
CLOUD COMPUTING 2017

The Eighth International Conference on Cloud Computing, GRIDs, and

Virtualization

ISBN: 978-1-61208-529-6

February 19 - 23, 2017

Athens, Greece

CLOUD COMPUTING 2017 Editors

Carlos Becker Westphall, Federal University of Santa Catarina, Brazil

Yong Woo Lee, University of Seoul, Korea

Bob Duncan, University of Aberdeen, UK

Aspen Olmsted, College of Charleston, USA

Michael Vassilakopoulos, University of Thessaly, Greece

Costas Lambrinoudakis, University of Piraeus, Greece

Sokratis K. Katsikas, Center for Cyber & Information Security, Norwegian
University of Science & Technology (NTNU) - Gjøvik, Norway

Raimund Ege, Northern Illinois University, USA

 1 / 172

CLOUD COMPUTING 2017

Forward

The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization
(CLOUD COMPUTING 2017), held between February 19-23, 2017 in Athens, Greece, continued a
series of events meant to prospect the applications supported by the cloud computing
paradigm and validate the techniques and the mechanisms. A complementary target was to
identify the open issues and the challenges to fix them, especially on security, privacy, and
inter- and intra-clouds protocols.

Cloud computing is a normal evolution of distributed computing combined with Service-
oriented architecture, leveraging most of the GRID features and Virtualization merits. The
technology foundations for cloud computing led to a new approach of reusing what was
achieved in GRID computing with support from virtualization.

The conference had the following tracks:

 Virtualization

 Big Spatial Data Management

 Cloud Cyber Security

 Cloud Computing

 Platforms, infrastructures and applications

 Security and Privacy in Cloud Computing

 Challenges

We take here the opportunity to warmly thank all the members of the CLOUD COMPUTING
2017 technical program committee, as well as all the reviewers. The creation of such a high
quality conference program would not have been possible without their involvement. We also
kindly thank all the authors that dedicated much of their time and effort to contribute to
CLOUD COMPUTING 2017. We truly believe that, thanks to all these efforts, the final
conference program consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations and sponsors. We also gratefully thank the members of the CLOUD COMPUTING
2017 organizing committee for their help in handling the logistics and for their work that made
this professional meeting a success.

We hope that CLOUD COMPUTING 2017 was a successful international forum for the
exchange of ideas and results between academia and industry and to promote further progress
in the field of cloud computing, GRIDs and virtualization. We also hope that Athens, Greece
provided a pleasant environment during the conference and everyone saved some time to
enjoy the charm of the city.

 2 / 172

CLOUD COMPUTING 2017 Committee

CLOUD COMPUTING 2017 Steering Committee
Carlos Becker Westphall, Federal University of Santa Catarina, Brazil
Yong Woo Lee, University of Seoul, Korea
Christoph Reich, Furtwangen University, Germany
Hong Zhu, Oxford Brookes University, UK
Bob Duncan, University of Aberdeen, UK
Aspen Olmsted, College of Charleston, USA
Alex Sim, Lawrence Berkeley National Laboratory, USA

CLOUD COMPUTING 2017 Industry/Research Advisory Committee
Antonin Chazalet, Orange, France
Sören Frey, Daimler TSS GmbH, Germany
Mohamed Mohamed, IBM, Almaden Research Center, USA
Raul Valin Ferreiro, Fujitsu Laboratories of Europe, Spain
Uwe Hohenstein, Siemens AG, Germany
Bill Karakostas, VLTN gcv, Antwerp, Belgium
Matthias Olzmann, noventum consulting GmbH - Münster, Germany
Ze Yu, Google Inc, USA
Matthias Olzmann, noventum consulting GmbH - Münster, Germany

 3 / 172

CLOUD COMPUTING 2017

Committee

CLOUD COMPUTING Steering Committee
Carlos Becker Westphall, Federal University of Santa Catarina, Brazil
Yong Woo Lee, University of Seoul, Korea
Christoph Reich, Furtwangen University, Germany
Hong Zhu, Oxford Brookes University, UK
Bob Duncan, University of Aberdeen, UK
Aspen Olmsted, College of Charleston, USA
Alex Sim, Lawrence Berkeley National Laboratory, USA

CLOUD COMPUTING 2017 Industry/Research Advisory Committee
Antonin Chazalet, Orange, France
Sören Frey, Daimler TSS GmbH, Germany
Mohamed Mohamed, IBM, Almaden Research Center, USA
Raul Valin Ferreiro, Fujitsu Laboratories of Europe, Spain
Uwe Hohenstein, Siemens AG, Germany
Bill Karakostas, VLTN gcv, Antwerp, Belgium
Matthias Olzmann, noventum consulting GmbH - Münster, Germany
Ze Yu, Google Inc, USA
Matthias Olzmann, noventum consulting GmbH - Münster, Germany

CLOUD COMPUTING 2017 Technical Program Committee

Saeid Abolfazli, YTL Communications and Xchanging, Malaysia
Maruf Ahmed, The University of Sydney, Australia
Onur Alparslan, Osaka University, Japan
Abdulelah Alwabel, PSA University, KSA
Sergio Antonio Andrade de Freitas, University of Brasilia, Brazil
Irina Astrova, Tallinn University of Technology, Estonia
José Aznar, i2CAT Foundation, Spain
Jorge Barbosa, Universidade do Porto, Portugal
Ali Kashif Bashir, Osaka University, Japan
Luis Eduardo Bautista Villalpando, Autonomous University of Aguascalientes, Mexico
Carlos Becker Westphall, Federal University of Santa Catarina, Brazil
Ali Beklen, HotelRunner, Turkey
Andreas Berl, Technische Hochschule Deggendorf, Germany
Simona Bernardi, Centro Universitario de la Defensa - Academia General Militar, Spain
Peter Bloodsworth, National University of Sciences and Technology (NUST), Pakistan
Simone Braun, CAS Software AG, Karlsruhe, Germany

 4 / 172

Massimo Cafaro, University of Salento, Italy
Rodrigo N. Calheiros, Western Sydney University, Australia
Paolo Campegiani, Università Roma Tor Vergata, Italy
Juan-Vicente Capella-Hernández, Universitat Politècnica de València, Spain
Mª del Carmen Carrión Espinosa, University of Castilla-La Mancha, Spain
K. Chandrasekaran, N.I.T.K, India
Hsi-Ya Chang, National Center for High-Performance Computing, Taiwan
Ruay-Shiung Chang, National Taipei University of Business, Taipei, Taiwan
Kyle Chard, University of Chicago and Argonne National Laboratory, USA
Nadeem Chaudhary, University of Warwick, UK
Antonin Chazalet, Orange, France
Antonio Corradi, Università di Bologna, Italy
Fabio M. Costa, Federal University of Goiás, Brazil
Noel De Palma, University Grenoble Alpes, France
Ioanna Dionysiou, University of Nicosia, Cyprus
Rim Drira, National School of Computer Science, Tunisia
Bob Duncan, University of Aberdeen, UK
Kaoutar El Maghraoui, IBM T.J. Watson Research Center, New York, USA
Islam Elgedawy, Middle East Technical University, Northern Cyprus Campus, Turkey
Khalil El-Khatib, University of Ontario Institute of Technology, Canada
José Enrique Armendáriz-Íñigo, Public University of Navarre, Spain
Javier Fabra, Universidad de Zaragoza, Spain
Fairouz Fakhfakh, University of Sfax, Tunisia
Sonja Filiposka, Ss. Cyril and Methodius University - Skopje, Macedonia
Sören Frey, Daimler TSS GmbH, Germany
Sandra Gesing, University of Notre Dame, USA
Zakaria Gheid, Ecole nationale supérieure d'informatique, Algeria
Katja Gilly, Miguel Hernandez University, Spain
Spyridon Gogouvitis, Siemens AG, Germany
Nils Gruschka, Kiel University of Applied Science, Germany
Jordi Guitart, Universitat Politècnica de Catalunya - Barcelona Supercomputing Center, Spain
Aayush Gupta, IBM Research, USA
Jung Hae Sun, The University of Seoul, South Korea
Rui Han, Institute of Computing Technology - Chinese Academy of Sciences, China
Sergio Hernández, University of Zaragoza, Spain
Herodotos Herodotou, Cyprus University of Technology, Cyprus
Uwe Hohenstein, Siemens AG, Germany
Chih-Cheng Hung, Kennesaw State University, USA
Luigi Lo Iacono, TH Köln, Germany
Anca Daniela Ionita, University Politehnica of Bucharest, Romania
Eugene John, The University of Texas at San Antonio, USA
Carlos Juiz, University of the Balearic Islands, Spain
Verena Kantere, University of Geneva, Switzerland
Bill Karakostas, VLTN gcv, Antwerp, Belgium

 5 / 172

Sokratis Katsikas, Norwegian University of Science and Technology, Norway / University of
Piraeus, Greece
Zaheer Khan, University of the West of England, Bristol, UK
Peter Kilpatrick, Queen's University Belfast, UK
Nikos Komninos, City University London, UK
Nane Kratzke, Lübeck University of Applied Sciences, Germany
Heinz Kredel, Universität Mannheim, Germany
Yu Kuang, University of Nevada, Las Vegas, USA
Alex MH Kuo, University of Victoria, Canada
Romain Laborde, University Paul Sabatier (Toulouse III), France
Yong Woo Lee, University of Seoul, Korea
Tonglin Li, Oak Ridge National Laboratory, USA /
Dan Lin, Missouri University of Science and Technology, USA
Panos Linos, Butler University, USA
Xiaodong Liu, Edinburgh Napier University, UK
Glenn Luecke, Iowa State University, USA
Yutao Ma, Wuhan University, China
Shikharesh Majumdar, Carleton University, Canada
Ming Mao, University of Virginia, USA
Olivier Markowitch, Universite Libre de Bruxelles, Belgium
Attila Csaba Marosi, Institute for Computer Science and Control - Hungarian Academy of
Sciences, Hungary
Keith Martin, Royal Holloway - University of London, UK
Goran Martinovic, J.J. Strossmayer University of Osijek, Croatia
Suzanne McIntosh, New York University, USA
Anastas Mishev, University Ss Cyril and Methodius in Skopje, Macedonia
Mohamed Mohamed, IBM, Almaden Research Center, USA
Patrice Moreaux, LISTIC - Polytech Annecy-Chambéry - University Savoie Mont Blanc, France
Hassnaa Moustafa, Intel Corporation, USA
Francesc D. Muñoz-Escoí, Universitat Politècnica de València, Spain
Adel Nadjaran Toosi, University of Melbourne, Australia
Hidemoto Nakada, National Institute of Advanced Industrial Science and Technology (AIST),
Japan
Joan Navarro, La Salle - Universitat Ramon Llull, Spain
Richard Neill, RN Technologies, USA
Marco Netto, IBM Research, Brazil
Bogdan Nicolae, IBM Research, Ireland
Aspen Olmsted, College of Charleston, USA
Matthias Olzmann, noventum consulting GmbH - Münster, Germany
Aida Omerovic, SINTEF, Norway
Brajendra Panda, University of Arkansas, USA
Massimo Paolucci, DOCOMO Communications Laboratories Europe GmbH, Munich, Germany
Alexander Papaspyrou, Technische Universität Dortmund, Germany
David Paul, University of New England, Australia

 6 / 172

Giovanna Petrone, Universita' di Torino, Italy
Dimitrios Pezaros, University of Glasgow, UK
Ilia Pietri, University of Athens, Greece
Agostino Poggi, DII - University of Parma, Italy
Thomas E. Potok, Oak Ridge National Laboratory, USA
Abena Primo, Huston-Tillotson University, USA
Francesco Quaglia, Sapienza Universita' di Roma, Italy
Danda B. Rawat, Howard University, USA
Daniel A. Reed, University of Iowa, USA
Damir Regvart, Croatian Academic and Research Network - CARNet, Croatia
Christoph Reich, Furtwangen University, Germany
Sebastian Rieger, Fulda University of Applied Sciences, Germany
Sashko Ristov, University of Innsbruck, Austria
Takfarinas Saber, University College Dublin, Ireland
Elena Sánchez-Nielsen, Universidad de La Laguna, Spain
Wael Sellami, Higher Institute of Computer Sciences of Mahdia, Tunisia
Alireza Shameli-Sendi, Ericsson security research, Montreal, Canada
Mohammad Shojafar, Sapienza University of Rome, Italy
Suzanne Shontz, University of Kansas, USA
Altino Manuel Silva Sampaio, Escola Superior de Tecnologia e Gestão | Instituto Politécnico do
Porto, Portugal
Alex Sim, Lawrence Berkeley National Laboratory, USA
George Spanoudakis, University of London, UK
Cristian Stanciu, University Politehnica of Bucharest, Romania
Vlado Stankovski, University of Ljubljana, Slovenia
Yuqiong Sun, Pennsylvania State University, USA
Kwa-Sur Tam, Virginia Tech, USA
Joe Tekli, Lebanese American University, Lebanon
Michele Tomaiuolo, DII - University of Parma, Italy
Orazio Tomarchio, Universita' di Catania, Italy
Raul Valin Ferreiro, Fujitsu Laboratories of Europe, Spain
Carlo Vallati, University of Pisa, Italy
Luis M. Vaquero, Hewlett Packard Enterprise, UK
Michael Vassilakopoulos, University of Thessaly, Greece
Jose Luis Vazquez-Poletti, Universidad Complutense de Madrid, Spain
Simeon Veloudis, SEERC - South East European Research Centre, Thessaloniki, Greece
Vladimir Vlassov, KTH Royal Institute of Technology, Stockholm, Sweden
Mandy Weißbach, Martin-Luther-University Halle-Wittenberg, Germany
Feng Yan, University of Nevada, Reno, USA
Hongji Yang, Bath Spa University, UK
Ustun Yildiz, University of California, USA
Ze Yu, Google Inc, USA
Vadim Zaliva, Carnegie Mellon University, USA
José Luis Zechinelli Martini, Universidad de las Américas, Puebla (UDLAP), Mexico

 7 / 172

Ahmed Zekri, Beirut Arab University, Lebanon
Hong Zhu, Oxford Brookes University, UK
Wolf Zimmermann, Martin Luther University Halle-Wittenberg, Germany

 8 / 172

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 9 / 172

Table of Contents

Memory Interface Simplifies Storage Virtualization
Shuichi Oikawa and Gaku Nakagawa

1

A Performance Evaluation of Lightweight Approaches to Virtualization
Max Plauth, Lena Feinbube, and Andreas Polze

4

Making the Case for Highly Efficient Multicore Enabled Unikernels With IncludeOS
Maghsoud Morshedi, Harek Haugerud, and Kyrre Begnum

10

An Automated Lightweight Framework for Scheduling and Profiling Parallel Workflows Simultaneously on
Multiple Hypervisors
Maruf Ahmed and Albert Y. Zomaya

16

Closest-Pairs Query Processing in Apache Spark
George Mavrommatis, Panagiotis Moutafis, and Michael Vassilakopoulos

26

A Raster SOLAP Designed for the Emergency Services of Brussels Agglomeration
Jean-Paul Kasprzyk and Jean-Paul Donnay

32

Sensor Selection for Resource-Efficient Query Execution in IoT Environments
Maria Koziri and Thanasis Loukopoulos

39

Anomaly Detection in Cloud Based Application using System Calls
Marin Aranitasi and Mats Neovius

44

Strategies for Intrusion Monitoring in Cloud Services
George R S Weir and Andreas Assmuth

49

Creating an Immutable Database for Secure Cloud Audit Trail and System Logging
Bob Duncan and Mark Whittington

54

Platform As A Service Effort Reduction
Aspen Olmsted and Kaitlyn Fulford

60

On Exploiting Resource Diversity in the Public Cloud for Modeling Application Performance
Mark Meredith and Bhuvan Urgaonkar

66

On the Development of a One-Time Pad Generator for Personalising Cloud Security
Paul Tobin, Lee Tobin, Michael McKeever, and Jonathan Blackledge

73

 1 / 2 10 / 172

Enhancing Cloud Security and Privacy: The Unikernel Solution
Alfred Bratterud, Andreas Happe, and Bob Duncan

79

CloudMediate: Peer-to-peer Media Aggregation for Augmented Reality
Raimund Ege

87

Using k-Core Decomposition to Find Cluster Centers for k-Means Algorithm in GraphX on Spark
Sheng-Tzong Cheng, Yin-Chun Chen, and Meng-Shuan Tsai

93

Data Placement Based on Data Semantics for NVDIMM/DRAM Hybrid Memory Architecture
Gaku Nakagawa and Shuichi Oikawa

99

A Load Balancing Mechanism Based on Fuzzy Nonparametric Analysis of QoS Parameters
Dmytro Halushko, Oleksandr Rolik, and Volodymyr Samotyy

102

Dynamic Virtual Machine Allocation Based on Adaptive Genetic Algorithm
Oleksandr Rolik, Sergii Telenyk, Eduard Zharikov, and Volodymyr Samotyy

108

Software License Optimization and Cloud Computing
Anne-Lucie Vion, Noelle Baillon, Fabienne Boyer, and Noel De Palma

115

Policy Based Context Aware SLA Management in the Cloud
Mhammed Chraibi, Souhail Meftah, Hamid Harroud, and Abdelilah Maach

122

Advancing the Micro-CI Testbed for IoT Cyber-Security Research and Education
William Hurst, Nathan Shone, Abdennour El Rhalibi, Andreas Happe, Ben Kotze, and Bob Duncan

129

Development of a Secure Cloud Based Learning Environment for Inclusive Practice in Mainstream Education
Nigel Beacham and Bob Duncan

135

Corporate Governance, Risk Appetite and Cloud Security Risk: A Little Known Paradox. How Do We Square the
Circle?
Bob Duncan, Yuan Zhao, and Mark Whittington

139

Security and Privacy Requirements Engineering Methods for Traditional and Cloud-Based Systems: A Review
Argyri Pattakou, Christos Kalloniatis, and Stefanos Gritzalis

145

Trust Managemement Parameters in Cloud Computing Environments
Zafeiroula Georgiopoulou and Costas Lambrinoudakis

152

The Greater The Power, The More Dangerous The Abuse: Facing Malicious Insiders in The Cloud
Nikolaos Pitropakis, Christos Lyvas, and Costas Lambrinoudakis

156

Powered by TCPDF (www.tcpdf.org)

 2 / 2 11 / 172

Memory Interface Simplifies Storage Virtualization

Shuichi Oikawa, Gaku Nakagawa
Department of Computer Science

University of Tsukuba
Tsukuba, Ibaraki, Japan

e-mail: {shui,gnakagaw}@cs.tsukuba.ac.jp

Abstract—Using a simple library operating system (OS) as a guest
OS of a virtualized environment is one of the current trends of
cloud computing in order to reduce the overheads incurred by
virtualization. Its persistent storage access, however, remains the
same as that for the existing guest OSes; thus, it poses a problem
of the long execution and data paths. This paper proposes
virtualized memory storage that provides the memory interface
for a library OS of a virtualized environment, and also discusses
the two key benefits of virtualized memory storage, journaling
acceleration by synchronous access and a modern implementation
of single-level store. The proposed memory interface to virtualized
memory storage can simplify both the execution and data paths,
and it accelerates the access to persistent storage.

Keywords-operating systems; virtualization; file systems;
storage

I. INTRODUCTION

There is a trend of using a simple library operating system
(OS) as a guest OS of a virtualized environment. A library
OS typically satisfies a specific need to execute a target
application; thus, its simple and light-weight implementation
enables higher efficiency of application execution than the
traditional OS, such as the Linux and the BSD (Berkeley
Software Distribution) UNIX. While a library OS lacks the
protection support between an application and the kernel, it
is protected from another library OS by a virtualized envi-
ronment. There are several library OSes that target such a
virtualized environment. Exokernel [1], [2] is one of early work
that realized the kernel functions as libraries, and its success
stimulated the following work. Mirage unikernel [3] is a library
OS, of which applications are executed on the OCaml language
runtime. OSv [4] is another library OS, applications of which
are executed on the Java language runtime.

While library OSes emphasize their high performance, li-
brary OSes employ the existing block interface to persistent
storage. The block interface for a virtualized environment,
however, poses a significant problem to achieve high storage
access performance. Fig. 1 depicts the architecture of the
common storage virtualization method. It provides the block
interface for a guest OS kernel; thus, a guest OS kernel requires
a block device driver to interact with the block interface.
Because of asynchronous nature and a long latency of the
block interface, it requires the page cache to accommodate
the recently accessed data. A file system is placed upon the
page cache and a block device driver and interacts with them.

The problem to provide the block interface for a library OS
is that the mechanisms for the block interface, a file system,

the page cache, and a block device driver, are duplicated in a
library OS, and they exist both in the host OS and a library
OS. Because of such duplication, both the data and execution
path become very long. They have to go though the layer of
a file system, the page cache, and a block device driver both
in a library OS and the host OS. The execution overhead of
going through the file access layer twice is huge, and also
data needs to be transferred several times. While a library
OS kernel simplifies its mechanisms by specializing them for
target applications, there is no simplicity achieved in the block
interface for a virtualized environment.

This paper proposes the use of memory interface to persis-
tent storage for a library OS of a virtualized environment. We
call it virtualized memory storage. This architecture provides
the memory storage for a library OS, and a file system is
constructed upon the memory storage. Since processors can
directly access memory, there is no need to interpose a device
driver between a file system and storage. Virtualized memory
storage makes the layer of a file system, the page cache,
and a block device driver for a library OS of a virtualized
environment as simple as that of the existing OS kernel, and
thus it significantly simplifies and also accelerates the access
for a library OS to persistent storage, since it enables the direct
access for a library OS to the page cache of the host OS kernel.
While this paper is based on the past work [5], [6], its focus
on a library OS is different from them.

The rest of this paper is organized as follows. Section II
describes the virtual memory storage and its key benefits.
Section III concludes the paper and describes the future work.

II. VIRTUALIZED MEMORY STORAGE

Virtualized memory storage provides the memory interface
for a guest OS of a virtualized environment. Fig. 2 depicts its
architecture. Virtualized memory storage constructs a single
hierarchy of a file system, the page cache mechanism, and a
block device driver, which is the same as the monolithic kernel,
while only a file system resides in a guest OS. Virtualized
memory storage consists of a memory image provided by a
virtual machine monitor, and is backed by the page cache
of the host OS. While such a memory image is the same as
that for a main memory of a guest OS, the memory image of
virtualized memory storage is backed by a persistent storage
device or a file on it. Therefore, the written data on virtualized
memory storage persists across the process of shutting down
a guest OS and rebooting it. Virtualized memory storage is
analogous to a memory image created for a user process by
the mmap system call. The mmap system call maps a file

1Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 12 / 172

HDD/SSD	Block	Device�

Page	Cache�

VirEo	Block	Device	Driver�

Library	OS	Kernel�

File	System�

Host	Linux	Kernel�

VirEo	Block	Device	Host�

QEMU	System	Emulator�

Page	Cache�

Block	Device	Driver�

File	System� KVM	Module�

Data	Path� ExecuEon	Path�

Figure 1. The common storage virtualization method that provides the block
interface for a guest OS kernel.

on a virtual address space of a user process, and the user
process can access a file through the mapped region of its
virtual address space. In case of virtualized memory storage,
the virtualization software maps a persistent storage device
or a file on it on a physical address space of a guest OS,
and the guest OS kernel can access the storage through the
memory interface. There are several file systems that were
designed to be constructed directly on memory storage. The
persistent random access memory file system (PRAMFS) [7]
and the storage class memory file system (SCMFS) [8] are
such examples. They can be used on virtual memory storage
in order to enable file access on it.

Virtualized memory storage best fits simple library OSes
since it significantly simplifies the storage access architecture
and also accelerates the access to persistent storage. The fol-
lowing are the benefits brought by virtualized memory storage:
1) No block device driver in library OSes and no device host in
the host OS: A block device driver is a complicated software
framework since it deals with the block and asynchronous
interface of devices and also enables efficient access to them
by utilizing the page cache mechanism. A block device driver
in a guest OS requires a counterpart in the host OS, a
device host, that emulates a block device. Virtualized memory
storage gets rid of them; thus, it significantly simplifies the
storage interface. 2) Simplified file system implementation:
The implementation of a file system on a block device cannot
be separated from the block interface even with the page cache
mechanism that provides the memory interface because it
needs to deal with block access natures and and to include their
management. A file system on virtualized memory storage
is greatly simplified since it does not include such block
management and the page cache mechanism. 3) Zero copy data
access: This is a great advantage of the integration of library
OSes and virtualized memory storage. When an application
accesses data on virtualized memory storage through a file
system, the application obtains the address of the data on the
virtualized memory storage. There is no need to copy from
storage to buffer cache. 4) Efficient virtual machine migration:
Virtualized memory storage is simply a memory image, and

HDD/SSD	Block	Device�

File	System�

Library	OS	Kernel�

Host	Linux	Kernel�Block	Device	Driver�

Page	Cache� KVM�

QEMU	System	
Emulator�

Data	
Path�

ExecuEon	
Path�

File	System�

Figure 2. Virtualized memory storage that provides the memory interface
for a library OS kernel.

it can be treated in the same way as the main memory of a
virtual machine. When a virtual machine is migrated from a
host to another over the network, the main memory is copied
between them. The same mechanism can be employed to
transfer virtualized memory storage; thus, there is no specific
shared storage necessary for virtualized memory storage to
enable virtual machine migration.

Virtualized memory storage is secured by a virtual machine
monitor since it is made independent form each other. The
memory image of virtualized memory storage is created for
each instance of a library OS, and its data is not shared by
default. An instance of a library OS can only access its memory
image but not the other images of the other instances since they
are separated by the virtual memory mechanism that the virtual
machine monitor sets up. Obviously, it is possible to create a
shared memory image of virtualized memory storage. In this
case, a whole memory image is shared; thus, all the files of
the shared image are shared.

Virtualized memory storage simplifies the execution path
to access storage; thus, such simplicity makes a system with
it more reliable. While it removes the page cache and block
device driver layers from a guest OS, it keeps the mechanisms
in the host OS the same. An only difference is that it exposes
the page cache of the host OS to a guest OS for data access.
Only a part of the page cache is, however, exposed to a guest
OS, and a guest OS does not have unlimited access to the page
cache of the host OS. Thus, the introduction of virtualized
memory storage does not increase security risks.

We discuss the two key benefits of virtualized memory
storage below.

A. Journaling Acceleration by Synchronous Access

The journaling is a mechanism to guarantee the consistency
of written data. It is known as write ahead logging (WAL)
for database management systems. The journaling writes data
twice, first in the journal and second in the destination place.
The significant cost of the journaling is brought by a latency
to complete writing. Logging must be completed and it must
ensure the log becomes persistent before writing in the desti-
nation place. In other words, writing in the destination place
must wait for the completion of logging. Each log tends to be
small data, and writing small data in block storage is a typical

2Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 13 / 172

inefficient operation; thus, it causes a long latency to complete
writing.

Virtualized memory storage employs synchronous access to
storage; thus, logging does not suffer from a long latency
caused by the block interface. Because the region for logging is
typically preallocated and fixed, its page frames can be pinned
down in the page cache of the host OS. Even without pinning
them down, logging is frequently performed, and the region
for logging is very likely on the page cache.

B. Modern Implementation of Single-Level Store
Virtualized memory storage can be considered as an imple-

mentation of the single-level store [9]. The single-level store
is the model of storage where applications access data storage
objects directly through the memory interface; thus, there is
only a single storage level [10]. From the point of view of the
single-level store, memory and disk storage are distinct parts of
computer systems since memory is byte addressable while disk
storage is block addressable; thus, processors cannot access
disk storage directly, and data on disk storage must be brought
to memory in order for the processors to access it. Files are
the abstraction of disk storage, and file systems manage disk
storage to provide storage spaces with users as files. Data in
files is accessed through the file application program interface
(API), which is designed to deal with block addressable disk
storage.

Virtualized memory storage takes the memory management
one step further towards the single-level store by involving
the memory interface in the hierarchy of memory and storage.
Library OSes can access data on memory storage directly since
memory storage is byte addressable and a file system serves
name and protection services.

III. CONCLUSTION AND FUTURE WORK

This paper proposed virtualized memory storage that pro-
vides the memory interface for a library OS of a virtualized
environment in order to simplify and to accelerate the access
to persistent storage. Because of a trend of using a simple
library OS as a guest OS of a virtualized environment for
higher performance, the proposed virtualized memory storage
best fits the use cases of a library OS.

Our future work includes the implementation and evaluation
of the proposed architecture. While we realized the basic
mechanism of the virtualized memory storage [5], we are
currently working on the implementation of a library OS on
top of it.

REFERENCES

[1] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr., “Exokernel: An op-
erating system architecture for application-level resource management,”
in Proceedings of the Fifteenth ACM Symposium on Operating Systems
Principles, ser. SOSP ’95. New York, NY, USA: ACM, pp. 251–266,
1995.

[2] M. F. Kaashoek, et al., “Application performance and flexibility on
exokernel systems,” in Proceedings of the Sixteenth ACM Symposium
on Operating Systems Principles, ser. SOSP ’97. New York, NY, USA:
ACM, pp. 52–65, 1997.

[3] A. Madhavapeddy, et al., “Unikernels: Library operating systems for
the cloud,” in Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’13. New York, NY, USA: ACM, pp. 461–
472, 2013.

[4] Cloudius-Systems, “Osv: the operating system designed for the cloud,”
http://osv.io [retrieved: February, 2017].

[5] S. Oikawa, “Virtualizing storage as memory for high performance stor-
age access,” in Proceedings of the 12th IEEE International Symposium
on Parallel and Distributed Processing with Applications (ISPA-14), pp.
18–25, 2014.

[6] S. Oikawa, “Adapting byte addressable memory storage to user-level
file system services,” in Proceedings of ACM Conference on Research
in Adaptive and Convergent Systems, ser. RACS 2014. ACM, pp.
338–343, 2014.

[7] “Pramfs: Protected and persistent ram filesystem,”
http://pramfs.sourceforge.net/ [retrieved: February, 2017].

[8] X. Wu and A. L. N. Reddy, “Scmfs: a file system for storage class
memory,” in Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC
’11. New York, NY, USA: ACM, pp. 39:1–39:11, 2011.

[9] B. E. Clark and M. J. Corrigan, “Application system/400 performance
characteristics,” IBM Systems Journal, vol. 28, no. 3, pp. 407–423,
1989.

[10] J. S. Shapiro and J. Adams, “Design evolution of the eros single-level
store,” in Proceedings of the General Track of the Annual Conference
on USENIX Annual Technical Conference, ser. ATEC ’02. Berkeley,
CA, USA: USENIX Association, pp. 59–72, 2002.

3Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 14 / 172

A Performance Evaluation of
Lightweight Approaches to Virtualization

Max Plauth, Lena Feinbube and Andreas Polze
Operating Systems and Middleware Group

Hasso Plattner Institute for Software Systems Engineering,
University of Potsdam

Potsdam, Germany
e-mail: {firstname.lastname}@hpi.uni-potsdam.de

Abstract—The growing prevalence of the microservice paradigm
has initiated a shift away from operating single image appliances
that host many services, towards encapsulating each service
within individual, smaller images. As a result thereof, the de-
mand for low-overhead virtualization techniques is increasing.
While containerization approaches already enjoy great popu-
larity, unikernels are emerging as alternative approaches. With
both approaches undergoing rapid improvements, the current
landscape of lightweight approaches to virtualization presents a
confusing scenery, impeding the task of picking an adequate tech-
nology for an intended purpose. While previous work has mostly
dealt with comparing the performance of either approach with
whole-system virtualization, this work provides an overarching
performance evaluation covering containers, unikernels, whole-
system virtualization, native hardware, and combinations thereof.
Representing common workloads in cloud-based applications,
we evaluate application performance by the example of HTTP
servers and a key-value store.

Keywords–Lightweight Virtualization; Performance; Unikernel;
Container

I. INTRODUCTION

With the increasing pervasiveness of the cloud computing
paradigm for all sorts of applications, low-overhead virtualiza-
tion techniques are becoming indispensable. In particular, the
microservice architectural paradigm, where small encapsulated
services are developed, operated and maintained by separate
teams, require easy-to-use and disposable machine images.
Ideally, such infrastructure should allow for fast provisioning
and efficient operation.

Approaches to lightweight virtualization roughly fall into
the categories of container virtualization and unikernels. Both
have been gaining notable momentum recently (see Figure 1).
As more and more virtualization techniques are being intro-
duced and discussed, making a choice between them is getting
harder. Published performance measurements thus far either
have a strong focus on throughput and execution time or
focus on highlighting the strengths of one particular approach
without comparing it to a broad range of alternative unikernels
and container technologies.

We close this gap by presenting the results of an extensive
performance analysis of lightweight virtualization strategies,
which takes into account a broad spectrum both of inves-
tigated technologies and measured metrics. Our evaluation
includes containers (Docker, LXD), unikernels (Rumprun and

2013 2014 2015 20161

10

100

1000

R
es

ul
ts

 o
n

G
oo

gl
e

Sc
ho

la
r Docker

Unikernel

Figure 1. The increasing relevance of Docker and Unikernel in the research
community is indicated by the number of search results on Google Scholar
(as of October 19, 2016).

OSv), whole-system virtualization, native hardware, and certain
combinations thereof. Our goal is to evaluate metrics that are
applicable to cloud applications. For this purpose, we measure
application throughput performance using HTTP servers and
a key-value store.

The remainder of the paper is organized as follows:
Section II provides some background about the employed
virtualization approaches. Section III reviews related work that
deals with quantifying the performance impact of lightweight
virtualization approaches. Afterwards, Section IV refines the
scope of this work. Section V then documents the benchmark
procedure yielding the results presented in Section VI. Finally,
Section VII concludes this work with final remarks.

II. BACKGROUND

“Traditional”, whole-system virtualization comes with per-
formance and memory penalties, incurred by the hypervisor or
virtual machine manager (VMM). This problem has been ad-
dressed by introducing paravirtualization (PV) and hardware-
assisted virtualization (HVM). Still, the additional layer of
indirection necessitates further context switches, which hurt
I/O performance. [1] A further drawback of whole-system
virtualization is the comparatively large memory footprint.
Even though techniques such as kernel samepage merging
(KSM) [2] have managed to reduce memory demands, they
do not provide an ultimate remedy as they dilute the level of
isolation among virtual machines [3].

This work focuses on lightweight virtualization approaches,
which, addressing both issues, have gained notable momentum
both in the research community and in industry (see Figure 1).
Figure 2 illustrates how these approaches aim at supporting
the deployment of applications or operating system images

4Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 15 / 172

while eluding the overhead incurred by running a full-blown
operating system on top of a hypervisor. With containers and
unikernels constituting the two major families of lightweight
virtualization approaches, the main characteristics and two
representatives of each family are introduced hereafter.

Hardware

Hypervisor

Hardware

Hypervisor

Unikernel / App

Hardware

OS

RT & Libraries

Application OS

Virtual Machine

RT & Libraries

Application

Hardware

Hypervisor

OS

Virtual Machine

Hardware

OS

RT & Libraries

Application

Container

Container

RT & Libs

Application

Container on
VM & Hypervisor

Unikernel
on Hypervisor

Container on
Native HW

Virtual Machine
on Hypervisor

Operating System
on Native HW

Figure 2. Illustrated comparison of the software stack complexity of various
deployment strategies, including native setups, virtual machines, containers,
containers within virtual machines and unikernels.

A. Container (OS-Level Virtualization)

Containers were introduced as an oppositional approach
to whole-system virtualization. They were based on the ob-
servation that the entire kernel induces overly much resource
overhead for merely isolating and packaging small appli-
cations. Two classes of container virtualization approaches
exist: application- and OS-oriented containers. For application-
oriented containers, single applications constitute the units
of deployment. For OS-oriented containers, the entire user
space of the operating system is reproduced. This approach
was particularly popular with virtual private server (VPS)
solutions, where resource savings were essential. Currently,
with LXD, this approach is becoming more prominent again,
because it allows for the creation of virtual machine (VM)-like
behavior without the overhead of a hypervisor.

In the following paragraphs, we discuss some common
containerization technologies available. We do not consider
orchestration-oriented tools such as Kubernetes [4], its pre-
decessor Borg, or CloudFoundry’s PaaS solution Warden [5]
here.

1) Docker: Among the application-oriented containers, the
open source project Docker[6] is currently the most popular ap-
proach. It relies on Linux kernel features, such as namespaces
and control groups, to isolate independent containers running
on the same instance of the operating system. A Docker
container encapsulates an application as well as its software
dependencies; it can be run on different Linux machines with
the Docker engine.

Apart from providing basic isolation and closer-to-native
performance than whole-system virtualization, Docker con-
tainerization has the advantages that pre-built Docker con-
tainers can be shared easily, and that the technology can be
integrated into various popular Infrastructure as a Service
(IaaS) solutions such as Amazon web services (AWS).

2) LXD: The Linux-based container solution LXD [7]
builds up upon the LXC (Linux container) [8] interface to
Linux containerization features. LXD uses the LXC library

for providing low-overhead operating system containers. In
addition to advanced container creation and management fea-
tures, LXD offers integration into the OpenStack Nova compute
component [9].

3) lmctfy: lmctfy (Let Me Contain That For You) [10] is an
open source Google project which provides Linux application
containers. It internally relies on Linux cgroups, and provides
further user-mode monitoring and management features. In-
tended as an alternative to LXD, the status of lmctfy has been
declared as stalled [11] on May 28, 2015, which is why we
do not include lmctfy in our evaluation.

B. Unikernel (Hypervisor Virtualization)

Unikernels are a reappearance of the library operating sys-
tem concept, which only provides a thin layer of protection and
multiplexing facilities for hardware resources whereas hard-
ware support is left to employed libraries and the application
itself. While library operating systems (e.g., Exokernel [12])
had to struggle with having to support real hardware, uniker-
nels avoid this burden by supporting only virtual hardware
interfaces provided by hypervisors or VMMs. [13] With the
absence of many abstraction mechanisms present in traditional
operating systems, the unikernel community claims to achieve
a higher degree of whole-system optimization while reducing
startup times and the VM footprint [14], [15].

1) Rumprun: The Rumprun unikernel is based on the rump
kernel project, which is a strongly modularized version of the
NetBSD kernel that was built to demonstrate the anykernel
concept [16]. With the goal of simplified driver development
in mind, the anykernel concept boils down to enabling a
combination of monolithic kernels, where drivers are executed
in the kernel, and microkernel-oriented user space drivers that
can be executed on top of a rump kernel. One of the major
features of the Rumprun unikernel is that it supports running
existing and unmodified POSIX software[17], as long as it
does not require calls to fork() or exec().

2) OSv: The OSv unikernel has been designed specifically
to replace general-purpose operating systems such as Linux
in cloud-based VMs. Similarly to Rumprun, OSv supports
running existing and unmodified POSIX software, as long as
certain limitations are considered [18]. However, OSv provides
additional APIs for exploiting capabilities of the underlying
hypervisor, such as a zero copy API intended to replace the
socket API to provide more efficient means of communication
among OSv-based VMs.

III. RELATED WORK

Previous research has measured selected performance prop-
erties of lightweight virtualization techniques, mostly in com-
parison with a traditional whole-system virtualization ap-
proach.

5Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 16 / 172

TABLE I. OVERVIEW OF RELATED WORK ON PERFORMANCE
MEASUREMENTS OF LIGHTWEIGHT VIRTUALIZATION APPROACHES.

D
oc

ke
r?

L
X

C
?

O
Sv

?

O
pe

nV
Z

?

Virtualization

[20] X X X N/A

[18] X KVM

[1] X KVM

[15] X KVM

[21] X Xen, KVM

[22] X AWS

Felter et al.[1] have presented a comprehensive perfor-
mance comparison between Docker containers and the KVM
hypervisor [19]. Their results from various compute-intensive
as well as I/O-intensive programs indicate that “Docker equals
or exceeds KVM performance in every case tested”. For I/O-
intensive workloads, both technologies introduce significant
overhead, while the CPU and memory performance is hardly
affected.

Kivity et al.[18] focus on the performance of OSv in
comparison to whole-system virtualization with KVM. Both
micro- and macro-benchmarks indicate that OSv offers better
throughput, especially for memory-intensive workloads.

Table I further summarizes the most recent publications
of performance measurements of lightweight virtualization
techniques.

IV. SCOPE OF THIS WORK

Here, we present an extensive performance evaluation of
containers (Docker, LXD), unikernels (Rumprun and OSv),
and whole-system virtualization. Related work has focused on
subsets of the approaches we consider, but we are not aware
of any comprehensive analysis of up-to-date container versus
unikernel technologies. Our goal is to present data which is
applicable to cloud-based applications.

Our research questions are the following:

• How fast are containers, unikernels, and whole-system
virtualization when running different workloads? Do
the results from related work hold in our test case?

• What is the most suitable virtualization technology for
on demand provisioning scenarios?

V. BENCHMARK PROCEDURE

This section provides a description of the benchmark
methodologies applied within this work. All tests were per-
formed on the test system specified in Table II. Where appli-
cable, all approaches were evaluated using KVM and native
hardware. For container-based approaches, we also distinguish
between native and virtualized hosts, where the latter repre-
sents the common practice for deploying containers on top of
IaaS-based virtual machines.

Representing common workloads of cloud-hosted applica-
tions, we picked HTTP servers and key-value stores as exem-
plary applications for application performance measurements.

TABLE II. SPECIFICATIONS OF THE TEST SYSTEMS.

Server model HPE ProLiant m710p Server Cartridge
Processor Intel Xeon E3-1284L v4 (Broadwell)
Memory 4 × 8GB PC3L-12800 (SODIMM)
Disk 120GB HP 765479-B21 SSD (M.2 2280)
NIC Mellanox Connect-X3 Pro (Dual 10GbE)
Operating system Ubuntu Linux 16.04.1 LTS

As these I/O-intensive use cases involve a large number of both
concurrent clients and requests, the network stack contributes
to the overall application performance considerably. Hence,
in order to eliminate an unfavorable default configuration of
the network stack as a confounding variable, we modified
the configuration on Linux, Rumprun and OSv. Since many
best practices guides cover the subject of tuning network
performance on Linux, we employed the recommendations
from [23], resulting in the configuration denoted in Table III.

TABLE III. OPTIMIZED SETTINGS FOR THE Linux NETWORK STACK.

Path Parameter Value
/etc/sysctl.conf fs.file-max 20000
/etc/sysctl.conf net.core.somaxconn 1024
/etc/sysctl.conf net.ipv4.ip local port range 1024 65535
/etc/sysctl.conf net.ipv4.tcp tw reuse 1
/etc/sysctl.conf net.ipv4.tcp keepalive time 60
/etc/sysctl.conf net.ipv4.tcp keepalive intvl 60
/etc/security/limits.conf nofile (soft/hard) 20000

Based on this model, we modified the configuration pa-
rameters of both Rumprun and OSv to correspond to the
Linux-based settings [24]. Currently, there is no mecha-
nism in Rumprun to permanently modify the values of the
ulimit parameter. As a workaround, the Rumprun sysproxy
facility has be activated by passing the parameter -e
RUMPRUN_SYSPROXY=tcp://0:12345 to the rumprun
command-line utility upon start. Using the rumpctrl utility,
the configuration values of the ulimit parameter have to be
changed remotely, as exemplified in Listing 1.
1 export RUMP_SERVER=tcp://[IP]:12345
2 . rumpctrl.sh
3 sysctl -w proc.0.rlimit.descriptors.soft=200000
4 sysctl -w proc.0.rlimit.descriptors.hard=200000
5 sysctl -w proc.1.rlimit.descriptors.soft=200000
6 sysctl -w proc.1.rlimit.descriptors.hard=200000
7 sysctl -w proc.2.rlimit.descriptors.hard=200000
8 sysctl -w proc.2.rlimit.descriptors.soft=200000
9 rumpctrl_unload

Listing 1. The ulimit values of Rumprun have to be changed remotely using
the sysproxy facility and the associated rumpctrl utility.

A. Static HTTP Server

We use the Nginx HTTP server (version 1.8.0) to evaluate
the HTTP performance for static content, as it is available on
all tested platforms. Regarding OSv however, we refrain from
running HTTP benchmarks due to the lacking availability of
an adequate HTTP server implementation.

To be able to deal with a high number of concurrent
requests, we apply optimized configuration files for Nginx.
Our measurement procedure employs the benchmarking tool
weighttp [25] and the abc wrapper utility [26] for automated
benchmark runs and varying connection count parameters.
The abc utility has been slightly modified to report standard

6Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 17 / 172

deviation values in addition to average throughput values for
repeated measurements. The benchmark utility is executed
on a dedicated host to avoid unsolicited interactions between
the HTTP server and the benchmark utility. While HTTP
server benchmark guidelines usually recommend executing
both HTTP server and benchmark utility on the same machine
[23], we intentionally included the traversal of an actual
network in the setup to represent real-world conditions more
accurately. As static content, we use our institute website’s fav-
icon [27]. We measured the HTTP performance ranging from
0 to 1000 concurrent connections, with range steps of 100 and
TCP keepalive being enabled throughout all measurements.

B. Key-Value Store

In our second application benchmark discipline, we use
Redis (version 3.0.1) as a key-value store, which is available on
all tested platforms. In order to rule out disk performance as a
potential bottleneck, we disabled any persistence mechanisms
in the configuration files and operate Redis in a cache-only
mode of operation. For executing performance benchmarks,
we use the redis-benchmark utility, which is included in the
Redis distribution. The benchmark utility is executed on a
separate host to represent real-world client-server conditions
more accurately and to avoid unsolicited interactions between
the benchmark utility and the Redis server. We measured the
performance of GET and SET operations ranging from 0 to
1000 concurrent connections, with range steps of 100 and both
TCP keepalive and pipelining being enabled throughout all
measurements. The CSV-formatted output of redis-benchmark
was aggregated to yield average values and standard deviation
using a simple python script.

VI. RESULTS & DISCUSSION

Here, we provide and discuss the results obtained from the
benchmark procedure elaborated in Section V in an analogous
structure. In order to retrieve a sufficiently meaningful dataset,
each condition was benchmarked 30 times [28]. Furthermore,
each benchmark was preceded by a warm-up procedure. For
a statistically meaningful evaluation of the collected data, an
ANOVA test and a post-hoc comparison using the Tukey
method were applied. All values are expressed as mean ±
SD (n = 30).

A. Static HTTP Server

Container-based approaches are generally expected to in-
troduce little overhead compared to the native operating system
performance. While this appears to be true for disk I/O,
memory bandwidth, and compute performance [1], networking
introduces a significant amount of overhead (p < 0.0001) as
illustrated in Figure 3a. A likely cause for this overhead is that
all traffic has to go through a NAT in common configurations
for both container-based approaches. Comparing containers
with whole-system virtualization, it does not come as a surprise
to see significant performance advantages on the side of
containers for 200 concurrent clients and above (p < 0.0001).

We also considered the condition where containers are
executed on top of whole-system virtualization images. This
setup reflects the common practice in IaaS scenarios where
containers are usually deployed on top of a virtual machine

instead of a native operating system instance. When deployed
above a hypervisor, containers evince a similar behavior as in
the native use case: Containers add significant overhead on top
of a virtualized Linux instance (p < 0.0001).

Proceeding with the evaluation of unikernel performance,
it is surprising to see a similar performance of Rumprun
compared to containers. Even though Rumprun can achieve
slim performance enhancements over containers, significant
improvements start to join in merely for 600 concurrent clients
and more (p < 0.0001). At first sight, these results may
appear disappointing given the fact that unikernels should
offer better performance in I/O intensive workloads due to
the absence of context switches. However, we suspect that
the mediocre performance originates from comparing apples
with oranges, as HTTP-servers heavily rely on the performance
of the operating systems network stack, where the Linux
networking stack has undergone massive optimization efforts
that the NetBSD network stack can hardly compete with. To
verify this hypothesis, we performed a brief evaluation where
we executed the same benchmark setup using NetBSD 7.0.1
instead of Ubuntu 16.04. For that purpose, we used a KVM-
based virtual machine and the same network configuration
parameters as in the other setups. Here, we obtained perfor-
mance measurements much slower than Rumprun (data not
shown), which demonstrates the potential of the unikernel
concept with Rumprun outperforming a virtualized instance
of its full-grown relative NetBSD. With further optimizations
of the network stack, Rumprun might achieve similar or even
better performance than a regular Linux-based virtual machine.

Regarding the memory footprint, unikernels manage to
undercut the demands of a full-blown Linux instance (see
Figure 4a). However, containers still can get by with the least
amount of memory. The major advantage of containers remains
that memory can be allocated dynamically, whereas virtual
machines are restricted to predefining the amount of allocated
memory at the time of instantiation.

B. Key-Value Store

As illustrated in Figure 5, the key-value store exhibits sim-
ilar results regarding container-based approaches and whole-
system virtualization: Regardless of native or virtualized de-
ployments, containers come with a significant amount of
overhead (p < 0.0001). In contrast, Rumprun and OSv offer
slight but nevertheless significant performance improvements
compared to Linux under many conditions. With Redis being
less sensitive to the performance of the network stack, this
use case demonstrates the potential of unikernels. Regarding
memory consumption (see 4b), containers still offer the highest
degree of flexibility. While Rumprun still undercuts the mem-
ory footprint of Linux, OSv required distinctly more memory
in order to withstand the benchmark. However, this increased
memory demand appears to be caused by a memory leak or a
similar bug in the OSv-port of Redis.

VII. CONCLUSION

With both containers and unikernels undergoing rapid
improvements, the current landscape of lightweight approaches
to virtualization presents a confusing scenery. Comparative
publications thus far have mostly highlighted the strengths of

7Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 18 / 172

0 200 400 600 800 1000
0

20000

40000

60000

80000

100000

Concurrent Clients

Re
qu

es
ts

 [s
-1

]

Ubuntu / Native
LXD / Native
Docker / Native

(a)

0 200 400 600 800 1000
0

20000

40000

60000

80000

100000

Concurrent Clients

Re
qu

es
ts

 [s
-1

]

Ubuntu / KVM

Docker / KVM

LXD / KVM

Rumprun / KVM

(b)

Figure 3. Throughput performance of Nginx (version 1.8.0) was evaluated on native hardware (a) and in virtualized environments (b). Throughput was measured
using the weightttp benchmark and the modified abc wrapper utility.

Ubuntu Rumprun LXD Docker0

100

200

300

M
em

or
y

Fo
ot

pr
in

t [
M

iB
] KVM

Native

(a)

Ubuntu Rumprun OSv LXD Docker0

100

200

300

400

500
M

em
or

y
Fo

ot
pr

in
t [

M
iB

] KVM
Native

(b)

Figure 4. The memory footprints of the static HTTP server scenario (a) and the Key-Value Store scenario (b) were measured for each each virtualization
technique. Due to the variety among the tested approaches, different tools were used to obtain memory consumption readings.

0 200 400 600 800 1000
500000

1000000

1500000

2000000

Concurrent Clients

Re
qu

es
ts

 [s
-1

]

Docker / Native

Ubuntu / Native

LXD / Native

(a)

0 200 400 600 800 1000
500000

1000000

1500000

2000000

Concurrent Clients

Re
qu

es
ts

 [s
-1

]

Rumprun / KVM

Ubuntu / KVM

Docker / KVM

LXD / KVM

OSv / KVM

(b)

Figure 5. Throughput performance of Redis (version 3.0.1) was evaluated on native hardware (a) and in virtualized environments (b). The plotted values show
the throughput for GET requests as retrieved through the redis-benchmark utility.

8Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 19 / 172

one particular approach without comparing it to a broad range
of alternative technologies. To take remedial action, we present
an extensive performance evaluation of containers, unikernels,
and whole-system virtualization.

Regarding application throughput, most unikernels per-
formed at least equally well or even better than containers. We
also demonstrated that containers are not spared from overhead
regarding network performance, which is why virtual machines
or unikernels may be preferable in cases where raw throughput
matters. These are just some aspects demonstrating that while
containers have already reached a sound level of maturity,
unikernels are on the verge of becoming a viable alternative.
Even though we did not see unikernels outperforming a virtu-
alized Linux instance, our brief comparison between NetBSD
and Rumprun also suggested that unikernels have the potential
of outperforming their full-grown operating system relatives.

ACKNOWLEDGMENT

We would like to thank Vincent Schwarzer for engaging our
interest in unikernels in the course of his master’s thesis [24].
Furthermore, we thank the HPI Future SOC Lab for granting
us access to the hardware resources used in this paper.

This paper has received funding from the European Union’s
Horizon 2020 research and innovation program 2014-2018
under grant agreement No. 644866.

DISCLAIMER

This paper reflects only the authors’ views and the Euro-
pean Commission is not responsible for any use that may be
made of the information it contains.

REFERENCES

[1] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated
performance comparison of virtual machines and Linux containers,”
in 2015 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), Mar. 2015, pp. 171–172.

[2] A. Arcangeli, I. Eidus, and C. Wright, “Increasing memory density by
using KSM,” in Proceedings of the Linux Symposium. Citeseer, 2009,
pp. 19–28.

[3] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar, “Wait a minute! A
fast, Cross-VM attack on AES,” in International Workshop on Recent
Advances in Intrusion Detection. Springer, 2014, pp. 299–319.

[4] T. K. Authors, “Kubernetes,” visited on 2017-02-13. [Online].
Available: http://kubernetes.io/

[5] CloudFoundry, “Warden,” visited on 2017-02-13. [Online]. Available:
https://github.com/cloudfoundry/warden

[6] Docker Inc., “Docker,” visited on 2017-02-13. [Online]. Available:
https://www.docker.com/

[7] Canonical Ltd., “LXD,” visited on 2017-02-13. [Online]. Available:
https://linuxcontainers.org/lxd/introduction/

[8] ——, “LXC,” visited on 2017-02-13. [Online]. Available: https:
//linuxcontainers.org/lxc/introduction/

[9] The OpenStack project, “Nova,” visited on 2017-02-13. [Online].
Available: https://github.com/openstack/nova

[10] Google, “lmctfy,” visited on 2017-02-13. [Online]. Available: https:
//github.com/google/lmctfy

[11] R. Jnagal, “Commit: update project status,” visited on 2017-02-13.
[Online]. Available: https://github.com/google/lmctfy/commit/0b317d7

[12] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr., “Exokernel: An
Operating System Architecture for Application-level Resource Manage-
ment,” in Proceedings of the Fifteenth ACM Symposium on Operating
Systems Principles, ser. SOSP ’95. New York, NY, USA: ACM, 1995,
pp. 251–266.

