal use of available bandwidth and
also the data will be transferred in much less time than it is
usually the case

(without compression). Figure 5 shows the
steps of our migration method.

Figure

5. Steps of our migration method

VI. IMPLEMENTATION AND EVALUATION
In Eucalyptus environment, each running instance gives

service to one or more customers; so, in instance migration
process, the total migration time, network throughput and
response time (to customers) are very important and must be
evaluated. We could use other experiments such as disk
performance evaluate (with the bonnie++ benchmark), but
when the instance’s disk must be transferred, this evaluation
would not be helpful. We used two scenarios to evaluate our
migration technique with above criteria. Each experiment
was performed three times and average values were
recorded.

A. Evaluation Environment
In order to implement Eucalyptus components and create

a Cloud environment, we used two machines with AMD

Quadro Core 800 MHz processor with disk capacity 500 GB

and

8GB memory as NCs. Furthermore, we installed Xen

3.4 hypervisor on the NCs. Also, we have a machine with

Intel Core2

Duo 2.66GHz CPU,

320 GB

disk capacity and 4
GB of memory as CLC and CC. These three machines are

connected through a LAN network with 100 Mbps
bandwidth. The migration operation is performed on the
instance; it has one vCPU,

2GB disk space with 128 MB
memory. On all components, the

Linux Centos 5.6 OS is
also installed. You see evaluation

environment in Figure 6.

Figure

6. The Cloud Implemented Environment

B. First Test: Network Throughput
In the first experiment, we evaluated the network

bandwidth of instance during migration in terms of
throughput. In this test, we have used Netperf benchmark,

version 2.5.0 in order to measure the network bandwidth in
normal conditions (not using migration technique) and when
the instance is migrating. You see the test results in Figure

7. As one can see in the figure, when the instance is
suspended and moved from origin to destination, throughput
rate of the network is reduced by half.

Figure

7. The Throughput of the Network during Instance Migration

C. Second Test: Response Time
The aim of this test is to evaluate response time to

incoming requests by the instance during the migration
operation. In this test, the instance functions as a server that
provides a service to the users and begins migrating from a
place to another place.

CLC
(192.168.1 0 .1)

CC
 (192.168.1 0 .1)

Source NC
 (192.168.1 0 .2)

Instance

Destination NC
 (192.168.1 0 .3)

Walrus

 1. for i=min to max (number of disk blocks)
 2. Begin to Transfer Blocks
 3. if I/O Request is coming and I/O = WRITE then{
 4. block-bit map[i] = 1}
 5. While bock- bitmap[i]=1 {
 6. Transfer Dirty Blocki to Destination}
 7. End

Compress Disk Blocks with LZO and Transfer Them to
Destination Node

Iteratively Transfer Memory Pages to Destination
Monitor VM Write Operation to Record Dirtied Pages

Suspend VM on Source Node
Synchronize Memory Pages(Transfer Dirtied Pages) and

Transfer CPU States

Resume VM on Destination Node
Synchronize Disk Blocks

Remove Instance’s Disk and other Data’s from Source Node

195Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 208 / 282

Figure

8. Response Time to Incoming Requests during Instance Migration

The results of this test have been shown in

Figure 8. At
first, when the migration process is starting, disk blocks
compress. Afterward, disk transfer starts in

second 65 and
end on

second 156. Now, destination node decompresses
received disk blocks and then sends a message based on
preparing to receive memory pages to source node. Next, in
second

220, the operation of transferring memory pages is
started. After a few seconds,

in second 237, the instance was
entered in suspend state. Now, memory pages and CPU
states are transferred to destination. After a few seconds, in

second 242, instance will resume working on the destination
node and synchronization operation of disk blocks between
source and destination was bega

n from second 243 to

280.

VII. CONCLUSION
In this paper, we proposed a way to implement the

migration of virtual machines on Eucalyptus Cloud
Infrastructure. As mentioned, Eucalyptus has a unique
architecture; thus, our method should be compatible with this
architecture, so our main purpose is compatibility.
Considering that there has been no migration feature in this
cloud environment yet, other management features and
algorithms such as load balancing and power management
have not been implemented. Through using the method, we
provided the field with further development and
empowerment of the Cloud environment, and paved the way
for the creation of more powerful algorithms in future.

REFERENCES
[

1] Sh.Z. Rad, M.S. Javan, and M.K, Akbari, “A survey on virtual
machine migration methods and performance evaluations”,
First CSUT Conference on Computer, Communication,

Information Technology (CSCCIT), Tabriz, Iran, 2011.
[

2] C.P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M.S. Lam,
and M. Rosenblum, "Optimization the migration of virtual

computers", In Proceeding of 5th USENIX Symposium on
Operating Systems Design and Implementation (OSDI-

02),

December 2002.

[

3] C. Clark, K. Fraser, S. Hand, J.G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield, “Live migration of virtual machines”,
In Proc. of the second USENIX Symposium on Networked
Systems Design and Implementation (NSDI), Boston, MA,

USA, May 2005.
[

4] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schioberg,
“Live wide-area migration of virtual machines with local
persistent state”,

VEE’07, June 2007.
[

5] M. R. Hines and K. Gopalan, “Post-copy based live virtual
machine migration using adaptive pre-paging and dynamic self-
ballooning”

, Proceeding of the 2009 ACM SIGPLAN/SIGOPS
International Conf. on Virtual Execution Environments,
Binghamton University (State University of New York), Feb

2009.
[

6] H. Liu, H. Jin, X. Liao, L. Hu, and C. Yu, “Live migration of
virtual machine based on full system trace and replay”, in

Proceedings of the 18th International Symposium on High

Performance Distributed Computing (HPDC’09), 2009,

pp.101–

110.
[

7] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff, and D. Zagorodnov, “Eucalyptus open source
Cloud-computing system”,

In CCA08: Cloud Computing and
Its Applications,

2008.
[

8] Amazon Elastic Compute Cloud

(Amazon EC2),

http://aws.amazon.com/ec2/, [retrieved: May,

201

2].
[

9] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. “Xen and the art of
virtualization.”

In SOSP ’03: Proceedings of the nineteenth

ACM symposium on Operating systems principles, pages 164–

177, New York, NY, USA, 2003. ACM.
[

10] M.F.X.J. Oberhumer, “LZO – a real-time data compression
library”, http://www.oberhumer.com/opensource/lzo/,
[retrieved: May,

201

2].

196Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 209 / 282

Proactive Performance Optimization of IT Services Supply-Chain Utilizing a
Business Service Innovation Value Roadmap

Short Paper for a work-in-progress
Ethan Hadar

Corporate Technical Strategy,
Distinguished Engineer
Senior Vice President
CA Technologies, Inc.

Herzelia, Israel
ethan.hadar@ca.com

Jason Davis
Sr Principal Services Architect

CA Technologies, Inc.
Berkshire, GB

jason.davis@ca.com

Donald F. Ferguson
Chief Technology Officer,

Distinguished Engineer
Executive Vice President

CA Technologies, Inc
New York, NY

donald.ferguson@ca.com

Abstract— Business investment in IT is increasingly linked
to IT delivering new or enhanced services that leverage the
capabilities of the cloud. The challenge that IT faces
especially in cloud environment, is to continuously assess
and proactively optimize the performance and quality of
supporting IT services being delivered. This evaluation
must be performed in the context of the overall Service
Level Agreements (SLA) of the composite application and
subsequently, the underlying dynamic compound IT
services. Our paper presents a proactive optimizer solution
that provides on-going service improvement driven by the
regular evaluation alternatives of the performance if
individual services. Through a Business Service Innovation
value roadmap, the Enterprise Architect can model and
assemble candidate services for composite applications and
automatically use tools to deploy and assure the
performance of the composite application. Using our
solution, over time the architect can manage the composite
application by comparing the quality delivered against
simulated alternatives and make recommendations for
change. Consequently, using the solution presented in this
paper, IT changes are aligned to the challenge to leverage
the constantly improving quality of supply-chain IT service
while maintaining or reducing costs.

Keywords: Business Service Innovation; cloud
optimization; cloud quality; IT services supply-chain

I. INTRODUCTION
In cloud computing, competition among service

providers is affecting the flexibility and dynamics of
possible combinations of underlying services within the
IT Service supply-chain. This flexibility enables
proactive, predictive optimization for both cost reduction
and revenue increase [4] of the underlying supporting
services.

Business transactions flow through the composite
application underlying services and supporting hardware
and software resources. Leveraging cloud computing,
these services can conceptually be replaced with smart
self-service and automation tools [5].

The composite application owner’s challenge is to
constantly innovate and improve their business service

quality while reducing cost. The owner can achieve this
goal by proactively adapting and optimizing the
composite application’s underlying supply-chain services,
and composite IT systems. The optimization
recommendations are considered based on qualified and
quantified metrics. Through frequent recalculation, this
dynamic adaptation can drive down Operational and
Capital Expenditure (OPEX and CAPEX), raise Service
Level Agreements (SLA) quality, and adhere to increased
security and privacy compliance needs [1][7].

This paper suggests a system that assists the Enterprise

Architect in replacing existing IT supply-chain cloud
services according to business needs. The suggested
refactoring changes (replacements) to existing IT services
and process are based on configured goals for improving
internal SLA. The system utilizes services from internal
and external, private and public clouds (SaaS, PaaS and
IaaS).

Section 2 of this paper presents the conceptual
lifecycle framework, the Business Service Innovation
upon which our system is structured. Section 3 presents
the value for consumers and users of our solution. Section
4 details the necessary conceptual elements, followed by
Section 5 that describes the technical modules that
implement this solution. Section 6 highlights the value of
our solution with associated needs for extensions and
future work.

II. STATE OF THE ART
In previous work, we proposed a data store that

contains normalized metrics of the services quality based
on a Complex Event Processing (CEP) engine [3].

The CEP system is extended in this paper into the
“proactive performance optimizer” solution that compares
and proposes alternatives to the underlying services of the
IT supply-chain. The proposed system’s main principles
follow a predetermined Business Service Innovation value
roadmap (Figure 1), which structures our systems’
management steps.

197Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 210 / 282

The Business Service Innovation steps are Model-
Assemble–Automate-Assure and overall Manage the
evolution, interwoven with IT Security.

The detailed steps are:
1. Model and Assemble a list of applied service

elements (composite IT systems and composite
applications), and present alternative options to
the supporting supply-chain services (candidate
services).

2. Automate the deployment and Assure the quality
all underlying services (the ones that participate
in the composite application, as well as the
candidate services that are not currently part of
the composite applications but could replace an
existing service.)

3. Manage, regularly evaluate the quality and
indicate/highlight if an alternative candidate
service is superior to the one currently in use, as
compared to predefined filter and search criteria.

4. Return to the first step, and accept or reject
(manually or automatically) the recommended
changes by remodeling the change.

Less common proactive optimization for reducing
costs will be to replace a single element with high
performance attributes that have a high cost, due to the
nature of the high quality SLA, with a lower quality one.
This might be the case when this instance (service) is
coupled with other transactions, which have a much lower
aggregated SLA due to other services and components.
The overall SLA is the lowest common denominator,
therefore paying a high price for a quality service that
does not get used could be considered wasteful.

This example illustrates just one dimension of
optimization, in which the cost alternative of the
underlying services that participate in a composite
transaction can be replaced at any given point in time.

Naturally, there are many other dimensions for
proactive optimization such as increasing availability,
improving load, increasing speed for change, better
robustness and more. Compliance and liability as well as
and insurance coverage are additional examples for
improvement and replacement [6].

III. THE SYSTEM VALUE
Unlike existing process and composite application

design systems that structure a service or a process from a
stable state environment point of view, the proposed
system constantly improves and evolves a flexible
business process. The system operates in a cloud-
computing environment that is categorized by a changing
environment and service composition possibilities, due to
an open market and ease of change. In addition, the
proactive optimization system is applicable for non-cloud
services as well, and offers the same solution in a system
that does not change as often as cloud alternative.

Figure 1: Business Service Innovation value roadmap of the

proactive optimizer.

Thus, the proactive optimization of cloud service

performance aspects provides several unique value
propositions.
• Ongoing suggestions for changes to existing well-

designed solutions that could be improved through
modifications to underlying services (proactive
optimization).

• Notifying the designer of plausible alternatives for
existing consumed services.

• Improvement of a monitored service which may be
applicable for a certain customer, but considered
inappropriate for a different customer due to
consumer-specific SLA and quality goals.

• The solution couples the abilities to monitor and
compare thresholds of public cloud services (or any
service for that matter) with predetermined service
levels of consumers, as well as scanning alternative
similar services for optional replacements.

• Apply an agile approach for regular incremental and
iterative improvement of processes composite
applications in production.

• Rationalize the change of the entire portfolio of
composite application based on an overall
aggregated quality rather than on the underlying
single service.

IV. CONCEPTUAL STRUCTURE
This paper presents a refactoring service that

continuously monitors possible underlying IT services
within the context of a supply-chain of IT services,
supporting a composite application. Based on complex
event processing (CEP) and predefined threshold metrics,
refactoring service triggers assessment of the suggested
changes to the optimized services. The system’s main
modules are SLA thresholds and triggers, and the
detection of needed/recommended change.

198Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 211 / 282

A. SLA Thresholds and Triggers
The SLA’s that are associated with the supplied

services that are part of the overall composite application
determine the level of aggregated service or SLA that can
be achieved. Improvement of the SLA for an overall
service is driven by the SLA’s or OLA’s (operation level
agreement) that relate to the underlying service. The
system can either monitor a single most impactful
supplied service as a candidate for improvement, or,
monitor the overall SLA/OLA [6] with a mathematical
weighting of the individual contribution of each supply-
chain IT service. With a focus on improving the overall
service, rather than a single service, the system provides a
mechanism that allows the user to set goals for SLA
improvement on the overall composite application, and
sub-divide it in to the internal services derived
OLA/SLA/goals. In the case of self-adaptation, these rules
will trigger a suggestion for a change to a service, in the
form of a Change Recommendations or external Service
Design process.

B. Detection of change in Quality of Service using
Complex Event Processing
The Complex Event Processing engine continuously

scans internal and external clouds for detection of quality
changes to composite elements such as SaaS, IaaS or
PaaS that make up an overall composite application.
These monitoring tools for service assurance scan for
alternatives for improved metrics values.

Once data is collected, the CEP [3] system correlates
the information gathered using specific formulas to
determine the overall improvement or degradation of
quality of service that is being delivered.

C. What-if modeler
For each of the proposed alternatives, an aggregated

overall potential SLA is presented. Several of these
alternatives can be presented and maintained in the
modeler component that captures the structure of the
composite application, presenting, over time, the trends
and possible quality levels.

V. IMPLEMENTATION STRUCTURE
This section presents the implementation modules and

a prototypical usage scenario to the solution according to
the Business Service Innovation value roadmap (Figure
2).

A. The implemenation modules

The participating modules [2] are:

• CA AppLogic - constructs and test composite IT

systems that support the composite application.
The module defines the architecture structure and
IT system physical dependency, load balancing,
and network configurations.

• CA Service Operations Insight (CA SOI) –
monitors internal cloud services and implements

the CEP system. This module also defines the
behavioral dependency of the supplied services
and measured SLA/OLA.

• CA Application Performance Management Cloud
Monitor (CA APM) - monitors external cloud
services.

• CA Business Service Insight– presents alternative
suggestions for change based on measured
reported metrics of the vendors as well as
aggregated statistics based on surveying users.

• CA Automation Suite for Clouds – automates the
changes in infrastructure provisioning and
capacity.

• CA IT Process Automation Manager (CA
ITPAM) – supports automation of changes in
more complex structures, triggering federated
identity provisioning, or incident management.

• CA Performance Optimizer - providing
preconfigured optimization capacity changes to
private datacenter (for infrastructure services).

B. A prototypical usage scenario

In order to realize the connectivity between the
modules, consider prototypical activation by an Enterprise
Architect.

In this scenario, the enterprise architect selects
services, denoted as “atomic services” for use in the
composite applications. The services are selected from a
list in CA APM Cloud Monitor and CA Business Service
Insight (external services) and from a list of infrastructure
components (CA AppLogic). The infrastructure services
are combined using the CA AppLogic modeler. The
integrated external IT services are mapped on a behavioral
model presented, and later on monitored, by the CA SOI
modeling tool. The structure of CA SOI Composite
Application model and the CA AppLogic Composite IT
System model defines what underlying services are
candidates for changes.

 These replaceable services are frequently compared
with other options that provide the same conceptual
service, yet, currently provide worse SLA, or cost more.
CA APM Cloud Monitor and CA Business Service
Insight provide the list of compared services.
A comparative “what-if” structure of a potential
alternative to the composite application is calculated using
a simulator instance of CA SOI behavioral model. Note
that this is not the production system version of CA SOI,
rather a testing system. In this case CA SOI a combination
of production services as well as alternative underlying
services. The Enterprise Architect defines the candidate
services that can be considered for replacement, and limits
the search space for design alternative. A fully opened
optimization is not practical, due to contractual
limitations, as discussed in the next section.

On a regular basis, the overall SLA for the composite
application is calculated for the production composite
application, and is constantly compared to the candidate

199Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 212 / 282

composite application in which some of the supply-chain
services are allowed to change. For every permutation
possible, a relative aggregated SLA is presented to the
Enterprise Architect, over time.

Figure 2 – Proactive optimizer Business Solution Innovation

implementation modules.

If over a predefined interval the comparison shows

improvement, change automation tools can implement an
architect approved change using either CA Cloud
Automation suite or ITPAM.

Accordingly, this procedure is repeatable, assuming
services are added or removed, as captured on the
contractual agreements defined in CA Business Solution
Insight.

VI. DISCUSSION AND CONCLUSION
We presented our work-in-progress that provides a

proactive optimization solution for enabling ongoing
replacement of IT services in cloud environments.
Activated according to a Business Service Innovation
value roadmap, the solution leverages SLA performance
measurements of existing production level applications
and their underlying composite IT systems, compared
against simulated and monitored alternatives.
Consequently, our implemented solution reduced costs
and/or improved quality, thereby addressing the
challenges of the enterprise architect while providing the
business rational for the change. If the change may be
applicable to other situations, automation tools can
activate the change over dynamic and elastic cloud
environments.

However, change typically has associated cost and risk
factors that can impact production systems. As a result,
change activation should be performed only if the costs
savings or ROI is higher and associated risk is lower than
the existing state. With pure dynamic resource allocation
management over virtual environments, these
considerations can be eliminated.

The system does have its limitations; the
computational change is not a complex optimization
problem as it may be considered. The reason is that not all
of the supply-chain IT services can change due to
contractual agreements and limitations of liability.
However, the complexity is noticeable when overall
balancing of all the composite applications in the
enterprise are considered, in particular in the domain of
mashup and situational applications. Our future research
work involves handling optimization for composite
situational applications for the entire enterprise.

Even more, optimization is subjective to each
customer, based on financial and quality based needs.
Different internal consumers may require different service
levels. As a result, the ability will be to best match a given
SLA required level with supporting provider, changing
the proactive optimization to a matchmaking algorithm or
better yet, feasibility constraints target function.

Our future work is focusing on providing
matchmaking optimization within feasibility box-
constraints for assigning the best available supply-chain
services

VII. REFERENCES
[1] Blum D., Schacter P., Maiwald E., Krikken R., Henry T., Boer

M., and Chuvakin A., “2012 Planning Guide: Security and Risk
Management”, G00224667, Burton IT1 Research, 1 November
2011

[2] CA Web site for tools and products,
http://www.ca.com/us/products.aspx, last accesed on May 10
2012

[3] Gal A. and Hadar E., book chapter: “Generic Architecture of
Complex Event Processing Systems”, in “Handbook of Research
on Advanced Distributed Event-Based Systems,
Publish/Subscribe and Message Filtering Technologies”, edited
by Annika Hinze and Alejandro Buchmann, IGI Global press,
2009

[4] Ferguson D.F. and Hadar E., “Optimizing the IT business supply
chain utilizing cloud computing”, The 8th International
Conference on Emerging Technologies for a Smarter World
(CEWIT2011), page 1-6, Hyatt Regency Long Island,
Hauppauge, New York, November 2-3, 2011.

[5] Hadar E., Connelly K., and Lagunova O., “Agile Evolution of
Information Systems Using Model Driven Architecture of IT
Services”, Proceeding of the “Architecture in an Agile world”
workshop, October 25, OOPSLA 2009, Orlando, Florida, US,
2009

[6] Hadar E. and Danielson D.J., “Certified IT services in a box for
cloud computing environments”, CLOSER 2012, 2nd
international conference for cloud computing and service
sciences, Porto, Portugal, 18-21 April 2012.

[7] Hadar E., Hadar I. and Ferguson D.F., “QDSL - Quality Domain
Specific Language for cloud composite applications”, CLOSER
2012, 2nd international conference for cloud computing and
service sciences, Porto, Portugal, 18-21 April 2012.

200Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 213 / 282

Load Balancing in Cloud Computing Systems Through Formation of Coalitions in a
Spatially Generalized Prisoner’s Dilemma Game

Jakub Gasior
Systems Research Institute, Polish Academy of Sciences

Warsaw, Poland
E-mail: j.gasior@ibspan.waw.pl

Franciszek Seredynski
Polish-Japanese Institute of Information Technology

Warsaw, Poland
E-mail: sered@pjwstk.edu.pl

Department of Mathematics and Natural Sciences
Cardinal Stefan Wyszynski University

Warsaw, Poland
E-mail: sered@pjwstk.edu.pl

Abstract—The efficiency, in terms of load balancing and
scheduling problems as well as security of both communication
and computation processes, belong to the major issues related
to currently built cloud computing systems. We present a
general framework to study these issues and our research goal
is to develop highly parallel and distributed algorithms working
in environments where only local information is available. In
this paper we propose a novel approach to dynamic load
balancing problem in cloud computing systems. The approach
is based on the phenomena of self-organization in a game-
theoretical spatially generalized Prisoner’s Dilemma model
defined on the two-dimensional cellular automata space. The
main concept of self-organization used here is based on the
formation of temporal coalitions of participants (computational
nodes) of the spatial game in the iterative process of load
balancing. We present the preliminary concept design for the
proposed solution.

Keywords-Cloud computing; Cellular automata; Load-
balancing; Spatial prisoner’s dilemma.

I. INTRODUCTION

Cloud computing is one of the emerging developments in
distributed, service-oriented, trusted computing. It offers the
potential for sharing and aggregation of different resources
such as computers, storage systems data centers and dis-
tributed servers. The goal of a cloud-based architecture is to
provide some form of elasticity, the ability to expand and
contract capacity on-demand. That means there needs to be
some mechanism in place to balance requests between two
or more instances of client’s applications. The mechanism
most likely to be successful in performing such a task is a
load balancer.

It provides the means by which instances of applications
can be provisioned automatically, without requiring changes
to the network or its configuration. It automatically handles
the increases and decreases in capacity and adapts its distri-
bution decisions based on the capacity available at the time
a request is made.

In this paper, we consider the aspect of effective load
balancing, i.e., the process of distributing the load among

various nodes of a distributed system to improve both
resource utilization and job response time. The load can
be defined as CPU load, memory capacity, delay, network
load, etc. We formulate a purely theoretical conceptual
model defined as follows: given a set of virtual resources
in the Cloud (M1,M2, ...,Mn), a number of cloud clients
(U1, U2, ..., Uk) and a random set of applications (also jobs
or tasks) run by the clients (J1, J2, ..., Ji), find such an
allocation of jobs to the resources to equalize the system
workload [1].

We are interested in parallel and distributed algorithms
working in environments with only limited, local informa-
tion. Therefore, we propose a game-theoretical approach
combining a spatially generalized Prisoner’s Dilemma (SPD)
model and the cellular automata (CA) paradigm. Each
computational node is presented as a selfishly rational agent.
Such a problem formulation is alike to a CA in the sense that
the strategy first determines the rule based on the neighbors’
configuration and the rule in turn determines the next action
[2].

Competing players in such a system should act as a
decision group choosing their actions in order to realize a
global goal. Main issues that must be addressed here are: a)
incorporating the global goal of the multi-agent system into
the local interests of all agents participating in the game;
and b) such a formulation of cellular automata’s local rules,
that will allow to achieve those interests [12].

The paper is organized as follows. The following section
presents the basic concepts of spatial Prisoner’s Dilemma
game and cellular automata theory. Section 3 presents our
mathematical model of cloud computing system. Section
4 details the load-balancing algorithm from the game the-
oretical point of view. Finally, Section 5 provides some
concluding remarks.

II. PRISONER’S DILEMMA AND CELLULAR AUTOMATA

The concept of the evolution of cooperation has been
successfully studied using various theoretical frameworks.

201Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 214 / 282

Table I
A GENERAL PRISONER’S DILEMMA PAYOFF MATRIX

Cooperate Defect
Cooperate (R,R) (S,T)

Defect (T,S) (P,P)

In particular the Prisoner’s Dilemma (PD) is one of the
most commonly employed games for that purpose, a type of
non-zero sum game played by two players who can choose
between two moves, either to cooperate with or defect
from the other player. The problem is called the prisoner’s
dilemma, because it is an abstraction of the situation felt
by a prisoner who can either cut a deal with the police and
tell on his partner (defect) or keep silent and therefore tell
nothing of the crime (cooperate). While mutual cooperation
yields the highest collective payoff, which is equally shared
between the two players, individual defectors will do better
if the opponent decides to cooperate. The key tenet of this
game is that the only concern of each individual player is to
maximize his payoff during the interaction, which sets the
players as naturally selfish individuals.

The dilemma arises when a selfish player realizes that
he can not make a good choice without knowing what the
opponent will do. Non-zero sum describes a situation where
the winnings of one player are not necessarily the losses of
the other [4]. As such, the best strategy for a given player is
often the one that increases the payoff to the other player as
well. Table I shows a general payoff matrix, which represents
the rewards an entity obtains depending on its action and
the opponent’s one. In this matrix, T means the Temptation
to defect, R is the Reward for mutual cooperation, P the
Punishment for mutual defection and S the Sucker’s payoff.
To be defined as a PD, the game must accomplish the
condition T > R > P > S.

This payoff structure ensures that there is always the
temptation to defect since the gain for mutual cooperation
is less than the gain for one player’s defection. The out-
come (D,D) is therefore a Nash equilibrium - despite the
knowledge and awareness of the dilemma, both players opt
to defect even though both know they are going to receive
inferior scores [7]. In terms of evolutionary game theory
defection is the unique evolutionary stable strategy (ESS)
[8].

Nowak and May [3] have proposed a way to escape from
the dilemma. A variation of prisoner’s dilemma game work-
ing in the two-dimensional cellular automata space where
agents are mapped onto a regular square lattice with periodic
boundary conditions. In every round, players interact with
the immediate neighbors according to a strategy. The fitness
of each individual is determined by summing the payoffs
in games against each of its neighbors. The scores in the
neighborhood, including the individual’s own score, are
typically ranked. In the next round, all individuals update

their strategy deterministically. This approach is typical for
cellular automata models. From a biological perspective, the
utility of an individual is interpreted in terms of reproductive
success. Alternatively, from an economic perspective, the
utility refers to individuals adapting their strategy to mimic
a successful neighbor [7].

Nowak and May have shown that such spatial structure
enables the maintenance of cooperation for the simple
Prisoner’s Dilemma, in contrast to the classical, spatially
unstructured Prisoner’s Dilemma where defection is always
favored. It was determined that players do not need to
play the game with the whole population. By making this
assumption, different equilibria are likely to be established
in different neighborhoods. More importantly, the spatial
structure allows cooperators to build clusters in which the
benefits of mutual cooperation can outweigh losses against
defectors [2]. Thus, clusters of cooperative strategies can
invade into populations of defectors that constitute an ESS
in non-spatial populations [3].

III. PROBLEM FORMULATION

In this section, we formally define basic elements of
the model and provide corresponding notation. Then, we
define possible characteristics of the model that change the
available information and the type of jobs to be scheduled.

For the sake of simplicity, it is assumed that every node
placed on a two-dimensional cellular automata represents a
virtualized resource (Mk) - an abstraction of an entity that
process jobs. Computational power Ck of a certain resource
Mk is defined by a number of operations per unit of time it is
capable of performing. We distinguish between cooperative
(job taking) nodes and selfish (non-job taking) nodes. The
motivation for non-cooperative nodes to enter the cloud is to
just use resources to fulfill their own processing tasks in the
role of clients and refuse to contribute as a worker (although
they could due to their capabilities). Note that if nodes do
not benefit from cooperation incentives (e.g., the possibility
to submit jobs to others in the future), selfishness will be
the optimal strategy for each node.

Job (denoted as Jk) is an equivalent of application run
by the cloud clients. Every application is independent and
has no link between each other whatsoever, e.g., some
require more CPU time to compute complex tasks, and some
may need more memory to store data, etc. Resources are
sacrificed on activities performed on each individual unit
of service. In order to measure direct costs of applications,
every individual use of resources (i.e., CPU cost, memory
cost, I/O cost) must be measured. To simplify the problem,
we assume that job is simply an entity that, in order to be
completed, requires an access to a resource during certain
time pk. For the sake of the theoretical analysis, unless
otherwise stated, we assume that the jobs Jk are produced by
a Poisson process. The size of a job is known immediately
after the job has arrived to the system. At any given time,

202Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 215 / 282

let the local load Lk stand for the time moment when the
computation of the last currently known local job ends, thus
it can be defined as ratio between total size of node’s queued
jobs and its computational power:

Lk =

∑n
i=1 p

i
k

Ck
, (1)

where: n stands for the total number of jobs assigned to a
single node.

Informally, the goal of the scheduler is to find the
allocation and the time of execution for each job. The
distribution of the tasks must be done in such a way that
the system’s throughput is optimized. All scheduling and
load balancing decisions are taken locally by the agents.
The algorithm analyzes the node’s status in terms of its
utilization and capabilities. This status is matched against
the job’s requirements (as given by the job’s meta-data, pk)
considering user-configurable policies that define the desired
degree of resource contribution. Subsequently, each node
may begin execution of assigned tasks, or split them among
its neighbors.

Ideally, each node should receive the same (or nearly
the same) number of tasks. If the same amount of work
is associated with all the nodes, equal distribution of tasks
ensures a good load balance. This statement holds true
assuming that communication cost between neighbor nodes
is negligible. However, such an assumption is unlikely to
be fulfilled in real-world environments. Thus, we introduce
one more parameter defining the amount of time needed
to transfer the workload from one node to another and
denote it as qij , where: i and j stand for identifiers of
nodes participating in the exchange. For simplicity’s sake,
we assume that communication cost between neighbor nodes
is equal to one, and grows linearly with each additional cell,
except, of course a node may communicate with itself at no
cost.

It is important to note that, in this work we make very
few assumptions. We can deal with either static or dynamic
load. The network topology can be of any type as long as it
is connected. Nodes and networks can be homogeneous or
heterogeneous. Load balancing algorithms are operating in a
fully localized, distributed fashion. The required knowledge
is limited to the computation speed, local workload of the
neighbors and the computation time per one unit of load.
All these information are supposed to be given, calculated
or estimated.

IV. THE DYNAMIC LOAD BALANCING PROBLEM

We wish to distribute the workload among resources of
the system to minimize both: a) load imbalance and b)
communication cost between them. For that purpose, a set of
cellular automata’s local rules must be evolved according to
a specific utility function. Let us start by defining the cost and
the benefit of a load balancing process. The cost is the time

lost by exchanging the workload, due to communication.
The benefit is the time gained by exchanging the workload,
due to a better balance and faster execution of tasks.

Let Eij stand for the exchange of workload between
nodes i and j. The benefit given by the exchange Eij can
be estimated by the computation time on i and j without
the exchange minus the computation time on i and j after
this exchange [1]. Intuitively, the benefit of a load exchange
must be positive if the computation time is reduced by this
exchange and negative in the other case. The following
equation denotes the benefit of load balancing scheme,
assuming that node i transfers workload to node j:

Benefit(Eij) = max(Li, Lj)−
max(Li − Eij , Lj + Eij), (2)

where Li and Lj define local loads on nodes i and j,
respectively. Let us now consider the communication part of
the load balancing process. The cost of communication from
one node to another depends on the network architecture
(i.e., network bandwidth, network traffic, buffer size). A
truly portable load balancing algorithm would have no
option but to send sample messages around and measure
those metrics, then distribute the workload appropriately. In
this paper, however, we shall avoid this question by assuming
that all pairs of computational resources are equally far apart.
We can make the assumption that the total communication
cost is equal to the amount of time needed to transfer the
workload from node i to node j (denoted as qij) and thus:

Cost(Eij) = qij . (3)

Additionally, we make an assumption that any node which
took part in the balancing operation is obliged to return
resulting data to the originating node. This issue can be
solved by simply propagating the results backwards through
the initial load balancing route. Such a problem formulation,
however, may become ineffectual in a case of large quantities
of workload being shared among many neighboring nodes.
It is possible, that in such a case, there exist an alternative
way back to the originating node; shorter than original load
balancing route. The issue is illustrated in Figure 1, where A,
represents source node, and B represents destination node.
Green line indicates original load balancing route, while red
line shows the optimal way back.

We propose a simple solution to this problem by imple-
menting a gradient-based communication model. We define
the node’s proximity (P) as the shortest distance from itself
to the sender node. All cells are initialized with a proximity
of Pmax, equal to the diameter of the system lattice. The
proximity is set to 0 if node becomes overloaded and its state
changes to sender. All other nodes i with local neighbors ni,
compute their proximity as:

203Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 216 / 282

Figure 1. The issue of determining communication cost between source
node (A) and destination node (B). Green route shows original communi-
cation route according to the load balancing algorithm. Red route indicates
an alternative (optimal) way back.

P (i) = min(P (ni)) + 1. (4)

The resulting proximity map is later used used to perform
the migration phase. Results are routed through the system
in the direction of the sender node (Figure 2).

Figure 2. The gradient-based communication model. Computational nodes
send results in the direction of the sender node (red) via the gradient map
of proximity values. Cellular automata space comprises the von Neumann
neighborhood - the four cells orthogonally surrounding a central cell on a
two-dimensional square lattice.

Given this parameter, the cost function of load balancing
process from Equation 3 can now be extended and denoted
as:

Cost(Eij) = qij + P (i), (5)

assuming that node i is transferring its workload to node
j. Such a formulation is possible because node’s proximity
is equal to the amount of time needed for propagating the
results back to the originating node. Additionally, it ensures
that load balancing profitability is decreasing linearly with
an increase in distance from the source.

We may now construct our utility function, Γ, as the sum
of parts describing benefits and costs of the load balancing
operation, respectively:

Γ =
∑
k

Benefit(Ek
ij)− µ

∑
k

Cost(Ek
ij), (6)

where: k denotes the amount of workload exchanged be-
tween neighbor nodes and µ is a parameter expressing the

Table II
THE PRISONER’S DILEMMA RESCALED PAYOFF MATRIX

C (Send load) D (Compute locally)
C (Accept) Γ/2, Γ/2 0, 0
D (Reject) Γ, 0 0, 0

balance between the two aspects of load balancing scheme -
communication and computation. For programs with a great
deal of calculation compared to communication, µ should
be relatively small, and vice versa. As µ increases, the
number of processors in use will decrease until eventually
the communication is so costly that the entire calculation
must be done on a single node. Score calculated according to
Γ is awarded to every node taking part in the load balancing
scheme. Its magnitude is strictly dependent on agent’s action
taken in the PD game as shown in Table II.

After s (strategy update cycle) steps of interactions with
the neighbors, all nodes are presented with an opportunity
to update their strategy in a similar manner to the standard
SPD game. The present set of strategy imitation rules
is based on pairwise comparison of payoffs between two
neighboring agents. In each subsequent elementary step of
the evolutionary process we choose two neighboring players
(i and j) at random, we determine their payoff Gi and Gj ,
and player i adopts the strategy sj with a probability given
by the Fermi-Dirac distribution function as proposed in [9]:

W (si ← sj) =
1

1 + exp[(Gi −Gj)/K]
, (7)

where: K characterizes the uncertainty related to the strategy
adoption process, serving to avoid trapped conditions and
enabling smooth transitions towards stationary states [5].

It is well known that there exists an optimal intermediate
value of K at which the evolution of cooperation is most
successful [6, 10], yet in general the outcome of the PD
game is robust to variations of K. For K � 1, selection
is weak and the payoffs are only a small perturbation of
random drift. For K � 1, selection is strong and the
individual with the lower payoff will change its strategy.
In statistical physics, K is the inverse temperature: for
K → 0, the dynamics of the system is dominated by
stochasticity (the temperature of selection is high), whereas
in the limit K →∞ stochastic effects can be neglected (the
temperature of selection is zero) [11]. This phenomenon is
fully illustrated in Figure 3. Without much loss of generality,
we use K = 0.1, meaning that it is very likely that the better
performing players will pass their strategy to other players,
yet it is not impossible that players will occasionally learn
also from the less successful neighbors.

It can be seen that agent’s performance in the dynamic
load balancing scheme directly affects its scores acquired in
the PD game, by shifting the magnitude of payoff values.
Thus, agent with a more effective balancing strategy will

204Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 217 / 282

 0

 0.2

 0.4

 0.6

 0.8

 1

-10 -5 0 5 10

W

Gi - Gj

K=0.01
K=0.1

K=0.3
K=0.5

K=0.8
K=1

K=2
K=5

Figure 3. Strategy adaptation probability graph as a function of the
payoff difference and variable K, characterizing the uncertainty related to
the strategy imitation process.

acquire higher scores in the PD game, which in turn will
increase the probability of imitating that strategy by his less
successful neighbors and propagating it in the system. This
in turn should lead to an optimal load distribution in the
cloud computing environment.

V. CONCLUSION AND FUTURE WORK

We have proposed in this paper a novel paradigm for a
parallel and distributed evolutionary computation in cloud
computing systems based on the model of spatio-temporal
Prisoner’s Dilemma game. We presented the rules of a local
interaction among agents providing a global behavior of
the system as well as the analysis of costs and benefits of
workload exchange. Game-theoretic approach allowed us to
model organizational heterogeneity of cloud computing sys-
tems. Currently, the model is a subject of the experimental
study.

Our future work is threefold. Firstly, we want to further
enhance our model in order to study the problem of evolution
of global behavior and formation of coalitions between
agents. Secondly, we intend to extend the model to enhance
security of both communication and data processing. In
particular, we want to focus on aspects of reputation and
cryptography. This could be important, for instance, when
agents have to decide which action to take against outsiders.
If these outsiders have a reputation degree, such information
could be used in the decision-making process. Also, rep-
utation may turn important among members of coalitions
themselves, for instance to decide when coalitions should
be dissolved. Finally, we would like to port this solution to
real-world scenarios that involve data networks such as P2P,
sensor, and ad-hoc networks.

ACKNOWLEDGMENT

This contribution is supported by the Foundation for
Polish Science under International PhD Projects in In-
telligent Computing. Project financed from The European
Union within the Innovative Economy Operational Pro-
gramme 2007-2013 and European Regional Development
Fund (ERDF).

REFERENCES

[1] E. Jeannot and F. Vernier, “A practical approach of diffusion
load balancing algorithms,” pp. 211–221, 2006. [Online]. Available:
http://dx.doi.org/10.1007/11823285 22

[2] Y. Katsumata and Y. Ishida, “On a membrane formation in a
spatio-temporally generalized prisoner’s dilemma,” pp. 60–66, 2008.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-79992-4 8

[3] M. Nowak and R. May, “Evolutionary games and spatial chaos,”
Nature 359, pp. 826–829, 1992.

[4] M. Osborne, An Introduction to Game Theory. USA: Oxford
University Press, 2003.

[5] M. Perc and A. Szolnoki, “Social diversity and promotion of
cooperation in the spatial prisoner’s dilemma game,” Physical
Review E 77, vol. 77, p. 011904, Jan 2008. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevE.77.011904

[6] M. Perc, “Coherence resonance in a spatial prisoner’s dilemma game,”
New Journal of Physics, vol. 8, no. 2, p. 22, 2006.

[7] G. Rezaei and M. Kirley, “The effects of time-varying rewards
on the evolution of cooperation,” Evolutionary Intelligence, vol. 2,
pp. 207–218, 2009, 10.1007/s12065-009-0032-1. [Online]. Available:
http://dx.doi.org/10.1007/s12065-009-0032-1

[8] J. M. Smith, Evolution and the Theory of Games. Cambridge
University Press, 1982.

[9] G. Szabó and C. Tőke, “Evolutionary prisoner’s dilemma game on a
square lattice,” Phys. Rev. E, vol. 58, pp. 69–73, Jul 1998. [Online].
Available: http://link.aps.org/doi/10.1103/PhysRevE.58.69

[10] G. Szabó, J. Vukov, and A. Szolnoki, “Phase diagrams for prisoner’s
dilemma game on two-dimensional lattices,” Physical Review E,
vol. 72, p. 047107, 2005.

[11] A. Traulsen, M. A. Nowak, and J. M. Pacheco, “Stochastic payoff
evaluation increases the temperature of selection,” Journal of Theo-
retical Biology, vol. 244, no. 2, pp. 349–356, 2007.

[12] M. Wooldridge, An introduction to multiagent systems. John Wiley
& Sons, 2009.

205Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 218 / 282

Cloud Computing Brokering Service: A Trust Framework

Service Level Agreements: An Analytical Study in Progress

Prashant Khanna

 Institute of Engineering and Technology

JK Lakshmipat University

Jaipur, India

e-mail: perukhan@gmail.com

Budida Varahala Babu

Institute of Engineering and Technology
JK Lakshmipat University

Jaipur, India

e-mail: profbvbabu@gmail.com

Abstract— The paper highlights existing research voids in

defining and designing binding and enforceable service level

agreements (SLA) between three actors in the cloud computing

framework defined by NIST – the cloud brokers, the cloud

consumers and the cloud providers. The paper presents a

techno-managerial perspective to the issue of how cloud

brokers would handle service provisioning and whether

binding service level agreements would be useful tools for the

NIST cloud framework to function. A template constituent
framework is also recommended as part of this ongoing study.

Keywords-Cloud Brokers; Cloud Computing; SLA; Service

Provisioning; Trust.

I. INTRODUCTION

Cloud Computing is an emerging computing paradigm
that promises to change the landscape of the present service
models on offer in provisioning of Information Technology
services. The “Cloud”, as a term has found prominence in an
increasingly large number of publications, both in the
academia as well as in industry literature. It is a buzz word
and the buzz is getting louder by the day. The definitions of
cloud computing are many, and varied. The industry has,
only in late 2011, finally decided to accept one that was
proposed by National Institute of Standards and Technology
(NIST), U.S. Department of Commerce [1]. As per the Draft
Computing Technology Roadmap published by NIST, Cloud
Computing is a model for enabling convenient, on-demand
network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction.
The definition has listed five essential characteristics that
would be common to all cloud computing services, namely:
on-demand self service, broad network access, resource
pooling, rapid elasticity and measured service. It
recommends three service models: Software as a Service
(SaaS), Infrastructure as a Service (IaaS), and Platform as a
Service (PaaS), and four deployment models i.e. private,
public, community and hybrid clouds.

The reference architecture in the NIST document
highlights interactions amongst these entities and provides a
companion cloud computing taxonomy detailing the
definitions and relationships of a control vocabulary. The
document also identifies five major actors to enable the

reference model to work, namely, cloud consumer, cloud
provider, cloud carrier, cloud auditor, and cloud broker. Each
actor is an entity (a person or an organization) that
participates in a transaction or process or performs tasks in
cloud computing. A lot has been said and written about the
model and the way the players interact in this model to
derive services. Each of the players have been defined and
redefined in literature and the use case(s) to make the model
successful has also been commented upon extensively.
Amongst the actors defined in the NIST model [1], the cloud
broker was an add-on after much thought. Gartner, in a
report in 2011 [2] indicated that cloud brokering services in
the cloud service marketplace is emerging as a promising
low-risk business model for offering new and value-added
services through cross provider service delivery and
partnership. This assertion has made a major impact on the
industry as well as the academia.

Any service brokering architecture, in general, must have
the ability to support a service delivery infrastructure for
integration, delivery and management of composite services
in a multi-provider heterogeneous networks environment. It
is no different in the cloud service provisioning environment.
In the present stage of evolution of the cloud as a repository
of services, this provisioning is far from being ideally
achieved. The cloud paradigm is currently in a state of
transition and multiple players are trying to dominate the
service delivery scene. The cloud providers are competing
with the cloud brokers to deliver the intended service to the
cloud consumer, but this model of business to consumer
interaction is not bearing the desired results due to multiple
barriers of scale and other managerial issues. This research
on the subject, supported by the industry reports indicate that
the player who is likely to emerge as the principal stake
holder in provisioning and arbitraging of services as a truly
elastic and dynamic package for the consumer would be the
cloud broker. Such service provisioning is already appealing
to the small and medium business entrants who are not yet as
big as Google or Amazon, but have the understanding of
how the cloud works [2]. Forrester [3], in their annual report
in 2011, also cite brokering services in the cloud to be the
next game changer in the service provisioning space.
However, the present state of cloud implementation is highly
proprietary and private, akin to islands of highly autonomous
island solutions which do not have any linking ferry services
which can carry the inhabitants across. The cloud brokering

206Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 219 / 282

service available today is thus confined to a miniscule subset
of matching services that are seamlessly able to speak to
each other. There is a serious void in interoperability
between cloud solutions that are not been addressed by the
present generation of brokering service providers, either due
to technological incompatibilities or due to managerial
issues. The present NIST framework for the cloud-based
service model, as others similar frameworks, are based on
adopting managerial practices in organizations which are
implemented by using a preferred underlying technology.
This is truer today with the inclusion of the cloud broker as
an actor in the models under consideration.

We appreciate that this is as much a managerial issue as
it is a technical one. This paper and research is an attempt to
highlight existing research voids and present a techno-
managerial perspective to the issue of how cloud brokers
would handle service provisioning and whether binding
service level agreements (SLA) would be useful tools for the
NIST cloud framework to function. This is a work in
progress and it is anticipated that the research would result in
proposing a framework that would make service clouds talk
to each other under a universally acceptable interoperability
standard, where enforceable and automated SLA become
corner stones for provisioning of dynamic and elastic
services amongst the actors enumerated in the NIST model.

The structure of the remaining paper will be as given
below: Section II presents the Literature Survey on the topic
of SLA in the cloud and its relevance to the cloud brokering
services, Section III addresses the constituents of an SLA
within a service oriented business model, Section IV
provides the details of a framework in making for a
enforceable SLAs amongst cloud brokers, cloud consumers
and cloud providers for efficient service provisioning.
Sections V and VI conclude current findings and highlights
future work directions.

II. LITERATURE SURVEY

Though Cloud computing is a highly studied topic today
and a large body of research has gone into studying specific
standards of interoperability amongst clouds and how they
are to be achieved, the aspects of brokering services to the
end client from amongst those available is finding refereed
status only recently [4]. A cloud broker has been described
as an entity that manages the use, performance and delivery
of cloud services and negotiates relationships between cloud
providers and cloud consumers.

Existing work in literature primarily stress on using
SLAs to guarantee consumer of cloud services a level of
performance, that is defined by abstract metrics, directly
from the cloud service providers to the end client or cloud
consumers [9], [10], [11]. There is an apparent void in
research on SLA formulation strategies between the cloud
service broker and the cloud consumer and between the
cloud service broker and the cloud service provider. This
research is an attempt to highlight the research void and
recommend a framework which can be developed for
creation of enforceable and implementable SLAs in the
cloud paradigm.

The architecture of the cloud, whether public, private,
community or hybrid, would make it non trivial to propose
and implement a framework for creating of such binding
frameworks in the absence of accurate measuring and
monitoring mechanisms for provision of services. This is
especially true for a use case when the broker is aggregating
and arbitraging services from multiple cloud service
providers and packaging them as a service bundle for the end
client. Previous work on the subject include [5], [6] and [7]
that pertains to SLA formulation, but does not address the
aspects of the cloud brokering actor’s role in the
provisioning of services. Alhamad [9] [10] discusses the
aspect of SLA and performance measurement in his recent
findings but does not address the issue in the perspective of
how a broker would become a party to the SLA agreement
between the end user or the cloud consumer and the cloud
service provider. In [25], Alhamad describes a conceptual
framework for SLA in the cloud computing paradigm, but
the same is silent on the aspect pertaining to Brokers in the
service model. Other work on SLA management and creation
includes [11], which describes an approach for negotiating
and creating SLA between infrastructure providers and
service providers. In [12], Parrilli provides a legal
perspective on the aspect of SLA provisioning in the
European Union and how the rules on jurisdiction provided
by the Regulation 44/2001 where two general distinctions
are drawn in order to determine which (European) courts are
competent to adjudicate disputes arising out of a SLA. The
former is between Business to Business and Business to
Consumer transactions, while the latter is in regard to
contracts which provide a jurisdiction clause and contracts
which do not.

A recent work by Wang et al. [13] addresses the aspects
of multi-variable SLA based metrics that manages resource
scheduling for application provisioning on the cloud. They
also recommend a reputation based system for selecting a
cloud provider. In [14], Salvatore et al. discuss a framework
for broker assigned SLA management service with a novel
high level abstraction model has been recommended. They
recommend an architectural design for a system named
Cloud Agency that aims to respond to the need for Resources
management and offers added value to the existing Cloud
services. The proposed system is in charge of brokering the
collection of Cloud resources from different providers that
fulfills requirements of user's applications as a best effort
service. The user is able to delegate to the Agency the
necessary checks of the agreement fulfillment, the
monitoring of resource utilization and eventually necessary
re-negotiations. In [15], Balakrishnan and Somasundaram
propose a broker framework where SLA enabled broker
evaluate the number of resources available in the
environment and the number of policies per resource that
need to be implemented. The results presented in the paper
indicate that the inclusion of SLA affects the resource
selection behavior of the broker. The paper is however silent
on the methods to control the affect using an SLA. It does
however indicate that the overall performance of the system
improves in terms of job throughput with an extra overhead
in request processing due to the presence of a broker. These

207Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 220 / 282

results are shown on a grid sharing environment and major
differences exist in the business model used for the grid
service provisioning and cloud service provisioning model.

A number of publications, post 2010 [8], [9], [13], [23],
[24], [25] are either addressing the aspect of SLA
management for brokering services at the level of a resource
scheduler, or abstractions of the same when lifted from the
grid computing era. The industry is viewing SLA
performance management and service provisioning as a
combination of availability parameters and associated
factors. The carry forward of concepts of web service based
SLAs in literature is also evident while drafting cloud based
SLAs in recent papers. However, this research on the topic
indicates that the business model of provisioning of these
two frameworks is very different and mapping the two under
the same head would be a mistake. The same has been
asserted by NIST [1]. Quantifiable system level metrics like
QoS, CPU utilization, assured storage space, scale up and
scale down time in terms of elasticity of service, besides
some metrics of security also find mention in industry white
papers when they refer to enforceable SLAs. Recent
literature also highlight the abstract and non quantifiable
aspects of performance management and binding of service
issues by cloud service brokers while terming the
environment of cloud computing turbulent [16].

The purpose of this paper is to highlight the research gap
existing in SLA formulation between the cloud broker-
consumers and broker-provider combine. It presents the
research done thus far and the likely line of further research
to address the void. The researchers believe that the solutions
to finding or evolving a framework for enabling such
enforceable SLAs would be a combination of adopting
appropriate managerial practices by the consumers and
incorporating the best available technological means for
monitoring and measuring the services available in the cloud.
This paper thus presents a techno-managerial perspective to
the issue.

The perspective adopted in this paper is that of a cloud
broker. It is directed towards a cloud consumer and a cloud
provider, when seen from a cloud broker’s angle. This paper
does not discuss the implication of a binding SLA between
the cloud broker and cloud auditors or the cloud carriers. The
relationship impact on these actors from the perspective of
the broker will be done as a separate study in future.

III. SLA WITHIN A SERVICE ORIENTATION MODEL

An agreement is always based on a measure of trust.
Trust concepts have been defined differently when used in
varying contexts. Economists, lawyers and information
technologists tend to view trust in different light. Numerous
models are proposed in literature that attempt to solve the
problems that arise when two parties need to establish a
business relationship between them. Hussain and Chang [17]
highlight the confusion in literature around the concept of
trust. The acceptable definition of trust in a common usage
scenario is succinctly provided by Dasgupta in [18] where he
defines trust as “the expectation of one person about the
actions of others that affects the first person’s choice, when
an action must be taken before the actions of others are

known.” This paper considers the interaction between the
cloud actors in the same context. Gambetta [19], on the other
hand, states that “trust (or, symmetrically, distrust) is a
particular level of the subjective probability with which an
agent assesses that another agent or group of agents will
perform a particular action, both before he can monitor such
action (or independently of his capacity ever to be able to
monitor it) and in a context in which it affects his own
action.” In the cloud paradigm this relationship maps to the
level of trust that exists between the actors involved in the
services provisioning.

A. Trust as a Base for Enforcable SLAs

SLAs are based in an inherent trust relationship. SLAs
are legal and formal documents which presents the manner in
which a relationship between two entities would evolve and
be conducted during normal and extreme circumstances.
Service providers use SLA as a foundation to optimize the
use of resources available at their disposal, while ensuring
that the necessary levels of service, as defined in the SLA is
delivered to the consumer. The cloud consumer on the other
hand uses a SLA to assure themselves of a minimum level of
service, which gets enumerated in the SLA that defines the
relationship. For the service industry, SLAs must be
modeled around a series of related metrics which govern
performance in the specific industry. More specifically, an
SLA must clearly define components that govern the
relationship between the players. An SLA format should
illustrate the following:

 Describe a service in unambiguous terms so all stake
holders understand the implication and expectations
from the service.

 Present the level of performance of service in terms
of metrics.

 Define a monitoring mechanism that would monitor
and report if the defined service levels are being
provisioned and available to the consumers.

 A mechanism for measurement of the services being
provisioned. It is essential that the process is
acceptable to all the players involved in the process.

 Provide a framework for imposing penalty due to
diversions from the stated terms in the SLA.

 Provide a mechanism that allows the parties engaged
in the SLA to interact and meet on common ground
in the event of a dispute.

 Duration of implementation and validity of the SLA.

B. SLAs in the Service Industry Framework

The researchers believe that that for the service industry,
and especially for the cloud based business model, an SLA
must define adherence to some other common metrics. These
metrics need customization based on the kind of services
needed by the broker (arbitraged or intermediated). Some of
the metrics, which can be included in formulating an
effective and enforceable SLA, are presented below :-

 Response levels in terms of time for service
provisioning.

 Cost of provision of service to the end user.

208Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 221 / 282

 Service problem reporting and hierarchy of ticket
resolution.

 Resolution mechanisms.

 Monitoring and service reporting accountability in
terms of resources responsible for the monitoring
and adherence within the time frame agreed upon.

 Liabilities of the service provider in case the desired
services are not delivered.

 Terms and taxonomy that is agreed upon by the
consumer of services and the other actors involved
in the process.

 Conditions extraneous to the agreement which have
a binding bearing on the SLA.

C. Factors that Fail SLA based Relationships

It is also pertinent to appreciate factors that have been
found to be primary reasons for SLA based relationships to
fail at times. Industry literature indicates non-optimal
business deals that fall through, do so due to ill conceived or
poorly researched SLAs [3]. This research deducted that
issues common in such failed SLAs based relationships
include:

 Ambiguity in differentiating between results and
efforts by the service provider.

 Unclear and incomplete service specifications in the
SLA lead to dissimilar level of understanding
between the service provider and service consumers
and other actors involved in the process.

 Incorrect people in the hierarchy creating and
approving the SLA.

 Lack of agreement on common taxonomy and terms
of reference.

 Lack of trust after a service related issue between the
cloud consumer and cloud provider.

Dinesh [20] cites the three different approaches or
models used to create a binding SLA in the service industry.
These are the Insurance Model, where the service provider
makes its best attempt to satisfy the performance, availability
and responsiveness objectives that are specified in the SLA
according to its normal operating procedures, the
Provisioning Approach where the service provider typically
signs different types of service objectives with different
customers and allocates the resources within the environment
differently to each customer in order to be able to support the
service level objectives for each of the individual customer,
and finally the Adaptive approach where service provider
would dynamically modify the configuration of the system
used to support the customer when monitoring mechanisms
indicates a change in requirements and a danger that the SLA
might get violated. Research in this paper through
interaction with the industry and the academia indicates that
for the cloud based service framework, all three models
would be required and some customization on the model
might be used at times, based on the kind of type of services
desired by the broker and the consumer.

D. Constituients of an SLA for the Service Industry

In a service oriented architecture, especially on an IP
based networks which the cloud paradigm is all about, the
creation of an SLA would entail incorporating several
system availability, system performance and security related
metrics. A tentative list is provided in the GICTF [21], for
ready reference. The final aim of providing a service level
management framework is to enable the players to offer a
business ready service oriented architecture that enables the
service economy in a quantifiable and dependable way. This
is true for cloud providers, consumers and brokers alike.
Thus the intended SLA governing the relationship between
these actors must ensure that the following metrics are met:

 The quality characteristics of service are predictable
and enforced at run time.

 The SLA management is transparent and defines the
exact conditions of service delivery and can be
managed across the entire IT service stack as defined
in the NIST model.

 The whole process is as automated as possible to
ensure that the service delivery is elastic and
scalable, besides being responsive.

 The process of creating an SLA must be repeatable.
How this translates to a cloud broker-cloud consumer and

cloud broker-cloud provider is the subject of the next section.

IV. SLA WITHIN THE THE CLOUD BROKER PARADIGM

As cloud computing is evolving, the provisioning and
monitoring of cloud services is becoming more complex. It
has been realized that the present set of services on offer are
so complex that normal cloud consumers would not be able
to manage and deploy them without significant assistance. In
such a scenario, a cloud consumer would request cloud
services from a cloud broker, instead of contacting a cloud
provider directly [1]. As per NIST, a cloud broker is an
entity that manages the use, performance and delivery of
cloud services and negotiates relationships between cloud
providers and cloud consumers.

A. SLA Formulation Issues in the Cloud

Ensuring SLA formulation in the present cloud service
provisioning space is a non trivial task. Compliance to
multiple local laws in the location that house the data of the
cloud consumer, opacity in terms of location of the resources
that are provisioned and other similar non-quantifiable
metrics make the drafting, measuring and monitoring
difficult. The present framework of cloud provisioning is by
no means stable and the interplay between players in the
cloud model is presently not able to efficiently and
adequately address the needs of consumers or the brokers.
There is thus a growing need for adopting SLA frameworks
that not only support the service models of IaaS, PaaS and
SaaS, but also provide a measuring and quantification
methodology for ensuring SLA adherence. This issue finds
mention in the Draft NIST Roadmap for Cloud Computing,
in Section 2.3, which highlights the need for an industry
wide standard SLA for provisioning of services between the
cloud provider and the cloud consumer. The draft is however

209Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 222 / 282

silent on the need to formulate the SLAs between the broker
and other players in the model.

As per the NIST framework, the cloud broker would
provide three distinct services: Service Intermediation,
Service Aggregation, and Service Arbitrage. These have
been explained in detail in the ibid document and the
distinction lies in the mode of provisioning of the services
and what kind of value addition the broker would provide to
the cloud consumer and a business value to the cloud service
provider. These require specific and binding agreements
between the actors for the reference model to function as
intended. Adding complexity to the cloud brokering
framework are the varied deployment models that exist in
reality, i.e. the public, private hybrid and community
deployment models. The broker would require multiple
SLAs with the associated stake holders based on the
deployment model and the placement of actors in the model.

Figure 1. Framework for SLA management and Cascading Effect

B. Cloud Broker and Cloud Consumer SLA

Cloud service oriented SLAs, with the cloud broker as an
actor, represent a negotiated service contract between the
associated parties that specifies, in measurable terms, what
cloud service will be provided to the consumer through the
cloud broker. This necessitates that key elements required for
cloud services including warranties, guarantees and related
performance metrics are not left out of the SLA. If left out,
they often tend to make the SLA unenforceable. The broker
would need to make the consumer understand and appreciate
the nuance of such elements and make sure that the
agreement between the broker and the service provider also
reflects the terms in an unambiguous manner. The aim is to
make sure all parties understand and anticipate the course of
action in provisioning of the service.

Research indicates that the usage of common terms and
definitions within the SLAs are accepted to avoid

misunderstandings between all three parties. The terms of
reference need to be universally defined at the beginning of
an SLA in a manner that it becomes unambiguous to the
consumer, the provider and the broker as to what the service
agreement entails.

C. Cloud Broker and Cloud Provider SLA

It is also necessary to create an environment which
allows the broker to objectively compare competing services
and offer them as bundles to the intended consumers. As the
broker would be involved in service intermediation,
aggregation, and arbitrage, it is necessary to have a
comparative framework where the services provisioning and
service usage are both compared in an objective manner. The
authors are of the opinion that reputation based systems
would be ideal to achieve such objectivity. Design of such
systems would be a work in progress and evolve based on
the stability of the cloud broker system.

SLAs that would define the relationship between cloud
brokers and cloud providers would need to be based on the
same lines as those between the cloud broker and the cloud
consumers. There is a need for enumerating the same level of
service provisioning guidelines which get mentioned in the
broker-consumer SLA.

Fig. 1 illustrates the relationship between the actors
involved in the service provisioning model and how
enforceable SLAs would provide a systematic assessment of
the services on offer based on the measuring, monitoring and
penalty metrics. The figure also illustrates the effect of a
failure of an SLA on the provisioning model. With the cloud
broker as an entity in the NIST recommended cloud
framework, it is imperative that metrics of service agreement
agreed upon between the cloud broker and cloud service
provider need to be more stringent than those between the
broker and the cloud consumer. A failure in provisioning of
the agreed upon services by the cloud service provider will
have a ‘Cascading Effect’ on the service model. The
‘cascade’ will be aggravated in the cloud paradigm as
multiple associations exist between the cloud broker and the
service consumers (one-to-many and, at times, many-to-
many). The aspect of service arbitrage by the cloud broker
would thus need to be deliberated very minutely in the event
of a failure of service. The researchers strongly believe that
the affect of SLA failures will lead to a cascade effect in
terms of service outage for multiple cloud service
consumers. In April 2012, Amazon Inc., faced a major
outage of host of its services [22]. Such outages reflect the
effect of the cascade due to the failure of a bundle of services
from one provider on multiple, sometimes more than a
million consumers – which we feel is a cascade of service
outages.

The researchers are also convinced based on interaction
with the industry and the academia that there is a need for a
reputation based system, based on the assumption of a
stronger metric enforcement between the cloud broker and
cloud service provider vis-à-vis the cloud broker-consumer,
for arriving at a comparative framework for selecting the
service bundle and defining the system level and availability
based metrics in the SLA between the cloud service provider

210Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 223 / 282

and the broker. The reputation based system can be based on
relevant service metrics as would be proposed for the
consumer-broker SLA. Some of the metrics, which the
researchers feel could be used in selecting the appropriate
service bundles by the brokers could include response time
in provisioning (SaaS), rate of successful delivery of
promised services levels of a defined period of time (PaaS),
risk preventing mechanisms in place by the provider and
SLA success metrics of the provider. This also brings upon
the aspect of measuring mechanisms which need to be in
place while drafting the SLA. This is especially true while
drafting the provider–broker SLAs as it is anticipated that
aggregation of multiple, differing services is the way ahead
and cloud brokers would need to have a mean to measure the
service been hired. This is also illustrated in Figure 1 above.
This research illustrates that the violation of service
agreements between the broker and provider has a
consequent affect on the agreements between the broker and
the consumer and this can lead to a cascading degradation in
service provisioning, if not checked in time through effective
monitoring mechanisms. SLA drafting and management by
incorporating effective monitoring and measuring
mechanisms is thus an essential task in ensuring better cloud
services provisioning. The metrics recommended in this
research for basing a SLA between different actors in the
cloud framework would need further study and the
researchers also believe based on the work thus far that these
metrics would change based on the service bundle desired by
the consumer and arbitraged by the broker.

V. CONCLUSION

Creating an effective trust relationship between the cloud
brokers and cloud consumers is essential to maintain the
desired level of service provisioning in the cloud. This trust
is enforced using effective agreements between actors. This
trust is often realized when agreements are based on clearly
defined and effectively executed contract agreements, or
SLAs, which are a corner stone for provision of well
executed, responsive and elastic services in the cloud. The
aspect of SLA management between cloud brokers and cloud
providers as well as between cloud brokers and consumers is
a research void at present and has been highlighted in this
paper. The SLAs between the three actors have a bearing on
each other. Industry reports coupled with the research done
on the subject indicate that the cloud broker’s role in the
framework for cloud service provisioning is increasing and
thus the relationship between these individual SLA assume
increased importance. It has also been realized through this
research that a strong contractual SLA between the cloud
broker and the cloud service provider is necessary for the
cloud framework to maintain its stability. The research also
highlights the affects of failure of the agreed upon services
illustrated in a SLA between the broker and the provider and
the consequent service outage which ensues. The researchers
have termed this as ‘Cascading Effect’ in the cloud service
model. The utility of a well defined and enforceable SLA
based on quantifiable metrics with the broker as a central
actor is thus of paramount importance. The researchers also
believe that there is a need for a reputation based,

comparative system for arbitraging services from different
service providers. Such a system can be used by brokers for
selecting the bundle of service more efficiently and the
design of such a reputation based system is a work in
progress.

VI. FUTURE WORK

This paper is a work in continuation as part of a doctoral
thesis on cloud computing and affects on managerial aspects
of an organization when working in a cloud paradigm. As a
future work the authors are examining the NIST framework
and exploring how measurable metrics can be defined to
create a universally acceptable interoperability framework
required for dissimilar clouds to talk to each other. The
authors are also of the opinion that there is a need to further
work on drafting comprehensive and binding SLA templates
that address the lacunae existing in service provisioning
between the three actors. There is also a need to further
understand the cascading affect due to terms of service
violation when seen from the perspective of a cloud broker.
Monitoring and measuring frameworks also form an
essential part of the SLA management process and are a
topic for future research. Another work in future could be
the affect of these SLAs on the cloud auditors and cloud
carriers when viewed from the perspective of a cloud broker.

REFERENCES

[1] NIST, “Draft Cloud Computing Technology Roadmap” NIST

Special Publication 500-293.

[2] K. E. Cheng, Y. M. Gottlieb, G. M. Levin, and Fuchun Joe
Lin, “Service brokering and mediation: Enabling next
generation market and customer driven service delivery,”
Proc. Tenth International Symposium on Autonomous
Decentralized Systems (ISADS '11). IEEE Press, Mar. 2011,
pp. 525-530, doi: 10.1109/ISADS.2011.100.

[3] L. Herbert and J. Erickson, “The ROI of cloud apps” in A
Total Economic Impact™ Analysis Uncovers Long-Term
Value In Cloud Apps, Forrester, 2011.

[4] C. A. Yfoulis and A. Gounaris, “Honoring SLAs on cloud
computing services: a control perspective”, Proc. 2nd
Workshop on Bio-inspired Algorithms For Distributed
Systems, Jan. 2010, pp. 29-38.

[5] D.D. Lamanna, J. Skene, and W. Emmerich, “Slang: A
language for defining service level agreements,” Proc. Nnth
IEEE workshop of Future Trends of Computing 2003, IEEE
Press, May 2003, pp. 100-106,
doi:10.1109/FTDCS.2003.1204317.

[6] H. Ludwig, A. Keller, A. Dan, R. King, and R. Franck, “Web
service level agreement (WSLA) language specification,”
IBM System Journal, vol. 43, Jan. 2004, pp. 136-158,
doi:10.1147/sj.431.0136.

[7] A. Paschke, “Rbsla - A declarative rule-based service level
agreement language based on rulem,” Proc. International
Conference on Computational Intelligence for Modelling,
Control and Automation and International Conference on
Intelligent Agents, Web Technologies and Internet Commerce
Vol-2 (CIMCA-IAWTIC'06), IEEE Computer Society Dec.
2005, vol. 2, pp. 308-314, 28-30,
doi:10.1109/CIMCA.2005.1631486.

[8] H. Boley, S. Tabet, and G. Wagner, “Design rationale of
ruleml: A markup language for semantic web rules” 2001, pp.
380-401 [retrieved: May, 2012].

211Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 224 / 282

[9] M. Alhamad, T. Dillon, and E. Chang, “SLA-Based Trust
Model for Cloud Computing,” Proc. 13th International
Conference on Network-Based Information Systems (NBIS
'10). IEEE Computer Society, Dec. 2010, pp. 321-324.
doi:10.1109/NBiS.2010.67

[10] M. Alhamad, T. Dillon, and E. Chang, “A survey on SLA and
performance measurement in cloud computing,” Proc.
Confederated International Conference on On the Move to
Meaningful Internet Systems - Vol II(OTM'11), Springer-
Verlag, Dec. 2011, pp. 469-477.

[11] A. Lawrence, K. Djemame, O. Wäldrich, W. Ziegler, C.
Zsigri, “Using service level agreements for optimising cloud
infrastructure services,” Proc. International Conference on
Towards a Service-based Internet (ServiceWave'10),
Springer-Verlag Berlin, 2011, pp. 38-49.

[12] D. M. Parrilli, “The determination of jurisdiction in grid and
cloud service level agreements,” Proc. 6th International
Workshop on Grid Economics and Business Models (GECON
'09), Springer-Verlag, 2009, pp. 128-139, doi:10.1007/978-3-
642-03864-8_10.

[13] M Wang, X Wu, W. Zhang, F. Ding, J. Zhou, and G. Pei , "A
Conceptual Platform of SLA in Cloud Computing," Proc.
IEEE Ninth International Conference on Dependable,
Autonomic and Secure Computing (DASC), 2011, Dec 2011,
pp.1131-1135, 12-14, doi: 10.1109/DASC.2011.184.

[14] S. Venticinque, R. Aversa, B. Martino, M. Rak, and Dana
Petcu, “A cloud agency for SLA negotiation and
management,” Proc. Conference on parallel processing (Euro-
Par 2010), Springer-Verlag, Aug. 2010, pp.587-594.

[15] P. Balakrishnan and T. S. Somasundaram, “SLA enabled
CARE resource broker,” Proc. Future Gener. Comput. Syst,
vol. 23, Mar 2011, pp. 265-279,
doi:10.1016/j.future.2010.09.006.

[16] V. C. Emeakaroha, I. Brandic, M. Maurer, I. Breskovic,
“SLA-Aware Application Deployment and Resource
Allocation in Clouds,” Proc. Computer Software and
Applications Conference Workshops (COMPSACW 2011),
IEEE Press, July 2011, pp. 298-303,
doi:10.1109/COMPSACW.2011.97.

[17] F. K. Hussain and E. Chang, "An overview of the
interpretations of trust and reputation", Proc. The Third
Advanced International on Telecommunications (AICT
2007), May 2007, pp. 30-30. doi:10.1109/AICT.2007.11.

[18] A. Dasgupta and A. Prat, "Reputation and asset prices: A
theory of information cascades and systematic mispricing”,
Manuscript, London School of Economics, Sep. 2005.

[19] D. Gambetta, “Trust: Making and breaking cooperative
relations,” Basil Blackwell, New York, 1990.

[20] D. C. Verma, M. Beigi, R. Jennings, “Policy Based SLA
Management in Enterprise Networks,” Proc. International
Workshop on Policies for Distributed Systems and Networks,
Jan. 2001, pp. 137-152.

[21] GICTF, “Use case and funtional requirements for inter cloud
computing,” Aug 2010, url: http://events.oasis-
open.org/home/sites/events.oasis-
open.org.home/files/20111012-ICS-goto-GICTF.pdf ,
[retrieved : May 2012].

[22] Rick Vanover, “What the recent Amazon Web Service Mean
in our own Cloud Journey,” url:
http://www.techrepublic.com/blog/networking/what-the-
recent-amazon-web-services-outages-mean-in-our-own-
cloud-journey/3910?tag=content;siu-container [retrieved :
May 2012].

[23] R. N. Calheiros, R. Ranjan, A. Beloglazov, D. Rose, A. F.
César, and R. Buyya, “CloudSim: a toolkit for modeling and
simulation of cloud computing environments and evaluation
of resource provisioning algorithms,” Journal of Software
Practice and Experience, vol 41, Aug 2010, pp. 23-50,
DOI: 10.1002/spe.995.

[24] M. Mac as, J. O. Fit , and J. Guitart, "Rule-based SLA
management for revenue maximisation in Cloud Computing
Markets," International Conference on Network and Service
Management (CNSM), Oct. 2010, pp. 354-357,
doi:10.1109/CNSM.2010.5691226.

[25] M. Alhamad, T. Dillon, and E. Chang, "Conceptual SLA
framework for cloud computing," 4th IEEE International
Conference on Digital Ecosystems and Technologies (DEST,
Apr. 2010, pp. 606-610, doi: 10.1109/DEST.2010.5610586.

212Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 225 / 282

Towards a Domain-Specific Language to Deploy Applications in the Clouds

Eirik Brandtzæg
University of Oslo

SINTEF IKT
Oslo, Norway

eirik.brandtzaeg@sintef.no

Parastoo Mohagheghi
NTNU

SINTEF IKT
Trondheim, Norway

parastoo@idi.ntnu.no

Sébastien Mosser
Networked Systems and Services

SINTEF IKT
Oslo, Norway

sebastien.mosser@sintef.no

Abstract—The cloud-computing paradigm advocates the use
of virtualised resources, available “in the clouds”. Applications
are now developed in order to be cloud-aware. Unfortunately,
the deployment of such applications is still manually done, or
relies on home-made shell script. In this paper, we propose to
model cloud applications using a component-based approach.
It leverages the existing deployment descriptors into a high-
level domain-specific language. The language is then illustrated
through the modeling of a prototypical application used to
teach distributed programming at the University of Oslo.

Keywords-Cloud-computing; Modeling; Deployment.

I. INTRODUCTION

Cloud Computing [1] was considered as a revolution.
Taking its root in distributed systems design, this paradigm
advocates the share of distributed computing resources des-
ignated as “the cloud”. The main advantage of using a cloud-
based infrastructure is the associated scalability property
(e.g., elasticity). Since a cloud works on a pay-as-you-go
basis, companies can rent computing resources in an elastic
way. A typical example is to temporary increase the server-
side capacity of an e-commerce website to avoid service
breakdowns during a load peak (e.g., Christmas period).
However, there is still a huge gap between the commercial
point of view and the technical reality that one has to face
in front of “the cloud”.

A company that wants to deploy its own systems to the
cloud (i.e., be part of the cloud revolution) has to cope with
existing standards. The Cloud-Standard wiki [2] lists dozens
of overlapping standards related to Cloud Computing. They
focus on infrastructure modeling or business modeling.
These standards do not provide any support for software
modeling or deployment. Thus, the deployment of a cloud-
based system is a difficult task, as it relies on handcrafted
scripts. It is not possible to reason on the deployment, nor
to assess it with respect to (w.r.t.) to cloud business policies.

The Cloud-computing paradigm emphasizes the need for
automated deployment mechanisms, abstracted from the
underlying technical layer. As cloud-computing considers
that the number of resources available in the cloud is not
limited, it triggers new challenges from a deployment point
of view. Even if several approaches consider the deployment
target as “open” (i.e., new host machines can be added in the

environment), the “virtually unlimited” dimension provided
by the cloud-approach is not taken into account.

Our contribution in this paper is to propose a component-
based approach [3] to model software deployment in the
clouds. This approach is provided as a Domain-Specific
Language (DSL), which is given to the software designer.
The language is based on a reduced component meat-model,
and support the modeling of the deployment relationship
between components. For the sake of concision, we only
focus in here on the description of the cloud deployment
language usage, and we do not address in this paper the
run-time enactment. This work is done in the framework
of REMICS [4], an European project dedicated to the mi-
gration of legacy application into cloud-based applications.
Section II discusses related works, and Section III illustrates
the challenges on a running example. Section IV describes
the language meta-model, Section V describes its usage, and
finally, Section VI concludes this paper.

II. RELATED WORKS

We propose here to analyze the state of the art about
software deployment, identifying good practices to be reused
in our own solution, dedicated to cloud-computing. The
cloud model always assume that the software to be deployed
will be running on an host machine, virtualised in the cloud.
Thus, its deployment depends on a lot of characteristics
provided by the host, e.g., IP address, operating system,
available remote protocols. The deployment might also de-
pends on the software to be deployed, e.g., implementation
language, configuration capabilities.

A. Deployment Models

Several approaches were proposed to abstract the user
from the underlying platform w.r.t. the deployment point of
view. These approaches propose to model the deployment of
a software in a generic way, using the concepts described in
a meta-model. In this domain, the two main approaches are
(i) the UML Deployment Diagrams [5] and (ii) the OMG
D&C meta-model [6]. These approaches are complemented
by academic approaches like ORYA [7] and GADE [8].

213Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 226 / 282

UML Deployment Diagrams: using the UML Deploy-
ment Diagram approach, one can use artifacts to model
the physical elements involved in the deployment (e.g., a
compiled executable to be copied on the host machine).
Artifacts follows a composite pattern (i.e., an artifact can be
composed by others), and are expressive enough to model
complex software dependencies. These elements are bound
to physical devices to model which software artifact must be
deployed on which machine. The infrastructure is modeled
thanks to the definition of communication path between
different devices.

OMG D&C meta-model: D&C means “Deployment
and Configuration”. It was built to tackle the challenges
encountered while standardizing the deployment of CORBA
components. This meta-model defines (i) meta-data to be
used during the deployment process (e.g., configuration in-
formation for a given package) and (ii) a target model relying
on these meta-data to describe the deployment process. The
approach is extremely verbose, and suffers from the number
of concepts to be used to model a deployment, even in front
of a simple case. Another weaknesses is its close relationship
with CORBA: the meta-model is too close to the one defined
by CORBA, and existing work based on OMG D&C focus
on the deployment of CORBA components [9], [10].