[13] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gaza-
gnaire, S. Smith, S. Hand, and J. Crowcroft, “Unikernels: Library
operating systems for the cloud,” in Proceedings of the Eighteenth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’13. New York,
NY, USA: ACM, 2013, pp. 461–472.

[14] A. Madhavapeddy and D. J. Scott, “Unikernels: The Rise of the Virtual
Library Operating System,” Communications of the ACM, vol. 57,
no. 1, 2014, pp. 61–69.

[15] A. Madhavapeddy, T. Leonard, M. Skjegstad, T. Gazagnaire, D. Sheets,
D. Scott, R. Mortier, A. Chaudhry, B. Singh, J. Ludlam et al., “Jitsu:
Just-in-time summoning of unikernels,” in 12th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 15), 2015,
pp. 559–573.

[16] A. Kantee, “Flexible Operating System Internals: The Design and Im-
plementation of the Anykernel and Rump Kernels,” Ph.D. dissertation,
Aalto University, Finland, 2012.

[17] ——, “The Rise and Fall of the Operating System,” ;login:, the USENIX
magazine, 2015, pp. 6–9.

[18] A. Kivity, D. Laor, G. Costa, P. Enberg, N. HarEl, D. Marti, and
V. Zolotarov, “OSv—Optimizing the Operating System for Virtual
Machines,” in 2014 USENIX Annual Technical Conference (USENIX
ATC ’14), 2014, pp. 61–72.

[19] KVM project, “KVM,” visited on 2017-02-13. [Online]. Available:
http://www.linux-kvm.org/page/Main

[20] R. Dua, A. R. Raja, and D. Kakadia, “Virtualization vs containerization
to support paas,” in Cloud Engineering (IC2E), 2014 IEEE International
Conference on, Mar. 2014, pp. 610–614.

[21] I. Briggs, M. Day, Y. Guo, P. Marheine, and E. Eide, “A performance
evaluation of unikernels,” 2015.

[22] J. Nickoloff, “Evaluating Container Platforms at Scale,”
Mar. 2016. [Online]. Available: https://medium.com/on-docker/
evaluating-container-platforms-at-scale-5e7b44d93f2c

[23] B. Veal and A. Foong, “Performance Scalability of a Multi-Core
Web Server,” in Proceedings of the 3rd ACM/IEEE Symposium on
Architecture for networking and communications systems. ACM, 2007,
pp. 57–66.

[24] V. Schwarzer, “Evaluierung von Unikernel-Betriebssystemen für Cloud-
Computing,” Masters Thesis (in German), Hasso Plattner Institute for
Software Systems Engineering, University of Potsdam, Jun. 2016.

[25] lighty labs, “weighttp,” visited on 2017-02-13. [Online]. Available:
https://redmine.lighttpd.net/projects/weighttp/

[26] G-WAN ApacheBench, “abc,” visited on 2017-02-13. [Online].
Available: http://gwan.com/source/ab.c

[27] Hasso Plattner Institute, “HPI Favicon,” visited on 2017-02-13.
[Online]. Available: http://hpi.de/favicon.ico

[28] A. Georges, D. Buytaert, and L. Eeckhout, “Statistically Rigorous Java
Performance Evaluation,” vol. 42, no. 10. New York, New York, USA:

ACM Press, oct 2007, p. 57.

9Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 20 / 172

Making the Case for Highly Efficient Multicore Enabled Unikernels With IncludeOS

Maghsoud Morshedi, Hårek Haugerud, Kyrre Begnum

Dept. of Computer Science
Oslo and Akershus University College of Applied Sciences

Oslo, Norway
Email: { maghsoud.morshedi|haugerud|kyrre.begnum } @hioa.no

Abstract—Today’s data centers utilized for cloud services rep-
resent a significant energy consumption and costs. Standard
operating systems used for cloud instances are still designed
largely to run on actual or emulated hardware, making them
wasteful when being idle. Ideally, the cloud should be populated
with leaner and more efficient operating systems. Unikernel op-
erating systems are a good example of such, but most Unikernels
are still not ready to be used in a cloud as they are built
on specialized emulators. Furthermore, they are designed for
single core operation and it is impractical to run hundreds
or thousands of virtual machines for large workloads without
straining the underlying cloud platform. The idea presented in
this paper is to have all benefits of a lean Unikernel operating
system while equipping it with multicore capabilities in order
to represent an energy efficient and cloud-optimized operating
system that can handle larger computations. IncludeOS has
shown to be an extremely efficient Unikernel operating system,
utilizing a much simpler event handler and foregoing the timer
interrupt altogether. In our case, the experiments demonstrated
increased performance for a multi-threaded processor intensive
task compared to a classic operating system, thus showcasing
a real-life solution for energy efficient computation in cloud
environments.

Keywords–Cloud computing; energy efficiency; green comput-

ing; Unikernel; multicore computing.

I. INTRODUCTION
Cloud computing has been focused on offering cost re-

duction for the consumer, business and scientific domains.
However, significant energy consumption of data centers has
started to constrain scaling and further cost reduction because
of electricity bills and carbon dioxide footprints.

Numerous dedicated approaches for energy efficiency in
cloud environments have been proposed. One traditional ap-
proach in optimising energy efficiency in such environments,
is through operating system (OS) virtualization, which allows
for multiple virtual machine (VM) to run on a shared cluster
of physical machines. In this context, a VM represents a
complete computer system with a standard OS and typically
a host of a single application. The VMs can be consolidated
and relocated in order to reduce energy waste. In this line of
thinking, however, little attention has been paid to the role of
the operating system.

By design, standard operating systems are multipurpose
and are intended to run on hardware with a variety of device
drivers. This allows them to support a diversity of services on
physical and emulated hardware with little modification, but
makes them wasteful in times when they are idle. One clear
example is the timer interrupt, which triggers the kernel of
an operating system to wake up at a regular pace to look

for device activity. In a virtual machine, where there are
very few ”hardware” devices, the kernel still emulates that
behavior, resulting in scores of VMs waking up and spending
CPU cycles thousands of times every second. As a result,
todays general purpose operating systems, though convenient,
constitute a continuous energy leak for todays data centers and
cloud environments.

In addition, there are also challenges which arise due
to processor design. Processor architecture has evolved from
featuring a single high-frequency processor, to having multiple
low-frequency processor cores. This development was partly
driven by frequency increment constraint on a single processor
- better known as the frequency wall[1].

In contrast to a standard operating system, a Unikernel
operating system is designed for a single purpose - where a
single service is bundled with only the essential libraries [2],
and is not designed to run on hardware. Unikernel operating
systems are capable of delivering optimal performance as well
as low resource consumption. However, cloud systems have
not been adapted to support Unikernel operating systems due
to the specialized nature of the required emulators.

Multicore processors have become the dominant processor
type, and have experienced a continuous growth in the number
of cores on a single processor, over time. The design of
currently available Unikernels does not take advantage of the
presence of multiple cores, as their operations are bound for
execution on a single core. This contributes to a diminishing
performance as the number of Unikernel virtual machines is
gradually increased on a single host. The deployment of a large
federation of single-core Unikernel VMs is impractical for a
sizable workload as it strains the underlying cloud layer.

On-going Unikernel development projects are at different
stages of maturity. Prominent among them is IncludeOS, which
is under development at the Oslo and Akershus University
College of Applied Sciences. It is being developed primarily
in C++, to run on the quick emulator (QEMU)/kernel-based
virtual machine (KVM) hypervisor, but with the potential of
being ported to other platforms with slight modification to its
binary. IncludeOS is an efficient Unikernel operating system,
which utilizes a simple event handler with little memory
overhead: when running a domain name system (DNS) service
it imposes a total memory footprint of 158KB [3]. IncludeOS
uses no regular timer interrupt, meaning that at idle, the virtual
machine will use no central processing unit (CPU) cycles.
Although it is efficient, IncludeOS has been a single-core
operating system and not been able to utilize multiple cores
for scientific and CPU-bound workloads.

10Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 21 / 172

This paper presents our approach to equip the IncludeOS
Unikernel with multicore capabilities so that it can handle large
workloads efficiently. By using multicore computing, a Uniker-
nel operating system can handle a large processor intensive
computation concurrently so that it enhances performance. The
rest of the paper is organized as follows:

• The existing IncludeOS architecture and limitation
along with typical challenges of multicore computing
appear in Section II. In addition, this section proposes
possible applications for multicore Unikernels.

• The design principles that form the multicore Uniker-
nel architecture appear in Section III. We identify race
conditions and utilize an efficient technique in Section
III-A in order to minimize energy waste. Handling
and distributing tasks in a multicore system appears
in Section III-B. Section III-C presents our inter-
communication scheme among the logical processors.

• The developed multicore capability for IncludeOS
Unikernel operating system is evaluated compared to
multiple single-core IncludeOS, Ubuntu VM and bare
metal Ubuntu. Hence, Section IV presents the results
of our experiments while Section V evaluates them.

• Section VI presents related projects in the scope of
multicore Unikernel development followed by conclu-
sion and future work in Section VII

II. COMMON CHALLENGES

A standard operating system was initially designed for a
single-core processor. The transition to multicore hardware
technology is a slow process due to the incredible complexity
of today’s established operating system kernels. For example,
many of the algorithms used in a standard operating system
cannot take advantage of complete multicore capabilities while
cores are in full power state. Hence, multicore computing
can not guarantee a sufficient performance to energy ratio
improvement despite an increase in clock speed.

The adoption of multicore computing poses critical chal-
lenges in software development, which influence energy effi-
ciency. An operating system with full parallelism will utilize all
of the available computing power of a multicore processor. On
the other hand, an operating system with little or no parallelism
will consume more energy in comparison to their output in a
multicore system. Therefore, operating system must manage
cores so that each core can execute independent instruction
streams concurrently in order to maximize energy efficiency
for a large workload.

Multicore processors require a new generation of operating
systems that capitalize form the available computing power
with low energy consumption. Hence, Unikernels as a new
generation of operating systems must address the fundamental
challenges presented by multicore computing.

A. Multicore Unikernel Applications
There are many compute-intensive applications in science,

research and engineering that demand parallelism. With a
minimal footprint and multicore computing, Unikernels could
enable scientist, researchers and engineers to deploy their
solutions in an efficient way. Researchers in the field of
bioinformatics analyse new sequences of DNA or protein in
order to predict their biological function. There are couple of
packages that utilize profile-hidden Markov models (HMM) in

order to search for and align sequences. These packages are
very processor-intensive and utilize more than 99 percent of
a single-core processor while they generally have the capacity
of being parallel[4].

The telecommunication industry is recognising the possi-
bility of cloud software defined radio (SDR) as an evolving
technology. The SDR perquisites of processor-intensive digital
signal processing, real-time throughput and minimum latency,
show the potential of multicore Unikernel as a SDR node.

Unikernels can be leveraged as simple caching and in-
memory storage solutions. In todays data-driven infrastruc-
tures, efficient, distributed databases can be built using Uniker-
nel operating systems.

B. IncludeOS design

The IncludeOS Unikernel operating system was designed
with a modular architecture in mind such that it enables devel-
opers to attach their C++ service code to the operating system
kernel during compile time, which eliminates the overhead
of system calls. This provides IncludeOS the capability of
attaching just what a service actually needs and minimizes
the memory footprint by excluding unused features.

Application developers will write their service applications
as a normal C++, standard library application. However, when
including the IncludeOS library in their code with the simple
addition of #include <os>, and subsequently compiling
the code using the IncludeOS toolchain, the end result is not
just a binary of the application, but a standalone, bootable
virtual machine image where the operating system components
that are needed by the application are statically linked into the
file. This image can then be booted using QEMU/KVM and is
compatible with popular cloud environments like OpenStack.

The IncludeOS comprises a modular network stack con-
nected to the only VirtioNet device driver so that it reduces
the overhead of other protocols for a service which does not
use them. For example, if the application only uses TCP
sockets, no UDP support will be added during compile time.
Beside the modular network stack, IncludeOS’ asynchronous
I/O setup uses a counter based approach in order to eliminate
context switching during the interrupt handling. The IncludeOS
memory footprint is quite small, which enables IncludeOS
to boot up quickly in about 0.3 seconds. All of the design
considerations enable IncludeOS to be a lean single-threaded
operating system, which can handle one task at a time.[3].
Likewise, Bratterud et al.(2015) presented detailed architecture
of IncludeOS.

III. DESIGN PRINCIPLES

The following part presents our design principles in or-
der to adapt IncludeOS to support multicore computing. In
a nutshell, multicore IncludeOS will utilize a design of a
master processor managing multiple application processors.
The developer writing an IncludeOS based application will
organize the parallel workloads as tasks in the code. Once the
VM is running, the initial bootstrap processor will become the
master and distribute the tasks among the available application
processors. The master will also execute task workloads in
order to optimize the efficiency.

11Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 22 / 172

A. Energy Efficient Memory Access
In a multicore system, parts of a program may be executed

concurrently by more than one core so that it requires mutual
exclusion of access over a critical memory section [5]. Any
multicore operating system should employ mutual exclusion
access over critical sections in order to guarantee serialized
access.

In multicore IncludeOS, a bootstrap processor is respon-
sible for booting the operating system, which then will wake
up application processors in order to take advantage of them.
Since application processors have been awakened through a
broadcasted inter-processor interrupt (IPI) call, they can run
self-configuration code concurrently following the principle of
single program, multiple data [6].

The application processors will encounter a critical section
problem in the early stage of the initialization procedure. The
challenge begins while application processors run the self-
configuration code concurrently and will manipulate a common
memory location. A common option to handle this situation is
to use a semaphore lock in order to serialize concurrent access
to a specific memory location. Semaphore locks also introduce
a new problem in virtual machines as they cost extra processor
cycles to function.

The multicore IncludeOS employed instead a bus locking
mechanism while manipulating a critical section in memory
in order to prevent electricity waste by using semaphores.
The LOCK instruction causes the bus to be locked so that
the underlying hardware will manage the race condition and
make an instruction atomic. Logical processors connected to
the system bus generally use a low priority mechanism in
order to deal with race conditions during bus acquisition.
In addition, locking the bus simplifies the development of
multicore support in an operating system.

B. Multicore Task Management
In a multicore system, the operating system must manage

tasks properly in order to maximize performance. There are
two main task scheduling mechanisms: preemptive and non-
preemptive. Standard operating systems use preemptive task
scheduling in order to share limited resources between multi-
ple tasks. Likewise, hypervisors utilize preemptive scheduling
while they oversubscribe limited resources to virtual machines.
Oversubscription forces hypervisors to do context switching
among the available physical resources.

Multicore IncludeOS has followed the idea to keep the
preemptive scheduling only at the hypervisor level. Hence,
it employs a non-preemptive task management such that it
adopts many virtual processors in order to handle a large
workload efficiently. Indeed, the hypervisor allocates as many
virtual processors as the multicore IncludeOS requires in order
to handle large workloads. Fig. 1 illustrates the multicore
IncludeOS operating system task management approach in
which each task is handled by one core in the multicore
IncludeOS.

In addition, the non-preemptive task management provides
energy efficiency by reducing memory consumption and avoid
context switching. The preemptive scheduling requires a bigger
stack size in order to store the state of switched tasks in mem-
ory. Hence, an operating system requires more memory for a
program stack whenever the number of cores increases. On the
other hand, by employing non-preemptive task management

Figure 1. Multicore IncludeOS non-preemptive task management approach.

and avoiding context switching inside the operating system,
the operating system can achieve fairness through multicore
computing.

Distributing tasks among the virtual processors is another
aspect of task management, which affects energy efficiency.
The fact is that execution of a task on a logical processor when
its sibling is idle is faster than when its sibling is executing
a task too. This is due to how hyper-threading technology
shares execution resources of each core in order to execute
two or more separate threads concurrently[7]. In a processor
that supports hyper threading technology, running one task per
core enhances performance but at the same time the processor
consumes extra electricity. In order to save power, multicore
IncludeOS utilized sibling logical processors in one core and
wakes the logical processors up whenever they are needed.
This enables the hypervisor to change the power state of idle
cores to an energy efficient state.

C. Multicore Synchronization
A processor may require communicating with other proces-

sors in a system. A bootstrap processor in a multicore system
should be able to feed in outputs of logical processors. Shared
memory and message passing are the two main techniques for
inter-processor communication.

Multicore IncludeOS employs shared memory in order to
avoid the complexity and extra overhead of message passing
between logical processors. Our design utilized the advanced
programmable interrupt controller (APIC) ID in order to build
an indexed array of shared memory such that logical processors
access their own address space. Since multicore IncludeOS
implements a master-slave architecture in order to manage
application processors, each application processor plays a
producer role and stores its execution result to a particular
memory location identified by the APIC ID. The bootstrap
processor acts as a consumer and checks the particular location
for new data. Indeed, the bootstrap processor may employ
busy waiting in order to check whether producers have written
data in the agreed memory location. Although busy waiting
for a memory location is not an efficient method, multicore
IncludeOS utilized the bootstrap processor to execute tasks, as
well in order to avoid wasting the processor cycles for busy
waiting. In addition, the monitor/mwait mechanism eliminates
busy waiting and causes the processor entering a power op-
timized state while waiting for a change in memory[8]. One
should note that hypervisors need to support monitor/mwait
before operating systems can utilize it.

IV. RESULTS
In order to assess the performance and efficiency of mul-

ticore IncludeOS, we compared the workload performance

12Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 23 / 172

Number of tasks

Ex
ec

ut
io

n
tim

e
(S

ec
on

ds
)

1 36 72 144

2

4

6

8

10

12

14

16

18 Multicore IncludeOS
Multiple single core IncludeOS
Ubuntu VM: Pthread
Ubuntu VM: processes
Bare metal Ubuntu: Pthread
Bare metal Ubuntu: processes

(a)

0
20

00
0

40
00

0
60

00
0

80
00

0
10

00
00

12
00

00

Number of tasks

Pr
oc

es
so

r t
ic

ks

1 36 72 144

Multicore IncludeOS
Multiple single core IncludeOS
Ubuntu VM: Pthread
Ubuntu VM: processes
Bare metal Ubuntu: Pthread
Bare metal Ubuntu: processes

(b)

Figure 2. Execution time of prime number computation in multicore IncludeOS, multiple single-core IncludeOS, Ubuntu VM and bare metal Ubuntu with a
different number of tasks in the Intel server with 36 cores supporting hyper-threading technology. Fig. (a) illustrates the execution time of workloads in

seconds. Fig. (b) illustrates hypervisor processor ticks for each solution.

against a standard Ubuntu virtual machine, multiple single-
core IncludeOS instances, as well as a bare metal Ubuntu
installation. A series of experiments were conducted with the
same processor-intensive binary being executed on all multi-
threaded solutions. On the Ubuntu operating systems, paral-
lelism was achieved both through the POSIX thread (Pthread)
model and through standard processes scheduled by the kernel.
In the case of multicore IncludeOS, executing multiple tasks
simultaneously was achieved by making the master processor
distribute the tasks to each application processor. For single-
core IncludeOS, the parallelism was achieved by running one
Unikernel instance for each of the tasks.

Execution time and processor ticks of the virtual machines
were measured from the host in order to evaluate efficiency.
The task used in the experiments was to calculate the number
of prime numbers below a given large number, which is a
CPU-bound task. The tasks were distributed by sending the
given large number through UDP to the server for calculation.
Then the server calculated the largest prime N times using N
independent tasks. The sum of theses N numbers was returned
through UDP and the time for the whole process recorded. In
the special case of single-core IncludeOS, the large number
was sent through UDP to N single-core instances, each in-
stance returned a result through UDP and the sum was then
calculated.

The experiments were performed on two machines, each
with a different processor architecture. Table I shows the spec-
ification of both servers. One of the machines was equipped
with Intel CPUs, which support hyper-threading technology
while the second machine was equipped with AMD CPUs.
Our experiments were conducted with an increasing number of
task threads/application processors from 1 to twice the amount
of available physical CPUs. In the case of the Ubuntu VM, the
number of threads or processes was varied while with multiple
single-core IncludeOS instances, the number of IncludeOS

virtual machines was varied. Each experiment was repeated
30 times.

TABLE I. SERVERS SPECIFICATION.

Platform segment Dell server Dell server

Processors Intel(R)
Xeon(R) CPU E5-2699 v3 AMD Opteron 6234

Processor’s frequency 2.3 GHz 2.4 GHz
Memory 128 GB 128 GB
Number of processor sockets 2 4
Number of cores 36 48
Number of logical processors 72 48

Fig. 2a shows the execution time of the prime number
calculation workload for six different multi-threading solutions
on the Intel server. One might expect the execution time to be
roughly independent of number of tasks when there are less
tasks than physical cores. The number of cores is here 36, as is
indicated by the gray vertical line. However, this is not the case
for the Ubuntu VM, the execution time increases by roughly
50% when increasing the number of tasks from 1 to 36. For
the other systems, the increase in time is not as profound, but
on the other hand it is not flat as would be expected if the
system utilized the parallelism of the physical cores perfectly.
The experiments below 36 cores are the most important ones
as they do not involve overprovisioning of the cores. Except
for the case of very few cores, multicore IncludeOS performs
better than the Ubuntu VM and equally well as bare metal
Ubuntu, which is included as a reference. It also performs
better than the single core IncludeOS solution.

When the number of tasks increases from 36 to 72, some
of the jobs needs to share an arithmetic logic unit (ALU) as
there are only 36 hyper-threading cores, and the execution time
is almost doubled. The slope is even steeper from 72 to 144
tasks and a bit larger than 2, which makes sense since then
time-sharing is unavoidable. In these regions, the multicore

13Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 24 / 172

IncludeOS solution is even more efficient than its Ubuntu
counterparts.

It was assumed that using Pthreads would be the most
efficient way to run parallel tasks using a Linux OS and that
would give the most fair comparison. As Pthreads are known
to induce some overhead in certain cases, we also ran the
tasks forking ordinary processes and this turned out to be more
efficient in our case. This can be seen in Fig. 2a, the process
results for the Ubuntu variants outperforms the Pthread results.

Fig. 2b shows the total number of processor ticks per-
formed by the hypervisor during the same experiments, which
is a measure of the grand total of CPU resources needed by
each of the solutions in order to perform the same calculation.
It depicts that multicore IncludeOS consumes a similar amount
of processor ticks as Ubuntu VM and bare metal Ubuntu
processes which is a showcase of energy efficiency. When
there is no overprovisioning of cores, all the solutions consume
roughly equally many CPU ticks. But when the number of
tasks exceeds 36, the multiple single-core instances and the
Phtread based solutions seems to introduce an overhead in
terms of the need for more CPU ticks in order to consume
the given workload.

In order to find out how multicore IncludeOS performs
on another common processor architecture, we repeated the
experiments on an AMD server. Fig. 3 illustrates the execution
time of the same binary. The number of cores is 48 and there
is roughly just a 10% increase in execution time when going
from 1 to 48 tasks. There is no hyper-threading and hence
the doubling of execution time between 48 and 96 tasks is
as expected. For 30 cores and less, the Ubuntu VM performs
somewhat better than multicore IncludeOS, but from then on
the latter performs better. The single core IncludeOS is doing
slightly better than multicore IncludeOS and the reference
results of the bare metal solution is generally performing better
on this platform.

As can be seen from Fig. 3, the results of the Ubuntu
operating systems are quite similar when running parallel tasks
as processes as when using Pthreads. For the Intel architecture,
processes were most efficient.

V. DISCUSSION

The results from the Intel and AMD servers demonstrate
that multicore IncludeOS is an energy efficient operating
system, which can handle large workloads efficiently compared
to standard operating systems. When comparing our multicore
IncludeOS solution to systems running a full-blown operating
system like Ubuntu, it must be noted that the latter is much
more complex and allows the programmer to utilize multicore
computing in numerous ways. However, the results show
the potential efficiency when developing a fully functional
multicore IncludeOS kernel.

Multicore IncludeOS did, predictably, not perform as well
as other solutions for small workloads that do not require many
processor cores. This is due to the multicore IncludeOS design
in that it boots up with only one core and as soon as it receives
requests the bootstrap processor will wake up the application
processors. Finally, after the cores have no workload left, they
change their state to halted mode in order to save energy. With
this approach, multicore IncludeOS does not use processors
while there is no workload for them. The approach, however,
requires a constant time for waking up cores, which means

Number of tasks

Ex
ec

ut
io

n
tim

e
(S

ec
on

ds
)

1 48 96

10

15

20

25

30

35

40

45

50 Multicore IncludeOS
Multiple single core IncludeOS
Ubuntu VM: Pthread
Ubuntu VM: processes
Bare metal Ubuntu: Pthread
Bare metal Ubuntu: processes

Figure 3. Execution time of prime number computation with different
number of tasks in the AMD server with 48 cores.

that execution time increases and this is noticeable for few
and short tasks.

Apart for the case of few tasks, multicore IncludeOS
performed better than the Ubuntu VM operating system on
both Intel and AMD. For experiments where the number
of tasks exceeded the number of physical cores, multicore
IncludeOS even performed slightly better than the reference
experiments running Ubuntu on a physical server on Intel.
A possible reason for this behaviour could be a distinction
between the multi-threading mechanisms of the KVM kernel
modules and the plain Linux kernel.

For the Intel server, the multicore IncludeOS solution
performed better than single core IncludeOS for most of the
experiments and just as good for the rest. An additional benefit
of the multicore solution is that there is no need for the
management of and communication between a potentially large
number of separate virtual machines.

VI. RELATED WORK

There are today different approaches for Unikernel op-
erating systems where some of them target specific use
cases. Recent research on achieving a minimal operating
system footprint have led to development of ClickOS[9], [10],
Graphene[11], HermitCore[12], Drawbridge[13], HaLVM[14],
OSV[15] and MirageOS[16], which are in varying levels of
maturity. ClickOS aims to construct network appliances such
as firewalls and loadbalancers and it does not support multiple
processes. Graphene is a Linux compatible library OS, which
implements a multi-process environment by creating multiple
libOS instances that collaborate with each other in order to
create POSIX abstraction. The HermitCore as a Unikernel
operating system targets high-performance computing (HPC)
and it uses multi-kernel approach for providing parallelism.
Drawbridge represents Microsoft Windows library OS in which
a fixed set of abstractions connect the library OS to the
host kernel in order to achieve minimal footprint. HaLVM
is utilizing the Glasgow Haskell Compiler toolsuite to enable

14Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 25 / 172

creating a lightweight virtual machine for the Xen hypervisor.
The Haskell compiler is capable of equipping the virtual
machines with multicore capabilities.

The OSV project also implemented multicore computing
for its Unikernel operating system. The OSV operating system
is spinlock free operating system, but it is not clear how
spinlock was avoided by OSV. Multicore IncludeOS dealed
with race conditions through using the atomic operations and
locking bus over critical sections.

In addition, the MirageOS project wants to provide an
efficient runtime for single core computing with a common
immutable data store so that a large cluster of cloud-based
virtual machines operate over data. In this solution, virtual
machines will share data instead of logical processors. Mirage
project aims to run clusters of MirageOS through multiscale
compiler support in order to adopt a communication model
with hardware platforms constraints [16].

As illustrated in Fig. 2a, building multiple operating system
instances in a cluster requires extra time to handle workloads
due to increased overhead for communication between virtual
machines as well as resource consumption. Sharing the data
between the virtual machines will introduce new challenges in
the aspect of implementation and security. As demonstrated, a
multicore operating system can efficiently achieve the same
level of parallelism but with lower resource consumption.
It is notable that this approach increases performance for
distributed systems.

VII. CONCLUSION

Unikernels are designed to improve efficiency and perfor-
mance but they need to utilize multicore capabilities in order
to maximize performance and energy efficiency. This paper
demonstrated how a multicore Unikernel approach leads to
a greener cloud by adapting multicore computing to virtual
environments.

The experiments demonstrated that multicore IncludeOS
represents an energy efficient and cloud-optimized operating
system for large workloads. Hence, it presents a real life
solution as a lean and energy efficient cloud operating system
with an extremely small footprint. The design principles of
multicore IncludeOS improved the performance of the virtual
machine as well as energy efficiency in comparison with
standard operating systems and multi-kernel solutions.

A. Future Work
The multicore capability demonstrated in this paper was

developed as a modular service for IncludeOS, which enable
IncludeOS to easily detach it if it is not needed by the
developer. Although the master/slave based structure brings
flexibility to IncludeOS, it also has disadvantages such as
adding extra time for waking up application processors. In a
follow-up project, multicore IncludeOS will be embedded into
the IncludeOS kernel by which a significant wake up time for
small to medium workloads is eliminated. In addition, mul-
ticore capability can take advantage of the x2APIC standard
in order to address more than 255 cores in a virtual machine,
which would enable IncludeOS to utilize many-core processors
in the near future. Security study of Unikernels also requires
further research in order to improve reliability of Unikernel
operating systems.

REFERENCES
[1] M. J. Flynn and P. Hung, “Microprocessor design issues: Thoughts

on the road ahead,” IEEE Micro, vol. 25, no. 3, pp. 16–31, 2005.
[Online]. Available: http://dx.doi.org/10.1109/MM.2005.56

[2] Xenproject. Unikernels. [Online]. Available: http://wiki.xenproject.org/
wiki/Unikernels [retrieved: Jan, 2017]

[3] A. Bratterud, A. A. Walla, H. Haugerud, P. E. Engelstad, and K. Beg-
num, “Includeos: A minimal, resource efficient unikernel for cloud ser-
vices,” in 2015 IEEE 7th International Conference on Cloud Computing
Technology and Science (CloudCom), pp. 250–257, Nov 2015.

[4] H. Stockinger, M. Pagni, L. Cerutti, and L. Falquet, “Grid approach
to embarrassingly parallel cpu-intensive bioinformatics problems,” in
2006 Second IEEE International Conference on e-Science and Grid
Computing (e-Science’06), pp. 58–58, Dec 2006.

[5] M. Raynal, Concurrent Programming: Algorithms, Principles, and
Foundations. Springer Publishing Company, Incorporated, 2012.

[6] A. A. Kamil, “Single program, multiple data programming for
hierarchical computations,” Ph.D. dissertation, EECS Department,
University of California, Berkeley, Aug 2012, [retrieved: Jan, 2017].
[Online]. Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/
2012/EECS-2012-186.html

[7] Intel 64 and IA-32 Architectures Software De-
velopers Manual:Basic Architecture, Intel Corporation,
Sep. 2016, [retrieved: Jan, 2017]. [Online]. Avail-
able: http://www.intel.com/content/dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-software-developer-vol-1-manual.pdf

[8] Intel 64 and IA-32 Architectures Software Developers Manual:
System Programming Guide, Part 1, Intel Corporation,
Sep. 2016, [retrieved: Jan, 2017]. [Online]. Available:
http://www.intel.com/content/www/us/en/architecture-and-technology/
64-ia-32-architectures-software-developer-vol-3a-part-1-manual.html

[9] J. Martins, M. Ahmed, C. Raiciu, and F. Huici, “Enabling fast, dynamic
network processing with clickos,” in Proceedings of the Second ACM
SIGCOMM Workshop on Hot Topics in Software Defined Networking,
ser. HotSDN ’13, pp. 67–72. New York, NY, USA: ACM, 2013.
[Online]. Available: http://doi.acm.org/10.1145/2491185.2491195

[10] J. Martins and et al., “Clickos and the art of network function
virtualization,” in 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), pp. 459–473. Seattle, WA:
USENIX Association, Apr. 2014. [Online]. Available: https://www.
usenix.org/conference/nsdi14/technical-sessions/presentation/martins

[11] C. Tsai and et al., “Cooperation and security isolation of library
oses for multi-process applications,” in Proceedings of the Ninth
European Conference on Computer Systems, ser. EuroSys ’14, pp.
9:1–9:14. New York, NY, USA: ACM, 2014. [Online]. Available:
http://doi.acm.org/10.1145/2592798.2592812

[12] S. Lankes, S. Pickartz, and J. Breitbart, “Hermitcore: A unikernel
for extreme scale computing,” in Proceedings of the 6th International
Workshop on Runtime and Operating Systems for Supercomputers,
ser. ROSS ’16, pp. 4:1–4:8. New York, NY, USA: ACM, 2016.
[Online]. Available: http://doi.acm.org/10.1145/2931088.2931093

[13] D. E. Porter, G. Hunt, J. Howell, R. Olinsky, and S. Boyd-
Wickizer, “Rethinking the library os from the top down,” in
Proceedings of the 16th International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS). Association for Computing Machinery, Inc., March
2011. [Online]. Available: https://www.microsoft.com/en-us/research/
publication/rethinking-the-library-os-from-the-top-down/

[14] Galois-Inc. Halvm. [Online]. Available: https://galois.com/project/
halvm/ [retrieved: Jan, 2017]

[15] A. Kivity and et al., “Osv—optimizing the operating system for virtual
machines,” in 2014 USENIX Annual Technical Conference (USENIX
ATC 14), pp. 61–72. Philadelphia, PA: USENIX Association, Jun.
2014. [Online]. Available: https://www.usenix.org/conference/atc14/
technical-sessions/presentation/kivity

[16] A. Madhavapeddy, R. Mortier, J. Crowcroft, and S. Hand,
“Multiscale not multicore: Efficient heterogeneous cloud computing,”
in Proceedings of the 2010 ACM-BCS Visions of Computer
Science Conference, ser. ACM-BCS ’10, pp. 6:1–6:12. Swinton,
UK, UK: British Computer Society, 2010. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1811182.1811191

15Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 26 / 172

An Automated Lightweight Framework for Scheduling and Profiling
Parallel Workflows Simultaneously on Multiple Hypervisors

Maruf Ahmed, Albert Y. Zomaya
School of Information Technologies, The University of Sydney, Australia

Email: mahm1846@uni.sydney.edu.au, albert.zomaya@sydney.edu.au

Abstract—This work presents a lightweight framework for per-
forming automated experiments with the execution time and
performance variations of parallel workflows. The execution time
variation of tasks due to consolidation is a barrier to efficiently
scheduling them onVirtual Machines (VMs). In data centers, VMs
are usually consolidated to increase resource utilization. However,
this causes resource contention and performance degradation
among the VMs. To address this issue, it is necessary to perform
experiments with large numbers of tasks and schedules. There
exists no framework particularly designed for this type of
experiment. The proposed framework makes it easy to conduct
experiments with large numbers of task execution patterns.
Moreover, it is capable of profiling the execution time variation of
each task of a workflow. The design principles, implementation
issues and trade-offs of the framework are discussed in detail
here. The effectiveness of the framework is demonstrated with
a data-intensive scientific workflow, which processes theGalactic
Arecibo L-band Feed Array HI (GALFA-HI) survey data with
the Montage toolkit. With this framework, experiments have
been simultaneously run on three different hypervisors and
the execution time variation of each task retrieved. The three
hypervisors are the VMware ESXi 5.5, XenServer 6.5 and Xen
4.6. This framework will enable researchers to perform large
scale experiments with the execution time variations of parallel
tasks on multiple hypervisors and the Cloud.

Keywords–Cloud; virtualization; consolidation; performance;
scheduling framework.

I. I NTRODUCTION

Virtualization plays an important part for both the data
centers and Cloud. Among other advantages, it allows consol-
idation of Virtual Machines(VMs) in data centers. To put it
simply, consolidated means running multiple VMs simultane-
ously on the same server through virtualization. It is a common
technique to increase resource utilization, reducing operational
cost and energy consumption of data centers. However, the
main drawback of consolidation is performance variation, due
to resource contention and interferences among the VMs.

More and more applications and workflows are being
deployed on the Cloud. However, scheduling of scientific
applications and workflows on the Cloud is still problematic
because of the task execution time variation. On consolidated
servers, the task execution finish time may very unexpectedly,
thus it is difficult to determine which applications are suitable
to be consolidated for better performance. Recently, many
works have focused on this issue [1]–[5].

These works rely on experimental results with consolidated
applications, to estimate how they would react to resource
contention in general. Thus, they require the running of a
large number of experiments, involving scheduling various
applications and workflows on VMs. However, there exists no
standard framework to manage and run such large scale ex-
periments. This work proposes a framework to easily manage

and run large numbers of experiments with complex schedules
and resource usage patterns on the Cloud

There are many large scale Cloud management and main-
tenance software stacks available for modern data centers [6]–
[17]. Although they are well-equipped for performing complex
maintenance, fault tolerance, and data backup services, they are
not adequate for performing experiments with task scheduling
and resource usages patterns of VMs for several reasons:

i) These software stacks are mainly designed for providing
the Cloud services, not for performing sophisticated experi-
ments with workloads. For example, they have special features
for providing fault tolerance, VM replication, migration and
high availability of VMs to a data center. The software stacks
do not offer any built-in features for performing complex
experiments with application scheduling patterns on the Cloud;

ii) They have many modules, and they require a lot of
time and effort to master. System administrators require a lot
of experience to manage these systems efficiently. On the other
hand, most researchers are concerned with a quick and easy
setup of experiments. It takes a lot of time to modify a large
piece of software even though they do not provide friendly
interfaces to conduct scientific experiments easily;

iii) Experiments with scheduling of parallel workflow on
VMs often require modification the software stack of the
maintenance software. Making such changes to a massive
software stack with many modules is a cumbersome process.
The proposed framework is designed to bypass the interaction
with management software and run complex task scheduling
experiments easily on the Cloud.

Recently, the understanding interactions among the VMs
and improving the performance of tasks has received a signif-
icant amount of attention [1]–[5][18][19]. A simple construct
of a framework, which can execute the parallel workflow on
VMs residing on multiple servers can make such experimental
processes much easier. Some features of the framework and
contribution of this paper are briefly stated below:

i) A lightweight framework for profiling execution time
variations of parallel workflow on the Cloud has been intro-
duced. It provides a simple interface for conducting complex
experiments on VMs and scheduling parallel applications
across on multiple hypervisors. The primary objective is to
provide an accessible platform to carry out complex experi-
ments on the Cloud.

It can be used independent of any data center management
software, thus making the general experimental process easier.
There are many open source management software options.
However, they have too many components and modules.

ii) They are difficult to setup for complex experiments. This
framework is lightweight and easy to handle, making it easier
to perform experiments with complex workload patterns.

16Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 27 / 172

iii) The framework allows researchers to specify an exact
sequence of execution of workload pattern on VMs. A human
readableworkload descriptorfile stores all the task patterns.
The exact sequence of tasks that is to be executed on VMs
is defined in this file. Cloud management software has many
layers and hides many complexities from the users. It can be
convenient for system administrators, who are only concerned
with the outcome. On the other hand, during experiments
measuring the impact of execution of each task may be
necessary. Extensive experiments will help to understand the
VM’s behavior under consolidation and identify any anomaly
of the schedule more quickly;

iv) Another feature of the framework is thecommand
descriptorfile. Parallel applications usually consist of several
smaller tasks, and various command sets are required to run
them. The command descriptor file contains the actual com-
mands, and one mnemonic is issued against each set of com-
mands. Thus, the workload descriptor file remains small and
workload patterns are easy to create or modify. The command
descriptor file also allows for running complex applications
like web servers or database servers. The framework scans
the workload file twice. During the first scan, all mnemonics
are replaced, and in the second scan actual commands are
executed. Thus, adding or modifying real command sets is
much easier as they are stored only in one place, in the
command descriptor file;

v) The framework can run experimental schedules and re-
source usage patterns on multiple hypervisors simultaneously.
It uses theSecure Shell(SSH) to connect to virtualized servers,
instead of the API set. The use of SSH ensures flexibility, and
any hypervisors can be connected. On the other hand, using
multiple API for various hypervisors is a cumbersome process.
The SSH gives the ability to connect to any Cloud;

vi) The framework is implemented entirely in Java and
can be run on anyoperating system(OS). It can be used as a
stand-alone application or plugged-in with any other Java task
scheduling program. It is lightweight, completely portable and
requires no installation on the system.

To the best of our knowledge, there is no other lightweight
framework written in any language, specifically to do experi-
ments with execution time variation of parallel workflows on
VMs. This framework is independent of and complementary to
Cloud management software. While the management software
can be used for providing Cloud services, this framework can
be used to run experiments with workload patterns on the
Cloud.

The effectiveness of the framework is demonstrated with
a real data-intensive workflow, which processes theGalactic
Arecibo L-band Feed Array HI(GALFA-HI) [20] survey data
with the Montage toolkit [21]. TheIncremental Consolidation
Benchmarking Method(ICBM) [22] has been used to analyze
the tasks of the workflow. Originally, the ICBM was introduced
to analyze the execution time variations of individual tasks
on VMs. In this work, it is extended to analyze the tasks of
scientific workflow which has not been done previously.

The rest of the paper is organized as follows. Section II
describes the problem with an example. Design goals are
discussed in Section III, followed by the framework design in
Section IV. Section V discusses the workflow and benchmarks
used, along with experimental setup. Section VI gives the
results of experiments with task execution patterns on three

hypervisors. Section VII provides a brief overview and short-
comings of complementary works. A discussion about future
work and conclusion are in Section VIII.

II. PROBLEM DESCRIPTION

The task execution time variation due to VM consolidation
is one of the major problems for the Cloud. It can be even more
problematic for parallel applications and scientific workflows,
because of having task dependencies. Fig. 1 shows an example
of workflow, which processes theGALFA-HI surveydata [20]
using theMontagetoolkit [21]. It is a data-intensive workflow
that creates a mosaic image of a part of the Milky Way galaxy
from some data cubes. The data cubes are released at regular
intervals, as a part of an ongoing survey. Therefore, this isa
widely used workflow in the field of astronomy. It has 16 tasks
(t1 to t16) on 8 levels (l1 to l8). Fig. 2 shows one possible
schedule of these tasks on a set of co-located VMs.

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

���������
���������
���������
���������

���������
���������
���������
���������

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����

����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

:

:

:

:

:

:

:

:

Data Aggregation

Data Partitioning

Data Aggregation

Pipeline

mGetHdr

mMakeHdr

mAddCube

mImgtbl

mViewer

mProjectCube

mShrinkCube

16

14

13

12111098

7

6

54321

t

t

t

ttttt

t

t

ttttt

t15

l

l

l

l

l

l

l

1

2

l3

4

5

6

7

8

Figure 1. A workflow: GALFA-HI data processing with the Montage toolkit.

In Fig. 2, the tasks of the GALFA-HI workflow (Fig. 1)
are scheduled on the VMs of a single server. Here, the server
has eight simultaneously running VMs. As the tasks of the
workflow have internal dependencies, they need to be sched-
uled hierarchically. The tasks that can be run simultaneously
are grouped together in one level. The tasks of the level below
are dependent on tasks of the immediate upper level.

Fig. 2 depicts that the tasks are being executed level by
level on the VMs of a single server. There are VMs of three
colors on the server. Light blue VMs are where the tasks of
GALFA-HI are being executed. In a consolidated server, tasks
from other applications are also being executed they are shown
in red. Finally, white VMs represent empty VMs, where no
tasks are being run at present. The tasks on additional VMs
(shown in red) are responsible for resource contention and
performance degradation of tasks of GALFA-HI workflow.

17Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 28 / 172

14

13

121110

t

t

ttt

16

15

98

7

t

t

tt

t

6t

4321 5tt t t tl

l

l

l

l

l

l

l

1

2

3

4

5

6

7

8

vmvm vm vm vm vm vm vmvmvmvmvm

t

vm 2 31 4 5 6 7 8

Hypervisor

Figure 2. Scheduling GALFA-HI workflow on VMs.

In this case, performance deterioration of a task can have a
cascading effect on the other tasks of the workflow, because of
the task dependencies. Furthermore, the performance of tasks
of the critical path would directly affect the makespan.

To efficiently schedule workflows on the Cloud it is
necessary to take the execution time variations into account.
Presently, there is no theoretical solution for this issue.There-
fore, most recent works rely on various heuristics [1]–[5].
To design such heuristic solutions, a significant amount of
experimental data may be required. This framework makes it
easier to carry out large-scale experiments with VM schedules
and retrieves data. The obtained data can help to design better
heuristics algorithms for the system. One method to obtain
such critical task execution time variation data is presented
in [22], called the ICBM. This work further shows that the
ICBM can be extended to scientific workflows on the Cloud.

A. ICBM for workflow
Originally, the ICBM was introduced to retrieve the exe-

cution time variations of VMs on consolidated servers [22].
However, the ICBM has not been used with workflows before.
This work shows that the concept of ICBM can be applied
to parallel workflows, too. The concept of ICBM involves
increasing resource usage of a virtualized server, To system-
atically cause execution time variations on VMs. This means
that for a parallel application the same resource usage pattern
has to be applied to each task. It is described next.

Fig. 3 shows the steps of ICBM for applying a CPU-
intensive resource usages pattern on the GALFA-HI workflow.
Initially, only tasks of the workflow are being run on the server.
It is shown on Fig. 3a, at this stage tasks from no other appli-
cation are run on the server. Thus, the execution finish timesof
tasks of the workflow are obtained, without interferences from
VMs belonging to other tasks. Afterward, the workflow is run

8

7

6

4

5

3

2

l

l

l

l

l

l

l

1l

5432 vmvmvmvm1vm

t

Hypervisor

1211109

5432

tttt

ttt1

6

7

8

13

14

15

t

t

t

t

t

t

t

16t

(a) CPU resource usages pattern: Stage 1.

76 vmvm

8

7

6

4

5

3

2

l

l

l

l

l

l

l

1l

5432 vmvmvmvm1vm

Hypervisor

1 t 2t 3t 4t t5

6t

7

8 t tt

t

9 10 11t t12

t13

t14

15t

16t

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

(b) CPU resource usages pattern: Stage 2.

9876 vmvmvmvm

Hypervisor

vm1 vm vm vm vm2 3 4 5

l1

l

l

l

l

l

l

l

2

3

5

4

6

7

8 CPUCPU

CPUCPU

CPUCPU

CPUCPU

CPUCPU

CPUCPU

CPUCPU

CPUCPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

t16

t15

14t
13t

12tt11109

t

t tt8

7

t6

5tt4t3t2t1

(c) CPU resource usages pattern: Stage 3.

13121110 vmvmvmvm9876 vmvmvmvm

Hypervisor

vm1 vm vm vm vm2 3 4 5

l1

l

l

l

l

l

l

l

2

3

5

4

6

7

8

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPUCPU

CPU

CPU

CPU

CPU

CPU

CPU

CPUCPU

CPU

CPU

CPU

CPU

CPU

CPU

CPUCPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPUCPU

CPUCPU

CPUCPU

CPUCPU

CPUCPU

CPUCPU

CPUCPU

CPUCPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

t16

t15

14t
13t

12tt11109

t

t tt8

7

t6

5tt4t3t2t1

(d) CPU resource usages pattern: final stage.

Figure 3. Applying CPU-intensive resource usages pattern on GALFA-HI
workflow.

again. However, in this stage, two additional CPU-intensive

18Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 29 / 172

tasks are executed at each level of execution. This is referred
to as stage 2 and shown in Fig. 3b.

At stage 3, four additional CPU-intensive VMs are being
run along with the workflow (Fig. 3c). Thus, the workflow is
repeatedly run and CPU-intensive VMs are increased system-
atically. This process is repeated until all VMs of the server are
utilized, and that is the final stage of the experiment. Fig. 3d
shows the final stage for this particular server configuration.
This server can accommodate a maximum of 13 VMs, and all
of them have been used. Tasks of the workflow are occupying
five VMs, while the remaining eight are CPU-intensive VMs.

8

7

6

4

5

3

2

l

l

l

l

l

l

l

1l

5432 vmvmvmvm1vm

Hypervisor

vm vm vm vm6 7 8 9 vm vm vm vm10 11 12 13

Mem

Mem

Mem

Mem

Mem

Mem

Mem

MemMem

Mem

Mem

Mem

Mem

Mem

Mem

MemMem

Mem

Mem

Mem

Mem

Mem

Mem

MemMem

Mem

Mem

Mem

Mem

Mem

Mem

Mem1 t 2t 3t 4t t5

6t

7

8 t tt

t

9 10 11t t12

t13

t14

15t

16t

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

MemMem

MemMem

Mem

(a) Mem. resource usages pattern: final stage.

8

7

6

4

5

3

2

l

l

l

l

l

l

l

1l

5432 vmvmvmvm1vm

Hypervisor

vm vm vm vm6 7 8 9 vm vm vm vm10 11 12 13

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/OI/O

I/O

I/O

I/O

I/O

I/O

I/O

I/OI/O

I/O

I/O

I/O

I/O

I/O

I/O

I/OI/O

I/O

I/O

I/O

I/O

I/O

I/O

I/OI/O

I/O

I/O

I/O

I/O

I/O

I/O

I/OI/O

I/O

I/O

I/O

I/O

I/O

I/O

I/OI/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O1 t 2t 3t 4t t5

6t

7

8 t tt

t

9 10 11t t12

t13

t14

15t

16t

(b) I/O resource usages pattern: final stage.

13121110 vmvmvmvm9876 vmvmvmvm

Hypervisor

vm1 vm vm vm vm2 3 4 5

l1

l

l

l

l

l

l

l

2

3

5

4

6

7

8 Mem

Mem Mem

Mem Mem

Mem

Mem

MemCPU

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

Mem

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

t16

t15

14t
13t

12tt11109

t

t tt8

7

t6

5tt4t3t2t1

(c) CPU-Mem. resource usages pattern: final stage.

Figure 4. Various resource usages pattern applied on GALFA-HI workflow.

The ICBM divides experiments into stages so that the tasks
of a workflow suffer the least amount of interference at stage
1 (Fig. 3a) while they face the most CPU-intensive resource
usage contention at the final stage (Fig. 3d). Then, the entire
procedure is repeated for another resource intensive VMs, like

memory (Fig. 4a) and I/O (Fig. 4b). Afterward, the steps are
repeated for combinations of resources, too. One example of
combination of resources is shown in Fig. 4c, it is for CPU-
Memory. Here, the process is repeated as described above.
However, one CPU-intensive and one memory-intensive VM
have been added at each stage, instead of two CPU-intensive
ones. Other combinational resource contentions, like CPU-I/O
and Memory-I/O, are created in the same process.

From the above discussion, it is clear that experimental
procedures like the ICBM require handling large numbers of
task schedules. Furthermore, the exact sequence of task exe-
cutions on VMs and their mutual performance inferences due
to consolidation, have to be known precisely. Although, many
tasks and resource scheduling software exist, none of them are
designed to do experiments with task execution time variations
on VMs. They use high-level interfaces and hide almost all
scheduling complexities from the user. That may be convenient
for average Cloud users, however it is not too beneficial for
researchers conducting experiments with resource contention
and consolidation. The primary objective of this work is to
present a low-level, lightweight framework for experimenting
with complex workload patterns automatically. This framework
needs to act as both a scheduler and profiler of task execution
times and be able to connect to any Cloud. In this work, the
design goals, implantation issues and experimental results of
the framework are discussed in detail.

III. M OTIVATION AND DESIGN GOALS

This section discusses the primary goals and trade-offs
considered while designing and implementing the framework.

Easy to perform experiments with workflow: The first
priority is to provide an easy interface to perform complex
experiments with the workflows on virtualized servers. There
exist many complex Cloud management systems and program-
ming paradigms. However, they are not designed for carrying
out experiments with VM consolidation. The new framework
should be able to perform complex experiments on the Cloud,
independent of any management software. This work aims to
provide an easy interface to design and carry out experiments
with workflows on virtualized servers so that, the performance
variation of each task can be profiled independently. The main
application of the framework would be to discover the rela-
tionship among the execution time variations of consolidated
VMs and resource utilization of the server.

Resource usages patterns:Experiments with consolida-
tion are sensitive to VM placements on the server. To capture
the effect of consolidation on VMs, it is necessary to create
complex workload patterns and execute the tasks accordingly
on VMs. Therefore, the proposed framework should provide
an easy way to run the tasks according to resource usages
patterns, described previously. A human readable file should
contain all the workload patterns so that they are easy to create
and modify. Researchers would create those files, exactly
the way they want the tasks to be executed on the system.
Thus, the reaction of the system to resource contentions and
consolidation can be examined carefully.

Easy to check the workload patterns:Executing a task of
the workflow usually requires several command sets. Managing
a lot of commands in one workload pattern file is often
problematic. There should be an easy way to rectify any
potential error in the workload pattern. One way to achieve

19Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 30 / 172

Reomte hypervisors
Descriptor

Profile

Descriptor

VMware

Xen

H/W data

Data

SSH

WorkloadCommand

vm vm vm vm...

XenServer

...

...

vm vm vm vm

vmvmvmvm

Workload

Manager Mod.

Command
Mapping Mod. Loader Mod. Loader Mod.

File File

Connector Mod.

Formatter Mod.Schedular Mod.

H/W
Config

File

Stored
Data
File

Figure 5. Modules of the framework.

this is not to inscribe full commands in the workload file,
rather they are stored in a particular file, separately. Then, the
workload file is created only with a short set of mnemonics
During runtime, the mnemonics are mapped to actual larger
command sets. The process is described in more detail in the
implementation section (Section IV).

Connection to any Cloud technology:Modern data cen-
ters have a countless number of servers, and various hypervi-
sors are deployed on them. It is necessary for the framework
to be able to connect to a large number of VMs running
on multiple hypervisors. Therefore, the framework needs a
method with small connection overhead, and the ability to run
tasks on any Cloud. The implementation section describes how
this is achieved.

Easy to deploy:The framework should be easily deploy-
able on a wide variety of systems. There are many operating
systems today; therefore the framework should be as universal
as possible. It should not be dependent on any Cloud man-
agement system or OS, thus, making it possible to initiate
experiments from any machine, regardless of the underlying
OS. Use of a common framework to perform experiments
would give researchers the opportunity to share and collaborate
with experimental results more widely.

In this section, motivations and design goals of the frame-
work are described. The next section describes, how those
goals are achieved during implementation.

IV. I MPLEMENTATION OF THE FRAMEWORK

This section describes the implementation process of the
framework to achieve the design goals of the previous section.
The framework is divided into seven modules, and each
module performs a particular job. All modules are shown in
Fig. 5 and described below. Solid lines represent data transfer
paths, while dashed lines represent command transfer paths.

The command mapping module:A workflow consists
of many tasks, and each task requires a set of commands
to execute properly. Inscribing all commands to a workload
file is counter-productive for several reasons. It makes the
workload file large, and it becomes difficult to inspect the
workload patterns. Furthermore, if an error is found in one
of the commands, it has to be corrected in all occurrences of

the workload file. This pitfall can be avoided by storing all the
actual commands in a separatecommand descriptorfile.