Academic approaches: We consider here two proto-
typical examples. ORYA is similar to the UML deployment
diagram approach, as it provides a purely descriptive meta-
model to describe a deployed system. ORYA also provides
concepts to model administrative and legal issues in the
deployed system. But it suffers from the same drawback,
i.e., its lack of a clear semantics (or a least a reference
implementation) to properly support the deployment in an
automated and reproducible way. GADE is the complete
opposite, as it concretely targets the deployment of software
components in grid-computing environment. It focus on
the capture of the grid domain, supporting the user in the
deployment of processes to be executed on the grid. This
approach emphasizes the need for a deep understanding of
the domain while modeling a deployment meta-model.

B. State of Practice: Cloud-based solution

Cloud providers have already understood that deployment
is crucial while talking about clouds. Thus, they provide
mechanisms to support the user during the deployment of
applications. This support can be textual (e.g., Amazon
Cloud Formation [11]), graphical (e.g., Applogic [12]). But
it immediately suffers from the “vendor lock-in” syndrome.
Thus, several libraries can be found (e.g., libcloud [13],
jclouds [14], δ-cloud [15]) to abstract these providers.

Amazon Cloud Formation: it is a service provided by
Amazon from their popular Amazon Web Services (AWS). It
give users the ability to create template files, which they can
load into AWS to create stacks of resources. This is mainly
meant for users that want to replicate a certain stack, with

the ability to provide custom parameters. Once a stack is
deployed it is only maintainable through the AWS Console,
and not through template files. The structure and semantics
of the template itself is not used by any other providers
or cloud management tooling, so it can not be considered a
multi-cloud solution and enforce a vendor lock-in syndrome.

Applogic: it is a proprietary model-based application
for management of private clouds. This interface let users
configure their deployments through a diagram with famil-
iarities to component diagrams with interfaces and assembly
connectors. They also provide an Architecture Deployment
Language (ADL) to enforce properties on the modeled
deployment. But this solution is only made for private clouds
running their own controller, this can prove troublesome for
migration, both in to and out of the infrastructure.

Application Programming Interface (API): Libcloud
and jcloud are APIs that aim to support the largest cloud
providers through a common API. Libcloud have solved
the multi-cloud problem in a very detailed manner, but the
complexity is therefore even larger. The δ-cloud approach
has a similar procedure as jclouds and Libcloud, but with a
web-service approach (introducing a bottleneck).

C. Conclusions

The deployment models available in the state of the art
demonstrate that a descriptive modeling of deployment is el-
egant and well understood by the end user. Such an approach
must stay simple and focused, to avoid the multiplication of
concepts. The approach must also be tailored to address its
target domain, i.e., cloud-computing in our case. The avail-
able tools analyzed from the state of practice demonstrate
that the heterogeneity of the different underlying platforms
needs to be abstracted. Anyhow, the current approaches
are available at the code level, and does not provide an
abstraction layer to be used by the application designer to
properly model a cloud-based application to be deployed.

III. RUNNING EXAMPLE & CHALLENGES

We consider here a simple application, sufficient to un-
derline the intrinsic complexity of cloud–application deploy-
ment modeling. This application is called BankManager,
and is used at the University of Oslo to teach distributed
systems, based on the very classical “bank account man-
agement” case study. It consists of the two following parts:

• A back-end that contains a Database, used to store
information about customers and accounts,

• A front-end that implements a web-based application,
used to access to the different accounts and transfer
money between accounts.

From a software architecture point of view, this applica-
tion simply consists of a relational database to support the
back-end, and java-based servlets bundled in a WAR archive
to support the front-end. The front-end must hold a reference
to the back-end to address the proper database. But when

214Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 227 / 282

confronted to the “cloud-computing” domain, the following
points needs to be also considered:

• Clouds implement open environments. As a conse-
quence, we do not know where the application will be
deployed. Thus, establishing the link between the front–
end and the back–end requires a particular attention.

• Clouds provides different mechanisms to support ap-
plication deployment. Where infrastructure cloud (IaaS)
mainly provides low-level (e.g., SSH, FTP) connectivity
to the virtual machines, platform clouds (PaaS) pro-
vides deployment protocols dedicated to the technology
they implement (e.g., WAR deployment).

• Clouds work on a pay-as-you-go basis. Thus, one
can consider to deploy both back-end and front-end
artifacts on the same virtual machine, to reduce costs
during development. Another alternative is to deploy
these two artifacts on two different virtual machines. In
concrete case, the variability of deployment possibilities
is humongous.

• Clouds emphasizes reproducibility. Thus, a given de-
ployment descriptor should be easily re-usable as–is,
in the same context or in a new one.

• Clouds support scalability through replication and load-
balancing. The deployment descriptor should be easily
replicable to support the on-demand replication of
computation-intensive artifacts.

Our goal is to provide a meta-model that supports the
application designer while deploying a cloud application.

IV. A DSL TO SUPPORT DEPLOYMENT IN CLOUDS

We named the language Pim4Cloud DSL, as it is a
Platform Independent Model dedicated to Clouds. The key
idea of the Pim4Cloud DSL is to support the deployment
of application in the cloud. An overview of the approach
is depicted in Figure 1. Using the DSL, the application
designer models the software to be deployed. In parallel, the
infrastructure provider describes the available infrastructure
to be used by the application. From a coarse-grained point
of view, it means that the designer requires “computation
nodes” (e.g., virtual machines) from the cloud, and the
infrastructure provider describes such nodes (based on its
own catalog). An interpreter is then used to identify which
resources have to be used in the infrastructure to fulfill
the requirements expressed by the application designer. The
interpreter then do the provisioning, and actually deploys the
modeled application. It returns as feedback to the designer
a living model of its application, annotated with run-time
property bound to each modeled artifact (e.g., the public IP
address associated to a given virtual machine).

Based on the points previously described, we propose to
use a component-based approach to model the deployment
of cloud applications. This approach was successfully used
by the DEPLOYWARE framework in the context of adaptive

Pim4Cloud DSL
descriptor

Infrastructure
descriptor

InterpreterApplication
Designer

Infrastructure
Provider

Figure 1. Pim4Cloud DSL overview

component system [16], [17], and we propose to transpose
its core idea to cloud deployment.

To achieve this goal, we use a reduced component meta-
model, described in Figure 2. This meta-model is expressive
enough to support the modeling of both infrastructure and
applicative artifacts in an endogenous way. Components can
be scalars or composite, i.e., containing sub-component in-
side their boundaries. A Component may offer one or more
deployment Services, i.e., deployment protocols one can
used to deploy other components onto this one (e.g., a servlet
container will offer a WAR service to support the deployment
of java-based web applications). Obviously, it may require
one Service if it aims to be deployed on another one (e.g.,
a WAR artifact will require a WAR service). Components
are connected among others through Connectors. A com-
ponent can offer and expects Property, e.g., a database
component may expect both username and password, and
provide an url to be remotely accessed. These elements
are used at run-time (asked in a deployment descriptor,
or filled using the feed-back obtained from the underlying
cloud infrastructure). In a Composite, one can express
bindings between properties, that is, a formal link be-
tween an expected and an offered property. These links
(RuntimeBinding) are used at run-time to properly transfer
the expected information.

Implementation: This meta-model is intended to be
specialized according to user’s needs, as its intrinsic sim-
plicity makes it easy to introduce in user’s code. We provide
a reference implementation of this approach using the Scala
language, exposed as an internal domain-specific language
to support the usage of this meta-model in JVM-based

Component Service
owner

offers

expects
0..*

0..1

Composite Scalar

containeds

0..1

0..*

Connector

from to

containeds

+data: T
Property[T]

offers
0..*

expects
0..*

0..*

0..*
promotes

RuntimeBinding source
target

bindings
0..*

Figure 2. Modeling cloud components: a generic meta-model

215Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 228 / 282

languages. The DSL is designed in a modular way, and
implements several constructions (e.g., “offering a service”,
“containing a component”) as independent modules, imple-
mented as traits. This design support the evolution of the
DSL, as adding a new syntactic construct is assimilated as
the mix of a new trait.

V. USING THE LANGUAGE

Based on this internal DSL, one can model a cloud-based
software to be deployed.

A. Modeling a Simple Component

We represent in Figure 3 a graphical representation of a
WarContainer model, using standard graphical notation for
component assemblies. This container is used to host WAR-
based artifacts. It is made as the composition of (i) a virtual
machine obtained from a IaaS provider and (ii) a Jetty server
used to actually support the hosting of WAR artifacts:

• The virtual machine is modeled as a component named
vm, typed as a SmallVM. This component does not re-
quire any other, and is therefore considered in the mod-
els as an element obtained from an external provider
(outside of the scope of the modeled system). It offers
a ssh service, and one can use this protocol to interact
with the component at run-time. This can be considered
as the IaaS layer of this example

• The WAR hosting artifact is modeled as a component
named container, typed as a Jetty server. It offers
a war service, and one can use it to deploy WAR-based
application. This component relies on the APT package
system to be properly deployed. Replacing the hosting
server (e.g., from Jetty to Tomcat) only means to
replace this component by another one.

• The final component (WarContainer) composes the
ones previously described as the following: it (i) pro-
motes the war port of the container component, and
(ii) binds the apt requirement of the container to
the ssh offering provided by the vm one.

As the language relies on Scala, the declaration of a scalar
component is assimilated to the declaration of a class, that
extends the concepts previously described. Thus, the user
is completely free in such a class to write all the code
he/she thinks necessary. The DSL is only used to support
the user when dealing with its system from a deployment
point of view. Internal DSLs immediately benefit from the

<<SmallVM>>
vm

<<WarContainer>>

war:WAR

apt:APT

ssh:SSH
<<Jetty>>
container

war:WAR

Figure 3. WarContainer: component diagram representation

mechanisms of the hosting language, e.g., variable visibility
and scoping mechanisms. We describe in Listing 1 the code
necessary to model this system with the DSL.

class WarContainer
extends CompositeComponent with WarOffering {

private[this] val container = instantiates[Jetty]
private[this] val vm = instantiates[SmallVM]
override val war = promotes(container.war)
this deploys container.apt on vm.ssh

}

Listing 1. WarContainer code

The WarComponent class extends the Composite-
Component concept (it is able to contains other compo-
nents), and mixes the WarOffering trait (statically inform-
ing other components that it offers a war port). It instantiates
two internal sub-components: (i) a Jetty component named
container to host the servlets applications and (ii) a virtual
machine of type SmallVM. It promotes the war service of-
fered by the container sub-component, and finally deploys
the servlet container on the virtual machine.

B. Multiple Topologies for BankManager

Based on the previously described mechanisms, we can
now model several version of our initial example, the
BankManager. This software is implemented in Java, and
requires the two following elements: (i) a database for its
back-end and (ii) a web server able to host WAR-based
software. We represent in Figure 4 different deployment
configuration for such a system.

• Figure 4(a). In this version, the front-end and the back-
end are deployed on the same virtual machine. This is

<<BankManager>>

<<SmallVM>>
vm

<<Jetty>>
container

<<WarApp>>
bankApp

<<MySQL>>
dbwar:WAR

ssh:SSH
apt:APT

apt:APTwar:WAR

url: String
dbRef: String

(a) BankManager, virtual machine sharing

<<BankManager>>

<<SmallVM>>
vm

<<Jetty>>
container

<<WarApp>>
bankApp

<<MySQL>>
dbwar:WAR

ssh:SSH

apt:APT

apt:APT

war:WAR

url: String

dbRef: String

<<SmallVM>>
vm'ssh:SSH

(b) BankManager, independent virtual machines

<<BankManager>>

<<SmallVM>>
vm

<<WarContainer>>
container

<<WarApp>>
bankApp

<<MySQL>>
dbwar:WAR

ssh:SSH

apt:APT

war:WAR

url: String

dbRef: String

(c) BankManager, re-using WarContainer

Figure 4. BankManager deployment variability

216Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 229 / 282

typical for test purpose, where the idea is to minimize
the cost of the rented infrastructure during development.
The database component exposes a property named
url. This property will be filled at run-time by the
deployment engine associated to the Pim4Cloud DSL
(out of the scope of this paper). The bankApp compo-
nent expects a property named dbRef, and a binding
is expressed at the composite level to specify that this
property will be set based on the value obtained from
db at run-time.

• Figure 4(b). In this version, two virtual machines are
used. This is the main difference when compared to the
previous one. This separation allows the replication of
the container component, ensuring elasticity through
horizontal scalability.

• Figure 4(c). This versions demonstrates the strength of
the component approach when applied to this domain.
It is immediately possible to re-use the previously de-
scribed WarContainer. As a component is considered
as a black-box, the end-user will not care about hos it
works internally from an infrastructure point of view.
It will simply re-use a given component that provides
the needed deployment services.

We give in Listing 2 the DSL code that models
these different topologies. First, we define our application
(MyCloudApp) as an abstract class: it factorizes shared
elements, and each concrete topology will extends this
class to refine its content. The top-level class instantiate
a BankManager component (the WAR file that contains
the application), as well as a MySQL database. It defines
an abstract container, with the assumption that this sub-
component will offer WAR deployment (it is typed as
WarOffering). The bank manager application is then de-
ployed on this container. The database property required by
the application is filled with the url provided by the database.

We then present in Listing 3 the three different compo-
nents that actually implements such deployment topologies.
The first one (VirtualMachineSharing) instantiates a
single virtual machine and deploys both the container and
the database on it. The second component (Independent-
VirtualMachine) deploys the servlet container and the
database on different virtual machines (vm1 and vm2). Fi-
nally, the last component (UsingWarContainer) reuse the

abstract class MyCloudApp extends CompositeComponent {
private[this] val bankApp = instantiates[BankManager]
protected val db = instantiates[MySQL]
protected val container: WarOffering
this deploys bankApp.war on container.war
this sets bankApp.dbRef using db.url

}

Listing 2. BankManager: Abstract class to model MyCloudApp

class VirtualMachineSharing extends MyCloudApp {
override val container = instantiates[Jetty]
private[this] val vm = instantiates[SmallVM]
this deploys container.apt on vm.ssh
this deploys db.apt on vm.ssh

}

class IndependentVirtualMachine extends MyCloudApp {
override val container = instantiates[Jetty]
private[this] val vm1 = instantiates[SmallVM]
private[this] val vm2 = instantiates[SmallVM]
this deploys container.apt on vm1.ssh
this deploys db.apt on vm2.ssh

}

class UsingWarContainer extends MyCloudApp {
override val container = instantiates[WarContainer]
private[this] val vm = instantiates[SmallVM]
this deploys db.apt on vm.ssh

}

Listing 3. Multiple deployment topologies for BankManager

<<BankManager>>

<<SmallVM>>
vm

<<WarContainer>>
container

<<WarApp>>
bankApp

<<MySQL>>
db

war:WAR

ssh:SSH

apt:APT

war:WAR

url: String

dbRef: String

dbUrl: String

<<Platform>>

war:WAR

Figure 5. Deploying the BankManager on a PaaS

WarContainer component defined in Listing 1 to host the
servlet container.

C. Modeling Platform as a Service Artifacts

The DSL allows us to model in an endogenous way IaaS
and PaaS. Building a PaaS becomes as simple as modeling a
software stack on top of virtual machines (Figure 5). In this
case, we modeled a Platform, which exposes a war port
for service hosting and a dbUrl property for persistence.
This platform is then used to deploy the bank application,
but can also be used to host any application implemented as
a War and requiring a database.

From a DSL point of view, one can imagine a library
of available platforms. In Listing 4, we describe a platform
named AGivenPlatform, provided by AGivenProvider
(modeled as a package). Then, one can use this platform by
simply importing it in its component, and using it like any
other. The UsingPaaS component in Listing 4 shows how
it can be done with the DSL.

package AGivenProvider {
class AGivenPlatform extends CompositeComponent with

WarOffering {
private[this] val db = instantiates[MySQL]
private[this] val vm = instantiates[SmallVM]
private[this] val container =

instantiates[WarContainer]
override val war = promotes(container.war)
val dbUrl = externalize(db.url)
this deploys db.apt on vm.ssh

}
}

217Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 230 / 282

class UsingPaaS extends CompositeComponent {
import AGivenProvider.AGivenPlatform
private[this] val bankApp = instantiates[BankApp]
private[this] val platform =

instantiates[AGivenPlatform]
this deploys bankApp.war on platform.war
this sets bankApp.dbRef using platform.dbUrl

}

Listing 4. Modeling a Platform as a Service using Pim4Cloud DSL

VI. CONCLUSION & PERSPECTIVES

We described how the Pim4Cloud DSL can be used to
support the application designer while modeling an ap-
plication to be deployed in the clouds. We also describe
how the DSL is implemented, using Scala as a hosting
language. We showed on a prototypical example how the
DSL is used to properly model the deployment. Application
deployment can be modeled in an agnostic way w.r.t. the
targeted cloud provider. The approach support the definition
of static analysis (e.g., type consistency), as well as the
reuse of components from a deployment to another one (i.e.,
architectural patterns can be reified as cloud components).
This approach also support the endogenous modeling of both
Paas and Iaas.

This work is currently pursued, including a standardiza-
tion effort at the OMG in the context of the REMICS project.
Short terms perspectives of this work includes the two
following axis: (i) “models@run.time” and (ii) verification.
The feed-back returned to the user is for now reduced to its
minimum, that is, the IP of virtual machines provisioned in
the cloud. With regard to the large amount of data available
from cloud providers (e.g., load average, cost), one of our
objective to enhance this feed-back to take into account more
information. We plan to achieve this goal with a “Mod-
els@run.time” approach. Instead of returning a set of IP
addresses, the Pim4Cloud interpreter will return a model of
the running system, available at run-time. It will maintain the
link between the running system and the models, providing
a model-driven way of querying the cloud–based application
(e.g., about its status, its load). From the verification point
of view, the current mechanisms included in the DSL are
static for now, and intensively rely on the type system: the
engine assumes that a static model (i.e., a model that can be
compiled) will always be properly deployed in the cloud. We
plan to use a transactional approach coupled to the action-
based mechanism previously described. Thanks to the acidity
of the transactional model, the action interpreter will be able
to recover when an error will be encountered during the
deployment process.

ACKNOWLEDGMENTS

This work is partially funded by the EU Commission
through the REMICS project (FP7-ICT, Call 7, contract
number 257793, www.remics.eu)

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H.
Katz, A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin,
I. Stoica, and M. Zaharia, “Above the Clouds: A Berkeley
View of Cloud Computing,” EECS Department, University
of California, Berkeley, Tech. Rep. UCB/EECS-2009-28,
Feb 2009. [Online]. Available: http://www.eecs.berkeley.edu/
Pubs/TechRpts/2009/EECS-2009-28.html

[2] CloudStandard, “The Cloud Standards Coordination Wiki,”
http://cloud-standards.org/, [retrieved: 05, 2012].

[3] C. Szyperski, Component Software: Beyond Object-Oriented
Programming, 2nd ed. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2002.

[4] REMICS, http://remics.eu/, [retrieved: 05, 2012].

[5] O. Object Management Group, “UML 2.0 Superstructure
Spec.” Object Management Group, Tech. Rep., Aug. 2005.

[6] ——, “Deployment and Conf. of Component-based Dis-
tributed App. Spec., Version 4.0,” Tech. Rep., Apr. 2006.

[7] P.-Y. Cunin, V. Lestideau, and N. Merle, “ORYA: A Strategy
Oriented Deployment Framework,” in Component Deploy-
ment, ser. Lecture Notes in Computer Science, A. Dearle and
S. Eisenbach, Eds., vol. 3798. Springer, 2005, pp. 177–180.

[8] S. Lacour, C. Pérez, and T. Priol, “Generic Application
Description Model: Toward Automatic Deployment of Ap-
plications on Computational Grids,” in GRID. IEEE, 2005,
pp. 284–287.

[9] G. Deng, D. C. Schmidt, and A. S. Gokhale, “CaDAnCE: A
Criticality-Aware Deployment and Configuration Engine,” in
ISORC. IEEE Computer Society, 2008, pp. 317–321.

[10] J. Dubus and P. Merle, “Applying OMG D&C Specification
and ECA Rules for Autonomous Distributed Component-
Based Systems,” in MoDELS Workshops, ser. Lecture Notes
in Computer Science, T. Kühne, Ed., vol. 4364. Springer,
2006, pp. 242–251.

[11] A. AWS, “Amazon Cloud Formation Language,” http://aws.
amazon.com/en/cloudformation/, [retrieved: 05, 2012].

[12] CA, “Applogic CA,” http://www.ca.com/us/products/detail/
CA-AppLogic.aspx, [retrieved: 05, 2012].

[13] Apache, “Apache Libcloud, a Unified Interface to the Cloud,”
http://libcloud.apache.org, [retrieved: 05, 2012].

[14] JClouds, “JClouds,” http://www.jclouds.org/, [retrieved: 05,
2012].

[15] Apache, “δ-cloud: Many Clouds. One API. No problems.”
http://deltacloud.apache.org/, [retrieved: 05, 2012].

[16] A. Flissi, J. Dubus, N. Dolet, and P. Merle, “Deploying on
the Grid with DeployWare,” in CCGRID. IEEE Computer
Society, 2008, pp. 177–184.

[17] J. Dubus, “Une démarche orientée modèle pour le
déploiement de systèmes en environement ouverts distribués,”
Ph.D. dissertation, Université des Sciences et Technologies de
Lille, Lille, France, Oct. 2008.

218Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 231 / 282

Cloud-based Healthcare:

Towards a SLA Compliant Network Aware Solution for Medical Image Processing

Shane Hallett
1
, Gerard Parr

1
, Sally McClean

1
, Aaron McConnell

1
, Basim Majeed

2

India-UK Advanced Technology Centre (IU-ATC) of Excellence in Next Generation Networks, Systems and Services

School of Computing and Information Engineering, University of Ulster1, Coleraine, UK,

hallett-s@email.ulster.ac.uk, {gp.parr, si.mcclean, a.mcconnell}@ulster.ac.uk,

ETISALAT BT Innovation Center
2
, Abu Dhabi, UAE, basim.majeed@bt.com

Abstract—Medical image processing in the Cloud can involve

moving large data sets and/or applications across the network
infrastructure. With the aim of minimizing the total

processing time, the optimal placement of image data and

processing algorithms on a large scale, distributed Cloud

infrastructure is a challenging task. This work presents a

genetic algorithm-based approach for data and application

(virtual machine) placement using hypervisor and network

metrics to avoid service level agreement violations. The
solution involves placing medical image data and associated

processing algorithms at optimized processing and compute

nodes located within the Cloud. The results of initial

experiments show that a genetic algorithm-based placement

approach can increase Cloud-based application performance.

Keywords-cloud computing; virtual machine placement;

genetic algorithm; network awareness.

I. INTRODUCTION

The rapid growth in the use of Electronic Health Records
(EHR) across the globe along with the rich mix of multi-
media held within an EHR combined with the increasing
level of detail due to advances in diagnostic medical imaging
means increasing amounts of data can be stored for each
patient [1][2]. In a scenario where a consultant may view and
process medical images remotely for the purpose of
producing a diagnosis it may be necessary to move large data
sets across the network for processing to take place [3].
Moving such data sets has the potential to introduce
undesirable latency and also degrade application
performance to an unacceptable level, causing service level
agreement (SLA) violations and degrading network
performance for other users of the same infrastructure.

Cloud Computing has come to the fore as a new model of
computing service delivery as a utility over the Internet.
Virtualisation technology [4] lying at the heart of the Cloud
allows greater utilisation of physical and virtual resources.
Depending on the resources available physical hosts or nodes
on the Cloud can host numerous virtual machines, which in
turn can host applications and data. Migrating medical
imaging applications and data to the Cloud can allow
healthcare organisations to realise significant cost savings
relating to hardware, software, buildings, power and staff, in
addition to greater scalability, higher performance and
resilience [5][6]. Cloud Computing uses a ‘pay as you go’
pricing model whereby users only pay for the amount of

resources they consume, e.g., storage, memory, CPU,
bandwidth. Additional resources can also be provisioned in
an on-demand fashion to allow scaling with application and
user demand.

This paper proposes a method for service providers to
optimise the combined placement of image processing
algorithms (as Virtual Machines - VMs) and image data sets
on compute and storage nodes respectively. The state of
physical node resources and the network health are given key
consideration as critical factors when making placement
decisions. The solution uses a genetic algorithm as an initial
solution to ensure VMs are placed on nodes, which satisfies
SLA and network performance constraints. The results of
initial experiments in Section VI show that a genetic
algorithm can find optimised solutions, which offer lower
total processing cost (image processing and network costs as
a function of time) than a random assignment solution.
Future work is aimed at improving the convergence time of
the genetic algorithm through the design and implementation
of a hybrid evolutionary algorithm.

The rest of this paper is organised as follows; Section II
describes work relating to optimised VM placement. Section
III details a mathematical model of the problem. Section IV
defines the design of the proposed solution. Section V
describes the initial experiments with results in Section VI.
Section VII contains the conclusions and future work.

II. RELATED WORK

Genetic algorithm-based placement solutions have been
shown to provide optimised placement in the Cloud [7][8].
Placement of data in Cloud based storage using a genetic
algorithm solution has the benefit of reducing the average
data access time [7]; however memory, CPU and network
constraints are not taken into account in this work. The
research presented in [8] is primarily concerned with
minimisation of the total execution time and although it does
consider network based constraints, critical node constraints
such as CPU, memory and storage are not considered.
Resource allocation in the Cloud taking CPU and memory
requirements in addition to network bandwidth, reliability
and throughput requirements has been investigated [9]; but
CPU and bandwidth resources are considered as static finite
resource with the inability to dynamically scale with demand
as and when required. The research outlined above is
concerned with the placement of either applications or data
independently of one another. Although physical node and

219Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 232 / 282

network constraints are taken into account, the placement of
application (VM) and associated data is not considered.

Combined application (VM) and data placement taking
CPU, memory, storage and network constraints into account
has been investigated [10] and a solution using a penalty-
based genetic algorithm described; however, the algorithm
execution time does show an increase as the number of
servers increases, causing a significant delay, which could
render it unacceptable if used in a real time solution and may
also lead to scalability problems. Hybrid evolutionary
algorithms combining the best features of genetic algorithms
with the best features of other evolutionary algorithms such
as particle swarm optimisation (PSO) [11], ant colony
optimisation (ACO) [12], and simulated annealing (SA) [13],
have been shown to have a much shorter convergence time
than purely genetic algorithm-based solutions [14]. Hybrid
genetic algorithms such as the multi agent genetic algorithm
[15] can offer superior performance over traditional genetic
algorithms when very large scale and dynamic optimisation
problems are concerned. Likewise, an improved genetic
algorithm (IGA) [16] has been shown to be nearly twice as
fast at finding optimised solutions as a purely genetic
algorithm placement solution.

III. PROBLEM SPECIFICATION

A. Model Attributes

Processing nodes A and storage nodes B are separated by
a network containing a set of network routes R between any
set of nodes. A set of virtual machines V containing
algorithms are hosted on a set of physical processing nodes
A. A set of virtual machines W containing data stores are
hosted on a set of physical storage nodes B.

TABLE I. MODEL ATTRIBUTES

Notation Description

xtva The placement of task t on vm v on processing node a

ydwb The placement of dataset d on vm w on storage node b

T Set of tasks

D Set of datasets

V Set of processing virtual machines

W Set of datastore virtual machines

A Set of processing nodes

B Set of storage nodes

R Set of network routes between nodes a and b

Ca CPU capacity of processing node a

Ma Memory capacity of processing node a

Sb Storage capacity of storage node b

Ct CPU requirement of task t

Mt Memory requirement of task t

Sd Storage requirement of dataset d

Ctdab The cost of task t processing dataset d on nodes a and b

Ka The network cost between nodes a and b

bwab The minimum end to end bandwidth (kbps) of the

network path between nodes a and b

latab The network latency (ms)between nodes a and b

Tsla Required response time specified in an SLA

A set of tasks T are executed on a set of processing nodes

A. Each processing node a has a resource capacity in terms

of CPU Ca and memory Ma. Each task t has resource
requirements in terms of CPU Ct and memory Mt. A set of
datasets D are stored on a set of storage nodes B. Each
storage node b has a resource capacity in terms of storage Sb.
Each dataset d has a storage requirement Sd.

B. Mathematical Model

1) Image Processing

AaVvTt

avt
xtva

1,...,;1,...,;1,..,for

otherwise 0

 nodeon on vm executed is task if 1

===

=
 (1)

2) Data Storage

BbWwDd

bwd
ydwb

1,...,;1,...,;1,...,for

otherwise 0

 nodeon on vm stored is dataset if 1

===

=
 (2)

3) Objective Function
The aim is to minimise the cost of executing task t on

dataset d on processing node a and storage node b – taking
the network cost (as a function of time) between a and b into
account. Therefore the objective function is to minimise:

∑ ∑∑∑∑∑∑∑∑
= = == = = = = =

+

A

a

T

t

V

v

tvaa

T

t

D

d

V

v

W

w

A

a

B

b

tdabdwbtva xkcyx

1 1 11 1 1 1 1 1

 (3)

4) Network Cost
The network cost Ka between processing node a and

storage node b is derived from the dataset size Sd divided by
the minimum network bandwidth bwab plus the network
latency latab on the end to end network route r between node
a and node b.

ab

rr ab

d
a lat

R bw

S
k

ba

+

∈

= ∑
,

 (4)

C. Physical Constraints

1) Processing Constraint - VM to Processing Node
Each task t is executed on a VM v on a processing node

a. Each task t has a CPU requirement Ct. Node a must have
sufficient CPU capacity Ca to meet the CPU requirement Ct
of task t, subject to:

Aacxc a

T

t

V

v

tvat ,...,1for

1 1

 =≤∑∑
= =

 (5)

2) Memory Constraint – VM to Processing Node
Each task t has a memory requirement Mt. Processing

node a must have sufficient memory capacity Ma to meet the
memory requirement Mt of task t, subject to:

Aamxm a

T

t

V

v

tvat ,...,1for

1 1

 =≤∑∑
= =

 (6)

220Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 233 / 282

3) Data storage constraint – VM to Storage Node
Each dataset d has a storage requirement Sd. Each storage

node b must have sufficient storage capacity Sb to meet the
storage requirement Sd of dataset d, subject to:

Bbsys b

D

d

W

w

dwbd ,...,1for

1 1

 =≤∑∑
= =

 (7)

4) SLA Time Constraint – Data to User
The total processing time must be less than the required

response time specified in the SLA Tsla, subject to:

∑∑∑∑∑∑
= = = = = =

<

T

t

D

d

V

v

W

w

A

a

B

b

sladwbtva Tyx

1 1 1 1 1 1

 (8)

D. Logical Constraints

Each task t has one dataset d, subject to:

∑∑∑∑∑
= = = = =

==

D

d

V

v

A

a

W

w

B

b

dwbtva Ttyx

1 1 1 1 1

 1,...,for 1 (9)

Each dataset d has at least one task t, subject to:

∑∑∑∑∑
= = = = =

=>

T

t

V

v

A

a

W

w

B

b

dwbtva Ddyx

1 1 1 1 1

1,..., for 1 (10)

Each VM v is allocated to at least one processing node a,

subject to:

Vvx

A

a

tva 1,...,for 1

1

=≥∑
=

 (11)

Each VM w is allocated to at least one storage node b,

subject to:

∑
=

=≥

B

b

dwb Wwy

1

1,...,for 1 (12)

Each task t is executed on at least one VM v on at least

one processing node a, subject to:

Ttx

V

v

A

a

tva ,...,1for 1

1 1

=≥∑∑
= =

 (13)

Each dataset d is stored on at least one VM w on at least

one storage node b.

Ddy

W

w

B

b

dwb ,...,1for 1

1 1

=≥∑∑
= =

 (14)

IV. SOLUTION DESIGN

The aim of the proposed solution is to optimally place
data and image processing algorithms on the service provider
infrastructure whilst avoiding customer SLA violation.
Figure 1 gives an overview of the proposed system. When

placing the image processing application CPU, memory, and
network constraints need to be satisfied, likewise when
placing data a certain amount of storage, adequate network
bandwidth and an acceptable latency is required.

Figure 1. Architectural overview of the proposed system

The ‘Data Centre Monitor’ is responsible for monitoring
the CPU and memory utilisation of hosts (e.g., H0, H1, H2)
and the storage capacity of storage area network (SAN)
nodes (e.g., S0, S1) within each Virtual Data Centre (VDC).
Data centre node metrics are gathered by distributed agents
along with network health metrics collected by the ‘WAN
Monitor’, which uses a modified version of BWPing [17] to
monitor the end to end bandwidth and latency between all
VDCs and users. The node and network health metrics are
normalised and form a combined fitness score for each node,
which can satisfy the physical and logical constraints. A
genetic algorithm is used to find an optimised solution within
the pool of viable nodes.

V. INITIAL EXPERIMENTS

A genetic algorithm was developed using Microsoft
Visual Studio 2008. A synthetic dataset containing values
representing realistic CPU, memory, storage and network
metrics for 20 physical nodes was generated. A randomly
generated initial population of 50 was used with binary
tournament parent selection with a 10% population mutation
rate chance. The number of physical nodes was constant at
20, whilst the number of VMs requiring placement increased
in increments of 5, ranging from 5 to 75.

Two scenarios were investigated in initial experiments:
random placement and genetic algorithm placement. The
experiments for each scenario were repeated 30 times and
the mean taken. The experiments were conducted on a PC
running Windows XP with a 2933 MHz Intel Processor and
4GB of RAM.

221Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 234 / 282

VI. RESULTS

The initial results in Figure 2 below show that a genetic
algorithm solution (depicted as the lower solid line) produces
placement decisions with a lower total processing cost than a
random placement solution as depicted by the upper dashed
line (initial fittest) in the graph. The costs for each solution
are similar when the number of VMs requiring placement are
small. Both solutions show a linear increase in cost as the
number of VMs requiring placement increases, but the total
image processing cost for the genetic algorithm is
significantly lower than that of the random placement
solution. With a maximum number of 75 VMs for
placement the cost associated with random placement is
3229, whilst the genetic algorithm solution is 1294, which is
just over 40% of the cost of the random placement solution.

0

500

1000

1500

2000

2500

3000

3500

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Number of VMs

C
o
s
t

Initial Fittest Fittest GA
Figure 2. Performance comparison between initial fittest (random

placement) and genetic algorithm placement solutions.

VII. CONCLUSION AND FUTURE WORK

A model of VM and data placement including physical
node and network constraints was presented. Results from
initial experiments show that a genetic algorithm taking
multiple constraints into account can be used to make
optimised network aware and SLA compliant combined VM
and data placement decisions. The total image processing
cost was reduced by nearly 60% when compared to a naive
random placement solution.

A solution based purely on a genetic algorithm may
suffer from scalability issues stemming from long
convergence times found in large solution search spaces
[10][14], potentially causing unacceptable latency in live
systems. Future work will consist of expanding the model to
include additional constraints relating to intellectual property
(IP) rights. Initial experiments will be scaled to investigate
the upper bounds of performance with greater numbers of
nodes and VMs, which will be used as an evaluation baseline
for future solutions. The development of a hybrid
evolutionary algorithm, combining the best features of
several evolutionary algorithms will be investigated with the
aim of improving performance and resource utilisation.

A prototype system is under development using the
NETCOM Cloud testbed facility at the University of Ulster.

It will be used to validate current and future results on a
dynamic real time Cloud infrastructure.

ACKNOWLEDGMENT

BT EPSRC CASE Award in collaboration with BT EBTIC.

REFERENCES

[1] T. Chia-Chi, J. Mitchell, C. Walker, A. Swan, C. Davila, D.
Howard and T. Needham, "A medical image archive solution
in the cloud," Software Engineering and Service Sciences
(ICSESS), 2010 IEEE International Conference on, pp. 431-
434, 16-18 July 2010

[2] H. QingZang, Y. Lei, Y. MingYuan, W. FuLi and L.
RongHua, "Medical Information Integration Based Cloud
Computing,"Network Computing and Information Security
(NCIS), 2011 International Conference on, vol.1, pp. 79-83,
14-15 May 2011

[3] M.I.B. Nordin and M.I. Hassan, "Cloud resource broker in the
optimization of medical image retrieval system: A proposed
goalbased request in medical application," National
Postgraduate Conference (NPC), 2011, pp. 1-5, Sept. 2011

[4] M. Mahjoub, A. Mdhaffar, R.B. Halima and M. Jmaiel, "A
Comparative Study of the Current Cloud Computing
Technologies and Offers," Network Cloud Computing and
Applications (NCCA), 2011 First International Symposium
on, pp. 131-134, 21-23 Nov. 2011

[5] L.A. Bastiao Silva, C. Costa, A. Silva and J.L. Oliveira, "A
PACS Gateway to the Cloud," Information Systems and
Technologies (CISTI), 2011 6th Iberian Conference on, pp. 1-
6, 15-18 June 2011

[6] S. Ahmed and A. Abdullah, "E-healthcare and data
management services in a cloud," High Capacity Optical
Networks and Enabling Technologies (HONET), 2011, pp.
248-252, 19-21 Dec.2011

[7] K. Jindarak and P. Uthayopas, "Performance improvement of
cloud storage using a genetic algorithm based placement,"
Computer Science and Software Engineering (JCSSE), 2011
Eighth International Joint Conference on, pp. 54-57, 11-13
May 2011

[8] A.V. Dastjerdi, S.K. Garg and R. Buyya, "QoS-aware
Deployment of Network of Virtual Appliances Across
Multiple Clouds," Cloud Computing Technology and Science
(CloudCom), 2011 IEEE Third International Conference on,
pp. 415-423, Nov. 29 2011-Dec. 1 2011

[9] K.H. Prasad, T.A. Faruquie, L.V. Subramaniam, M. Mohania
and G. Venkatachaliah, "Resource Allocation and SLA
Determination for Large Data Processing Services over
Cloud," Services Computing(SCC), 2010 IEEE International
Conference on, pp. 522-529, 5-10 July 2010

[10] Z.I.M. Yusoh and T. Maolin, "A penalty-based genetic
algorithm for the composite SaaS placement problem in the
Cloud," Evolutionary Computation (CEC), 2010 IEEE
Congress on, pp. 1-8, 18-23 July 2010

[11] J. Kennedy and R. Eberhart. “Particle swarm optimization,”
In IEEE International Conference on Neural Networks, vol. 4,
pp. 1942–1948, 1995

[12] M. Dorigo and C. Blum, “Ant colony optimization theory: A
survey” in Theoretical Computer Science 344 (2–3) (2005),
pp.243–278, 2005

[13] S. Kirkpatrick, C.D. Gellatt and M.R. Vechi, "Optimization
by simulated annealing". Science, 1983, 220: pp. 671-680

[14] C.C.T. Mark, D. Niyato and C.K. Tham, "Evolutionary
Optimal Virtual Machine Placement and Demand Forecaster
for Cloud Computing," Advanced Information Networking
and Applications (AINA), 2011 IEEE International
Conference on, pp. 348-355, March 2011

222Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 235 / 282

[15] Z. Kai, S. Huaguang, L. Lijing, G. Jinzhu and C. Guojian,
"Hybrid Genetic Algorithm for Cloud Computing
Applications," Services Computing Conference (APSCC),
2011 IEEE Asia-Pacific, pp. 182-187, 12-15 Dec. 2011

[16] Z. Hai, T. Kun and Z. Xuejie, "An Approach to Optimized
Resource Scheduling Algorithm for Open-Source Cloud
Systems," ChinaGrid Conference (ChinaGrid), 2010 Fifth
Annual, pp. 124-129, 16-18 July 2010

[17] BWPing, http://bwping.sourceforge.net/, accessed 14.05.2012

223Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 236 / 282

Cloud Objects: Programming the Cloud with
Object-Oriented Map/Reduce

Julian Friedman
Dept. of Computer Science IBM Cloud Labs

University of York IBM United Kingdom Ltd.
York, UK Hursley Park, UK

julz@cs.york.ac.uk julz.friedman@uk.ibm.com

Manuel Oriol
Dept. of Computer Science ABB Corporate Research

University of York Industrial Software Systems
York, UK Baden-Dättwil, Switzerland

manuel@cs.york.ac.uk manuel.oriol@ch.abb.com

Abstract—Cloud Objects parallelizes Object-Oriented pro-
grams written in Java using Map/Reduce by adding simple,
declarative annotations to the code. The system automatically
persists objects to a partitioned filesystem and efficiently executes
methods across the partitioned object data. Using Cloud Objects,
data-intensive programs can be written in a simple, readable,
object-oriented manner, while maintaining the performance and
scalability of the Map/Reduce platform. Cloud Objects shows
that it is possible to combine the benefits of an object-oriented
model and the power of Map/Reduce.