This file stores a mnemonic against a full set of real com-
mands, then the workload pattern files are created only with
these mnemonics. During runtime, first the command mapping
module loads all the actual commands to memory, then all
mnemonics are replaced with their actual command sets in
the workload file. This design choice makes the workload file
manageable in size and easier to verify.

The workload loader module: All the experimental re-
source usage patterns are stored in aworkload descriptorfile,
which is a human readable file containing only mnemonics.
This file describes, line by line, the dependencies and exact
execution sequence of the tasks. Tasks that would be running
simultaneously are stored in one line while, the tasks depen-
dent on them are written in the line below. The workload loader
module scans the tasks line by line so that they can be executed
on the VMs exactly in the order intended on the workload file.
This makes it easier to identify how a virtualized system reacts
to a particular pattern of resource usages.

The hardware configuration loader module: To exe-
cute the sequence of workload patterns correctly, some basic
hardware information is required. The necessary hardware
configuration of all the VMs and physical host are stored in
the hardware configurationfile. The arrangements of VMs on
physical hosts along with their MAC addresses are stored in
this file. Thehardware configuration loadermodule fetches
this data from the file, so that the framework can utilize it to
connect and execute workloads on the VMs.

The scheduler module: The scheduler modulecollects
information from the above three data loading modules, and
allows the tasks to be executed on VMs. At first, memory
mapped commands and hardware configuration file are used,
to check the consistency of the workload descriptor file. In the
case of any inconsistency, the process has to be terminated.
After consistency checking, the scheduler issues the necessary
commands to VMs through the connecting module, which is
described next. It is designed as a separate module, so that
it can be modified to implement any custom task scheduling
algorithm for VMs if it is required.

The connecting module:Another design goal is to make

20Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 31 / 172

the framework as universally usable as possible. The frame-
work makes all connections through an SSH implementation in
Java, called the JSch [23]. Thus, the entire framework is written
in Java and can be run on any OS. It is completely portable and
requires no installation. The SSH is chosen over API, to keep
the framework lightweight. It allows the framework to connect
to multiple hypervisors simultaneously, without having towrite
codes for multiple API. Furthermore, support for any new
hypervisor can be easily added, without code modification.

The data formatting module: Raw data is sent back
through the SSH channels; these data need to be formatted
to use them with other applications. This module formats and
stores the experimental results in output files. The data is
analyzed later to discover the relation among resource usages
patterns and task execution time variations.

The profile manager module:This is responsible for co-
ordination among all the modules so that they can work seam-
lessly. The profiler is modular in design so that a module can
be customized easily if required. Also, adding new modules
for future functionality is much easier in this way.

The next section describes the algorithm for the framework,
to demonstrate how those modules work together.

A. Algorithm for the framework
Fig. 6 shows the algorithm for the framework. First, all

commands are loaded on theCOMM-LIST from the command
descriptor file. The command loader module does this, by
mapping all commands to their corresponding mnemonics in
memory (lines 1-2). Then, the workload loader module parse
the workload descriptor file, and loads workload pattern on
the WL-LIST (lines 3-4). The WL-LIST contains a detailed
execution plan, for both the parallel application and resource
contention patterns. Examples of such patterns are shown in
Figs. 3 and 4. Afterward, the hardware configuration data is
loaded from the file toVM-LIST (lines 5-6). The VM-LIST
contains all the data required for connecting to VMs during
experiments.

Next, a for loop (lines 7-21) processes the WL-LIST, line
by line. Recall that the tasks that are to be run simultaneously
are written in a single line. Then, an innerfor loop (lines
8-17) removes one task at a time from the line and checks
for consistency against hardware data and commands. The
consistent tasks are then stored in a linked list, called theRUN-
LIST. On the other hand, if a task is not compatible then the
application exits. Once all the tasks of a line are processed,
the inner for loop exits. Then, all the mnemonics of RUN-
LIST are replaced with the actual command set, with the help
of COMM-LIST (line 15). Once this is done, commands are
simultaneously sent to execute all tasks of the RUN-LIST (line
16). The framework then waits for the tasks to finish, and
collect the execution time data (line 17). Afterward, the same
process is repeated for the next line of WL-LIST, on next
iteration of the outerfor loop. The outerfor loop exit when all
the lines of WL-LIST (entire pattern) have been processed. To
experiment with another resource usage pattern, the procedure
needs to be restarted from the beginning.

V. WORKLOADS USED

Two types of workload have been used in the experiments.
The first type is a data-intensive scientific workflow, which is
used to observe the execution time variations of tasks under

1: Load all commands and mnemonics, from the Command Descriptor file
to COMM − LIST .

2: Load workloads from the Workload Descriptor file toWL− LIST .
3: Load the VMs configuration from file toVM − LIST .
4: for Each lineLi ∈ WL− LIST do
5: for Each task,tj ∈ Li do
6: Let, commj ∈ COMM − LIST be the command fortj .
7: Let, vmj ∈ VM − LIST be the VM, where to runtj .
8: Check the consistency oftj againstcommj on vmj .
9: if tj is consistentthen

10: Puttj , commj andvmj on RUN − LIST .
11: else
12: Exit.
13: end if
14: end for
15: Replace all mnemonics ofRUN − LIST with actual commands.
16: Simultaneously send commands to allvmj of RUN − LIST .
17: Wait for their execution to finish and collect execution time data.
18: end for

Figure 6. Algorithm for the framework.

consolidation. The second type is a set of benchmarks suites,
used to create resource contention patterns on servers.

A. Scientific workflow: GALFA-HI

The GALFA-HI survey continuously scans the sky for
naturally occurring hydrogen atoms [20], and several data
cubes have been released so far. Five of those cubes have been
processed with the Montage toolkit [21], to create a mosaic
image of a part of the Milky Way galaxy. The workflow is
shown in Fig. 1 it has 16 tasks and eight levels. It is a data-
intensive workflow, which processes about 2 GB of raw data
cubes. Experiments measure the execution time variation of
tasks in this workflow due to consolidation.

B. Set of benchmark suites

Three sets of benchmark suites have been used to create
resource contention patterns on the tasks of the above work-
flow. They are the sets of CPU, memory and I/O-intensive
benchmark suites. Each benchmark suite, in turn, consists of
several similar types of tests. Due to space limitation, it is not
possible to describe each benchmark suite separately. Next,
each set is described in brief.

CPU-intensive benchmarks:Three CPU-intensive bench-
marks have been used, they are theSysbench CPUtest,Nbench
andUnixbench. The Sysbench CPU test has been widely used
with multi-core server [24] and VM workload consolidation
experiments [25]. The Nbench is a CPU-intensive bench-
mark suite, having ten different CPU-intensive tests [26].The
Unixbench is another CPU-intensive benchmark suite, which
is used for experiments on Amazon EC2 [27].

Memory-intensive benchmarks:Three memory-intensive
benchmarks have been used for creating resource contention
patterns. The first is theCachebench, which consists of eight
different memory tests [28]. The second is theStream, a syn-
tactic benchmark program for measuring sustainable memory
bandwidth [29]. The final one is theSysbench memorytest.

I/O-intensive benchmarks: Five I/O-intensive tests have
been used to create resource contention patterns. TheFilebench
is an important I/O benchmark suite [30], which can be
configured to perform various I/O-intensive tests. Five of them
are used, they are thefile-server, web-server, web-proxy, video-
serverandonline transaction processing(OLTP) test.

21Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 32 / 172

 0

 10

 20

 30

 40

 50

0 2 4 6 8

M
ea

n
ex

e.
 ti

m
e

of
 m

P
ro

je
ct

C
ub

e
(m

in
)

No of vm running nbench

Xen
XenServer

Esxi

(a) TETV of mProjectCube due to the Nbench.

 0

 10

 20

 30

 40

 50

0 2 4 6 8

M
ea

n
ex

e.
 ti

m
e

of
 m

P
ro

je
ct

C
ub

e
(m

in
)

No of vm running Sysbench CPU

Xen
XenServer

Esxi

(b) TETV of mProjectCube due to the Nbench.

 0

 10

 20

 30

 40

 50

0 2 4 6 8

M
ea

n
ex

e.
 ti

m
e

of
 m

P
ro

je
ct

C
ub

e
(m

in
)

No of vm running unixbench

Xen
XenServer

Esxi

(c) TETV of mProjectCube due to the Unixbench.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

0 2 4 6 8

M
ea

n
ex

e.
 ti

m
e

of
 m

S
hr

in
kC

ub
e

(m
in

)

No of vm running nbench

Xen
XenServer

Esxi

(d) TETV of mShrinkCube due to the Unixbench.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

0 2 4 6 8

M
ea

n
ex

e.
 ti

m
e

of
 m

S
hr

in
kC

ub
e

(m
in

)

No of vm running Sysbench CPU

Xen
XenServer

Esxi

(e) TETV of mShrinkCube due to the Sysbench CPU.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

0 2 4 6 8

M
ea

n
ex

e.
 ti

m
e

of
 m

S
hr

in
kC

ub
e

(m
in

)

No of vm running unixbench

Xen
XenServer

Esxi

(f) TETV of mShrinkCube due to the Sysbench CPU.
Figure 7. Task execution time variation (TETV) of the mProjectCube and mShrinkCube functions due to the CPU-intensive workload patterns on VMs.

C. Experimental setup
Three Dell XPS-8500 servers of identical hardware config-

uration had been set up for the experiments. Each server has
one Intel i7-3770 processor and 32 GB memory. The i7-3770
has four cores and eight hardware threads, each is clocked
at 3.4 GHz. Three different hypervisors are installed on three
servers; they are,VMware ESXi5.5,Citrix XenServer6.5 and
Xen4.6 onCentos7.

Each hypervisor has 14 VMs of identical configuration.
Each VM has one processor, 2 GB of Ram and 50 GB
virtual disk. During experiments, the framework connects to
all 42 (14×3) VMs on three hypervisors and execute workload
patterns simultaneously. The framework itself runs on a remote
Dell OptiPlex 9010 machine and connects to hypervisors
through the LAN. The results of experiments are given next.

VI. RESULTS

Recall that the GALFA-HI workflow (Fig. 1) has 16
tasks, comprised of seven functions. Average execution times
of those seven functions without interferences are shown in
Table I. In this case, the tasks are scheduled exactly like
that of Fig. 3a. Due to space constraints, it is not possible
to discuss execution time variations of all seven functions.
Results are shown for only two functions, themProjectCube
and mShrinkCube. The rest of the functions also show varia-
tions similar that of these functions. The results are grouped
according to the resources loads for convenience of discussion,
for all three hypervisors.

Variations due to CPU-intensive workload: The graphs
in Fig. 7 show execution time variations of both the mPro-
jectCube and mShrinkCube functions for CPU-intensive work-
loads, on three hypervisors. In each graph, the Y-axis rep-
resents the execution time variation. The X-axis represents

TABLE I. MEAN EXECUTION TIMES OF TASKS OF GALFA-HI
WORKFLOW ON VMS WITHOUT INTERFERENCES (AS SHOWN IN

FIG. 3a).

Level Task Time (m)
1 mShrinkCube 3.878

2 & 5 mImgtbl 0.02
3 mMakeHdr 0.02
4 mProjectCube 39.774
6 mAddCube 12.32
7 mGetHdr 0.02
8 mViewer 0.04

how many CPU-intensive VMs were running on the server,
besides the workflow. The first point of the X-axis is zero,
meaning no other VMs were running when the execution
time of the function was measured. This execution schedule
is shown in Fig. 3a. The next point on X-axis is 2; here
two additional CPU-intensive VMs were running at every step
of the workflow execution (schedule shown in Fig. 3b). In
this way, the workflow is repeatedly executed with increasing
number of CPU-intensive VMs. The final point is 8, indicating
eight additional CPU-intensive VMs were used, at each step
of workflow execution as shown in Fig. 3d.

In Fig. 7, from left to right on the X-axis the inter-
ference from the number of CPU-intensive VMs increases.
The leftmost point is the execution time of a task without
any interference from other VMs. The rightmost point is the
execution time of the same task with maximum interference.
Fig. 7 shows that both the mProjectCube and mShrinkCube
tasks show relatively less execution time variation because of
CPU-intensive VMs. It applies to all three hypervisors. On
ESXi hypervisor, the execution time of mProjectCube function
goes from 38.52 minute (the leftmost point on the graph)
to 48.13 minute (rightmost point) due to the addition of 8
VMs, each running a Unixbench benchmark suite (Fig. 7c).

22Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 33 / 172

 0

 10

 20

 30

 40

 50

0 2 4 6 8

M
ea

n
ex

e.
 ti

m
e

of
 m

P
ro

je
ct

C
ub

e
(m

in
)

No of vm running cachebench

Xen
XenServer

Esxi

(a) TETV of mProjectCube due to the Cachebench.

 0

 10

 20

 30

 40

 50

0 2 4 6 8

M
ea

n
ex

e.
 ti

m
e

of
 m

P
ro

je
ct

C
ub

e
(m

in
)

No of vm running stream

Xen
XenServer

Esxi

(b) TETV of mProjectCube due to the Cachebench.

 0

 10

 20

 30

 40

 50

0 2 4 6 8

M
ea

n
ex

e.
 ti

m
e

of
 m

P
ro

je
ct

C
ub

e
(m

in
)

No of vm running sysbench Mem

Xen
XenServer

Esxi

(c) TETV of mProjectCube due to the Sysbench Mem.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

0 2 4 6 8

M
ea

n
ex

e.
 ti

m
e

of
 m

S
hr

in
kC

ub
e

(m
in

)

No of vm running cachebench

Xen
XenServer

Esxi

(d) TETV of mShrinkCube due to the Sysbench Mem.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

0 2 4 6 8

M
ea

n
ex

e.
 ti

m
e

of
 m

S
hr

in
kC

ub
e

(m
in

)

No of vm running stream

Xen
XenServer

Esxi

(e) TETV of mShrinkCube due to the Stream.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

0 2 4 6 8

M
ea

n
ex

e.
 ti

m
e

of
 m

S
hr

in
kC

ub
e

(m
in

)

No of vm running sysbench Mem

Xen
XenServer

Esxi

(f) TETV of mShrinkCube due to the Stream.
Figure 8. Task execution time variation (TETV) of the mProjectCube and mShrinkCube functions due to the Memory-intensive workload patterns on VMs.

Therefore, consolidation with eight additional CPU-intensive
VMs (in this case the Unixbench) causes 24.94% increase in
execution time of the mProjectCube function. It is the highest
among three hypervisors. For other hypervisors, the effectof
CPU-intensive VMs is minimal. For XenServer, the maximum
execution time variation among the tasks is suffered by the
mProjectCube function again. It is 13.49% and caused when
consolidated with eight VMs running Sysbench CPU tests
(Fig. 7b). For Xen, the mProjectCube function also shows
the maximum variation among the tasks; it is 6.15%. In this
case, eight VMs with Unixbench were consolidated with the
function (Fig. 7c).

Variations due to memory-intensive workload: Fig. 8
shows the execution time variations of two previous functions,
due to the memory-intensive workload on VMs. For all three
hypervisors, the maximum execution time variations are shown
by the mProjectCube function. In all three cases, it is consol-
idated with VMs running the Stream benchmark (Fig. 8b).
The execution time increase of ESXi, XenServer, and Xen
hypervisors are 24.24%, 11.02%, and 11.56%, respectively.

Variations due to I/O-intensive workload: During VM
consolidation experiments, the I/O-intensive tasks tend to show
a greater degree of resource contention. That is why more
I/O-intensive benchmarks have been used in the experiments,
compared to other types. Fig. 9 shows the execution time vari-
ations of the mProjectCube and mShrinkCube functions, due
to consolidation with five different I/O-intensive benchmarks.

The VMs with video servers cause huge execution time
variation for both functions, on all three hypervisors (Fig. 9b).
Consolidation with eight VMs with video servers, increases
the execution times of mProjectCube function for ESXi,
XenServer, and Xen by 683.30%, 705.83%, and 588.96%,
respectively. The video servers also have similar effects on

the mShrinkCube function, on all three hypervisors (Fig. 9e).
The execution time increase of the mShrinkCube function
for ESXi, XenServer, and Xen are 901.92%, 774.10%, and
595.34%, respectively. For other I/O-intensive benchmarks,
similar results can be obtained, too. For example, Fig. 9a shows
the execution time variation of the mProjectCube function
due to file-servers on all three hypervisors. Here, execution
time increases for ESXi, XenServer, and Xen are 154.39%,
114.78%, and 92.95%, respectively. The file-servers similarly
cause execution time variation for the mShrinkCube function,
too. Execution time increases for ESXi, XenServer, and Xen
are 411.13%, 347.96%, and 343.15%, respectively.

From the presented execution time variation data, it is clear
that combination of benchmarks can be used to create resource
contention patterns for tasks on VMs. The significance of the
above findings is discussed next.

Discussion:The experimental results show that resources
like CPU, memory, and I/O, all have dissimilar effects on the
task execution time. It is observed for all three hypervisors.
From the results, it is clear that execution time variation
directly depends on the cumulative resource requirement of
the VM of a server. It has been shown previously that,
by profiling the execution times of co-located VMs, it is
possible to predict the task execution time variations [22].
The resource requirement of the VMs, play a huge part on
execution time variations. For example, both the mProjectCube
and mShrinkCube functions are I/O-intensive tasks, and they
have the maximum variation for I/O-intensive benchmarks.
The objective of experiments is to show that the proposed
framework can profile the tasks of a scientific workflow for
any workload and hypervisor. Thus, it can help to design and
carry out experiments, with VM placement and consolidation
for scientific workflows.

23Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 34 / 172

 0

 20

 40

 60

 80

 100

 120

0 2 4 6 8

M
ea

n
ex

e.
 ti

m
e

of
 m

P
ro

je
ct

C
ub

e
(m

in
)

No of vm running flieserver

Xen
XenServer

Esxi

(a) TETV of mProjectCube due to File server.

 0

 50

 100

 150

 200

 250

 300

 350

0 2 4 6 8

M
ea

n
ex

e.
 ti

m
e

of
 m

P
ro

je
ct

C
ub

e
(m

in
)

No of vm running videoserver

Xen
XenServer

Esxi

(b) TETV of mProjectCube due to Video server.

 0

 20

 40

 60

 80

 100

0 2 4 6 8

M
ea

n
ex

e.
 ti

m
e

of
 m

P
ro

je
ct

C
ub

e
(m

in
)

No of vm running webproxy

Xen
XenServer

Esxi

(c) TETV of mProjectCube due to Webproxy server.

 0

 5

 10

 15

 20

 25

0 2 4 6 8

M
ea

n
ex

e.
 ti

m
e

of
 m

S
hr

in
kC

ub
e

(m
in

)

No of vm running flieserver

Xen
XenServer

Esxi

(d) TETV of mShrinkCube due to File server.

 0

 10

 20

 30

 40

 50

0 2 4 6 8

M
ea

n
ex

e.
 ti

m
e

of
 m

S
hr

in
kC

ub
e

(m
in

)

No of vm running videoserver

Xen
XenServer

Esxi

(e) TETV of mShrinkCube due to Video server.

 0

 2

 4

 6

 8

 10

0 2 4 6 8

M
ea

n
ex

e.
 ti

m
e

of
 m

S
hr

in
kC

ub
e

(m
in

)

No of vm running webproxy

Xen
XenServer

Esxi

(f) TETV of mShrinkCube due to Webproxy server.

 0

 20

 40

 60

 80

 100

 120

0 2 4 6 8

M
ea

n
ex

e.
 ti

m
e

of
 m

P
ro

je
ct

C
ub

e
(m

in
)

No of vm running webserver

Xen
XenServer

Esxi

(g) TETV of mProjectCube due to Web server.

 0

 20

 40

 60

 80

 100

 120

0 2 4 6 8

M
ea

n
ex

e.
 ti

m
e

of
 m

P
ro

je
ct

C
ub

e
(m

in
)

No of vm running OLTP

Xen
XenServer

Esxi

(h) TETV of mProjectCube due to OLTP.

 0

 2

 4

 6

 8

 10

0 2 4 6 8

M
ea

n
ex

e.
 ti

m
e

of
 m

S
hr

in
kC

ub
e

(m
in

)

No of vm running webserver

Xen
XenServer

Esxi

(i) TETV of mShrinkCube due to Web server.

 0

 2

 4

 6

 8

 10

 12

0 2 4 6 8

M
ea

n
ex

e.
 ti

m
e

of
 m

S
hr

in
kC

ub
e

(m
in

)

No of vm running OLTP

Xen
XenServer

Esxi

(j) TETV of mShrinkCube due to OLTP.
Figure 9. Task execution time variation (TETV) of the mProjectCube and mShrinkCube functions due to the I/O-intensive workload patterns on VMs.

VII. R ELATED WORK

Related works can be divided into two broad categories.
The first category of works deals with application performance
efficiency on the Cloud and VM consolidation [1]–[5]. How-
ever, the works do not provide any general framework to do
experiments with tasks of parallel applications. In contrast, this
work provides a simple and effective framework that can be
used for such purposes on the Cloud.

The second category of works are the Cloud management,
maintenance and scheduling software [6]–[17]. They can pro-
vide many high-level functionalities for the Cloud, like running
selected jobs periodically. Many complex operations can be
performed with a few commands. However, they hide a lot of
operational complexity from the users, and do not allow low-
level control over the task execution process. On the other
hand, this framework offers an easy interface for executing

24Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 35 / 172

tasks according to the requirement of the experiment.
Although the works outlined above provide some high-level

support for running tasks on the Cloud, none of them combines
all the low-level functionality to carry out experiments with
VM consolidation. To the best knowledge of the authors, no
other previous work has proposed any such framework to
perform experiments with workloads on the Cloud.

VIII. F UTURE WORK AND CONCLUSION

There are a lot of issues related to the Cloud that depend on
consolidation, like application performance, energy efficiency,
and resource utilization. There are no theoretical solutions
available for these problems. Further experiments are required
to obtain practical solutions. In future, the framework would be
used to setup larger scale of experiments with various scientific
workflows and diverse sets of resource usage patterns.

This work presents the design and implementation of a
framework for performing experiments with execution time
variation of scientific workflows on the Cloud. Profiling of
task execution time is required for better understanding ofVM
consolidation. The framework can apply any resource usage
patterns to the tasks of a workflow. It does not compile the
input files, rather it behaves like an interpreter. There is no
well-accepted theocratical model for task execution variation
due to consolidation. Therefore such a framework would help
to set up large-scale experiments for achieving a practical
solution.

To show the capability of the framework to perform experi-
ments a real life data-intensive workflow and three hypervisors
have been used. Resource contention patterns for VMs have
been created by combining various types of benchmarks. The
framework is lightweight and implemented in Java. It can be
run on any OS and can connect to any hypervisor or the
Cloud. An extensive set of experiments has been done on three
well-known hypervisors, and results are successfully retried,
demonstrating that the framework is capable of executing any
workflow schedule and resource usage pattern on multiple
hypervisors. This framework can be a powerful tool for ex-
perimenting with VM consolidation and task execution time
variation of workflows.

REFERENCES
[1] T. Zhu, D. S. Berger, and M. Harchol-Balter, “SNC-Meister: Admitting

More Tenants with Tail Latency SLOs,” inSoCC ’16, (New York, NY,
USA), pp. 374–387, ACM, 2016.

[2] R. Taft, W. Lang, J. Duggan, A. J. Elmore, M. Stonebraker,and
D. DeWitt, “STeP: Scalable Tenant Placement for Managing Database-
as-a-Service Deployments,” inSoCC ’16, (New York, NY, USA),
pp. 388–400, ACM, 2016.

[3] R. R. Sambasivan, I. Shafer, J. Mace, B. H. Sigelman, R. Fonseca,
and G. R. Ganger, “Principled Workflow-centric Tracing of Distributed
Systems,” inSoCC ’16, (New York, NY, USA), pp. 401–414, ACM,
2016.

[4] K. Rajan, D. Kakadia, C. Curino, and S. Krishnan, “PerfOrator:
Eloquent Performance Models for Resource Optimization,” in SoCC
’16, (New York, NY, USA), pp. 415–427, ACM, 2016.

[5] C.-C. Hung, L. Golubchik, and M. Yu, “Scheduling Jobs Across Geo-
distributed Datacenters,” inSoCC ’15, (New York, NY, USA), pp. 111–
124, ACM, 2015.

[6] F. Guthrie, S. Lowe, and K. Coleman,VMware vSphere Design.
Alameda, CA, USA: SYBEX Inc., 2nd ed., 2013.

[7] M. Liebowitz, C. Kusek, and R. Spies,VMware vSphere Performance:
Designing CPU, Memory, Storage, and Networking for Performance-
Intensive Workloads. Alameda, CA, USA: SYBEX Inc., 1st ed., 2014.

[8] D. E. Williams, Virtualization with Xen(Tm): Including XenEnterprise,
XenServer, and XenExpress: Including XenEnterprise, XenServer, and
XenExpress. Syngress Publishing, 2007.

[9] G. Ahmed, Implementing Citrix XenServer Quickstarter. Packt Pub-
lishing, 2013.

[10] N. Sabharwal and R. Shankar,Apache CloudStack cloud computing:
leverage the power of CloudStack and learn to extend the CloudStack
environment. Community experience distilled, Birmingham: Packt
Publ., 2013.

[11] K. Jackson,OpenStack Cloud Computing Cookbook. Packt Publishing,
2012.

[12] A. Paradowski, L. Liu, and B. Yuan, “Benchmarking the Performance
of OpenStack and CloudStack,” inISORC ’14, (Washington, DC, USA),
pp. 405–412, IEEE CS, 2014.

[13] S. A. Baset, “Open Source Cloud Technologies,” inSoCC ’12, (New
York, NY, USA), pp. 28:1–28:2, ACM, 2012.

[14] P. Sempolinski and D. Thain, “A Comparison and Critiqueof Eucalyp-
tus, OpenNebula and Nimbus,” inCLOUDCOM ’10, (Washington, DC,
USA), pp. 417–426, IEEE Computer Society, 2010.

[15] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff, and D. Zagorodnov, “The Eucalyptus Open-SourceCloud-
Computing System,” inCCGRID ’09, (Washington, DC, USA),
pp. 124–131, IEEE Computer Society, 2009.

[16] S. Pousty and K. Miller,Getting Started with OpenShift. O’Reilly
Media, Inc., 1st ed., 2014.

[17] D. Bernstein, “Cloud Foundry Aims to Become the OpenStack of PaaS,”
IEEE Cloud Computing, vol. 1, no. 2, pp. 57–60, 2014.

[18] M. Silva, M. R. Hines, D. Gallo, Q. Liu, K. D. Ryu, and D. d.Silva,
“CloudBench: Experiment Automation for Cloud Environments,” in
IC2E ’13, (Washington, DC, USA), pp. 302–311, IEEE CS, 2013.

[19] C. Delimitrou, D. Sanchez, and C. Kozyrakis, “Tarcil: Reconciling
Scheduling Speed and Quality in Large Shared Clusters,” inSoCC ’15,
(New York, NY, USA), pp. 97–110, ACM, 2015.

[20] J. E. G. Peek, C. Heiles, K. A. Douglas, M.-Y. Lee, J. Grcevich,
S. Stanimirovi, M. E. Putman, E. J. Korpela, S. J. Gibson, A. Begum,
D. Saul, T. Robishaw, and M. Kro, “The GALFA-HI Survey: Data
Release 1,”The Astrophysical J. Supplement Series, vol. 194, no. 2,
p. 20, 2011.

[21] G. B. Berriman, J. Good, B. Rusholme, and T. Robitaille,“The Next
Generation of the Montage Image Mopsaic Engine,” inAmerican Astro-
nomical Society Meeting Abstracts, vol. 227 ofAmerican Astronomical
Society Meeting Abstracts, p. 348.13, Jan. 2016.

[22] M. Ahmed and A. Y. Zomaya, “Profiling and Predicting TaskExecution
Time Variation of Consolidated Virtual Machines,” inCLOUD COM-
PUTING ’16, pp. 103–112, IARIA, 2016.

[23] JCraft, Inc., “JSch - Java Secure Channel.” URL:
http://www.jcraft.com/jsch/. Retrieved: May, 2016.

[24] H. Park, S. Baek, J. Choi, D. Lee, and S. H. Noh, “Regularities
Considered Harmful: Forcing Randomness to Memory Accessesto
Reduce Row Buffer Conflicts for Multi-core, Multi-bank Systems,”
SIGPLAN Not., vol. 48, pp. 181–192, Mar. 2013.

[25] J. Ouyang, J. R. Lange, and H. Zheng, “Shoot4U: Using VMMAssists
to Optimize TLB Operations on Preempted vCPUs,” inVEE ’16, (New
York, NY, USA), pp. 17–23, ACM, 2016.

[26] C. C. Eglantine,NBench. TypPRESS, 2012. ISBN: 9786136257211.
[27] Z. Ou, H. Zhuang, J. K. Nurminen, A. Ylä-Jääski, and P. Hui,

“Exploiting Hardware Heterogeneity Within the Same Instance Type
of Amazon EC2,” inHotCloud ’12, (Berkeley, CA, USA), pp. 4–4,
USENIX Association, 2012.

[28] P. J. Mucci, K. London, and P. J. Mucci, “The CacheBench Report.”
URL: www.earth.lsa.umich.edu/ keken/benchmarks/
cachebench.pdf. Retrieved: February, 2016.

[29] J. D. McCalpin, “Memory Bandwidth and Machine Balance in Current
High Performance Computers,”IEEE CS TCCA Newsletter, pp. 19–25,
Dec. 1995.

[30] OpenSolaris Project, “Filebench.” URL:
http://filebench.sourceforge.net/wiki/
index.php/Main_Page. Retrieved: February, 2016.

25Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 36 / 172

Closest-Pairs Query Processing in Apache Spark

George Mavrommatis, Panagiotis Moutafis, and Michael Vassilakopoulos

Data Structuring & Engineering Lab

Dept. of Electrical & Computer Eng.

University of Thessaly

Volos, Greece

e-mail: {gmav, pmoutafis, mvasilako}@uth.gr

Abstract— Processing of spatial queries when the datasets

involved are big can be accomplished efficiently in a parallel

and distributed environment. The (K) Closest-Pair(s) Query,

KCPQ, is a common query in many real-life applications

involving geographical, or, in general, spatial data. It consists

in finding the (K) closest pair(s) of objects between two spatial

datasets. Although, processing of this query has been studied

extensively for centralized environments, few solutions have

appeared for parallel and distributed frameworks. Apache

Spark is such a framework that has several advantages

compared to other popular ones, like Hadoop MapReduce. In

this work, we present an algorithm for processing the KCPQ in

Apache Spark and experimentally study its efficiency and

scalability, using big real-world datasets.

Keywords-Closest-Pairs Query; Spatial Query Processing;

Apache Spark.

I. INTRODUCTION

Geographic information systems (GIS) [1] have been
around for several decades. They provide the means for
storing, querying, analyzing and sharing geographic
information and have proven valuable in many modern
application domains (e.g., disaster management, mapping,
urban planning, transportation planning, environmental
impact analysis, etc.).

The term Big Data refers to unprecedented volumes of
data. Such data appear in numerous modern applications,
like applications based on sensor networks, commercial
transactions, social media, web searches, etc.

Spatial databases [2] are specialized databases that
support storage and querying of multidimensional data
(usually, points, line-segments, regions, polygons, volumes).
They are core elements of GIS. Processing of spatial queries
can become very demanding if the volume of data on which
such a query is applied is big, or if the volume of the
combinations of data objects that need to be examined for
answering such a query are big.

Some typical spatial queries are: the point query, range
query, spatial join, and nearest neighbor query [3]. Spatial
Join queries find all pairs of spatial objects from two spatial
data sets that satisfy a spatial predicate, like intersects,
contains, is enclosed by, etc. Nearest neighbor queries locate
the spatial object(s) that is (are) nearest to a query object.
The (K) Closest-Pair(s) Query, KCPQ, discovers the (K)

closest pair(s) of object(s) (usually ordered by distance),
between two spatial datasets. It combines join and nearest
neighbor queries: like a join query, all pairs (combinations)
of objects from the two datasets are candidates for the result,
and like a nearest neighbor query, the (K) smallest
distance(s) is (are) the basis for inclusion in the result (and
the final ordering) [4][5]. The KCPQ can be very demanding
if the datasets involved are big, since all the combinations of
pairs of objects from the two datasets are candidates for the
result.

For example, we can use two spatial datasets that
represent the archaeological sites and popular beaches of
Greece. A KCPQ (K=10) can discover the 10 closest pairs of
archaeological sites and beaches (in increasing order of their
distances). The result of this query can be used for planning
tourist trips in Greece that combine traveler’s interest for
history / civilization and leisure / enjoyment.

Parallel and distributed computing using shared-nothing
clusters on big data has been very popular during last years.
Hadoop MapReduce [6] is an open-source software
framework for storing data and running applications on such
clusters. MapReduce is file-intensive and computing nodes
intercommunicate only through sorts and shuffles. Therefore,
MapReduce is suitable mostly for non-iterative batch
processing jobs.

Apache Spark [7] is another, more recent, open-source
cluster-computing framework with an application
programming interface based on Resilient Distributed
Datasets (RDDs), read-only multisets of data items
distributed over the cluster of machines [8]. It was developed
to overcome limitations of the MapReduce paradigm.
Through RDDs a form of distributed shared memory is
provided and the implementation of iterative algorithms is
facilitated.

Recently, the utilization of main memory in processing
KCPQs on big datasets in centralized systems has been
explored [9][10]. In this paper, considering ideas and
methods presented in [9][10] we present a Spark based
algorithm for computing KCPQs. Moreover, we present an
experimental analysis of the performance of this algorithm,
based on big real-world datasets.

More specifically, in Section II, we review related
frameworks and work; in Section III, we present Spark
basics, we define the query that we study and present our
algorithm; in Section IV, we present experimentation

26Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 37 / 172

settings and the results of experiments we performed for
studying the efficiency of the proposed method. Finally in
the last section, we present our conclusions and our plans for
future work.

II. RELATED WORK

Extensions of Hadoop MapReduce supporting large-scale
spatial data processing include Parallel-Secondo [11],
Hadoop-GIS [12] and SpatialHadoop [13]. In [14], a general
plane-sweep approach for processing KCPQs in
SpatialHadoop and a more sophisticated version that first
computes an upper bound of the distance of the K-th closest
pair from sampled data points have been presented.

Extensions of Apache Spark supporting large-scale
spatial data processing include

 SpatialSpark [15], that has been used for spatial join
algorithms based on point-in-polygon test and on
point-to-polyline distance,

 GeoSpark [16], that supports spatial range, join
query and K nearest neighbors queries,

 LocationSpark [17], that offers several spatial query
operators, including range search, K nearest
neighbors, spatio-textual operations, spatial join and
K nearest- neighbors join, and

 Spatial In-Memory Big data Analytics (SIMBA)
[18] that supports box and circle range queries, K
nearest neighbors, distance joins and K nearest-
neighbors joins.

The KCPQ has been actively studied in centralized
environments, when both [19][20][21][22][23], one [24], or
none [9][10] of the two spatial datasets are indexed. Two
improvements of the classic plane-sweep algorithm and a
new plane-sweep algorithm, called Reverse Run Plane
Sweep, were proposed in [9] for processing KCPQs when
the two datasets are not indexed and reside in main-memory.
In [10], it is assumed that the (big) spatial datasets reside on
secondary storage and are progressively transferred in main
memory, by dividing them in strips, for processing utilizing
the methods of [9].

To the best of our knowledge, the only work about
KCPQs in a parallel and distributed framework is [14]. In
this paper, we utilize ideas presented in [9][10] to develop an
algorithm for processing KCPQs in Spark, by separating data
in strips and utilizing a plane-sweep approach within each
strip.

III. CLOSEST-PAIR QUERIES IN SPARK

Hadoop MapReduce processing is based on pairs of Map
and Reduce phases. It is an excellent solution for one-step
computations on massive datasets, but it not very efficient
for problems that require multi-step computations. The
output of each step is stored in the distributed file system, so
that it can be used as input for the next, or one of the
following steps. Replication and disk storage contribute to
slowing down the overall computation. Apache Spark (or
more simply, Spark) is an alternative to Hadoop MapReduce.
It’s not intended to replace Hadoop MapReduce, but to

extend it and allow the development of solutions for different
big data problems and requirements.

Spark was written in the Scala Programming Language.
Programmers usually write Spark applications in Java, Scala,
or Python, with Scala being the most popular choice. In
addition to Map and Reduce operations, it supports SQL
queries, streaming data, machine learning and graph data
processing. These capabilities can be combined in a data
pipeline. With Apache Spark, programmers can combine
data pipelines in a directed acyclic graph (DAG). The DAG
execution model can be seen as a generalization of the
MapReduce model. Moreover, Apache Spark supports in-
memory data sharing across DAGs. Spark can run on top of
an existing Hadoop Distributed File System (HDFS)
infrastructure. Spark also supports lazy evaluation and holds
intermediate results in memory. When data cannot fit in
memory, disk storage is utilized. In fact, part of a data set
can reside in memory and another part on secondary storage.
The RDD is the fundamental data structure of Spark. An
RDD can be resembled to a database table. It is a read-only
collection of objects, partitioned in the cluster of machines.

In the following, we present our algorithm for KCPQ
processing in Spark. Let two datasets P and Q of spatial
objects, a positive natural number K and a distance function
between pairs of data objects formed from P and Q
(members of the Cartesian Product of P and Q). The KCPQ
discovers K pairs of data objects formed from P and Q that
have the K smallest distances between them among all pairs
of data objects that can be formed from P and Q.

Since distances between objects may not be unique, note
that if multiple pairs of objects have the same K-th distance
value between them, more than one sets of K different pairs
of objects can form the result of this query. The presented
algorithm can be easily tailored to report all such sets of
pairs.

Our algorithm, for 2-dimensional space (for the ease of
exposition), consists of the following steps:

 Samples P' P and Q' Q are taken from both
datasets P and Q. Spark function sample() was used
for sampling the two datasets. sample() takes a
parameter, fraction, denoting the expected size of the
sample as a fraction of the dataset in question.

 Proper keys are set, a join between P' and Q' is
performed and the K closest pairs (CP) among all
joined pairs are computed. Function join() is also
provided by the Spark API.

 Let Bound be the K-th smaller distance as computed
previously. This is our pruning factor.

 Both datasets are divided into n strips [25]
corresponding to ascending intervals along one of
the dimensions (x axis dimension is assumed in the
following, w.l.o.g) (Fig. 1). Partitioning of each of
the two datasets into strips of unequal width was
done by sampling, calculating the border points from
samples and applying the partition to the whole
dataset.

27Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 38 / 172

Figure 1. Strips partitioning.

 Using the distance of the K-th CP (Bound),
combinations of strips are examined. If two strips
reside in a distance smaller than the distance of the
K-th CP, the pairs between data objects of these two
strips are examined as candidates for the result. To
achieve this, all (vertical) pairs of strips from P and
Q are being evaluated with respect to their x-axis
distance combined to the Bound.

 Pairs of strips are classified into two categories,
namely eligible and not eligible for further
processing. The first category consists of two major
subcategories: overlapping pairs, and pairs that do
not overlap but have their x-distance smaller than
Bound. For example, (Fig. 2) strip Ps1 from P
overlaps with strips Qs1 and Qs2 from Q.
Furthermore, the x-distance between Ps1 and Qs3 is
d1 < Bound, while the x-distance between Ps1 and
Qs4 is d2 > Bound (this holds for every consecutive
Q-strip). Therefore, the eligible pairs that we derive
for Ps1 are (Ps1,Qs1), (Ps1,Qs2) and (Ps1,Qs3).
These pairs, and all other pairs identified by this
procedure, are the pairs that will be subject to
computation by the cluster. Note, that in the case of
pairs like (Ps1, Qs3), not all points from both strips
need to be considered. For example, since we know
a bound for the K CPs, we can use it as a pruning
condition with the filter() function of Spark to reduce
Qs3 to these points that their x-axis distance from
Ps1 is smaller than Bound.

Figure 2. Eligible pairs of strips.

 Within each eligible pair of strips from P and Q
Plane-sweep is applied for calculating K CPs storing
the result in a maximum binary heap (maxHeap)
[9][10]. A separate maxHeap is utilized for each
partition. Bound is sent -we used Spark’s broadcast()
function- to all workers and they use it as stop
condition for the plane sweep algorithm.

 All binary heaps are used to form a RDD consisting
of tuples (distance, Ppoint, Qpoint). Since all
eligible pairs of strips contain all pairs of points from
P and Q that may contribute to the final solution and
there are no duplicate pairs, taking the first (sorted
on distance) K tuples with the smaller distances,
yields the final (and exact) solution.

IV. EXPERIMENTAL EVALUATION

To evaluate the performance of our algorithm, we used
the following three big real 2d datasets from OpenStreetMap
[13]: WATER resources consisting of 5,836,360 line
segments, PARKS (or green areas) consisting of 11,504,035
polygons and BUILDINGS of the world consisting of
114,736,611 polygons. To create sets of points, we used the
centers of the Minimum Bounding Rectangles (MBRs) of the
line-segments from WATER and the centroids of polygons
from PARK and BUILDINGS.

All experiments were conducted on a cluster of 5 nodes.
Each node has 4 vCPUs running at 2.1GHz, with a total of
16GB of main memory per node, running Ubuntu Linux
16.04 operating system. Spark 2.0.2 running on Hadoop
2.7.2 Distributed File System (HDFS) was used as our
parallel computing system. The block size of HDFS was 128
MB. Of the 5 computing nodes, one was running the
NameNodes for Hadoop and Master for Spark, while the
remaining four (4 nodes x 4 vCPUs = 16 vCPUs) were used
as HDFS DataNodes and Spark Worker nodes. Java openjdk
ver. 1.8.0 and Scala code runner ver. 2.11 were used.

All datasets are text files stored in HDFS. Each line
contains an index and a pair of coordinates. We used the
textFile() function of Spark to import the data, and set the
numPartitions parameter to 4. Typically, Spark creates one
partition for each block. We can increase the number of
partitions by passing a larger value but it is not possible to
have fewer partitions than the blocks of each file.

We measured total execution time (i.e., response time) in
seconds (sec) that expresses the overall CPU, I/O and
communication time needed for the execution of each query.

28Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 39 / 172

We varied sample fraction (values used: 0.01, 0.001,
0.0001), the number of closest pairs K (values used: 1, 10,
100, 1000, 10000) and the number of strips per dataset
(values used: 16, 32, 64, 80). We tested all possible
combinations between the three datasets (PARKSxWATER,
BUILDINGSxWATER, BUILDINGSxPARKS). In the
following, we present a representative portion of the results.

In Fig. 3, we present the results for the PARKSxWATER
combination, for K=10, using different combinations of n
(number of strips) and f (sample fraction). As one can see,
there is a tradeoff between total execution time and the time
taken in order to sample the datasets and compute the value
of Bound. If we take a small fraction of the datasets as
sample, the bound we compute is not tight enough, therefore
leading to increased KCPQ computation time. The larger the
fraction of dataset we sample, the better (lower) is the upper
bound we obtain. But if we surpass a certain fraction, then
the computation of Bound in the sample dominates the total
computation time.

Figure 3. Effect of sample fraction.

Studying the results of the above experiment leads us to
the observation that a fraction of 0.001 is a good selection for
the rest of our experiments.

In Fig. 4, we present the results for the PARKSxWATER
combination, for all K values, using 16, 32, 64 and 80 strips
per each dataset. Initially, we ran each experiment
independently from the others. We faced a problem, though.
Phase two (the KCPQ computation) relies on the value of
Bound that is computed in phase one. Since phase one uses a
randomly selected sample, Bound is likely to be different in
each experiment. In order to be able to extract better and
comparable results, we used the following procedure for our
second experiment: having taken into consideration that
phase one is independent from phase two, we conducted the
first phase of the experiment (K=1, n=16, fraction=0.001)
and saved the calculated value of Bound. In all consecutive
phases of the experiment, the bound was computed as usual,
but we used the value we found in the first phase of the
experiment instead.

Figure 4. KCPQ (PARKS x WATER).

As we observe, n = 32 strips seems to be the optimal
partitioning size for PARKS and WATER datasets, although
n = 16 gives similar results. As K increases from 1 to 10,000,
execution time is hardly affected, in some cases showing a
tendency to increase slightly, as expected.

We conducted our third experiment in order to see to
what extent the value of Bound affects the running time of
the algorithm. We used a value for Bound with an order of
magnitude 10 times greater than the one previously used.
Time for sampling and bound computation was taken into
account when counting total running time. Fig. 5 presents the
running times compared to the ones that were measured in
the previous experiment.

Figure 5. Effect of lower Bound

From the above comparison, we conclude that the value
of Bound is more significant than the number of strips and
the number of partitions provided to Spark as well.

In Fig. 6, we present the results for the
BUILDINGSxWATER combination, for several K values
using 8, 16, 32 and 64 strips per each dataset (once again
Bound was set to a constant value for all cases, to an order of
e-05). We observe than in the case of BULDINGS the
algorithm gives better results for a lower number of strips
than in the case of PARKS.

29Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 40 / 172

Figure 6. KCPQ (BUILDINGS x WATER).

We believe that this has to do with a combination of the
characteristics of the multi-parametric system we study
(hardware, HDFS, Spark, our algorithm). The combination
of available cores, starting partitions, Spark partitioning
procedures, number of strips that lead to a number of eligible
pairs, results to an increased number of partitions that in the
cases of larger n (strips) overwhelms the computing cluster.

In all previously described experiments, both datasets are
being sliced into strips along x-axis (y-axis can also be used).
Then, within each partition created by the eligible pairs of
points from P and Q, plane sweep is applied along the other
axis, in our case the y-axis. It is possible to slice the strips
and sweep along the same axis (Fig. 7).

Figure 7. Strips Slice & Plane Sweep cases.

In order to check which choice is better (slicing and
sweeping along the same or different axes), we conducted
our next experiment. We used the BUILDINGSxPARKS
combination with n = 8, 16, 32, K =10 and fraction f = 0.001.

We ran each combination three times, used the average
time and the results are being presented in Fig. 8.

The results seem to lead us to the conclusion that
“crossing” the axes for slicing and sweeping is more efficient
than working on the same axis. This observation is clearer in
the cases of smaller strips number, when the algorithm gives
the best results.

Figure 8. Split axis vs plane sweep axis.

Although this is consistent with other observations we
have made during our experiments, we believe that it needs
further investigation, an action we plan to take in the near
future.

V. CONCLUSIONS AND FUTURE PLANS

In [9][10], plane-sweep algorithms and separation of data
in strips were utilized for computing KCPQs in a centralized
environment, taking advantage of main memory. In this
paper, we present an algorithm for Spark, a parallel and
distributed framework that supports in-memory processing,
separating data in strips and processing by plane sweep
within each strip. To the best of our knowledge, this is the
first KCPQ algorithm in Spark. By conducting experiments
on big real datasets we have explored the performance of our
algorithm.

In the future, we plan to further elaborate this algorithm
by exploring different ways to create strips of variable size
and investigate partitioning schemes for Spark to reduce the
need for examining combinations of data that reside in
different strips and also reduce the network communication
traffic. Another important research direction is finding a
better, fast and stable technique that will yield a good upper
bound for the KCPQ problem in a parallel system. We also
plan to compare the performance of our algorithm against
other solutions working in parallel and distributed
environments. Finally, we plan to study the scalability of our
algorithm.

REFERENCES

[1] S. Shekhar and H. Xiong, Encyclopedia of GIS. Springer,
2008.

[2] P. Rigaux, M. Scholl, and A. Voisard, Spatial databases - with
applications to GIS. Elsevier, 2002.

[3] A. Corral and M. Vassilakopoulos, “Query processing in
spatial databases,” Encyclopedia of Database Technologies
and Applications, pp. 511-516, 2005.

[4] A. Corral, Y. Manolopoulos, Y. Theodoridis, and M.
Vassilakopoulos, “Closest Pair Queries in Spatial Databases,”
SIGMOD Conference, pp. 189-200, 2000.

[5] A. Corral, Y. Manolopoulos, Y. Theodoridis, and M.
Vassilakopoulos, “Algorithms for processing K-closest-pair
queries in spatial databases,” Data Knowl. Eng., vol. 49, no.
1, pp. 67-104, 2004.

30Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 41 / 172

[6] J. Dean and S. Ghemawat, “MapReduce: Simplified data
processing on large clusters,” OSDI 2004, pp. 137-150, 2004.

[7] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I.
Stoica, “Spark: Cluster computing with working sets,”
Proceedings of the 2nd USENIX Conference on Hot Topics in
Cloud Computing, pp. 10–10, 2010.

[8] M. Zaharia, et al., “Resilient Distributed Datasets: A fault-
tolerant abstraction for in-memory cluster computing,” NSDI
2012, pp. 15-28, 2012.

[9] G. Roumelis, M. Vassilakopoulos, A. Corral, and Y.
Manolopoulos, “A new plane-sweep algorithm for the K-
closest-pairs query,” SOFSEM 2014, pp. 478-490, 2014.

[10] G. Roumelis, A. Corral, M. Vassilakopoulos, and Y.
Manolopoulos, “New plane-sweep algorithms for distance-
based join queries in spatial databases,” GeoInformatica, vol.
20, no. 4, pp. 571-628, 2016.

[11] J. Lu and R. H. Güting, “Parallel Secondo, Boosting Database
Engines with Hadoop,” ICPADS 2012, pp. 738-743, 2012.

[12] A. Aji, et al., “Hadoop-GIS: A high performance spatial data
warehousing system over MapReduce,” PVLDB, vol. 6, no.
11, pp. 1009-1020, 2013.

[13] A. Eldawy and M. F. Mokbel, “SpatialHadoop: A MapReduce
framework for spatial data,” ICDE 2015, pp. 1352-1363,
2015.

[14] F. García-García, A. Corral, L. Iribarne, M. Vassilakopoulos,
and Y. Manolopoulos, “Enhancing SpatialHadoop with
closest pair queries,” ADBIS 2016, pp. 212-225, 2016.

[15] S. You, J. Zhang, and L. Gruenwald, “Large-scale spatial join
query processing in Cloud,” ICDE Workshops 2015, pp. 34-
41, 2015.

[16] J. Yu, J. Wu, and M. Sarwat, “GeoSpark: a cluster computing
framework for processing large-scale spatial data,” 23rd ACM
SIGSPATIAL/GIS, pp. 70:1-70:4, 2015.

[17] M. Tang, Y. Yu, Q. M. Malluhi, M. Ouzzani, and W. G. Aref,
“LocationSpark: A distributed in-memory data management
system for big spatial data,” PVLDB vol. 9, no. 13, pp. 1565-
1568, 2016.

[18] D. Xie, et al., “Simba: Efficient in-memory spatial analytics,”
SIGMOD Conference 2016, pp. 1071-1085, 2016.

[19] A. Corral, Y. Manolopoulos, Y. Theodoridis, M.
Vassilakopoulos, “Algorithms for processing K-closest-pair
queries in spatial databases,” Data Knowl. Eng., vol. 49, no.
1, pp. 67-104, 2004.

[20] A. Corral, Y. Manolopoulos, Y. Theodoridis, and M.
Vassilakopoulos, “Closest pair queries in spatial databases,”
SIGMOD Conference 2000, pp. 189-200, 2000.

[21] G. R. Hjaltason and H. Samet, “Incremental distance join
algorithms for spatial databases,” SIGMOD Conference 1998,
pp. 237-248, 1998.

[22] H. Shin, B. Moon, and S. Lee, “Adaptive and incremental
processing for distance join queries,” IEEE Trans. Knowl.
Data Eng., vol 15, no. 6, pp. 1561-1578, 2003.

[23] C. Yang and K-I. Lin, “An index structure for improving
closest pairs and related join queries in spatial databases,”
IDEAS 2002, pp. 140-149, 2002.

[24] G. Gutierrez and P. Sáez, “The k closest pairs in spatial
databases - When only one set is indexed,” GeoInformatica,
vol. 17, no. 4, pp. 543-565, 2013.

[25] A. Aji, H. Vo, and F. Wang, “Effective spatial data
partitioning for scalable query processing,” CoRR
abs/1509.00910, 2015.

31Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 42 / 172

A Raster SOLAP Designed for the Emergency Services of Brussels Agglomeration

Kasprzyk Jean-Paul

SEGEFA

e-mail: jp.kasprzyk@ulg.ac.be

Donnay Jean-Paul

Geomatics Unit

e-mail: jp.donnay@ulg.ac.be

University of Liege

Department of Geography

Liege, Belgium

Abstract— In order to quickly reach incident locations,

emergency services have to fairly distribute their resources on

the territory. This distribution is based on an analysis which

depends on heterogeneous spatial data like past interventions

(recurring risk), specific geographical places (sporadic risk),

road network or socio-economic variables. On the other hand,

Spatial Online Analytical Processing (SOLAP) tools are

designed for the collection and the analysis of large spatial data

sets. In this study, an original raster SOLAP model is

implemented for emergency services of Brussels

agglomeration. It allows decision-makers to freely generate

risk maps (continuous fields), depending on several dimensions

(time, intervention type, risk type, etc.), and to compare them

with the accessibility of firefighters and ambulances.

Simulations can also be performed on resources locations to

see their impact on the main accessibility.

Keywords-GIS; Risk Analysis; Data Warehouse; Fields;

Firefighting.

I. INTRODUCTION

In order to quickly reach incident locations, emergency

services (including firefighters and medical aids) have to

fairly distribute their resources on the territory. This

distribution is a complex problem since it has to be adapted

to a risk model which depends on heterogeneous spatial data

sets: past interventions, population, buildings, road network,

etc.

On the other hand, Business Intelligence [8] and

Geographic Information Systems (GIS) include efficient

tools for the collection and the analysis of large amounts of

spatial data. Amongst them, SOLAP Spatial Online

Analytical Processing (SOLAP) tools allow decision makers

to freely explore spatial data warehouses through interactive

maps, tables or charts [1][2]. The information from SOLAP

is summarized (aggregated), thus more easily analyzed by

the decision-makers. The objective of this research is the

design of a SOLAP adapted to the needs of the emergency

services of Brussels. Thanks to SOLAP, they should be able

to easily collect the data and analyze the risk so as to

adequately deploy their resources in the territory of the

Brussels agglomeration.

The remainder of this paper is structured as follows.

Section II is a state of the art about risk analysis for

emergency services (subsection II-A) and SOLAP including

explanations about SOLAP basics (subsection II-B). A

raster SOLAP model adapted to risk analysis is then

deducted from this review of the literature (research

hypothesis in subsection II-C). Section III describes the

raster SOLAP model developed to reach the research

objective. Its main architecture (subsection III-A) is

composed on the one hand of a vector data warehouse in

charge of data collecting/archiving (subsection III-B), and

on the other hand, of several raster data cubes which allows

risk calculations by the SOLAP (subsection III-C). The

SOLAP model is then validated in section IV by the SOLAP

interface, which allows users to explore raster data cubes

through interactive risk maps. Section V contains

conclusions and perspectives of this paper.

II. STATE OF THE ART

A. Risk Analysis

Risk can be divided into two distinct categories (and so

two distincts models): recurring risk and sporadic risks [9].

Recurring risk is the probability of incidents, which can

be estimated from historical interventions. These data are

mainly characterized by time, space and intervetion type. In

particular, space can be modeled as a field [3][18] thanks to

Kernel Density Estimation (KDE) [13]. It is very popular to

identify hotspots of punctual events in a continuous space.

For instance, it is offenly used by police for crime

prevention [7][8]. Moreover, when points are aggregated

with KDE, shapes of the hotspots suffer less from the

Modifiable Areal Unit Problem (MAUP) [25] than with

spatial aggregations, depending on administrative entities

(communes, census tracts, etc.).

Sporadic risk does not depend on incidents frequencies,

but on specific places that would require important

resources from emergency services in the event of an

incident: tunnels, schools, hospitals, etc. Once identified,

these locations can be incorporated into a multicriteria

analysis [11] to determine the sporadic risk, by weighting

the human and material damages incurred in their vicinity.

In addition to the probabilistic nature of the recurring

risk, it is possible to study the conditions favoring the

emergence of the risk, no longer for an operational purpose,

but for an urban planning objective. Population density, age

of buildings and other environmental variables can be

considered in a geographic regression model to explain the

frequency of incidents [14].

32Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 43 / 172

Once the risk model has been completed, the adequacy

of the response by the emergency services can be assessed

by the travel times required by the various concerned

resources (personnel and specific equipment) to reach the

claims sites. This step requires an up-to-date and precise

road graph with average speeds adapted to the emergency

vehicles.

B. SOLAP

A SOLAP server allows decision makers to query data

hypercubes (also simply called “data cubes”) extracted from

a data warehouse. Data hypercubes are models of pre-

aggregated data depending on several dimensions (for

example: month, commune and incident type) [1]:

combinations of dimension members define facts, and an

aggregated measure is associated to every fact. For example,

the combination of January 2016 (member of dimension

“month”), fire incident (member of dimension “incident

type”) and Anderlecht (member of geographical dimension

“commune”) is a fact with an associated number of

incidents (measure).

Users navigate into data hypercubes through interactive

tables, charts or maps. Maps can represent spatial facts

(defined by at least one geographical dimension like

communes), and tables/charts can represent non-spatial facts

(defined by non-spatial dimensions like months, incident

types, etc.).

The SOLAP server is able to calculate the measure of

every possible fact defined at a less detailed level of

dimensions than the one stored in the data hypercube (for

example, the number of incidents for the whole year 2016

instead of January 2016). This typical SOLAP operation is

called “roll up” (on the time dimension in the previous

example) and the reverse operation is called “drill down”.

Filters on dimension members (for instance, facts defined by

a specific month of the time dimension) are called “slices”

in the SOLAP vocabulary.

Despite the heavy calculations that a “roll up” operation

can require, a SOLAP must show quick results. For this

purpose, the SOLAP literature proposes different strategies

[1] like the precomputing of different hypercubes at

different levels of details or the use of different physical

structures: hypercubes modelled by arrays

(Multidimensional OLAP or MOLAP) [11], by relational

tables (Relational OLAP or ROLAP) [20] or both (Hybrid

OLAP or HOLAP) [13].

Figure 1. Examples of map algebra operators, adapted from [23]

Most of SOLAP tools are only able to use the vector

model to represent spatial facts on maps [16] [29]. However,

several researches showed the potential of raster SOLAP

[17][18] [20][22] [24] [28]. The raster model is well adapted

to the representation of data which are continuous in space

(fields). Pixels of a raster can spatially define every type of

geographical entities while the vector model uses three

different primitives: point, line and polygon. The physical

structure of raster is quite similar to MOLAP (arrays of

data) and so the SOLAP aggregations can easily be

computed by raster functions which are already

implemented in most of spatial database management

systems (DBMS). The most important functions [23] are

local map algebra (Figure 1a) for aggregations on non-spatial

dimensions and zonal map algebra (Figure 1b) for

aggregations on geographical dimensions. Moreover, as the

X and Y dimensions of space are defined in the

multidimensional structure of raster SOLAP (a spatial

member is a pixel) [17][18], any geographical dimension

(for examples: the communes of Brussels) can be imported

on the fly as a zone layer during the analysis.

C. Hypothesis

This distribution of resources for emergency services is

a complex problem that requires the design of a risk model.

As said in subsection II-A, a risk model integrates spatial

data about recurring risk (historical interventions), sporadic

risk (hospitals, schools, etc.) and socio-economic

characteristics. Then, the risk model has to be confronted to

the accessibility of emergency service resources. As said in

subsection II-B, SOLAP tools are very useful for the

integration and the analysis of large amounts of spatial and

heterogeneous data, as required by the risk analysis. In

particular, raster SOLAP has important advantages for this

study: a continuous representation of a space for recurring

risk, a single spatial primitive (pixel) for every type of

geographical entities, etc. Therefore, a raster SOLAP can be

designed to help emergency services of Brussels to fairly

distribute their resources on the territory.

33Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 44 / 172

III. RASTER SOLAP MODEL

A. Main architecture

The main structure of the SOLAP is a typical “Business

Intelligence” architecture (Figure 2). Data are extracted

from different sources and archived in a spatial data

warehouse (subsection III-B). At this stage, data are still in

their native vector format. Then, vector data are used to

create five raster data cubes (subsection III-C): recurring

risk for fires, recurring risk for medical aids, sporadic risks,

accessibility of firefighters and accessibility of medical aids.

Users can then manipulate these raster cubes in the SOLAP

interface to compute different risk maps.

Figure 2. Main architecture of the SOLAP

As mentioned above, spatialized variables of

demography, environment, buildings, etc., can also be

integrated into the SOLAP for urban planning objective, but

this aspect is not developed here.

B. Spatial data warehouse

Some data were directly provided by emergency services

of Brussels (internal data):

 fire stations and departures of ambulances

georeferenced as points;

 past interventions from 2012 to 2016

georeferenced as points with time and type (the

two main categories are fires and medical aids)

for recurring risk (around 350 000 incidents).

Some data were obtained from the appropriate suppliers

or directly downloaded (open data). A first category of these

external data are the ones defined by emergency services as

sources of sporadic risk:

 school buildings with more than 1000 students

(around 80 points with an attribute “number of

students”);

 dangerous industrial sites (UE Seveso

directive) with a “risk level” attribute (4

points);

 prisons (2 points);

 hospitals with a “number of beds” attribute

(around 80 points);

 main shopping zones with a “type” attribute

(around 100 polygons) [2];

 tunnels with a length superior to 400m (around

200 polygons).

A second category of external data is the road graph of

Brussels extracted from Open Street Map (OSM) [26]. It

covers a larger territory than Brussels because the quicker

path between two points inside Brussels is not always

entirely included in the city (which is surrounded by an

important motorway). Arcs are associated to an average

speed that was fixed with firefighters of Brussels for each

road type of OSM. There is a speed for the two crossing

directions in order to model prohibited directions

(associated to a very slow speed). Note that OSM road data

for Brussels are geometrically based on accurate UrbIS data

which are supplied by Brussels Regional Informatics Centre

(BRIC) [6].

C. Raster Data Cubes

1) Recurring risk

Conceptually, the multidimensional structure of a raster

data cube can be described by a star schema. Figure 3 is the

star schema for recurring risks. It is characterized by three

non-spatial dimensions and two spatial dimensions. The

raster SOLAP model used in this study, including the

management of KDE, is based on [17][18]. Note that

recurring risk data cubes about fires or about medical aids

are described by the same star schema. Only the members of

the “incident type” dimension are different.

Figure 3. Star schema of a recurring risk data cube

Non-spatial dimensions are incident type, hour range (3

hours) and day of the week. Physically, these dimensions

are managed as a ROLAP model [20]: a non-spatial fact is

the record of a fact table and the member of each non-spatial

dimension describing the fact is stored in a specific attribute

(incident type, hour range and day of week). The measure of

the non-spatial detailed fact is stored in a raster attribute.

The theoretical number of records of the fact table is

34Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 45 / 172

determined by the Cartesian product of the three non-spatial

dimensions. For instance, the raster cube for fire recurring

risk should have 224 records (detailed facts): 4 incident

types * 8 hour ranges * 7 days of week. This value grows

exponentially with the number of dimensions. For this

reason, a raster cube cannot involve too many non-spatial

dimensions to be able to quickly compute “roll up”

aggregations. Note that concretely, the number of detailed

facts can be inferior to the theoretical value if the density of

the data cube is less than 100% (some detailed facts can

have a null measure). This is an advantage of the ROLAP

model, which does not have to store null facts (contrary to

MOLAP or raster).

Physically, spatial dimensions (X and Y) are directly

managed in the ROLAP measure (a raster attribute). At the

raster level, a spatial fact is a pixel which is characterized by

a raster measure (the pixel value), a member for X and a

member for Y. These spatial dimensions members are

determined by the position of the pixel in the raster array

like for MOLAP. Therefore, the raster SOLAP model is also

characterized by MOLAP advantages (fast aggregations on

arrays) and disadvantages (null pixels have to be stored).

Note that every raster of the fact table is characterized by

the same resolution (100 m) and the same spatial coverage

[16].

When a raster cube is created for recurring risks, a KDE

raster is computed for the ROLAP measure of every non-

spatial fact with the same parameters: resolution of 100 m, a

quartic KDE function and a KDE bandwidth of 500 m (this

parameter determines the smoothing of the field). It has

been demonstrated [17] that aggregating KDE measures

with local map algebra is equivalent to the computation of a

KDE with all the points that should be involved in the

SOLAP aggregation (if KDE parameters are identical for

every non-spatial fact). Therefore, maps resulting from

SOLAP operations on these data cubes are KDE fields of

recurring risk. They are the result of a simple sum

aggregation (local map algebra), then normalized to range

from 0 to 100. An example is given by Figure 4. It is a map

of recurring risk for indoor fires including all days of the

week and all hour ranges.

Figure 4. Recurring risk for indoor fires

The other raster data cubes are characterized by a similar

star schema for the spatial dimensions (resolution of 100 m).

Consequently, only the non-spatial dimensions and the

raster measure (pixel value) will be discussed in the

following subsections.

2) Sporadic risks

The star schema of the raster cube for sporadic risk is

only characterized by one non-spatial dimension: the source

of risk. Its dimension members are schools, hospitals,

tunnels, industrial sites, commercial areas and prisons.

When punctual entities (schools, hospitals, industrial sites

and prisons) are rasterized, their spatial shape is a buffer of

300 m. For zonal entities (tunnels and shopping zones), the

shape of the native polygons is used.

The raster measure is a weight reflecting the risk

generated by the source:

 hospitals: number of beds;

 schools: number of students;

 commercial areas: 1 for secondary poles, 2 for

primary poles and shopping centers, 3 for “rue

Neuve” (a very populated shopping street in

Brussels) [2];

 industrial sites: 1 for “low risk” industries and 2

for “high risk” industries in the Seveso

description;

 prisons: 1 for all;

 tunnels: 1 for all.

After their rasterisation, these six measures are

normalized to range from 0 to 100.

As it is characterized by only one non-spatial dimension

(source of risk), the fact table for sporadic risk has only six

non-spatial facts (records). The local map algebra operation

for the SOLAP aggregation on this dimension is a weighted

sum for which weights were determined with the Brussels

fire department:

 hospitals: 0.2;

 schools: 0.2;

35Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 46 / 172

 commercial areas: 0.1;

 industrial sites: 0.15;

 prisons: 0.2;

 tunnels: 0.15.

Figure 5. Sporadic risk

Figure 5 shows a map of sporadic risks including all

sources (pixels values are normalized to range from 0 to

100).

3) Resources accessibility

The star schema of the two raster cubes for resources

accessibilities are also characterized by one non-spatial

dimension: fire stations for firefighters (first raster cube)

and departures of ambulances for medical aids (second

raster cube). The measure of a non-spatial fact is a raster,

modelling the accessibility of a specific resource. The

measure of a spatial fact (a pixel value) is the travel time

from the resource to the pixel location (in minutes). Note

that in some cases, ambulances can start from fire stations

too. These particular resources are present in both raster

cubes (fire stations and ambulances departures).

When raster cubes are built, measures are calculated in

this way. For a specific resource (a non-spatial fact), a

vector routing algorithm calculates a travel time value for

every node of the OSM graph through the quicker path.

Then an interpolated value is associated to every pixel of a

raster covering the region of interest.

As asked by emergency services, users can choose one

threshold amongst three different values: 4 minutes, 7

minutes and 10 minutes. Beyond these thresholds, the

accessibility of a resource is considered as null. Therefore,

during the analysis, every pixel exceeding the chosen

threshold is set to null. After that, remaining pixel values are

transformed in order to obtain an accessibility index which

grows when it gets closer to the resource and ranges from 0

to 100 (1).

 ' (100 *100)
max

p
p (1)

In (1), p’ is the new pixel value, p is the original pixel

value (travel time in minutes) and max is the maximum

pixel value in the raster.

Figure 6. Accessibility of fire stations with a travel time threshold of 7

minutes

Finally, the local map algebra operation for the SOLAP

aggregation on the resource dimension is a weighted sum.

The weights can be set on the fly by the user in order to

obtain an accessibility field adapted to previous risk maps.

They reflect the amount of humans/materials present in the

fire station or ambulance departure. For instance, Figure 6

shows an accessibility map of all fire stations with equal

weights and with a travel time threshold of 7 minutes (pixels

values are normalized to range from 0 to 100).

IV. VALIDATION

The raster SOLAP for emergency services of Brussels is

implemented with open source tools only. The spatial

DBMS PostgreSQL/PostGIS manages the vector data

warehouses and the raster cubes. SOLAP aggregations are

implemented with map algebra functions of PostGIS [28].

MapServer [21] delivers map results through Web Map

Services (WMS) which are shown in the SOLAP web

interface.

The SOLAP interface allows the user to do “slice” and

“roll up” operations on the five raster cubes (recurring risk

for fires and medical aids, sporadic risk, accessibility of

firefighters and ambulances). It is also possible to add new

resources and directly see their effect on the accessibility:

after setting the new location on the interactive map,

PGRouting (PostGIS extension for routing algorithms)

calculates all the quicker paths and then PostGIS raster

builds the new measure in the accessibility raster cube. As

previously said, weights of fire stations and ambulance

departures can also be modified on the fly. In addition to the

risk analysis, emergency services are thus able to perform

simulations about the spatial distribution of their resources.

36Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 47 / 172

The tool is also designed to easily integrate new data for

future analysis. The creation of all raster cubes is

automatized, including recurring risk (a KDE function has

been implemented in PL/PGSQL language).

Let’s remember that SOLAP is a powerful tool to easily

explore data. It gives all the keys that form the basis of a

complete risk analysis: different sources of risk described

through time/space dimensions and accessibility of

emergency services resources. It is then up to the user to

compare and interpret the different risk maps obtained with

the SOLAP.

V. CONCLUSIONS AND PERSPECTIVES

The aim of this research was the design of a SOLAP for

emergency services of Brussels agglomeration, which have

to fairly distribute their resources on the territory (fire

stations and ambulances). After a review of the literature

about risk analysis and SOLAP, a raster SOLAP model was

chosen to reach the objective. Following this model, a data

warehouse was created to collect and archive spatial data

involved in the risk study of Brussels (historical

interventions, specific places of risk, road network, etc.).

Several raster data cubes were then created to model the

different aspects of the analysis: recurring risk, sporadic

risk, accessibility of firefighters and ambulances. Finally,

the model was validated by the implementation of the

SOLAP architecture and its interface. It allows users to

freely explore data by applying SOLAP operations (“slices”

and “roll up”) on raster data cubes through interactive risk

maps. Moreover, simulations can be performed on resources

locations and weights (reflecting the amount of present

human/materials) to see their effect on the main

accessibility.

This research highlighted the interest of raster SOLAP

for risk analysis. In comparison with vector SOLAP (most

of current SOLAP tools), raster allows a continuous

visualization of space adapted to the analysis of recurring

risk through KDE maps. Moreover, all types of spatial

entities can be described by a single primitive: the pixel.

Raster SOLAP is quite easy to implement with spatial

DBMS because raster operations (map algebra) can be

directly used for data aggregations. More generally, SOLAP

allows decision makers to proceed to risk analysis in a user-

friendly environment which also includes the automatic

integration of new data for future analyzes.

Finally, further improvements could be provided to this

study. First, it was only possible to set one average speed to

every arc of the road graph with the available data. This

does not reflect the real situation of Brussels because the

important congestion of the road network mainly depends

on time dimensions: hour of the day and day of the week.

With richer data, it would be easy to integrate these

dimensions in raster cubes for accessibility. Secondly, for

technical reasons, it was not possible to extract the durations

of interventions from historical data. If it was available, the

risk analysis could take it into account as a weight for each

point when KDE measures are computed. Indeed, the

requisition time of emergency resources is an important

factor in risk analysis.

ACKNOWLEDGMENT

The authors would like to express their thanks to

SIAMU (“Service d'Incendie et d'Aide Médicale Urgente de

la Région de Bruxelles-Capitale”) for providing this

interesting case study.

REFERENCES

[1] Y. Bédard, “Spatial OLAP”, Forum annuel sur la R-D,
Géomatique VI: Un monde accessible, Montréal, November
1997.

[2] Y. Bédard, “Beyond GIS: Spatial Online Analytical
Processing and Big Data”, The 2014 Dangermond Lecture,
Santa-Barbara, 2014.

[3] S. Bimonte, Integration of geographic information in data
warehouses and online analysis: from modeling to
visualization (Intégration de l’information géographique dans
les entrepôts de données et l’analyse en ligne: de la
modélisation à la visualisation), PhD, Institut National des
Sciences Appliquées de Lyon, Lyon, 2007.

[4] S. Bimonte and M. A. Kang, “Towards a model for the
multidimensional analysis of field data, in Proceedings of the
Fourteenth east European conference on advances in
databases and information systems”, B. Catania, M. Ivanovic
and B. Thalheim, Eds. Berlin : Springer-Verlag, 2010, pp. 58-
72.

[5] Brussels-Capital Region. Retail Observatory 2011, available
at <http://urbanisme.irisnet.be/pdf/observatoire-du-
commerce-2011>, retrieved [January, 2017].

[6] BRIC, Brussels Regional Informatics Centre — CIRB-CIBG-
BRIC, Available at <http://cirb.brussels/>, [retrieved :
January, 2017]

[7] S. P. Chainey, L. Tompson, and S. Uhlig, “The utility of
hotspot mapping for predicting spatial patterns of crime”,
Security Journal, vol. 21, 2008, pp. 4-28.

[8] S. P. Chainey, “Examining the influence of cell size and
bandwidth size on kernel density estimation crime hotspot
maps for predicting spatial patterns of crime”, Bulletin of the
Geographical Society of Liege, vol. 60, 2013, pp. 7-19.

[9] T. Chee et al., “Business Intelligence systems: state-of-the-art
review and contemporary applications, Symposium on
Progress in Information and Communication Technology”,
Kuala Lumpur, 2009, pp. 96-101.

[10] P. Chevalier et al, Locating fire stations: An integrated
approach for Belgium, Socio-Economic Planning Sciences,
Vol. 46(2), 2012, pp. 173–182.

[11] E. F. Codd, S. B Codd, and C. T. Salley, Providing OLAP
(On-line Analytical Processing) to User-Analysts: An IT
Mandate, E.F Codd and Associates, 1993.

[12] M. N. Demers. GIS Modeling in Raster. New York : John
Wiley & Sons, 2001.

[13] M. Di Salvo, M. Gadais, and G. Roche-Woillez, The kernel
density estimation : methods and tools (L’estimation de la
densité par la méthode du noyau: méthodes et outils), Lyon :
Certu, 2005.

[14] B. Espinasse, Data warehouses: OLAP systems: ROLAP,
MOLAP and HOLAP (Entrepôt de données: Systèmes OLAP:
ROLAP, MOLAP et HOLAP). Ecole Polytechnique
Universitaire de Marseille, 2013.

[15] N. Guldaker and P. O. Hallin, Spatio-temporal patterns of
intentional fires, social stress and socio-economic

37Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 48 / 172

determinants: A case study of Malmö, Sweden, Fire Safety
Journal, Vol. 70, 2014, pp. 71–80.

[16] Intelli³, available at <http://www.intelli3.com>, [retrieved :
january, 2017].

[17] ISO 19123. Geographic information - Schema for coverage
geometry and functions, 2005.

[18] J. P. Kasprzyk, Integration of spatial continuity in the multi-
dimensional structure of a data warehouse – raster SOLAP
(Intégration de la continuité spatiale dans la structure
multidimensionnelle d’un entrepôt de données – SOLAP
raster), PhD, Université de Liège, 2015, Available at
<http://hdl.handle.net/2268/182360>.

[19] J. P. Kasprzyk and J. P. Donnay, A raster SOLAP for
Visualization of crime data fields. GEOProcessing 2016 : The
Eighth International Conference on Advanced Geographic
Information Systems, Applications, and Services, Venice, 24-
28 april 2016, pp. 109-117.

[20] R. Kimball and M. Ross, The Data Warehouse Toolkit: The
Definitive Guide to Dimensional Modeling, Third Edition,
New York : John Wiley and Sons, 2013.

[21] J. Li, L. Meng, F. Z. Wang, W. Zhang, and W. Cai. “A Map-
Reduce-enabled SOLAP cube for large-scale remotely sensed
data aggregation”, Computers and Geosciences, vol. 70, 2014,
pp. 110-119.

[22] Mapserver 7.0.0 beta1 documentation, available at
<http://mapserver.org/>, [retrieved: march, 2016].

[23] R. McHugh, Integration of the matrix structure in spatial
cubes (Intégration de la structure matricielle dans les cubes
spatiaux), Master thesis. Université Laval, Québec, 2008.

[24] J, Mennis, R. Viger, and C. D. Tomlin, “Cubic Map Algebra
functions for spatio-temporal analysis, Cartography and
Geographic Information Systems”, vol. 30, no. 1, 2005, pp.
17–30.

[25] M. Miquel, Y. Bédard, and A. Brisebois, “Conception of
geospatial data warehouses from heterogeneous sources:
application example in forestry” (Conception d’entrepôts de
données géospatiales à partir de sources hétérogènes :
Exemple d’application en foresterie), Ingénierie des Systèmes
d’Information, vol. 7, no. 3, 2002, pp. 89-111.

[26] S. Openshaw, The modifiable areal unit problem. Norwick
(Norfolk), Geo Books, 1983.

[27] Open Street Map, Open Street Map, Available at
<https://www.openstreetmap.org/>, [retrieved: January,
2017].

[28] M. Plante, Towards matrix cubes supporting on the fly spatial
analysis in decision support (Vers des cubes matriciels
supportant l’analyse spatiale à la volée dans un contexte
décisionnel), Master thesis, Université Laval, Québec, 2014.

[29] P. Racine and S. Cumming, Store, manipulate and analyze
raster data within the PostgreSQL/PostGIS spatial database.
FOSS4G, Denver, September 2011.

[30] Spatialytics, Open Source GeoBI, available at
<http://www.spatialytics.org/>, [retrieved: January, 2017].

38Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 49 / 172

Sensor Selection for Resource-Efficient Query Execution in IoT Environments

Maria G. Koziri

Dept. of Computer Science

Univ. of Thessaly

Lamia, Greece
email: mkoziri@uth.gr

Thanasis Loukopoulos

Dept. of Computer Science and Biomedical Informatics

Univ. of Thessaly

Lamia, Greece

email: luke@dib.uth.gr

Abstract—In an IoT environment, the geographically dispersed

sensors that are eligible for participating in a spatial query,

can scale to the orders of millions or even billions. Therefore,

judiciously selecting among the candidates is of paramount

importance to reduce query complexity. Such selection must

minimize the total resources used while maintaining the

highest possible accuracy in results. In this paper, we turn our

attention to the problem of assigning query filters over a subset

of the available sensor nodes, assuming that queries are

resident in the system, e.g., performing monitoring activities.

We present a rigorous problem formulation that captures the

dependencies between query accuracy, and resource

consumption, focusing in particular on energy consumption.

The relevant decision problem is shown to be NP-complete,

thus, we propose a heuristic based on the greedy method to

solve it. Simulation experiments show that compared to an

algorithm that performs random assignments, significant

improvement by more than 100% (resource wise) is expected.

Keywords-sensor networks; IoT; sensor selection; query

plan; energy efficiency; resource consumption.

I. INTRODUCTION

As the number of smart devices has exceeded the
population of earth and is still growing at a fast pace, the
premise of IoT [5] is to enable (among others) the
interoperability of the various devices that could act as
potential sensors and/or actuators. At the same time, the
advent of cyber physical systems (CPS) [8] that combine the
physical sensors and actuators with the cyber world provide
a novel ground for smart applications where the needs for
interoperability and efficient resource allocation are of
paramount importance.

Of particular interest in such huge scale systems is the
problem of efficient spatial query execution. Consider for
instance a system that gathers temperature information at the
various city districts and sends warnings to health authorities
in the case of extreme conditions. A simple strategy whereby
all the available sensors are involved in the query (assuming
a large number of them), will likely lead to waste of
resources at the sensors and increased network load. In
contrast, using only a subset of the available sensors per
involved district location, might lead to results of almost
equal quality, while saving resources.

In this paper, we consider a generic sensor system
running monitoring spatial queries that involve (among
others) sensor locations. We tackle the problem of sensor

selection, with the goal of achieving sufficient query
accuracy, while minimizing the total energy consumed, thus,
improving the lifetime of the sensing nodes (assuming they
operate on battery). Specifically, we illustrate a rigorous
formulation for the problem and propose a greedy algorithm
to solve query–sensor assignment.

The remaining of the paper is organized as follows.
Section II discusses the related work. The problem
formulation is illustrated in Section III, while a greedy
heuristic approach is presented in Section IV. Experimental
results are included in Section V. Finally, Section VI
concludes the paper.

II. RELATED WORK

Our work is also closely related to in-network query
processing where the problem is to assign the operators
comprising a query in the network nodes. In [4] and [14],
operator placement was discussed in the context of WSNs
with the aim of optimizing routing cost in the query tree,
while in [25] a more generic approach that aims at placing
general purpose application trees is proposed.

The effects of query operator placement are largely
dictated by data availability in the processing node.
Techniques, such as caching [10] and data replication [13]
were studied in the past in order to move data closer to where
they will be required. In [26], operator placement is
considered together with data caching. Query caching is also
the aim of [12] where the potential of caching OLAP queries
at the level of Internet proxies was examined, while in [18]
caching is considered at the level of a single cell in a cellular
network.

Much research has been devoted in the past on
developing suitable middleware and programming
frameworks in the context of wireless sensor networks.
Example works include the systems described in
[11][19][24] to name a few. [19] provides an adaptive
mechanism for efficient data fusion and filtering. Optimal
resource allocation for filtering in a distributed system is
discussed in [2]. The systems of [11] and [24] are broader in
scope in the sense that they model an application as a set of
communicating mobile agents, that can carry any type of
functionality, e.g., sensing, actuating, aggregating or
controlling etc. Both systems attempt to reduce network
overhead using different algorithmic techniques. Another
system of similar scope, i.e., mobile agent framework for
WSN is [1]. Compared to [11] and [24], it tackles equivalent

39Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 50 / 172

application scope, nevertheless, it lacks similar mechanisms
for network communication reduction. In the context of IoT,
agent based systems include [3] and [7]. The major challenge
tackled by these systems is the interoperability of
heterogeneous sensing and computing nodes. As
demonstrated by the systems the agent framework provides a
suitable abstraction layer for integrated applications.

Adaptive resource management in sensor networks is
discussed in [6], [15] and [23]. In [23], the grouping of
sensors into predefined number of clusters is discussed. [6]
proposes an adaptive scheme that dynamically adjusts
sampling rate in the sensor network, while [15] discusses
resource/sensor allocation to cope with peaks in sampling
rates. A survey on the issue of adaptive sensor network
organization can be found in [21]. Of particular interest is the
case where the sensor network is comprised of cameras
meaning that the data to be transmitted is of high volume
compared to for example monitoring temperature. In [22],
methods to efficiently perform monitoring over a camera
network are discussed, while [9] is rather orthogonal,
studying the reduction in network consumption that is
achievable in social media networks by using new video
coding standards. It is worth noting that social media
comprise key components of cyber physical systems and
therefore any resource savings are cumulative to the ones
achieved at the sensor network level.

In a previous work of ours [17], we implemented a
framework that enabled for communication and coordination
of various smart devices through the remote invocation of
applications on them. In this paper, we envision that a
voluntary participation scheme is in effect and that all the
required functionality by each participant is coded as a native
application. This is for instance the case with smart city
environments such as [16]. A central administration entity
tracks the geographic locations of participants, for instance
by using some of the efficient spatial indexing schemes
proposed in the literature, e.g., [20] and is responsible for
selecting the nodes to participate in a system query. In the
sequel, we describe the criteria and the optimization problem
induced by the aforementioned selection.

III. PROBLEM FORMULATION

Let Q be the total number of queries to be executed in the
system. Each query Qi has Si selection predicates. Let S be
the total number of predicates from all queries in the system.
Clearly:

 (1)

Assuming a total ordering of the S predicates, we denote
with Fk the kth such predicate. Let A be a binary Q×S matrix
encoding whether the predicate Fk is used by Qi as follows:
Aik=1 iff Qi contains Fk, otherwise, Aik=0. Each Fk can be
assigned over a number of sensing nodes (if compatible),
resulting into multiple streams of data (equaling the assigned
sensors) being transmitted to a base station for filtering and
joining. This model reflects the scenario where sensing
nodes have direct Internet connections, e.g., smart devices
under cellular networks.

Let the total number of participating sensing nodes be N,
and Nj denote the jth such, assuming a total ordering of them.
Let a binary N×S matrix C encode whether a node Nj is
compatible with Fk predicate as follows: Cjk=1 iff Nj is
compatible with Fk and Cjk=0, otherwise. We should note
that a node might be compatible with more than one
predicates. To explain it, consider a query that returns the
average temperature and humidity from two different
location areas. The query can be viewed as containing four
predicates, i.e., the combinations of the two locations and the
two measured parameters. Depending on the measurement
power of a sensing node it can participate in one or more
predicates (max two if location areas are disjoint).

Each Nj has a resource level r(Nj) representing a generic
metric of the node’s processing power or energy levels in
case nodes run on battery and energy preservation is deemed
the most important factor. Similarly, each predicate Fk
requires a resource consumption of r(Fk). We would like to
mention that assuming constant resource consumption by
query predicates is not far from reality. For instance, in
camera networks, video feeds are usually transmitted and
processed at bitrates that remain almost constant.

In order for a query Qi to execute properly, a predicate Fk
must be assigned to at least Rik nodes. Clearly Rik=0 iff Aik=0.
Let B be a Q×S×N matrix encoding the potential query
benefit, whereby Biku is the benefit of assigning u sensors at
the Fk predicate for Qi. We assume that: Biku=0 for all u<Rik
and Biku>0 for u≥Rik.

Finally, let a Boolean matrix X of size N×S encode the
predicate to node assignment as follows: Xjk=1 iff Fk is
assigned to Nj and 0 otherwise. We are now in position to
formulate the selection problem as a two function
optimization one, whereby the first function aims at
maximizing query benefit and the second function aims at
minimizing the maximum proportional resource reduction at
a node. The following equations depict the target functions:

 (2)

 (3)

Therefore, the problem can be posed as follows: Find X
such that (2) is minimized and (3) is maximized, subject to
the following constraints:

 (4)

 (5)

 (6)

Constraint (4) effectively dictates that a sufficient

number of sensors must be allocated to each predicate.
Constraint (5) captures compatibility restrictions between
predicates and sensors. Notice that an incompatible node
(Cjk=0) leads to Xjk=0, i.e., the predicate will not be assigned

40Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 51 / 172

to the node. Constraint (6) captures node capacity, i.e., it
forbids the assignments to a node that would require resource
consumption greater than the available one.

Before closing the section we would like to mention that
the two objectives D1 and D2 are conflicting with each
other. It is easy to observe that D1 is minimized when
equality holds in (4), while D2 is maximized when all
eligible sensors participate in a predicate (assuming that Biku
entries grow monotonically to u).

When optimizing two target functions one can resort to
designing algorithms that produce a set of Pareto optimal
solutions to choose from. Instead, we decided to convert the
two function optimization problem into a single function
optimization one by introducing a weighting constant α. In
particular, let min{Bik} denote the (minimum) benefit when
u=Rik and max{Bik} the maximum such value when:

 (7)

Then, bik denotes the average max to min benefit ratio for

a predicate Fk at Qi as follows:

 (8)

For each predicate we calculate the benefit to resource ratio
(let rik) as follows:

 (9)

 (10)

Clearly, (8) and (9) hold if Fk is used by Qi, i.e., Rik≠0.
Then we can get an estimation of the total benefit to resource
consumption ratio as follows:

 (11)

When comparing the maximum and minimum

assignment policies r represents the ratio of benefit gains to
resource consumption increase. Thus, we can identify the
constant α as a proportion of r (depicting how much query
benefits are favored over resource consumption).The
following two equations summarize the problem formulation
which now targets at maximizing the composite function D:

 (12)

 (13)

Solving the problem as formulated using (13) (but also in
the formulation that uses (2) and (3)) can be shown to be NP-
hard. In particular, it can be shown that it contains a 2-
processor scheduling component as far as (2) is concerned.

For this reason we resort to heuristics in order to compute
solutions. In the sequel, we describe one such heuristic.

IV. GREEDY ALGORITHM

The algorithm presented in this section is based on the
greedy paradigm. It works in two steps. In the first step, it
covers the constraint expressed in (4), i.e., assign just enough
sensors to meet the demand for each predicate. This is done
with respect to constraints (5) and (6) as follows. First, all
predicates are sorted according to r(Fk). Then, starting with
the one with the highest resource requirement, it assigns it to
Rik different sensors in an iterative manner. At each iteration,
all eligible sensors are considered and the assignment that
incurs the minimum cost as per (2) is selected.

Having satisfied constraint (4) the algorithm then
proceeds by optimizing (13) in an iterative manner. At each
iteration all possible predicate to sensor assignments are
considered and the one that maximizes most (13) is selected
and implemented. The process continues until no eligible
sensor-predicate assignments exist or (13) can’t be further
improved.

V. EXPERIMENTS

We conducted simulation experiments using the
following setup. We fixed the number of queries (unless
otherwise stated) to 100, each with a predicate number
varying uniformly between 3 and 10. Predicates required
between 20 and 100 sensing nodes (randomly chosen) to
execute properly and incurred resource consumption
between 1 and 10 units. We assumed a total number of
sensing nodes equaling 10,000, with each of them being
compatible to 1/10th of the total predicates (randomly
selected). Sensing nodes had resource capacity of 100 load
units.

We compared the performance of greedy algorithm as
opposed to random selection for the case where each
predicate Fk must be assigned to Rik nodes exactly. Results
depict the average of 10 runs.

Figure 1. Maximum resource consumption for increasing number of

queries (sensor nodes=10,000).

0

10

20

30

40

50

60

70

80

90

100

50 100 200

M
ax

im
u

m
 R

es
o

u
rc

e
C

o
n

su
m

p
ti

o
n

Queries

Random

Greedy

41Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 52 / 172

Figure 1 shows the results for the baseline scenario of
100 queries over 10,000 sensors as well as the performance
when the number of queries are doubled or halved keeping
the rest of the setup the same. It is evident that the
performance difference between Greedy and Random is
significant. In most cases, Greedy incurs a maximum
resource consumption of less than half compared to
Random. As expected peak resource consumption rises to
the number of queries introduced in the system.

To further confirm the viability of the proposed heuristic
in Figure 2 we plot the performance of Greedy and Random
as the number of available sensors increases. Notice, that the
maximum resource consumption with Greedy exhibits a
steeper decline compared to Random when moving from the
baseline scenario to the one having double the sensors.

Figure 2. Maximum resource consumption for increasing number of

sensor nodes (queries=100).

Figure 3. Maximum resource consumption for increasing placement

requirement of predicates (queries=100, sensor nodes=10,000).

Last, in Figure 3 we evaluated the performance of the
algorithms when each predicate exhibits half (0.5 in x-axis)
and double (2 in x-axis) the requirements for sensors to be
placed at, compared to the baseline scenario (1 in x-axis).
Results are comparable to the ones exhibited in the Figures
1 and 2, with Random incurring between 2 and 3 times more
overhead compared to Greedy.

VI. CONCLUSIONS

In this paper, we tackled the problem of assigning query
operators to sensing nodes in IoT environments, whereby a
huge number of potential participants exist. We provided a
rigorous problem formulation that captures typically the
trade-off between increasing quality of query results and
resource consumption. We proposed a heuristic based on the
Greedy paradigm to tackle the problem and compared its
performance against Random assignment. Preliminary
experimental results indicate that Greedy incurs between half
and one third of the overhead of Random.

ACKNOWLEDGMENT

This work was partially supported by travel grant of the
postgraduate program: “Informatics and Computational
Biomedicine”, School of Science, Univ. of Thessaly.

REFERENCES

[1] F. Aielo, G. Fortino, R. Gravina, and A. Guerrieri, “A Java-

based Agent Platform for Programming Wireless Sensor

Networks,” The Computer J., vol 54(3), pp. 439-454, 2010.

[2] N. Assimakis, M. Adam, M. Koziri, S. Voliotis, and K.

Asimakis, “Optimal decentralized Kalman filter and Lainiotis

filter,” Digital Signal Processing, vol. 23(1), pp. 442-452,

2013.

[3] I. Ayala, M. Amor, and L. Fuentes, “The Sol agent platform:

Enabling group communication and interoperability of self-

configuring agents in the Internet of Things,” JAISE,

vol. 7(2), pp. 243-269, 2015.

[4] G. Chatzimilioudis, A. Cuzzocrea, D. Gunopoulos, and N.

Mamoulis, “A Novel Distributed Framework for Optimizing

Query Routing Trees in Wireless Sensor Networks via

Optimal Operator Placement,” J. of Computer and System

Sciences, vol. 79(3), pp. 349-368, 2013.

[5] J. Gubbi, R Buyya, S. Marusic, and M. Palaniswami, “Internet

of Things (IoT): A vision, architectural elements, and future

directions,” Future Generation Computer Systems, vol. 29(7),

pp. 1645-1660, 2014.

[6] N. Hu, T. F. La Porta, and N. Bartolini, “Self-Adaptive

Resource Allocation for Event Monitoring with Uncertainty

in Sensor Networks,” MASS 2015, pp. 370-378.

[7] E. Jung, I. Cho, and S. M. Kang, “iotSilo: The Agent Service

Platform Supporting Dynamic Behaviour Assembly for

Resolving the Heterogeneity of IoT,” Int. J. of Distributed

Sensor Networks, vol. 10, 2014.

0

10

20

30

40

50

60

70

80

90

100

5000 10000 20000

M
ax

im
u

m
 R

es
o

u
rc

e
C

o
n

su
m

p
ti

o
n

Sensor Nodes

Random

Greedy

0

10

20

30

40

50

60

70

80

90

100

0.5 1 2

M
ax

im
u

m
 R

es
o

u
rc

e
C

o
n

su
m

p
ti

o
n

Placement requirements

Random

Greedy

42Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 53 / 172

[8] S. K. Khaitan and J. D. McCalley, “Design Techniques and

Applications of Cyber Physical Systems: A Survey,” IEEE

Systems Journal, vol. 9(2), pp. 350-365, June 2015.

[9] M. G. Koziri, et al., “A framework for scheduling the

encoding of multiple smart user videos,” SMAP 2016, pp. 29-

34.

[10] N. Laoutaris, G. Smaragdakis, A. Bestavros, I. Matta, and I.

Stavrakakis, “Distributed Selfish Caching,” IEEE TPDS,

vol. 18(10), pp. 1361-1376, 2007.

[11] H. Liu, T. Roeder, K. Walsh, R. Barr, and E. G. Sirer,

“Design and implementation of a single system image

operating system for ad hoc networks,” in

Proc. MobiSys 2005, pp. 149-162.

[12] T. Loukopoulos and I. Ahmad, “Policies for Caching OLAP

Queries in Internet Proxies,” IEEE TPDS, vol. 17(10),

pp. 1124-1135, 2006.

[13] T. Loukopoulos, N. Tziritas, P. Lampsas, and S. Lalis,

“Implementing Replica Placements: Feasibility and Cost

Minimization,” IPDPS 2007, pp. 1-10.

[14] Z. Lu, Y. Wen, R. Fan, S. - L. Tan, and J. Biswas, “Toward

Efficient Distributed Algorithms for In-Network Binary

Operator Tree Placement in Wireless Sensor Networks,”

IEEE JSAC, vol 31(4), pp. 743-755, 2013.

[15] N. Nguyen and M. M. H. Khan, “A closed-loop context aware

data acquisition and resource allocation framework for

dynamic data driven applications systems (DDDAS) on the

cloud,” Journal of Systems and Software, vol. 109, pp. 88-

105, 2015.

[16] F. Paganelli, S. Turchi, and D. Giuli, “A Web of Things

Framework for RESTful Applications and Its

Experimentation in a Smart City,” IEEE Systems Journal vol.

10(4), pp. 1412-1423, 2016.

[17] P. Papadopoulos, T. Loukopoulos, I. Anagnostopoulos, N.

Tziritas, and M. Vassilakopoulos, “RAC: a remote application

calling framework for coordination of mobile

apps,” PCI 2015, pp. 394-399.

[18] K. Poularakis, G. Iosifidis, and L. Tassiulas, “Approximation

algorithms for mobile data caching in small cell networks,”

IEEE Trans. on Communications, vol. 62(10), pp. 3665-3677,

2014.

[19] U. Ramachandran, et al., “Dynamic data fusion for future

sensor networks,” ACM TOSN, vol. 2(3), pp. 404-443, 2006.

[20] G. Roumelis, M. Vassilakopoulos, T. Loukopoulos, A.

Corral, and Y. Manolopoulos, “The xBR^+ -tree: An Efficient

Access Method for Points,” DEXA (1) 2015, pp. 43-58.

[21] C. Sengul, A. C. Viana, and A. Ziviani, “A survey of adaptive

services to cope with dynamics in wireless self-organizing

networks,” ACM Comput. Surv. 44(4), pp. 23:1-23:35, 2012.

[22] P. J. Shin, J. Park, and A. C. Kak, “A predictive duty cycle

adaptation framework using augmented sensing for wireless

camera networks,” ACM TOSN, vol. 10(2), pp. 22:1-22:31,

2014.

[23] M. N. Tahan, M. Dehghan, and H. Pedram, “Upper and lower

bounds for dynamic cluster assignment for multi-target

tracking in heterogeneous WSNs,” JPDC vol. 73(10), pp.

1389-1399, 2013.

[24] N. Tziritas, et al., “Middleware Mechanisms for Agent

Mobility in Wireless Sensor and Actuator Networks,” S-

CUBE 2012, pp. 30-44.

[25] N. Tziritas, T. Loukopoulos, S. U. Khan, and C. - Z. Xu,

“Distributed Algorithms for the Operator Placement

Problem,” IEEE TCSS, vol. 2(4), pp. 182–196, Feb. 2015.

[26] L. Ying, Z. Liu, D. Towsley, and C. H. Xia, “Distributed

Operator Placement and Data Caching in Large-scale Sensor

Networks,” INFOCOM 2008, pp. 977-985.

43Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 54 / 172

Anomaly Detection in Cloud Based Application using System Calls

Marin Aranitasi

Polytechnic University of Tirana, Faculty of Information

Technology, Department of Fundamentals of Informatics

Tirana, Albania

Email : maranitasi@fti.edu.al

Mats Neovius

Åbo Akademi University, Faculty of Science and

Engineering, Department of Computer Science

Turku, Finland

Email: mneovius@abo.fi

Abstract—Cloud computing is a rapidly developing

computing paradigm. It enables dynamic on-demand

resource distribution computing in a cost-effective manner.

However, it introduces compelling concerns related to

privacy and security of the data. As many of these have

been extensively studied and are monitored effectively, this

paper proposes a novel solution relying on detecting

anomalies in system calls behavior of the system. We use

Dempster-Shafer theory of evidence for learning the

normality and show how to parametrize this in the method

presented. The method is scalable to any set of system calls.

Finally, we propose further challenges on this track.

Keywords- Cloud computing; Security; System calls;.

I. INTRODUCTION

With the advances of (Inter) networking and the advent of

the concept cloud computing, computing resources are

provided ―on-demand‖ from a virtualized pool. According

to NIST [1] essential characteristics of cloud computing

include on-demand self-service, network access, pooling,

elasticity and measured service. Service models include

Software as a Service (SaaS), Platform as a Service (PaaS)

and Infrastructure as a Service (IaaS) with deployment

models including private, community, public and hybrid

clouds. Common to these are that the hardware is abstracted

from the consumer who typically ―pay-per-use‖ of resources

whose availability is elastically adjusted by momentary

demand [2]. As a consequence, cloud computing

encompasses a new means to provide virtually unlimited

resources to paying customers whenever needed. Hence, the

cloud has revolutionized the way computing infrastructure is

used [3] to offer adaptive utility computing.

With novel computing paradigms, concerns on their

feasibility arise. In cloud computing this concern relates,

among others, to security [4] and privacy. Commonly

agreed security requirements include data integrity,

confidentiality, access controllability and privacy

preservability. These threats do not restrict themselves to

point-of-sales activity, but are much more sophisticated

extending to data integrity and privacy concerns including

espionage, malicious insiders and curious and greedy

service providers.These security threats are also the main

impediments to wider deployment of cloud computing

solutions especiallyin domains operating on sensitive data

such as used in the accounting industry [5]. These concerns

lend themselves also to emerging cloud-based applications

such as the Internet of Things and Big Data [16]. In

addition, legislation may add technical impediments for

privacy protection such as the Regulation (EU) 2016/679

and EU-U.S. Privacy Shield [6]. The extent to which this

affects the Attribute Authority (AA) and the Third Party

Auditor (TPA) roles and their functionality is yet to be

discovered. Because of these reasons, many solutions are

still hosted ―in-house‖with typically higher initial

investment cost, higher maintenance costs and with

restrictions on availability.

On the type of attacks on enterprise clouds, Verizon’s

security report [7] states that roughly 80% of all breaches

are of external origin and 80% have a financial motive, with

roughly 20% having espionage as the motive. Moreover,

Verizon report that a system is compromised in minutes or

seconds and exfiltration of the data happens typically within

a day. And despite all the effort by specialists to protect a

system from getting compromised, these keep on

happening. Research is also directed on this track with

searchable and homomorphic encryption research

flourishing. Both approaches do, however, rely on a policy

and a shared secret lifting the importance of the AA and

TPA. Possibly as of this advancements, tactics to perform

social attacks granting access to internal attacks develop;

with rudimentary known ones including phishing. Other

well-known risks the cloud based application faces include

data protection risks, system outages including (D)DoS

attacks, data loss, vendor lock-in and vendor failure [8].

Common to social and DoS attacks are that no policy-

based technological appliance can protect against these. As

social attacks typically provide access to restricted data

where the attacker would need to know what to search for or

how to stir the system up, these are often well targeted with

a certain purpose in mind. Alleged examples include

Stuxnet, US expelling 35 Russian diplomats at the end of

2016 accused to have tried to influence US presidential

elections and the noticed espionage at the Finnish foreign

ministry in 2013. With respect to DoS attacks, with the IoT

proposal and its envisioned spread, the zombies for botnets

are ubiquitous and maintained by ordinary persons lacking

maintenance skills. First recorded DDoS attacks with IoT

44Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 55 / 172

devices are reputed to have occurred in 2015 by CCTV [9]

with other larger attacks overloading Twitter, PayPal and

Spotify [10] in 2016. Also, if an IoT device operates on

private data, its owner’s concern is to keep it

uncompromised and if compromised, being promptly

informed about this. This is forecast as an immense problem

with the advances of automated data analysis including

image recognition and profiling. Moreover, privacy may be

compromised by such a device in a manner enabling identity

hijacking.

With respect to these concerns, this paper does not aim

to advance on the policies, encryption or similar purely

technological advances, but have a main contribution in

presenting a method for detecting behavioral anomalies.

This method learns a pattern of normality and reacts on

events outside this pattern, i.e. anomalies. As an

implementation we use system calls of a cloud application,

as these are needed whether searchable or homomorphic

encryption each time a system accesses the kernel. In this

context, we mean by cloud application any cloud based

backend software communicating with a set of agents

including IoT systems. Thus, compared to policy-based

models, this paper takes nearly the reverse view that relies

on an agent’s past activity to indicate its current activity

rather than on Boolean logic and cryptography.

The rest of this paper is organized as follows: Section II

present the background and the motivation of the paper.

Section III is divided in five subsections and presents our

solution to the security issues identified. The first and the

second talks about system calls and system call patterns.

The other subsections talk about the mathematical method

of the proposed solution. Conclusions are presented in

section IV.

II. BACKGROUND AND MOTIVATION

In the cloud, main security concerns relate to data privacy or

integrity being compromised. Recent infamous ones include

Sony PlayStation data breach [11], Dropbox privacy leakage

[12] and the alleged major security breach in May 2016

compromising 273M passwords. Typically, the severity of

these attacks is measured by the sensitivity of the data being

exposed or the harm it causes. It is also speculated that

many of the most severe ones do not reach the headlines

because of loss of reputation. Moreover, the laws stating the

consequences have often not been tested yet, imposing little

scrutiny on companies. Moreover, breaches of Service Level

Agreements (SLA) dictating the division of responsibilities

between the customer and the Cloud Service Provider (CSP)

occur frequently. These are seldom made public because of

the reputation implications on both parties with an exception

of black-hat hackers. Reasons for security breaches may

relate to improper configuration, SW bugs, HW errors or

power failures [13]. In addition, SW not being up-to-date

may contain known exploits. This holds especially for the

CSP, where ―a single vulnerability or misconfiguration can

lead to a compromise across an entire provider’s cloud‖ [14]

[17].

With the cloud and its essential characteristics

including differences in national legislation, SLA may start

to include paragraphs stipulating spatial distribution. This

implies that the administrator passwords of the computers

used for this application must not have been disclosed to

areas not included in the SLA. This concern goes especially

for outsourced data services where the owner’s exclusive

control over their data is compromised when stored on a

server whose admin password is known by someone else.

For example, Google’s privacy policy states that Google

reserves the right to review application, project and

customer data for compliance with the acceptable use policy

[17]. In this case, it comes down to what is ―acceptable use

policy‖. Moreover, for personal data, the cloud computing

sets a stage of novel problems that need to be dealt with

including those who have the right to process the data, what

is the level of privacy etc. addressed in e.g. Regulation (EU)

2016/679 and EU-U.S. Privacy Shield [5]. Hence, the cloud

used by an application may need to be spatially constrained

opposing the principal characteristics of cloud computing.

Means to restrict access and preserve data privacy and

integrity includes sophisticated policies on data backup and

distribution over nodes. In cases of a cloud application, this

is the responsibility of the application service provider and

its SLA’s with Cloud Service Provider’s (CSP). These are

often professionally maintained and alternative means to

gain access are developed and gaining popularity, e.g.

phishing or malwares opening a backdoor or as a key

logger. On the CSP, as they share infrastructure, platforms

and underlying virtualization software, they form a single

point of failure attracting targeted and very sophisticated

attacks. If vulnerability is found in any layer, it affects

everyone on this cloud. For this, CSA recommend a

defense-in-depth strategy. Contemporary attacks are also

often more directed and if successful, pose a greater

risk.Moreover, common to most attacks are that they often

go unnoticed until it is too late, e.g. data exfiltration has

already taken place. In such cases, restoring the data from a

backup may not suffice as privacy has been compromised.

III. HOW WE MIGHT APPROACH THESE ISSUES

In this paper we take the in-depth approach and present a
method that builds the normal behavior of an agent on a
cloud system. We construct the normality by analyzing
system calls by its user with the aim of detecting system
anomalies by monitoring specific system calls of specific
applications. This normality would define the way the
system works ―normally‖, with any anomaly indicating a
situation calling for further attention.

In the next section we present the system calls and we
define the set of system calls to use for monitoring and
explain the reason why we choose those calls. After that we
are going to present the mathematical tool for analyzing and
for detecting possible threats in the system.

45Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 56 / 172

A. System calls

By definition, a system call is an atomic request in a Unix-
like operating system made via a software interrupt by an
active process for a service performed by the kernel [16].

Figure 1. System calls

The system call provides an interface to the operating

system’s services. Application developers often do not have

direct access to the system calls, but can access them

through an application programming interface (API). The

functions that are included in the API invoke the actual

system calls. This is illustrated in Figure 1. By using the

API, certain benefits can be gained:

 Portability: as long a system supports an API, any

program using that API can compile and run.

 Ease of Use: using the API can be significantly easier

than using the actual system call.

Figure 2. System call parameters

Three general methods exist for passing parameters to the

OS as shown in Figure 2:

1. Parameters can be passed in registers.

2. When there are more parameters than registers,

parameters can be stored in a block and the block

address can be passed as a parameter to a register.

3. Parameters can also be pushed on or popped off the

stack by the operating system.

The system calls are plentiful and vary between

operating systems, with Linux kernel having 300+ system

calls and Windows 7 having close to 700. These can be

categorized to 5 different categories: a process control is a

running program that needs to be able to stop execution

either normally or abnormally. When execution is stopped

abnormally typically a dump of the memory is taken to be

examined by a debugger. The file management system calls

include create (), delete (), read (), write (), reposition (), or

close (). Also, there is a need to determine the file attributes

– get and set file attribute. Often the OS provides an API to

make these system calls. The device management process

usually requires several resources to execute, if these

resources are available, they will be granted and control

returned to the user process. These resources are also

thought of as devices. Some are physical, such as a video

card, and others are logical, such as a file.User programs

request the device, and when finished they release the

device. Similar to files, we can read, write, and reposition

the device. The information management system call

exists purely for transferring information between the user

program and the operating system. An example of this is

time, or date. The OS also keeps information about all its

processes and provides system calls to report this

information. The communicationsystem call exists in two

models of interprocess communication, the message-passing

model and the shared memory model.