Keywords-Map/Reduce, Hadoop, JPA, Cloud Computing

I. INTRODUCTION

Data-parallel frameworks such as Map/Reduce [1] have
become increasingly popular. The developers of Internet ap-
plications have turned to these technologies to harness the
power of large numbers of distributed machines to address
the challenges of processing huge amounts of data.

Map/Reduce was designed for a specific domain — data-
dependent batch computations — it was not designed to be
a general approach to designing whole applications. Program-
mers must fit their code into the structure of a Map/Reduce
algorithm. Programming a Map/Reduce application involves
splitting the algorithm into separate Mappers, Reducers, In-
putFormats and Drivers (to name a few) and encourages a
tight coupling of these components.

Splitting the application logic between many tightly cou-
pled classes compromises many of the advantages of object-
oriented design, such as composability, modularity and encap-
sulation. The lack of proper object orientation makes it difficult
to evolve and compose Map/Reduce programs in to larger
systems, to maintain Map/Reduce programs, and to quickly
develop new applications using Map/Reduce.

This paper describes Cloud Objects, a new system which
allows Map/Reduce applications to be written in an object-
oriented style. Cloud Objects uses simple declarative anno-
tations to describe how object data should be persisted to
the distributed filesystem. As well as automatically generating
the code to persist the objects to a partitioned datastore (in a
manner similar to existing systems such as DataNucleus [2]),
the system generates the Map/Reduce code to run methods
across the partitioned object data. A program can be structured

and composed in an object-oriented style and deployed to
existing Map/Reduce clusters.

The paper is structured as follows. The following section,
Section II, introduces the programming model with a simple
example. Section III describes the programming model in
detail. Section IV describes our prototype implementation.
Section V discusses Cloud Objects in the context of related
work. SectionVI concludes the paper.

II. AN INTRODUCTORY EXAMPLE

Cloud Objects’ persistence annotations are based on JPA
(Java Persistence Annotations, JSR 317 [3] and 220 [4]).
This allows maximum compatibility with existing code and
minimizes the need for developers to learn a new syntax.
Persisting an object to a distributed store is as simple as using
standard JPA annotations. Once persisted, methods can be run
in parallel across an object’s partitioned data.

In Listing 1, we illustrate the programming model with a
simple example. The Wiki class contains a map of page names
to WikiPage objects which the framework will persist to the
distributed filesystem. Assuming the map is large, the data will
be partitioned across many machines.

While persistence annotations alone allow persisting and
querying object data in the distributed file system, they do not
allow efficient processing of the object data. The scalability
and efficiency of the Map/Reduce model is based on the
ability to distribute code to data. Map/Reduce is a computation
framework as well as a data storage and querying framework.
While a simple approach based on JPA alone would suffice to
persist the object data, it would not be able to efficiently run
object methods with data-locality; it would gain the benefits
of the distributed file system to persist and retrieve the object
data, but not the advantages of the Map/Reduce model to
execute fault-tolerant, resilient methods across the data.

Cloud Objects adds the ability to add @Multicast methods
to a class which can be distributed automatically, with data-
locality, by the framework. A multicast method across the
’pages’ member variable is shown in Listing 1. The multicast
method is automatically run across each shard of the parti-
tioned ’pages’ variable using Map/Reduce, and the results are
combined to a single array using a standard UNION reduction.

224Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 237 / 282

@Entity public class Wiki {
@OneToMany @KeyField("url") private Map<String, WikiPage> pages;

public Collection<String> search(String phrase) { this.search(pages, phrase); }

@Multicast(reduce=UNION)
protected Collection<String> search(Map<String, WikiPage> pages, String phrase) {

Collection<String> matches = new ArrayList<String>();
for(Map.Entry<String, WikiPage> page : pages) {

if(page.getContents().indexOf(phrase) > -1) { matches.add(url); }
}
return matches;

}
}

Listing 1: A Distributed Wiki

The results of the search(..) method are themselves written
to the distributed filesystem and can be processed with data-
locality by another @Multicast method. This allows seamless,
efficient composition of multicast methods in to full applica-
tions.

III. PROGRAMMING MODEL

The aim of Cloud Objects is to allow the business logic of an
application to be expressed in a simple, object-oriented style
while efficiently running methods across partitioned object
data using Map/Reduce.

Cloud Objects can be split into annotations which relate to
persisting and retrieving objects from the datastore (which are
based on JPA), and annotations related to running methods
across the partitioned data. As the persistence-related annota-
tions are based directly on a subset of the JPA standard, in this
section, we focus only on the additional annotations we have
introduced to run methods across the persisted object data.

A. Multicast Methods

Multicast methods interact with partitioned instance data
by running appropriate Map/Reduce jobs over their input data
(which is stored in the distributed filesystem).

The programmer uses an EntityManager instance to retrieve
a Cloud Object from the datastore. When the EntityManager
retrieves an object, it creates proxy collections to wrap dis-
tributed member data. These proxy collections are initialized
with the location of their data in the distributed file system,
and contain methods to configure a Map/Reduce job to run
against their contents.

On the client machine, the EntityManager replaces any
methods of a returned instance which have been annotated
with the @Multicast annotation using byte-code rewriting.

1) Inputs to Multicast Methods: For simplicity, multicast
methods only allow one partitioned input collection to be
passed as an argument. The programmer is free to run methods
over multiple partitioned inputs by using a multicast method
to create a collection containing a cross product or join of two

other lists. This resulting list will be stored on the distributed
filesystem and can be passed as an input to another multicast
method. Alternatively one of the lists (usually the smaller)
can be passed as class data and retrieved from the distributed
filesystem on demand.

To maximize encapsulation, the programmer is encouraged
to provide an external client method (not annotated with
@Multicast) which calls a protected or private @Multicast
method with the needed arguments. This is shown in the 1-
arg and 2-arg versions of the search (..) method in Listing 1.

2) Outputs from Multicast Methods: Safely running a Mul-
ticast method across a number of machines requires a number
of constraints on multicast methods. If the method replicas
were allowed to write directly to the member variables of the
class the individual jobs would no longer be independent. In-
stead, multicast methods may only write to member variables
in the following (safe) ways:

a) Shared: The framework sends instance variables
marked with the @Shared annotation to every node using
Hadoop’s distributed cache. On worker machines, any up-
dates made to @Shared variables other than Counters and
Joinables (see next) are ignored and may throw exceptions.
Updates made to member variables that are not annotated with
@Shared are limited to a particular object on a particular node.
This can be useful for caches and other data structures which
do not need to be maintained across machines.

b) Counters: Counters allow methods to safely update
member variables which increase monotonically. Counters
are implemented using the underlying Hadoop framework’s
Counter functionality. Hadoop’s Counters are global, which
breaks encapsulation. Counters in Cloud Objects are automat-
ically given generated, private IDs based on the object class
and the unique identity of the object instance.

c) Joinables: Joinables allow for a more general method
of updating an instance variable from multiple methods. Join-
ables are inspired by the Concurrent Revisions programming
model [5]. Joinables may be declared either by deriving
from the Joinable marker interface or by the addition of

225Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 238 / 282

a specific @JoinedWith(..) annotation. Classes which inherit
from the Joinable marker interface are expected to have either
a static join(..) method or to be themselves annotated with
@JoinedWith(..) to refer to a class with a no-arg constructor
and a join(..) method.

B. Reductions

The final result from a multicast method is reduced to a
single value using a Reducer class. A set of default reducers is
provided for Unions, Sums and Averages, and the programmer
is free to name their own reduction class in the @Multi-
cast(reduce = ..) annotation.

IV. IMPLEMENTATION

We have implemented a prototype of Cloud Objects based
on OpenJPA [2] and Hadoop [6]. We briefly describe the key
elements of the implementation in this section.

A. Collections Proxies

Instance variables of Cloud Objects which are specified as
Lists or Maps are automatically proxied with a HadoopList
or a HadoopMap class which reads and writes from the
Distributed Filesystem when the object needs to be persisted.
This is done by the EntityManager when retrieving the object,
and by the generated Mapper classes when they create an
object instance to process partitions of a Multicast Method’s
input data.

The distributed collection classes support two modes of
operation. When used as input to a Multicast Method (on
the master machine), the collection classes provide a con-
figureInput(Job job) method which configures a Hadoop Job
with the input directory containing the collection’s data and
an appropriate InputFormat which can parse the data. Each
Map job is then provided with a single shard of the par-
titioned data. The shard for the Map job is created using
the createShard(Class<T>, Mapper.Context) method of the
HadoopMap and HadoopList classes, which converts the input
key/value pairs for the current map task in to the type of
collection required by the mapper method.

When accessed as an instance variable rather than as a
parameter to a MultiCast method, a distributed collection reads
and writes its object data from the distributed filesystem. This
is potentially inefficient as the object data is unlikely to be
local, but is useful for tasks such as printing out the final
results of a computation.

B. Multicast Methods

Proxied objects are obtained using a custom JPA EntityMan-
ager. We use the open-source OpenJPA [2] implementation of
the JPA standard which uses byte-code rewriting to extend
plain java objects with persistence information. When the
custom EntityManager returns a persistent object or collection,
it is scanned for methods annotated with @Multicast and
if these are present they are overriden to be dispatched via
Hadoop.

The MulticastInvoker class is responsible for dispatching
Multicast methods to run on the Map/Reduce cluster using

Hadoop. A single Mapper and Reducer (DefaultMapper
and DefaultReducer) are used for every job. These classes
are configured using job configuration variables set by
MulticastInvoker. For example, the DefaultMapper consults
the ‘com.ibm.cloudlabs.cloudobjects.multicast.target.class’
variable; this variable records the class which will be used
on each node to run the ‘meat’ of the job. MulticastInvoker
delegates to the input collection to set the job input path
based on the location of the passed object on the distributed
filesystem.

Each Map job creates a new copy of the delegate object
using the no-arg constructor, which must be present in the
class. Any @Shared or Joinable variables in the class are
initialized from the distributed cache, and HadoopCollec-
tion.createShard(..) is used to create a shard of the multicast
variable to be passed to the method from the input pairs. Out-
put is saved to a directory configured by a HadoopCollection
or HadoopMap and the client automatically creates and returns
a proxy collection wrapping the output directory.

C. Joinables

Joinable variables are initialised before a method is run
using the distributed cache, so that each node has the same
initial value. During the multicast method, the joinable variable
maintains any values set during the method. This preserves the
independence of the map jobs. The Mapper implementation
writes both updated joinable values and the results of the
multicast method to the map output, prefixing a 0 or 1 to the
stream to differentiate each case. These outputs are sorted by
the framework and passed to the reducer. The Reducer merges
Joinable variables using the appropriate Joiner class for the
variable and delegates to the configured Reduction class to
create the final result of the method.

V. RELATED WORK

The Hadoop [6] implementation of the Map/Reduce al-
gorithm [1] provides a Java API to Map/Reduce. This API
is, however, a low-level API which requires the programmer
to express computations as collections of Map jobs, Reduce
jobs and Driver classes. All of these interact to perform a
computation and collect results over a distributed, partitioned
datastore. Map/Reduce is typically not object-oriented because
it requires programmers to express jobs in a functional way.
Cloud Objects allows applications to use an object oriented
style while taking advantage of the scale and power of Map/
Reduce. While Cloud Objects does not have the full generality
of Map/Reduce - in particular, many Map/Reduce algorithms
are in practice tuned using techniques such as In-Mapper
Combiners, Pairs and Stripes (see e.g., [7]), which rely on
a tight coupling between Mapper and Reducer - we believe
it is a promising method for creating large scale applications.
While Map/Reduce programs tend to rely on tight coupling
between Mapper and Reducer, Cloud Objects favours the use
of standard, reusable reducers - though custom reducers are
supported - and higher-level concepts such as Joinable types
and Counters.

226Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 239 / 282

Cloud Objects follows a trend of higher-level and domain-
specific languages such as Pig [8], Hive [9] and JAQL [10]
built on top of Map/Reduce. The aim of these languages is
to retain the performance, reliability and scalability benefits
of Map/Reduce, while presenting a more familiar, simpler or
high-level style to programmers.

Sawzall [11] runs on top of Map/Reduce and, similarly to
our approach, uses a set of standard reducers to aggregate
outputs from custom map methods. Sawzall uses a custom
scripting language which processes a single input and emits
values to output types such as sum tables and maximum tables
which retain the total of their input and the largest of all of
their inputs, respectively. Sawzall is however different from the
programming language in which the rest of the application is
coded. Cloud Objects solves this issue.

Pig [8] is an imperative language with a number of group-
based built-in functions such as co-joins, projections and
restrictions. The aim of Pig is to provide an easy way for
programmers familiar with imperative programming to query
distributed data using Map/Reduce. It does not provide any
way of writing scripts in an object oriented style and focuses
on ad-hoc querying of existing data.

JAQL [10] is closer in spirit to Cloud Objects, providing
a pure functional language for querying Javascript Object
Notation (JSON) objects using Map/Reduce. JAQL is designed
for ad-hoc queries of large data rather than writing main-
tainable programs, and while it allows querying serialised
objects, it does not provide features to allow its own programs
themselves to be written in an object oriented style.

Hive [9] presents an SQL-like declarative interface for
querying large-scale data using Map/Reduce. This lacks the
generality of the Cloud Objects approach.

Collection-style interfaces such as FlumeJava [12] and
Crunch [13] have advantages over domain-specific languages
such as Pig and JAQL in that they allow the program to be
expressed in a single language and are perhaps closest to
our approach. These interfaces allow complicated pipelines of
operations on collections of objects to be efficiently optimised
in to a set of Map/Reduce jobs. These systems focus on
manipulating object collections rather than on adding data-
parallel methods to existing object-oriented programs.

Other tools exist which provide JPA bindings from Java
objects to partitioned data stores such as HDFS. DataNu-
cleus [2] is an open-source JPA provider with support for
a variety of backends including Hive. Users of Google’s
AppEngine [13] environment can use JPA to persist objects
to the AppEngine data store, and can separately use the Map/
Reduce functionality of AppEngine to run map jobs over
entities in the data store.

Alternatives to Map/Reduce also exist. For example, in the
.Net ecosystem, Dryad [14] and DryadLINQ [15] have become
popular frameworks for expressing data-parallel computations.
Dryad provides a more generic model than Map/Reduce,
allowing arbitrary directed acyclic graph computations, and
DryadLINQ provides a language-integrated query language
which can compiles to Dryad jobs. Another example is Sky-

writing [16] which provides a functional coordination lan-
guage to describe computations to be run on CIEL [17], a Map/
Reduce-like system for cluster computation. Cloud Objects are
at a higher level of abstraction and could be applied on top of
these as well.

VI. CONCLUSION

This paper introduced Cloud Objects, an object-oriented
programming model which exposes the power of Map/Reduce
in a simple, encapsulated, modular way. To use Cloud Objects,
programmers only need to add a couple of annotations to a
regular Java program.

Our prototype implementation of Cloud Objects uses
Hadoop [6] to distribute the actual code and data and extends
OpenJPA [2] to store and retrieve persistent objects to a dis-
tributed filesystem. We have benchmarked the prototype using
EC2. Initial experiments show that the overhead induced is
negligible compared to the cost of computation and network.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–
113, 2008. [Online] Available: http://labs.google.com/papers/mapreduce-
osdi04.pdf [Accessed: 14 May 2012].

[2] “Datanucleus,” http://www.datanucleus.org/ [Accessed: 14 May 2012].
[3] L. DeMichiel, “Jsr 317: Java persistence 2.0,” 2009.
[4] L. DeMichiel and M. Keith, “Jsr 220: Enterprise javabeans,” 2006.
[5] S. Burckhardt, A. Baldassin, and D. Leijen, “Concurrent programming

with revisions and isolation types,” in Proceedings of the ACM interna-
tional conference on Object oriented programming systems languages
and applications, ser. OOPSLA ’10. New York, NY, USA: ACM, 2010,
pp. 691–707.

[6] “Apache hadoop,” http://hadoop.apache.org [Accessed: 14 May 2012].
[7] J. Lin and C. Dyer, Data-Intensive Text Processing with MapReduce.

Morgan & Claypool Publishers, 2010.
[8] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig

latin: a not-so-foreign language for data processing,” in Proceedings of
the 2008 ACM SIGMOD international conference on Management of
data, ser. SIGMOD ’08. New York, NY, USA: ACM, 2008, pp. 1099–
1110.

[9] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff, and R. Murthy, “Hive: a warehousing solution over a map-
reduce framework,” Proc. VLDB Endow., vol. 2, pp. 1626–1629, August
2009.

[10] “Jaql: Query language for javascript object notation,”
http://code.google.com/p/jaql/ [Accessed: 14 May 2012].

[11] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan, “Interpreting the
data: Parallel analysis with Sawzall,” Sci. Program., vol. 13, pp. 277–
298, October 2005.

[12] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R. Henry, R. Brad-
shaw, and N. Weizenbaum, “FlumeJava: easy, efficient data-parallel
pipelines,” in Proceedings of the 2010 ACM SIGPLAN conference on
Programming language design and implementation, ser. PLDI ’10. New
York, NY, USA: ACM, 2010, pp. 363–375.

[13] “Google app engine,” http://code.google.com/appengine/ [Accessed: 14
May 2012].

[14] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
distributed data-parallel programs from sequential building blocks,” in
Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2007. ACM, 2007, pp. 59–72.

[15] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda, and
J. Currey, “DryadLINQ: a system for general-purpose distributed data-
parallel computing using a high-level language,” in Proceedings of the
8th USENIX conference on Operating systems design and implementa-
tion, ser. OSDI’08. Berkeley, CA, USA: USENIX Association, 2008,
pp. 1–14.

227Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 240 / 282

[16] D. Murray and S. Hand, “Scripting the cloud with skywriting,” in
Proceedings of the 2nd USENIX conference on Hot topics in cloud
computing. USENIX Association, 2010, pp. 12–12.

[17] D. Murray, M. Schwarzkopf, C. Smowton, S. Smith, A. Madhavapeddy,
and S. Hand, “Ciel: a universal execution engine for distributed data-
flow computing,” in Proceedings of NSDI, 2011.

228Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 241 / 282

Reliable Approach to Sell the Spare Capacity in the
Cloud

Wesam Dawoud
Hasso Plattner Institute

Potsdam University
Potsdam, Germany

wesam.dawoud@hpi.uni-potsdam.de

Ibrahim Takouna
Hasso Plattner Institute

Potsdam University
Potsdam, Germany

ibrahim.takouna@hpi.uni-potsdam.de

Christoph Meinel
Hasso Plattner Institute

Potsdam University
Potsdam, Germany

christoph.meinel@hpi.uni-potsdam.de

Abstract—Traditionally, Infrastructure as a Service (IaaS)
providers deliver their services as Reserved or On-Demand
instances. Spot Instances (SIs) is a complementary service that
allows customers to bid on the free capacity in the provider
data centers. Therefore, the decrease in the free capacity may
result in terminating instances abruptly. To ensure fair trading,
the provider does not charge customers for the interrupted
partial hours. However, our experiments show that uncharged
time could rise up to 30% of the instance total run time, which
means a reduction in the provider’s profit. In this paper, we
propose an Elastic Spot Instances (ESIs) approach, where instead
of abruptly terminating the SI, the provider scales down their
capacity proportionally to the increase in the price. Our approach
delegates the task of interrupting the instances into the customers,
but at the same time keeps the control in the provider side
to isolate SIs’ impact on the other services. We validate our
approach along different periods of SIs history traces.

Keywords- IaaS; Spot instances; Dynamic scalability.

I. INTRODUCTION

Amazon is the first cloud provider to come up with SIs
purchasing system to sell the spare capacity after fulfilling the
requests for Reserved and On-Demand instances. The price of
SIs changes dynamically according to free capacity and actual
demand. The requests for new SI with bid price higher than
or equal the current spot price will be served. On the other
hand, if the current prices exceeded the user bid, provider will
terminate out-of-bid instances abruptly. SIs reduce the prices
from 38% to 44% of the On-Demand prices [1]. However, SIs
customers are supposed to modify their applications to manage
the abrupt termination of SIs.

To manage SIs termination, customers can implement fault
tolerant architectures such as MapReduce [2], Grid, Queue-
Based [3], and Checkpointing [4][5][6]. The first three archi-
tectures typically run two types of nodes (master and worker).
One of the master nodes tasks is to manage the failure of
worker nodes. The best practice is to run master nodes on On-
Demand or Reserved instances and run worker nodes on SIs
to benefit from price reduction. However, these architectures
imply major modification to customers’ applications. On the
other hand, checkpointing is a simple traditional fault tolerant
technique. It keeps application execution progress by storing
the current state (i.e., snapshot) of the running instance into a
persistent storage. Nevertheless, bad checkpointing strategies

could impact the performance drastically [7]. For instance,
frequent checkpointing results in a high cumulative overhead
(i.e., computation is paused at checkpointing time). On the
other hand, infrequent checkpointing results in a high overhead
caused by the high recovery time (i.e., much computation
should be repeated again).

The main goal of this paper is to reduce the checkpointing
overhead in SIs environment. This is motivated by the follow-
ing facts: First, checkpointing is a simple fault tolerant tech-
nique that does not require major modifications to customers’
applications. Second, checkpointing could be integrated to the
other fault tolerant architectures to increase their reliability.
Finally, and most importantly, if customers can have check-
points exactly before terminating VMs instances (i.e., Optimal
Checkpointing), then there is no need for the concept of unpaid
partial running hours, which on consequently increases the
provider profit.

In the next section, we study Amazon EC2 SIs implemen-
tation. In Section III, we discuss our proposed ESIs approach:
the algorithm, the advantages, and the potential technical
challenges. In Section IV we compare our proposed approach
performance with current implementation of SIs using price
history traces. In Section VI, we present related work done
to improve the trade-off between price, reliability, and total
run time of applications on SIs. Finally, in Section VII, we
conclude and represent our future work.

II. AMAZON EC2 SIS

In this section, we give an overview to Amazon EC2 SIs
because it is the first provider who offers SIs purchasing
system. The purpose of this section is to determine SIs
characteristics that we should consider in our approach.

A. Infrastructure

Amazon EC2 infrastructure [8] is distributed into regions
(e.g., US East “Northern Virginia”, US West “Northern Cal-
ifornia”, etc.). To prevent failure propagation, each Region
is separated into many availability zones. This infrastructure
mainly delivers Reserved and On-Demand instances. The
spare capacity is sold as SIs. The SI, as well as the Re-
served and On-Demand instance, can be one of many types
depending on resources capacity (e.g., High-CPU Medium

229Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 242 / 282

Instance “c1.medium”, High-Memory Extra Large Instance
“m2.xlarge”, etc.).

SI’s price is determined by the type, the region, and the
operating system. Unlike Zhang et al.’s [9] assumption, in
our approach we assume that a physical machine, at the
provider side, hosts only instances of the same type and
operating system. We support our assumption by observing
CPU specifications of each EC2 instance type.

B. Is it a market-driven auction?

Amazon describes SIs purchasing system as a market-driven
auction [3]. For example, if the provider has N free resources
and it received K bids on the resources, then the provider
accepts only the highest N bids, where K is greater than N .
The price will be the lowest bid value of the winning subset
of the bids. However, by analyzing history traces of SIs’ price,
Javadi et al. [1] showed sharp changes in the inter-price time
(i.e., time between price changes) occurred on specific dates
at different regions. Javadi et al. conclude that it is artificial
(i.e., done by Amazon and not driven by customers demand).

2:24

7:12

12:00

16:48

21:36

26:24

31:12

In
te

r-
p

ri
ce

 t
im

e
(h

o
u

rs
)

Band 1: more than 5 hours Band 2: 2 to 5 hours

Band 3: 1 to 2 hours Band 4: less than hour

Epoch 1 Epoch 2 Epoch 3

Fig. 1. (US-East), High-CPU Medium Instance’s inter-price time

Ben-Yehuda et al. [10] went further by showing that the
prices also are determined artificially by a random reserve
price algorithm and do not represent real customers bids
around 98% of the time. They expected that the aim of
this random reserved price is to prevent customers from: 1-
being complacent and force them to bid higher. 2-inferring the
provider’s real capacity. Therefore, in case of low number of
bids on specific instances type (i.e., K is lower than N), the
provider either accepts the lowest bid as the current price or
generates a higher value (i.e., pretends less resources [9]) to
sell the resources with a higher price. This behavior raises
a question about the efficiency of approaches that model
the SIs prices. However, we attribute the direct control of
the provider on the price to the lack of demand for some
instances’ type. Nevertheless, regardless of the aim of this
random reserved price, our approach does not disclose any
hidden information about provider’s capacity while it proposes
changes to purchasing system rather than to pricing system of
SIs.

III. ELASTIC SPOT INSTANCES (ESIS)

We propose ESIs approach to increase the efficiency of
selling the free capacity of the IaaS provider. It assumes

modifying the SIs purchasing system to increase its reliability
without influencing the other hosted services. Fortunately,
these modifications do not imply major modification to the
current providers’ infrastructure while many IaaS providers
already use virtualization technologies that can easily accom-
modate our approach.

Current SIs implementation reacts with the increase demand
on On-Demand and Reserved instances by increasing the SIs
price. As a result, out-of-bid SIs are evicted to free more
capacity for the complementary services. From the customer
point of view, this reduces the SIs reliability. From the provider
side, the abrupt interruption of the SIs results in partial unpaid
hours (i.e., in some cases, provider will not be paid up to 30%
of an instance total run time). Moreover, if the users managed
to delay the SI termination, as discussed by [11] and [5], this
also increases the probability of unpaid running time.

Implementing our approach requires the following modi-
fications to current SIs purchasing algorithm: First, provider
should determine min and max price for each instance type.
Second, instead of terminating out-of-bid SI the provider
scales down instance’s capacity to a value proportional to the
increase in the price. Third, running instances can be charged
per second because VM instance termination is delegated to
the user. According to these modifications, the capacity of ESI
can be calculated using Algorithm 1.

Algorithm 1 ESIs’s purchasing algorithm
Input: max price, min price, current price, min cap, and
user bid
Output: VM capacity
// Calculate the scaling step size
scale step← 100/(1000∗ (max price−min price)+1)
// Calculate next capacity of VM
if user bid ≥ current price then
VM capacity ← 100

else
if user bid < current price then
VM capacity ← 100 − scale step ∗ 1000 ∗
(current price− user bid)

end if
//To prevent VM from starving
if VM capacity < min cap then
VM capacity ← min cap

end if
end if

According to [1], the price history of most SIs types,
except for some types in US-East data center, could be
modeled as a Mixture of Gaussian distributions with three or
four components with a high fit. This gives the impression
that Amazon already has soft minimum and maximum price
thresholds for each spot instances type. Moreover, to prevent
negative and very low capacities of VM instances, we propose
having a minimum capacity of the VM resources, as seen in
Algorithm’s 1 input. In Section V, we discuss calculating this
value considering the free capacity at the physical host.

230Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 243 / 282

Algorithm 1 shows that the provider will not have the
control to terminate the SIs. At first glance, it seems that
customers will be complacent and can simply use a very
low bid strategy to have a continued run with a low price.
However, if we take the example of “US-West, Linux, High-
CPU Medium” instance, the probability density function
shows that 99.8% of the prices fall between 0.076 and 0.084.
Therefore, scale step value in Algorithm 1 is calculated as
100/(1000 ∗ (0.084− 0.076) + 1) = 11.11, which means that
whenever the Spot Price surpasses user bid with 0.001, the
capacity of the instances scales down to (100−11.11) ≈ 89. If
a user submitted a low bid, for example 0.077, the user will be
charged 0.077 per hour for a full capacity instance (i.e., 100%).
However, when the market price jump to 0.081, the instance
capacity will be scaled down to 100−11.11∗(0.081−0.077) ≈
56%. In spite of the fact that the instance is charged 0.077 per
hour, the price is almost doubled according to the low allocated
capacity. By this concept, at the case of the overloading,
instead of terminating the instances by the provider, the high
ratio of price to capacity will push the customers to mange
terminating SIs for the optimal price. In Section IV-C, we
will discuss the bidding strategies on the light of the proposed
modifications to SIs purchasing system.

A. Technical Challenges

Our approach depends on the virtualization technologies’
ability to scale the virtualized resource dynamically. However,
isolation is a prerequisite for virtualized resources’ scalability.
It is a demanding problem attracts many researchers [12], [13],
[14]. In this section, we discuss isolation and scalability of the
following resources: CPU, I/O, and Memory.

CPU isolation is the scheduler’s responsibility. Each sched-
uler has policy that controls the assigned capacity and CPU’s
time for each virtual CPU (vCPU). Schedulers allow users
to change the vCPU’s configuration dynamically. However,
each scheduler has its characteristics that make it suitable for
some environments more than others. For instance, Xen [15]
has three schedulers: Borrowed Virtual Time (BVT), Simple
Earliest Deadline First (SEDF), and the Credit scheduler [16].
Among these schedulers, only SEDF and Credit scheduler
have a non work-conserving mode, which enable the scheduler
to cap the capacity of the CPU to specific value (e.g., 50% of
the CPU capacity). In spite of the fact that SEDF shows less
CPU allocation errors compared to Credit scheduler [16], the
global fairness of Credit scheduler makes it the best candidate
for our approach.

As in the case of CPU isolation, I/O isolation is also of
schedulers’ responsibility. However, current implementation of
the hypervisors shows that an I/O-intensive VM can influence
the performance of other VMs. For instance, in Xen [15],
I/O device follows a split-driver model. Therefore, only an
Isolated Device Domain (IDD) has access to the hardware
using native device drivers. Cherkasova [16] and Gupta et
al. [17] demonstrated that the I/O model of Xen complicates
CPU allocation and accounting since an IDD processes I/O on
behalf of guest VMs. To enhance the accounting mechanism,

[17] proposed SEDF-DC. It accounts the CPU usage of
an IDD into corresponding guest domains that trigger I/O
operations. However, SEDF-DC is still a prototype and it is
not implemented to the deployed version of Xen. We leave
integrating SEDF-DC to our approach to our extended work.

At initialization time of VMs, the hypervisor allocates
an isolated virtual memory for each VM. Memory isolation
makes the VM unaware of other VMs’ or hypervisor mem-
ory demand. A Ballooning technique is developed to enable
passing memory pages back and forth between hypervisor and
hosted VMs. However, it requires the cooperation of the VM’s
operating system. Therefore, VM’s operating system should
be plugged with balloon driver to enable the communication
between the VM’s operating system and the hypervisor. In case
that the hypervisor decide to reduce the VM’s memory size
(i.e., reclaim pages from VM and inflate the balloon [18]), it
determines the target balloon size. If the VM’s operating sys-
tem has plenty of free physical memory, inflating the balloon
will be done by just pinning free memory pages (i.e., prevent
access to these pages). However, if the VM’s is already under
memory pressure, the operating system should decide about
the memory pages that should be paged out to the virtual swap
device[18]. In spite of the fact that paging impacts the VMs
performance, Ballooning technique shows better performance
compared to Hypervisor Swapping reclamation technique [18].
The lack of the knowledge about the pages contents, in case
of Hypervisor Swapping, may result in paging VM’s kernel,
which has a significant impact on the VM performance. In
this paper, we used the balloon driver implemented by Xen
to scale down the memory of VMs with the price increase.
However, the reality of initiated CPU-intensive workload, in
our experiments, did not examine the memory scalability
performance. Therefore, we leave examining our approach’s
performance against different kinds of workload to our future
work.

IV. EVALUATION

To validate our approach, we carried out two sets of
experiments on the physical hardware and using simulation.
The first set of experiments, carried out on our Xen test
bed, focuses on modeling the virtual machine against CPU-
intensive workload with different values of CPU capacity. The
other set of experiments carried out by feeding our simulator
with the extracted model to simulate running a job of 168
hours (one week). We chose this length of job according to [1]
observation that the Spot Price follow specific patterns during
the weekdays. Moreover, long run jobs gave us consistence
results compared with short jobs. The job run is simulated
on a SI and on ESI using SIs’ price history traces that are
gathered by [19].

A. VM model for CPU-intensive workload

To extract the VM instance model, we ran a VM with
two cores on Xen 4.1 hypervisor. The physical server has
2.8 GHz Intel Quad Core i7 Processor and 8GB of physical
memory. The workload is CPU-intensive workload generated

231Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 244 / 282

by EP Embarrassing Parallel, which is one of NAS Parallel
Benchmarks (NPB) [20]. The benchmark generates indepen-
dent Gaussian random varieties using the Marsaglia polar
method. The throughput is measured by Million Operations
Per second (MOPs).

At the beginning, the VM instance runs with its full capacity
(i.e., 100%). As seen in Fig. 2, the throughput is 37.92 MOPs
and the execution time is 56.6 seconds. The same workload
is run many times but for different capacities of the VM’s
CPU. In our experiment, we use Xen Credit Scheduler as
an actuator for setting the CPU capacity limit of the VM.
The Credit Scheduler has a non work-conserving mode, which
prevents an overloaded VM from consuming the whole CPU
capacity of the host and consequently degrading the other VMs
performance. For each CPU capacity, we recorded both the
MOPs number and the total execution times.

t = 8916.8x-1.097
R² = 0.999

y = 0.2415x1.0958
R² = 0.999

0

5

10

15

20

25

30

35

40

0

200

400

600

800

1000

1200

1400

1600

1800

0 10 20 30 40 50 60 70 80 90 100

 M
O

P
s

Ex
cu

ti
o

n
 t

im
e

(s
e
c
o
n
d
s

)

Excution time (seconds) MOPs

Power (Excution time (seconds)) Power (MOPs)

CPU capacity (%)

Fig. 2. VM’s model against CPU-intensive workload

As seen in Fig. 2, the instance’s throughput changes lin-
early with the virtual CPU (vCPU) capacity according to the
following equation:

0.2415 ∗ x1.0958 (1)

where x is the vCPU capacity. However, as the capacity of
the VM’s vCPU decreases, the execution time increases. At
very low capacities (i.e., less than 20%) the execution time
increases rapidly. Therefore, in Section IV-C, we explain the
bidding strategies that avoid inefficient run for VMs instances.

B. SI simulation

In this section, we simulate running a job of 168 hours
on a SI. We chose High-CPU Medium Instance (c1.medium)
type while it is an instance type offered to deliver high CPU
computation power. Moreover, we selected US-East Region
specifically because it shows different values for inter-price
bands. We would like to study the influence of these bands on
the provider profit (i.e., the percentage of unpaid computation
hours), as well as on the SI’s performance.

In our simulation, we use optimal checkpointing strategy
(i.e., checkpointing exactly before the instance termination).
During checkpointing time, the computation in VM is paused
[11]. Moreover, restoring a VM mounts additional overhead
to the checkpointing technique. Sotomayor et al. [21] provide

a model to estimate the suspension and restoration time of
a VM. The model depends on the number of the co-located
VMs and the storage location (i.e., local or remote). However,
we cannot predict the number of co-located VMs at public
cloud providers. Therefore, we depend on measuring the time
required for having a snapshot of c1.medium instance type.
Measurements are done 10 times on different time slots of
the day at US-East Region. The measured value was always
less than a minute. On the other hand, measuring restoration
time was ambiguous. Even with very high bids, the measured
time between submitting a request and running a SI, from a
snapshot, was measured to be 7 to 10 minutes. It is clear that,
the bidding algorithm impacts restoring a SI even for very
high bids. Therefore, in our simulation, we use the suspension
and restoration time which have been estimated by [21] for
two VMs to a remote storage. The values are 120 seconds for
suspension and 150 seconds for resumption.

In the simulator, we describe the workload as the number
of operations that can be done in 168 hours, which could be
calculated by (1) as: 168 ∗ 60 ∗ 60 ∗ 0.2415 ∗ x1.0958 where
x = 100. To cover many pricing patterns we chose different
starting times from us-east-1.linux.c1.medium spot instance’s
price history: 2010-01-02, 2010-09-09, and 2011-05-01. These
days are selected to span different variations of inter-price
Bands. However, we verified that running the job on other
days, within the same epochs, behaves the same with a slight
difference in the price and total run time. The bids range
from 0.057 to 0.063 while probability density function, of
the history prices of us-east-1.linux.c1.medium, shows that
99.64% of the prices fall within this range.

9.5

9.6

9.7

9.8

9.9

10

10.1

10.2

168

404

640

876

1112

1348

1584

1820

2056

2292

2528

2764

Total run time - 2011-05-01 Total run time - 2010-09-09
Total run time - 2010-01-12 Total price ($) - 2011-05-01
Total price ($) - 2010-09-09 Total price ($) - 2010-01-12

To
ta

l p
ri

ce
($

)

To
ta

l
ru

n
 t

im
e

(H
o

u
rs

)

bid ($)

Fig. 3. Spot Instance running 168 hours job

Fig. 3 shows the following concepts: First, low bids lead
to lower price but longer run time. Second, high bids lead to
higher price but shorter run time. Moreover, the simulation of
SI at 2010-09-09 shows a longer run time for most bid values
compared with the other simulation dates. This is because of
the short inter-price at epoch 2 (i.e., Band 3 is 1 to 2 hours).
To study the influence of the inter-price time on the provider
profit, we sum up the partial hour for each bid value. The result
value is divided by the total run time to get the percentage of
Unpaid running time. Results are illustrated in Fig. 4.