 Message-passing uses a common mailbox to pass

messages between processes.

 Shared memory use certain system calls to create and

gain access to regions of memory owned by other

processes. The two processes exchange information by

reading and writing in the shared data.

According to the characteristics of the system calls we

propose to monitor 2 categories of system calls:

1. Communication

2. File management.

For the communication category we propose to monitor

accept (), socket (), connect () system calls, and for the file

management category we propose to monitor read (), write

(),delete () andcreate () system calls.These are the system

calls that rank as the most common threats in the CSA

report and are vital for any cloud based application. We

think that monitoring the data sent across the network is not

a good idea because there is a high overhead tracing those

system calls and they do a lot variable invocation for

sending and receiving data. Hence, this might not be

favorable to do with the method presented below without

packet inspection.

B. System call patterns

We assume the system calls monitored to behave in

anatomic manner and the set of them to be exclusive and

exhaustive. That is, we assume the system calls not to be

subject to race conditions hence assuming an atomic part to

User process executing Calls system call
Return from

system call

Execute system call

Kernel

User process

User mode

(mode bit =1)

Kernel mode

(mode bit =0)

X:parameter

for call

Load

address X

System call

13

Use

parameters

from table X

Code

for

system

call 13

X

register

User program Operating system

46Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 57 / 172

be executed from the beginning till the end and each and

every one is exactly one of the possible. On such a

foundation a pattern could be constructed from analyzing

the system call log, i.e. by the recorded evidence. Moreover,

the pattern could be augmented by contextual bindings by

some machine learning method. The outcome could

reasonably be a probability of a certain or a sequence of

system calls happening. Applying a timed window on this

analysis would provide a timed pattern for the system calls,

e.g. a diurnal pattern when human behavior is analyzed.

To detect anomalies, a valid approach is to teach a

model what normality is by analyzing the past. Yet, the

model must consider the possibility of a change in the

system or its behavior implying a change in normality.

Realistically, this could mean a software update or

installation of new software. Hence, the valid system call

pattern calls for an adaptive method providing a level of

certainty that the system indeed operating normally. In case

of anomaly the system could inform the user about the task

behaving anomalously prompting the user to authorize the

anomaly.

C. Mathematical foundation of the proposed method

On the problem and domain outlined in this paper, we

propose to use Dempster-Shafer theory, aka, evidence

theory. The evidence theory is a generalization of Bayesian

theory of subjective probabilities on a set of exclusive and

exhaustive events 𝑋, here the system calls. The power set

2𝑋 denotes all combinations of system calls, realistically

enabling comparing any category of system calls to discover

new domain specific patterns. On this, the mass m is the

level of certainty on a set of events with 𝑚 ∶ 2𝑋 →
[0,1] , 𝑚 ∅ = 0 and 𝑚 = 12𝑋 . On this, the certainty

(belief)bel of a set of outcomes 𝐴 ⊆ 𝑋 is 𝑏𝑒𝑙 𝐴 =
 𝑚(𝑥)𝑥⊆𝐴 and plausibility pl is 𝑝𝑙 𝐴 = 𝑚(𝑥)𝑥∩𝐴≠∅ as

for the possibility of this outcome. This implies that

𝑏𝑒𝑙 < 𝑝𝑙 whenever 𝑚 𝑋 ≠ 0 and 𝐴 ⊂ 𝑋. The semantics of

this is that the difference between bel and pl denote the

uncertainty. Moreover, the complement of a set of events 𝐴

denoted 𝐴 is the evidence against this event, i.e. 𝑝𝑙 𝐴 =
1 − 𝑏𝑒𝑙(𝐴). Consequently, the Dempster-Shafer theory

Realistically, in the context of this paper, the bel and pl

would define the uncertainty, i.e. the tolerance between

normal (base truth) and anomaly behaviour that initially is

1. The theory provides a foundation for a three-valued logic,

whose parameters are: belief as certainty in favour of a

proposition 𝑏𝑒𝑙 , uncertainty as for do not know 𝑝𝑙 − 𝑏𝑒𝑙
and disbelief 𝑏𝑒𝑙 as for certainty against this proposition

1 − 𝑝𝑙(𝐴). They share the property of 𝑝𝑙 𝐴 + 𝑏𝑒𝑙 = 1, i.e.

they are additive. In cases when 𝑏𝑒𝑙(𝐴) = 𝑝𝑙(𝐴) , the

uncertainty is 0 and the theory behaves as traditional

probability theory.

D. The adaptive method

Having the Dempster-Shafer theory as a solid foundation

with a plethora of extensions that enable calculation with it,

the problem of defining the values for the parameters is

central. On this, inspired by Krukow’s [18] and Teacy et al.

[19], Neovius et al. [20, 21, 22] have in previous work

presented a method for recording and mapping experiences

to Dempster-Shafer theory. They consider an event an

experience that in the context of this paper is a system call.

Hence, let the set of system calls S and the communication

𝐶 = 𝑎𝑐𝑐𝑒𝑝𝑡, 𝑠𝑜𝑐𝑘𝑒𝑡, 𝑐𝑜𝑛𝑛𝑒𝑐𝑡 and file management

𝐹 = 𝑟𝑒𝑎𝑑, 𝑤𝑟𝑖𝑡𝑒, 𝑑𝑒𝑙𝑒𝑡𝑒, 𝑐𝑟𝑒𝑎𝑡𝑒 categories be exclusive

and exhaustive, i.e. 𝑆 = 𝐶 ∪ 𝐹 and 𝐶 ∩ 𝐹 = ∅ and similarly

for the elements.

With these system calls, we model an experience as a

four tuple 𝛿, 𝜖, 𝜁, 𝜂 where 𝛿 is the subject system’s and

application’s identification, 𝜖 the timestamp, 𝜁 the set of

system call and 𝜂 a score ∈ {0, 1}. This view can be

reduced to that only events that actually took place are

recorded, i.e. that the score is always 1. Thus, an experience

 𝛿, 𝑢𝑛𝑖𝑥𝑡𝑖𝑚𝑒, 𝑜𝑝𝑒𝑛, 1 indicates that on a device and app

𝛿 at a time called the open system call and this was

triggered. For an entity, the history of the device’s system

calls can be modelled as a set of such four tuples, i.e.
 𝛿, 𝜖, 𝜁, 𝜂 . Projections on this history

𝐸𝑥𝑝 𝛿, 𝜖, 𝑟𝑒𝑎𝑑 = 𝜂 in case the cardinality card of

the result indicate the amount of connect system calls that

were made at time ϵ. Realistically, 𝛿 could be IMEI code

augmented by an application, say FB including its version.

With the realistic assumption that recent behaviour

weighs heavier, we may apply a decay function on this. Let

decay be denoted by λ where 𝜆 ∈ [0,1] with semantics of

the closer to 1 indicating less decay and 0 being a vacuous

view. Then decay at 𝜖𝑚 denoted 𝑑𝜖𝑚
is

defined: 𝑑𝜖𝑚
 𝐸𝑥𝑝 𝛿, 𝜖𝑖 , 𝑠 ⊂ 𝑆 = (𝜆𝜖𝑚 −𝜖𝑖 ∗ 𝜂) . A cyclic

(diurnal) history is an abstracted view of this projection with

λ = 1 with 𝜖𝑚 denoting the moment and 𝜖𝑛 ≤ 𝜖𝑚 the

timespan, i.e. 𝐴𝑏𝑠𝜖𝑚
 𝐸𝑥𝑝 𝛿, 𝜖𝑛 , 𝑠 ⊂ 𝑆 is the abstract score

 𝜂𝑑𝜖𝑚 𝐸𝑥𝑝 𝛿 ,𝜖𝑛 ,𝑠⊂𝑆 . That is, for a comparison view over a 2

hour time span yesterday 𝜖𝑚 is set -23hours and 𝜖𝑛 to -

25hours from this moment. The definition of such views are

defined by some contextual predicate constructed by a

domain specialist; a fundamental question omitted in this

paper.

E. Detecting anomalies with the method

Utilizing the history of events and building a decayed view

of the cyclic behavior on each system call provides a basis

for normality. For comparison and anomaly detection, the

cardinality needs to be put in context. Hence, a projection

on the complementary experiences within this category of

system calls is motivated. Thus, having 𝐸𝑥𝑝 𝛿, 𝜖, 𝑟𝑒𝑎𝑑 ,

the category’s complementary projection is

𝐸𝑥𝑝 𝛿, 𝜖, 𝑤𝑟𝑖𝑡𝑒, 𝑑𝑒𝑙𝑒𝑡𝑒, 𝑐𝑟𝑒𝑎𝑡𝑒 , i.e. 𝐸𝑥𝑝 𝛿, 𝜖, 𝑟𝑒𝑎𝑑 .

The cardinality of the outcomes provides the relative

distribution of these system calls over 𝜖 on 𝛿. The tolerance

is then defined as the a priori weight of uncertainty W. The

scale of W is domain 𝛿 and category specific with the

47Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 58 / 172

property small values risking anomalies with low values;

and larger W prolonging the cold start.

As an example, assume the projections over a time span

where the system calls cardinality is 95 and the score for

projection on 𝑟𝑒𝑎𝑑 to be 73 and for that on 𝑟𝑒𝑎𝑑 to be 22.

However, let the abstracted projections result in 70 and 21

respectively as of decay.Moreover, let for readability W = 5,

making the example specific cardinality 100. Normalizing

these gives the scores 0.70, 0.21 with uncertainty ubeing

0.04 +
𝑊

𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 +𝑊
= 0.09 . Consider a reference vector

𝑏𝑒𝑙(𝑟) = (𝑥𝑖) that in this case is 𝑏𝑒𝑙(𝑟) = (0.7, 0.21) ;

much alike the belief and certainty for the two projections.

The plausibility of these projections are then 𝑝𝑙(𝑟) =
(0.79, 0.3) . With these abstracted values, we propose to

define an anomaly behavior as when the current bel and pl

does not overlap with the reference bel and pl vectors. What

actions to perform if this happens is again domain specific.

IV. CONCLUSION

Cloud computing can lead to numerous business advantages

to organizations. As a result of its popularity, many security

issues have been exposed by company experts and academic

researchers.Numerous of these researches haveproved that

security should be a top priority for companies, especially

low- to medium-sized enterprises ones. Moreover, the

common ground is that security related solutions developed

for static client server systems cannot be used in cloud

based computing.

In this paper we take a novel view, assuming that a

system under attack will behave anomalously. To address

this assumption, we presented a soft security means to

construct a cloud based solutions’ behavioral normality.

Knowing the normal behavior, we define the anomalous

behavior to be simply anything that is not normal. We stress

that the implications of detecting anomalies is domain

specific.

As future work, we intend to validate this method with

real life data. We will also formalize the normality vs.

anomalies more formally. Once having these results,

validation on a larger scale is possible.

REFERENCES

[1] US national institute of standards and
technology.http://csrc.nist.gov/, 2016, accessed 15.1.2017

[2] D. Fernandes, L. Soares, J. Gomes, M. Freire, and P. Inacio,
―Security issues in cloud environments: aSurvey‖.
International Journal of Information Security, pp. 113–170,
2013

[3] F. Shahzad, ―State-of-the-art Survey onCloud Computing
Security Challenges, Approaches and Solutions‖. Procedia
Computer Science, 37, 357–362, 2014

[4] I. Iankoulova and M. Daneva, ―Cloud computing security
requirements: A systematic review‖. In: Research Challenges
in Information Science RICS, pp. 1–7, 2012

[5] R. Duncan, ―Accounting for stewardship in the cloud‖ PhD
Thesis, University of Aberdeen, 2016.

[6] European Comission. ―Comission Implementing Decision of
12.7.2016 pursuant to Directive 95/46/EC of the European
Parliament and of the Council on the adequacy of the
protection provided by the EU -U.S. Privacy Shield‖ 2016
http://ec.europa.eu/justice/data-protection/files/privacy-shield-
adequacy-decision_en.pdf accessed on 13.01.2017

[7] Verizon ―Data Breach Investigations Report‖ 2016
http://www.verizonenterprise.com/verizon-insights-
lab/dbir/2016/ accessed on 13.01.2017

[8] M. Williams, ―New Tools for Business,A Quick Start Guide
to Cloud Computing‖, Kogan Page, 2010.

[9] S. Khandelwal, "Hacking CCTV Cameras to Launch DDoS
Attacks".The Hacker News, 2015,
http://thehackernews.com/2015/10/cctv-camera-hacking.html,
accessed on 15.1.2017.

[10] T. Reuters, ―Major cyberattack knocks Twitter, Paypal,
Spotify offline Friday‖ CBC news,
2016,http://www.cbc.ca/news/technology/dyn-ddos-attack-
websites-down-1.3815417, accesed on 13.01.2017

[11] E. Petterson, ―Sony to pay as much as $8 million to settle data
breach case‖, Bloomberg Technology,
2015https://www.bloomberg.com/news/articles/2015-10-
20/sony-to-pay-as-much-as-8-million-to-settle-data-breach-
claimsaccesed on 13.01.2017

[12] S. Yin, ‖Dropbox accounts were accessible by anyone fo four
hours on Sunday‖ PCMag UK,
2011.http://uk.pcmag.com/storage-devices-
reviews/9092/news/dropbox-accounts-were-accessible-by-
anyone-for-four-hours-onaccesed on 13.01.2017

[13] R. Ko and S. Lee ―Cloud computing vulnerability incidents:
A statisctical overview‖, Cloud Security Alliance, 2013.

[14] F. Rashid, ―The dirty dozen: 12 cloud security threats‖,
Infoworld magazine, 2016,
http://www.infoworld.com/article/3041078/security/the-dirty-
dozen-12-cloud-security-threats.html, accesed on 13.01.2017.

[15] Linux Information Project ―System call definition‖ 2016
http://www.linfo.org/system_call.html accessed on
13.01.2017

[16] S. De Capitani, S. Foresti, and P. Samarati, "Data Security
Issues in Cloud Scenarios", In Proceedings of the 11th
International Conference on Information Systems Security,
2015.

[17] Cloud security alliance, ―Cloud Computing top threats in
2016‖.https://downloads.cloudsecurityalliance.org/assets/rese
arch/top-threats/Treacherous-12_Cloud-Computing_Top-
Threats.pdfaccesed on 13.01.2017

[18] K. Krukow, ―Towards a theory of trust for the global
ubiquitous computer,‖ PhD thesis, University of Aarhus,
Denmark., 2006.

[19] W. Teacy, J. Patel, N. Jennings, and M. Luck, ―TRAVOS:
Trust and Reputation in the Context of Inaccurate Information
Sources,‖ Autonomous Agents and Multi-Agent Systems, vol.
12, no. 2, pp. 183-198. , 2006.

[20] M. Neovius, ―Trustworthy Context Dependency in Ubiquitous
Systems,‖ TUCS dissertations nr. 151. PhD thesis, Turku,
Finland, 2012.

[21] M. Neovius, M. Stocker, M. Rönkkö, and L. Petre,
―Trustworthiness Modelling on Continuous Environmental
Measurement,‖ in Proc. of the 7th Int. Conf. on
Environmental Modelling and Software, 2014.

[22] M. Neovius, ―Adaptive Experience-Based Composition of
Continuously Changing Quality of Context,‖ in Int. Conf. on
Adaptive and Self-Adaptive Systems and Applications, 2015.

48Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 59 / 172

Strategies for Intrusion Monitoring in Cloud Services

George R. S. Weir

Department of Computer and Information Sciences
University of Strathclyde

Glasgow, UK
e-mail: george.weir@strath.ac.uk

Andreas Aßmuth
University of Applied Sciences

OTH Amberg-Weiden
Germany

e-mail: a.assmuth@oth-aw.de

Abstract— Effective activity and event monitoring is an
essential aspect of digital forensic readiness. Techniques for
capturing log and other event data are familiar from
conventional networked hosts and transfer directly to the Cloud
context. In both contexts, a major concern is the risk that
monitoring systems may be targeted and impaired by intruders
seeking to conceal their illicit presence and activities. We outline
an approach to intrusion monitoring that aims (i) to ensure the
credibility of log data and (ii) provide a means of data sharing
that supports log reconstruction in the event that one or more
logging systems is maliciously impaired.

Keywords-Cloud security; intrusion monitoring; message
authentication codes; secret sharing.

I. INTRODUCTION

A news report from a recent computer electronics trade
show featured a light bulb with an in-built spy camera.
Although the application of this device is the realm of physical
security rather than the world of computer, Clouds and
networks, we can derive two general lessons from this
example technology. Firstly, the purpose of the device is
surveillance. Secondly, the device aims for covert operation.
These joint concepts of covert surveillance are important in
the context of security, whether in the home, on a network or
in the Cloud. The primary role for this spying light bulb is
surveillance, i.e., in the event of a security incident, to record
data that may later have evidential value. Capturing such data
in a covert manner aims to reduce the likelihood that the
recording facility will be detected and thereby, minimise the
prospect that the data collection will be deliberately impaired
and the telling data subverted.

While covert surveillance affords no immediate defence
against security breaches, it does illustrate the desirability of
establishing auditable data in order that light may later be shed
on unauthorised or anomalous events that have initially gone
undetected by relevant human agency. With varying degrees
of transparency, the logging features in computer operating
systems, individual computer applications, network
operations and Cloud environments go some way toward
addressing this requirement by recording data that may
subsequently be consulted, in a process of digital forensics, as
evidence of past events. Thereby, ‘a forensic investigation of
digital evidence is commonly employed as a post-event
response to a serious information security incident.’ …

‘Forensic readiness is defined as the ability of an organisation
to maximise its potential to use digital evidence whilst
minimising the costs of an investigation’ [1, p.1].

Although considerable efforts are directed in computer
security toward protection and prevention of illicit access and
system misuse, digital forensic readiness is increasingly
recognised as a necessary measure toward recovery,
understanding vulnerabilities and pursuit of those responsible
for cyber-misdeeds (e.g., [2]).

In the following, Section 2 reviews the characteristics of
Cloud services and the facilities available to the customer.
Section 3 characterises the attack context, with reference to
recognised phases and the likely associated intruder
behaviour. In Section 4, we elaborate upon the role of
monitoring as a basis for forensic readiness in Cloud Services,
with specific attention to the variety of strategies that may be
employed, both overt and covert, as well as their likely
effectiveness as mechanisms for event reconstruction and on-
going resilience. Section 5 presents an example monitoring
approach that contains specific aspects toward a solution to
the forensic readiness problem in the Cloud context. As
summarised in Section 6, our proposed approach would
generate auditable information that can be used subsequently
for digital forensics analysis in a post-hack scenario, within a
setting of Cloud Services.

II. CLOUD SERVICES

In this section, we briefly review the characteristics of
Cloud Services, in order to highlight the security concerns
associated with different use contexts.

The US National Institute of Standards and Technology
(NIST), has provided a detailed account of Cloud Services [3].
This includes a description of typical service models:

• Software as a Service (SaaS);

• Platform as a Service (PaaS); and

• Infrastructure as a Service (IaaS).

In the first case, the customer is given access to
applications running on the service provider’s Cloud
infrastructure, usually through a variety of client devices and
software interfaces. Aside from specific application
configuration options, in this arrangement the customer is
given no control over the underlying Cloud infrastructure (op.
cit., p.2). This level of service extends from simple file
storage, through hosted Web sites and database management

49Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 60 / 172

to specific Web services, including RESTful applications [4],
and use of ‘containers’ [5].

In the second case, the customer is permitted to deploy
their own applications on to the service provider’s Cloud
infrastructure. Customer control extends to configuration and
management of these Cloud-hosted applications but, as
before, the customer has no facility to control any other
aspects of the underlying Cloud infrastructure [3, p.2].

In the third case, the customer has greater scope for
software deployment on to the Cloud infrastructure, extending
to ‘arbitrary software, which can include operating systems
and applications’ (op. cit.). Still, in this arrangement, the
customer’s control is limited to the deployed software
applications, including operating systems (e.g., virtual
machines) and associated networking features (such as
software firewalls) [3, p3].

These service models characterise typical Cloud Service
Provider (CSP) offerings and the increasing levels of access
and software capability, is reflected in increasing levels of cost
to the consumer. Notably, in each of these contexts,
management and control of the Cloud infrastructure resides
with the CSP, who must be relied upon to manage most
security aspects that may impinge upon the purchased
services.

The range of applications and software facilities afforded
by Cloud services is extensive, and indications are that many
mission-critical services are moving to Cloud
implementations as a means of limiting security concerns and
assuring greater resilience. The virtual nature of Cloud
services also means that system recovery or replacement can
be quick, reliable and cost-effective [cf. 6]. Such outsourcing
of local software applications is recognised as commercially
attractive for factors, such as:

• Cost (reduction in local expertise and local
infrastructure);

• Reliability (service-level agreements can assure
availability);

• Resilience (speedy recovery in the event of data or
service loss);

• Technical extensibility (support for multiple
instances of applications with increasing availability
of service to meet growing demand).

To simplify the categories of Cloud uses, we may broadly
differentiate two end-user contexts. In the first, the customer
employs the Cloud service as a data storage facility. (This is a
specific instance of the Software as a Service.) Here, security
for the customer is limited to concerns of authorised access,
continuity of service and data maintenance. In the second
context, the end-user employs the Cloud service as a means of
computation. (This broadly covers all other Cloud
interaction.) Here, security for the customer extends to all
traditional aspects, including data protection, access
authentication, service misappropriation and service
availability. While some of these issues may lie within the
control of the consumer, the CSP has ultimate management of
the infrastructure that affords all of the higher-level service

provision. The extent to which the CSP can reliably manage
the security and associated integrity of provided services,
depends ultimately upon the availability of techniques for
detecting and recording the details of any illicit operations that
take place within the Cloud service context. Without recourse
to such facilities, the CSP cannot be counted upon to maintain
consumer services in a satisfactory fashion since there is lack
of assurance that such services have not been infiltrated,
impaired or subverted. In addition, ability for the CSP to
restore services to pre-compromise level depends largely upon
the CSP’s facility to identify any delta between pre- and post-
intrusion services. Inevitably, this leads back to the issue of
digital forensic readiness as applied to the Cloud context.

III. THE ATTACK CONTEXT

In general, there are three phases to a successful cyber-
attack:

1. reconnaissance and information gathering;

2. infiltration and escalation and, finally;

3. exfiltration, assault and obfuscation.

In phase 1, the adversary gathers any information needed
to gain access to the system, e.g., open ports, versions of
operating systems and software services, security measures
(such as firewalls, IDS, etc.) [6]. Using this information, the
adversary gains access to the system in phase 2 [8].

The process of gaining access might consist of several
steps, for example, if the adversary has to comprise another
system first, in order to get into the actual target. In this
process, the adversary also tries to escalate available
privileges in order to gain super-user access to the system.

In phase 3, the adversary extracts any information from the
system that might prove to be useful [9]. If the goal of the
attack is stealing confidential data, such as user accounts,
passwords or credit card information, this data is extracted by
the adversary and possibly sold to third parties. If the cyber-
attack has another goal, e.g., sabotage, the adversary extracts
the data needed to launch the actual assault, often triggered by
a certain date or specific event. In any case, the adversary can
be expected to perform whatever action is required to cover
their tracks. Among other actions, they may install a rootkit
that exchanges current files and services within the system
with modified versions of these particular files and services.
Such system modifications may extend to altering process
information, e.g., a program to list all running processes on the
system may be modified to list all running processes except
for the processes run by the adversary. Additionally, the
adversary may target existing log files that might contain
traces of the intrusion.

Such strategies are reflected in many network-based
intrusions since, in many instances, network vulnerability is
predicated upon known weaknesses in networked hosts.

IV. MONITORING STRATEGIES

As previously noted, digital forensic readiness requires the
monitoring and recording of events and activity that may
impinge upon the integrity of the host system. Much of this

50Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 61 / 172

capability is provided natively by the local system, using
standardly available operating system logging, perhaps with
additional active security monitoring, such as dynamic log
analysis [10] or key file signature monitoring [11].

The situation for Cloud-based services reflects in many
respects the context of a networked host. Where a customer
employs Cloud purely as a storage medium, minimum
security requirements will seek to ensure authenticated access
and secure data backup. In turn, the monitoring requirements
associated with this service must capture details of user logins
(including source IP, username and success or failure of login
attempts). Additionally, any file operations that change the
status of data stored under the account of that customer must
also be recorded. In the event of unauthorised access (e.g.,
stolen user credentials), such default monitoring may offer
little protection, aside from identifying the identity of the
stolen credentials and recourse to subsequent backup data
recovery. Such monitoring is essentially Operating System-
based, albeit that in the Cloud setting, this OS may be virtual.

This context of Cloud usage faces the same challenges in
monitoring and security that confront any networked host,
with the added complication that a Cloud-based virtual host
may face added vulnerability via its hosting virtualiser [12].
Furthermore, Cloud services are often configured to provide
new virtual OS instances automatically to satisfy demand, and
in turn, shut these down when demand falls. A side-effect of
such service cycling is that system logs are lost to the
customer, and subsequent digital forensic analysis may be
unavailable.

In the ‘traditional’ network setting, numerous techniques
have been devised to afford post-event insight on system
failures and unwelcome exploits. In all major operating
system contexts, whether virtualised, Cloud-based or native,
system logging affords the baseline for generating auditable
records of system, network and user activity. Such system
level monitoring is well understood and in the event of
intrusion is likely to be a primary target in order to
compromise the record and eliminate traces of illicit activity.

For networked hosts and, by extension, as a monitoring
strategy for local area networks, a wide-variety of Intrusion
Detection Systems (IDS) have been developed and deployed
with a view to rapid determination of malicious activity.
These techniques may be rule-based [e.g., 13]. In most cases,
the IDS monitors and cross-correlates system-generated logs
in order to identify anomalous event sequences. Many
approaches to anomaly-based intrusion detection have been
reported [14]-[19]. Inevitably, such systems may themselves
become targets in order to inhibit their detection capability and
maintain a ‘zero-footprint’ on the part of the intruder [20].

In a Cloud context, each node is using its own logging
daemon or agent to log important events. But in comparison
to a single computer, the log information might be essential
and therefore relevant for the whole cloud infrastructure. For
that reason, cloud infrastructures use a centralised log server
that receives the log information of all attached nodes. The
task of this log server is not only the recording of log files of
all nodes but also to monitor the cloud infrastructure. In case
of a cyber-attack, the log server ideally detects the attack
(maybe assisted by an intrusion detection system) and starts

countermeasures. This exposed role of the log server makes
it a very attractive target for cyber-attacks itself, or, as
described above, means that an adversary has to deal with the
log server in phase 2. Since the hardware of such a log server
might also break down even without any cyber-attack, in
practice more than one log server is used at the same time to
provide redundancy.

A practical solution might consist of two log servers in
"active-active-mode" which means that both are operating at
the same time, but in case of one system failure, the other takes
over for the whole cloud infrastructure. The operation of these
two log servers might be supervised by a third server which in
case of failure or attack sends an alarm to the administrator.
Unfortunately, the problem stays more or less the same: this
third monitoring server is a single point of failure and is
therefore attractive as a target for any adversary attacking the
cloud infrastructure. If an adversary manages to take out the
monitoring server and to tamper with the log information on
at least one of the two log servers, the Cloud provider might
not be capable of determining which log files are correct and
which are manipulated.

Any logging service which is introduced in addition to the
traditional daemons or agents has to meet at least the
following constraints:

1. the new logging service must not cause too much
additional load, either on the nodes (concerning
computation) or on the network (concerning network
traffic), and;

2. the computation of additional security measures in
order to provide authenticity and integrity must be
efficiently feasible.

V. EXAMPLE MONITORING APPROACH

Message Authentication Codes (MACs) as described in
almost any textbook about cryptography can readily be used
to address this monitoring dilemma. MACs can be
constructed using cryptographic hash functions or using block
ciphers, for instance. Either construction ensures efficient
computation of the MACs under a secret key. MACs are used
to provide authenticity and integrity; therefore, they meet both
conditions.

A solution that we propose starts with a secure boot
process for each node of the Cloud infrastructure. During
boot, the common log daemon or agent is started and it starts
recording events in various log files. We suggest to compute
a MAC for each event and to store these additional bits with
the plaintext message of the event in the log file. We assume
that the plaintext message also contains a time stamp. For the
next event to be recorded in a log file, the plaintext of the event
is concatenated with the previous MAC before computing the
MAC for this event. This leads to a MAC chain which can be
checked for each step using the plaintext and MAC of the
previous event - but only if the secret key is known. Since the
adversary does not know the secret key, he is not capable of
computing valid MACs and therefore not capable of
tampering with the MAC chain in order to hide his tracks.

51Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 62 / 172

The use of Message Authentication Codes is only the first
step towards a solution to the problem. An adversary could
simply delete or deliberately falsify all log files (including the
MACs). This would probably make it impossible to
reconstruct the steps of the cyber-attack in a post-hack
analysis.

In order to deal with this issue and to make use of the
benefits of a Cloud infrastructure, we propose the additional
step of using secret sharing techniques - or so called threshold
schemes - as published by Adi Shamir in 1979 [21].

The idea is to divide some data D into n pieces D#, … , D&
in such a way that:

(a) 𝐷 can be reconstructed easily of any 𝑘	 < 	𝑛 pieces 𝐷,

(b) the knowledge of only k − 1 or even fewer pieces D0
leaves the data completely undetermined.

Shamir named such a scheme a "(k, n) threshold scheme".
He points out that by using such a (𝑘, 𝑛) threshold scheme
with 𝑛 = 2𝑘 − 1, it is necessary to have at least 𝑘 = 56#

7

parts 𝐷, to reconstruct 𝐷 . A lesser number of 5
7
= 𝑘 − 1

parts makes the reconstruction impossible.
Shamir introduced a (𝑘, 𝑛) threshold scheme based upon

polynomial interpolation. The data 𝐷 can be interpreted as a
natural number and p is a prime number with 𝐷 < 𝑝. All of
the following computations are made in the prime field
GF(𝑝) . Given 𝑘 points in the 2-dimensional plane,
𝑥#, 𝑦# , … , (𝑥=, 𝑦=) with distinct coordinates 𝑥,, there is one

and only one polynomial 𝑞 of degree 𝑘 − 1 such that 𝑞 𝑥, =
𝑦, for all 𝑖 = 1, … , 𝑘. At first, the coefficients 𝑎#, … , 𝑎=A# are
chosen at random and 𝑎B = 𝐷, which leads to the polynomial

𝑞 𝑥 = 𝑎B + 𝑎#𝑥 + 𝑎7𝑥7 + ⋯+ 𝑎=A#𝑥=A#.

The n different pieces of D are computed as D# = q 1 ,
D0 = q i , … , D& = q(n) . Provided that their identifying
indices are known, any subset of k elements D0 can be used to
compute the coefficients a0 of the polynomial q which allow
the computation of the data D = q(0). From any subset of
less or equal k − 1 pieces D0, neither the coefficients a0 nor
the data D can be calculated. (For further details, we direct the
reader to the original paper [21].)

In our proposed solution to the problem of providing
additional forensic information for post-hack analysis, 𝐷 is
the data to be written in a log file: the plaintext message of the
event, n randomly chosen nodes of the cloud infrastructure
and the corresponding MAC, computed from the
concatenation of the event message, the previous MAC and
the addresses of these n nodes. The n pieces D0 that are
derived from D as stated before, and D is sent to the traditional
centralised log server. The n pieces D0 are additionally sent to
the n nodes which store this information. For the next event,
we repeat this procedure but choose n (possibly) different
nodes.

In case of a cyber-attack and if a post-hack analysis is
necessary, at first all pieces of logging information are
gathered from all nodes. Using the time stamps and the MAC
chains, the order of the logged events can be reconstructed.

The decentralised stored pieces of logging information are put
together to reconstruct D from any k of the n parts. This
means, even if an adversary succeeds in manipulating some of
the nodes and the centralised logging system, the events can
be reconstructed. Finally, the integrity and authenticity of
these events can be checked using the MAC chain.

The proposed approach may identify and retain
information on an intruder’s actions that result in stolen,
modified or deleted data. This is a feature with growing
importance, as legislative demands on data protection
increase. For instance, the EU General Data Protection
Regulation that is due to come into force in May 2018, will
require companies to notify all breaches within 72 hours of
occurrence, with a potential penalty of up to 4% of global
turnover based on the previous year's accounts.

Note that this solution is not proposed as a general basis
for monitoring the Cloud infrastructure. Rather, its purpose is
to provide secure logging information for a post-hack analysis
by distributing their parts randomly over all nodes. Thereby,
reliable system monitoring can be established by means of
multiple log servers, with the added assurance of Message
Authentication Codes.

VI. CONCLUSIONS

Recognising the importance of securing log data as a basis
for digital forensic reconstruction in the event of system
intrusion, a multiple server solution combined with Message
Authentication Codes affords a mechanism that allows for
safe deposit and reconstruction of monitor data. This can
operate in a Cloud setting in which each logging node is a
virtual server.

An important benefit from this distrusted solution is that
digital forensic reconstructions are possible for virtual
machines that are ‘cycled’, since their native OS logs can be
maintained in a recoverable and verifiable form beyond the
OS of those machines. This provides the safeguard of digital
forensic readiness for Cloud customers in the event that an
intruder accesses private data on the Cloud service and causes
that system to cycle as an attempt to delete all traces of illicit
data access.

The possibility, however slight, that an intruder may gain
access to and potentially compromise all peers in this
configuration, can be mitigated by also allowing log data to
transfer ‘upwards’ to one or more ‘superior’ systems (e.g., the
parent operating systems in which the peer log servers are
virtualised).

Evidently, Cloud service provision has a requirement for
robust monitoring that is sufficient to withstand direct assault
from an intruder within the host context. Conventional OS
monitoring goes some way toward providing the equivalent of
a light bulb with an in-built spy camera, but needs to be
enhanced with a reliable mechanism for validating and
reconstituting log data, such as we have outlined in this paper.

REFERENCES
[1] R. Rowlingson, “A ten step process for forensic readiness”,

International Journal of Digital Evidence, vol. 2, no. 3, pp. 1-
28, 2004.

52Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 63 / 172

[2] K. Reddy, H. S. Venter, and M. S. Olivier, “Using time-driven
activity-based costing to manage digital forensic readiness in
large organisations”, Information Systems Frontiers, vol. 14,
no. 5, pp. 1061-1077, 2012.

[3] P. Mell and T. Grance, “The NIST definition of cloud
computing”, NIST, 2011. Available from
http://faculty.winthrop.edu/domanm/csci411/Handouts/NIST.
pdf, [retrieved: February, 2017].

[4] S. A. Shaikh, H. Chivers, P. Nobles, J. A. Clark and H. Chen,
“Network reconnaissance”, Network Security, vol. 11, pp. 12-
16, 2008.

[5] L. Richardson and S. Ruby, RESTful web services. O'Reilly
Media, Inc., 2008.

[6] B. Benatallah, Q. Z. Sheng and M. Dumas, “The self-serv
environment for web services composition”, IEEE Internet
Computing, vol. 7, no. 1, pp. 40-48, 2003.

[7] B. P. Rimal, E. Choi and I. Lumb, “A taxonomy and survey of
cloud computing systems”, INC, IMS and IDC, pp. 44-51,
2009.

[8] B. F. Murphy, Network Penetration Testing and Research,
NASA, 2013. Available from
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140002
617.pdf, [retrieved: February, 2017].

[9] J. Andress and S. Winterfeld, Cyber warfare: techniques,
tactics and tools for security practitioners. Elsevier, 2013.

[10] A. Oliner, A. Ganapathi and W. Xu, “Advances and challenges
in log analysis”, Communications of the ACM, vol. 55, no. 2,
pp. 55-61, 2012.

[11] G. H. Kim and E. H. Spafford, “The design and implementation
of tripwire: A file system integrity checker”, Proceedings of the
2nd ACM Conference on Computer and Communications
Security, ACM, pp. 18-29, 1994.

[12] J. S. Reuben, A survey on virtual machine security. Helsinki
University of Technology, vol. 2, no. 36, 2007.

[13] K. Ilgun, R. A. Kemmerer and P. A. Porras, “State transition
analysis: A rule-based intrusion detection approach”, IEEE
transactions on software engineering, vol. 21, no. 3, pp. 181-
199, 1995.

[14] P. Garcia-Teodoro, J. Diaz-Verdejo, G. Maciá-Fernández and
E. Vázquez, “Anomaly-based network intrusion detection:
Techniques, systems and challenges”, Computers and Security,
vol. 28, no. 1, pp. 18-28, 2009.

[15] C. Chapman, S. Knight and T. Dean, USBcat-Towards an
Intrusion Surveillance Toolset, arXiv preprint
arXiv:1410.4304, 2014.

[16] X. Wang, D. S. Reeves, S. F. Wu and J. Yuill, “Sleepy
watermark tracing: An active network-based intrusion response
framework”, Trusted Information, Springer US, pp. 369-384,
2002.

[17] C. V. Zhou, C. Leckie and S. Karunasekera, “A survey of
coordinated attacks and collaborative intrusion detection”,
Computers and Security, vol. 29, no. 1, pp. 124-140, 2010.

[18] A. Patcha and J. M. Park, “An overview of anomaly detection
techniques: Existing solutions and latest technological trends”,
Computer networks, vol. 51, no. 12, pp. 3448-3470, 2007.

[19] H. Sukhwani, V. Sharma and S. Sharma, “A Survey of
Anomaly Detection Techniques and Hidden Markov Model”,
International Journal of Computer Applications, vol. 93, no.
18, pp. 26-31, 2014.

[20] G. Tedesco and U. Aickelin, Strategic alert throttling for
intrusion detection systems, arXiv preprint, arXiv:0801.4119,
2008.

[21] A. Shamir, “How to share a secret”, Communications of the
ACM, vol. 22, no. 11, pp. 612-613, 1979.

53Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 64 / 172

Creating an Immutable Database for Secure Cloud
Audit Trail and System Logging

Bob Duncan
Computing Science

University of Aberdeen
Aberdeen, UK

Email: bobduncan@abdn.ac.uk

Mark Whittington
Business School

University of Aberdeen
Aberdeen, UK

Email: mark.whittington@abdn.ac.uk

Abstract—Conventional web based systems present a multiplic-
ity of attack vectors. One of the main components, the database,
is frequently configured incorrectly, often using default settings,
which leave the system wide open to attack. Once a system
has been attacked, valuable audit trail and system log data is
usually deleted to cover the trail of the perpetrator. Given the
average industry time between breach and discovery, there is
often little forensic trail left to follow. Of equal importance is that
in cloud settings, where new instances are automatically spooled
and shut down to follow the demand curve, any data stored on
the running instance before shut down is lost. We demonstrate
how the configuration of a simple immutable database, running
on a separate private system can go a long way to resolving this
problem.

Index Terms—Cloud security and privacy; immutable
database; forensic trail.

I. INTRODUCTION

Achieving information security is not a trivial process, and
in the context of cloud computing, it becomes increasingly
more difficult. Because cloud technology is enabled by the
Internet, one of the key weaknesses comes from web services,
which invariably are structured with a database back-end.
There are a host of well understood vulnerabilities surrounding
the use of modern databases, and while there are a number of
mitigating strategies that can be deployed, often they are not,
as evidenced by their continual recurrence on annual security
breach reports.

Duncan and Whittington [1] have written about the diffi-
culties surrounding proper audit of cloud based systems. They
have talked about the need for enterprises to maintain a proper
audit trail in their systems, and about the weaknesses arising as
a result of poor configuration of database systems, particularly
in the context of cloud systems [2]. They have proposed
addressing this problem through the use of an immutable
database for the purpose of secure audit trail and system
logging for cloud applications [3].

Some five years ago in 2012, Trustwave [4], were reporting
an average time taken by enterprises of 6 months between
breach and discovery. Discovery was often made by third
parties external to the enterprise, rather than by the enterprise
themselves. This time lag between breach and discovery has
been significantly reduced, but nevertheless is a great concern,
particularly in the light of forthcoming legislation, such as

the ED General Data Protection Regulation (GDPR). Looking
at the latest security breach reports, it is clear that many
enterprises will be unable to comply with the requirement to
report any breach within 72 hours. This would suggest that
many firms are not monitoring their systems properly, do not
maintain proper audit trails, thus leading to inadequacy in
retaining a proper forensic trail to understand exactly what
information has been accessed, modified or deleted.

In this paper, we outline how we might approach developing
a solution to satisfy these issues and concerns. In Section II,
we provide some background and discuss the motivation for
this work, and in Section III, we discuss what an immutable
database needs to be. In Section IV, where we outline how
we can create and configure an immutable database using
existing software, in this case we have chosen MySQL for
illustrative purposes. In Section V, we discuss typical attack
vectors against database systems. In Section VI, we discuss
our conclusions.

II. BACKGROUND AND MOTIVATION

In this paper, we use the MySQL database language to
illustrate what is currently possible. While not all databases
are exactly similar, most exhibit the same weaknesses, often
arising through improper configuration. Equally, the software
environment chosen to integrate with the database is often
subject to the same poor configuration, thus leading to the on-
going success of attackers. These weaknesses in configuration
are frequently exploited by attackers, and there is often a poor
understanding of how proper use of the audit trail can help to
improve security significantly. Thus, we shall first discuss the
purpose of audit and the significance of the audit trail.

A. Audit and the Audit Trail

There are many areas of business activity that merit diligent
checking and verification by an objective person or organi-
zation from outside the organization itself. Some of these
may be undertaken voluntarily by the firm, others such as the
audit of financial systems and results are mandated. Clearly
cloud computing audit is a new, immature field and it would
be surprising if there were not lessons to learn from the
experiences — and failures — of audit processes and practices
that have been honed over decades if not centuries [5].

54Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 65 / 172

Whenever a new technical area emerges it will be difficult
to find people with the appropriate skillset — a technical
knowledge of the area and competency in carrying out an
audit. As commercial organisations, audit companies may seek
to extend their audit competence into new technical areas, not
just cloud audit, but perhaps environmental audit as another
example. Over a century of experience in the development of
audit tools and practices then needs to be applied to a new
technical domain. Alternatively, computing specialists might
pick up an audit skillset. A logical outcome would be for
audit firms to recruit computer cloud experts and seek to
harmonise their skills with those of audit already embedded
in the firm. The culture clash between accountants and cloud
experts would be a potential side effect from such a strategy.

One tool the accountants have used for decades is the audit
trail and this is a phrase already in the cloud computing lit-
erature by the National Institute of Standards and Technology
(NIST) [6], for example. However, the same phrase may not
carry the same meaning in both settings. Quoting from the
Oxford English Dictionary (OED) [7]: “(a) Accounting: a
means of verifying the detailed transactions underlying any
item in an accounting record; (b) Computing: a record of the
computing processes that have been applied to a particular
set of source data, showing each stage of processing and
allowing the original data to be reconstituted; a record of the
transactions to which a database or a file has been subjected”.
So, disparity of definition is recognized by the OED.

Accountants are members of professional bodies (some
national, some global) that limit membership to those who
have passed exams and achieved sufficient breadth and length
of experience that they are deemed worthy to represent the
profession. Audit is a key feature of these exam syllabi and
the tracing back to the source each accounting activity (the
trail) is a foundational aspect of audit.

Whilst NIST [6], gave a clear explanation of an audit
trail in a computing security setting and in keeping with
the OED definition (b), the use of the term in research in
cloud audit seems less precise and consistent. For example,
Bernstein [8], sees the trail including: events, logs, and the
analysis of these, whilst Chaula [9], gives a longer, more
detailed list: raw data, analysis notes, preliminary development
and analysis information, processes notes, and so on. Indeed,
Pearson and Benameuer [10] accept that the attaining of
consistent, meaningful audit trails in the cloud is a goal rather
than reality. More worryingly Ko et al. [11], point out that it
is quite possible for an audit trail to be deleted along with
a cloud instance, meaning no record then remains to trace
back, understand and hold users to account for their actions
and Ko [12], then details the requirements for accountability.
Indeed, the EU Article 29 Working Party [13], highlights poor
audit trail processes as one of the security issues inadequately
covered by existing principles.

Whilst the audit trail might seem a long and tedious list
of activities and interventions, it can be of enormous value in
chasing down the root of a cyber-attack, in much the same
way as an accountant might use it to trace the steps and

individuals involved in enabling an inappropriately authorised
payment. At root, the concept should be implemented in a way
that it ought even enable the reconstruction of a system were
it to have been completely deleted, not just trace an errant
one transaction. The audit trail may be duplication, but it is
necessary given the risk of manipulation, compromise or loss.
Our discussions with IT professionals, who have asserted their
confident reliance on data backups, show a level of unmerited
trust as an inappropriate intervention will be repeated in every
backup until it is discovered. Backups of a corrupted system
will not achieve a rebuild to an uncorrupted one the audit
trail gives this opportunity. Referring back to Ko et al. [11],
establishing an excellent audit trail is worthless if it is only to
be deleted along with a cloud instance. The establishment of
an adequate audit trail often needs to be explicit as software
can allow audit trails to be switched off in its settings.

Once an audit trail has been established, it contents need to
be protected from any adjustment. As Anderson [14], points
out, even system administrators must not have the power to
modify it. Not only is this good practice even with well trained
and ethical individuals, but it is always possible that a hacker
might be able to attain administrator status. Therefore, the
audit trail needs the establishment of an immutable database
(i.e., one that only records new activities but never allows
adjustment of previous ones). This is the primary goal of this
first test for the successful development of a system to preserve
both the audit trail and system logs. In the next section, we
discuss the motivation for this work.

B. Motivation

Given how easily many enterprises unwittingly make life
much easier for attackers, we are motivated to do something
about it that should neither be expensive to implement, nor
technically challenging. It is obvious from analysis of past
successful attacks, that one of the key goals of the attacker is
to attack both the audit trail and the system logs, in order to
obfuscate, or delete all trace of their visit, and everything that
they have done whilst inside the compromised system.

The lack of proper monitoring by enterprises, and the ease
with which attackers can carry out this, important for them,
exercise also makes it much harder for the enterprise to
even know they have been breached, let alone understand
what exactly has been read, modified, deleted, or ex-filtrated
from their systems. Since this will form a cornerstone of
forthcoming legislation, this requirement must be addressed.

We strongly believe that enterprises must make provision to
ensure the maintenance of both a proper audit trail, and the
preservation of as much forensic evidence as possible. For the
reasons already discussed above, they must also take particular
note of the need to preserve both audit trail data and systems
log data when using the cloud. Thus we now take a look at
one of the weakest links in this chain, the database.

The cloud paradigm is essentially web based technology,
facilitated by a database back end. There are many well known
web based vulnerabilities, yet it is clear from analysis of

55Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 66 / 172

security breach reports, that many enterprises are continu-
ally failing to implement even the simplest of preventative
measures to mitigate these weaknesses. In addition, it is also
clear that many enterprises are failing to monitor their systems
properly to detect breaches, given the disparity in time between
breach and discovery. As far back as 2012, Verizon [15]
highlighted the fact that discovery of security breaches often
took weeks, months or even years before discovery, with most
discovery being advised by external bodies, such as customers,
financial institutions or fraud agencies. While improvements
have been made in the intervening years, the situation is far
from perfect.

Thus it is appropriate to consider the work done by the
Open Web Application Security Project (OWASP) carry out
a survey every 3 years in which they collate the number of
vulnerabilities which have the greatest impact on enterprises.
In TABLE I, we can see the top ten list from 2013, 2010 and
2007:

TABLE I. OWASP TOP TEN WEB VULNERABILITIES — 2013 -
2007 [16]

2013 2010 2007 Threat
1 1 2 Injection Attacks
2 3 7 Broken Authentication and Session

Management
3 2 1 Cross Site Scripting (XSS)
4 4 4 Insecure Direct Object References
5 6 - Security Misconfiguration
6 - - Sensitive Data Exposure
7 - - Missing Function Level Access Control
8 5 5 Cross Site Request Forgery (CSRF)
9 - - Using Components with Known

Vulnerabilities
10 - - Unvalidated Redirects and Forwards

Sitting at the top of the table for 2013, again for 2010,
and in second place in 2007, we have injection attacks. It is
very clear that enterprises are consistently failing to configure
their database systems properly. Injection attacks rely on mis-
configured databases used in dynamic web service applica-
tions, which allow SQL, OS, or LDAP injection to occur when
untrusted data is sent to an interpreter as part of a command
or query. The attacker’s hostile data can trick the interpreter
into executing unintended commands or accessing data without
proper authorization. This can lead to compromise, or deletion
of data held in enterprise databases.

But injection attacks are not the only attacks which involve
databases, numbers 3 and 8 also are directly related to ei-
ther missing input validation or output sanitation. Equally,
databases might also be use in most of the other top ten
vulnerabilities, which means database mis-configuration, or
failure to configure systems which use database systems
properly account one way or another for most of the successful
attacks.

Attackers continue to use methods which continue to work,
which is clear to see from the continued success of the same
attacks, year after year. Thus, we consider this area to be of
vital importance for ensuring that any enterprise may achieve
a high level of security. And given the importance of the audit

trail and system log data, we believe the best approach would
be to use an immutable database to record this data properly,
which we shall discuss in the next Section.

III. WHAT IS AN IMMUTABLE DATABASE?

We can describe an immutable database as a secure database
implementation capable of meeting the criteria for a proper
audit trail, namely, that it should only be capable of being
read by a restricted number of authorised users. It must not
permit the editing of any transactions, and must not allow any
transaction to be deleted. Only new records can be added, no
modifications are permitted, and no deletions may take place,
thus preserving the original input for subsequent examination.

Looking at the fundamental requirements of the audit trail
in Section II-A, it is clear that a conventional database struc-
ture fails to deliver on a number of these requirements. A
conventional database structure allows any records to be seen,
by anyone authorised, or an attacker able to gain adequate
credentials to do so. Worse, there is nothing to prevent modi-
fication, or deletion of these records. Thus a conventionally set
up database is totally unsuitable for an audit trail. The same
argument holds for system logs, which should have the same
characteristics as an audit trail.

Thus, an audit trail and system log database must have the
same characteristics as the manual system, namely restricted
access to view the audit trail, with NO option to add, modify
or delete records [2]. Naturally, in a cloud setting, as there
may be anything from a single instance up to many thousands
of instances running at any given time, it would be sensible
to host the logging systems on a completely different server
or servers at a location remote from the cloud instances, such
that all the instances will have their audit trail and system
logging data stored in the remote system. This can reduce the
probability that a successful attack on the cloud instance can be
leveraged to attack the logging database. Ideally, the logging
server or servers should be dedicated entirely to running a
secure immutable database, with preferably no direct means
of public access.

We accept that this means that the logging database is likely
to become a prime target for attack. Thus the logging database
should be protected with the highest level of security settings,
and should be subject to special monitoring to provide instant
warning of any attack.

We made the decision that there would be insufficient time
to consider writing bespoke software for our purposes. Thus
we would restrict ourselves in this work to evaluating what
we could do with an existing system. In [2], we observed that
short of writing new bespoke database software, or making
serious modifications to existing database software, we would
be left with three options we could use to meet our objective:

1) Remove all user access for all users to modifying or
deleting records and the database itself;

2) Remove the Modify Record and Delete Record command
from the software;

3) Use an Archive Database.

56Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 67 / 172

In the next section, we examine the pros and cons of each
option, in order to come up with the best practical solution to
this problem.

IV. CREATING AN IMMUTABLE DATABASE

Having decided that we would not consider writing some
bespoke software, but instead would see how we could con-
figure something utilising existing software, we then evaluated
the three options listed in Subsection III.

1) On the positive side, this option is the simplest to
configure, does not involve any software modification,
and will not impact on software updates. On the negative
side, should an attacker gain access to the database and
be able to escalate privileges, there would be nothing to
prevent them from reversing the restrictions;

2) On the positive side, this option would take away the
ability of an attacker, should they get in to the database
and be able to escalate privileges, to reverse the restric-
tions. On the negative side, this could complicate software
updates;

3) On the positive side, this presents an extremely simple
solution, no software needs modifying, and there is noth-
ing for the attacker to reverse. On the negative side, the
Archive Database does not support key searching. This
is likely to make searches cumbersome. However. in the
short term, we could resolve this issue by extracting a
copy of all the data into a conventional database with
full key search capabilities for rapid examination.

Thus, we took the view that for the purposes of this
work, we would use option 3, using the Archive Database
option, in order to create the system logging and audit trail
databases. We assume the application database will run using
conventional settings, although it is important to take account
of the following four weaknesses in conventional systems.

First, default logging options can result in insufficient data
being collected for the audit trail. Second, since there is
often a lack of recognition that the audit trail data can be
accessed by a malicious user gaining root privileges, we
recommend the audit trail and system logs should be sent
to the external immutable database, set up using the Archive
Database configuration, for this purpose. Third, failure to
ensure log data is properly collected and moved to permanent
storage can lead to loss of audit trail data, either when an
instance is shut down, or when it is compromised. Sending
all audit trail and system log data to the external immutable
database/s will ensure that the data will not be lost when the
instance is closed down. Fourth, the recommended mitigation
techniques suggested by OWASP should be implemented in
the main web application software.

Now, we consider the minimum audit trail data we would
wish to collect. MySQL offers the following audit trail options:

• Error log — Problems encountered starting, running, or
stopping mysqld;

• General query log — Established client connections and
statements received from clients;

• Binary log — Statements that change data (also used for
replication);

• Relay log — Data changes received from a replication
master server;

• Slow query log — Queries that took more than
long query time seconds to execute;

• DDL log (metadata log) — Metadata operations per-
formed by Data Definition Language (DDL) statements.

By default, no logs are enabled, except the error log on
Windows. Some versions of Linux send the Error log to syslog.
Thus for a straightforward implementation, we would wish to
collect the Error Log, the General query log, the Binary log
and the Slow query log. Where replication is in use, adding
the Relay log is recommended. Where DDL statements are
used, then the DDL log should also be activated.

While Oracle offer an audit plugin for Enterprise (paid)
editions of MySQL, which allows a range of events to be
logged, by default most are not enabled. The MariaDB com-
pany, whose author originally wrote MySQL, have their own
open source audit plug-in, and offer a version suitable for
MySQL. It has the following functionality:

• CONNECTION — Logs connects, disconnects and failed
connects (including the error code);

• QUERY — Queries issued and their results (in plain
text), including failed queries due to syntax or permission
errors;

• TABLE — Which tables were affected by query execu-
tion;

• QUERY DDL — Works as the ‘QUERY’ value, but
filters only DDL-type queries (CREATE, ALTER, etc);

• QUERY DML — Works as the ‘QUERY’ value, but
filters only Data Manipulation Language (DML) DML-
type queries (INSERT, UPDATE, etc.).