In Fig. 4, for the simulation date 2010-01-12, the provider’s

232Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 245 / 282

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

Unpaid (%) - 2011-05-01 Unpaid (%) - 2010-01-12
Unpaid (%) - 2010-09-09

U
n

p
ai

d
 r

u
n

n
in

g
ti

m
e

(%
)

bid ($)

Fig. 4. Unpaid running time(%) - A Spot Instance running 168 hours job

loss (i.e., Unpaid running time) at low bids could be 20%
of the total run time. However, the loss decreases with the
higher bids values. The simulation date 2010-09-09 shows the
highest loss for the provider (i.e., from 25% to 30% at low to
medium bids) according to the short inter-price time at this
epoch. Simulation at 2011-05-01 shows a reduction in provider
loss compared with that done at 2010-09-09. However, it is
higher than that at 2010-01-12. By this observation, we could
explain the goal behind the appearance of the Bands 1 to 3
again starting from 2011-02-09. However, we cannot find any
reasonable explanation behind the appearance of the Band 4
again in us-east region.

C. ESI simulation

In this section we simulate running the same described
job but on ESI. The main goals of this experiment are the
following: first, to observe the proposed approach consistency
with the bidding concepts: 1-Low bids lead to lower price but
longer run time. 2-High bids lead to higher price but shorter
run time. Second, to study the proposed approach impact
on the bidding strategies, and to suggest bidding strategies
that boost the checkpointing technique to a level close to the
optimum.

As described in Section III, when the market prices surpass
the user bid, the provider reduces the VM capacity with a value
proportional to the difference between user bid and the current
price. However, a long run at higher price is inefficient, while
it implies purchasing lower capacity with a higher price. It is
user responsibility to find the best time to take a snapshot and
turn off the running instance. To do that, in addition to the
bid value, which is passed to the provider, the client should
keep in mind another limit price value. Whenever the market
price exceeds this limit, the user will take a checkpoint then
terminate the instance.

We chose the same days of “US-East, Linux, c1.medium”
instance price history to cover different pricing patterns as in
the last experiment. The x-axis in Fig. 5(a) to Fig. 5(f) is the
limit of the instance price. It is determined by the user to
avoid long running of the instance at a high price. We assume
that the user will start checkpointing process once the spot
market price exceeded this limit value. In our simulator, it is

implemented as 2 minutes delay for having a checkpoint then
turning off the VM. User will be charged for this running time.
Moreover, we consider that the job execution is paused during
checkpointing time.

As well as the bid value, the limit value significantly affect
the total price and total run time, as seen in Fig. 5. For
example, in Fig. 5(a) and Fig. 5(d), if the user bid is 0.057
and the limit value is 0.058, then the total cost for running the
job is 9.726$, while the total run time is 1988 hours and 12
minutes. For the same bid, if the limit value is raised to 0.059,
the total cost will increase to 9.821$, while the total run time
decreases to 1881 hours and 30 minutes. On the other hand,
the same total price could be achieved by the bid value 0.058
and limit value 0.059 with a significant reduction in the total
run time (i.e., time reduced from 1881 hour and 30 minutes
to 528 hours and 18 minutes). This leads us to conclude that
the optimal bid and limit values are those which satisfy the
following relation: Limit = Bid+0.001. It is consistent with
the bidding concepts shown at the beginning of this section.
Moreover, Fig. 5 shows that biding according to the relation
Limit = Bid+2 ∗ 0.001 could be a good strategy, especially
for average values (e.g., bid: 0.059 and limit: 0.061). However,
this behavior is not consistent with all bid values because it
depends on the prices distribution.

To compare the performance of the ESI with the SI, we
consider Optimal checkpointing strategy as a reference. For the
three simulation dates, we select the lowest bid (i.e., 0.057),
the mean bid value (i.e., 0.060), and the highest bid value
(i.e., 0.063). In our comparison, we consider two metrics, the
total price and the total run time, where the lower normalized
Price× Time is the better.

TABLE I
NORMALIZED Price× T ime FOR EXECUTION ON MIN-BID, MEAN-BID,

AND MAX-BID. THE REFERENCE IS A SI WITH OPTIMAL CHECKPOINTING
STRATEGY SHOWN IN FIG. 3

low-bid (0.057) mean-bid (0.060) max-bid (0.062)
2010-01-12 1.016 × 0.796 1.026 × 0.944 1.054 × 1.000
2010-09-09 1.026 × 0.812 1.050 × 0.797 1.047 × 1.000
2011-05-01 1.016 × 0.737 1.042 × 0.817 1.054 × 1.000

If we compare the results in Table I with what obtained by
[7], the lowest normalized Price× Time of the instance us-
east.c1.medium with low bid (i.e., 0.058) was 1.266. However,
with our approach, even for a lower bid value (i.e., 0.057), the
normalized Price×Time values were 0.809, 0.833, and 0.749
for the simulation dates in consequence, which means 34%
to 40% reduction in normalized Price × Time. Moreover,
for the mean bid value (i.e., 0.060), the lowest normalized
Price×Time of the same instance was 1.332. However, with
our approach it is reduced to 0.969, 0.837, and 0.851 for the
three simulation dates in consequence, which means 27% to
37% reduction in normalized Price× Time.

Finally, we should remind that the Unpaid running time in
case of ESIs is zero, which means that the provider will not
lose any computation power.

233Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 246 / 282

9.5

10.5

11.5

12.5

13.5

14.5

15.5

Limit ($)

To
ta

l p
ri

ce
($

)

(a) 2010-01-12

9.5

10.5

11.5

12.5

13.5

14.5

15.5

Limit ($)

To
ta

l p
ri

ce
($

)

(b) 2010-09-09

9.5

10.5

11.5

12.5

13.5

14.5

15.5

Limit ($)

To
ta

l p
ri

ce
($

)

(c) 2011-05-01

168

368

568

768

968

1168

1368

1568

1768

1968

2168

Limit ($)

To
ta

l r
u

n
 t

im
e(

H
o

u
rs

)

(d) 2010-01-12

168

368

568

768

968

1168

1368

1568

1768

1968

2168

Limit ($)

To
ta

l r
u

n
 t

im
e(

H
o

u
rs

)

(e) 2010-09-09

168

368

568

768

968

1168

1368

1568

1768

1968

2168

Limit ($)

To
ta

l r
u

n
 t

im
e(

H
o

u
rs

)

(f) 2011-05-01

9.5

10.5

11.5

12.5

13.5

14.5

15.5

0.057 0.058 0.059 0.06 0.061 0.062 0.063

Limit ($)

To
ta

l p
ri

ce
($

)

Bid($)

Fig. 5. Running 168 hours job on ESI with different limit prices

V. ESIS’ INFLUENCE ON THE OTHER SERVICES’
PERFORMANCE

In the following section, we study the influence of the ESIs
on the other hosted instances (i.e., On-Demand and Reserved
instances). As shown in Section IV-C, when the provider
is overloaded, ESIs users may pay more money for fewer
resources. It is a strong reason for ESIs users to terminate
their instances, which free more resources at provider side.
However, the provider should be aware of the users who
choose high limit values or never attempt to terminate ESIs
according to misunderstanding of ESIs concept.

In our analysis, we assume that On-Demand instances
are hosted together with ESIs on Xen Hypervisor running
Credit Scheduler. We started by running one On-Demand
instance with n ESIs to understand the influence of ESIs on
the performance of On-Demand instances. All instances are
running two virtual cores. The workload is the CPU-intensive
workload described in Section IV. On-Demand instances run
with full capacity. However, ESIs’ capacity is started with full
capacity (i.e., 100%), then is reduced 10 percent with each
step. The throughput of the On-Demand instance is measured
with each reduction in the capacity.

As shown in Fig. 6, the On-Demand instance throughput
is a function of both the number of ESIs and the capacity
of each instance. By analyzing the curves in Fig. 6, we can
notice three cases of On-Demand instance throughput: First,

0%

20%

40%

60%

80%

100%

120%

0 10 20 30 40 50 60 70 80 90 100

O
n
-d

e
m

a
n
d
 i
n
s
ta

n
c
e
s
 t

h
ro

u
g
h
p
u
t

(%
)

Elastic Spot Instances (ESIs) capacity (%)

1 ESI

2 ESIs

3 ESIs

4 ESIs

5 ESIs

Fig. 6. On-Demand instances utilization with variant number of ESIs

no throughput degradation. Second, throughput as a function
of number of co-located ESIs only. Third, throughput as a
function of number and capacity of co-located ESIs.

To generalize the relation, assume that we are running n
ESIs on the same host with m On-Demand instances. We
would like to determine the capacity of the ESIs that reduce the
influence of the ESI on the other hosted instances (i.e., On-
Demand instance in our example). To formalize the models
shown in Fig. 6, we define the following parameters:

• Free capacity on the host: Ch
free

• Number of On-Demand instances: n

234Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 247 / 282

• Requested capacity by On-Demand instance: Cd
req

• Assigned capacity to On-Demand instance: Cd
assigned

• Number of ESIs: m
• Requested capacity by ESI i: Csi

req

• Total requested capacity by ESIs:
∑m

i=0 C
si
req

• Assigned capacity to ESI i: Csi
assigned

• Total assigned capacity to ESIs:
∑m

i=0 C
si
assigned

In our case, we consider that the On-Demand instance will
consume the full capacity of the CPU, so we will consider
Cd

req = 100. According to our observations, we consider
that a provider hosts VMs instances of the same size on
one physical host. Therefore, the number of virtual cores is
the same for both On-Demand and ESIs. In the following
analysis, to isolate the other On-Demand instances influence,
we consider hosting only one On-Demand instance on the
physical host. However, the ESIs’ impact will be the same
for each On-Demand instance hosted on the same physical
server. To calculate the allocated capacity for the On-Demand
instance, we consider the following cases:

Case 1: The host is able to fulfill On-Demand instance
required capacity while

(Ch
free − Cd

req) >=

m∑
i=0

Csi
req (2)

In this case, the ESIs do not influence the On-Demand instance
performance, and the On-Demand instance throughput is very
close to 100%.

Case 2: The ESIs requested capacity is high to a level
that influences the On-Demand instance’s assigned capacity.
However, the average requested capacity by an ESI is still
lower than the requested capacity by On-Demand instance;
this could be formulated as the following:

((Ch
free−

m∑
i=0

Csi
req) > Cd

req)&&((

m∑
i=0

Csi
req)/m < Cd

req) (3)

In this case the On-Demand instance throughput is calculated
by (1). Where x = Cd

assigned = (Ch
free −

∑m
i=0 C

si
req)

Case 3: The ESIs requested capacity is very high. Moreover,
the average requested capacity by an ESI is higher than or
equal to the requested capacity by an On-Demand instance. In
this case, the Credit Scheduler will employ its fairness to give
the same capacity for each running instance on the hypervisor.
In this case, the On-Demand instance throughput is calculated
by (1), where x = Ch

total/(n+m) and n = 1 in our example.
A region overloading will be reflected as high increase in

the SIs’ price, probably double the price of an On-Demand
instance. In such a case, the ESIs should be scaled down as
described in Algorithm 1 to satisfy the condition at (2). For
example, if one On-Demand instance with two virtual cores
running on the same host with 5 ESIs each with 2 cores,
limiting the ESI’s capacity to 20% will isolate any influence
of the SIs. However, to prevent negative values of capacities
in case of very high increase in the prices, we determine a
static limit that cannot be exceeded. In our experiment, it was
10% of the CPU capacity. This value implies that ESIs will

not influence the other hosted instances until the number of
ESIs exceeds 20 instances on the same physical host.

Finally, we should remind that a very high price and low
allocated capacity at overloaded time is a good reason for
the customers of ESIs to have a checkpoint or/and turn off in-
stances safely, which reduces ESIs’s number and consequently
reduces their influence.

VI. RELATED WORK

In this section, we classify the research towards improving
the trades off between the total price, the reliability, and the
total run time of SIs into two categories: first, work directed
to find the best bid prices by analyzing and modeling prices
history statistically (i.e., modeling price history). Second, work
directed to manage SIs interruption by using fault tolerant
architectures (i.e., managing the interruption). Moreover, some
researches from the second category integrate history analysis
techniques with fault tolerant architectures for a better perfor-
mance.

A. Modeling price history

Javadi et al. [1] analyzed SIs history in terms of Spot price,
inter-price time, but not the user bid. Andrzejak et al. [6]
have proposed probabilistic decision model that considers user
bid, budget, and the job deadline. The proposed model can
suggest a bid value that meets a given budget or a deadline
considering a specified level of confidence. Zhang et al. [9]
adopted an auto-regressive model (AR) that depends on the
historical values of demand to predict the next price of an
instance type.

However, actual demand can neither be disclosed by the
provider nor be inferred from the current price. It has been
shown by Mazzucco et al. [22] that there is no correlation
between SI prices and the time. Moreover, as shown in Fig. 1,
the artifact changes in the SIs price make it difficult to build
consistent models that describe the SIs’ market behavior for
the long run.

B. Managing interruption

Although MapReduce is designed as a fault tolerant ar-
chitecture, it cannot tolerate a potential massive failure of
instances in the SI’s market. Therefore, Liu [23] extended
the Cloud MapReduce (CMR) [24] implementation of map
phase to stream intermediate results to a Cloud storage (i.e.,
SimpleDB). Their MapReduce implementation supports partial
commit to keep track of the map process. In case of failure,
system is able to determine the location at which the next map
task should resume processing. Mattess et al. [25] examined
many polices to run a Grid workload from DAS-2 [26].
Their local cluster is integrated with SI’s market to cope
with workload spikes, which results in reduction in the prices
without degrading the performance.

Taifi et al. [27] studied running high performance computing
(HPC) applications on SIs environment. To this end, they
proposed SpotMPI architecture. One of SpotMPI architecture
component is checkpoint-restart (CPR) calculator. Depending

235Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 248 / 282

on price history and the estimated total processing times, the
CPR component determines the best checkpointing intervals.
Jain et al. [28] developed an algorithm that dynamically adapts
the resource allocation policy, which decides between On-
Demand or SIs allocation. The allocation policy is adapted by
learning from system performance on prior job execution while
incorporating history of Spot prices and workload character-
istics. However, the uncertainty of job time estimation is one
of the problems that could approach [27] and [28] algorithms.

Yi et al. [7] employed checkpointing and migration as
fault tolerance techniques. They examined many checkpointing
strategies on the light of normalized Price × Time for
different bid values and different types of instances. Moreover,
after each instance’s interruption, their approach decides the
new SI’s type, location, and price that reduces the total running
time. However, as seen in Section IV-C, our approach showed
outperforming results compared with their approach.

In addition to checkpointing and migration techniques,
Voorsluys et al. [11] integrated job duplication technique. This
integration increases the probability that jobs finish within
their deadlines. However, as concluded by the authors, job
duplication yields much higher costs.

VII. CONCLUSION AND FUTURE WORK

The proposed ESIs architecture does not require many
modifications to the current Cloud Computing Infrastructure.
However, it has benefits for both of the provider and the
customer. On the provider side, our approach increases the
provider’s revenue where it eliminates the concept of the
partial hours. For the customer, the proposed approach boosts
the checkpointing strategy to the optimal level. However,
clients’ applications should be aware of our proposed bidding
strategies.

We evaluated our approach against CPU-intensive applica-
tions where the CPU is the real player in power consumption.
However, in the future, we will consider other resources and
different combinations of the real workload. We will imple-
ment the techniques that work on I/O isolation like SEDF-DC.
Furthermore, our extended work will include evaluating ESIs
approach with the other SIs types.

REFERENCES

[1] B. Javadi and R. Buyya, “Comprehensive Statistical Analysis and Mod-
eling of Spot Instances in Public Cloud Environments,” The University
of Melbourne, Melbourne, Tech. Rep., 2011.

[2] R. Lämmel, “Google’s MapReduce programming model; Revisited,” Sci.
Comput. Program., vol. 68, no. 3, pp. 208–237, Oct. 2007.

[3] Amazon, “Amazon EC2 Spot Instances.” [Online]. Available:
http://aws.amazon.com/ec2/spot-instances/, Retrieved: May, 2012

[4] E. Park, B. Egger, and J. Lee, “Fast and space-efficient virtual machine
checkpointing,” in Proceedings of the 7th ACM SIGPLAN/SIGOPS
international conference on Virtual execution environments, ser. VEE
’11. New York, NY, USA: ACM, 2011, pp. 75–86.

[5] S. Yi, D. Kondo, and A. Andrzejak, “Reducing Costs of Spot Instances
via Checkpointing in the Amazon Elastic Compute Cloud,” in 2010
IEEE 3rd International Conference on Cloud Computing. IEEE, Jul.
2010, pp. 236–243.

[6] A. Andrzejak, D. Kondo, and S. Yi, “Decision Model for Cloud Comput-
ing under SLA Constraints,” in 2010 IEEE International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication
Systems. IEEE, Aug. 2010, pp. 257–266.

[7] S. Yi, A. Andrzejak, and D. Kondo, “Monetary Cost-Aware Checkpoint-
ing and Migration on Amazon Cloud Spot Instances,” IEEE Transactions
on Services Computing, Jul. 2011.

[8] Amazon, “Amazon EC2.” [Online]. Available:
http://aws.amazon.com/ec2/, Retrieved: May, 2012

[9] Q. Zhang, E. Gürses, R. Boutaba, and J. Xiao, “Dynamic resource
allocation for spot markets in clouds,” p. 1, Mar. 2011.

[10] O. A. Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and T. Dan, “Decon-
structing Amazon EC2 Spot Instance Pricing,” Technion Israel Institute
of Technology, Haifa, Tech. Rep., 2011.

[11] W. Voorsluys and R. Buyya, “Reliable Provisioning of Spot Instances
for Compute-intensive Applications,” Computing Research Repository,
vol. abs/1110.5, 2011.

[12] H. Kim, H. Lim, J. Jeong, H. Jo, and J. Lee, “Task-aware virtual
machine scheduling for I/O performance.” in Proceedings of the 2009
ACM SIGPLAN/SIGOPS international conference on Virtual execution
environments, ser. VEE ’09. New York, NY, USA: ACM, 2009, pp.
101–110.

[13] J. N. Matthews, W. Hu, M. Hapuarachchi, T. Deshane, D. Dimatos,
G. Hamilton, M. McCabe, and J. Owens, “Quantifying the performance
isolation properties of virtualization systems,” in Proceedings of the 2007
workshop on Experimental computer science, ser. ExpCS ’07. New
York, NY, USA: ACM, 2007.

[14] J. Liu, W. Huang, B. Abali, and D. K. Panda, “High performance VMM-
bypass I/O in virtual machines,” in Proceedings of the annual conference
on USENIX ’06 Annual Technical Conference. Berkeley, CA, USA:
USENIX Association, 2006, p. 3.

[15] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, Xen and the art of virtualization. New
York, New York, USA: ACM Press, Oct. 2003, vol. 37, no. 5.

[16] L. Cherkasova, D. Gupta, and A. Vahdat, “Comparison of the three CPU
schedulers in Xen,” SIGMETRICS Perform. Eval. Rev., vol. 35, no. 2,
pp. 42–51, Sep. 2007.

[17] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat, “Enforcing
performance isolation across virtual machines in Xen,” in Proceedings of
the ACM/IFIP/USENIX 2006 International Conference on Middleware,
ser. Middleware ’06. New York, NY, USA: Springer-Verlag New York,
Inc., 2006, pp. 342–362.

[18] C. A. Waldspurger, “Memory resource management in VMware ESX
server,” SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 181–194, Dec.
2002.

[19] T. Lossen, “Cloud exchange.” [Online]. Available:
http://cloudexchange.org/, Retrieved: May, 2012

[20] NASA, “NAS Parallel Benchmarks (NPB).” [Online]. Available:
http://www.nas.nasa.gov/Resources/Software/npb.html, Retrieved: May,
2012

[21] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, “Resource
Leasing and the Art of Suspending Virtual Machines,” High Performance
Computing and Communications, 10th IEEE International Conference
on, vol. 0, pp. 59–68, 2009.

[22] M. Mazzucco and M. Dumas, “Achieving Performance and Availability
Guarantees with Spot Instances,” in 13th International Conference
on High Performance Computing and Communications (HPCC-2011),
Banff (Canada).

[23] H. Liu, “Cutting MapReduce Cost with Spot Market,” in USENIX
HotCloud’11, Portland, USA, 2011, p. 5.

[24] H. Liu and D. Orban, “Cloud MapReduce: A MapReduce Implementa-
tion on Top of a Cloud Operating System,” Cluster Computing and the
Grid, IEEE International Symposium on, vol. 0, pp. 464–474, 2011.

[25] M. Mattess, C. Vecchiola, and R. Buyya, Managing Peak Loads by
Leasing Cloud Infrastructure Services from a Spot Market. IEEE, Sep.
2010.

[26] Das-2, “The Distributed ASCI Supercomputer 2 (DAS-2).” [Online].
Available: http://www.cs.vu.nl/das2/, Retrieved: May, 2012

[27] M. Taifi, J. Shi, and A. Khreishah, “SpotMPI: A Framework for
Auction-Based HPC Computing Using Amazon Spot Instances,” in
Algorithms and Architectures for Parallel Processing, ser. Lecture Notes
in Computer Science, Y. Xiang, A. Cuzzocrea, M. Hobbs, and W. Zhou,
Eds. Springer Berlin / Heidelberg, 2011, vol. 7017, pp. 109–120.

[28] N. Jain, I. Menache, and O. Shamir, “On-demand or Spot? Learning-
Based Resource Allocation for Delay-Tolerant Batch Computing,” in
Microsoft Research, 2011, p. 10.

236Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 249 / 282

Enabling the Deployment of Virtual Clusters on the VCOC Experiment of the
BonFIRE Federated Cloud

Raul Valin, Luis M. Carril, J. Carlos Mouriño, Carmen Cotelo, Andrés Gómez, and Carlos Fernández
Supercomputing Centre of Galicia (CESGA)

Santiago de Compostela, Spain
Email: rvalin,lmcarril,jmourino,carmen,agomez,carlosf@cesga.es

Abstract—The BonFIRE project has developed a federated
cloud that supports experimentation and testing of innovative
scenarios from the Internet of Services research community.
Virtual Clusters on federated Cloud sites (VCOC) is one of
the supported experiments of the BonFIRE Project whose main
objective is to evaluate the feasibility of using multiple Cloud
environments to deploy services which need the allocation
of a large pool of CPUs or virtual machines to a single
user (as High Throughput Computing or High Performance
Computing). In this work, we describe the experiment agent,
a tool developed on the VCOC experiment to facilitate the
automatic deployment and monitoring of virtual clusters on
the BonFIRE federated cloud. This tool was employed in
the presented work to analyse the deployment time of all
possible combinations between the available storage images
and instance types on two sites that belong to the BonFIRE
federated cloud. The obtained results have allowed us to study
the impact of allocating different requests on the deployment
time of a virtual machine, showing that the deployment time of
VM instances depends on their characteristics and the physical
infrastructure of each site.

Keywords-Cloud computing; Federated clouds; Virtualization;
Cloud platforms; Virtual clusters; IaaS; SaaS.

I. I NTRODUCTION

The BonFIRE Project [1] supports experimentation and
testing of innovative scenarios from the Internet of Services
research community, specifically focused on the convergence
of services and networks. BonFIRE operates a Cloud facility
based on an Infrastructure as a Service delivery model with
guidelines, policies and best practices for experimentation.
A federated multi-platform approach is adopted, providing
interconnection and interoperation between novel service
and networking testbeds. BonFIRE currently comprises of
6 geographically distributed testbeds across Europe, which
offer heterogeneous Cloud resources, including compute,
storage and networking. Each testbed can be accessed
seamlessly with a single experiment descriptor, using the
BonFIRE API that is based on the Open Cloud Computing
Interface (OCCI). Figure 1 shows details about resource
offering on the different testbeds, which include on-demand
resources.

The BonFIRE project is also studying the possible fed-
eration of the BonFIRE testbeds with a variety of external
cloud facilities, such as those provided by FEDERICA or

OpenCirrus. BonFIRE offers an experimenter control of
available resources. It supports dynamically creating, updat-
ing, reading and deleting resources throughout the lifetime
of an experiment. Compute resources can be configured with
application-specific contextualisation information thatcan
provide important configuration information to the virtual
machine (VM); this information is available to software
applications after the machine is started. BonFIRE also
supports elasticity within an experiment, i.e., dynamically
create, update and destroy resources from a running node of
the experiment, including cross-testbed elasticity.

INRIA currently offers on-request compute resources in
BonFIRE, allowing experimenters to reserve large quantities
of physical hardware (162 nodes/1800 cores available).
This gives experimenters flexibility to perform large-scale
experimentation, as well as providing greater control of the
experiment variables as exclusive access to the physical
hosts is possible. Further control of network performance be-
tween testbeds is anticipated through future interconnection
with Federica and ǴEANT AutoBAHN. BonFIRE gives you
control of your experiment, which is treated as a concrete
entity in BonFIRE to manage your resources.

Some additional features implemented on the BonFIRE
project are:

Figure 1. Representation of the BonFIRE infrastructure. Image obtained
from [1].

237Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 250 / 282

• Saving compute disk images with your personal soft-
ware stack, as well as storage resources.

• Sharing saved compute and storage resources.
• Sharing access to experiments with colleagues.
• Repeating experiments and sharing experiment descrip-

tions for others to set up.
• Aggregated monitoring metrics at both resource level

(e.g., CPU usage, packet delay, etc.) and application
level for your VMs.

• Aggregated monitoring metrics at infrastructure level at
selected testbeds.

Virtual Clusters on federated sites (VCOC) is one of
the supported experiments of the BonFIRE Project [2]. Its
main objective is to evaluate the feasibility of using multiple
Cloud environments to deploy services that need the alloca-
tion of a large pool of CPUs or virtual machines to a single
user (as High Throughput Computing or High Performance
Computing). This experiment considers the deployment of
virtual clusters with the propose of executing a radiotherapy
application, developed in the eIMRT project [3], which
calculates the dose for radiotherapy treatments based on
Monte Carlo methods.

The VCOC experiment tried to answer different questions
related to the usage of virtual clusters in distributed Cloud
environments, analysing the advantages of deploying virtual
clusters in a federated cloud. As part of the VCOC exper-
iment a set of experiments have been proposed related to
the time that the deployment and enlargement of a virtual
cluster need to be operational as well as the influence that
other simultaneous operations have on the process. The final
objective is to get a better understanding about how to
manage these virtual clusters to guarantee a reasonable time
to solution or latency. A set of application probes have been
chosen and they will help us to study the elasticity. The
information provided by these probes will be used to monitor
the performance of the application and to trigger the change
in the size of the cluster. This information will be also
combined with the information provided by the monitoring
tools of BonFIRE.

The results and data acquired during the VCOC experi-
ment should permit to develop policies and business rules
to include in the applications under development at the
institution which use the Software as a Service model.

In this paper, we introduce a description of the experiment
agent developed by the VCOC experiment to manage the
deployment of virtual clusters to the BonFIRE federated
cloud as well as the required time to deploy individual
instances with different configurations and images. The
structure of the paper is as follows: In section II we
describe the experiment agent and its main functionalities.
A description of the error and log manager implementation
is also shown in this section. The required time to deploy
individual instances of the available virtual machine images
in BonFIRE infrastructure is shown in Section III. Finally,

the main conclusions of the paper are drawn in Section IV.

II. D ESCRIPTION OF THE EXPERIMENT AGENT

The BonFIRE project provides several ways to submit an
experiment depending on the user preferences.

• The BonFIRE Portal (GUI) in a step-by-step man-
ner [4].

• A command line client tool, such as Restfully, to
interact with BonFIRE [5].

• A script for your experiment deployment, which can be
automatically executed by, e.g., Restfully.

• The BonFIRE experiment descriptor, currently based
on JavaScript Object Notation (JSON) [6].

• Raw HTTP commands via cURL [7].

In the VCOC experiment, we have developed an exper-
iment agent to deploy, control and monitor the deployed
experiments through a single interface. This agent was
developed in Python and communicates with the experiment
manager API using the httplib2 [8] library. Experiments are
described in a JSON file specifying the necessary resources
of the virtual clusters. After the submission of the experi-
ment, the XML response is processed to obtain the basic
information of the deployed resources. This information
enables us to monitor the status of each virtual compute
node and it is saved into a local file for future analysis.
The main functionalities of the experiment manager are as
follow.

• Experiment controller, controls the repetition of the
experiments and communicates with the Experiment
Manager using the API.

• Experiment status, measures accurately the time for
each step in the work–flow and store this information.

• Experiment failures, detects the fail of an experiment
and its resubmission.

• Experiment descriptors, accepts an experiment descrip-
tion in JSON and the number of repetitions as input.

• Multi-experiment, supports the sequential execution of
several experiment descriptions.

• Simultaneous experiment, controls several experiment
descriptions simultaneously.

• Random Experiment, generates random deployment re-
quests which follow a defined time pattern to introduce
load on the infrastructure.

• Sequential experiments, executes and controls two ex-
periment descriptions with a predefined delay between
them.

• Experiment accounting, records the BonFIRE account-
ing units for each experiment description.

A work–flow diagram of the experiment agent is depicted
in Figure 2. This figure shows three main levels after a
experiment submission. First, we evaluate the status of the
experiment until the experiment has been deployed; this
means the JSON experiment description has been processed

238Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 251 / 282

Figure 2. Workflow diagram of the experiment agent.

by the Broker interface. After that, we have to wait for the
allocation of the requested resources in the Broker layer of
the infrastructure. This is the second level of the experiment
agent, which evaluates if the required resources are running
and ssh–available. When the requested resources are ssh–
available, the eIMRT application will be executed. The
last level of the experiment submission is the experiment
deletion, which is carried out when the eIMRT application
has finished. The experiment agent considers the deletion
completed when the experiment is not ssh–available and the
deleted resources reached the status DONE.

Two important functionalities implemented on the exper-
iment agent are the error management and the measurement
of the required time to complete each level described above.
The error management has been developed to perform
unattended deployment of experiments, taking into account

Figure 3. Workflow diagram of the error management implemented in the
experiment agent.

possible errors or delays during the deployment of the
experiment. Figure 3 shows the flow diagram of the error
management that has been implemented in the experiment
agent. First, after the experiment submission we have to
evaluate if the experiment has been correctly deployed or
any error has occurred. The experiment is deployed when the
log status information provided by BonFIRE, after checking
the experiment definition, returns the status deployed. If
some error exists, the experiment will be resubmitted again.
Otherwise, if there are not errors the experiment agent will
evaluate the status of the requested VMs until they are
ssh–available. When the VMs are available, the eIMRT
application is executed and the experiment is destroyed when
the eIMRT application is completed. are not ssh–available.

The measured times implemented on the experiment agent
script try to provide information about the necessary time to
deploy/destroy the computational resources available from

239Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 252 / 282

the submission/destruction of the experiments. Therefore,
the experiment agent saves a timestamp value when the
experiment is submitted and after its submission, a new
timestamp value is saved when the computational resources
are ssh–available. The difference between these two times-
tamp values provides the necessary time to deploy the
resources requested on the JSON file. From the obtained
times a first idea of the quality of service can be sketched
if we want to use the infrastructure as a service. Finally,
the experiment agent also measures the necessary time to
destroy the experiment from the destruction request until the
VMs are not ssh-available and the deleted resources reached
the status DONE.

The last functionality implemented on the experiment
agent, that we think must be highlighted in this descrip-
tion, is the possibility of deploying random experiments
which follow a predefined pattern obtained from the ac-
counting system of the Finisterrae supercomputer hosted in
CESGA [9]. This functionality has been developed to intro-
duce random noise into the BonFIRE infrastructure when
we have exclusive access and therefore, we need to evaluate
the impact of scheduling new experiments simultaneously.

This functionality returns a histogram with a discrete
experiment submission probability such as is depicted in Fig-
ure 4, where the experiment submission probability for each
30 minutes of a day of the week is represented. Therefore,
if we want to deploy random experiments during one day
each 30 minutes at the same time that we are deploying our
experiments, we will need to indicate the desired number
of random experiments that they will be deployed during
one day and the experiment agent will distribute the desired
number of experiments taking into account the probability
distribution. Figure 5 shows an example of the distributionof
100 random experiments taking into account the histogram
depicted in Figure 4.

III. R ESULTS OF THE DEPLOYMENT TIME ONEPCCAND

INRIA B ONFIRE SITES

The BonFIRE federated cloud has predefined resources,
storage images, instances and networks, which are available
for users. Table I and Table II show the resources, virtual
machine images and instance types, available on EPCC and
INRIA BonFIRE sites. Furthermore, two network resources
are also available in these two sites enabling us choosing
between either an Internet connection or a WAN connection.
In this work, we have studied the deployment time of all
possible combinations between the available storage images
and instance types on EPCC and INRIA BonFIRE sites.
The main goal of this study is to analyse the impact on the
deployment time of allocating different requests.

The methodology adopted to carry out the experiment was
based on the deployment on each site of each combination of
storage-instance type. Each one of these combinations was
deployed 10 times using the experiment agent. The final

10 20 30 40
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Ex
p.

 S
ub

m
is

si
on

 P
ro

b.

Time (x 0.5 h)

Figure 4. Experiment submission probability each 30 minutes of a day of
the week.

10 20 30 40
0

1

2

3

4

5

6

7

8

Ex
pe

rim
en

ts

Time (x 0.5 h)

Figure 5. Example of the distribution of 100 random experiments taking
into account the histogram depicted in Figure 4.

value to calculate the deployment time is equal to the mean
of the 10 values provided by the experiment agent from the
experiment submission until the VM is ssh-available, such
as it was described in Section II.

Figure 6 depicts the deployment time for each storage-
instance type combination on EPCC BonFIRE site. The ob-
tained results show that DebSqV3 and DebSq2GV3 images
have similar deployment times between 50-100 seconds,
independently of the instance type. The deployment time
increases in a rate similar to the size of disk image of the
VM, represented on the figure by a red line. Therefore, the
10 GB storage image has the largest deployment time higher
than 300 seconds independently of the instance type.

The deployment time for each storage-instance type com-

240Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 253 / 282

DebSqV3 DebSq2GV3 Zabbix DebSq10GV3
0

100

200

300

400

Ti
m

e
(s

)

Storage Image Type

 Lite
 Small
 Medium
 Large
 Xlarge

0

2

4

6

8

10

12

14

16

18

St
or

ag
e

Im
ag

e
R

at
e

Figure 6. Deployment time for each storage-instance type combination
on EPCC BonFIRE site. The size rate of the storage images withrespect
to the DebSqV3 image (red line) is also depicted for comparison reasons.

bination on INRIA BonFIRE site is depicted in Figure 7. The
deployment time of DebSqV3 storage images on INRIA is
around 50 seconds, independently of the instance type. For
DebSq2GV3 and Zabbix storage images, the deployment
time depends on the instance type with larger values for
Medium instances around 100 seconds for DebSq2GV3 and
150 seconds for Zabbix. However, similar values, slightly
higher than 50, can be observed for Lite and Small instances
with both storage images.

A comparison between these results with the previous
ones shown in Figure 6, highlights that the deployment time
of VMs on INRIA is almost independent on the storage
image and its dependence is higher with the instance type.
This situation is remarkable for the DebSq10GV3 storage

Storage Disk Size (MB) Description
Zabbix 3400 Debian Squeeze with

Zabbix monitoring
DebSqV3 604 Debian Squeeze

DebSq2GV3 2048 Debian Squeeze
DebSq10GV3 10240 Debian Squeeze

Table I
STORAGE RESOURCES AVAILABLE ONEPCCAND INRIA B ONFIRE

SITES.

Instance vcpu vmemory (MB)
EPCC INRIA
Lite Lite 0.5 256

Small Small 1 1024
Medium Medium 2 2048
Large 2 4096
Xlarge 4 8192

Table II
INSTANCE TYPES AVAILABLE ON EPCCAND INRIA B ONFIRE SITES.

DebSqV3 DebSq2GV3 Zabbix DebSq10GV3
0

50

100

150

200

250

300

Ti
m

e
(s

)

Storage Image Type

 Lite
 Small
 Medium

0

2

4

6

8

10

12

14

16

18

St
or

ag
e

Im
ag

e
R

at
e

Figure 7. Deployment time for each storage-instance type combination
on INRIA BonFIRE site. The size rate of the storage images with respect
to the DebSqV3 image (red line) is also depicted for comparison reasons.

image. The main reason of this difference on the behaviour
of deployment time between EPCC and INRIA is due to the
configuration of the physical infrastructure. Both sites base
its cloud infrastructure on the OpenNebula [10] platform
but EPCC copies the storage images to the compute node
using NFS. However, INRIA has implemented a system that
makes a snapshot of the storage image after its first copy
to the compute node via NFS. Therefore, one VM can be
deployed faster on INRIA than EPCC if a snapshot of the
storage image exists on the compute node.

Other difference, which rises from the comparison be-
tween sites, is the dependence with the instance type.
Results on EPCC show that the deployment time is almost
independent of the instance type however, medium instances
on INRIA have larger deployment times. The origin of this
difference is the way we are measuring the times, we do not
have exclusive access to the infrastructure and the measured
time also includes the scheduling time. Therefore, depending
on the computational load of physical resources is possible
to observe delays when instances with high computational
requirements are requested.

These results rise several questions about the best way
to design a quality of service model on federated clouds,
since in some cases could not be possible to guarantee the
same configuration among sites or the same overload of the
infrastructure when users can choose the location of their
experiments [11]. From a global point of view, a scheduling
system with information about the load of the physical
resources of each site belonging to the federated cloud may
provide better allocation of the requested virtual machines.
Furthermore, this scheduler might take into account other
factors such as configuration differences of each site that
can affect the deployment time of virtual resources [12].

241Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 254 / 282

IV. CONCLUSION AND FUTURE WORK

This work described the experiment agent developed on
the VCOC experiment supported by the BonFIRE project in
order to facilitate the automatic deployment and monitoring
of virtual clusters on the BonFIRE federated cloud. The
experiment agent implements several functionalities suchas
accept the description of virtual clusters on a JSON file,
error management, recording the deployment times of virtual
resources or deployment of random experiments following a
predefined pattern. The first use of the experiment agent was
to study the deployment time of all possible combinations
between the available storage images and instance types on
EPCC and INRIA BonFIRE sites. The main objective of
this study was to analyse the impact on the deployment
time of allocating different requests. The obtained results
show that the deployment time of a VM instance is around
50 seconds and 300 seconds depending on the size of the
storage image, the instance type and the deployment type.
These results were obtained without an exclusive access
to the infrastructure and the measured time includes the
scheduling time. The obtained differences between sites rise
several questions about the best way to design a quality of
service model on federated clouds. For instance, it is difficult
to guarantee the same configuration among sites or the
computational load of the physical infrastructure when users
are able to choose the experiment location. The obtained
results, together with other data from other experiments will
help EPCC to modify their infrastructure in order to reduce
deployment times for large images.