Where a company falls under the provisions of the new
EU GDPR regulations, using the MariaDB audit trail plug-in
and turning on ALL 5 logging options would be a prudent
move. Admittedly this would require a considerable increase
in storage requirements for the log output. However, since they
would then be in a position to provide full disclosure to the
regulator of all records accessed, tampered with or deleted,
this would go a very long way to mitigate the amount of fine
they might be subject to, which could be as high as 4% of
their global turnover.

Thus, this approach will address the first problem, that of
insufficient audit trail and system logging data being collected.
If the data is sent to a well protected external database, an
attacker who has compromised the running instance will not be
able to cover their trail. The system logs could be retained on
the instance to make the attacker think that they have covered
their tracks. Thus, the second point is addressed. By sending
a copy of all log data to the secure immutable database, we
can address the third point, thus ensuring no data is lost on
shut down of the instance. Finally, if the OWASP mitigation
techniques are used to harden the web application, there will
be less likelihood of a successful breach taking place. Plus the
immutable database on the secure external server satisfies the

57Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 68 / 172

requirements of a proper audit trail [14].
There is also no doubt that adding an Intrusion Detection

system (IDS) is also a useful additional precaution to take,
and again, this should be run on an independent secure server
under the control of the cloud user.

Equally, where the MySQL instance forms part of a LAMP
server, then it would also be prudent to make some elementary
security changes to the setup of the Linux operating system,
the Apache web server, and to harden the PHP installation.

There is one additional task that would be very worthwhile.
That is to set up an additional control instance to monitor every
new instance added to the application, which regularly checks
whether the instance is still functioning as expected. This
would allow this system to warn of instances unexpectedly
being closed down, which might be a sign of an attack.
In addition, the log files in the immutable database could
be monitored for specific patterns, which might indicate the
possibility of an attack.

One of the biggest issues is the fact that there is such a
lag between breach and discovery, and this approach could
provide much earlier warning of such an event. However, of
greater interest, is the fact that a full forensic trail would be
instantly available for immediate investigation. And it would
be possible to disclose the extent of the breach well within the
required disclosure time of 72 hours from the time of breach
to disclosure.

As we see from [17], see Figure 1, that in 2015, 75% of
breaches happened within days, yet only 25% of discoveries
are actually made within the same time-frame. This still leaves
a large gap where compromised systems may still be under the
control of malicious users. Our proposed approach would go
some way to reducing this problem.

Fig. 1. The Lag Between Breach and Discovery c© 2015 Verizon

This presents a clear indication that very few firms are
actually scrutinising their server logs. We take a quick look

at some typical database attacks and possible mitigation for
these attacks in the next Section.

V. TYPICAL DATABASE ATTACK METHODOLOGIES

SQL injection attacks are relatively straightforward to de-
fend against. OWASP provide an SQL injection prevention
cheat sheet [18], in which they suggest a number of defences:

• Use of Prepared Statements (Parameterized Queries);
• Use of Stored Procedures;
• Escaping all User Supplied Input;
They also suggest that companies should enforce least

privilege and perform white list input validation as useful
additional precautions to take.

For operating system injection flaws, they also have a
cheat sheet [19], which suggests that LDAP injection attacks
are common due to two factors, namely the lack of safer,
parameterized LDAP query interfaces, and the widespread use
of LDAP to authenticate users to systems. Their recommen-
dations for suitable defences are:

• Rule 1 Perform proper input validation;
• Rule 2 Use a safe API;
• Rule 3 Contextually escape user data.
And for LDAP system injection flaws, their cheat sheet [20],

recommends the following injection prevention rules:
• Defence Option 1: Escape all variables using the right

LDAP encoding function;
• Defence Option 2: Use Frameworks that Automatically

Protect from LDAP Injection.
None of these preventative measures suggested by OWASP

are particularly difficult to implement, yet judging by the re-
curring success of these simple attacks, companies are clearly
failing to take even simple actions to protect against them.

Thus, in addition to making the simple suggestions we
propose above, cloud users should also make sure they actually
review the audit trail logs. It is vital to be able to understand
when a security breach has occurred, and exactly which
records have been accessed, compromised or stolen. While
recognising that this is not a foolproof method of achieving
cloud security, it is likely to present a far higher level of
affordable, achievable security than many companies currently
achieve.

Implementing these suggestions will not guarantee security,
but will make life so much more difficult for the attacker that
they are more likely to move on to easier ‘low hanging fruit’
elsewhere. There is currently an abundance of other options
for them to choose from.

However, the company must remain vigilant at all times. It
would be prudent to subscribe to security feeds, and follow
leaders in the field to ensure they remain aware of all the latest
security vulnerabilities and exploits. Of course, companies
must realise that the threat environment is not restricted to
outside parties alone. A greater concern is the threat posed
by malicious internal actors, which can be even more serious
where they act in concert with outside parties. This presents
one of the most serious weaknesses to the security of a
company. Equally, laziness on the part of staff or lack of

58Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 69 / 172

knowledge, particularly where they have not been regularly
trained to provide them with full awareness of all the latest
threats, including social engineering attacks, and the conse-
quence of falling victim to them, can also pose an extremely
serious risk to company security.

In the event of a security breach, not if, but rather when
it happens, it may be necessary to conduct a forensic exami-
nation to establish how the company defences were breached.
With traditional distributed systems, there is usually something
for the forensic computer scientists to find, somewhere in the
system. They are completely accustomed to dealing with being
able to find only partial traces of events, from which they
can build a forensic picture of the breach. This becomes more
problematic the longer the time between breach and discovery.

However, once a company adopts cloud use, this becomes
far more problematic. While forensic computer scientists can
work wonders with a range of partial discoveries, deleted
or otherwise, once a cloud instance is shut down, there is
virtually zero chance of regaining access to the shut down
system. The disk space used by that system could be re-used,
literally within seconds, and where the time interval between
breach and discovery is considerably longer, as is generally the
norm, then this opportunity becomes a physical impossibility.
Thus, for forensic purposes, companies need to pay far more
attention to what is actually going on in the cloud.

The suggestions we make can go a long way to providing
a greater level of security, and perhaps more importantly, can
ensure there is actually a forensic trail to follow in the event
of a breach.

VI. CONCLUSION

We have considered a wide range of security issues in
cloud based systems, with a view to highlighting that the
attack surface of any cloud based system extends well beyond
technical issues. We have identified that databases present a
considerable weakness in cloud based systems, in addition to
the unintended potential loss of forensic data caused by the
manner in which scalability is handled in large cloud systems.

We have suggested a simple approach that could be easily
implemented, with minimal technical knowledge, which would
offer a considerable improvement on cloud security, with the
additional benefit of maintaining a vastly improved forensic
trail to explore in the event of a breach. Equally, our proposal
also offers the benefit of being able to discover precisely
which records have been viewed, compromised, or deleted.
This presents a significant mitigation in the event that any
regulator proposes a significant fine, since the company will be
in a position to comply fully with the reporting requirements.

We plan to test this proposal to identify any loss in perfor-
mance resulting from not being able to use key searching in
the immutable databases, and to identify how it will stand up

to attack. In the longer term, it would be useful to develop a
software solution that might add the key search capability to
the immutable database.

REFERENCES

[1] B. Duncan and M. Whittington, “Enhancing cloud security and privacy:
The cloud audit problem,” in Cloud Comput. 2016 Seventh Int. Conf.
Cloud Comput. GRIDs, Virtualization. Rome: IEEE, 2016, pp. 119–124.

[2] B. Duncan and M. Whittington, “Enhancing cloud security and privacy:
The Power and the weakness of the audit trail,” in Cloud Comput. 2016
Seventh Int. Conf. Cloud Comput. GRIDs, Virtualization. Rome: IEEE,
2016, pp. 125–130.

[3] B. Duncan and M. Whittington, “Cloud cyber-security: Empowering the
audit trail,” Forthcom. Int. J. Adv. Secur., vol. v9, no. 3&4, p. 15, 2016.

[4] Trustwave, “2012 Global Security Report,” Tech. Rep., 2012.
[5] B. Duncan and M. Whittington, “Compliance with standards, assurance

and audit: Does this equal security?” in Proc. 7th Int. Conf. Secur. Inf.
Networks. Glasgow: ACM, 2014, pp. 77–84.

[6] B. Guttman and E. A. Roback, “NIST special publication 800-12. An
introduction to computer security: The NIST Handbook,” NIST, Tech.
Rep. 800, 2011. [Online]. Available: csrc.nist.gov/publications/nistpubs/
800-12/handbook.pdf Last Accessed: Jan 2017

[7] OED, “Oxford English Dictionary,” 1989. [Online]. Available: www.oed.
com

[8] D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond, and M. Morrow,
“Blueprint for the intercloud - Protocols and formats for cloud computing
interoperability,” in Proc. 2009 4th Int. Conf. Internet Web Appl. Serv.
ICIW 2009, 2009, pp. 328–336.

[9] J. A. Chaula, “A socio-technical analysis of information
systems security assurance: A case study for effective
assurance,” Ph.D. dissertation, 2006. [Online]. Available:
http://scholar.google.com/scholar?hl=en{\&}btnG=Search{\&}
q=intitle:A+Socio-Technical+Analysis+of+Information+Systems+
Security+Assurance+A+Case+Study+for+Effective+Assurance{\#}1
Last Accessed: Jan 2017

[10] S. Pearson and A. Benameur, “Privacy, security and trust issues arising
from cloud computing,” in 2010 IEEE Second Int. Conf. Cloud Comput.
Technol. Sci., no. December. Ieee, nov 2010, pp. 693–702.

[11] R. K. L. Ko et al., “TrustCloud: A framework for accountability and
trust in cloud computing,” Proc. - 2011 IEEE World Congr. Serv. Serv.
2011, pp. 584–588, 2011.

[12] L. F. B. Soares, D. a. B. Fernandes, J. V. Gomes, M. M. Freire, and
P. R. M. Inácio, “Security, privacy and trust in cloud systems,” in Secur.
Priv. Trust Cloud Syst. Springer, 2014, ch. Data Accou, pp. 3–44.

[13] EU, “Unleashing the potential of cloud computing in europe,” 2012.
[Online]. Available: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?
uri=SWD:2012:0271:FIN:EN:PDF Last Accessed: Jan 2017

[14] R. J. Anderson, Security engineering: A guide to building dependable
distributed systems, C. A. Long, Ed. Wiley, 2008, vol. 50, no. 5.

[15] Verizon, N. High, T. Crime, I. Reporting, and I. S. Service, “2012 data
breach investigations report,” Verizon, Tech. Rep., 2012.

[16] OWASP, “OWASP top ten vulnerabilities 2013,” 2013. [Online]. Avail-
able: https://www.owasp.org/index.php/Category:OWASP\ Top\ Ten\
Project Last Accessed: Jan 2017

[17] Verizon, “Verizon 2015 data breach investigation report,” Tech. Rep.,
2015.

[18] OWASP, “OWASP SQL injection cheat sheet,” 2016. [Online].
Available: https://www.owasp.org/index.php/SQL\ Injection\
Prevention\ Cheat\ Sheet Last Accessed: Jan 2017

[19] OWASP, “OWASP injection prevention cheat sheet,” 2016. [Online].
Available: https://www.owasp.org/index.php/Injection\ Prevention\
Cheat\ Sheet Last Accessed: Jan 2017

[20] OWASP, “OWASP LDAP injection prevention cheat sheet,” 2016.
[Online]. Available: https://www.owasp.org/index.php/LDAP\ Injection\

Prevention\ Cheat\ Sheet Last Accessed: Jan 2017

59Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 70 / 172

Platform As A Service Effort Reduction

Aspen Olmsted, Kaitlyn Fulford

College of Charleston

Department of Computer Science, Charleston, SC 29401

e-mail: olmsteda@cofc.edu, fulfordke@g.cofc.edu

Abstract— In this paper, we investigate the problem of

development costs in Platform as-a Service (PAAS) cloud-

based systems. We develop a set of tools to analyze the size of

code executed to support features in the PAAS. In this

research, we specifically focus on stable open source platforms

to ensure as much of an equivalent offering from each

platform. A distinction is made between PAAS and Platform

Infrastructure as-a Service (PIAAS). The focus of the paper is

on the features provided to the developer that are not provided

by traditional network operating systems. Our study

demonstrates a cost savings of nearly thirteen million dollars to

develop the application services provided by a typical PAAS.

Keywords-PAAS; cloud computing; CRM

I. INTRODUCTION

In this work, we investigate the problem of estimating the
cost of developer services provided by a platform as a
service (PAAS) cloud-based system. In traditional client-
server architectures, developers spend a great deal of their
effort developing functionality that is not specific to the
business domain where the application will operate in.

Cloud computing has traditionally been made up of three

broad categories of offerings:

• Software-As-A-Service (SAAS) – This category

includes applications that run in a Web browser

and do not require any local software and hardware

besides the Web browser and Internet connection.

Examples of software in this category are Google

Docs [1] and Microsoft Office 365 [2].

• Infrastructure-As-A-Service (IAAS) – This

category includes virtualization software that

allows an operating system to be run in the cloud.

Typically, the user will pick a hardware

configuration and install an operating system into

the virtual hardware configuration. IAAS was

designed to free the user from the purchase of

hardware and allow for hardware upgrades easily.

Examples of IAAS offerings are Amazon EC2 [3]

and Rackspace [4].

• Platform-As-A-Service (PAAS) – This category

includes pre-build components that a developer can

use when developing a cloud application. The goal

of PAAS is to allow the developer to focus on the

development of a solution for the business

functions and not software functions that span

many application domains. A good example of

PAAS is force.com where the developer is

provided many of the essential parts of an

application out of the box.

Over the years, software development has matured to

allow the developer to spend a larger percentage of their

development time on the business problem instead of the

infrastructure for the application. In the early days of

programming, each instruction the programmer wrote

matched an instruction in the hardware. The late 1980s and

90s were dominated by 3rd generation languages such as C,

PASCAL or ADA where each instruction written by the

developer was compiled to many machine instructions. The

21st century has been dominated by byte code compiled

languages that have runtime engines that execute the code

on different hardware platforms. The Java Runtime Engine

(JRE) and the Microsoft .NET Runtime Engine (.NET) are

the most dominate examples of the byte code engines that

free the developer from thinking about the underlying

hardware. PAAS is the next evolution in freeing up the

developer times, so they can focus on the problem they are

trying to solve instead of the technical plumbing required

for the solution.

The organization of the paper is as follows. Section 2

describes the related work and the limitations of current

methods. In Section III, we document typical services

provided. Section IV analyzes different PAAS providers and

the services they provide. Section V explores the alternative

costs to develop the individual services. We conclude and

discuss future work in Section VI.

II. RELATED WORK

The NIST Definition of Cloud Computing defines PAAS
as “the capability provided to the consumer [...] to deploy
onto the cloud infrastructure consumer-created or acquired
applications created using programming languages,
libraries, services, and tools supported by the provider. The
consumer does not manage or control the underlying cloud
infrastructure including network, servers, operating systems,
or storage, but has control over the deployed applications
and possibly configuration settings for the application-
hosting environment” [1]. In the same document, they
define SAAS and IAAS similarly to our definitions in the
introduction.

Kolb and Wirtz [2] investigate ways to construct
applications for the cloud that are portable across different
PAAS providers. Their work assumes lower level services
in the offerings than our work. We are less interested in
maintenance costs to move platforms as we are in startup
costs for Greenfield Engineering. In software engineering,

60Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 71 / 172

Greenfield Engineering occurs when you are starting from
scratch, or you are re-engineering your product on a
different architectural paradigm where you cannot port your
current code base.

Baliyan and Kumar [3] explore how services provided by
a PAAS provider effect the Software Development Lifecycle
(SDLC). Again, in their work they consider just a few
services. In our work, we think about many more services.
The larger perspective on service would have an even greater
impact on their work.

In our model of services, end-users can create new
objects, new forms for data entry, new reports to display the
data in detail and aggregate form and new dash boards. Ng
[4] looks at PAAS as a model for deploying end-user
programming through a model of Tasks. The programming
model provided by the platforms in our study has
demonstrated success in allowing end-users to extend the
application.

Boehm, Clark, Horowitz, Westland, Madachy and Selby
[5] developed an algorithm to estimate effort for a software
engineering project. The algorithm uses variables that
represent programmer and programming experience required
in the project. For this study, we used the “nominal” value
for each variable to get an average cost. Madachy [6]
provides an online tool to calculate the effort including
maintenance over the life of the software.

III. PAAS SERVICES

With PAAS, the developer does not need to be

concerned with the operating system on which the specified

platform runs. For example, the platform will provide a

service to save a file and the developer does not need to

worry what operating system the platform is running on.

We group the service offerings into two distinct categories:

A. Infrastructure Services

• Node Configuration – This service allows the end

user to modify configuration settings to allow the

system to scale to handle larger or smaller

workloads by adding or removing nodes, storage or

Central Processing Units (CPUs). This service

allows the implementation to start with minimal

hardware to save costs during start-up. Additional

resources can then be added as the application user

base grows without the need to re-engineer the

application.

• Load Balancing – This service allows the end user

to setup multiple systems to ensure uptime when

loads are higher, or network partitions occur. Each

system is an exact replica and the load will be

distributed across the replicas. The application will

need to be designed properly for replication. The

system must not store resources in a specific

replica. Each request could be sent to a different

replica. Both persisted data and session state

should be stored in the database service.

• Logging – The logging service allows an audit log

to be enabled to help diagnosis application and

platform issues. The service should allow the log

to be toggled on and off so that space is not wasted

when an audit is not needed. Ideally, there will be

different granularity of audits available, such as

errors, warnings, and information.

• Database – The database service allows the

application to persist data across executions of the

application. Traditionally, this has been a

relational database such as Oracle [11] or MySQL

[12] but may be a NoSQL [13] database that is

better at distribution. The database service should

provide Create, Read, Update and Delete (CRUD)

services and potentially transaction support.

• Scheduled Jobs – This service allows bulk

operations to be scheduled at specific and recurring

timeframes. Example jobs include sending out

bulk emails, updating de-normalized database

fields, and communicating with external systems.

Often, this service is delivered through a cronjob

interface where jobs can be schedule down to the

specific second of each hour.

B. Application Services

• Authentication – The authentication service

provides a way to define users and allow

authentication in the application being developed.

Ideally, this would provide both the administrative

tool for creating users and groups along with the

user interface the end users interact with to

authenticate themselves. The authentication should

provide multifactor authentication where

something the end user knows along with

someplace they are or something they have.

• Authorization – The authorization service provides

a way to define which users can see different data,

forms, and reports in the application. The

authorization service should provide an

administrative tool to assign access permission to

both users and groups to objects created in the

system. The objects should be both standard

objects and custom objects defined by the

developer and end users.

• Rule Engine – A rule engine allows for

customization of correctness rules at

implementation time. Business rules control

organization policies that may change often and

should not be coded in the software solution.

61Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 72 / 172

• Workflow – This service provides for several

discrete application steps to be sequenced together.

Often, a human interaction (Approval) is part of the

workflow.

• Bulk Email – Bulk email allows for email

marketing with proper adherence to Email SPAM

rules [14]. Bulk email may be used for attracting

or recruiting new customers or confirming

transactions with current customers.

• Importing – An importing feature allows the end

user to import new instances of objects into the

platform. Ideally, this would allow data from

several different data formats including Comma

Separated Values (CSV) and Microsoft Excel

format. The tool should provide a validation step

so that imported data does not corrupt the current

database.

• Exporting – An exporting feature allows the end

user to dump instances of the objects into an

external file such as a Comma Separated Values

(CSV) or Microsoft Excel formatted file. The tool

should allow a Query by Example (QBE) where

novice users can visually build export queries and

see the results in the application.

• Activity tracking – Activity tracking allows for

linking of phone calls, emails, meetings, and notes

to objects persisted by the application. Activities

may be originated in an external system with an

interface to the new system that is being built. An

example could be a Web browser extension that

allows emails in a Web email application to be

linked to a related activity to an object in the new

system.

• Object Customization – Object custom allows end

users to add additional data to be collected in the

application without changing the source code.

Most enterprise systems require some form of

customization either through integration to external

systems or enhancements to specific features in the

current system. Object customization allows the

end user to make the changes without needing the

software to be modified at each individual

enterprise.

• New Object Creation – New object creation

services allow end users to define new objects to

store data that is collected in the application. Like

with object customization, new object creation can

be used to customize the software without

changing the source code. Often, the new objects

need to relate to a current object in the system.

These related objects should seamlessly be

displayed in the user interface.

• Detail View – The detail view renders the object

details based on the configured layout. The detail

view also renders one-to-many related data. The

related data is often rendered in tabs.

• Edit View – The edit view renders an editable

object screen based on the configured layout. The

edit view is used to modify one specific object and

potentially related objects.

• Data Update – The data update service provides a

CRUD interface to a backend data store. The data

update service abstracts the vendor specifics of the

back-end data store services and allows business

rule hooks to fire on the CRUD operations.

TABLE 1. APPLICATION SERVICES BY PLATFORM

Service S
alesfo

rce

Z
o

h
o

S
u

g
arC

R
M

S
u

iteC
R

M

v
T

ig
er

H
ero

k
u

Authentication ✓ ✓ ✓ ✓ ✓ ✓

Authorization ✓ ✓ ✓ ✓ ✓

Rule Engine ✓ ✓

Workflow ✓ ✓ ✓ ✓ ✓

Bulk Email ✓ ✓ ✓ ✓ ✓

Activity tracking ✓ ✓ ✓ ✓ ✓

Object Audit ✓ ✓ ✓ ✓

Importing ✓ ✓ ✓ ✓ ✓

Exporting ✓ ✓ ✓ ✓ ✓

Object Customization ✓ ✓ ✓ ✓ ✓

New Object Creation ✓ ✓ ✓ ✓ ✓

User Interface

Customization

✓ ✓ ✓ ✓ ✓

Multi-Select Fields ✓ ✓ ✓ ✓ ✓

Report Display ✓ ✓ ✓ ✓ ✓

Report Creation ✓ ✓ ✓ ✓ ✓

Dashboard Display ✓ ✓ ✓ ✓ ✓

Dashboard Creation ✓ ✓ ✓ ✓ ✓

Web-services ✓ ✓ ✓ ✓ ✓

Mobile Application ✓ ✓ ✓ ✓

Partner Portal ✓

Customer Portal ✓ ✓ ✓ ✓

Anonymous Sites ✓ ✓

Price per user/month $25 $35 $65 N/A N/A N/A

62Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 73 / 172

• User Interface Customization – The user interface

customization service allows for forms in the

application to be modified by the end users without

changing the source code. This is often required to

allow implementations to vary slightly by

collecting custom data.

• Multi-Select Fields – Multi-select fields are a way

to simplify end user customizations. A multi-select

field represents an easy way to store a one-to-many

relationship of data without the need of adding new

objects. Multi-select fields also save on the

number of tuples stored in the system. Often, cloud

providers charge for data storage based on the

number of tuples. [7]

• Report Display – The report display service allows

execution of pre-defined reporting queries. The

report display should prompt the user with

replaceable run-time parameters. The report

should be exportable to pdf and spreadsheet

formats. Ideally, there would be a scheduling

service where the report parameters would be

based on the run date. For example, a start date

parameter should be replaced based on an offset

from the date the report is run.

• Report Creation – The report writer service allows

both the developer and the end users to define

management information system (MIS) reports that

can be run and customized by the changing of run-

time parameters. Typically, this includes both

tabular reports that group rows of records with

aggregate calculations and cross-tab reports that

aggregate values based on the intersection of the

row and column.

• Dashboard Display – The dashboard display

service renders dashboard charts and allows them

to be refreshed automatically. The dashboard is a

graphical display of a metric the organization

wants to measure.

• Dashboard Creation – Dashboards allow both the

developer and the end users to define graphical

dashboards that allow visualization of data stored

in the application. Dashboards typically are bar or

pie charts and are updated several times an hour.

• Mobile Application – A mobile application allows

end users to perform create, read, update, and

delete (CRUD) operations on objects stored in the

application without the need of creating custom

mobile applications. Similar to the detail and edit

view services above, any object in the system

should be visible and editable.

• Partner Portal – A partner portal is a service to

provide pages, forms, reports and dashboards to

authenticated users with a lower training level.

Typically, these are users that use the application

infrequently compared to an employee.

• Customer Portal – A customer portal is a service to

provide custom pages and forms to authenticated

users with no training required. The service is

intended for customer self-service sites where the

customer can identify themselves and perform

transactions.

• Anonymous Sites – The anonymous site service

allows development of pages and forms to

unauthenticated users. This is typically the part of

an organizations website where customers do not

need to identify themselves.

IV. PLATFORM ANALYSIS

In this study, we analyze several PAAS providers

including Salesforce [8], Zoho CRM [9], SugarCRM [10],

SuiteCRM [11], vTiger [12] and Heroku [13]. We chose the

first five platforms because they each provide many of the

services we discussed in detail. The last platform was added

to show the difference between PAAS and PIAAS offerings.

Each of the first five PAAS offerings was developed as

Customer Relationship Management (CRM) system. The

CRM vertical market software space requires integration

with Enterprise Resource Planning (ERP) systems. The

integration requirement led the CRM vendors to develop

their products as platforms instead of just the vertical market

products. TABLE 2 shows the distributed services offered

by each platform. The Load Balancing service is marked for

the three PHP [18] platforms because the state of the session

is stored in the database. Having the session state stored in

the database allows additional business tier servers to be

added to the configuration in the cloud. Though only

Heroku has a graphical user interface (GUI) to manage node

configuration, the PHP solutions can be hosted by an IAAS

provider that provides the feature. TABLE 1 shows the

TABLE 2. DISTRIBUTED SERVICES BY PLATFORM

Service S
alesfo

rce

Z
o

h
o

S
u

g
arC

R
M

S
u

iteC
R

M

v
T

ig
er

H
ero

k
u

Node

Configuration

 ✓

Load

Balancing

 ✓ ✓ ✓

Logging ✓ ✓ ✓ ✓ ✓

Database ✓ ✓ ✓ ✓ ✓ ✓

Scheduled

Jobs

✓ ✓ ✓ ✓ ✓

63Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 74 / 172

application services offered by each platform. The final row

shows a cost per user if the PAAS provider is providing

both the infrastructure and the application services.

V. EFFORT STUDY

To calculate the effort savings provided by the different

PAAS service providers, we calculated the source lines of

code (SLOC) in a stable platform release. For this study, we

choose to use the SuiteCRM [10] systems as our model.

SuiteCRM is open source software, so we had access to the

source code developed to provide the platform.

SuiteCRM is written in the PHP programming language

using a MySQL database as its persistence layer. Using the

debugger extension xDebug [13], we are able to trace all

lines of code executed on the server when interacting with

the application. xDebug creates a trace file with these lines

of code. We developed tooling to parse the trace file and

store the data in a MySQL database based on the function

executed.

Because of the nature of Web application architectures, a

single round trip from the Web browser to the Web server

will often execute two distinct sets of functionality. For

example, when a user enters their login credentials, the post

to the server authenticates the user and then executes the

code to display the homepage of dashboards. Our tooling

allows a trace to add to the functional cost or subtracted

from the functional cost. In the earlier example, we trace

the combined functionality and then subtract the individual

functionality of building the home screen.

For the study, we wanted the cost for local application

software engineers in the Charleston, SC area. The Bureau

of Labor Statics [14] estimated the average cost for an

application software engineer is $96,200/year. Hadzima

[15] estimates the cost of an employee’s benefits and taxes

at between 25% and 40% of base salary. On top of the

salary cost, the employer must pay for rent for office space,

equipment, recruitment, training, etc. For our study, we are

estimating the hourly cast at $71.50 per hour for an

application programmer’s time. In TABLE 3 we show the

estimated cost to pay an application programmer in the

Charleston, SC area to redevelop the functionality provided

by the service. We analyzed SuiteCRM and looked at the

organized source lines of code (SLOC). SuiteCRM stores

the service source code in module folders on the file

systems. We counted the executable lines of code and

compared to the executed lines of code from the trace. Each

trace represented a slightly higher number of lines of code

because of shared libraries. We felt it was not appropriate

to count all the shared lines of code per service, but we also

felt it was not appropriate to ignore them completely. We

decided to take the average between the two-line counts.

We plugged the average number into the Constructive Cost

Model (COCOMO) II formula [26] with our local

application programmer cost of $71.50 per hour. The fifth

column in TABLE 3 shows the cost per service and the total

cost of all services. We eliminated a few services from the

study as the source code was not available. The table does

not show the cost of the infrastructure services. The

infrastructure services can be provided by an IAAS provider

if the development is done to leverage the services.

VI. CONCLUSION

In this paper, we analyzed the programming effort

required to reproduce services provided by a cloud PAAS

provider. Our solution utilizes two methods to estimate the

number of lines of code requried for a service; SLOC and an

execution trace. We utilize an average of the two methods

to apply the COCOMO II costing algorithm. Our study

demonstrates a cost savings of nearly thirteen million

dollars. The savings comes from not needing to develop the

application services provied by the PAAS providers in our

study.

In this research, we focused on application services

provided by a PAAS. Future work needs to study the

infrastructure services costs and the application

development knowledge required to leverage the provided

distribution services.

TABLE 3. COST PER SERVICES

Service SLOC Trace Average CoCoMoII

Authentication/

Authorization

1156 1437 1297 $ 590,131

Workflow 954 1146 1050 $ 467,789

Bulk Email 702 1054 878 $ 384,246

Activity tracking 1178 1302 1240 $ 561,674

Object Audit 656 873 765 $ 330,225

Importing 1654 1857 1756 $ 823,478

Exporting 945 1246 1096 $ 490,375

Object

Customization

2164 2874 2519 $ 1,224,557

New Object

Design

1474 1826 1650 $ 768,981

Detail View 291 464 378 $ 152,095

Edit View 1828 464 1146 $ 515,031

Data Updates 656 989 823 $ 357,860

User Interface

Customization

2073 2482 2278 $ 1,096,353

Multi-Select Fields 402 512 457 $ 187,395

Report Display 1912 2356 2134 $ 1,020,384

Report Creation 2957 3345 3151 $ 1,566,362

Dashboard Display 1342 1672 1507 $ 696,016

Dashboard

Creation

1874 2198 2036 $ 968,972

Web-services 986 1822 1404 $ 643,884

Total $ 12,845,808

64Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 75 / 172

REFERENCES

[1] Google, "About Google Docs," 2017. [Online]. Available:

https://www.google.com/docs/about/. [Accessed 10 02 2017].

[2] Microsoft, "Office products," 2017. [Online]. Available:

https://products.office.com/en-us/products. [Accessed 10 02

2017].

[3] Amazon Web Services, Inc, "Amazon Elastic Compute Cloud

- Virtual Server Hosting," 2017. [Online]. Available:

https://aws.amazon.com/ec2/. [Accessed 10 02 2017].

[4] Rackspace, "Rackspace.com - Rackspace® Managed Cloud,"

2017. [Online]. Available: https://www.rackspace.com/.

[Accessed 10 02 2017].

[5] P. Mell and P. Grance, "The NIST Definition of Cloud," 09

2011. [Online]. Available:

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublica

tion800-145.pdf. [Accessed 07 09 2016].

[6] S. Kolb and G. Wirtz, "Portability in Platform as a Service,"

in 2014 IEEE 8th International Symposium on Service

Oriented System Engineering, Oxford, United Kingdom,

2014.

[7] N. Baliyan and S. Kumar, "Towards Software Engineering

Paradigm for," in 2014 Seventh International Conference on

Contemporary Computing, Noida, India, 2014.

[8] J. Ng, "Extending the Cloud From an App Development

Platform into a Tasking Platform," in 2015 IEEE World

Congress on Services, New York, NY, 2015.

[9] B. Boehm, B. Clark, E. Horowitz, C. Westland, R. Madachy

and R. Selby, "Cost models for future software life cycle

processes: COCOMO 2.0," Annals of Software Engineering,

vol. 1, no. 1, p. 57–94, 1995.

[10] M. Ray, "COCOMO II - Constructive Cost Model," 2016.

[Online]. Available:

http://csse.usc.edu/tools/COCOMOII.php. [Accessed 07 09

2016].

[11] Oracle, "Oracle Database," 2017. [Online]. Available:

https://www.oracle.com/database/index.html. [Accessed 10

02 2017].

[12] Oracle, "MySQL Database," 2017. [Online]. Available:

https://www.mysql.com/. [Accessed 10 02 2017].

[13] Wikimedia Foundation, Inc, "NoSQL," 2017. [Online].

Available: https://en.wikipedia.org/wiki/NoSQL. [Accessed

10 02 2017].

[14] Wikimedia Foundation, Inc, "Email spam," 2017. [Online].

Available: https://en.wikipedia.org/wiki/Email_spam.

[Accessed 10 02 2017].

[15] A. Olmsted and G. Santhanakrishnan, "Cloud Data

Denormalization of Anonymous Transactions," in Cloud

Computing, Rome, Italy, 2016.

[16] Salesforce.com, inc, "Run your business better with Force.,"

2006. [Online]. Available:

http://www.salesforce.com/platform/products/force/?d=7013

0000000f27V&internal=true. [Accessed 03 02 2016].

[17] Zoho Corporation Pvt. Ltd, "Zoho CRM is ready," 2016.

[Online]. Available: https://www.zoho.com/crm. [Accessed

07 09 2016].

[18] SugarCRM, "Discover a different kind of CRM," 2016.

[Online]. Available: http://www.sugarcrm.com/. [Accessed

07 09 2016].

[19] SalesAgility, "SuiteCRM – CRM for the world," 2016.

[Online]. Available: https://suitecrm.com/. [Accessed 07 09

2016].

[20] vTiger, "Grow sales, improve marketing ROI, and deliver

great customer service," 2016. [Online]. Available:

https://www.vtiger.com/. [Accessed 07 09 2016].

[21] Salesforce, "Cloud Application Platform," 2016. [Online].

Available: https://www.heroku.com/. [Accessed 07 09 2016].

[22] The PHP Group, "About PHP," 2017. [Online]. Available:

http://php.net/. [Accessed 10 02 2017].

[23] D. Rethans, "Xdebug - Debugger and Profiler Tool for PHP,"

2016. [Online]. Available: www.xdebug.org. [Accessed 07

09 2016].

[24] Bureau of Labor Statisics, "Occupational Employment

Statistics," 2016. [Online]. Available:

http://www.bls.gov/oes/current/oes_16700.htm. [Accessed 07

09 2016].

[25] J. Hadzima, "How Much Does An Employee Cost?,"

[Online]. Available: http://web.mit.edu/e-club/hadzima/how-

much-does-an-employee-cost.html. [Accessed 07 09 2016].

[26] R. Madachy, "COCOMO II - Constructive Cost Model,"

[Online]. Available:

http://csse.usc.edu/tools/COCOMOII.php. [Accessed 10 02

2017].

65Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 76 / 172

On Exploiting Resource Diversity in the Public Cloud for Modeling Application Performance

Mark Meredith
Dept. of Comp. Sci. and Engg.

The Penn State University
Email: mwm126@cse.psu.edu

Bhuvan Urgaonkar
Dept. of Comp. Sci. and Engg.

The Penn State University
Email: bhuvan@cse.psu.edu

Abstract—Cloud computing platforms, such as Amazon EC2,
Google Computing Engine, and Microsoft Azure, offer dozens
of virtual machine (VM) types with a wide range of resource
capacity vs. price trade-offs, requiring a customer to consider
numerous resource configurations when evaluating service needs.
We investigate the possibility of exploiting this diversity of VM
types to predict the performance of workloads on new VM types
using black box modeling. The performance model used is a
multiple linear regression of the average application response
time as a function of VM load (throughput in requests per
second), the number of CPU cores, and main memory capacity.
For three different types of data storage applications - Redis
(key-value stores), Apache Cassandra (a NoSQL database) and
MySQL (an ACID database) - the model accuracy improves when
the training data spans more diverse VMs. E.g., for Redis, the
R2

predicted measure of model efficacy improves from 0.4-0.5 with
2 VM types for training and 0.7 for 3 VM types to 0.8 for
4 VM types. These results suggest further interesting research
challenges, such as the possibility of automating the process of
calibrating performance models using diverse resource types on
a public cloud leading to “performance modeling as a service.”

Keywords—public cloud; tenant workload; performance
modeling

I. INTRODUCTION

Many enterprises are migrating their information technology
(IT) needs to public cloud computing platforms, a trend that is
projected to continue unabated in the foreseeable future [11].
Procuring resources cost-effectively from a public cloud poses
significant technical challenges. One such challenge concerns
the problem of determining the set of IT resources (including
their capacities) - virtual machines (VMs), the virtual network
connecting these VMs, storage, etc. - that would be needed
to cost-effectively meet the predicted workload of the tenant’s
software applications while offering satisfactory performance
and availability to its users. In order to solve this problem,
a tenant must first solve the problem of assessing the per-
formance the users of its application software are likely to
experience if the application were assigned a given set of
IT resources to meet its predicted workload. Our interest in
this paper is in this latter problem, often labeled application
performance modeling [13] [17] [18] [21] [25] [29] [31] [34].
Of course, application performance modeling has many other
uses besides cost optimal resource procurement, e.g., anomaly
detection [7] [15] and capacity planning [19].

Whereas application performance modeling has been an
area of extensive research for many decades across many com-

munities, solving it for the public cloud ecosystem presents
a tenant with non-trivial novel sources of complexity. In
particular, most modeling solutions have traditionally been
developed for settings involving privately owned and operated
data centers or clusters. These solutions may not be readily
adapted to a public cloud.

1 2 4 8 16 32 64

CPU cores

0

50

100

150

200

250

M
e
m

o
ry

 (
G

B
)

Google Compute Engine
Microsoft Azure
Amazon EC2

Fig. 1. An illustration of the diversity in VM capacities offered by popular
public cloud providers.

One of the most important differences between these two
settings (from the point of view of application performance
modeling) is the immense diversity of resources that a typical
public cloud offers. There are other important differences
complementary to our focus in this paper and part of our
future work. E.g., in a private setting, the user of a machine
(tenant application) coincides with its owner while in a public
setting the two are separated via virtualization techniques
with implications for how much information about physical
resource usage is available to the tenant’s models. We focus
on VMs in this work although our arguments likely apply
to other resource types as well. To appreciate this diversity,
let us consider some examples from the most prominent
public cloud providers that offer many VM types since they
need to cater to many different types of customers. Here,
VM instance types are organized into groups based on use
case. Instances within a group generally have the same CPU
generation and clock speed, and vary by the number of CPUs
and memory. Amazon EC2 offers over 40 VM types organized
into eight different groups, varying in CPU, memory, network
bandwidth, storage speed, and pricing [1]. Google Compute
Engine offers 15 instance types organized into four groups:

66Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 77 / 172

Standard, High CPU, High Memory, and Shared Core (for
lightweight applications) [12]. Finally, Microsoft Azure offers
30 instance types organized into 4 groups [33]. Fig. 1 shows
44 VM instance types from these three providers capturing
the large spectrum of CPU cores and memory that their VMs
pack. We show VMs with a wide range of CPU and memory
capacities offered by Amazon EC2 [1], Google Compute
Engine [12], and Microsoft Azure [33]. The number of cores
on these VMs ranges from 1 to 32 whereas their memory
capacity ranges from 0.75GB to 256GB.

A typical privately owned data center, on the other hand, is
likely to possess a much smaller number of machine types.
Keeping machines (and their software configurations) rela-
tively homogeneous brings about significant benefits related
to ease of system administration and cost savings (e.g., due to
bulk purchase offers from IT vendors). Although factors, such
as incremental procurement over time, meeting specialized
needs (e.g., machines with GPUs), etc., do result in some
differences among machine types even in a private data center,
the overall degree of heterogeneity is significantly smaller than
that seen in a public cloud.

This high diversity of resource types in a public cloud
introduces an additional source of complexity into a ten-
ant’s VM autoscaling decision-making. Since the number of
machine types in traditional IT environments is small and
relatively fixed, performance models have conventionally been
developed and calibrated using performance measurements
(“profiling”) on the same/similar type of machines on which
the application would eventually execute. On the other hand, a
tenant of a public cloud would be interested in predicting the
performance its workload might experience on a wide variety
of VM types that the provider offers. This is because the VM
types most cost-effective for a tenant’s workload might change
over time due to: (i) changes in the tenant’s own workload
(e.g., many applications show periodic time-of-day or seasonal
variations in their workload intensities) and (ii) dynamism and
variety in the cloud provider’s pricing schemes (e.g., Amazon
EC2 offers spot pricing for most of its instance types and such
spot instances are usually much cheaper than their on-demand
counterparts). Additionally, existing work also shows that even
during a period of stationary workload, procuring hetero-
geneous VMs (e.g., a combination of “small” and ”large”)
can often offer a better cost vs. performance trade-off than
procuring the same types of VMs (e.g., a larger number of only
“small” or a smaller number of only ”large”) [35] Approaches
based on calibrating a tenant’s performance models separately
on the dozens of resource types that public clouds offer are
likely to not scale well.

We wish to explore if a tenant might actually be able to
benefit from this diversity by deliberately and carefully ex-
ploiting it to ease the creation and calibration of its application
performance models. The intuition underlying our premise is
that choosing a small subset of the offered VMs may suffice
for calibrating a tenant’s performance models well if this
subset were chosen carefully. In particular, this subset should
capture well the overall diversity across the VMs offered by

the provider.
Our Approach and Contributions: In this paper, we take a
small first step towards exploring the above idea by evaluating
the following hypothesis: using a more diverse set of VMs for
calibrating/training a performance model helps improve its
accuracy. Specifically, we devise a multiple linear regression
modeling framework for predicting the performance of interac-
tive data serving applications. We calibrate this model for three
different types of real-world applications: (i) Redis [23], an
open-source in-memory NoSQL key-value store, (ii) Apache
Cassandra [5], a Table/key-value hybrid NoSQL database, and
(iii) MySQL, a popular open-source ACID database [22]. We
use “training sets” of varying sizes (i.e., numbers of VM types)
for our calibration and investigate the impact of the training
set size on model efficacy. Our results are promising. E.g., for
Redis, we find that the R2

predicted measure of model efficacy
improves from 0.4-0.5 with 2 VM types for training and 0.7
with 3 VM types to 0.8 for 4 VM types.

Whereas the benefits of exploiting heterogeneity have been
explored in other contexts (most notably for cost/performance
optimization in cloud settings [10] [16] [24] [35]), to the
best of our knowledge, our paper is the first to systematically
explore its role in aiding performance model calibration. Our
work is complementary to traditional performance modeling
research. At the same time, it opens up a promising new
area for further exploration. As part of our own future work,
we plan to investigate if/how public cloud providers could
offer “performance modeling as a service,” whereby all/many
aspects of the model calibration by exploiting diversity would
be offered as an automated facility to their tenants.

The rest of this paper is organized as follows. In Section II,
we provide an overview of a generic cost-conscious tenant’s
decision-making and where application performance modeling
fits within it. In Section III, we describe the performance
modeling techniques that we employ. In Section IV, we present
our empirical evaluation of our hypothesis using three real-
world applications as our case studies. Finally, we discuss
related work in Section V.

II. CONTEXT AND OVERVIEW

The tenant would employ observations of its workload
intensity in the past to predict its future workload. Consider the
example of a key-value store or a database application that we
employ in our evaluation in Section IV. Such an application
might keep track of request arrival rates (possibly for different
request classes) and then use a suitable prediction mechanism
for estimating future arrival rate. Whereas some tenant ap-
plications exhibit significant predictability (e.g., captured well
via Markovian or autoregressive models) [3] [6] [27] [28],
others are known to exhibit poor predictability and must resort
to short-term (“myopic”) estimates [9] [14] [32]. Regardless,
having made these predictions, the tenant must then ascertain
the number and type of VMs that it must procure from the
cloud to meet its performance needs (or deallocate from its
existing resource pool).

67Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 78 / 172

We show one way of thinking about this decision-making,
wherein the tenant determines (using its application perfor-
mance model) multiple VM allocation choices that would
allow it to meet its predicted workload with the requisite
performance goals. These choices are then compared in terms
of their costs (or expected profits, if the tenant wishes to
maximize expected profits rather than minimizing costs) via
an optimization problem that incorporates idiosyncrasies of
the prices offered by the public cloud. The actual realization
of this overall decision-making may be different from how
we describe it here. Our description is deliberately designed
to highlight the role of the application performance model.
Finally, the most cost-effective choice identified by the opti-
mizer is used as the basis for actually procuring the appropriate
number and type of VMs from the cloud provider.

Significant research exists both on predicting workloads and
on performance modeling (see Section V) for a wide variety
of application types. Recall that our interest in this paper is
not on devising new techniques for workload prediction or
application performance modeling. Rather, we are interested
in evaluating the role VM diversity might play in calibrating
a given performance model. Towards this, we adapt a popular
modeling approach as described next.

III. OUR MODELING METHODOLOGY

This section describes the general performance modeling
ideas used. In Section IV, this basic model is adapted to
three application case studies on the Amazon AWS cloud. The
primary interest in this paper is not in identifying the most ac-
curate performance model but rather in exploring if diversity in
the VMs used for calibrating the chosen model helps improve
its efficacy. Therefore, although numerous modeling choices
exist in the literature for such applications, we use a relatively
simple multiple linear regression approach because: (i) it
serves as a good starting point for evaluating the hypothesis,
(ii) it is easy to cast, train, and evaluate, and (ii)it works well
- especially under low/moderate throughputs for the normal
operating regions of well-provisioned, performance-sensitive
tenant workloads.
Multiple Linear Regression: Given a data set
{yi,xi1, . . . ,xip}n

i=1, a linear regression on multiple independent
variables xp and dependent variable y is a set of parameters
βi that model a linear relationship between y and xi as yi =
β1xi1 + . . .+βpxip + εi [26].

The parameters εi are the error terms, an unobserved random
variable. The parameters βi are chosen to minimize the values
of εi for the entire data set. Specifically, the βi are chosen to
minimize the sum of squares ∑

n
i=1 ε2

i .
We choose as our dependent variable the average latency

yL and as our independent variables: (i) workload/application
properties - throughput, degree of replication, and read/write
ratio and (ii) resource capacity of the VMs being used -
number of CPU cores, clock rate of each CPU, memory,
network bandwidth, and type of storage (SSD vs. magnetic).

We define a training set S= {V Mi}n
i=1 as a set of virtual ma-

chines, each characterized by xp. In each of our experiments,

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
throughput (requests/sec)

×10
4

0

5000

10000

15000

re
a

d
 a

v
g

 l
a

te
n

c
y

 (
µ

s
e

c
)

Region 1

Region 2

Fig. 2. Two regions of latency vs. throughput for Redis.

we run the application whose performance we wish to model
on V Mi for various xT and measure the latency xL. We then
find a multiple linear regression MS on {yiL,xiT , . . . ,xip}n

i=1.
(For a given instance V Mi, the values of xip are fixed for all
measurements for that instance.)
Measure of Model Efficacy: We use the predicted coefficient
of multiple determination (R2

predicted) as our measure of model
accuracy which is defined as follows. For a test instance
V Mtest with xtest,i, R2

predicted = 1− ∑
n
i=1(ytest,i−ŷ(xtest,i))

2

∑
n
i=1(ytest,i− ¯ytest)2 , where

ŷ(xtest,i) = ∑
n
i=1 βixtest,i, and ȳtest is the mean of ytest,i.

To see evidence supporting our hypothesis, we expect to see
the following behavior: for larger training sets S, the model
should fit better to V Mtest , corresponding to an increasing
R2

predicted , assuming sufficient variability in the values of xp
for V M j ∈ S to cover the values of xp for V Mtest .
Discussion: Our linear regression based model is known
to perform poorly when queueing delays become dominant
contributors to overall latency [29]. For example, if we were to
model the entire set of latency observations (for experiments
done using Redis, more details in Section IV-B) using our
model, we would obtain a poorer predictor than the two
separate linear regression models shown in Fig. 2, one each
for the “low/moderate” (Region 1) and “high” (Region 2)
throughput regions. This suggests two points: (i) using domain
knowledge (e.g., the distinction between low and high through-
put regions), a tenant may be able to use linear regression to
obtain better models, and (ii) more sophisticated models may
be warranted for the needs of certain tenants. Again, since our
interest is in the impact of diversity on modeling accuracy, we
focus only on modeling performance in Region 1 for the rest
of this paper.

It is important to keep in mind the basic assumption of linear
regression about the independent variables being independent
of each other (i.e., the xp for V M j ∈ S need to be independent).
Interestingly, among the independent variables in our model,
the number of cores and memory capacity are prone to be
problematic on this front - typically larger VMs come both
with more CPUs and more memory - see Fig. 1. To overcome
this problem, we attempt to choose VM types in our experi-

68Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 79 / 172

TABLE I
AWS INSTANCE TYPES EMPLOYED IN OUR EVALUATION.

Instance name Abbr. # cores Memory Network
m3.large V M1 2 7.5 GB Moderate

m3.xlarge V M2 4 15 GB Moderate
m3.2xlarge V M3 8 30 GB High

r3.large V M4 2 15 GB Moderate
r3.xlarge V M5 4 30.5 GB Moderate

r3.2xlarge V M6 8 61 GB High

ments where this correlation is weak. Furthermore, the results
we present in this paper are for a subset of our experimental
findings wherein the entire working set fits in VM memory,
rendering memory moot as a predictor of performance (we do
incorporate memory in our more general experiments). Finally,
the potential shortcomings of predicted R2 as a measure of
model accuracy should be kept in mind when interpreting our
results [26].

IV. EVALUATION

A. Methodology and Setup

We carry out our evaluation on the EC2 public cloud offered
by Amazon Web Services (AWS) [1]. We adapt our generic
performance model from Section III for three different types
of latency-sensitive data-serving applications: (i) Redis (an
in-memory open-source NoSQL key-value store) [23], (ii)
Apache Cassandra (a NoSQL key-value store that can be
configured for different consistency levels), and the popular
MySQL ACID database [22]. We use the open-source Yahoo!
Cloud Serving Benchmark (YCSB) as our workload genera-
tor [8]. We run the YCSB client on a m4.2xlarge EC2 instance
running Ubuntu Linux 14.04. We monitor the system load
average on the client machine to verify that the client is not
the bottleneck during our tests.

We describe a subset of our overall results wherein for each
experiment we load the concerned database with 1,000,000
records, each containing ten fields of 100 bytes each (the
default). This amounts to an overall working set of about
1GB. Each experiment consists of subjecting the database
to a particular thoughput and recording the average latency
(separately for reads and writes). YCSB defines several stan-
dard workloads that we experiment with. We experiment with
different workloads offered by YCSB and present a subset of
our overall results - workload “A” for MySQL and “B” for
Redis and Cassandra. Workload A has 50% read and 50%
write requests and employs a uniform popularity distribution.
Workload B has 95% reads and 5% writes, and the popularity
of requests is chosen based on a zipfian distribution. We
repeat each experiment several times to achieve significantly
tight confidence intervals. Amazon EC2 is hosted in multiple
geographic regions around the world, and multiple zones
within each region. We create our testing client and servers
within the same region (us-west) and availability zone (2b) to
minimize the effect of network latency. Finally, we pick all
VMs having individual CPUs offering the same clock rate.

We select the VM instances listed in Table I. There are
three instances from the M3 group (standard) and three from
the R3 group (memory optimized). The memory/CPU ratio is
the same within each group, with the R3 group having twice
the memory/cpu as the M3 group. A more extensive study
with more instances would allow the use of more independent
variables in the model, e.g., including testing of instances in
the C3 group (compute optimized), which have half as much
memory/CPU as M3.

With the above choices, the measurements and modeling
reported here effectively only employ a subset of all the
independent variables listed in Section III: number of CPU
cores, throughput, number of replicas, and read-write ratio. In
particular, our working set of 1GB fits fully within any of the
chosen VMs, effectively rendering memory capacity moot as a
predictive variable. In our more general experiments, however,
we explore a much larger set of workload choices.

B. Case Study 1: Redis

Redis is an open-source, key/value NoSQL database. Redis
is in-memory and, therefore, very fast. Redis also optionally
supports persistence, so unlike memcached it can be used
as a primary database or as a cache. We deploy Redis on
AWS using Amazon ElastiCache, a web service that abstracts
the deployment and administration of the OS and database
software. Elasticache supports up to five read replicas of the
primary database. We report results with a single replica here.

For a VM type on which we wish to predict Redis per-
formance, we choose training sets of different sizes among
the remaining VM types. We find that each time we add a
new instance type to the training set, R2

predicted does improve
for both read and write latency. Generally, we observe that a
training set of only 3 VM types appears to offer high accuracy
with further additions offering relatively low gains. This bodes
well for cost-efficacy of our model calibration approach -
instead of having to calibrate its performance model for dozens
of VM types (with associated costs), a tenant may be able to
achieve comparable model accuracy using a much smaller set.
We present representative findings in Figs. 3 and 4.

C. Case Study 2: Apache Cassandra

Apache Cassandra is a Table/Key-Value hybrid NoSQL
database. It is suitable for applications that require high
availability provided by replication. In terms of the CAP
theorem, Cassandra prioritizes availability and performance
over consistency, making it highly performant and scalable,
though consistency is eventual rather than strong, for typical
Cassandra applications. We do our testing on Cassandra clus-
ters with 5 nodes. We run our testing with a replication factor
of three, so every database record is stored on three of the five
nodes. We record report results both when using Cassandra’s
weak (or eventual) and strict consistency settings.

For a sample VM type that we want to predict the perfor-
mance of Cassandra, we select training sets of increasing size
from the remaining VM types. We select V M4 for prediction,

69Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 80 / 172

0 2 4 6
throughput (requests/sec)

×10
4

0

200

400

600

800

1000

re
a

d
 a

v
g

 l
a

te
n

c
y

 (
µ

s
e

c
) Observations on VM2

VM6
VM6 VM5
VM6 VM5 VM3
VM6 VM5 VM3 VM1
VM6 VM5 VM3 VM1 VM4

(a)

0 2 4 6
throughput (requests/sec)

×10
4

0

200

400

600

800

1000

re
a

d
 a

v
g

 l
a

te
n

c
y

 (
µ

s
e

c
) Observations on VM2

VM6
VM6 VM5
VM6 VM5 VM3
VM6 VM5 VM3 VM4
VM6 VM5 VM3 VM4 VM1

(b)

0 2 4 6
throughput (requests/sec)

×10
4

0

200

400

600

800

1000

re
a

d
 a

v
g

 l
a

te
n

c
y

 (
µ

s
e

c
) Observations on VM2

VM5
VM5 VM3
VM5 VM3 VM4
VM5 VM3 VM4 VM1
VM5 VM3 VM4 VM1 VM6

(c)

0 2 4 6
throughput (requests/sec)

×10
4

0

200

400

600

800

1000

re
a

d
 a

v
g

 l
a

te
n

c
y

 (
µ

s
e

c
) Observations on VM2

VM5
VM5 VM6
VM5 VM6 VM3
VM5 VM6 VM3 VM4
VM5 VM6 VM3 VM4 VM1

(d)

Fig. 3. Prediction of Redis read latency on V M2 compared for model calibration using a variety of training sets ranging in size from 1 to 5 VM types.