ACKNOWLEDGMENT

The work leading to this publication was funded by
the European Commission’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement no 257386, ”Bon-
FIRE”. The authors would like to thank Mr. Kostas Kavous-
sanakis and Mr. Ally Hume from EPCC, and Mr. Florian
Schreiner from Fraunhofer FOKUS, for fruitful discussions
about the VCOC experiment. Finally, we must highlight
that this work has been possible thanks to the technical
support provided by Mr. Maxence Dunnewind from INRIA,
Mrs. Eilidh Troup from EPCC, Mr. Roland Kübert from
University of Stuttgart and Mr. Gareth Francis from EPCC.

REFERENCES

[1] “BonFIRE project.” [Online]. Available: http://www.
bonfire-project.eu/ [retrieved: May, 2012]

[2] “VCOC: Virtual Clusters on Federated Cloud Sites .” [On-
line]. Available: http://www.bonfire-project.eu/innovation/
virtual-clusters-on-federated-cloud-sites [retrieved: May,
2012]

[3] L. Carril, Z. Martı́n-Rodrı́guez, C. Mouriño, A. Gómez,
R. Dı́az, and C. Fernández, “Advanced Computing Services
for Radiotherapy Treatment Planning,” inCloud Computing.
CRC Press, Oct. 2011, pp. 529–551. [Online]. Available:
http://dx.doi.org/10.1201/b11149-27

[4] “BonFIRE portal.” [Online]. Avail-
able: http://www.bonfire-project.eu/innovation/
virtual-clusters-on-federated-cloud-sites [retrieved: May,
2012]

[5] Restfully. [Online]. Available: https://github.com/crohr/
restfully [retrieved: May, 2012]

[6] “JSON.” [Online]. Available: http://www.json.org/ [retrieved:
May, 2012]

[7] cURL. [Online]. Available: http://curl.haxx.se/ [retrieved:
May, 2012]

[8] “httplib2.” [Online]. Available: http://pypi.python.org/
pypi/httplib2 [retrieved: May, 2012]

[9] “Finisterrare Supercomputer.” [Online]. Available: https://
www.cesga.es/en/infraestructuras/computacion/finisterrae [re-
trieved: May, 2012]

[10] OpenNebula. [Online]. Available: http://opennebula.org
[retrieved: May, 2012]

[11] A. Andrzejak, D. Kondo, and S. Yi, “Decision Model for
Cloud Computing under SLA Constraints,” in2010 IEEE In-
ternational Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems. IEEE, Aug.
2010, pp. 257–266.

[12] R. Buyya, S. K. Garg, and R. N. Calheiros, “SLA-oriented
resource provisioning for cloud computing: Challenges, ar-
chitecture, and solutions,” in2011 International Conference
on Cloud and Service Computing. IEEE, Dec. 2011, pp.
1–10.

242Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 255 / 282

Towards a Scalable Cloud-based RDF Storage
Offering a Pub/Sub Query Service

Laurent Pellegrino, Françoise Baude, Iyad Alshabani
INRIA-I3S-CNRS, University of Nice-Sophia Antipolis

2004 route des lucioles, Sophia Antipolis, France
lpellegr@inria.fr, fbaude@inria.fr, ialshaba@inria.fr

Abstract—Recently, Complex Event Processing engines have
gained more and more interest. Their purpose consists in com-
bining realtime and historical data in addition to knowledge
bases to deduce new information. Also, RDF is now commonly
used to make information machine-processable. In this short
paper we propose to leverage existing research about distributed
storage and realtime filtering of RDF data with the intention of
helping Complex Event Processing engines to reach their goal at
large scale. Towards this objective, we identify and discuss the
challenges that have to be addressed for providing a solution that
supports RDF data storage and a pub/sub retrieval service on
a cloud-based architecture. Then, we explain how to meet these
challenges through a solution based on structured Peer-to-Peer
networks. Finally, we discuss the status of our ongoing work
whose implementation is realized thanks to ProActive, a mid-
dleware for programming cloud-based distributed applications.

Index Terms—RDF (Resource Description Framework); Pub-
lish/Subscribe; RDF data management; Cloud Computing.

I. INTRODUCTION

In the past years, Cloud Computing gained a great interest in
academic and industrial solutions. Its goal is to provide users
with more flexible services in a transparent way. All services
and applications are allocated in the cloud which is an internet-
scale collection of connected devices. Aside, the exponential
growing of information exchanged over the internet leads to
the emergence of the Semantic Web [1] whose realization is
brougth into existence thanks to RDF (Resource Description
Framework) [2]. RDF is a W3C standard aiming to improve
the World Wide Web with machine processable semantic data.
It provides a powerful data model for structured knowledge
representation and is used to describe semantic relationship
among data. Statements about resources are in the form of
(subject, predicate, object) expressions which are known as
triples in the RDF terminology (each element of a triple is
dubbed RDF term). The subject of a triple denotes the resource
that the statement is about, the predicate denotes a property
or a characteristic of the subject, and the object presents the
value of the property. RDF is increasingly used due to its
interoperability [3], its good properties in data exchange and
its potential use of inferencing to contextually broaden search,
retrieval and analysis.

The traditional way of querying RDF data is a blocking
get operation. However, applications need an asynchronous
query mode to be more responsive on arrival of RDF data.
Publish/subscribe (pub/sub) is a messaging pattern where

publishers and subscribers communicate in a loosely coupled
fashion. Subscribers can express their interests in certain kinds
of data by registering a subscription (continuous query) and
be notified asynchronously of any information (called an
event) generated by the publishers that matches those interests.
Notifications are made possible thanks to a matching algorithm
that puts in relation publications and subscriptions.

Our goal is to provide a system, deployed in a cloud
environment, that stores RDF events persistently, filter and
notify them as soon as they arrive. For example, Complex
Event Processing (CEP) [4] systems have a need to mix real-
time, past events and existing knowledge bases to deduce new
patterns [5]. However, the system we envisage is not limited to
the integration with CEP engines. More generally, it could be
used to take advantage of its distributed storage and pub/sub
layer.

This short paper identifies some challenges that have to be
addressed in order to build a distributed system that combines
RDF data storage and pub/sub. In Section II, we highlight
some of the challenges to take up when this type of system
has to be built. Section III motivates and defines our retrieval
model. Section IV explains how we expect our system to meet
the challenges in line with our model, and how it differs from
existing systems. Section V presents our conclusions.

II. CHALLENGES

Proposing solutions for or against the following require-
ments or difficulties constitutes the challenges:

1) Scalability: In our context, a scalable system must be
able to support a large number of data, publications and
subscriptions. This is the key property to fulfill when a
distributed system is built. Also, in pub/sub systems, expres-
sivity and scalability are closely related [6], [7]. Expressivity
implies that events with different formats and semantics are
supported in addition to a powerful subscription language (i.e.
a subscription language that offers the possibility to consumers
to subscribe precisely to the information they are interested in).
But the more expressive a pub/sub system is, the more complex
the matching algorithm becomes. Thus, the efficiency of the
matching algorithm significantly affects both performance and
scalability.

2) Fault-tolerance: Depending on the type of the appli-
cation, there might be the need to ensure different level of
reliability. For instance, in a financial system such as the

243Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 256 / 282

New York Stock Exchange (NYSE) or the French Air Traffic
Control System, reliability is critical [8]. Ensuring a correct
dissemination of events despite failures requires a particular
form of resiliency. Pub/sub systems which consider event
routing based on reliability requirements are rare schemes [9],
which proves this challenge has not been sufficiently tackled.

3) Skewed distribution of RDF data: The frequency dis-
tribution of terms in RDF data is highly skewed [10], [11]:
many triples may share the same predicate (e.g., rdf:type). This
distribution prevents scalability from algorithms that base their
partitioning on these values.

In addition to the challenges which have been previously
introduced, some orthogonal properties related to QoS (Quality
of Service), such as data delivery semantics, notifications
ordering, security aspects, etc. constitute also major open
research challenges that are naturally present in RDF-based
pub/sub systems [12].

III. RETRIEVAL MODEL

Nowadays, datasets grow so large that they become awk-
ward to work with. This idea is really well captured by the
notion of big data from which knowledge acquisition has
to be extracted. To make it feasible, information have to
be analyzed and correlated. A solution is CEP engines that
recently proposed to leverage information which stem from
realtime data, contextual and past information. At high scale,
a step towards this direction consists in helping CEP engines
to reach their goal by providing both storage and realtime
filtering of data of interest in order to minimize the amount
of information they have to work with. For that, we propose
a retrieval model of the stored data based on both pull and
push mechanisms. The pull mode refers to one-time queries;
an application formulates a query to retrieve data which have
been already stored. In contrast, the push mode refers to
pub/sub and is used to notify applications which register long
standing queries and push back a notification each time an
event that matches them occurs. Contrary to RACED [13],
that also proposes a push mode, the result is not the output
of a previous subscription matching but it is aimed for getting
past and perennial information.

A. Data model

The data model we introduce hereafter is valid for both the
pull and push retrieval modes. It is built on top of quadruples.
A quadruple extends the concept of RDF triple by adding
a fourth element (usually named context or graph value) to
indicate or to identify the data source and the event itself.
Indeed, the notion of provenance is essential when integrating
data from several sources and more generally to classify data
on the web. Finally, each quadruple represents a potential event
that may be delivered to a subscriber but also a data that is
stored.

However, the number of elements contained by an event
(quadruple) is limited. To overcome this drawback, we have
introduced the notion of compound event: an event that is
made of a non-limited number of quadruples. Supposing that

a quadruple is modeled by a 4-tuple q = (c, s, p, o) and a
compound event by a set C = {q0, q1, ..., qn} then each q of
C shares the same context value c in order to allow to identify
the quadruples that form this compound event. Moreover,
thanks to this abstraction, our content-based pub/sub system
can support multi-attribute values, still in compliance with
RDF data model.

B. Filter model

Both retrieval modes have their filter model based on
SPARQL (SPARQL Protocol and RDF Query Language) [14],
another W3C specification that is usually used to retrieve and
manipulate data stored in RDF format with one time queries.
This language is suitable to build a very expressive filter
model. Even if it could be used as a pull retrieval model, for
the push retrieval model some restrictions are required (e.g.
we only allow SELECT query form, a pattern applies to one
graph value at a time, see below).

SPARQL provides the possibility to formulate a subscription
by associating several filter constraints to a quadruple (event),
but also to a set of quadruples that belong to the same com-
pound event. This means that several events that are published
at different times and that belong to a same compound event
may participate to the matching of a subscription by using
their common constraints.

1 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
2 SELECT ?user ?name ?age WHERE {
3 GRAPH ?g {
4 ?user foaf:name ?name .
5 ?user foaf:age ?age
6 } FILTER (?age >= 18 && ?age <= 25)
7 }

Listing 1. Legal SPARQL subscription indicating that only events
about users whose age is between 18 and 25 have to be notified.

Listing 1 shows an example of a subscription that is used
to deliver a notification each time two events that belong to
the same compound event (represented by the graph pattern
and its associated variable ?g) match the constraints. This
subscription depicts two types of constraints that may be
uttered. The first one is a join constraint. It consists in
computing an equi-join condition on the variable ?user with
the events of the same graph that match the triple patterns
(a triple that may contain variables for querying unknown
values), see lines 3, 4 and 5. The second type of constraints
that may be formulated are filter constraints. Filter constraints
are shown in the example by using the FILTER keyword on
line 6. This second type of constraint may contain several
logically related predicates.

Here, we introduced joins because unlike in traditional pub-
lish/subscribe systems [15] (where the constraints are matched
for each event which is asynchronously published) we want to
apply the matching on a set of events (compound event), where
each event has been published independently. This condition is
fundamental because our push retrieval mode is not supposed
to act as a CEP engine correlating several compound events.
However, our system has to handle two constraints. First, the

244Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 257 / 282

quadruples that form a compound event are not stored at the
exact same time, due to the fact that the system is distributed,
i.e. each quadruple can be indexed on any distributed node of
the system in an asynchronous way. Second, a join constraint
is limited to a set of quadruples that belong to the same
compound event.

IV. ADDRESSING THESE CHALLENGES

Our aim is to provide an Internet wide system that fulfill
challenges introduced in section II while respecting the model
presented in section III. There are already some approaches
experimenting how to store and query RDF data using popular
cloud technology, but along the pull model mainly. Recently,
CumulusRDF [16] proposed to rely upon the Cassandra [17]
key-value store, by leveraging its two levels indexing model in
order to store RDF triples. The choices they make in Cumu-
lusRDF are driven by the need to retrieve RDF data by triple
patterns only and not the full expressivity of SPARQL. Their
solution requires to build more than one index for each triple
to be stored. Even if the lookup performances seem reasonably
good, they do not support conjunctive queries (joins), nor
simple or complex queries that contain some filter conditions.
Also, some solutions combining Map-Reduce and distributed
data storage systems (e.g., HDFS, BigTable) [18] have been
proposed but they require a configuration phase, and then
involve several large data sets movements. Moreover, none
of the introduced solutions are well adapted when extreme
scalability is expected. Indeed, Peer-to-Peer (P2P) systems
have been recognized as a key communication model to build
platforms for distributed applications at very large scale [19].
For that reason, our system model is based on the original idea
of Content Adressable Network (CAN) [20].

A CAN is a structured P2P network (structured in op-
position to unstructured, another category of P2P networks
better suited to high churn, which is thus less necessary for
private/public cloud environments) based on a d-dimensional
Cartesian coordinate space labeled D. This space is dynami-
cally partitioned among all peers in the system such that each
node is responsible for indexing and storing data in a zone
of D thanks to a standard RDF datastore such as Jena [21].
According to our data model, we use a 4-dimensional CAN
in order to associate each RDF term of a quadruple to a
dimension of the CAN network. A quadruple to index is a
point in a 4-dimensional space.

Distributed pub/sub systems have been extensively stud-
ied [6], [15], [22] over the last two decades. Recently, some
works such as BlueDove [23] revives this field in a cloud con-
text. However, among these works only a few are concerning
pub/sub with RDF data and none are combining storage and
pub/sub [24].

Most of the proposed solutions use consistent hashing to
map data onto nodes for RDF pub/sub systems or RDF data
storage. This means that data have to be indexed several
times in order to be retrieved and be handled by the pub/sub
matching algorithm. For example, CSBV [25] is a matching
algorithm for RDF triples that would imply to index each

quadruple 15 times in our case: one indexation for each
possible combination without repetition of the RDF terms
contained by a quadruple. Our approach which relies on CAN,
replaces consistent-hashing by lexicographic ordering in order
to use only one index and to support range queries efficiently.
In return, subscriptions have to be indexed several times.
However, we prefer to trade data duplicates with subscriptions
duplicates due to the huge foreseen volume of data.

As for systems which use consistent-hashing, we also have
to confront the challenge II-3. But in addition, due to lexico-
graphic order, RDF terms which are lexicographically close
may be handled by the same peer and unbalance the load
between peers. We propose three solutions based on static and
dynamic adaptation to overcome this load balancing issue. The
first one simply consists in removing prefixes. Suppose that
we have to index two quadruples which differs only by one
RDF term. On one hand we have http://example.org/animal
and on the other hand http://example.org/jacket. Also, in the
network there are two peers: one managing the range [a, e)
and one [e, j). In such a case, if we remove the prefix
http://example.org the former data will be indexed on the
first peer and the latter by the second peer. An additional
solution is to have an approach similar to the one proposed
in BlueDove. Event sources are aware of the type of data and
the range values they will publish. Hence, it is possible to
take advantage of this information to preconfigure our P2P
network. For example, if we know that RDF data published
are about weather in Europe and the value of the key event
of the published compound events is between [−20; 40], we
can leverage this knowledge to increase the number of peers
managing this range of values. Finally, the third solution
related to elasticity and thus also tackling challenge II-1 will
be to balance the load of peers by using the standard join and
leave 1 operations of our P2P system. Indeed, by considering
the unpredictable and fluctuating amount of information that
may be produced (or removed) by any entity, the system has
to be elastic. In contrary to an always-on infrastructure for
which the institutions refrain to pay for, the idea is to rely on
the notion of Cloud Computing to scale horizontally by adding
more nodes (peers) on-demand and to release them whenever
possible. But also to scale vertically by offering the possibility
to deploy several peers on the machines that are underloaded.

To meet challenge II-1 we expect to develop a matching
algorithm that parallelizes and balances as much as possible
the matching of compound events. A few algorithms have been
proposed to balance the matching but the execution to perform
a join between several conjunctions is done sequentially by
creating a chain [25]. To improve scalability and performances
we also intend to manage burst of new subscriptions and the
placement of peers according to geographic information. The
former case implies to adapt the number of computing agents
in charge of the matching process in each peer. The later, such
as proposed in [26], consists in improving latency perceived
by Internet wide-users (specially subscribers) as CEP(s) by a

1In the future, we wish to offer an RDF data garbage collection operation.

245Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 258 / 282

geographical mapping of P2P nodes and proxies2 on cloud
hosts.

Finally, challenge II-2 implies to take into account the
replication of RDF data but also the states of the matching
algorithm. In the former case, we can replicate the data by
using the neighbors of a peer. However, in the latter case, it
is less obvious because subscriptions do not have to be lost
and duplicate notifications have to be avoided. In our system
indexing a subscription (set of related patterns) ends up in
duplicating it on several peers. We think about leveraging this
behavior to come back into a consistent state for the pub/sub
layer in case of failure. In addition we are interested to build
our system such that user requested QoS properties may be
easily addressed. To make it feasible we introduce configurable
proxies lying out of the P2P network which will only store
and compute the matching between subscriptions and publica-
tions. All messages (requests, responses, notifications, etc.) go
through these proxies where they can be handled according to
requested QoS properties.

V. CONCLUSION

In this short paper, we have identified and discussed the
challenges which need to be addressed in order to build a
scalable cloud based RDF storage offering a pub/sub query
service. We currently have a first prototype of our extended
version of CAN [27], implemented by using ProActive/GCM
technology. ProActive is an asynchronous active-object based
middleware offering the notion of asynchronous calls with
futures (a promise to get back a response) among distributed
objects, extended with the possibility to transparently handle
groups of objects and security (e.g., authentication, encryption)
for inter-object communications [28]. In addition it provides
the notion of multi activity to handle requests concurrently.
Also, thanks to ProActive abstraction, any peer or proxy
needed to access the CAN network can easily be deployed
on any host, be it on a private/public cloud, grid or cluster,
desktop machines offering elaborated support to address fire-
wall issues, and more generally issues that may be encountered
in such a distributed infrastructure.

ACKNOWLEDGMENT

This work was in part supported by the EU FP7 STREP
project PLAY and French ANR project SocEDA.

REFERENCES

[1] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,” Scien-
tific American, vol. 284, no. 5, pp. 28–37, 2001.

[2] O. Lassila and R. Swick, “Resource description framework (rdf) model
and syntax,” World Wide Web Consortium, http://www. w3. org/TR/WD-
rdf-syntax, 1999.

[3] S. Decker, S. Melnik, F. Van Harmelen, D. Fensel, M. Klein, J. Broek-
stra, M. Erdmann, and I. Horrocks, “The semantic web: The roles of
xml and rdf,” Internet Computing, IEEE, vol. 4, no. 5, pp. 63–73, 2000.

[4] D. Luckham, The power of events: an introduction to complex event
processing in distributed enterprise systems. Addison-Wesley Longman
Publishing Co., Inc., 2001.

2Proxies are representing publishers, subscribers and users of the pull mode.

[5] D. Anicic, P. Fodor, S. Rudolph, and N. Stojanovic, “Ep-sparql: a unified
language for event processing and stream reasoning,” in Proceedings of
the 20th international conference on World wide web. ACM, 2011, pp.
635–644.

[6] A. Carzaniga, D. Rosenblum, and A. Wolf, “Achieving scalability
and expressiveness in an internet-scale event notification service,” in
Proceedings of the nineteenth annual ACM symposium on Principles of
distributed computing. ACM, 2000, pp. 219–227.

[7] J. Wang, B. Jin, and J. Li, “An ontology-based publish/subscribe system,”
Middleware 2004, pp. 232–253, 2004.

[8] K. Birman, “A review of experiences with reliable multicast,” Software:
Practice and Experience, vol. 29, no. 9, pp. 741–774, 1999.

[9] S. Mahambre and U. Bellur, “Reliable routing of event notifications
over p2p overlay routing substrate in event based middleware,” in
Parallel and Distributed Processing Symposium, 2007. IPDPS 2007.
IEEE International. IEEE, 2007, pp. 1–8.

[10] S. Kotoulas, E. Oren, and F. Van Harmelen, “Mind the data skew:
distributed inferencing by speeddating in elastic regions,” in Proceedings
of the 19th international conference on World wide web. ACM, 2010,
pp. 531–540.

[11] A. Harth, J. Umbrich, A. Hogan, and S. Decker, “Yars2: A federated
repository for querying graph structured data from the web,” The
Semantic Web, pp. 211–224, 2007.

[12] S. Mahambre, M. Kumar, and U. Bellur, “A taxonomy of qos-aware,
adaptive event-dissemination middleware,” Internet Computing, IEEE,
vol. 11, no. 4, pp. 35–44, 2007.

[13] G. Cugola and A. Margara, “Raced: an adaptive middleware for complex
event detection,” in Proceedings of the 8th International Workshop on
Adaptive and Reflective Middleware. ACM, 2009, p. 5.

[14] E. Prud’Hommeaux and A. Seaborne, “Sparql query language for rdf,”
W3C working draft, vol. 4, no. January, 2008.

[15] P. Pietzuch and J. Bacon, “Hermes: A distributed event-based middle-
ware architecture,” in Distributed Computing Systems Workshops. IEEE,
2002, pp. 611–618.

[16] G. Ladwig and A. Harth, “Cumulusrdf: Linked data management on
nested key-value stores,” in The 7th International Workshop on Scalable
Semantic Web Knowledge Base Systems (SSWS 2011), 2011, p. 30.

[17] A. Lakshman and P. Malik, “Cassandra: A structured storage system on
a p2p network,” in Proceedings of the twenty-first annual symposium on
Parallelism in algorithms and architectures. ACM, 2009, pp. 47–47.

[18] J. Sun and Q. Jin, “Scalable rdf store based on hbase and mapreduce,”
in Advanced Computer Theory and Engineering (ICACTE), 2010 3rd
International Conference on, vol. 1. IEEE, 2010, pp. V1–633.

[19] M. Jelasity and A. Kermarrec, “Ordered slicing of very large-scale
overlay networks,” in Peer-to-Peer Computing, 2006. P2P 2006. Sixth
IEEE International Conference on. IEEE, 2006, pp. 117–124.

[20] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker,
“A scalable content-addressable network,” ACM SIGCOMM Computer
Communication Review, vol. 31, no. 4, pp. 161–172, 2001.

[21] J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and
K. Wilkinson, “Jena: implementing the semantic web recommendations,”
in World Wide Web conference. ACM, 2004, pp. 74–83.

[22] P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec, “The many faces
of publish/subscribe,” ACM Computing Surveys (CSUR), vol. 35, no. 2,
pp. 114–131, 2003.

[23] M. Li, F. Ye, M. Kim, H. Chen, and H. Lei, “A scalable and elastic pub-
lish/subscribe service,” in Parallel & Distributed Processing Symposium
(IPDPS), IEEE International. IEEE, 2011, pp. 1254–1265.

[24] I. Filali, F. Bongiovanni, F. Huet, and F. Baude, “A survey of structured
p2p systems for rdf data storage and retrieval,” Transactions on Large-
Scale Data-and Knowledge-Centered Systems III, pp. 20–55, 2011.

[25] E. Liarou, S. Idreos, and M. Koubarakis, “Continuous rdf query pro-
cessing over dhts,” in Proceedings of the 6th international semantic
web conference. Springer-Verlag, 2007, pp. 324–339.

[26] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, and H. Bhogan,
“Volley: Automated data placement for geo-distributed cloud services,”
in Proceedings of the 7th USENIX conference on Networked systems
design and implementation. USENIX Association, 2010, pp. 2–2.

[27] F. Baude, F. Bongiovanni, L. Pellegrino, and V. Quema. (2011)
D2.1 requirements eventcloud. Project Deliverable PLAY. [Online].
Available: http://play-project.eu/documents/viewdownload/3/20

[28] L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet, M. Morel, and
R. Quilici, “Programming, composing, deploying for the grid,” GRID
COMPUTING: Software Environments and Tools, pp. 205–229, 2006.

246Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 259 / 282

Datanode Optimization in Distributed Storage Systems

Xiaokang Fan, Shanshan Li, Xiangke Liao, Lei Wang, Chenlin Huang, Jun Ma
School of Computer Science and Technology
National University of Defense Technology

Changsha, Hunan, P.R.China

{fanxiaokang, shanshanli, xkliao, wanglei, huangchenlin, majun}@nudt.edu.cn

Abstract—Distributed storage systems designed for small files
have been developing rapidly, like Facebook’s hayStack,
Twitter’s Cassandra and so on. But, under our observation,
there are still some drawbacks in these systems. For example,
they do not have cache specified for files and have not taken
the relationship inherent in application-specific knowledge
between files into consideration. We propose a file-level cache
on datanode and co-location of affinitive files based on
application-specific knowledge. We use a synthetic data set and
a real world trace to evaluate our optimization. The file-level
cache and co-location of affinitive files together can improve
system’s throughput by 20%-50%.

Keywords-distributed storage system; file-level cache; co-
location.

I. INTRODUCTION
Distributed storage systems have been widely used in

large datacenters. These systems are designed to provide
efficient, reliable access of data using clusters of commodity
hardware [22]. So far, applications specified for small files
have been increasing rapidly. For example, micro blogging,
facebook, twitter, and so on. These applications generate
enormous amounts of small files to store in the storage
systems. For example, Facebook have stored over 260 billion
images and more than 20 petabytes of data so far [11]. Many
systems have been developed to support these applications,
like fastDFS [18], Facebook’s Haystack [11], and so on.

Under our observation, these systems are not perfect. As
we know, most distributed systems are deployed as
userspace libraries on large clusters of commodity machines.
Each node in the cluster has local operating system and file
system. Local system will load popular data into its cache.
Usually cache unit is block. But in systems specific for small
files, block may not be an appropriate choice as for the cache
unit. Since a block may contain many files and quite often
only a small part of them are frequently accessed. In fact,
cache space has not been made fully use of. In distributed
storage systems, files are usually randomly distributed in the
whole system for load balancing. Little attention has been
paid on file’s inner relationship when files are written into
disk. In web applications, when an image file is accessed, the

images that make up the same hypertext document will also
be accessed. The relationship between these related files
have not been made use of.

In order to avoid these two drawbacks, we have proposed
two optimizations on datanode: first, we build up a file-level
cache which can make full use of the cache space. Second,
we propose co-location of related files that store related files
close to each other on disk which can take advantage of the
disk technology trend that is toward improved sequential
bandwidth [28]. In our evaluation, we find that with only
file-level cache, we can improve the system’s throughput by
maximally 40%. With only co-location of related files, we
can improve the throughput by maximally 20%. With both
file-level cache and co-location of related files, we can
improve the throughput by maximally 50%.

The rest of this article is organized as follows: Section 2
reviews the related works. Section 3 provides detailed
motivation for our optimization. Section 4 describes our file-
level cache in detail and Section 5 explains our co-location
strategy of related files in detail. Section 6 describes our
implementation on TFS [27]. We evaluate our optimization
in Section 7 and draw a conclusion in Section 8.

II. RELATED WORK
With the rapid development of data-intensive

applications, traditional file systems could no longer meet
the demand for mass data storage. Many distributed storage
systems have been developed to support applications with
enormous amounts of data. For example, Amazon has
designed Dynamo [8] to power parts of Amazon Web
Services. Google has developed GFS [9] for its core data
storage and usage needs.

Some peer-to-peer (P2P) systems have also looked at the
problem of data storage and distribution [10, 12]. But, they
are generally used as file sharing systems. Distributing data
for performance, availability and durability has been widely
studied in the file system and database system community.
Compared with P2P storage systems that only support flat
namespaces [29], distributed file systems typically support
hierarchical namespaces [8, 24, 25, 26].

247Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 260 / 282

Figure 1. Cache organized in the unit of block

Studies of distributed file systems specified for small
files have become a key component of storage systems
research as applications specific for small files like images
and micro bloggings have been increasing rapidly [21, 31,
32]. FastDFS is designed to meet the requirement of the
website whose service based on files such as photo sharing
site and video sharing site. Facebook has designed Haystack
to serve its Photos application where data is written once,
read often, never modified, and rarely deleted.

To increase the efficiency of the enormous small disk
requests that characterize accesses to small files, much work
have been done on the disk layout of small files. Localizing
logically related objects is the choice of many file systems.
Some researchers have investigated the value of breaking file
system’s disk storage into cylinders and moving the most
popular data to the centermost cylinders in order to reduce
disk seek distances [1, 2, 3]. From the same perspective of
reducing disk seek distances, immediate files, an idea
proposed by [4], moves inode to the first block of the file.
This approach puts inodes together with their file data, which
can improve the performance of read operations that read file
data. Several other works [4, 5, 7] have proposed how to
group related files together intelligently.

III. PRELIMINARY
Modern distributed file systems’ topology can usually be

divided into two kinds: master-slave structure and ring
structure. Systems like GFS, HDFS [17], fastDFS usually
organize machines in master-slave structure. In these systems
there are two types of machines: one namenode with a large
number of datanodes. Namenode handles metadata while
datanode handles real data. This structure frees namenode
from the data flow, so it can significantly reduce workload
on namenode. Systems of the ring structure are often
decentralized systems. There is no masternode, which only
deals with metadata, in these systems. All machines act as
the same role. All nodes can be called datanodes.

The growth and diffusion of applications specific for
small files have led to systems that support efficient, secure
and durable access of small files. Systems of the ring
structure, like Dynamo and Cassandra [19], are intended to
store relatively small objects. In systems of the master-slave
structure, TFS is developed by Taobao [6] to store its
enormous amounts of online commodity images.

Figure 2. Cache organized in the unit of file

As one part of the whole system, datanode plays a very
important role. But so far there is hardly any optimization
specified for datanode.

As we know, most distributed storage systems are not
implemented in the kernel of operating systems, but are
instead provided as userspace libraries, which means that
they are all based on local file systems [20]. In systems that
store small files, local file systems can hardly have any sense
of single files; so they usually organize cache in the unit of
block. Studies show that in most web service applications the
file access pattern applies the Pareto principle, which means
that only a small part of all files are frequently accessed
while most files are rarely accessed [13, 14, 15, 16]. Since
files are evenly distributed in the whole system, it is still true
that of all the files that consist a block, only a small part are
frequently accessed while others are rarely accessed. This
strategy may result in low efficiency of cache and the waste
of cache space.

Fig. 1 illustrates the case how cache space is wasted.
Darker files are more frequently accessed while lighter files
are less frequently accessed. When one block is loaded into
cache as some popular files in it are accessed, files in the
same block that are rarely accessed will also be loaded into
cache. It stands a good chance that those unpopular files will
have never been accessed before this block is replaced by
other blocks. Cache space occupied by those unpopular files
is wasted.

Modern distributed systems usually distribute files
randomly for load balancing [30]. But this has not taken the
logical relationship of files into consideration. In most cases,
files can be partitioned into small groups based on
application-specific knowledge. Files in the same group are
closely related with each other that if one file is accessed
most probably the others will be accessed too. For example,
in online business like Amazon, all images stored in the
system can be partitioned based on the commodities they
describe. Once a commodity is skimmed by some customer,
all images that describe this commodity will be accessed.

IV. FILE-LEVEL CACHE
Since cache space in datanode has not been fully made

use of and much of it has been wasted. In order to make
better use of cache space, we proposed a file-level cache on
datanode. Fig. 2 illustrates the basic idea of our file-level

248Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 261 / 282

cache. We organize cache in the unit of single files rather
than blocks. Each time we load a single file into cache rather
than a block.

Studies of cache replacement strategy have been a topic
for many years. Many replacement algorithms have been
proposed, such as FIFO [35], LRU [36], OPT [37] and so on.
FIFO is too simple to make the most of cache while OPT is
just an ideal model, which has not been put into practice. The
LRU strategy discards the least recently used items when
new items need to be loaded into cache. This strategy fits our
applications well so we choose LRU as our replacement
strategy. Since files are not in the same size, we organize
files in the cache as a list. As enormous accesses to small
files may generate great amounts of cache misses while all
these cache misses would search the entire list, which results
in great amounts of searching time. In order to avoid these
unnecessary searches of the list generated by cache misses,
we introduce a bloom filter.

For an incoming read request, our algorithm does the
following:

• Check the bloom filter to see whether this file is in
the cache. If the bloom filter indicates that it is not in
the cache, load this file from disk and add a node
that represents this file to the head of the list. Reply
with the data loaded from disk.

• If bloom filter indicates that this file may be in the
cache, search the list to see whether this file is in the
cache.

• If it is in the cache, move the node that represents
this file to the head of the list and reply with data in
the cache.

• If it is not in the cache, load this file from disk and
add a node that represents this file to the head of the
list. Reply with the data loaded from disk.

Each time we load a new file into the cache, if the total
size of all the data in the cache is larger than the cache size,
we recursively remove the node in the tail until the total size
is smaller than the cache size.

Compared with the time of loading files from disk, the
time of searching file-level cache can be ignored. With
bloom filter avoiding most of the unnecessary searches of
cache. We believe that our file-level cache can greatly reduce
the overall file access time.

Figure 3. Stucture of TFS.

V. CO-LOCATE FILES BASED ON AFFINITY
We borrowed a concept of affinity to describe the inner

relationship between files based on application-specific
knowledge. We say several files are affinitive in case that if
one of them is accessed, the rest are very likely to be
accessed. As modern disk technology trend is toward
improved sequential bandwidth. To better exploit bulk data
bandwidth and avoid frequent reposition to new locations,
we use co-location to place affinitive files at adjacent disk
locations.

In modern distributed storage systems, a write process
usually consists of the following steps:

• System randomly chooses a datanode based on the
current workload on every datanode.

• Client contacts and sends data to the chosen
datanode directly.

• After all data have been received, datanode commits.
Each write request goes through the entire write process.

Since datanode is chosen randomly, files are distributed
randomly in the whole system.

In order to co-locate affinitive files, we do not write disk
for single write request, instead we collect files in a buffer
and write them to disk in batches. Each time the client
receives a write request, it puts the file in the buffer. Files in
the buffer are divided into groups based on application-
specific knowledge. When buffer is full or a time limit is met,
system begins the write process.

In our approach, we have made some modifications to
modern write process to achieve co-location of affinitive
files. The write process consists of the following steps:

• System randomly chooses a datanode for the first
group of files in the buffer based on current
workload on every datanode.

• Client contacts and sends data of files in the first
group to the chosen datanode directly.

• After all data have been received, datanode commits.
• Check whether the buffer is empty. If the buffer is

not empty, go to the first step; otherwise ends the
write process.

We believe that co-locating files based on the
relationship inherent in application-specific knowledge can
be exploited to successfully realize the performance potential
of modern disks’ bandwidth.

Figure 4. Structure of cache

249Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 262 / 282

Figure 5. Write process.

VI. IMPLEMENTATION
This section describes our detailed implementation on

TFS. TFS is the abbreviation of Taobao File System. It is a
distributed file system and is designed to store great amounts
of small images. The average file size is 16.7 kilobytes. Fig.
3 depicts the basic structure of TFS. Like GFS, a TFS cluster
consists of multiple nodes which can be divided into two
types: one nameserver and a large number of dataservers.
Files are organized as blocks which are usually 64
megabytes in size. Dataserver stores blocks while
nameserver maintains the logical mappings of blocks to
dataservers. TFS also makes some optimizations on the
filename to reduce metadata stored on nameserver. For each
file, TFS encodes the id of the block that contains the file to
the file’s filename. So when a client gets the filename, it can
get the id of the block that contains the file by decoding the
filename. Each block is replicated several times throughout
the network.

A read process in TFS goes like this: client sends a read
request to nameserver. Nameserver replys with the
cooresponding location (i.e., the dataserver). The client
contacts the corresponding dataserver. Dataserver replies
with the file’s content.

A write process in TFS goes like this: client sends a write
request to nameserver. Nameserver chooses a dataserver
based on the current workload on every dataserver and replys
with the dataserver. Client sends data to dataserver. After all
data have been received, dataserver commits to nameserver.
Dataserver replys to client that write process completes.

In our file-level cache implemented on datanode, files are
organized as a list. As Fig. 4 shows, each node in the list
represents a file which records the file’s blockid, fileid, file
length, offset in the block and the file’s content. We use a
standard bloom filter in our implementation. Each bit in the
array is set to 0 when service starts. In order to improve our

bloom filter’s accuracy, i.e., to make the false positive [33]
rate as low as possible, we use three hash functions [34].

Fig. 5a shows the writing mechanism of TFS: a random
dataserver is chosen to store the first file in the write request
queue. Fig. 5b shows the writing mechanism in our approach:
files are stored in the buffer and grouped according to which
hypertext document they make up. Then a dataserver will be
allocated for each group of files. Files in the same group will
be written into the same dataserver and the storage
mechanism in dataserver will guarantee that these files will
be placed in adjacent locations on disk. In our
implementation, since file size is relatively small, we believe
that 4 megabytes is enough for the buffer size and our
experiments have proved that this is an appropriate choice.

VII. EVALUATION
This section reports measurements of our implementation

on TFS, which shows that it can dramatically improve the
system’s performance.

Our TFS cluster contains 22 nodes, with 2 of them act as
nameservers and the rest act as dataservers. Each node runs
64-bit ubuntu10.04 and uses an Intel Core 2 Duo E6850
3GHz CPU, 4GB RAM, and a 500GB 7200rpm hard disk.

We use two main data sets for testing. Our synthetic data
set simulates the trace in applications in which files show a
certain clustering effect, which means that each file may
have a strong relationship with several other files. So we can
use this characteristic to co-locate files that have strong
relationships with each other. Files’ average size is 20
kilobytes and total size is 2 terabytes. Our second data set is
a real world data set which comes from our college’s online
teaching system. Teachers use this system to share slides
with students, while students use this system to submit
homework. This system is also used as a communication
platform for students and teachers to discuss with each other.
So a great number of small files are stored in this system.

250Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 263 / 282

Figure 6. Read throughput under different numbers of thread.

Figure 7. Throughput improvement of different cache size.

Since the disk throughput is hard to evaluate and is not
suitable for the evaluation of the whole system, we use the
I/O throughput of the whole system, i.e., the read/write
requests complete per second, as our criterion.

Results with synthetic data
Fig. 6 shows the throughput of only read requests under

different thread counts. Co-location improves performance
by 10%-20%. File-level cache improves performance by
17%-35%. Co-location and file-level cache together improve
performance by 20%-49%.