0 2 4 6
throughput (requests/sec)

×10
4

0

200

400

600

800

1000

w
ri

te
 a

v
g

 l
a

te
n

c
y

 (
µ

s
e

c
) Observations on VM2

VM6
VM6 VM3
VM6 VM3 VM5
VM6 VM3 VM5 VM4
VM6 VM3 VM5 VM4 VM1

(a)

0 2 4 6
throughput (requests/sec)

×10
4

0

200

400

600

800

1000

w
ri

te
 a

v
g

 l
a

te
n

c
y

 (
µ

s
e

c
) Observations on VM2

VM6
VM6 VM5
VM6 VM5 VM3
VM6 VM5 VM3 VM1
VM6 VM5 VM3 VM1 VM4

(b)

0 2 4 6
throughput (requests/sec)

×10
4

0

200

400

600

800

1000

w
ri

te
 a

v
g

 l
a

te
n

c
y

 (
µ

s
e

c
) Observations on VM2

VM5
VM5 VM3
VM5 VM3 VM6
VM5 VM3 VM6 VM4
VM5 VM3 VM6 VM4 VM1

(c)

0 2 4 6
throughput (requests/sec)

×10
4

0

200

400

600

800

1000

w
ri

te
 a

v
g

 l
a

te
n

c
y

 (
µ

s
e

c
) Observations on VM2

VM5
VM5 VM6
VM5 VM6 VM3
VM5 VM6 VM3 VM4
VM5 VM6 VM3 VM4 VM1

(d)

Fig. 4. Prediction of Redis write latency on V M2 compared for model calibration using a variety of training sets ranging in size from 1 to 5 VM types.

0 2000 4000 6000
throughput (requests/sec)

0

200

400

600

800

1000

1200

re
a
d

 a
v
g

 l
a
te

n
c
y
 (
µ

s
e
c
) Observations onVM4

VM6
VM6 VM2
VM6 VM2 VM3
VM6 VM2 VM3 VM5
VM6 VM2 VM3 VM5 VM1

Fig. 5. Read latency/throughput plot for MySQL.

and do multiple linear regressions on the training set for sizes
1 through 5 for read latency and write latency data. Again,
we observe that every time another VM type is added to the
training set, the associated R2

predicted improves for V M4 for
both read and write latency (results omitted for space). We
conclude that our evaluation offers supporting evidence for
our second case study.

D. Case Study 3: MySQL

MySQL is an extremely popular ACID SQL database
server, the backbone of numerous commercial applications.

For our testing we deployed MySQL using Amazon Relational
Database Service (Amazon RDS) [2], which abstracts away
the deployment and administration of OS and relationship
database software. We benchmark MySQL on the six VM
types listed in Table I.

The MySQL data shows a higher variation in latency than
our other case studies, and our linear regression model does
not fit it as well as it does the previous two applications. We
show a sample result for MySQL in Fig. 5. We do continue
to see that the model accuracy as captured by R2

predicted does
continue to improve with the addition of more VM types to
the training set, although the value of R2

predicted is lower than
observed for Redis and Cassandra.

This may be due to the higher write latency of SQL
databases, or possibly something with Amazon’s RDS ar-
chitecture that made our YCSB testing method unsuitable.
Another possibility is that the network availability for RDS
varies over time, making consistent results harder to reproduce.
This requires further investigation that forms part of our future
work. Despite these inadequacies in our modeling, however,
the basic expectation we have regarding the role of diversity
does appear to hold.

V. RELATED WORK

Performance modeling of software applications has a long
history in a variety of domains. Approaches range from ex-
plicit modeling leveraging knowledge the internal workings of
system (e.g., based on queueing theory or more general Marko-
vian models [17] [18] [25] [31]), “black box” approaches
(ranging from relatively simple regression [29] similar to this
paper to more sophisticated statistical learning-based [13] [20]

70Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 81 / 172

[21] [34]), and combinations (“gray-box” approaches) [4] [30].
As explained earlier, we choose to work with a very simple
modeling approach because our main interest was not in high
accuracy modeling but on evaluating the improvements that
can result from exploiting diversity. All existing work on
modeling is complementary to our ideas and we hope to
explore the efficacy of our hypothesis with more sophisticated
modeling techniques.

A substantial body of work exists on exploiting different
forms of heterogeneity (not just in cloud platforms but also
in other types of systems) for cost and/or performance opti-
mization [10] [16] [24] [35]. Our goal is different from these
works in that our interest is in using diversity for improving
modeling accuracy.

VI. CONCLUSIONS

The diversity of resource types offered by public clouds
is much higher than in conventional privately-owned data
centers. The complexity of options available makes decision
on resource acquisition more complex, with the larger range
of service available. Tenants may need to calibrate their
application performance models for a large number of resource
configurations. In a private cloud, the system on which such
calibration is done is the same as the machines on which
the application eventually runs. This paper investigates the
possibility of exploiting this diversity to ease the tenant’s
performance modeling.

To explore this idea we applied a linear regression model
to the relationship between latency and throughput for several
popular database servers. The model expressed the average
response time of a class of interactive server applications as a
linear combination of the offered throughput (requests/s), the
number of CPU cores and memory in the procured VM, and
degree of replication employed by the application. For three
different real-world applications - Redis, Apache Cassandra,
and MySQL - the model accuracy increased for more diverse
sets of VMs. For example, the R2

predicted measure of model
efficacy for Redis improved from 0.4-0.5 with 2 VM types for
training and 0.7 for 3 VM types to 0.8 for 4 VM types. Qualita-
tively similar results were observed for Apache Cassandra and
MySQL. Although this modeling approach is very specific,
the basic observation could be expanded to more accurately
model more VM types in more detail. This would lead to more
interesting research challenges, such as automating the process
of calibrating performance models using diverse resource types
on a public cloud allowing providers to offer “performance
modeling as a service” to their tenants.

REFERENCES

[1] Amazon EC2 Pricing. http://aws.amazon.com/ec2/pricing/, [last ac-
cessed October 2016].

[2] Amazon Relational Database Service. https://aws.amazon.com/rds/, [last
accessed October 2016].

[3] M. F. Arlitt and C. L. Williamson. Internet web servers: Workload
characterization and performance implications. IEEE/ACM Trans. Netw.,
5(5), Oct. 1997.

[4] A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau. Information and
control in gray-box systems. In Proc. ACM SOSP, 2001.

[5] The Apache Cassandra Project. http://cassandra.apache.org/, [last ac-
cessed October 2016].

[6] A. Chandra, W. Gong, and P. J. Shenoy. Dynamic resource allocation
for shared data centers using online measurements. In Proc. IWQoS,
2003.

[7] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. S. Chase.
Correlating instrumentation data to system states: A building block for
automated diagnosis and control. In Proc. USENIX OSDI, 2004.

[8] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with ycsb. In Proc. ACM SOCC,
2010.

[9] M. E. Crovella and A. Bestavros. Self-similarity in world wide web
traffic: Evidence and possible causes. IEEE/ACM Trans. Netw., 5(6),
Dec. 1997.

[10] Farley, B. et al. More for your money: Exploiting performance
heterogeneity in public clouds. In Proc. ACM SOCC, 2012.

[11] Forbes. http://www.forbes.com/sites/louiscolumbus/2015/04/05/
predicting-the-future-of-cloud-service-providers/, [last accessed
October 2016].

[12] Google Compute Engine: Machine Types. https://cloud.google.com/
compute/docs/machine-types, [last accessed October 2016].

[13] H. Herodotou and S. Babu. A what-if engine for cost-based mapreduce
optimization. IEEE Data Eng. Bull., 36(1):5–14, 2013.

[14] J. Jung, B. Krishnamurthy, and M. Rabinovich. Flash crowds and denial
of service attacks: Characterization and implications for cdns and web
sites. In Proc. WWW, 2002.

[15] T. Kelly. Detecting performance anomalies in global applications. In
Proc. 2nd Conference on Real, Large Distributed Systems, 2005.

[16] G. Lee and R. H. Katz. Heterogeneity-aware resource allocation and
scheduling in the cloud. In Proc. USENIX HotCloud, 2011.

[17] D. A. Menascé. Response-time analysis of composite web services.
IEEE Internet Computing, 8(1):90–92, 2004.

[18] D. A. Menascé and S. Bardhan. Queuing network models to predict
the completion time of the map phase of mapreduce jobs. In 38.
International Computer Measurement Group Conference, Las Vegas, NV,
USA, December 3-7, 2012, 2012.

[19] D. A. Menasce and P. Ngo. Understanding cloud computing: Exper-
imentation and capacity planning. In Proc. International Computer
Measurement Group Conference, 2009.

[20] M. Mesnier, M. Wachs, B. Salmon, and G. R. Ganger. Relative fitness
models for storage. SIGMETRICS Perform. Eval. Rev., 33(4), Mar. 2006.

[21] N. Mi, G. Casale, L. Cherkasova, and E. Smirni. Sizing multi-tier
systems with temporal dependence: benchmarks and analytic models.
J. Internet Services and Applications, 1(2):117–134, 2010.

[22] MySQL. https://www.mysql.com/, [last accessed October 2016].
[23] Redis IO. http://redis.io/, [last accessed October 2016].
[24] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch.

Heterogeneity and dynamicity of clouds at scale: Google trace analysis.
In Proc. ACM SOCC, 2012.

[25] B. Schroeder, A. Wierman, and M. Harchol-Balter. Open versus closed:
A cautionary tale. In Proc. USENIX NSDI, 2006.

[26] C. R. Shaliz. Advanced Data Analysis from an Elementary Point of View.
2015. http://www.stat.cmu.edu/∼cshalizi/ADAfaEPoV/ADAfaEPoV.pdf,
[last accessed October 2016].

[27] D. Shen and J. L. Hellerstein. Predictive models for proactive network
management: Application to a production web server. In Proc. NOMS,
2000.

[28] M. S. Squillante, D. D. Yao, and L. Zhang. Web traffic modeling and
web server performance analysis. SIGMETRICS Perform. Eval. Rev.,
27(3), Dec. 1999.

[29] C. Stewart, T. Kelly, and A. Zhang. Exploiting nonstationarity for
performance prediction. In Proc. ACM SIGOPS EuroSys, 2007.

[30] E. Thereska and G. R. Ganger. Ironmodel: Robust performance models
in the wild. In Proc. ACM SIGMETRICS, 2008.

[31] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi. An
analytical model for multi-tier internet services and its applications. In
Proc. ACM SIGMETRICS, 2005.

[32] Wang, C. et al. Recouping energy costs from cloud tenants: Tenant
demand response aware pricing design. In Proc. ACM e-Energy, 2015.

[33] Microsoft Azure: Virtual Machines Pricing. https://azure.microsoft.com/
en-us/pricing/details/virtual-machines/, [last accessed October 2016].

[34] Z. Zhang, L. Cherkasova, and B. T. Loo. Parameterizable benchmarking
framework for designing a mapreduce performance model. Concurrency
and Computation: Practice and Experience, 26(12), 2014.

71Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 82 / 172

[35] Z. Zhang, L. Cherkasova, and B. T. Loo. Exploiting cloud heterogeneity
to optimize performance and cost of mapreduce processing. SIGMET-
RICS Perform. Eval. Rev., 42(4), June 2015.

72Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 83 / 172

On the Development of a One-Time Pad Generator for Personalising Cloud Security

Paul Tobin∗, Lee Tobin†, Michael McKeever‡, and Jonathan Blackledge§
∗ School of Electrical and Electronic Engineering
Dublin Institute of Technology, Dublin 2, Ireland

Email: paul.tobin@dit.ie
† CASL Institute Level 3, UCD Science Centre East

University College, Belfield, Dublin 4, Ireland,
Email: lee.tobin@ucdconnect.ie

‡ School of Electrical and Electronic Engineering
Dublin Institute of Technology, Dublin 2, Ireland

Email: mick.mckeever@dit.ie
§ Military Technological College

Sultanate of Oman,
Email: Jonathan.blackledge59@gmail.com

Abstract—Cloud computing security issues are being reported in
newspapers, television, and on the Internet, on a daily basis.
Furthermore, in 2013, Edward Snowden alleged backdoors were
placed in a number of encryption systems by the National
Security Agency causing confidence in public encryption to drop
even further. Our solution allows the end-user to add a layer
of unbreakable security by encrypting the data locally with
a random number generator prior to uploading data to the
Cloud. The prototype one-time pad generator is impervious to
cryptanalysis because it generates unbreakable random binary
sequences from chaos sources initiated from a natural noise.
Specialised one-to-Cloud applications for this device means key
distribution problems do not exist, even when used at different
locations. A JavaScript application maximised the encryptor
key entropy using a von Neumann algorithm and modulo-
two arithmetic, where the key passed the National Institute of
Standards and Technology statistical suite of tests. It is hoped
that the final size of the generator should be similar to a typical
Universal Serial Bus device.

Keywords–Cloud security, Snowden, backdoors, one-time pad,
chaos, noise, entropy, von Neumann.

I. INTRODUCTION

To address the problems of poor security on the Cloud, a
prototype random number generator was created to encode data
locally before being stored on the Cloud. Traffic on the Cloud
Infrastructure as a Service (IaaS) is forecast to increase by
twenty percent by 2019 [1], but security issues are affecting
public confidence in this service. Breaches in security are
rarely discovered instantly [2] and up to six months may elapse
before being reported. The elapsed time between discovering
security breaches has been reduced [3], but to satisfy the
European Union (EU) General Data Protection Regulations
(GDPR) coming into law in March 2018, mandatory breach
notification must be reported by companies within 72 hours.
Heavy fines of up to 4 percent of the annual turnover of a
company will be imposed if they fail to report within this
time [4].

Hacking on servers is reported almost daily in newspapers,
TV and online [5], a problem compounded by the alleged pres-
ence of backdoors in public encryption. Microsoft employees,
Dan Shumow and Niels Ferguson gave a presentation in 2007

and hinted at the possibility of a backdoor in a random number
generator: On the Possibility of a backdoor in the National
Institute of Standards and Technology (NIST) SP800-90 Dual
Elliptic Curve Pseudo Random Number Generators [6] [7].
Interestingly, in April 2014, NIST dropped the Dual EC PRNG
from their standards [8]

The New York Times in 2013 linked this presentation to
documents leaked by Edward Snowden [9], where he alleged
backdoors were placed by the National Security Agency (NSA)
in certain public encryption systems [10]. Hence, nobody
knows for sure what weaknesses exist in public encryption but
probably the Advanced Encryption Standard (AES) algorithm
is secure and has no backdoors. That said, an encryption
system whereby the client can encode his data locally before
being stored in the Cloud, is a solution to certain Cloud
security problems. Our prototype provides a layer of security
using the unbreakable One-Time Pad (OTP) random binary
number stream generated from two chaos generators. This
is not a novel idea but how the sources are connected and
initialised using a cosmic noise source, is.

A. One-time pad history
Figure 1 shows the SIGSALY encryption system developed
by A. B. Clarke and Alan Turing in Bell Labs during WWII
[11]. SIGSALY weighed 55-tons and had a key distribution
problem requiring a key the same length as the plaintext. Nev-
ertheless, it produced unbreakable OTP encryption ciphers for
encrypting transatlantic conversations between Churchill and
Roosevelt. Similar OTP systems were used between Russian
and American governments in the 60’s, for securing the famous
“hotline”. Our prototype random number generator should be
no bigger than a typical Universal Serial Bus (USB) device
and with no key distribution problems because it stays with
the client who may use it at different locations.

B. Paper Organisation
Section I explains why local encryption is necessary and
explains how the OTP was successfully used during WWII
and again in the sixties, to give unbreakable security protecting
conversations between heads of state.

73Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 84 / 172

Figure 1. The 55-ton SIGSALY encoding system.

Section II outlines the structure of the OTP encoder and dis-
cusses the nature of a random generator initialised using cos-
mic natural noise and how it may be classified as a true random
binary number generator. A medical application example for
protecting patient confidentiality is given in Section III. Section
IV explains the prototype design and discusses how OTPs were
generated from chaotic analogue oscillators. In Section V, we
discuss the JavaScript application for maximising OTP entropy
and show how it interfaces with the data. NIST randomness p-
test results for simulation and prototype circuits are discussed
in Section VI, and the conclusion stated in Section VII.

II. THE OTP PROTOTYPE

Figure 2 outlines the system for generating OTP random bit
streams for encoding data locally prior to uploading to the
Cloud.

Figure 2. Prototype OTP generation.

Chaotic oscillators generated on a computer produce random
binary sequences that have finite sequence lengths and hence
are not truly random. This is due to the finite state of com-
puter arithmetic [12] [13] and produce cryptographically poor
ciphers. Random sequences generated from chaotic maps im-
plemented on computers, similarly, have repeatable sequence
lengths and also produce weak keys [14] [15] [16]. However,
random binary sequences from analogue chaos circuits ini-
tiated from natural noise, have an infinite number of states
and so produce random binary streams which have, in theory,
infinite sequence lengths and generate excellent ciphers. The
prototype can produce unlimited amounts of unbreakable OTP
ciphers from deterministic chaos sources initialised with noise
from a Frequency Modulation (FM) receiver and qualifies

the prototype as a truly random source, rather than a pseudo
random source [17] [18] [19]. Initial Conditions (IC) for each
generator are applied to each chaos source, but for simulation
only, the IC noise was provided from a random noise generator
in PSpice called RND. In [20], we explained how the OTP was
exported from the simulator circuit and stored to a text file
using PSpice VECTOR1 parts and processed in the JavaScript
application. However, a different technique must be used for
the prototype and is considered in the following section.

A. Storing the OTP in an Arduino Shield
The OTP stream from the prototype was stored in an Arduino
memory shield attached to the main Arduino board. An ex-
clusive OR gate connected across two monostables created
a clock stream from the two gate inputs and was used for
writing ’ones’ to the shield. Effectively, the gate removed the
random temporal element from the bit stream (but not the
randomness). The complete prototype is undergoing tests at
present, but initial tests show it is producing cryptographically-
strong encryptors. Only one chaotic oscillator was examined
in this paper; the other chaos source is a novel implementation
of the Chua oscillator [21].

III. A MEDICAL APPLICATION FOR THE PROTOTYPE

There are many potential applications for the prototype gen-
erator and here a medical application explains how patient
information displayed on medical images, is protected. The
following scenario is a patient who has persistent headaches
and high blood pressure and is recommended by the doctor to
have a Magnetic Resonance Imaging (MRI) scan at the nearest
hospital. Such scans are produced using the international stan-
dard for storing, distributing and processing medical images
and is referred to as the Digital Imaging and Communications
in Medicine (DICOM) format [23]. However, these images
show patient private information around the peripheral of the
image [22] and must be protected from unwanted interception,
otherwise patient confidentiality is compromised.

Figure 3. Encoding medical images.

At present, the procedure for sending MRI scans to the doctor’s
office is not secure. After scanning the patient, the hospital
sends the MRI images containing patient personal information
by post. Alternatively, they give them directly to the patient to
bring to the doctor. Both methods have security weaknesses
as the images could be lost in transit. Our solution involves
hospital staff encoding the scanned images using the OTP
generator and uploading the encoded images to the Cloud
directory assigned to that doctor. The hospital staff then saves
the encoding OTP to a memory device and gives it to the

74Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 85 / 172

patient who then gives it to the doctor to decode the scans
at his office. A similar legal application concerns the legal
profession operating between office and court. Here, data is
encoded locally before uploading to the Cloud and the OTP
replaces all those bulky folders carried previously. There are
many such applications where people operating between two
locations could use the encoder system to prevent sensitive
information being lost in transit.

IV. THE LORENZ CHAOTIC ANALOGUE OSCILLATOR

Claude Shannon’s 1949 paper [24] outlined presciently how
digital chaotic maps could encrypt data using symmetric
key encryption. Since then chaos cryptography has grown
considerably, and from 2000, many chaotic maps were
used in multi-algorithmic systems for encrypting data on a
randomised block-by-block basis [25]. Our prototype uses
Lorenz and Chua chaotic analogue chaos oscillators to create
cryptographically-strong encryptors because of their ergodic
properties. Edward Lorenz, a meteorologist, modelled weather
patterns in the sixties and discovered chaos theory and Sensi-
tivity to Initial Conditions (SIC), one of the hallmarks of chaos
systems, when he truncated places of decimal from five down
to three in his model after one run and it produced different
results. The following first-order coupled equations appeared
in his 1963 [26] paper (largely ignored at the time):

x = −P
∫ t

t0
{x− y}dt

y = −
∫ t

t0
{−Rx + y + 10xz}dt

z = −
∫ t

t0
{Bz − 10xy}dt

(1)

The equations in integral form allow for electronic integrator
implementation and also include a scaling factor of ten to re-
duce signal amplitudes for electronic devices. The parameters
Lorenz used were: B = 2.666, P = 10, R = 28, but these were
changed to: B = 2.8, P = 11, and R = 27.5 to maximise the
cryptographic strength or entropy, of the OTP.

A. Thresholding the chaos signal
A random binary OTP stream was produced by thresholding
the x signal at two voltages corresponding to the values at
the centres of the (x-y) attractor shown in Figure 4 (b). These
centres are the Fixed Points (FP) of (1), where one centre
could represent a ‘1’ when in that region, and when the other
centre is visited, a ‘0’ is created. The FPs are determined by
assuming the system is approximately linear at the origin, i.e.,
(x = y = z = 0), so the coordinates at each lobe centre are
calculated as follows:

dx

dt
= 10(y − x) = 0⇒ x = y (2)

Hence, we may write:

dy

dt
= Rx− x− xz = 28x− x− xz = 0 (3)

Substituting z = 27, yields:

dz

dt
= x2 −Bz = 0⇒= ±

√
B(R− 1) (4)

The FPs are the coordinates of the lobe centres C1,2, given by:

C1,2 = {+
√

B(R− 1),−
√
B(R− 1), (R− 1)} (5)

Substituting the Lorenz parameter values gives the locii of the
attractor as:

C1,2 = {+8.48V,−8.48V, 27V } (6)

Magnitude scaling by 10 yields FPs equal to ± 0.8485 V at
2.7 V. Adding a bias shifting voltage to the bipolar x-signal
makes it polar in form and gives threshold levels of 3.15
V and 4.84 V. The upper and lower threshold voltages are
superimposed on the biased x-signal as shown in Figure 4
(a), and the out-of-phase set and reset sequences from each
comparator were converted to constant widths by two 74121
monostables and superimposed on the Lorenz strange attractor
as shown in Figure 4 (b).

Figure 4. (a) FP thresholds (b) Butterfly attractor.

The threshold components were calculated by assuming a total
potentiometer of 1 MΩ and Vref = 1.24 V:

V high = 4.84 V = V ref
R10 + R11 + R12

R12
(7)

Similarly for R11,

V low = 3.15 V = V ref
R10 + R11 + R12

R11 + R12
(8)

Figure 5 is the Lorenz chaotic oscillator circuit to realise (1).
The circuit was simulated using the latest v 17.2 Cadence R© Or-
cad PSpice V17.2 using Analogue Behavioural Model (ABM)
parts to achieve multiplication and integration but subsequently
were replaced with actual model parts [27] [28]. The four-
quadrant AD633 device modelled the cross-product nonlinear
terms, xy and xz, terms necessary for chaos production and the
TL084 quad operational amplifier integrated circuit solved the
equation using a summing inverting integrator configuration.

The set and reset pulses from the monostables were con-
nected to a 7486 exclusive OR gate (XOR) which outputs a
clock stream for controlling when the OTP ones and zeroes are
written to the Arduino shield attached to the main Arduino.
The ’ones’ are written to the shield from the monostable reset
output, and the clock signal determines when the ’zeroes’ are
written. This is a different procedure to that used for storing
the OTP during simulation [20], where the OTP was written
to a text file using vector parts and processed in a JavaScript
application.

Chaos oscillator initial conditions were obtained from a
detuned 433 MHz FM receiver integrated circuit.

75Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 86 / 172

Figure 5. Generating the OTP.

The output level of the natural noise is random and ensures
the chaos sources produce a random output that cannot be
reproduced by an unwanted third party. The oscillator and
threshold components are: R1 = R2 = 100 kΩ, R3 = 36.3 kΩ,
R4 = 10 kΩ, R5 = 1 MΩ, R6 = 10 kΩ, R7 = 357 kΩ, and C =
50 pF. The potential divider components are: R8 and R9, bias
the x signal by 4 V, R10 = 607 kΩ, R11 = 138 kΩ and R12 =
256 kΩ.

V. JAVASCRIPT INTERFACE APPLICATION

The original MRI scan in Figure 6 shows where the patient
information was located but removed for obvious reasons.
The JavaScript application performs modulo two arithmetic
between the OTP from the Arduino shield and the pixel array
data from the bitmap medical image. In this example, the
encoded image displays horizontal lines (see Figure 6), which
would makes the encoded image susceptible to cryptanalysis
because it now contains a bias and should be avoided at all
costs. However, the bias was deliberately introduced by making
the OTP purposely short because the application code repeated
some of the random streams to make the OTP the same length
as the image. In the middle pane, we observe no bias lines,
even with no von Neumann correction applied. The OTP from
the actual prototype should always be the same length as the
plaintext, otherwise, the encryptor is weak.

The interface also applies the von Neumann (vN) algorithm
to deskew, or unbias, the generated OTP bit stream. Whenever
a ‘00’ and ‘11’ dibit pair occurs in the stream, they are rejected.
Dibit ‘01’ is converted to 0 and ‘10’ to 1 [29]. However, the
algorithm is inefficient because 75 percent of the data is lost.
Another important requirement, often not applied when using
this algorithm, is that the dibit streams should be from two
uncorrelated chaos data streams. In the prototype, this alternate
bit independence is achieved by using two independent chaotic
data streams.

VI. TESTING THE ONE-TIME-PAD

To resist cryptanalysis and to ensure an encryptor is truly
random for correct certification, we considered the following
tests:

• The autocorrelation test should display a single Kro-
necker delta auto-correlation function,

• The Power Spectral Density (PSD) should be uniform,
• The OTP must have maximum entropy by operating

the chaos sources in a chaotic region to produce
positive Lyapunov Exponents (LE) [30] [31].

Shannon entropy measures randomness but essentially is the
Kolmogorov Complexity (KC), created simultaneously by
Andrey Kolmogorov and Ray Solmonoff and specifies the
minimum length to which a string of binary digits may
be compressed (a truly random sequence is incompressible)
[32]. According to Brudno’s theorem and for certain phase
space conditions, the Kolmogorov-Sinai Entropy (KSE) is the
Algorithmic Complexity (AC) for all trajectories [33].

However, the cryptographic strength of random number
sequences was also tested using the NIST suite of tests (revised
in 2010). There are other test suites such as the ENT, TestU01,
CryptX, Diehard, but the NIST suite of tests is universally
accepted as the most comprehensive [34]. The NIST suite
contains non-parameter tests for short OTP sequences and
parameter tests for several million bit sequences. Table I shows
the NIST results from simulation and prototype circuits, and
from true noise sequences downloaded from [35].

VII. CONCLUSION

Poor Cloud security was addressed and we proposed a solution
for a system which created an extra layer of security using a
OTP random number generator. The generator used analogue
chaos sources initialised by a natural noise source to generate
unlimited amounts of unbreakable OTPs that passed the NIST
statistical tests. Personalising encryption locally by the client,
prior to uploading data to the Cloud, gave complete control
provided a new encryptor is used each time. This makes it
expensive in encryptor keys but memory is cheap and plentiful.

During testing, the JavaScript application [36] was used to
investigate how parameter changes affected the OTP entropy.
The application also applied a von Neumann algorithm to
maximise the entropy of the OTP. The GDPR legislation in
2018, will see hefty fines being imposed on companies who
fail to meet the 72-hour deadline and it could be argued that
our prototype means data was never available to a third party.
Refinements to this system are being investigated such as
extracting the patient personal information in the DICOM’s
metadata and encoding it separately from the medical image.

76Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 87 / 172

Figure 6. One-time pad JavaScript application.

TABLE I. NIST RESULTS for NOISE, SIMULATION and PROTOTYPE.

Statistical Test P-value natural noise P-value simulation OTP P-value prototype OTP Passed/Fail
Frequency test P = 0.4122 P = 0.503 P = 0.403 Pass
Block frequency P = 0.116 P = 0.216 P = 0.303 Pass
Runs P = 0.7846 P = 0.508 P = 0.683 Pass
Block Longest Run Ones P = 0.5388 P = 0.490 P = 0.553 Pass
Binary Matrix Rank P = 0.7138 P = 0.333 P = 0.430 Pass
D Fourier Transform P = 0.5206 P = 0.216 P = 0.420 Pass
Non-overlap Tp Match P = NA P = Na P = NA NA
Overlapping Tp Match P = 0.7729 P = 0.002 P = 0.090 Pass
Universal P = NA P = NA P = NA NA
Linear Complexity P = 0.9525 P = 0.263 P = 0.590 Pass
Serial (P1 = 0.1971, P2 = 0.544) P1 = 0.197, P2 = 0.544 P1 = 0.490, P2 = 0.509 Pass
Approximate Entropy P = 0.1143 P = 0.201 P = 0.290 Pass
Cumulative Sums P = 0.4444 P = 0.563 P = 0.490 Pass
Random Excursions P = NA P = 0.216 P = 0.230 Pass
Random Excursion Variant P = NA P = 0.216 P = 0.240 Pass

This would result in a much smaller OTP which could then be
recombined with the image before uploading to the Cloud.

ACKNOWLEDGEMENT

The authors are grateful to Professor Michael Conlon and Dr
Marek Rebow, Dublin Institute of Technology, for arranging
the author’s collaborative research programme.

REFERENCES

[1] [Online]. Available: http://www.cisco.com/c/en/us/solutions/collateral
/service provider/global cloud index gci/Cloud Index White Paper.pdf,
2016, [retrieved: Mar 10, 2016].

[2] B. Duncan and M. Whittington,“Enhancing Cloud Security and Privacy:
The Power and the Weakness of the Audit Trail”, Conference on
CLOUD COMPUTING, [retrieved: Sept 14, 2016], pp. 119-144.

[3] Verizon, “Verizon 2015 Data Breach Investigation Report”, Tech. Rep.,
2015, [retrieved: Sept 10, 2016]

[4] [Online]. Available: http://www.allenovery.com/SiteCollection
Documents/Radical changes to European data protection legislation.pdf.

[5] [Online]. Available: https://en.wikipedia.org/wiki/Sony Pictures hack,
[retrieved: May 10, 2016].

[6] D. Shumow and N. Ferguson, “On the possibility of a back door in
the NIST SP800-90 Dual Ec Prng.”, CRYPTO 2007 Rump Session,
http://rump2007.cr.yp.to/15-shumow.pdf, August 2007.

[7] D. Hankerson, A.J. Menezes and S. Vanstone, “Guide to elliptic curve
cryptography”, Springer Science and Business Media, 2006.

[8] [Online]. Available: https://www.nist.gov/news-events/news/2014/04/
nist-removes-cryptography-algorithm-random-number-generator-
recommendations.

[9] [Online]. Available: http://www.nytimes.com opinion aaron-sorkin jour-
nalists shouldn’t help the Sony hackers.html, [retrieved: April 10, 2016],
2014.

[10] The New York Times, “Secret Documents Reveal N.S.A. Campaign
Against Encryption”, 2013.

[11] W. R. Bennett, “SIGSALY’, IEEE Transactions on Communications”,
31.1, 1983.

[12] P. M. Binder and R.V Jensen, “Simulating chaotic behavior with finite-
state machines”, Physical Review A 34(5), 1986, pp. 44604463.

[13] G. lvarez and S. Li, “Some basic cryptographic requirements for chaos-
based cryptosystems”, Int. J. Bifurcat. Chaos 16(8), 2006, pp. 21292151.

[14] S. Li et al, “On the security of a chaotic encryption scheme: problems
with computerized chaos”, Comput. Phys. Commun. 153(1), 2003, pp.
5258.

[15] E. Salih, “Security analysis of a chaos-based random number generator
for applications in cryptography”, 15th International Symposium on

77Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 88 / 172

Communications and Information Technologies (ISCIT), IEEE, 2015,
pp. 319-322.

[16] S. Ergn, S. Gler and U. Asada, “IC Truly Random Number Generators
Based on Regular and Chaotic Sampling of Chaotic Waveforms”,
Nonlinear Theory and its Applications, IEICE transactions, Vol. 2, 2011,
pp. 246-261.

[17] E. K. Barker, Kelsey “Recommendation for the Entropy Sources Used
for Random Bit Generation (draft)”, NIST SP800-90B, August, 2016.

[18] S. Ergn, U. Gler and K. Asada, “A High Speed IC Truly Random
Number Generator Based on Chaotic Sampling of Regular Waveform”,
IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences, Vol. E94 A, 1, 2011, pp. 180-190.

[19] B. Schneier, “Applied Cryptography second edition”, John Wiley and
Sons 1996.

[20] P. Tobin, L. Tobin, M. McKeever and J. Blackledge, “ Chaos-based
Cryptography for Cloud Computing”, 27th ISSC conference Ulster
University, Londonderry, June 21-22, doi: 10.1109, 2016, pp. 1-6.

[21] P. Kennedy, ”Genealogy of Chuas Circuit.”, In Chaos, CNN, Memristors
and Beyond: A Festschrift for Leon Chua With DVD-ROM, composed
by Eleonora Bilotta, 2013, pp. 3-24.

[22] J. Blackledge, A. Al-Rawi, and P. Tobin, “Stegacryption of DICOM
Metadata”. In Irish Signals and Systems Conference 2014 and 2014
China-Ireland International Conference on Information and Commu-
nications Technologies (ISSC 2014/CIICT 2014). 25th IET June, pp.
304-309, 2013. Chicago.

[23] P. Jees, and T. Diya, “Medical Image Protection in Cloud System”,
matrix, V2, 2016, pp. 3.

[24] C.E. Shannon, “Communication Theory of Secrecy Systems”, Bell
Technical Journal, vol.28-4, 1949, pp. 656715.

[25] J. Blackledge, “Cryptography and Steganography”: New Algorithms
and Applications, Centre for Advanced Studies Text-books, Warsaw
University of Technology, ISBN: 978-83-61993-05-6, 2012.

[26] E. Lorenz, “Chaos and Strange Attractors: The Lorenz Equations”,
1963, pp. 532-538.

[27] P. Tobin, “PSpice for Circuit Theory and Electronic Devices”,
www.morganclaypool.com, ISBN:1598291564, pp. 127, 2007.

[28] P. Tobin, “PSpice for Digital Communications Engineering”, Synthesis
Lectures on Digital Circuits and Systems, www.morganclaypool.com,
ISBN:1598291629, 2007, pp. 97.

[29] J. von Neumann, “Various techniques used in connection with random
digits”, Applied Math Series, 12, 1951, pp. 3638.

[30] J. Blackledge and N. Ptitsyn, “On the Applications of Deterministic
Chaos for Encrypting Data on the Cloud”, Third International Con-
ference on the Evolving Internet IARIA Luxembourg, (ISBN: 978-1-
61208-008-6), 2011, pp. 78-87.

[31] J. Blackledge, S. Bezobrazov, P. Tobin and F. Zamora, “Cryptography
using Evolutionary Computing”, (IET ISSC13 LYIT Letterkenny),
2013, pp. 1-6.

[32] P. Tobin, J. Blackledge, “Entropy, Information, Landauer’s Limit and
Moore’s Law”, (IET ISSC14 UL, Limerick), 2014, pp. 1-6.

[33] R. Frigg, “In what sense is the KSE a measure for chaotic behaviour?”,
(London School of Economics May), 2003.

[34] A. Ruk et al, “A statistical test suite for the validation of random number
generators and pseudo-random number generators for cryptographic
applications”, NIST http://csrc.nist.gov/rng/rng2.html, 2001.

[35] Random.org, “True Random Number Service”, [Online]. Available:
http://www.random.org [retrieved: Aug 10, 2016]. 2013.

[36] [Online]. Available: http://jork.byethost7.com/chaosencrypt/

78Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 89 / 172

Enhancing Cloud Security and Privacy:
The Unikernel Solution

Alfred Bratterud
Dept. of Computer Science

Oslo and Akershus University
Oslo, Norway

Email: alfred.bratterud@hioa.no

Andreas Happe
Dept. Digital Safety & Security
Austrian Inst. of Tech. GmbH

Vienna, Austria
Email: andreas.happe@ait.ac.at

Bob Duncan
Computing Science

University of Aberdeen
Aberdeen, UK

Email: bobduncan@abdn.ac.uk

Abstract—Cloud security and privacy is a very challenging
problem to solve. We started a project to explore a new approach
to addressing this problem by utilising a unikernel based solution.
In this paper, we outline the technical details of such an approach,
identifying how this new approach can better address the issues
involved. We have demonstrated how this new approach can
improve the status quo.

Index Terms—Cloud security and privacy; management control;
compliance; complexity

I. INTRODUCTION

In [1], we provided a high level account of ten security
issues, which management (Mgt) need to take account of when
using cloud computing systems, and suggested how unikernel-
based systems might address many of those issues, as we see
in TABLE I below.

TABLE I. ITEMS ADDRESSED BY UNIKERNELS c©2016 [1]

Issue Description Helped by:
1 Definition of security goals Mgt and Unikernels
2 Compliance with standards Mgt and Unikernels
3 Audit issues Mgt and Unikernels
4 Management approach Mgt and Unikernels
5 Technical complexity of cloud Unikernels
6 Lack of responsibility and Mgt/Cloud Service

accountability Providers
7 Measurement and monitoring Unikernels
8 Management attitude to security Mgt
9 Security culture in the company Mgt

10 Threat environment Unikernels can help to en-
force good design/architect-
ural decisions

While these security issues can be successfully addressed
by other means, the reality, as evidenced by the recurring
success of attackers, is that many companies are failing to
apply the necessary rigour needed to resolve these issues in
their existing approaches. Year after year, many attacks, which
are both simple and relatively inexpensive to defend against,
continue to be exploited.

In this paper, we introduce a framework of definitions
and metrics for classifying unikernel systems, which we later
make use of in the design, testing and assessment of new
unikernel based system architectures. We compare a number
of other unikernel and microkernel systems in this paper,
but because of space constraints, do not address every single

system available. In Section II, we discuss the background,
motivation for this work, work already carried out and future
work proposed. In Section III, we outline some necessary
definitions and preliminary observations on unikernels, and
in Section IV we consider 6 security observations relating to
unikernels. The remainder of the paper is organized as follows:
in Section V, we review the relationship between unikernels
and microkernels; in Section VI, we discuss the implications
of implementation language choice; in Section VII, we present
well defined properties of unikernel systems; in Section VIII,
we outline our proposed solution. In Section IX, we show
how our proposed approach will address those key issues
identified in TABLE: I. In Section X, we consider some initial
thoughts on attack vectors; and in Section XI, we discuss our
conclusions.

II. BACKGROUND, MOTIVATION, WORK ALREADY
CARRIED OUT AND PROPOSED FUTURE WORK

The authors share a common interest in finding a solution to
the challenging problem of cloud cyber security. The minimal
resource efficiency of IncludeOS motivated the authors to
consider whether there might be a possibility to develop a
framework, based on unikernels, to deliver a far more secure
system that could be run on cloud, and would offer high
levels of security, privacy, audit and forensic trails, good
scalability, high resource efficiency, and have the ability to
take away the prospect of mis-configuration by users through
lack of understanding of how to configure much more complex
systems.

In [1], we outlined how the concept might be developed,
and in [2], we considered how the proposed framework might
be adapted to incorporate the Internet of Things (IoT). This
paper outlines in a more formal way, definitions and metrics
for classifying unikernel systems, which will be referred to in
future work involving design, testing and assessment of new
unikernel based system architectures. We next extend the work
carried out in [1][2], providing much more detail on how the
IoT system might be developed, and further examine how the
single responsibility inherent in the unikernel design could
be harnessed to provide a far more robust defence against
common security problems.

79Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 90 / 172

As we develop each part of the framework, we carry out
in-house penetration testing to ensure the robustness of the
approach. Each part developed is intended to work seamlessly
with all of the previous parts, so that the system as a whole will
work properly as it is developed and grown. Once it reaches
the point where it will interest at enterprise level, we will carry
out large scale empirical testing to assess what will happen in
the real world. We are developing fuzzing based penetration
approaches, adapting tools and sanitizers, hardening tools and
whatever else we can use to strengthen the user environment.
We have still to develop communication channels, proper and
secure audit and forensic trails, specialised storage, and plan to
ensure the framework is capable of working under both object
oriented styles and the model view controller paradigm.

III. A PRECURSOR TO FORMAL WORK ON UNIKERNELS

Modern unikernel research, particularly concerning deploy-
ment in cloud, is still in its infancy and the literature currently
available does not include much in the way of theoretical work
or precise definitions, but rather takes a pragmatic approach
[3]–[5]. One popular definition states that “Unikernels are spe-
cialised, single-address-space machine images constructed by
using library operating systems; and that Unikernels provide
many benefits compared to a traditional Operating System
(OS), including improved security, smaller footprints, more
optimisation and faster boot times” [6]. Without further qual-
ification, directly associating unikernels with security benefits
can be hazardous. It is not at all clear what “machine images”
or “operating system libraries” are, nor what it means to con-
struct them, and hence it is unclear precisely how unikernels
can be said to be more secure. It is our view that stricter
definitions are both necessary and achievable. We propose
a set of working definitions intended to make the following
exposition more precise, and to serve as a theoretical basis of
a framework for unikernel based cloud computing.

To this end we can go back over four decades to early work
on virtualization of mainframes. Early single address space
operating systems, such as Mungi or Opal and many others
do not seem to have much traction today. In 1995 [7], there
was some early work on the Exokernel system, with some
updating over the years, but little widespread use. Microsoft
work on library operating systems, Drawbridge [8], saw little
use at the time other than for research. It later evolved into the
Haven system [9], which was intended for use in the Azure
cloud, and also was integrated into Windows 10 as part of the
pico-process security architecture.

Definition III.1. Popek-Goldberg virtual machine. An envi-
ronment created by the virtual machine monitor, which is
functionally equivalent to the physical machine on a given
hardware (HW) platform, as defined in [10].

Popek and Goldberg provide formal definitions of both
Virtual Machine Monitor and Virtual Machine, which form
the most well known, if not the only, formally defined
virtualization platform, which also directly corresponds to
modern HW and nomenclature. An x86 Popek-Goldberg vir-

tual machine is a virtual machine running under x86 Popek-
Goldberg compliant HW virtualization, e.g., x86 HW with
vt-x extensions. To give a precise definition of unikernels,
we need to define their constituent parts. Our intention is
not to provide definitions that encompass all the complexities
or functionalities of unikernels, but rather the opposite; just
enough to get a precise idea of what unikernels are and what
they are not.

Definition III.2. Compiled program object, symbol. An n-
tuple of machine instructions from a Turing complete instruc-
tion set, e.g., Intel x86, or an arbitrary sequence of bytes b,
i.e., 0 >= b < 28.

Definition III.3. Software library, symbol. A Software li-
brary is taken to be a collection of compiled program ob-
jects, {O1, ..., Om} and arbitrary byte-sequences (e.g., data)
{Dm+1, ..., Dn} providing symbol resolutions, i.e., link-
able objects, each corresponding to a symbol in the set
{S1, ..., Sm, Sm+1, ..., Sn}

The intuition here is to capture the idea of a library of
compiled code, where functions and data are represented as
binary objects in, e.g., libos.so, libos.a, libos.dll
etc., where functions and static data can be accessed via
symbols available to a linker. For the purposes of this paper,
we assume the process of linking and symbol resolution are
given and well defined.

Definition III.4. Software service. Objects, and optionally
symbols, from a software library, with the addition of an entry
point object O0 corresponding to a symbol S0 (e.g.,_start)
that may or may not be present in the service, providing the
compiled code necessary for a program to be executable on a
given HW architecture.

Compiling an executable binary typically includes defining
the entry point, e.g., main in ISO C, from where to start
executing functions provided from a library. Compilers such
as gcc will typically pre-pend some additional functionality
through, e.g., the _start-symbol, mapped to code for ini-
tializing the C-runtime, including calling global constructors,
zero-initializing the .bss-segment etc. The symbols are re-
quired during link-time but can later be stripped out when they
are mapped to memory addresses relative to the binary.

We can now give an operational definition of a library op-
erating system. The term has held different meanings [11][3],
and we do not intend the following to be canonical, but merely
one that will suffice to precisely define a unikernel for the
purposes of our framework.

Definition III.5. Library operating system. For a software
service SW , where the objects {O0, ..., On} form the set of
objects necessary and sufficient for SW to run on a given HW
platform, a library operating system is a software library that
can provide {O0, ..., On}

This definition implies that a library operating system
provides all the objects necessary to form a fully functional
program, independent of any other software present on a sys-

80Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 91 / 172

tem, except that which may or may not be presented through
an instruction level interface, e.g., software that responds to a
trap on the Virtual Machine Monitor in the Popek-Goldberg
model.

1) Definition of a unikernel: In the context of virtual
machines and cloud computing, it makes sense to describe the
whole virtual machine as a unikernel [3], as there is in fact
no classic boundary between kernel- and user space, and also
because any combination of objects that can be pulled from the
library operating system individually can be combined with
a piece of software to form a unique whole. This piece of
completely linked software will have full access to HW on
the same level as a classic kernel.

In the context of classic operating system kernels, however,
the library operating system designed to produce unikernels
may also be called a unikernel [12] in reference to “micro-
kernel”, “nanokernel”, “monolithic kernel” etc. It could be
argued that if all the contents of a virtual machine were to
be considered a unikernel, there wouldn’t really be any point
in using the word “kernel”.

The following definiton is intended to be sufficiently flexible
to allow both interpretations.

Definition III.6. Unikernel. Given a library operating system
OS, a unikernel U is defined as U ⊆ OS such that U is
sufficient and necessary to provide complete linkage to some
service S for a given HW platform.

Using an inclusive subset allows both the whole library
operating system and any subset to be called a unikernel.

Definition III.7. Unikernel machine image A software service
SW,∪U where U is the unikernel for SW , they both share
the same address space, and with the addition of any facilities
necessary to start SW on a given well-defined virtualization
platform, e.g., a bootloader in the case of an x86 Popek-
Goldberg virtual machine.

Definition III.8. Popek-Goldberg unikernel. A Popek-
Goldberg virtual machine initialized with a unikernel machine
image.

IV. SIX SECURITY OBSERVATIONS IN UNIKERNEL-BASED
SYSTEMS

We have identified 6 security observations, which are ex-
hibited by unikernel systems:

• Choice of service isolation mechanism;
• The concept of reduced software attack surface;
• The use of a single address space, shared between service

and kernel;
• No shell by default, and the impact on debugging and

forensics;
• Micro services architecture and immutable infrastructure;
• Single thread by default.

A. Choice of service isolation mechanism
In the previous paper in this series, the argument was

made for why classic virtualization is the preferred platform
for secure cloud computing. While many alternatives exist,

which are both practical and widely trusted, one cannot reason
precisely about their security properties unless they are well
defined. In this paper, we make no judgements about their
usefulness, but merely note that classic virtualization has had
a precise foundation since 1974. We believe that the lack of
similar models for other modes of virtualization is due to the
fact that Popek-Goldberg virtualization exists at the instruction
level, which is necessarily simple in nature as it must be
implemented in physical circuitry. Other approaches typically
rely on higher level software interfaces, and are thus harder to
define precisely. Despite the simplicity of C, it still proves a
hard nut to crack for the purposes of formal verification [13].

B. Reduced software attack surface
Using the above definitions we can now define the software

attack surface of a system as the sum of all objects, in bytes.

Definition IV.1. Software Attack surface. The number of
bytes in a system, physically available for reading, writing
or executing as instructions for a given HW architecture.

Physical protection can be seen as a grey area when it
comes to microcode, firmware and otherwise mutable HW
such as, e.g., field-programmable gate arrays (FPGAs). This
definition is intentionally kept general in order to allow further
specifications to refine the meaning of “physically available”
for a given context. The following example can serve to
illustrate how the definition can be used for one of many
purposes. Building a classic virtual machine (VM) using
Linux implies simply installing Linux, and then installing the
software on top. Any reduction in software attack surface must
be done by removing unneeded software and kernel modules
(e.g drivers). Take TinyCore Linux as an example of a minimal
Linux distribution and assume that it can produce a machine
image of 24 MegaBytes (MB) in size.

Given this intuition, let L be a collection of compiled
program objects for x86, such that L = {O1, ..., O2400}, i.e.,
all the objects provided by TinyCore Linux, totalling 24MB in
size, and for simplicity assume the objects are uniformly sized,
1Kb each. Adding a 1MB software service SW , which require
{O0, ..., O1000} to be executable, we get a software attack
surface of 25MB, regardless of how many objects of L were
actually needed by SW . Assuming a library operating system
existed that could provide {O0, ..., O1000}, a unikernel would
by definition III.6, provide exactly those objects, forming a
2MB sized unikernel machine image. (2MB + 512 bytes of
bootloader code in an x86 HW-VM). Hence the software attack
surface of the unikernel VM is reduced by 92%. Conversely,
the Linux VM could be said to add 23/1 * 100 = 2300% of
unnecessary code, which we will refer to as bloat or increased
software attack surface depending on context.

C. The use of a single address space
The main objective for postulating a single address space

is to imply single process or singular purpose. In a classic
kernel, the need for multiple address spaces is prompted by the
need to run multiple processes, which must be kept separate
to ensure consistency and integrity among them. A classic

81Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 92 / 172

kernel will typically rely on virtual memory implemented
in HW to ensure process isolation and to provide a con-
trolled virtual to physical address translation. Popek-Goldberg
virtualization relies directly on this general concept without
further extension. Aside from the performance degradation
often seen in nested address translation, we take the view
that introducing virtual memory and multiple processes inside
a Popek-Goldberg virtual machine needlessly complicates an
already complex system. In particular, it lays upon the virtual
machine the added responsibility of creating and maintaining
a process-kernel boundary.

Definition IV.2. Single address space. For a computer system,
a single address space is defined as an interval of positive
integers [a0, .., an] where n is a power of two, representing the
total addressable memory of a system in a given state, such
that dereferencing any address ∗ax from anywhere inside the
system would access the same physical memory cell.

The intuition is that virtual memory is not employed inside
the system, effectively eliminating the possibility of running
several disjoint processes. We are not making any assumptions
or requirements as to whether or not all addresses are in fact
accessible, e.g., physically present or readable / writeable /
executable, merely that they point to the same location if any.
Note that virtual memory can and will be employed on the
virtual machine monitor, to protect one VM from another, but
further nesting of virtual memory would violate the single
address space principle.

D. No shell by default and the impact on debugging and
forensics

One feature of unikernels that immediately makes it seem
very different from classic operating systems is the lack of a
command line interface. This is however a direct consequence
of the fact that classic POSIX-like command line interpreters
(CLI)s are run as a separate process (e.g., bash) with the main
purpose of starting other processes. Critics might argue that
this makes unikernels harder to manage and “debug”, as one
cannot “log in and see what’s happened” after an incident, as is
the norm for system administrators. We take the position that
this line of argument is vacuous; running a unikernel rather
corresponds to running a single process with better isolation,
and in principle there is no more need to log in to a unikernel
than there is to log in to, e.g., a web server process running
in a classic operating system.

While unikernels by definition are a single address space
virtual machine, with no concept of classic processes, a text
based CLI could be provided (e.g., IncludeOS does provide
an example) — the commands wouldn’t start processes, but
call functions inside the program. From a security perspective
we take the view that this kind of ad-hoc access to program
objects should be avoided. While symbols are very useful
for providing a stack trace after a crash or for performance
profiling, stripping out symbols pointing to program objects
inside a unikernel would make it much harder for an attacker
to find and execute functions for malicious and unintended

purposes. Our recommendation is that this should be the
default mode for unikernels in production mode. We take the
view that logging is of critical importance for all systems,
in order to provide a proper audit trail. Unikernels however
simply need to provide the logs through other means, such as
over a virtual serial port, or ideally over a secure networking
connection to a trusted audit trail store.

Lastly it is worth mentioning that unikernels in princi-
ple have full control over a contiguous range of memory.
Combined with the fact that a crashed VM by default will
“stay alive” as a process from the virtual machine manager
(VMM) perspective, and not be terminated, this means that
in principle the memory contents of a unikernel could be
accessed and inspected from the VMM after the fact, if
desired. Placing the audit trail logs in a contiguous range of
memory could then make it possible to extract those logs also
after a failure in the network connection or other I/O device
normally used for transmitting the data. Note that this kind of
inspection requires complete trust between the owner of the
VM and the VMM (e.g., the cloud tenant and cloud provider).
Our recommendation would be not to rely on this kind of
functionality in public clouds, unless all sensitive data inside
the VM is encrypted and can be extracted and sent to the
tenant without decrypting it.

E. Micro services architecture and immutable infrastructure.

Micro services is a relatively new term founded on the
idea of separating a system into several individual and fully
disjoint services, rather than continuously adding features and
capabilities to an ever growing monolithic program. Being
single threaded by default unikernels naturally imply this kind
of architecture; any need for scaling up beyond the capabilities
of a single CPU should be done by spawning new instances.
While classic VM’s require a lot of resources and impose a lot
of overhead, minimal virtual machines are very lightweight.
As demonstrated in [14] more than 100,000 instances could be
booted on a single physical server and [12] showed that each
virtual machine, including the surrounding process require
much less memory than a single “Hello World” Java program
running directly on the host.