Fig. 8 shows the throughput of read and write requests
together under different thread counts. Read write ratio is
20:1. The performance improvement is nearly the same as
the performance improvement in conditions with only read
requests.

Results with real world data
First, we conduct an experiment with our real world data

set in 2 scenarios: without co-location or file-level cache,
with only file-level cache. Fig. 7 shows the throughput
improvement with varying cache size. When cache size is
smaller than 64 megabytes, throughput increases almost
linearly as cache size increases. But, it increases much
slower after cache size reaches 64 megabytes. Since the file
list gets longer as cache size increases, the searching time
becomes larger.

Figure 8. Throughput under different numbers of thread.

Figure 9. Throughput of different numbers of datanode.

Fig. 9 shows the throughput of the 4 scenarios with
varying numbers of datanode. We can see that averagely co-
location can improve throughput by 20%, file-level cache
can improve throughput by 35%, co-location and file-level
cache together can improve throughput by 50%.

VIII. CONCLUSION AND FUTURE WORK
Distributed storage systems designed for small files are

widely used in large datacenters to power today’s popular
applications specific for small files. Aiming at drawbacks
that exist in these systems, we proposed two optimizations
on datanode in distributed storage systems. By co-locating
related files, we can increase the system’s throughput by
maximally 20%. By implementing a file-level cache on
datanode, we can increase the system’s throughput by
maximally 40%. By implementing the two optimizations
together on datanode, we can increase the system’s
throughput by maximally 50%.

We believe that, for most applications, page information
provides useful information about relationships between files
that can be exploited by grouping. So, in this paper, we
investigate the approach of grouping files that make up a
single hypertext document. Other approaches based on
application-specific knowledge are worth investigating. In

251Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 264 / 282

our implementation, we have provided interfaces to support
other application-specific knowledge.

ACKNOWLEDGMENT
We would like to thank our program committee shepherd

Petre and the anonymous reviewers for their insightful
comments and constructive suggestions. This research is
supported by NSFC 61133005.

REFERENCES
[1] P. Vongsathorn and S. Carson, "A System for Adaptive Disk

Rearrangement", Software – Practice and Experience, Vol. 20, No. 3,
March 1990, pp. 225–242.

[2] C. Ruemmler and J. Wilkes, "Disk Shuffling", Technical Report
HPL-CSP-91-30, Hewlett-Packard Laboratories, October 3, 1991.

[3] "Smart Filesystems", Winter USENIX Conference, 1991, pp. 45–51.
[4] S. J. Mullender and A. S. Tanenbaum, "Immediate Files", Software–

Practice and Experience, 14 (4), April 1984, pp. 365–368.
[5] G. R. Ganger and M. F. Kaashoek, Embedded inodes and explicit

grouping: exploiting disk bandwidth for small files, In ATEC ’97:
Proceedings of the annual conference on USENIX Annual Technical
Conference, pages 1–1, Berkeley, CA, USA, 1997. USENIX
Association.

[6] http://www.taobao.com: June, 2012
[7] Z. Zhang and K. Ghose, hfs: a hybrid file system prototype for

improving small file and metadata performance, SIGOPS Oper. Syst.
Rev., 41(3):175–187, 2007.

[8] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels,
"Dynamo: amazon's highly available key-value store," SIGOPS Oper.
Syst. Rev., vol. 41, pp. 205-220, 2007.

[9] S. Ghemawat, H. Gobioff, and S.-T. Leung, "The Google file
system," SIGOPS Oper. Syst. Rev., vol. 37, pp. 29-43, 2003.

[10] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips, "The Bittorrent P2P
File-Sharing System: Measurements and Analysis" Peer-to-Peer
Systems IV. vol. 3640, M. Castro and R. van Renesse, Eds., ed:
Springer Berlin / Heidelberg, 2005, pp. 205-216.

[11] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel, "Finding a
needle in Haystack: facebook's photo storage," presented at the
Proceedings of the 9th USENIX conference on Operating systems
design and implementation, Vancouver, BC, Canada, 2010.

[12] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica,
"Looking up data in P2P systems," Commun. ACM, vol. 46, pp. 43-48,
2003.

[13] M. E. J. Newman, "Power laws, Pareto distributions and Zipf's law,"
Contemporary Physics, vol. 46, pp. 323-351, 2005/09/01 2005.

[14] A. Charnes, W. W. Cooper, B. Golany, L. Seiford, and J. Stutz,
"Foundations of data envelopment analysis for Pareto-Koopmans
efficient empirical production functions," Journal of Econometrics,
vol. 30, pp. 91-107, 1985.

[15] S. Joseph E, "Self-selection and Pareto efficient taxation," Journal of
Public Economics, vol. 17, pp. 213-240, 1982.

[16] T. M. Tripp and H. Sondak, "An evaluation of dependent variables in
experimental negotiation studies: Impasse rates and pareto
efficiency," Organizational Behavior and Human Decision Processes,
vol. 51, pp. 273-295, 1992.

[17] http://hadoop.apache.org/hdfs/: May, 2012
[18] http://code.google.com/fastdfs/: April, 2012
[19] http://cassandra.apache.org/: June, 2012
[20] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and C.

Karamanolis, "Sinfonia: a new paradigm for building scalable
distributed systems," presented at the Proceedings of twenty-first
ACM SIGOPS symposium on Operating systems principles,
Stevenson, Washington, USA, 2007.

[21] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P.
Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni,
"PNUTS: Yahoo!'s hosted data serving platform," Proc. VLDB
Endow., vol. 1, pp. 1277-1288, 2008.

[22] J. Dean, "Evolution and future directions of large-scale storage and
computation systems at Google," presented at the Proceedings of the
1st ACM symposium on Cloud computing, Indianapolis, Indiana,
USA, 2010.

[23] S. A. Weil, K. T. Pollack, S. A. Brandt, and E. L. Miller, "Dynamic
Metadata Management for Petabyte-Scale File Systems," presented at
the Proceedings of the 2004 ACM/IEEE conference on
Supercomputing, 2004.

[24] D. Hitz, J. Lau, and M. Malcolm, "File system design for an NFS file
server appliance," presented at the Proceedings of the USENIX
Winter 1994 Technical Conference on USENIX Winter 1994
Technical Conference, San Francisco, California, 1994.

[25] A. W. Leung, M. Shao, T. Bisson, S. Pasupathy, and E. L. Miller,
"Spyglass: fast, scalable metadata search for large-scale storage
systems," presented at the Proccedings of the 7th conference on File
and storage technologies, San Francisco, California, 2009.

[26] H. C. Lim, S. Babu, and J. S. Chase, "Automated control for elastic
storage," presented at the Proceedings of the 7th international
conference on Autonomic computing, Washington, DC, USA, 2010.

[27] http://code.taobao.org/p/tfs/wiki/index/: May, 2012
[28] L.W. McVoy and S.R. Kleiman, "Extent-like Performance from a

UNIX File System", in Proc. USENIX Winter, 1991, pp.33-44.
[29] A. I. T. Rowstron and P. Druschel, "Pastry: Scalable, Decentralized

Object Location, and Routing for Large-Scale Peer-to-Peer Systems,"
presented at the Proceedings of the IFIP/ACM International
Conference on Distributed Systems Platforms Heidelberg, 2001.

[30] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C.
Maltzahn, "Ceph: a scalable, high-performance distributed file
system," presented at the Proceedings of the 7th symposium on
Operating systems design and implementation, Seattle, Washington,
2006.

[31] Z. Zhang and K. Ghose, "hFS: a hybrid file system prototype for
improving small file and metadata performance," SIGOPS Oper. Syst.
Rev., vol. 41, pp. 175-187, 2007.

[32] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirriff, and J. K.
Ousterhout, "Measurements of a distributed file system," SIGOPS
Oper. Syst. Rev., vol. 25, pp. 198-212, 1991

[33] http://en.wikipedia.org/wiki/Type_I_and_type_II_errors: June, 2012
[34] http://en.wikipedia.org/wiki/Bloom_filter: June, 2012
[35] http://en.wikipedia.org/wiki/FIFO: June, 2012
[36] http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used

 : June, 2012
[37] http://en.wikipedia.org/wiki/Page_replacement_algorithms#The_theo

retically_optimal_page_replacement_algorithm: June, 2012

252Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 265 / 282

ERHA: Execution and Resources
Homogenization Architecture

Guilherme Galante, Luis Carlos Erpen de Bona
Department of Informatics

Federal University of Paraná
Curitiba, PR – Brazil

{ggalante,bona}@inf.ufpr.br

Paulo Antonio Leal Rego, José Neuman de Souza
Master and Doctorate in Computer Science

Federal University of Ceará
Fortaleza, CE – Brazil

pauloalr@lia.ufc.br, neuman@ufc.br

Abstract—In this paper, we present the Execution and Re-
sources Homogenization Architecture (ERHA). The architecture
aims to provide mechanisms for submitting and executing batch
applications in private IaaS clouds using homogeneous virtual
environments created over heterogeneous physical infrastructure.
With ERHA it is possible to deploy and execute applications in
IaaS clouds in an automatic and easy way. The architecture
creates homogeneous virtual environments and manages the
entire execution process, from source code submission to results
collection phase. The results confirmed the architecture efficiency
in deploying parallel applications in clouds and reducing signif-
icantly the disparities in execution time using different machine
models.

Index Terms—scientific applications; application execution;
homogeneous environments.

I. INTRODUCTION

The rapid provisioning of independent and isolated re-
sources, hardware and software customization, quick access to
resources as well as on-demand scalability, have made cloud
computing an attractive model for the scientific community. In
fact, many scientists have adopted this new paradigm, moving
their data and performing in silico experiments in the cloud
[1]–[4].

However, the deployment and execution of scientific appli-
cations are generally not straightforward, comprising a set of
complex hardware and software configurations. Other issues
must be considered in a cloud scenario, e.g., particular control
aspects of different clouds, interfaces to be used, number of
virtual machines (VMs) to be deployed and what resources
will be needed by them.

According to [5], running a scientific application in the
cloud presents three different challenges: initial application de-
ployment, subsequent application execution, and data transfers
to/from the cloud. Generally, the application deployment in a
cloud requires that all software (and possibly data) be stored in
a VM image, which is sent to and stored in the cloud. Thus, the
user can create a new VM from this image, access it and run
applications. At the end, the application results must be copied
to a non-volatile storage using a network protocol. These steps
seem extremely simple for a computer scientist, but may pose
a challenge to people from other areas. The challenge may be
even greater when it comes to parallel applications.

Another related problem is the provisioning of comput-
ing resources in heterogeneous physical infrastructures. The
VMs performance is directly related to the physical machines
(PMs) where they are allocated. As the cloud computing
environment is commonly highly heterogeneous, there may be
machines with different processors. This difference between
the CPUs can directly influence the performance of VMs
and consequently the applications encapsulated within. An
example is presented in [6], where the performance results of
a MapReduce execution on Amazon EC2 show fluctuations up
to 24%. Another issue related to performance disparities due to
heterogeneity is that the slowest instance will be the bottleneck
for an entire execution of the application, thus, under-utilizing
faster machines.

Considering these issues, this paper presents the Execution
and Resources Homogenization Architecture (ERHA), a solu-
tion to automate the deployment and execution of sequential
and parallel batch applications in clouds, providing homo-
geneous computing resources. This type of application was
focused because it is very common in scientific computations.
The architecture provides a language to describe the resources
and the execution parameters, a standard method to deploy
and execute the application in clouds, and a mechanism that
enables the allocation of VMs using processing units (PUs), a
metric that represents the effective processing power of each
machine (physical or virtual).

Four experiments show the architecture efficiency in de-
ploying applications in clouds in an easy way and reducing
significantly the disparities in execution time using different
PMs models.

The remainder of the paper is organized as follows. Sec-
tion II presents the related works. Section III introduces the
proposed architecture. In Section IV, the experiments are
presented and the results are discussed. Finally, in Section V,
we present our conclusion and potential future research topics.

II. RELATED WORK

Several studies [2], [7], [8] have assessed the aspects of
running scientific applications on public clouds. The feasibility
of the current cloud services (Amazon and GoGrid) for the
execution of scientific applications is explored in [7]. A perfor-
mance comparison of eight applications (CAM, Gamess, GTC,

253Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 266 / 282

IMPACT-T, MAESTRO, MILC, Paratec and HPCC) running
in a private virtual cluster and in Amazon EC2 is presented
in [8]. In a similar study, the impact of using different MPI
libraries in an atmospheric model running on EC2 is analyzed
in [2].

All these studies present some concerns about applications
performance. Large fluctuations of high-performance comput-
ing workloads on cloud infrastructure were reported in [9]. In
[7], the authors have found that many Amazon and Google
services exhibit large performance changes over time.

The studies which use techniques for limiting the CPU
usage of VMs are generally related to the dynamic provi-
sioning of resources. In [10], Xen’s performance isolation for
I/O intensive applications is studied and two mechanisms are
proposed to improve CPU and network resource isolation.
In [11], an architecture for dynamic resources management
upon the hypervisor Xen is presented. The authors dynam-
ically adjust the amount of CPU and memory of VMs to
reduce service level objectives (SLOs) violation. In [12], an
adaptive control system which automates the task of tuning the
resources allocation for the maintenance of SLOs is presented.
The work uses KVM hypervisor and focuses on maintaining
the expected response time for Web applications, by tuning
the CPU usage.

Unlike aforementioned works, the hypervisors KVM and
Xen are used in ERHA and the techniques for limiting the
CPU usage are leveraged to handle the problem of providing
homogeneous resources despite being in a heterogeneous
infrastructure. In addition, besides Amazon EC2 (with the
Elastic Compute Unit), no other public cloud provider or
research uses an abstraction like our PU for representing CPU
resources.

About the creation of virtual environments and the execu-
tion of applications, the three most similar works are high-
lighted: Neptune [13], DADL [14] and Nimbus Context Broker
[15]. Neptune is a domain specific language that automates
configuration and deployment of existing HPC software in
AppScale clouds. DADL (Distributed Application Description
Language) is a language for describing hardware requirements,
behavior and architecture of distributed applications. Finally,
Nimbus Context Broker is a tool used to create and provide
virtual clusters.

Cloud computing is taking larger proportions in the sci-
entific field and there are several studies about scientific
applications performance in cloud. Despite this, to the best of
our knowledge, there is no published research addressing the
support for running sequential and parallel batch applications
in clouds, especially considering the virtual environments
homogenization, as we show with ERHA.

III. ERHA ARCHITECTURE

ERHA is an architecture that aims to provide mechanisms
to submit and execute batch applications in private IaaS
clouds (e.g., OpenNebula and Eucalyptus) using homogeneous
virtual environments created over heterogeneous physical in-
frastructure. With ERHA it is possible to deploy and execute

applications in clouds in an automatic and easy way. The
architecture creates the virtual environment and manages the
entire execution process, from source code submission to
results collection phase.

Furthermore, the architecture allows users to configure
their VMs’ processing power using an uniform metric, the
Processing Units (PU). A PU is a value in terms of GFLOPS
(billion floating-point operations per second), or other metric
that represents the processing power of each physical or virtual
machine. The system administrator defines a value to the PU,
which is used in the VMs allocations. All virtual instances
requested by the user will have equivalent computing power,
regardless the underlying PM and its processor model. For
example, considering a PM with 30 GFLOPS and the PU set
as 10 GFLOPS, it is possible to allocate three VMs with 1
PU, or one VM with 1 PU and another with 2 PUs.

To implement the execution environment and the resources
homogenization, ERHA uses three layers, as shown in Figure
1: (1) Resource Description Layer, (2) Execution Management
Layer and (3) Allocation Layer.

Fig. 1. Architecture layers

The Resource Description Layer, Execution Management
Layer and Allocation Layer are presented in Section III-A,
III-B, III-C, respectively. A complete example of running an
application envolving all ERHA layers is presented in Section
III-D.

A. Resource Description Layer

The Resource Description Layer (RDL) is responsible for
receiving the resources demands and informing it to the other
layers. The resources needed by the application are informed
in the Resource Description Block (RDB). The block is made
up of a set of attribute-value pairs and it must be inserted into
the source code, marked by the reserved word #neb config
and delimited by braces ({}). An example of RDB is shown
in Figure 2.

In this example, a VM named OMPTest is requested in an
OpenNebula cloud. The VM has four virtual CPUs (VCPU),
eight PUs and 256 MB RAM, no disk attachment is needed

254Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 267 / 282

Fig. 2. RDB example

and a default image is used. When the execution ends, the
VM will be finalized. Note that in RDB is informed the total
amount of PUs of a VM, and this processing power is divided
by all VCPUs (in this example, each VCPU has 2 PUs).

The rest of RDB describes the execution script name, the ex-
tras.tar.gz file, which contains the applications dependencies,
and the output directory, where results will be saved.

The information is obtained by the RDB Parser, which
parses all fields and converts them to the specific cloud
middleware format (OpenNebula, in this example). The parser
sends the formatted data to the Execution Management Layer,
which will use them to request the resources to the cloud via
Allocation Layer.

B. Execution Management Layer

The Execution Management Layer (EML) handles the ex-
ecution process, controlling all needed interactions with the
cloud during the application execution. EML is a client-
server application composed of three components: 1) Client,
2) Server and 3) VM-Daemon.

The Client is installed in the user machine and provides a
command-line interface that is used to submit the applications
to the cloud. This interface is also used to track the execution
progress and receive error messages. It is also responsible
for receiving the resources description from RDB Parser and
sending it to Server module, deploying the application in the
cloud, managing the execution and collecting the results.

The Server runs in the cloud front-end and is responsible
for receiving the requests and sending the performing the
actions related to VMs creation and finalization. It receives the
resources description from the Client, converts this information
to the appropriate format and makes the requests to the
Allocation Layer. The same process is performed to finalize
the virtual environment. It is necessary just one Server instance
to serve all Clients.

The last component is the VM-Daemon. This module must
be inserted into VM image and is initialized on VM boot
process. When started, the VM-Daemon sends and receives
information to/from the Client, including IP address, VM iden-
tification, authorization keys, error warnings and commands
that must be executed in VM.

C. Allocation Layer

The Allocation Layer (AL) was designed to perform the
VMs allocation based on PUs. AL ensures uniform allocation
of computing power to VMs and standardizes the representa-
tion of the processing power of a cloud infrastructure through
the use of PUs. The PU is the abstraction used for representing
the processing power, similar to ECU (Elastic Computing
Unit) for Amazon EC2.

Despite the VM performance being directly related to the
underlying PM, the use of PUs metric makes it possible
to guarantee VM processing power without worrying about
the infrastructure heterogeneity. Four modules make up the
AL: (1) Limit Manager, (2) Monitor, (3) Scheduler and (4)
Daemon.

Limit Manager is the module responsible for applying the
limits on CPU usage. When a new VM is created, for example,
the Daemon invokes the Limit Manager, which sets the CPU
resource that can be used by the VM, considering the amount
of PUs allocated to it.

This feature is implemented limiting the CPU cycles used
by each VM. To achieve the desired results, it is necessary
that the hypervisors allow a way to set the percentage of CPU
that will be used by a given VM. Xen has this functionality
natively implemented through Credit Scheduler algorithm [16].
An alternative for limiting the CPU usage for the Kernel-based
Virtual Machine (KVM) with the cpulimit tool is evaluated in
[17] and is used in this work.

Monitor is the module responsible for capturing information
about the entire infrastructure. This module can directly access
the infrastructure data or make requests to the cloud computing
middleware. The monitored information is related to CPU,
memory, storage and network for each PM and VM.

All decisions about the VMs allocation on PMs are taken
by Scheduler. Unlike the schedulers present in the main cloud
computing middleware, like Eucalyptus and OpenNebula, the
proposed scheduler must not consider the raw information
about CPU, memory and hard drive to define where the VMs
will be allocated. Once the architecture is based on PUs,
all allocations must be made based on the number of PUs
required by the VM and the amount of free PUs in the PMs.
The architecture provides some basic scheduling policies, e.g.,
Random, Round Robin and First Fit. New scheduling policies
can be easily created and added to the architecture.

The last module, the Daemon, manages all the other mod-
ules and controls the infrastructure. It communicates with
the cloud computing middleware and maintains information
about the PMs and running VMs (captured by the Monitor).
In addition, it has access to all the requests that come to
the middleware. The Daemon receives the requests from

255Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 268 / 282

Execution Layer and invokes the Scheduler when there are
VMs at pending state. When the Daemon receives the VM-PM
mapping from Scheduler, it allocates the VMs. The Daemon
is also responsible for storing information about the PUs and
invoking the Limit Manager to apply the limit of CPU usage
when a VM is started or migrated.

D. Running Applications with ERHA

To demonstrate how ERHA works, this section presents an
example of using the architecture to run the scenario described
in the RDB shown in Figure 2. The environment creation and
the application execution is performed in thirteen steps, as
illustrated in Figure 3 and explained in sequence.

Fig. 3. Application Execution Steps

The process starts when (1) the user adds the RDB to the
application, provides the scripts and other dependencies and
submits the application through EML-Client. The Client (2)
uses the RDB Parser to get information about the requested
environment and (3) sends the VM template to EML-Server,
which (4) requests a VM to the Allocation Layer. In the
Allocation Layer, (5) the Daemon detects a pendency and
calls the Scheduler, that (6) returns a VM-PM mapping. Then,
(7) the Daemon sends the VM creation request to the cloud
middleware, and the VM is created. Next, the Daemon calls
the Limit Manager to (8) apply the CPU limitation to the VM,
based on the PU configuration established in RDB.

After VM operating system booting process, (9) the EML-
VM gets the IP and the VM public-key and sends them to
EML-Client. The IPs are used to identify the VMs during
the execution process, and the public-key is used to allow
passwordless remote access. In the following step, (10) EML-
Client uploads the application and its dependencies to the VM
and sends the compilation and execution commands. After
finishing the application execution, the (11) EML-VM collects
the results and sends them back to the Client. If the machines
are no longer needed, (12) EML-Client requests the VM
destruction to the Allocation Layer and (13) the Daemon sends
the command for VM destruction to the cloud middleware.

IV. TESTS AND RESULTS

To evaluate the proposed architecture, a prototype was im-
plemented using Python, Ruby and Shell Script. OpenNebula
2.2.1 was used as cloud middleware and KVM and Xen
as virtualization technology. The choice of OpenNebula was
made based on the flexibility for VMs creation, which allows
the configuration of resources according to application needs,
unlike Eucalyptus and OpenStack, in which a pre-configured
class must be chosen.

TABLE I
PHYSICAL MACHINES CONFIGURATIONS

Ci7 Ci5 X4 C2D

Processor
Intel Core
i7-930 2.8
GHz

Intel Core
i5-750
2.66 GHz

Intel Xeon
X3430 2.4
GHz

Intel Core 2
Duo E7400
2.8 GHz

PUs (Total) 10 9 8 5
Memory 24 GB 4 GB 8 GB 4 GB

OS Ubuntu Server 11.04 64 bits Debian 6.0
64 bits

Hypervisor KVM Xen

A heterogeneous private cloud with OpenNebula was used
as testbed, consisting of 2 machines model Ci5, 1 machine
model Ci7, 1 machine model X4 and 1 machine model C2D,
all connected by a Gigabit Ethernet network. The configura-
tions of the physical machines are presented in Table I. All
VMs use Ubuntu Server 11.04 32 bits as operating system. All
source code and applications used in experiments are available
in the project site [18].

The Intel Linpack benchmark was used to collect the
VMs’ computing power running inside all PMs. With this
information, it is possible to find the relation between CPU
usage (%) and the amount of PUs for all PMs. For this work,
the PU was set to 3 GFLOPS (50% of one core of X4), and
the relation %CPU/PU is presented in Table II. This specific
configuration is more suitable for CPU-intensive applications
because only the Linpack benchmark is used in the process of
PU definition.

TABLE II
RELATION BETWEEN THE CPU USAGE AND THE AMOUNT OF PUS FOR

EACH PHYSICAL MACHINE.

CPU usage
Ci7 Ci5 X4 C2D

1 PU 39% 41% 50% 44%
2 PUs 78% 81% 100% 83%
3 PUs 119% 118% 150% 130%
4 PUs 157% 162% 200% 165%
5 PUs 196% 218% 250% 200%
6 PUs 234% 260% 300% N/A
7 PUs 274% 305% 350% N/A
8 PUs 320% 354% 400% N/A
9 PUs 368% 400% N/A N/A
10 PUs 400% N/A N/A N/A

We conducted four experiments with two parallel OpenMP
applications: a 2D heat transfer problem [19] and a LU decom-
position algorithm [20]. The heat transfer problem consists in

256Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 269 / 282

solving a partial differential equation to determine the variation
of the temperature within the heat conducting body. LU
decomposition is a method to factorize a matrix as the product
of a lower triangular matrix and an upper triangular matrix.
This algorithm is a key step in several fundamental numerical
algorithms in linear algebra such as solving a system of linear
equations, inverting a matrix, or computing the determinant of
a matrix.

The experiments were grouped in two sets, each set ex-
amining different issues. In Set A, three experiments test the
ERHA efficiency in providing a homogeneous environment.
In Set B, the impact of PMs load in application performance
is evaluated. For each test, the applications were run 10 times
and the results were combined to calculate mean, in a 95%
confidence interval.

A. ERHA Efficiency

In this section, three different test cases were used to
validate the ERHA architecture and to analyze its efficiency
using different configurations.

1) Experiment 1: In the first experiment we tested the
architecture with the Limit Manager module disabled. The
purpose of this experiment is to evaluate the difference in
the PMs processing power. The LU decomposition and heat
transfer applications were executed on a virtual environment
allocated on one PM of each model (Ci5, Ci7, X4 and C2D).
The tests were performed using VMs with 1, 2 and 4 VCPUs,
except for C2D, which supports VMs with just 2 VCPUs.

Figure 4 shows the applications execution time for each
configuration. It can be seen that both applications take longer
in C2D for all configurations. The difference reaches 30.3%
in the case of heat transfer application with 1 VCPU and
28,2% in the case of LU decomposition with 2 VCPUs. These
results emphasize the need for a solution which considers the
infrastructure’s heterogeneity once they confirm the influence
of the underlying PM on virtual machines performance and its
applications.

2) Experiment 2: In the second experiment, the Limit
Manager features were evaluated. The LU decomposition and
heat transfer applications were executed in VMs with 1, 2 and
4 VCPUs and setting the processing power to 1 PU per VCPU,
totaling respectively 1, 2, and 4 PUs. The results are presented
in Figure 5.

As expected, the execution time is greater than in Experi-
ment 1, due the CPU limitation imposed by Limit Manager.
Taking the PM X4 as basis, in LU decomposition the largest
difference is 1.7% in processing time, while in the heat
transfer problem the largest difference is 6%. The results
show that performance variability is reduced if compared with
Experiment 1.

3) Experiment 3: In the third experiment, the previous
experiment we repeated using 2 PUs per VCPU. The VMs
with 1, 2 and 4 VCPUs had processing power of respectively
2, 4 and 8 PUs. The results can be observed in Figure 6. The
most relevant difference in execution time is 3.5% for LU

Fig. 4. ERHA Efficiency - Execution time without CPU limiting

Fig. 5. ERHA Efficiency - Execution time with CPU limiting enabled: 1 PU
per VCPU

decomposition problem in case with 2 VCPUs and 5.9% for
heat transfer problem in case with 1 VCPU.

The test confirmed the results of the second experiment, by
proving the efficiency of the proposed solution to reduce the
VMs performance variability commonly imposed by different
PMs models. Furthermore, despite the execution time being
larger when executing the applications with 4 VCPUs and 2
PUs per VCPU than in the case without CPU limitation, it is
important to highlight that the more powerful processors still

257Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 270 / 282

Fig. 6. ERHA Efficiency - Execution time with CPU limiting enabled: 2
PUs per VCPU

have resources enough to run more VMs (2 PUs free in Ci7),
allowing other applications to run in that PM.

B. Impact of Physical Machines Load

The objective of this experiment is to evaluate the efficiency
of the architecture to provide performance isolation while
running more than one VM per PM. In this experiment, two
VMs were executed at the same time in each PM (Ci5, Ci7 and
X4), one running the heat transfer application and the other
running the LU reduction problem.

Two different configurations of VMs were used: VMs with
2 VCPUs and 4 PUs (2 PUs for each VCPU) and VMs with
4 VCPUs and 4 PUs (1 PU for each VCPU). Considering
that two VMs will run on each PM, a total of 8 PUs will be
used. The results can be observed in Figure 7, where the cases
marked with -extra load represent the tests where 2 VMs are
used in the same PM (competing for CPU resources). The
results were compared with the previous experiments results
(Figures 5 and 6), where a single VM per PM was used.

It can be observed that the largest differences between the
execution time were 4,6% and 4,5% in the VMs with 2 and
4 VCPUs, respectively, both running the LU decomposition
application in host Ci7. These results show that the solution
provides a good performance isolation for 2 VMs running on
the same PM. Further experiments must be performed to prove
the ERHA’s efficiency regardless the number of VMs per PM.

To sum up, the presented experiments were executed and
configured easily with ERHA. The results demonstrate the
solution’s efficiency to deploy applications in clouds and to
reduce the performance fluctuations despite being in a dynamic
and heterogeneous environment.

Fig. 7. Execution time using different loads in physical machines

V. CONCLUSION AND FUTURE WORK

This paper presented a solution to automate the deploy-
ment and execution of batch applications in clouds, providing
mechanisms to create homogeneous virtual environments over
private cloud middleware. The results described in Section IV
confirmed the ERHA’s efficiency in deploying applications in
clouds and reducing the disparities in execution time using
different PMs.

Although the presented tests have just used OpenMP ap-
plications, ERHA allows to run sequential, shared-memory
and distributed memory parallel applications. For example,
it is possible to run MPI applications in a homogeneous
virtual cluster with all credentials for SSH communications,
automatically created and managed by the architecture.

The architecture is useful in the cases where the researchers
expect comparable performance for their applications, inde-
pendent of the physical resources used. This feature is quite
important for repeatability of experiments and results. Further-
more, considering the uniform processing power allocations
provided by ERHA, it is possible to reduce the performance
variability in VMs’ migrations between different physical
machine types.

To conclude, the main contribution of this paper was the
reduction of the impact of the data center heterogeneity in
the VMs performance. In addition, we proposed mechanisms
to enable running applications in clouds in an easy and
uniform way, abstracting the infrastructure and middleware
complexities.

The next step in our research is to extend the architecture
implementation to work with other cloud middleware and new
application types such as MapReduce. We also intend to create
new scheduling policies and implement an interface to permit
users to dynamically change the amount of PUs and VCPUs
allocated to VMs.

258Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 271 / 282

ACKNOWLEDGMENTS

This work is supported by FUNCAP, CAPES and INCT-
MACC (CNPq process 573710/2008-2).

REFERENCES

[1] G. V. Mc Evoy, B. Schulze, and E. L. M. Garcia, “Performance and
deployment evaluation of a parallel application on a private cloud,”
Conc. and Comp.: Prac. and Exp., vol. 23, pp. 2048–2062, Dec. 2011.

[2] C. Evangelinos and C. N. Hill, “Cloud computing for parallel scien-
tific hpc applications: Feasibility of running coupled atmosphere-ocean
climate models on amazon’s ec2.” October, vol. 2, no. 2.40, pp. 2–34,
2008.

[3] L. Wang, J. Tao, M. Kunze, A. C. Castellanos, D. Kramer, and W. Karl,
“Scientific cloud computing: Early definition and experience,” in Proc.
of the 2008 10th IEEE Intl Conf. on High Perf. Comp. and Comm., ser.
HPCC ’08. IEEE Computer Society, 2008, pp. 825–830.

[4] J.-S. Vöckler, G. Juve, E. Deelman, M. Rynge, and B. Berriman, “Ex-
periences using cloud computing for a scientific workflow application,”
in Proc.of the 2nd Intl Workshop on Scientific cloud computing, ser.
ScienceCloud ’11. ACM, 2011, pp. 15–24.

[5] Y. Simmhan, C. Van Ingen, G. Subramanian, and J. Li, “Bridging the
gap between desktop and the cloud for escience applications,” IEEE 3rd
Intl Conf. on Cloud Computing, pp. 474–481, 2010.

[6] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz, “Runtime measurements
in the cloud: observing, analyzing, and reducing variance,” Proc. VLDB
Endow., vol. 3, pp. 460–471, September 2010.

[7] A. Iosup, N. Yigitbasi, and D. Epema, “On the performance variability
of production cloud services,” in IEEE/ACM 11th Intl Symposium on
Cluster, Cloud and Grid Computing, may 2011, pp. 104–113.

[8] K. R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia,
J. Shalf, H. J. Wasserman, and N. J. Wright, “Performance analysis of
high performance computing applications on the amazon web services
cloud.” in Proc. of IEEE Intl Conf. on Cloud Computing Technology and
Science, 2010, pp. 159–168.

[9] Y. El-Khamra, H. Kim, S. Jha, and M. Parashar, “Exploring the perfor-
mance fluctuations of hpc workloads on clouds,” in Proc. IEEE Second
Intl Conf. on Cloud Computing Technology and Science, 30 2010-dec.
3 2010, pp. 383–387.

[10] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat, “Enforcing
performance isolation across virtual machines in xen,” in Proc. of the
ACM/IFIP/USENIX 2006 Intl Conf. on Middleware, ser. Middleware ’06.
Springer-Verlag New York, Inc., 2006, pp. 342–362.

[11] W. Dawoud, I. Takouna, and C. Meinel, “Elastic vm for cloud resources
provisioning optimization,” in Advances in Comp. and Comm., ser.
Comm. in Comp. and Information Science, A. Abraham, J. Lloret Mauri,
J. F. Buford, J. Suzuki, and S. M. Thampi, Eds. Springer Berlin
Heidelberg, 2011, vol. 190, pp. 431–445.

[12] A. Sangpetch, A. Turner, and H. Kim, “How to tame your vms: an
automated control system for virtualized services,” in Proce. of the 24th
Intl Conf. on Large installation system administration, ser. LISA’10.
USENIX Association, 2010, pp. 1–16.

[13] C. Bunch, N. Chohan, C. Krintz, and K. Shams, “Neptune: a domain
specific language for deploying hpc software on cloud platforms,” in
Proc. of the 2nd Intl workshop on Scientific cloud computing, ser.
ScienceCloud ’11. ACM, 2011, pp. 59–68.

[14] J. Mirkovic, T. Faber., P. Hsieh, G. Malayandisamu, and R. Malavia,
“Dadl: Distributed application description language,” USC/ISI, Tech.
Rep. ISI-TR-664, 2010.

[15] Nimbus Project, http://www.nimbusproject.org/, [retrieved: june, 2012].
[16] T. Deshane, Z. Shepherd, J. Matthews, M. Ben-Yehuda, A. Shah, and

B. Rao, “Quantitative comparison of Xen and KVM,” in Xen summit.
Berkeley, CA, USA: USENIX association, Jun. 2008.

[17] P. A. L. Rego, E. F. Coutinho, D. G. Gomes, and J. N. de Souza,
“Faircpu: Architecture for allocation of virtual machines using process-
ing features,” in Proc. of Fourth IEEE Intl Conf. on Utility and Cloud
Computing, Dec 2011, pp. 371 –376.

[18] ERHA Project, http://www.inf.ufpr.br/ggalante/erha, [retrieved: june,
2012].

[19] J. H. Lienhard and J. H. Lienhard, A Heat Transfer Textbook - 3rd ed.
Phlogiston Press: Cambridge, Massachusetts, 2008.

[20] D. Poole, Linear Algebra: A Modern Introduction. Cengage Learning,
2006.

259Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 272 / 282

Cloud based Dynamically Provisioned Multimedia
Delivery:

An Elastic Video Endpoint
Alistair Blair, Gerard Parr, Philip Morrow, Bryan Scotney and Aaron McConnell

India-UK Centre of Excellence for Next Generation Networks
Faculty of Computing and Engineering, University of Ulster,

Coleraine, Northern Ireland
blair-a6@email.ulster.ac.uk,{gp.parr, pj.morrow, bw.scotney,a.mcconnell}@ulster.ac.uk

Steve Appleby and Mike Nilsson
Video Delivery Research,

BT Innovate & Design, Adastral Park,
Ipswich, England

{steve.appleby, mike.nilsson}@bt.com

Abstract—Content Delivery Networks are commonplace in to-
day’s Internet and are an important technique in the distribution
of multimedia content to the plethora of Internet Protocol enabled
devices. However, it has been recognised that current networks
are many times over provisioned server side for peak demand and
therefore greatly under utilised at other times. The emergence
of cloud computing as a commercial reality has created the
opportunity where content delivery networks can leverage the
resources of existing cloud providers to increase capacity when
required. In this paper, we propose an Elastic Video Endpoint
(EVE), a virtualised multimedia distribution resource, which can
utilise cloud resources to dynamically provision capacity in real
time. Initial results have shown that the system can respond to
increased load and provide extra bandwidth capacity on demand.

Keywords-cloud; elastic; content delivery network; dynamic pro-
visioning.

I. INTRODUCTION

It has been predicted that video traffic will account for
around 90% of the 966 exabytes of global Internet Protocol
traffic that will cross the globe in 2015 [1]. The high bandwidth
and strict Quality of Service (QoS) requirements such as lower
start up delay, reduced end-to-end delay and higher continuity
of multimedia, creates many challenges in the area of content
management and content delivery across the Internet. Degra-
dation of any of the above factors can have adverse effects
on a user’s Quality of Experience (QoE), which in turn can
lead them to complain or change the service provider they are
using.

In an attempt to combat these challenges, clusters of ma-
chines connected to the Internet, containing replica data can be
strategically placed at various geographic locations to improve
dissemination performance. These Content Delivery Networks
(CDN) [2], [3] offer a good way to decrease core network
bandwidth, reduce network latency and lower delivery costs.

Typically a CDN will carry out the following functions [4]:

• Performs redirection of connection requests to the nearest
suitable surrogate server, when a user attempts to down-
load content;

• Provides the ability to deliver various content from a set
of surrogate servers that are placed at various geographic
locations;

• Perform content outsourcing to control the content that
is stored on the surrogate servers that form the CDN and
how it is replicated from the source server;

• Provides management services that monitor and store data
on requests, cache hit/misses and accounting of content
usage.

There are a number of variants of these commercially available
content delivery networks and these can be categorised as:

• Highly distributed, e.g., Akamai [5], rent or place servers
in the data centres of many Internet Service Providers
(ISPs) around the world;

• Big Data, e.g., Limelight [6], build and run their own
data centres around the world;

• P2P Assisted, e.g., Bittorrent [7], share content in a
collaborative from many different sources, users, web
caches and proxies;

• Cloud, e.g., Amazon CloudFront [8], enables content
providers to provision capacity from Amazons cloud
resources in a pay as you go manner;

However, it has been noted that content delivery networks,
in any guise, are many times over provisioned and therefore
under utilised [9]–[15]. This over provisioning means that
that the CDN infrastructure is expensive to implement and
manage, [16], [17]; however, it is required due to the lack
of overload protection, so that flash crowds can be dealt with
effectively. To reduce this provisioning, would increase the risk
of lowering the end user experience. The work of Sun et al.
[18] has shown that “10% of connections are server-limited at
least 40% of the time.” Cloud CDNs are a new and emerging
approach [12], [19]–[22], that use cloud resources, namely
cloud storage to reduce the cost associated with implementing
content delivery services. However, again, these resources
are created at different locations across multiple clouds and
can lead to over provisioning due to the lack of overload
protection.

260Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 273 / 282

IaaS
Infrastructure

as a Service

PaaS
Platform as a

Service

SaaS
Software as a

Service

Network Block Storage Compute

Virtual
Machine (VM)

APIs to manage and access these resource abstractions

Web Services and Web Interfaces

Web 2.0/3.0
Interface

VM Management Deployment

Programming API
Scripting &

Programming
Languages

Cloud applications
CDN

Social NetworksScientific
Financial

QoS Negotiation, Admission Control, SLA Management, Monitoring

Fig. 1: Cloud Computing layered architecture

The system proposed in this paper uses metrics (CPU, Mem-
ory, Disk, Network), obtained from physical machines and
hosted Virtual Machines (VMs) in an attempt to dynamically
provision resources namely bandwidth when it is required,
therefore increasing utilisation while minimising provisioning
cost. The paper focuses mainly on Network and CPU metrics.
The elastic nature of Cloud resources offer the ability to
dynamically provision resources when they are required, this
in turn enables resources at a single location to grow when
needed to allow higher utilisation across any provisioned
hardware.

The remainder of this paper is organised as follows: Section
II gives a brief overview of cloud computing and its layered
architecture. Section III documents related work in the area of
Content Delivery Networks, populars CDNs, integrated cloud
based content delivery and details some of the challenges that
are being faced. Section IV details the proposed system, and
finally, Section V gives some results, discussion and future
work.

II. CLOUD COMPUTING

The emergence of the cloud computing paradigm as a
commercial reality has created a new landscape for Internet
based computing, whereby self owned IT resources can be re-
duced and replaced by the computation-as-a-service model that
cloud providers can offer, enabling users to reduce the Capital
Expenditure (CAPEX) and Operating Expenditure (OPEX).
Virtualisation has allowed cloud providers to offer computing
resources (compute, storage and network) as a service that can
be dynamically provisioned at multiple geographical locations
when required. A cloud platform is typically made up of four
distinct layers: data storage, data management, data service,
and user access [23].

Fig. 1 gives a representation of the layered structure of the
cloud computing architecture, which consists of four layers:

• Infrastructure as a Service (IaaS) or data storage layer
provides an abstract view towards the under lying com-
pute, storage and network allowing virtual instances of
mini data centres.

• Platform as a Service (PaaS) or data management layer

combines infrastructure, operating systems and applica-
tion software and offers it as a utility.

• Software as a Service (SaaS) or data service layer pro-
vides software products and services as a utility that can
be used on demand.

• Cloud applications or user access provides the access
point of applications to the Cloud.

Due to the high QoS of requirements of applications such as
real-time multimedia, cloud computing has become particu-
larly attractive for content delivery. Typically content delivery
services are operated using dedicated servers that lack the
dynamic nature of cloud computing or cloud storage and
fail to fully utilise the elastic abilities that cloud can offer.
While the properties described above can be seen as the
advantages of cloud computing, there are also some disadvan-
tages, namely resource contention, which occurs when VMs
are oversubscribed, i.e., contending for the same physical
resources, leading to poor application performance, causing
user experience to deteriorate. This paper considers the option
of utilising cloud computing resources to operate delivery
endpoints that can grow/shrink in real time, when demand
for their services changes while maintaining the high levels of
QoS that multimedia data requires.

III. RELATED WORK

A. General

Much research has been carried out in the area of data
locality and the methods used to disseminate multimedia data
to end-users [17], [24]–[27]. There are currently two key
distribution techniques used to disseminate media across the
Internet, namely CDN architectures and P2P architectures. Re-
cent work has seen attempts to utilise both techniques. TopBT
[24] is a topology aware Bittorrent client that can reduce
download traffic by 25% while increasing download speeds by
around 15%. Alessandria et al. [25] analysed some commercial
P2P video applications and found that they were able to cope
with impairments caused by delay, packet loss and insufficient
bandwidth. However, their study did show that when all peers
where affected by bottlenecks they failed to recover. Seyyedi
et al. [26], compare connected and unconnected meshes and
show that the connected mesh offers significant improvements
in end-to-end delay and distortion, while Kang et al. [27]
define a hybrid CDN-P2P architecture that allows the CDN
network to take the load during quiet periods and when
busy the P2P component allows the system to compensate
by enabling neighbours to distribute content, relieving stress
on the CDN, Tonget al. [17], propose a new web service
P2PCDN architecture to help distribute content from under
provisioned servers, they believe that their architecture could
be provisioned using cloud computing.

The work documented above focuses on using client devices
to help in the distribution process, however, these have their
weak points, which include high background traffic [28] and
energy tradeoffs [9].

261Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 274 / 282

B. Popular CDNs

Akamai is currently the market leader of content delivery
services, with “nearly one hundred thousand servers, deployed
in 72 countries” [5]. These servers are provisioned in many
different ISP data centres around the world, whereas Limelight
[6] has a few large data centres placed around the globe.
However, research has shown that the performance of Akamai
could be maintained even if the number of their servers was
reduced [29]. Akamai have recently changed their status from
being a CDN provider to a cloud provider. The integration
of cloud computing is affecting all content providers and at
present cloud storage is a significant topic in the research
community.

C. Integrated CDN

Cloud computing has created a new concept of Cloud
storage, whereby large data stores can be made available to
users dynamically when they are required. Cloud storage is
very different from traditional storage and whereas traditional
storage was of a fixed size, cloud storage has the ability to
grow if required. This service is offered on a pay-as-you go
basis and so costs can be controlled and managed. In terms of
functionality, it is able to deliver a variety of online services,
as opposed to traditional storage systems that are aimed at
large scale transactional processing and high performance
computing. Wu et al. [30], and Huo et al. [31] detail the
advantages of cloud storage and the challenges that will face
the technology while Lin et al. [19], use cloud storage as
the basis of a new content delivery network called CCDN.
Simulations by Wang et al. [20], have also shown that cloud
storage offers a highly scalable and fault tolerant platform that
offers lower delay and higher bandwidth to end users.

D. CDN Challenges

Distribution servers must be over provisioned for peak
demand, due to their lack of overload protection (each instance
will have limited CPU, Memory, Storage and Network band-
width). Sun et al. [18], argue that, “passively monitoring the
transport-level statistics,” of a server is a much better approach,
as the ability to monitor conventional metrics is much too
difficult, we would argue that with the advent of virtualisation
the ability to monitor core performance metrics offered by
the hypervisor, e.g., CPU, Disk, Network and Disk at twenty
second intervals is a novel and promising technique (Twenty
seconds is the smallest interval offered by VMware). No matter
how large the content storage is, bandwidth is required to
disseminate the content.

In summary, the above literature makes use of traditional
physical resources, while cloud computing has enabled smaller
content providers to utilise delivery services that would oth-
erwise be out of their reach, the delivery services are still
over provisioned, with multiple instances running at any one
location. However, cloud storage is only a minor part of the
flexibility that is offered by cloud computing, by utilising
cloud computing the ability to dynamically add extra capacity
and real-time monitoring of an instance is possible. The ability

Region 1

Region 3

Region 2

Central
Content Repository

Elastic Video
Endpoint

End User

DNS Server

EVE

EVE

EVE

Fig. 2: A dissemination architecture consisting of multiple
EVE resources

to monitor a VM and dynamically add/remove extra capacity
in real-time presents an opportunity where the foot print of a
system can be kept to a minimum, therefore further reducing
the financial and data cost associated with cloud based content
delivery.

IV. SYSTEM OVERVIEW

The literature review above has shown that research in the
area of content delivery is a popular topic, with developments
taking place in all aspects of the concept. However, more
recently, the realisation of cloud computing has created a
platform that removes the need of content providers to either
pay for their own hardware or expensive third party distri-
bution platforms. Content producers can now utilise cloud
resources to store and distribute their content in a pay as you
go manner. While this has reduced the expense for providers,
it still leaves the problem of over provisioning due to the lack
of overload protection within these systems. In an attempt
to dynamically provision content, while still maintaining a
high quality of service we propose a new delivery endpoint,
based on cloud resources, “EVE,” Elastic Video Endpoint. In
Fig. 2, we can see an architectural overview of a distribution
network consisting of multiple endpoints located in different
geographical locations. A central content repository retains a
copy of all the content that is available for dissemination.

C2 C3C1

vProxy

CDN Cache

C5 CnC4

CPUMEM

DISK NET

File Metadata

Host
VM

System Management

Dynamic
DNS

Virtualised Physical
Host running EVE

Data
Update

Data
Update

Resource
Update

Fig. 3: Components of an Elastic Video Endpoint

262Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 275 / 282

From here content can be replicated to endpoints placed in
different geographic regions when it is deemed necessary. Each
region contains an instance of Elastic Video Endpoint that is
adequately provisioned to disseminate content under current
conditions. Each endpoint contains a subset of the content
that is held at the central repository, which is determined
by its current popularity. If the content delivery conditions
change i.e., a flash crowd situation occurs where resources
become contented, the endpoint can provision extra resources
to facilitate the extra demand by utilising the elastic nature
of cloud computing. An intelligent endpoint that can scale its
resources depending on the load that the system is currently
under is shown in Fig 3. The system takes a subset of content
from a central master repository and stores it using cloud
storage. Current CDNs are optimised for small file delivery
[32], [33] and not the large files that are required to store
High Definition (HD) and Super HD video. The content used
is a mixture of HD and Super HD videos that range in size
from a few hundred megabytes to a few gigabytes.

EVE is made up of five major components; these are the
VMware Infrastructure, Dynamic DNS, a vProxy, a Cache and
System Software.

(a) VMware Infrastructure
VMware infrastructure software has been chosen as the
platform on, which to base the cloud platform as it is an
industry standard with VMWare controlling eighty percent
of the server virtualisation market [34]. The exposed API’s
of the software provide the ability to access all aspects of
the hypervisor and its associated host enabling a custom
monitoring system written in C# to be created. This
monitoring system can access a large array of metrics.
The specific performance metrics to be recorded are CPU,
Memory, Disk and Network. These metrics cover many
aspects of the system, including the physical host and all
VMs running on that host. These metrics give an accurate
insight into the current health of both the VM’s and the
host, using the VMware API’s the metrics are available at
twenty second intervals. Example metrics are percentage
of CPU capacity and throughout of the network.

(b) Dynamic DNS
The request routing component determines the best end-
point to facilitate the end users’ request. If the content
isn’t cached locally then the user is redirected to another
more suitable location by means of a DNS-based redirect.
DNS based requests are highly efficient and help to reduce
access time to the endpoint. This enables the system to
carry out load balancing so that resource allocation at the
endpoint doesn’t become overloaded.

(c) vProxy
The proxy keeps a record of files that are stored locally
and also of the files that are held remotely. When a cache
hit or miss occurs the vProxy updates the relevant record
with the information and then redirects the user the local
or remote file. By keeping an accurate account of the
content that is cached or needs to be cached, the system

Physical Host Virtual Machine

CPU MEM DISK NET

Content

Cache hit/
missBitrate

File Size Resolution

CPU Memory Storage Bandwidth Replicate

Encoding

EVE Intelligence

Resource Monitoring

Resource
Orchestration

Data
OrchestrationOrchestration Engine

Data Monitoring

Location

1 2

34 5

Fig. 4: EVE processes and flow

can fully utilise the space that it has.

(d) Cache
The cache is an area of cloud storage that is used to store
content for dissemination. The cache is mounted with in
the system drive as a folder. This enables the Operating
System partition to be minimal in size while the content
drive can also be kept to a minimum. This allows the
system footprint to remain at a minimum until such times
as it needs to expand to hold extra content.

(e) System Software
The management component monitors the remote database
to decide when corrective, (e.g., add an extra NIC, increase
the cache size or create a new endpoint instance) should
be taken to prevent an endpoint from failing. The system
takes values from the monitoring database CPU, Memory,
Disk and Network, when used along with the cache hits
and other content metadata to determine, which file is
placing the endpoint under pressure. Corrective action
may include increasing capacity or temporarily redirecting
future connections to another endpoint via the intelligent
DNS.

In order for EVE to operate, there are a number of processes
that occur in the general operation and maintenance of each
instance. These processes are shown in Fig. 4:

1) Resource monitoring
Performs data acquisition for host and VM metrics for
use by the optimiser of metrics such as CPU, Memory,
Disk and Network.

2) Data monitoring
Performs data acquisition for use by the optimiser, about
content that is hosted at the endpoint, e.g., popularity,
cache hits/misses and bitrate.

3) System Intelligence
Performs analysis of the real-time metrics coming
from both the data monitoring and resource monitoring
processes. Using these metrics the system determines
if content should be added/removed or deleted from
endpoint instances. Also whether an endpoint instance
requires more/less capacity, these decisions are then
passed to the relevant orchestration engine for execution.

263Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 276 / 282

0

50000

100000

150000

200000

250000

300000

350000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

N
e

tw
o

rk
 T

h
ro

u
g

h
p

u
t

(K
B

p
s)

Time

net_usage_ave

1

2

3

4
5

Fig. 5: Network throughput against time

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C
P

U
 U

ti
li

sa
ti

o
n

 (
%

)

Time

cpu_usage_ave

1

2

3

4 5

Fig. 6: VM CPU against time

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C
P

U
 U

ti
li

sa
ti

o
n

 (
%

)

Time

cpu_usage_ave

1

2

3

4
5

Fig. 7: Host CPU against time

4) Resource Orchestration
Performs dynamic addition or removal of resources re-
sources to a Virtual Machine when and if they are
available. If resources are contented on the host then
action to create a replica at the same or a different site
can be initiated.

5) Data Orchestration
Performs control over the content at the endpoint, to
include data replication, deletion or migration, while
also updating the dynamic DNS system to provide load
balancing across the system.

V. EXPERIMENT AND DISCUSSION

Experimental Setup

Traditional physically hosted application servers are limited
by the resources of that machine, cloud computing enables the

dynamic provisioning of extra resources, e.g., bandwidth and
storage when they are required. However, even with the ability
to add these extra resources a point will arise when the VM
is no longer able to meet demand.

The experiment is designed to show that as load on a Virtual
Machine increases the resources associated with that VM will
also increase until a threshold is reached where adding extra
resources will have no or little effect.

In this paper we consider network bandwidth and its effect
on CPU. Adding and removing NICs when required to allevi-
ate bandwidth pressure on a VM to disseminate extra data. To
demonstrate this a cloud distribution server was created using
Windows 2008 R2 web edition with a configuration of 1vCPU,
1024 MB memory, one network interface card and a 40 GB
thin provisioned system disk, a second 40GB is mounted for
content storage, the entire VM is hosted on a DELL R515
blade server with two Opteron 8 core processors, 16GB of
RAM and 12 gigabit ethernet cards, running VMware ESX
5.0.

In order generate a load on the media server, openload [35]
was used generate http requests on the IP address assigned to
the single NIC. As the load increased it would be expected
to see an increase in the CPU utilisation of both the host and
the VM. As a link becomes fully utilised, an extra virtual NIC
is added and a new instance of openload created against its
associated IP address. This process is repeated until a point
is reached where the total throughput from the server reaches
a maximum, it is expected that the graphs will show that the
CPU is the limiting resource.

Discussion

The experiment results showing the network throughput are
documented in Fig. 5. Baseline throughput occurs until point 1
where the first instance of openload is initiated. At this point
the throughput increases until a maximum is reached, here
the throughput levels out. The same point in Fig. 6 shows
that the CPU follows a smiler trend. When a second NIC
(2) is added and load placed on it, this again results in an
increase of throughput with a corresponding increase in the
VM CPU. When a third NIC (3) is added the increase achieves
a similar addition to the total but takes slightly longer to reach
its maximum. This increase in time can be attributed to the
CPU reaching 100% utilisation Fig. 6 point (4). Fig. 5 shows
extra vNICs being added at point (4) and (5), however, the total
throughput levels out with little or no change, due to resource
contention on the CPU. At points (2) and (3) we can notice
a slight dip in the CPU, we believe this can be attributed to
resource discovery as the new vNIC is added to the endpoint.

Fig. 5 and Fig. 6 deal with the Virtual Machine; however, we
believe that the host must also be considered, Fig. 7 shows the
physical host CPU over the same time period. the graph shows
that there is some increase in CPU utilisation on the host as the
VM CPU increases. Others spikes in the host CPU could be
attributed to other VM’s and processes that are running on the
host, this information is important has it has an influence on

264Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 277 / 282

determining on whether or not resources can be dynamically
added to the endpoint at times of VM contention.

VI. CONCLUSION AND FUTURE WORK

In this paper, we implemented an initial version of an intelli-
gent multimedia delivery endpoint based on Cloud computing
infrastructure called EVE. The results show that the endpoint
can provision extra capacity in real time when required,
however, it can be seen that resources namely CPU have a
limiting factor on the total bandwidth that can be provisioned.

Further work will aim at enhancing the endpoint, to allow
the addition or deletion of extra capacity when required. The
ability to implement an expanding cache when required and
some prediction algorithms to predict provisioning will be
developed. This work it is hoped will be detailed in future
publications

ACKNOWLEDGMENT

The authors wish to acknowledge the funding received for
this project from BT-EPSRC CASE award as part of the
India-UK Advanced Technology Centre of Excellence in Next
Generation Networks Systems and Services.

REFERENCES

[1] Cisco visual networking index. [re-
trieved: April, 2012]. [Online]. Available:
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns7
05/ns827/white paper c11-520862.pdf

[2] Edgecast. [retrieved: April, 2012]. [Online]. Available:
http://www.edgecast.com

[3] Cachefly. [retrieved: April, 2012]. [Online]. Available:
http://www.cachefly.com/

[4] Hao, “Content delivery networks: a bridge between emerging applica-
tions and future IP networks,” Network, IEEE, vol. 24, no. 4, pp. 52–56,
2010.

[5] Akamai technologies. [retrieved: April, 2012]. [Online]. Available:
http://www.akamai.com

[6] Limelight networks. [retrieved: April, 2012]. [Online]. Available:
http://www.limelightnetworks.com/

[7] Bittorrent. [retrieved: April, 2012]. [Online]. Available:
http://www.bittorrent.com.

[8] Amazon cloudfront. [retrieved: April, 2012]. [Online]. Available:
http://aws.amazon.com/cloudfront/

[9] A. Feldmann, A. Gladisch, M. Kind, C. Lange, G. Smaragdakis, and F.-
J. Westphal, “Energy trade-offs among content delivery architectures,”
Telecommunications Internet and Media Techno Economics (CTTE),
2010 9th Conference on, pp. 1–6, 2010.

[10] D. Niu, B. Li, and S. Zhao, “Understanding demand volatility in large
VoD systems,” in NOSSDAV ’11: Proceedings of the 21st international
workshop on Network and operating systems support for digital audio
and video. ACM Request Permissions, Jun. 2011.

[11] Z. Liu, M. Lin, A. Wierman, S. H. Low, and L. L. H. Andrew, “Greening
geographical load balancing,” in SIGMETRICS ’11: Proceedings of the
ACM SIGMETRICS joint international conference on Measurement and
modeling of computer systems. ACM Request Permissions, Jun. 2011.

[12] V. Aggarwal, X. Chen, V. Gopalakrishnan, R. Jana, K. Ramakrishnan,
and V. Vaishampayan, “Exploiting virtualization for delivering cloud-
based IPTV services,” in Computer Communications Workshops (IN-
FOCOM WKSHPS), 2011 IEEE Conference on, 2011, pp. 637–641.

[13] F. Ramos, R. Gibbens, F. Song, P. Rodriguez, J. Crowcroft, and I. White,
“Reducing energy consumption in IPTV networks by selective pre-
joining of channels,” Green Networking ’10: Proceedings of the first
ACM SIGCOMM workshop on Green networking, Aug. 2010.

[14] N. Xu, J. Yang, M. Needham, D. Boscovic, and F. Vakil, “Toward
the Green Video CDN,” in Green Computing and Communications
(GreenCom), 2010 IEEE/ACM Int’l Conference on & Int’l Conference
on Cyber, Physical and Social Computing (CPSCom, 2010, pp. 430–435.

[15] I. Vaishnavi, P. Cesar, D. Bulterman, and O. Friedrich, “From IPTV
services to shared experiences: Challenges in architecture design,”
Multimedia and Expo (ICME), 2010 IEEE International Conference on,
pp. 1511–1516, 2010.

[16] Z. Lu, J. Wu, and W. Fu, “Towards a Novel Web Services
Standard-Supported CDN-P2P Loosely-Coupled Hybrid and Manage-
ment Model,” in Services Computing (SCC), 2010 IEEE International
Conference on, 2010, pp. 297–304.

[17] J. Tong, K. Xu, and R. Pi, “A new Web Service Structure of Combining
P2P and CDN Technologies,” Web Society (SWS), 2010 IEEE 2nd
Symposium on, pp. 475–479, 2010.

[18] P. Sun, M. Yu, M. J. Freedman, and J. Rexford, “Identifying performance
bottlenecks in CDNs through TCP-level monitoring,” in W-MUST ’11:
Proceedings of the first ACM SIGCOMM workshop on Measurements
up the stack. ACM Request Permissions, Aug. 2011.

[19] C.-F. Lin, M.-C. Leu, C.-W. Chang, and S.-M. Yuan, “The Study
and Methods for Cloud Based CDN,” in Cyber-Enabled Distributed
Computing and Knowledge Discovery (CyberC), 2011 International
Conference on, 2011, pp. 469–475.

[20] Y. Wang, X. Wen, Y. Sun, Z. Zhao, and T. Yang, “The Content Delivery
Network System Based on Cloud Storage,” in Network Computing and
Information Security (NCIS), 2011 International Conference on, 2011,
pp. 98–102.

[21] H. A. Tran, A. Mellouk, and S. Hoceini, “QoE Content Distribution
Network for Cloud Architecture,” Network Cloud Computing and Ap-
plications (NCCA), 2011 First International Symposium on, pp. 14–19,
2011.

[22] Y. Wang, C. Huang, J. Li, and K. Ross, “Estimating the performance
of hypothetical cloud service deployments: A measurement-based ap-
proach,” in INFOCOM, 2011 Proceedings IEEE, 2011, pp. 2372–2380.

[23] R. Xue, Z.-S. Wu, and A.-N. Bai, “Application of Cloud Storage in
Traffic Video Detection,” in Computational Intelligence and Security
(CIS), 2011 Seventh International Conference on, 2011, pp. 1294–1297.

[24] S. Ren, E. Tan, T. Luo, S. Chen, L. Guo, and X. Zhang, “TopBT:
A Topology-Aware and Infrastructure-Independent BitTorrent Client,”
INFOCOM, 2010 Proceedings IEEE, pp. 1–9, 2010.

[25] E. Alessandria, M. Gallo, E. Leonardi, M. Mellia, and M. Meo, “P2P-TV
Systems under Adverse Network Conditions: A Measurement Study,”
INFOCOM 2009, IEEE, pp. 100–108, 2009.

[26] S. Seyyedi and B. Akbari, “Hybrid CDN-P2P architectures for live
video streaming: Comparative study of connected and unconnected
meshes,” Computer Networks and Distributed Systems (CNDS), 2011
International Symposium on, pp. 175–180, 2011.

[27] S. Kang and H. Yin, “A Hybrid CDN-P2P System for Video-on-
Demand,” Future Networks, 2010. ICFN ’10. Second International
Conference on, pp. 309–313, 2010.

[28] P. Shi, H. Wang, Y. Gang, and X. Yuan, “ACON: Adaptive construction
of the overlay network in CDN-P2P VoD system,” in Communication
Software and Networks (ICCSN), 2011 IEEE 3rd International Confer-
ence on, 2011, pp. 182–187.

[29] S. Triukose, Z. Wen, and M. Rabinovich, “Content delivery networks:
how big is big enough?” SIGMETRICS Performance Evaluation Review,
vol. 37, no. 2, Oct. 2009.

[30] J. Wu, L. Ping, X. Ge, Y. Wang, and J. Fu, “Cloud Storage as the
Infrastructure of Cloud Computing,” in Intelligent Computing and Cog-
nitive Informatics (ICICCI), 2010 International Conference on, 2010,
pp. 380–383.

[31] Y. Huo, H. Wang, L. Hu, and H. Yang, “A Cloud Storage Architecture
Model for Data-Intensive Applications,” in Computer and Management
(CAMAN), 2011 International Conference on, 2011, pp. 1–4.

[32] X. Guan and B.-Y. Choi, “Push or Pull?: Toward Optimal Content De-
livery,” in Communications (ICC), 2011 IEEE International Conference
on, 2011, pp. 1–5.

[33] S. Borst, V. Gupta, and A. Walid, “Distributed Caching Algorithms for
Content Distribution Networks,” INFOCOM, 2010 Proceedings IEEE,
pp. 1–9, 2010.

[34] S. D. Burd, G. Gaillard, E. Rooney, and A. F. Seazzu, “Virtual
computing laboratories using vmware lab manager,” in Proceedings of
the 2011 44th Hawaii International Conference on System Sciences, ser.
HICSS ’11. Washington, DC, USA: IEEE Computer Society, 2011,
pp. 1–9. [Online]. Available: http://dx.doi.org/10.1109/HICSS.2011.482

[35] P. Johnsen. Openload. [retrieved: April, 2012]. [Online]. Available:
http://freecode.com/projects/openload

265Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 278 / 282

“cocoBox”: A Social File Cloud System for Collaboration

Ki-Sook Chung,, Hyunjoo Bae

Future Internet Service Research Team,

Electronics and Telecommunications Research Institute

161 Gajeong-dong, Yuseong-gu, Daejeon, 305-350, KOREA

{kschung, hjbae}@etri.re.kr

Abstract— File cloud provides file storages on the Internet and

manages them for people to access and manipulate their

contents like documents, pictures, and movies anywhere and

anytime. There are various smart devices such as tablets,

smart phones, and smart pads, which can utilize file cloud

services. In this paper, we introduce a social file cloud system

as one of tools for collaboration between people in the

workplace. We extend basic file cloud service by adding social

factors such as tags, score, and comments to a file into a social

file cloud service, that is, “cocoBox”, which means a file box for

communication and collaboration. CocoBox provides the basic

functionalities of file cloud service such as file upload and file

download. In addition, we focus on social factors of files to help

collaboration among people who share same files. Whoever

shares a specific file with others can add tags, give score, and

add/remove his/her opinion on that file. Therefore, cocoBox

enhances communication and collaboration among people with

these social factors.

Keywords-file cloud; REST; service component; score; tag;

comment; collaboration

I. INTRODUCTION

Cloud computing is defined as “a model for enabling
ubiquitous, convenient, on-demand network access to a
shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal
management effort or service provider interaction [1]”. There
are several service models for cloud computing such as SaaS
(Software as a Service), PaaS (Platform as a Service), and
IaaS (Infrastructure as a Service).

File cloud provides file storages on the Internet and
manages them for people to access and manipulate their files
anywhere and anytime. Recently, we have various kinds of
mobile devices such as laptops, mobile pads, and smart
phones to use file cloud services. File cloud services enable
us to access same files on any devices and share various
contents like pictures, movie, and music to other people. As
the examples of file cloud, dropbox [3], Amazon S3 [4], and
iCloud [5] are popular. These services provide file storage
service with user friendly interfaces on desktops, web
browsers, and mobile internet devices and enable file sharing
among people.

We extend file cloud service by adding social features
such as tags, score, and comments to ordinary content
repository into a social file cloud service. Based on the Java
Content Repository (JCR) 170 [6], we develop “cocoBox”,
which means a file box for communication and collaboration.

CocoBox provides the basic functionalities of file cloud
service such as file sharing, uploading and downloading. But,
in addition to it, cocoBox has social features for
collaboration between people who share the same files.
Whoever shares a specific file with others can add tags, give
score, and add/remove his/her opinion on that file. These
social factors of the file give people additional information
of it; therefore, these social values can help to promote the
collaboration among colleagues who share common files.

This paper is organized as follows. In Section 2, we
overlook recent popular file cloud services such as iCloud,
S3, dropbox. Section 3 shows the architecture, data models
of cocoBox including social features. In addition, REST
APIs of cocoBox and cocoBox applications implemented by
using the APIs are introduced. Finally, we summarize and
describe further works of this study in Section 4.

II. RELATED WORK

With the bombing growth of number of smart phone

users and mobile internet devices, the need to share contents
such as pictures, movies, and music with other people also
grows. It is required to provide file cloud services for users
to access their files on various devices. A lot of file cloud
services are developed and provided. In this section, we
outlook on worldwide popular file cloud services, e.g.,
iCloud, Amazon S3, dropbox.

A. iCloud

iCloud is a cloud storage and cloud computing service
from Apple Inc. announced on June 6, 2011 at the Apple
Worldwide Developers Conference (WWDC). The service
allows users to store data such as music files on remote
computer servers for download to multiple devices such as
iOS-based devices, and personal computers running Mac OS
X or Microsoft Windows. It also replaces Apple's MobileMe
service, acting as a data syncing center for email, contacts,
calendars, bookmarks, notes, to-do lists, and other data. As
of 2012, the service has over 100 million users [2].

iCloud stores music, photos, documents, and more and
wirelessly pushes them to devices. iCloud is said to makes it
quick and effortless to access just about everything on the
devices people use every day. iCloud automatically and
securely stores content so it's always available to iPhone,
iPad, iPod touch, Mac, or PC and gives people access to
their music, movies, apps, latest photos, and more from
whichever device people happen to be using. It also keeps

266Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 279 / 282

email, contacts, and calendars up to date across all devices
without explicit syncing and management.

B. Dropbox

Dropbox is a web-based file hosting service operated by
Dropbox, Inc. that uses networked storage to enable users to
store and share files and folders with others across the
Internet using file synchronization [2].

Dropbox is a free service that lets users bring photos,
docs, and videos anywhere. This means that any file users
save to Dropbox will automatically save to their computers,
phones and the Dropbox website [3].

C. Amazon S3

Amazon S3 is storage for the Internet. It is designed to
make web-scale computing easier for developers [2].
Amazon S3 provides a simple web services interface that can
be used to store and retrieve any amount of data, at any time,
from anywhere on the web. It gives any developer access to
the same highly scalable, reliable, secure, fast, inexpensive
infrastructure that Amazon uses to run its own global
network of web sites. The service aims to maximize benefits
of scale and to pass those benefits on to developers.

III. COCOBOX: A SOCIAL FILE CLOUD

Other file cloud services do not focus on social features,

which can help people express their opinion on the sharing
files or rank them. In this section, we describe the
architecture of cocoBox and social features, which cocoBox
provides to promote collaboration while sharing files.

A. System Architecture

“cocoBox” means a file box for communication and
collaboration. In the previous section, most popular used
services don’t have social features which help people to
collaborate, that is, to communicate their opinions on the
files and evaluate them.

Figure 1 shows the overall architecture of cocoBox
system. CocoBox is implemented based on the JCR (java
content repository) 170 as a repository. The cocoBox server
manipulates requests of users which are called from web
browser on user’s desktop or mobile internet device like a
smart phone. Since cocoBox is focusing on collaboration
between people, the main target domain would be small or
middle – size enterprise. Within a closed group such as
divisions, teams and departments, people share files and
contents with their colleagues. To support this closed group
collaboration, cocoBox interacts with a directory server
which manages organization chart and member information
using LDAP protocol.

H

Web
browser

Mobile
App

cocoBox Server

JackRabbit
Directory
Server

HTTP REST API

JCR API LDAP

Figure 1. System Architecture of cocoBox

CocoBox also provides service components in the format

of REST and enables application developers make their own
applications easily. We developed a mobile application for
cocoBox by using these components.

root

user0 user1 user2 user3

folder1 folder2 folder3

file1 file2

Folder property

Name

Type

coUsers

Source path

Folder Id

Date

File property

Name

Last modified

Size

File url

File ID

:JCR node

“metadata”

“comment[1]” “comment[2]”

“content”

metadata property

Tag

score

Voters

Comment property

Comment ID

Commentor Id

Text

Created

Commentor Name

Figure 2. Data model of cocoBox

267Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 280 / 282

The data model of cocoBox is shaped into a tree structure
as shown in Figure 2. This model supports a parent-child
relationship between folders and files. Each file and folder is
a node, which has properties respectively.

 Folder node

This represents a folder, and includes basic folder
properties and sharing information, and has subfolders
and file nodes as its child. The folder node can have one
of three types: sharing folder, shared folder, and
personal folder type. If the folder is sharing folder, this
means that its owner is the user, and it has coUsers
properties ,which mean co-workers who share this
folder together. If the folder is shared folder type, it has
no children and it has source path property which is
original owner’s folder path. Otherwise, the folder is a
personal folder, which nobody can share

 File node
File node has contents of the file and metadata as it
children and has general information as its properties.

 Metadata node
Metadata and its children represent the social features
of cocoBox. Metadata include tags, score, comments
and related information.

 Comment node
Comment node represents a comment and it has content
of comment and commentator information. Only the
writer of the comment can remove that comment.

To summarize, the social features in the cocoBox system
are follows;

 Score

The quality of document would be estimated using this
score. People can score each file on a scale of 0 to5.

 Tag
This tag information could be used as keywords. Since
social data are in the data tree, people can search files
which have the specific tag.

 Comment
People can add their opinion about this file in the short
sentence, share their thinking, and even discuss it.

With these social factors of files, file sharers can rank

their files and express their opinion about sharing files.
Therefore people can discuss on the shared documents and
even share their knowledge.

B. cocoBox service components

We provide cocoBox service components in the form of
REST API. Not only core functionalities to manipulate file
storage, but also additional functionalities to manage social
metadata of the file are provided. Using these APIs, people
can develop their file cloud applications easily which use
cocoBox. These components provide simple interfaces to
create/delete/share folders, upload/download files, and
add/remove social metadata of files such as comments, tags,
score, as shown in the Table 1.

TABLE I. COCOBOX SERVICE COMPONENTS

REST API Function HTTP method

http://{serveRoot}/cbox/login
login

POST

http://{serveRoot}/cbox/logout logout POST

http://{serveRoot}/cbox/{userId}/userInfo get user info GET

http://{serveRoot}/cbox/{userId}/folderInfo get folder info GET

http://{serveRoot}/cbox/{userId}/moverFile move file POST

http://{serveRoot}/cbox/{userId} delete file DELETE

http://{serveRoot}/cbox/{userId}/filename change filename POST

http://{serveRoot}/cbox/{userId}/file upload file POST

http://{serveRoot}/cbox/{userId}/file get file GET

http://{serveRoot}/cbox/{userId}/folder create folder POST

http://{serveRoot}/cbox/{userId}/folder delete folder DELETE

http://{serveRoot}/cbox/{userId}/file/meta get meta info GET

http://{serveRoot}/cbox/{userId}/tag

http://{serveRoot}/cbox/{userId}/score

http://{serveRoot}/cbox/{userId}/comment

http://{serveRoot}/cbox/{userId}/comment

modify meta info

POST

POST

POST

DELETE

http://{serveRoot}/cbox/{userId}/fileUrl get file URL GET

http://{serveRoot}/cbox/{userId}/search search file GET

http://{serveRoot}/cbox/{userId}/history get history GET

http://{serveRoot}/cbox/{userId}/folderInfo share folder POST

http://{serveRoot}/cbox/{userId}/folder/addUsers invite users POST

As an example, we implemented a cocoBox mobile
application using these service components.

C. cocoBox applications

We can use cocoBox services through web browser and
mobile internet devices.

Score Tags

Comments

Files and
Folders

Figure 3. cocoBox web application

268Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 281 / 282

Figure 3 shows the cocoBox web user interface. When
you select a file, the social data such as tag, average score,
and comments are displayed in the page and you can add or
modify them.

Figure 4 shows the home display of mobile cocoBox app.
This application was developed using the cocoBox service
components shown in Table 1and runs on smart mobile
devices the Oss of which are Android 2.2.

Figure 4. cocoBox mobile application

Figure 5 shows the social data of the mobile cocoBox
app. People can handle social data of a file using this
interface. By providing these social data in file cloud service,
people can discuss their sharing contents and express their
thought or preference about it. We expect these social data of
file cloud could help the collaboration and even
communicating their knowledge with other people.

score

tags

comments

Figure 5. Social data on the cocoBox app: score, tags, comments on the

file

IV. CONCLUSION AND FUTURE WORK

We introduce a social file cloud system, cocoBox. We
extend this file cloud service by adding social features such
as tags, score, and comments to ordinary content repository
into a social file cloud service. The social features of
cocoBox are tags, comments, score on the file. We expect
these features can help collaboration and communication
between people who share contents and have same interest.
For further study, we continue to find more social features of
file cloud such as e-mail notification of file changes and to
develop desktop client which synchronizes files with
cocoBox server. We expect improved cocoBox will help
people to collaborate in the work environment.

ACKNOWLEDGMENTS

This research was supported by the KCC (Korea

Communications Commission), Korea, under the

Development of Customer Oriented Convergent Service

Common Platform Technology based on Network support

program supervised by the KCA(Korea Communications

Agency) (KCA-2012- (09913-05001)).

REFERENCES

[1] “The NIST Definition of Cloud Computing". National

Institute of Science and Technology. Retrieved 24 May 2012.

[2] http://en.wikipedia.org/wiki/ICloud , Retrieved 19 March
2012

[3] http://www.dropbox.com , Retrieved 24 May 2012

[4] http:// aws.amazon.com/s3/, Retrieved 24 May 2012

[5] https://www.icloud.com/, Retrieved 19 March 2012

[6] Content Respository API for Java Technology Specification,
Java Specification Request 170, version 1.0

[7] http://jackrabbit.apache.org, Retrieved 19 March 2012

[8] Alexander Lenk, Markus Klems, Jens Nimis, Stefan Tai, and
Thomas Sandholml, “What’s Inside the Cloud? An
Architectural Map of the Cloud Landscape”, Proceedings of
the 2009 ICSE Workshop on Software Engineering
Challenges of Cloud Computing, pp. 23-31, 2009

[9] Ki-sook Chung and Sangki Kim, “A study on the application
lifecycle management over SOA based application hosting
platform”, Proceedings of ICACT2010, pp. 310-314, 2010

[10] Ki-sook Chung and Young-mee Shin, “ Service Components
for Unified Communication and Collaboration of an SOA-
based Converged Service Platform”, HCII2011, CCIS 173,
pp. 491-495, 2011

269Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

Powered by TCPDF (www.tcpdf.org)

 282 / 282

http://www.tcpdf.org