An important feature of unikernels in the context of micro
services is that each unikernel VM is fully self contained.
This also make them immune to breaches in other parts of the
service composition, increasing the resilience of the system as
a whole. Add to this the idea of optimal mutability (defined
below), and each unikernel-based micro service can in turn be
as immutable as is physically possible on a given platform.
In the next paper in this series we expand upon these ideas
and take the position that composing a service out of several
micro services, each as immutable as possible, enables overall
system architects and decision makers to focus on a high level
view of service composition, not having to worry too much
about the security of their constituent parts. We take the view
that this kind of separation of concerns is necessary in order
to achieve scalable yet secure cloud services.

82Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 93 / 172

F. Single threaded by default
While the above definitions do not impose any restrictions

on whether or not a unikernel can run several concurrent
threads or multiple CPU cores, it is well known that concur-
rency is a major source of errors accounting for a significant
number of vulnerabilities. IncludeOS and MirageOS are both
examples of unikernels that are single threaded by default. Effi-
ciency is achieved by event based asynchronous interfaces with
no blocking calls. While pre-emptive interrupt handling and
concurrency using shared memory are necessary for certain
workloads, we take the view that single threaded concurrency
free services are by nature less complex and thus less error
prone. It is also well known that threaded applications perform
worse inside virtual machines than single threaded applications
due to the extra layer of context switches necessary to schedule
threads inside the VM as well as outside.

Our recommendation is to keep unikernels single threaded
by default and rather achieve concurrency by adding more
instances, to the extent possible. In a modular library OS
one can add threading and re-entrant versions of libraries
as optional components without causing bloat or increased
complexity to unikernels not requiring concurrency.

V. RELATIONSHIP TO MICROKERNELS

While there exists a rich fauna of operating system kernel
types, the most well known distinction is between monolithic
kernels and micro kernels. For this reason we’ll briefly explain
how unikernels fit in this spectrum. Microkernel operating
systems are absolutely minimal in the sense that nothing
that doesn’t have to be in the kernel is. However, most
implementations such as the L4 are still A) multi-process; B)
not library operating systems; and C) will typically have a
classic style command line, etc., which would make it almost
orthogonal to our purpose as it addresses other issues (L4
is focussed mainly on fast Industrial PCs). That being said,
they have an advantage over classic kernels when it comes to:
A) software attack surface (it can run many programs, but it
does not have to); and B) complexity. The simplicity of the
microkernel is what made it possible to do formal verification
of the Haskell implementation of L4 - and that is a major
security benefit.

Our position is that unikernels have the potential to in-
corporate the “small and simple” from microkernels, while
still adding new security features — in particular: 1) The
library operating system approach, which guarantees a min-
imal amount of unnecessary code is introduced; 2) the single-
purpose approach; and 3) it is single-threaded by default. This
provides a further means of simplification (parallel program-
ming is notoriously error-prone), while also strongly encour-
aging micro service architecture, which increase resilience of
the system as a whole.

VI. CHOICE OF IMPLEMENTATION LANGUAGE

Definition VI.1. Independent systems language. A Turing
complete programming language with facilities to utilize the
whole instruction set for a given HW architecture, including
writing arbitrary data to arbitrary addresses.

C and C++ are examples of independent systems languages
for most modern HW architectures, e.g., x86: the asm key-
word (i.e., ”inline assembly”) makes the full instruction set
available to the programmer, including privileged instructions
such as hlt,in and out, and the pointer data type and
(unsafe) type conversion allows arbitrary data to be written
to arbitrary addresses. Type safe languages such as javascript,
OCaml, Haskell and Python are not independent systems lan-
guages by design; type safety can be immediately violated by,
e.g., type coercion. The requirement for being an independent
systems language is thus incompatible with type safety. To
bridge this incompatibility, unikernels written in type safe
languages must necessarily contain a portion of code written
in an independent systems language. In most cases, such as
with MirageOS, this is done in C.

VII. WELL DEFINED PROPERTIES OF UNIKERNEL SYSTEMS

Based on the previous definitions we can now provide
a framework of well-defined properties of unikernel-based
systems:

• Service isolation:. A well-defined and absolute isolation
mechinanism such as Popek-Goldberg virtualization is
preferable as 0 bytes of code needs to be shared between
services during runtime. Enforcement is performed by
HW at the instruction level. Following closely is Xen
PVH, which is mostly HW virtualization, but some shared
code. Paravirtualization shares a thin yet fairly complex
set of software bindings and HW is only used for classic
process isolation. One way to quantify this property is the
amount of software, in bytes, shared by each service on
the virtual machine monitor. Microcode / firmware would
be a grey area, but that would be common to all current
isolation mechanisms.

• VM Slimness, Bloat and software attack surface: For
a software service SW , requiring objects A,B and C to
form a machine image, a system (e.g., unikernel library)
that can produce a virtual machine containing exactly
{SW,A,B,C} without {D,E, F, ...} provides optimal
slimness. Conversely, the amount of code added to the
VM in addition to {SW,A,B,C} adds bloat. As an
example, if {SW,A,B,C} was 10MB in size and an
operating system added 5 MB that would be 50% of bloat.
Linux-based virtual machines would easily be 2000%
bloated for single-purpose virtual machines, e.g., using
a trimmed down Linux micro-core of 24MB used to run
a 1MB service, 96% of the machine image would be
operating system. IncludeOS instances are typically 1 MB
of OS, so if the service could run with IncludeOS that
would be 50/50 software and OS, plus a few percent over-
weight (one typically would not use all the code included,
even if one included only the objects needed, unless the
objects themselves are each absolutely minimal). Given
that 1MB was sufficient to add the required operating
system parts, wrapping it in a Linux VM would literally
make for 2300% of bloat.

83Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 94 / 172

• System mutability: To what extent is it possible to
change the system once launched? This is hard to quan-
tify, but we propose the following set of properties as
“optimal immutability”, which a system should strive for:
1) All data that can be read-only is;
2) All executable code is write-protected;
3) Write-able areas of memory (i.e., the heap / working

memory) is not executable.
Enforcement of these rules should be implemented at
the lowest level. In IncludeOS, this kind of protection
cannot really be enforced on current platforms. Type-
safe language unikernels, such as Mirage, have a certain
degree of language-level protection, but only in the parts
of the unikernel not written in C. We propose a future
work on hypervisors where we provide an interface for
specifying which parts of the VM that should be read-
only, execute- and read/write (but not execute), when the
system boots. This way, the hypervisor at ring -1 can
set up memory segments inside the VM before it starts,
denying even the VM itself the ability to modify read-
only parts of memory. Having the CPU enforce these
rules will make it useless to inject code into a VM, if
one found a way to do it, as jumping to that code would
trigger a HW trap.

• Possibility of internal system misuse: To what extent
does the operating system allow parts of the code to be
used for unintended purposes? Having a terminal makes
several commands available for “general purpose” or “ad-
hoc use” of the code embedded into the system. Not
having a terminal, or other similar means of allowing ad-
hoc function calls, greatly reduces or entirely removes
this possibility.

VIII. OUR PROPOSED SOLUTION

By default, in the interests of usability, conventional systems
open many more ports than may be needed to run a system.
An open port, especially one that is not needed, is another
route in for the attacker. We also take the position that
the probability of vulnerabilities being present in a system
increases proportionally to the amount of executable code it
contains. Having less executable code inside a given system
will reduce the chances of a breach and also reduce the number
of tools available for an attacker once inside. As Meireles
[15] said in 2007 “... while you can sometimes attack what
you can’t see, you can’t attack what is not there!”. Given the
success with which the threat environment continually attacks
business globally [16]–[20], it is clear that many companies are
falling down on many of the key issues we have highlighted
in Section I. It is also clear that a sophisticated and complex
solution is unlikely to work. Thus we must approach the
problem from a more simple perspective.

A. Service isolation
A fundamental premise for cloud computing is the ability to

share HW. In private cloud systems, HW resources are shared
across a potentially large organization, while on public clouds,

HW is shared globally across multiple tenants. In both cases,
isolating one service from the other is an absolute requirement.

The simplest mechanism for service isolation is simply
process isolation in classic kernels, relying on HW supported
virtual memory, e.g., provided by the now pervasive x86
protected mode. While process isolation has been used suc-
cessfully in mainframe setups for decades, access to terminals
with limited user privileges has also been the context for
classic attack vectors such as stack smashing, root-kits etc.,
the main problem being that a single kernel is being shared
between several processes and that gaining root access from
one terminal would give access to everything inside the
system. As a result, much work was done in the sixties and
seventies to find ways to completely isolate a service without
sharing a kernel. This work culminated with the seminal 1974
paper by Popek and Goldberg [21] where they present a formal
model describing the requirements for complete instruction
level virtualization, i.e., HW virtualization.

While HW virtualization was in wide use on e.g., IBM
mainframes from that time, it wasn’t until 2005 that the leading
commodity CPU manufacturers, Intel and AMD, introduced
these facilities into their chips. In the meantime, paravir-
tualization had been re-introduced as a workaround to get
virtual machines on these architectures, notably in [22]. While
widely deployed and depended upon, the Xen project has
recently been evolving its paravirtualization interface towards
using HW virtualization in, e.g., PVH [23] stating that “PVH
means less code and fewer Interfaces in Linux/FreeBSD:
consequently it has a smaller TCB and software attack surface,
and thus fewer possible exploits” [24].

Another isolation mechanism is operating system-level vir-
tualization with containers, e.g., Linux Containter (LXC)
popularized in recent years by Docker, where each container
represents a userspace operating environment for services that
all share a kernel. The mechanism for isolating one container
from another is classic process isolation, augmented with
software controls such as cgroups and Linux namespaces.
While containers do offer less overhead than classic virtual
machines, a good example where containers make a lot of
sense would be trusted in-house clouds, i.e., Google is using
containers internally for most purposes [25]. We take the posi-
tion that HW virtualization is the simplest and most complete
mechanism for service isolation, with the best understood
foundations as formally described by Popek and Goldberg,
and that this should be the preferred isolation mechanism for
secure cloud computing.

B. Why Use Unikernels?

Using HW virtualization as the preferred isolation mecha-
nism requires an operating system to be embedded into the vir-
tual machine. IaaS cloud providers will typically offer virtual
machine images running a classic general purpose operating
system, such as Microsoft Windows and one or more flavours
of Linux, possibly optimized for cloud by, e.g., removing
device drivers that are not needed. While specialized Linux
distributions can greatly reduce the memory footprint and

84Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 95 / 172

software attack surface of a virtual machine, general purpose
multi-process operating systems will, by design, contain a
large amount of functionality that is simply not needed by
one single service. We take the position that virtual machines
should be specialized to a high degree, each forming a single
purpose micro service, to facilitate a resilient and fault tolerant
system architecture, which is also highly scalable.

We argue that the unikernel approach offers potential to
meet all our needs, while delivering a much reduced software
attack surface, yet providing exactly the performance we re-
quire. An added bonus will be the reduced operating footprint,
meaning a more green approach is delivered at the same time.

C. How Does This Compare to a Conventional System?
Looking at what Frederick P. Brooks Jnr. suggests in [26]

“Because ease of use is the purpose, this ratio of function
to conceptual complexity is the ultimate test of system de-
sign. Neither function nor simplicity alone defines a good
design”, we can see where modern software systems are
missing the point. The more complex a system becomes, the
more overhead is introduced, leading to greater complexity
and unnecessary bloat, draining performance, and exposing
vulnerabilities. Conventional cloud systems tend to be over-
complicated, unnecessarily bloated, and thus expensive to
scale. Unikernels, in [6], “Unikernels are specialized, single-
address-space machine images constructed by using library
operating systems”, meaning they are exactly the right size to
carry out their given task — no larger, and no smaller.

Our approach, using unikernels, limits/enforces the software
architect to use a given pattern (event-based computing using
the single-responsibility-principle, service-oriented architec-
tures, separation of data and processing, and modularity) —
which is very good from a software design point of view. We
are trying to get people to use “best-of-breed” patterns, and
thus develop better software through this limitation.

IX. HOW DOES THIS ADDRESS OUR TEN KEY
CONCERNS?

As we saw in the introduction, we identified 10 key security
issues needing to be addressed. We believe our unikernel
solution can help us address seven of these issues, namely:
The definition of security goals; Compliance with standards;
Audit issues; Management approach; Technical complexity of
cloud; Measurement and monitoring; The threat environment.

A. The Definition of Security Goals
By design, we will build in a number of sensible security

goals to the system. We can also accommodate additional
goals, where the user identifies those as appropriate.

B. Compliance with Standards
Compliance is generally achieved through some form of

assurance [27], which generally can be achieved by a com-
pliance process or by audit. Audit is expensive if done well,
thus compliance through the use of checklists is the usual
method chosen, but brings weaknesses with it [28]. Tightening
information flows within the system, and providing rigorous

audit trails, maximises assurance, leading to compliance in a
much more accurate and cost effective way.

C. Audit Issues
Many audit issues needing to be addressed [29], especially

those surrounding the use of the humble audit trail [30]. In a
forthcoming paper, we outline in more detail how our system
will tackle this key issue with a much more rigorous approach.

D. Management Approach
Cloud ecosystems involve far more actors than conventional

systems, and many of these actors have differing agendas [31].
Our approach seeks to minimise the impact of third party
actors by reducing the opportunity for these actors to adversely
influence the effectiveness of the security approach.

E. Technical Complexity of Cloud
Distributed systems are highly complex. Cloud ecosystems

are, by their nature, far more complex [32]. We propose to
tackle this issue through simplification of the system architec-
ture, to minimise the software attack surface.

F. Measurement and monitoring
To achieve a provable level of security [33], it is necessary

to measure and monitor what is happening with a system.
Our system will, by default, provide a considerable armoury
of measurement and monitoring capabilities, which will allow
users to be satisfied of the level of security they have achieved,
and will continue to achieve through continuous monitoring.

G. The threat environment
This is a major and very worrying issue, which continues

to evolve day by day. Our approach seeks to tackle this
through minimising software attack surface, minimising access
routes to attackers, and generally making life difficult for the
attackers. This area will need ongoing scrutiny by the research
community in order to try to keep ahead of the attackers.

X. INITIAL THOUGHTS ON PENETRATION TESTING

Penetration testers often refer to the OWASP foundation
Top 10 report, see Table II below for details of the most
used attack techniques. In its current 2013 installation, two
vulnerabilities—A5-Security Misconfiguration and A9-Using
Known Vulnerable Components—are directly related to the
rich landscape of available server-side functions, which com-
monly are neither minimized nor properly configured. Re-
cent years have given rise to opinionated frameworks, i.e.,
frameworks that guide developers with sensible security de-
faults. Their security measures efficiently reduce threats from
common attack vectors, e.g., A1-Injection or A2-Cross-Site
Scripting, but those frameworks themselves can introduce
vulnerabilities, as OWASP noted with its introduction of A9
as “the growth and depth of component based development
has significantly increased the risk of using known vulnerable
components”. The Unikernel approach implicitly minimizes
infrastructure — runtime environment, and libraries as well
as operating system shells — and thus reduces exposure to
attack vectors A5 and A9. Plus, their single-process paradigm

85Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 96 / 172

enforces beneficial architecture design decisions, yielding sys-
tems with clearer separation-of-concerns. Given the rise of
opinionated frameworks, we envision a web-

TABLE II. OWASP TOP TEN WEB VULNERABILITIES — 2013 [34]

2013 Code Threat
A1 Injection Attacks
A2 Broken Authentication and Session Management
A3 Cross Site Scripting (XSS)
A4 Insecure Direct Object References
A5 Security Misconfiguration
A6 Sensitive Data Exposure
A7 Missing Function Level Access Control
A8 Cross Site Request Forgery (CSRF)
A9 Using Components with Known Vulnerabilities
A10 Unvalidated Redirects and Forwards

development framework that de-constructs high-level work-
flows into separate unikernels, structures communication be-
tween those, and provides sensible security defaults. We as-
sume that such a system of unikernels can solve complex web-
application workflows in a secure manner without negatively
impacting developer’s productivity during development and
debugging, which we next address in much more depth.

XI. CONCLUSIONS

We introduced a framework of definitions and metrics for
classifying unikernel systems, and began developing a formal
approach to describing our framework, and considered how
such a theoretical framework might provide a more secure
approach to the challenges of cloud security and privacy.

We have proposed a novel means of significantly reducing
the software attack surface for a cloud based system, removing
in the process many classic attack vectors. We consider the
architecture of the proposed system and its resilience to attack
in much more depth in our forthcoming publications.

We need to look at, and solve, the challenge presented by
audit trail issues, which will require secure internal commu-
nication, access logging and log storage, and provision of a
strong forensic trail. Once these security basics are in place,
we can turn our attention to a robust approach to privacy.

REFERENCES

[1] B. Duncan, A. Bratterud, and A. Happe, “Enhancing Cloud Security and
Privacy: Time for a New Approach?” in INTECH 2016, Dublin, 2016,
pp. 1–6.

[2] B. Duncan, A. Happe, and A. Bratterud, Enterprise IoT Security and Scal-
ability: How Unikernels can Improve the Status Quo, in 9th IEEE/ACM
International Conference on Utility and Cloud Computing (UCC 2016),
2016, Shanghai. pp. 16.

[3] A. Madhavapeddy, et al., “Unikernels: Library Operating Systems for the
Cloud,” ASPLOS ’13 Proc. eighteenth Int. Conf. Archit. Supp Prog. Lang.
Oper. Syst., vol. 48, pp. 461–472, 2013.

[4] A. Madhavapeddy and D. J. Scott, “Unikernels: Rise of the Virtual Library
Operating System,” Commun. ACM, vol. 57, no. 1, pp. 61–69, 2014.

[5] A. Kantee, “The Rise and Fall of the Operating System,” Login:, pp. 6–9,
2015.

[6] Unikernel.org, “Unikernels,” 2015. [Online]. Available:
www.unikernel.org Last accessed: 11 Jan 2017

[7] D. R. Engler, M. F. Kaashoek, and Others, Exokernel: An operating
system architecture for application-level resource management. ACM,
1995, vol. 29, no. 5.

[8] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and G. C. Hunt,
“Rethinking the library OS from the top down,” in ACM SIGPLAN Not.,
vol. 46, no. 3. ACM, 2011, pp. 291–304.

[9] A. Baumann, M. Peinado, and G. Hunt, “Shielding applications from an
untrusted cloud with haven,” ACM Trans. Comput. Syst., vol. 33, no. 3,
p. 8, 2015.

[10] G. J. Popek and R. P. Goldberg, “Formal Requirements for Virtualizable
Third Generation Architectures,” ACM SIGOPS Oper. Syst. Rev., vol. 7,
no. 4, p. 112, 1973.

[11] M. F. Kaashoek, et al., “Application Performance and Flexibility on
Exokernel Systems,” ACM SIGOPS Oper. Syst. Rev., vol. 31, no. 5, pp.
52–65, 1997.

[12] A. Bratterud, A.-A. Walla, H. Haugerud, P. E. Engelstad, and K. Beg-
num, “IncludeOS: A Minimal, Resource Efficient Unikernel for Cloud
Services,” 2015 IEEE 7th Int. Conf. Cloud Comput. Technol. Sci., pp.
250–257, 2015.

[13] G. Klein, et al., “seL4: Formal verification of an OS kernel,” Proc. ACM
SIGOPS 22nd Symp. Oper. Syst. Princ., pp. 207–220, 2009.

[14] A. Bratterud and H. Haugerud, “Maximizing Hypervisor Scalability
Using Minimal Virtual Machines,” 2013 IEEE 5th Int. Conf. Cloud
Comput. Technol. Sci., pp. 218–223, 2013.

[15] P. Meireles, “Narkive Mailinglist Archive,” 2007. [Online]. Available:
http://m0n0wall.m0n0.narkive.com/OI4NbHQq/m0n0wall-virtualization
Last accessed: 05 Jan 2017.

[16] PWC, “Information Security Breaches Survey 2010 Technical Report,”
pp. 1–22, 2010.

[17] PWC, “UK Information Security Breaches Survey - Technical Report
2012,” London, Tech. Rep. April, 2012.

[18] PWC, “2014 Information Security Breaches Survey: Technical Report,”
Tech. Rep., 2014.

[19] Verizon, N. High, T. Crime, I. Reporting, and I. S. Service, “2012 Data
Breach Investigations Report,” Verizon, Tech. Rep., 2012.

[20] Verizon, “2014 Data Breach Investigations Report,” Tech. Rep. 1, 2014.
[21] G. J. Popek and R. P. Goldberg, “Formal Requirements for Virtualizable

Third Generation Architectures,” Commun. ACM, vol. 17, no. 7, pp. 412–
421, 1974.

[22] P. Barham, et al., “Xen and the art of virtualization.” SIGOPS
Oper.Syst.Rev., vol. 37, no. 5, pp. 164–177, 2003.

[23] D. Chisnall, “Xen PVH: Bringing Hardware to Paravirtualization.” Inf.
IT, 2014.

[24] X. Project, “Xen Project Software Overview,” 2016. [Online]. Available:
http://wiki.xen.org/wiki/Xen Project Software Overview#PVH Last ac-
cessed: 05 Jan 2017.

[25] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at Google with Borg,” Proc.
Tenth Eur. Conf. Comput. Syst. - EuroSys ’15, pp. 1–17, 2015.

[26] F. P. Brooks Jr, The Mythical Man-Month: Essays on Software Engi-
neering, Anniversary Edition, 2/E. Pearson Education India, 1995.

[27] B. Duncan and M. Whittington, “Compliance with Standards, Assurance
and Audit: Does this Equal Security?” in Proc. 7th Int. Conf. Secur. Inf.
Networks. Glasgow: ACM, 2014, pp. 77–84.

[28] B. Duncan and M. Whittington, “Reflecting on whether checklists can
tick the box for cloud security,” in Proc. Int. Conf. Cloud Comput.
Technol. Sci. CloudCom, vol. 2015-Febru, no. February. Singapore: IEEE,
2015, pp. 805–810.

[29] B. Duncan and M. Whittington, “Enhancing Cloud Security and Privacy:
The Cloud Audit Problem,” in Cloud Comput. 2016 Seventh Int. Conf.
Cloud Comput. GRIDs, Virtualization. Rome: IEEE, 2016, pp. 119–124.

[30] B. Duncan and M. Whittington, “Enhancing Cloud Security and Privacy:
The Power and the Weakness of the Audit Trail,” in Cloud Comput. 2016
Seventh Int. Conf. Cloud Comput. GRIDs, Virtualization. Rome: IEEE,
2016, pp. 125–130.

[31] B. Duncan and M. Whittington, “Company Management Approaches
Stewardship or Agency: Which Promotes Better Security in Cloud
Ecosystems?” in Cloud Comput. 2015. Nice: IEEE, 2015, pp. 154–159.

[32] B. Duncan, D. J. Pym, and M. Whittington, “Developing a Conceptual
Framework for Cloud Security Assurance,” in Cloud Comp. Tech. Sci.
(CloudCom), 2013 IEEE 5th Int. Conf. (Vol 2). Bristol: IEEE, 2013, pp.
120–125.

[33] B. Duncan and M. Whittington, “The Importance of Proper Measure-
ment for a Cloud Security Assurance Model,” in 2015 IEEE 7th Int. Conf.
Cloud Comput. Technol. Sci., Vancouver, 2015, pp. 1–6.

[34] OWASP, “OWASP Top Ten Vulnera-
bilities 2013,” 2013. [Online]. Available:
https://www.owasp.org/index.php/Category:OWASP Top Ten Project
Last accessed: 05 Jan 2017.

86Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 97 / 172

CloudMediate

Peer-to-peer Media Aggregation for Augmented Reality

Raimund K. Ege

Department of Computer Science

Northern Illinois University

DeKalb, USA

email: ege@niu.edu

Abstract—Augmented Reality strives to produce a world

composed from virtual models and multiple multi-media

streams, and enables complete immersion into the result via

modern mobile hand-held or wearable devices. In this paper, we

present a conceptual media aggregation framework that is

flexible, powerful and scalable to identify, establish and manage

connections to media stream source (virtual and real) and

produces an adaptable world view, which is then made available

to consuming devices with attitude feedback. The framework is

structured into three layers: presence, integration, and

homogenization layers that work together in a peer-to-peer

(p2p) manner to facilitate the delivery of multimedia data. Each

layer features cloud-based mediator components, each mediator

transforms an input stream into an output stream. This

mediation process is context-aware, adaptive and dynamically

structured.

Keywords-augmented reality; virtual reality; peer-to-peer

systems; multi-media content delivery.

I. INTRODUCTION

The proliferation of mobile and wearable devices has
enabled access, at least on a physical level, to a multitude of
disparate but often related information, while scaling
geographical barriers. This information, in the form of
multimedia streams is produced, stored on and accessed from
various kinds of heterogeneous devices. Our goal is to select
suitable input streams, correlate and combine them into a
virtual world. The virtual world can then be made available to
clients, again rendered onto suitable mobile and wearable
devices.

Fig. 1 shows our overall idea of how CloudMediate
operates. The left side of the figure symbolizes the multitude
of potential input streams. While audio and video streams are
most common, our approach allows arbitrary streams of data
from any sensor. The right side of the figure shows
consumption of streams by mobile devices. The common
smartphone might be one example of such a display device.
Wearable devices, such as headsets and virtual glasses are the
target of our approach. Both sides are connected by a cloud-
hosted network of intermediaries that normalize, correlate and
combine input streams into consumable output streams.

We use the term “mediator” to describe these
intermediaries. We chose this term in analogy to the

“Mediator” behavioral pattern that address the responsibilities
of objects in an application and how they communicate [1].

In this paper, we describe a framework for peer-to-peer
media aggregation for augmented reality that features a three-
layer architecture for multimedia mediation. The paper is
organized as follows: Section 2 presents some related work
and briefly covers some differences and similarities between
our architecture and existing ones. Section 3 describes our
overall architecture and each layer and what functions are
performed therein. We also discuss the different classes of
mediators in those layers. Section 4 covers the CloudMediate
web-based control interface that allows peers to register and
sign up with their multi-media stream. The section also
introduces our mobile application for portable and wearable
devices to allow a peer user to become immersed in the
resulting augmented virtual reality. We conclude with an
outlook to our future work.

II. BACKGROUND

Virtual Reality devices are emerging rapidly in the market
place. Every major vendor of systems and hardware has
introduced mobile and wearable gadgets to support virtual and
augmented reality. From simple holders for smart phones, to
headsets from market leaders such as Samsung and Google
(even eye glasses, e.g., Google). Software to enable
these devices is becoming more commonplace. The

Figure 1. CloudMediate Structure.

87Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 98 / 172

application developer kits are becoming ever more powerful
to harness the dynamic features of these devices.

Multimedia data requires special attention to throughput,
timeliness and other quality of service factors. There is a need
for architectures to deal with buffering and the intermittent
connection associated with mobility. Our approach to
enabling high quality access is to build a layered framework
of mediators [2]. Lower-layer mediators connect to the actual
data sources, while higher-layer mediators provide a logical
schema of information to applications. Mediators are typically
employed in a situation where the client data model does not
coincide with the data model of the potential data sources.
They are facilitators that search for likely resources and ways
to access them. They provide a mapping of complex models
to enable interoperability between client and source(s). Many
mediator systems have been proposed for a variety of
applications, a major problem often encountered is how to
seamlessly query and integrate data from heterogeneous data
sources [3].

In peer-sourced augmented reality systems, the
management of the multi-media source and establishment of
trust is essential [4]. In our prior work [5] [6], we investigated
the authentication of participants in peer-to-peer networks, the
establishment and management of trust, and the use of such
media sources in building content management systems. An
important lesson was that while modern mobile devices are
compute-capable, cloud-based components add additional
heft and authority to a seamless and smooth creation of a truly
immersing virtual and augmented reality experience [7][8][9].

III. MEDIATOR ARCHITECTURE

We approach the task of delivering multi-media streams
from their producers to the consumers be decomposing it into
small steps according to an overall architectural framework.
The architectural framework features three layers: Presence,
Integration and Homogenization as shown in Fig. 2.

The Presence layer is closest to the device that consumes
the output stream. The Homogenization layer is closest to the
device that produces the input stream. The integration layer
correlates Presence and Homogenization mediators.

Each layer is composed of several cloud-based mediators.
Different classes of mediator are employed within each layer.
Fig. 3 shows the top of the mediator class hierarchy.

Figure 3. Mediator Class Hierarchy.

Each mediator has an input and an output side and transfers
and negotiates on three kinds of information; the schema of
the data stream, the data stream itself, and some quality of
service (QoS) information specific to the stream. The nature
of mediation varies from a simple combination of input
streams, to correlation of virtual and augmented streams, and
up to reformatting of a stream based on attitude information.

The central class is Mediator: it manages the input/output
connections. It is a subclass of Peer, which handles peer setup
and registration. A special Tracker peer is responsible for
keeping track of all peers. It accepts registrations from other
peers and facilitates peer lookup. It can also instantiate new
peers to create a path from incoming media streams to output
streams through the layers of our framework.

Two subclasses of Mediator are shown here: Combiner is
able to attach a virtual reality model to input streams to
correlate multiple input streams into a single output stream;
Adjuster connects to an attitude stream of an output stream
device. As the device attitude changes, it adjusts the perceived
attitude geometry of the output stream.

A. Homogenization Layer

In our architecture, each homogenization layer mediator is
directly associated with an incoming multi-media data stream
from a mobile device.

In addition to the actual data sensed, it must be packaged
with the exact time of recording. Multiple streams of sensor
data are combined into a multi-media stream which

Figure 2. Layers of Architecture.

88Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 99 / 172

interleaves its content streams plus provides meta-data to
ensure their proper sequencing and correlation. It is important
that the container format used to wrap the content streams is
flexible enough to accommodate not only the stream data but
also extensive amounts of reference information used to
combine the streams. We are using an extension of the WebM
project [10] format. The WebM container format is an open
standard and allows us to collate an unlimited number of
video, audio, pictures and subtitle tracks into one stream. We
add the capability of identifying reference elements at
identified points in time and at locations.

Video data is the key stream type captured via video
sensors, i.e., cameras, available on the wearable devices
carried by a peer. Video is captured as a sequence of video
frames. Each frame carries a time stamp as major meta
reference data. Equally important is the location of video
capture, lens parameters and attitude, i.e., which way the
camera points. Our container format allows us to group
sequential video frames into video sequences that share a
common location. We represent the location with a “Normal
Vector”.

Fig. 4 shows how a normal vector captures not only the
location of a video plane but also its relative position. The
normal vector is represented via 2 points: its origin and extent
points. Both points are captured in absolute latitude and
longitude coordinates. While the distance between origin and
extent point of the normal vector is not normally relevant, we
use the length of the vector as a guide to the size of the video
frames being referenced. A longer vector indicates a larger
area shown in the video. We use the length of the normal
vector when attaching multiple streams into a virtual reality
frame.

Audio data is captured by microphones and sequences into
frames that are referenced with a time stamp. While it would
be possible to also capture and store directional information,
which might be meaningful in the case of a directional
microphone, we are able to deduce that information from the
normal vector stored for video frames recorded at the same
time on the same device. Of course, if the wearable device
only records video, then such directional information is not
available. We are considering this extension for future work.
The audio data with its correlated reference metadata is also
wrapped into the same container as the video data.

Any other data, such as gathered from special purpose data
sensors, is equally framed and referenced. Examples of such
data might be the heart rate of the person wearing the device,
the temperature of the surroundings, or movement &
acceleration data measured. Our container format allows a
free-form type designator that enables sensors of any kind, as
long as their sensed data can be digitized and framed.

B. Integration Layer

The mediators that comprise this layer feature multiple
incoming streams and usually just one outgoing stream. The
task of the mediator is to correlate and combine the input
streams into a coherent output stream.

Figure 4. Normal Vector.

The meta information contained in the inputs’ container
guides the combination. The simplest correlation is for 2 video
input streams that is based on the time and location of each
stream. The attitude of each individual stream is carried in its
normal vector. The output stream contains the adjusted meta
information for the combined video.

Our container format also allows the carrying of virtual
reality model data. Actually, such data is similar in nature to
“real” data, but is derived not from sensors but from virtual
reality models of the surroundings that the wearers of the
wearable devices inhabit. To allow clear distinction of sub-
streams within the container, each sub-stream carries a unique
stream identifier, which is correlated to a stream dictionary
that holds relevant information about the sub-stream. The
complete stream dictionary is embedded into the multi-media
stream at regular intervals.

C. Presence Layer

The mediators in this layer are created by the Tracker peer
(see Fig. 3) based on a client’s request. The primary functions
performed in this layer are:

1. Identify and process an input media stream.
2. Connect to location and attitude streams from a peer

client.
3. Continuously adjust and re-compute an output media

stream to the peer client.
Based on a peer client request, a suitable mediator is

instantiated in the cloud to handle that request. It is connected
to input and control streams. The mediation of input stream
involves geometric conversions to adjust the spatial location
and dimensions to produce a life-like presentation. The
rendering of the resulting augmented reality is adjusted to
conform to the attitude of output device: this enables a peer
client to view the resulting stream in the same geo space as its
recording device.

89Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 100 / 172

QoS management is essential to efficiently access pertinent
information at the required level of quality. This function
attempts to meet the level of quality required by user. The
continuous nature of the QoS management is especially
important in the event that the client device is mobile.
Resources are scarce on mobile devices and the availability of
a resource may vary significantly and unpredictably during
the runtime of an application. In the absence of resource
guarantees, applications need to adapt themselves to the
prevailing operating conditions.

IV. PROTOTYPE: CLOUDMEDIATE

The features provided by our architecture framework are
illustrated by our reference prototype implementation. It is
anchored by the CloudMediate web-based control interface
that allows peers to register and sign up with their multi-media
stream. Fig. 5 shows screenshots. The left part shows the
central welcome and sign-up screen.

Users can sign up and sign in, which then makes the peer-
to-peer features available. The following operations become
available: “Connect Device”, “List Streams”, “Account Info”
and “Mediation Control”. Only control functions are available
via the web interface. Actual stream production, connection
and consumption and is handled via custom apps that can be
downloaded. “Connect Device” (center screen shot) allows
users to download a suitable app for their device. While the
screenshot shows Android, iPhone and Windows, we
currently have only an Android prototype under development.
The “List Streams” operation displays all streams that are
currently controlled by the CloudMediate system, that is all
the input streams offered up by all peer clients, plus the output
streams of all active mediators from all three layers of our
framework. The “Account Info” operation allows the peer to
see its own capabilities. The “Mediation Control” operation
allows a peer to adjust parameters and settings of its own
streams.

The final component of our prototype framework is our
proof-of-concept client peer implementation for the Android
platform. Fig. 6 shows the login screen of our Android
prototype client peer application. The “login” screen allows
the peer to authenticate with its OpenID credentials. The user
enters userid and password, plus the URL of a boot strap
tracker peer. If the peer is recognized into the content delivery
network, the tracker peer transmits all available streams to the
new peer.

Figure 6. Android App Login Screen.

While the main app activity allows a peer to consume an
available stream (see Fig. 8), our prototype also allows a peer
to serve up its streams. Fig. 7 shows how a peer connects its
input sensors in the mediator network. Any streams that are

Figure 5. CloudMediate Web-Control Interface.

90Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 101 / 172

gathered by the peer device can be made available. In the
example shown, video, audio and location streams are
available and can be selected.

Figure 7. Android App Stream Setting.

Figure 9. Android App Stream Selection.

The “stream selection” (Fig. 8) screen shows the currently
available streams in the prototype application. As before, not
all streams are available to the new peer: only those that
display the “play” button can be used by this peer based on its
trust level. Once the “play selected video stream” button is
pressed, and a sufficient read-ahead buffer has been

accumulated, the video stream starts playing on the Android
device.

The screen capture in Fig. 9 shows the video stream being

displayed. The video shown here is derived from a scene
generated by a virtual reality rendering producer peer. The on-
screen control allows the user to control the video display.

V. CONCLUSION AND FUTURE WORK

The interchange of data between client and heterogeneous
sources requires an efficient and dynamic approach to
mediation. The framework described in this paper features
three layers of mediators: presence, integration, and
homogenization. We gather multi-media sources from
sensors and tag them suitable for adequate correlation and
mediation. Peers join a content delivery network and
establish trust relationships among each other. Cloud-based
media streams – mediated based on their associated metadata
- are embedded into a reference virtual reality model and
rendered into a geo-referenced attitudinal output media
stream suitable for a heads-up display.

The advantage of our mediation process is its adaptive
and dynamic nature. The framework is designed to uniquely
determine how to fulfill each query while taking properties of
delivery into consideration. Our mediation architecture is a
work-in-progress and there are many research issues that will

Figure 8. Android App Stream View.

91Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 102 / 172

be encountered during the course of this project, they include
but are not limited to, defining of communication protocols
with specific focus on how to deal with real-time data and
mobility (e.g., temporary loss of connectivity in mobile
devices), security issues involved with the distribution and
access of data across a p2p network, and how to intelligently
decompose and integrate XML schemas and streams while
avoiding loss of information.

Our goal for future research is to enhance the media
mediation capabilities of our cloud-based peer components.
We envision a rich augmented reality world that is populated
by many dynamic input streams.

REFERENCES

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design

Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley Professional, 1994.

[2] R. Ege, L. Yang, Q. Kharma, and X Ni, “Three-Layered Mediator
Architecture Based on DHT” Proceedings of the International
Symposium on Parallel Architecture, Algorithm and Networks (I-
SPAN), Hong Kong, China, pp. 313-318, 2004.

[3] S. Giesecke, J. Bornhold, and W. Hasselbring, “Middleware-
Induced Architectural Style Modelling for Architecture
Exploration”, Proceedings of 2007 Working IEEE/IFIP
Conference on Software Architecture (WICSA'07), pp. 44-47,
2007.

[4] S. Aukstakalnis, Practical Augmented Reality, Addison-
Wesley Professional, 2017.

[5] R. Ege, “Secure Trust Management for the Android Platform,”
International Conference on Systems (ICONS 2013), Seville,
Spain, pp. 98-103, 2013

[6] R. Ege, “Peer to Peer Media Management for Augmented
Reality,” International Conference on Networking and
Services (ICNS 2015), Rome, Italy, pp. 95-100, 2015.

[7] R. Azuma et al., “Recent Advances in Augmented Reality,”
IEEE Computer Graphics and Applications (CGA) 21(6), pp.
34-47, 2001.

[8] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and D.
Schmalstieg, “Real-Time Detection and Tracking for
Augmented Reality on Mobile Phones,” IEEE Transactions on
Visualization and Computer Graphics, 16(3), pp. 355-368,
2010.

[9] A. Morrison et al., “Collaborative use of mobile augmented
reality with paper maps,” Journal on Computers & Graphics
(Elsevier), 35(4), pp. 789-799, 2011.

[10] The WebM Project - About WebM.
http://www.webmproject.org. [retrieved December 19, 2016]

92Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 103 / 172

Using k-Core Decomposition to Find Cluster Centers for k-Means Algorithm in

GraphX on Spark

Sheng-Tzong Cheng, Yin-Chun Chen, and Meng-Shuan Tsai

Computer Science and Information Engineering

National Cheng Kung University

Tainan, Taiwan

email: stcheng@mail.ncku.edu.tw, darkerduck@gmail.com, and stoya35893@hotmail.com

Abstract—Big data analysis is getting more and more attention

these days. In social network applications, a large amount of data

is in a graph structure form. As a result, more computation time

is required for graph data analysis. In 2014, a framework of in-

memory computing, Spark, was proposed for big data analysis.

Through reusing the data in memory to solve the long

computation time issue, Spark finishes a task in a shorter time

compared to Hadoop. In addition, GraphX, a Spark API

(Application Interface), provides a graphical interface and

makes graph data analysis simple and efficient. This study

presents an improved k-mean clustering method by integrating

k-core decomposition, which is an important algorithm in

community detection to find the center of each cluster. We

implement the clustering algorithm with GraphX to get better

performance and results compared to the original k-mean

clustering method.

Keywords—cloud computing; GraphX; Spark; k-core

decomposition; graph-based k-means

I. INTRODUCTION

With the massive growth of computational data, cloud
computing has become one of most popular disciplines in
recent years. A typical example of cloud computing system
like Hadoop [15], is based on MapReduce model [16] and
Google file systems [16] to collect and analyze huge data.

For big data, analysis is the most important work.
Techniques, such as machine learning, are used to train data
and retrieve the most important parts form the data. Data reuse
is also common in many iterative machine learning and graph
algorithms, including PageRank [15], k-Core decomposition
[3], and k-Means clustering [17]. However, for the framework
of MapReduce, iterations of data computation become the
critical bottleneck of the performance. Therefore, AMP
(Algorithms Machines People) Lab at the University of
California, Berkeley, proposes a new architecture, Spark [1],
that not only improves the data processing over a parallel in-
memory system, but also reuses inter-mediate results across
multiple computations. Empirically, a program on Spark
could run up to 100 times faster than that on Hadoop
MapReduce.

Graph is a useful form to represent a massive amount of
data in analysis, such as social network, biological
information, business model, road and map, and collaboration
network. However, traditional MapReduce framework makes
it difficult to describe the graph-parallel computation in
distributed system. Fortunately, Spark provides useful APIs
(Application Interfaces) for GraphX [2] and MLib (Machine
Learning Library). When users run applications on Spark, the
APIs make the code development easy to use and build some
algorithm efficiently. MLib provides machine learning

algorithms. GraphX is a new large-scale distributed graph-
parallel framework, such as Pregel [2], Graphlab [2], and
PowerGraph [2], to provide useful graph algorithms. It also
allows users to develop applications faster. In this paper, we
consider the graph data analysis by using GraphX on Spark.

Graph clustering is one of the crucial problems in graph
data analysis. It is used to group the vertices of a graph into
clusters with as few edges as possible between them. It is
related to unsupervised learning to divide a data set into some
small classes without a priori information on how the
classification should be done. K-Means clustering [17], which
is an algorithm for graph clustering, uses vectors of
characteristics to transform data into some clusters to find the
nearest center. It usually gives k virtually random points as the
initial centers of clusters. For each point, it finds the minimum
Euler distance to a center. Then, each point is assigned to the
cluster containing the nearest center. Before the next iteration,
each cluster can re-compute a new center. The iteration
repeats until there is no change for centers. In this work, we
consider the k-Means algorithm for the graph clustering in
GraphX.

The k-Core decomposition has been proposed to find the
strongest communicators in a graph. Recently, k-Core
decomposition for analysis of large networks has been
reported [3]. We observe that the performance and results can
be improved further if we combine the k-Core decomposition
with the graph-based k-Means, in which the k-Core is used to
find centers and the k-Means is used to find clusters. The
contribution of this paper is to engineer the integration of k-
Means clustering with k-Core decomposition for graph data
analysis in GraphX on Spark. The rest of the paper is
organized as follows. Background is given in Section II. The
problem description and the system design are stated in
Section III. Implementation details and experiment results are
illustrated in Section IV, and conclusion remarks are drawn in
Section V.

II. BACKGROUND

A. Spark

Spark is an open-source cluster computing system. It is the
highest-level project in Apache Software Foundation. In
November 2014, the world record of data sorting in the Sort
Benchmark Competition was broken by Spark, while the
previous record was made by Hadoop. As Hadoop took
seventy-two minutes to finish the job, Spark only took less
than thirty minutes to complete the sorting. Furthermore, it
only used 207 sets of amazon E2 i2.8*large virtual machines,
significantly less than 2100 sets used by Hadoop.

93Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 104 / 172

In the original data flow of Hadoop MapReduce, the
reduce function has to be performed after each map function.
Spark critically improves the performance by changing the
original inflexible data flow (of Hadoop MapReduce) to a
new flexible framework in which several map functions could
be done in memory before the reduce function is invoked. In
this way, it can avoid many times of operations in the reduce
stage and data is not required to write back to disk.

B. GraphX

Spark API provides a Pregel-like framework [4] to deal
specifically with graphs. To compute graphs with strong
correlation between the nodes, it needs to adjust Graph
construction for running on a classic data-processing platform.
GraphX combines two graph processings, Pregel and
Graphlab [4], to make a new graph-parallel framework.
GraphX is developed directly on Spark to obtain better
performance than Graphlab.

1) VertexRDDs, EdgeRDDs, and Route Table: These
three data structures are the most important components to
compose a graph in GraphX. When a dataset of graph is stored
into GraphX, the graph will be initialized to an edge table,
which describes the information about a node linking to
another node with a value. After that, it generates a vertex
table by using the class named Graph.

A vertex table is always the place for storing and
computing the result, such as collecting all data, generating
sub-graphs, joining vertices to give new data, and filtering
some vertices, etc. Two kinds of operators for user
programing are possible. One operator is to view a loose
graph as a table and allow users to modify data without strong
relation. The other operator is to view a graph as a tight graph
in which vertex relations are required to re-compute when a
update is propagated. New subgraphs may be generated then.

2) Graph Parallelism: Google developed a super-step
algorithm framework [4] for graph-parallelism in 2010. It is
widely used to build graphs in distributed computing systems,
because of convenience and efficiency just like using
MapReduce. Users only need to complete three functions for
super-steps.

This model follows the bulk synchronization to finish the
computation. There are four steps for one process and the final
step can only stop when every node is inactive. It is also the
condition to start running the application for the next round.

Four steps are described as follows.
a) A node receives some messages and transforms the

status from inactive to active.
b) Active nodes aggregate all messages to get a result

for itself.
c) If the result does not need to update to nodes, then

change the status from active to inactive; otherwise,
send message to other nodes.

d) Repeat steps a to c until there is no message
sending to nodes.

In GraphX, the algorithm starts to send an initial message
to all of vertices. If vertices need to update their data, the
vertices will turn the status to active just like step (1). Second,
they filter all active vertices and compare with neighbors to
decide whether messages shall be sent or not. They use triplet

to compare the data in two vertices. In step (2), all messages
in a vertex will be stored as a list that performs sequential
processing to get a result. This result will be compared to the
original data to control the status and data. In the end, GraphX
will generate a new graph with some new RDDs (Resilient
Distributed Datasets)for this result.

C. k-Means Clustering

This is a well-known data-clustering algorithm. Upon
given every node vector of characteristics and the value of k,
the algorithm can separate the set of data into k clusters [5].
In the basic mode, operations define the original data with
characteristics, grouping those values, and vectorization. The
dataset will be divided into k clusters, given k random centers
with the same dimension. Secondly, each node finds a nearest
center by Euler distance so that primitive clusters are formed.
Thirdly, new centers are identified by averaging the sum of
nodes in each cluster. Repeat these three steps. In traditional
algorithm follows the math model: S is the center set, and D(x,
y) is the distance between x and y for y Є S

m(S) = argmin
𝑆
∑ ∑ 𝐷(𝑥, 𝑦)𝑦∈𝑆𝑘,𝑥≠𝑦
𝑘
𝑖=1 , 𝑘 = 1,… . , 𝑁 (1)

D. k-Core Decomposition

In graph theory, k-Core decomposition [6] is usually used.
It is a O(m) algorithm where m represents the number of edges
in non-parallel computing. Its main goal is to find a strong
subgroup, whose members play the role of communicators in
the graph. Every node in the sub-graph needs to be at least
degree of k. In this paper, we extend the k-Core decomposition
to the graph computation in parallel.

E. Modularity

In recent years, the concept of “quality for graph
clustering,” proposed by Newman, has been widely used as a
measure of performance [7]. Researchers usually use it to
optimize the community that splits the network. If each
community has dense relationship within the group and sparse
relationship outside of the group, the value of modularity will
be higher.

The modularity defined by Q =
(edges within communities – expectation of these edges)

sum of all degrees.
.

Q lies in the range [−1/2, 1). Without loss of generality, we
assume that a graph has n nodes and m edges. Let the
adjacency matrix for the graph be represented by A, where the
element 𝐴𝑣𝑤 of matrix equals to zero meaning there is no edge
between vertices v and w; otherwise, the element equals to one
that means there is an edge between two vertices. The degree
of vertex v is represented by d(v).

Consider a graph is split into k communities{𝐶𝑖}𝑖=1
𝑘 , , and

Q can be written as

Q =
1

2m
 ∑ ∑ 𝐴𝑣𝑤 − 𝑝(𝑣, 𝑤)𝑣𝑤∈𝐶𝑖

k
i=1 (2)

where, 𝑝(𝑣, 𝑤) =
𝑑(𝑣)𝑑(𝑤)

2m
.

We can rewrite (2) to

94Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 105 / 172

Q =∑(∑
𝐴𝑣𝑤
2m

𝑣𝑤∈𝐶𝑖

−
1

2m
∑

𝑑(𝑣)𝑑(𝑤)

2m
𝑣𝑤∈𝐶𝑖

)

k

i=1

 =∑(∑
𝐴𝑣𝑤
2m

𝑣𝑤∈𝐶𝑖

− (∑
𝑑(𝑣)

2m

𝑣∈𝐶𝑖

)

2

)

k

i=1

 (3)

Modularity indicates how good the result is. The value of
modularity often drops in the range from 0.3 to 0.7, which
means the result is moderate. For the experiment in section
IV.B.3 about the social circle in Facebook, we can see that a
graph can get a high value of modularity when the number of
clusters equals 9. In this paper, we use modularity as the
performance index to conduct experiments.

III. SYSTEM DESIGN

In this section, we give the problem description and focus
on the details of our system design. First, we clarify our
problem. Then, we discuss the steps of system flow chart.
Finally, the algorithm is given in details.

A. Problem Description

When people use graph to represent the real-world data,
graph representation and graph clustering become crucial
issues. Graph clustering focuses on finding the sub-graph with
high relatives. It relies on the edges to reflect the relation and
connection of vertices. Normally, the matrix is considered as
the data structure for graph clustering. However, as a graph
becomes larger, the matrix computation makes the
performance worse.

Similarly, an adjacency matrix is not suitable for the
classic k-Means algorithm. In fact, the number of edges in
real-world graph is far less than the square of the number of
vertices. Using the row of a huge sparse matrix to be feature
vector makes k-Means algorithm heavy. It will compute many
huge vectors, but they have many useless values leading to
resource waste. Therefore, in this paper, we only use the idea
of “finding the minimum distance sum to k center of clusters”
and rebuild the k-Means algorithm with the single source
shortest path algorithm and k-Core decomposition.

B. Scheme Overview

Fig. 1 shows the system flow chart to express our graph-
based k-means algorithm. We run the code in Spark, which
provides strong and flexible framework to deal with
distributed parallel computing. It hides complex details of
application development so that programmers can write
functions with operations such as Map and Reduce. The
GraphX adopts the graph-parallel processing model into
Spark and transforms the big graph into some RDD table. The
Pregel-like super-step module is a simplified coding for the
iterative graph algorithms. Now, we explain the system
systematically and introduce properties with Spark and
GraphX in steps.

1) Spark connects to HDFS (Hadoop Distributed File
System). If programmers want to run the project in parallel-
computing mode, they should put the data into HDFS, which
is a Hadoop database. Spark uses HDFS for not-local data to
get better performance.

2) GraphX needs to generate edge RDD first for graph
generation.

3) We separate graph generation from initializing the
values. The values are initialized in the beginning of loops
every time.

4) K-means algorithm is to select the nearest center for
clustering the data set. In this paper, we choose the single
source shortest path module for finding nearest center for each
vertex. Given k centers, run single source shortest path for
each vertex to find which center is the nearest center for this
vertex.

5) K clusters are obtained from the result of step 4. Then,
run the k-Core decomposition for each cluster. In the end, this
step will find k new centers. The reason why we use k-Core
decomposition to find the center of clusters is originating
from the property: a core with the value of k is a group in
which every member is connecting to at least k members. The
vertex in-group with the biggest original degree value will be
picked as the center.

6) Repeat steps 3 to 5 until the group of centers remains
unchanged.

Figure 1. System flow chart.

C. k-Core Decomposition

In this section, we describe the details of implementing k-
Core decomposition on GraphX. The k-Core decomposition
has the following property:

∀𝑢 ∈ 𝑉 ∶ 𝑘 − 𝑐𝑜𝑟𝑒(𝑢) = 𝑘 ↔

{

There exist a maximum subgraph 𝑉𝑘

 such that ∀𝑣 ∈ 𝑉𝑘 ∶ 𝑑𝑒𝑔(𝑣) ≥ 𝑘, and
There is no subgraph 𝑉𝑘+1

such that ∀𝑣 ∈ 𝑉𝑘+1 ∶ 𝑑𝑒𝑔(𝑣) ≥ 𝑘 + 1

 (4)

This algorithm is mainly to find a sub-graph with the
strongest relationship of k. It means every member in this sub-
graph has at least k neighborhoods. Furthermore, there is no
greater sub-graph where every member has more than k
neighborhoods. Therefore, if we find a vertex that has the
highest degree in this sub-graph, it will be a good candidate
for the center in a cluster.

95Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 106 / 172

We tried to implement two versions with two different
methods. The time complexity of both methods is O(|V|2). We
can use a pair likes (a, b) to be data in a vertex table and the
data will be changed to an integer value, K, representing the
number of cores as the output.
Fig. 2 presents the pseudo code of k-core decomposition.

Figure 2. Pseudo code for k-Core decomposition.

GraphX uses triplets to compare two nodes that need
updates. The time complexity of the methods is O(|V|2).

IV. IMPLEMENTATION AND EXPERIMENT

In this section, we describe the experimental environment
and illustrate the results obtained for modularity and run time.
We use the same terminology for the original k-means
algorithm to compare the performance of the original
algorithm with that of our revised method.

A. Experiment environment and setting

In the experiment, we consider a peer-servicing cloud-
computing platform, which contains six homogeneous virtual
machines. The hardware and software specifications are
detailed in Tables I and II, respectively. In Table III, the
setting of our configuration of Spark is given. Because some
RDDs are only used once, we do not need the original setting
of memory fraction (0.75), which means the memory splits
most of the space for storing RDD. When the system executes
several iterations, the driver’s java garbage collection is
always too late to recycle the resource. We observe that the
driver’s memory stores a lot of DAG (Directed Acyclic Graph)

and RDD in memory and therefore, only little space is left for
allocating work. It may block the operation of iterative loop,
so that we reduce the fraction from 0.75 to 0.4 and increase
the memory for drivers.

TABLE I. RECEIVER ENVIRONMENT

Item Content

OS Ubuntu 15.10 Desktop 64bit

Spark 2.0.0

Java 1.7.0_101

Scala 2.11.8

Maven 3.3.9

TABLE II. HARDWARE SPECIFICATION OF RECEIVER

Item Content

CPU Intel(R) Xeon(R) E5620 @2.40GHz x 2

RAM 8 GB

Hard Drive 80GB

Network Bandwidth 1Gbps

TABLE III. CONFIGURATIONS OF SPARK

Item Content

Number of executor 6

Memory size of the driver 6GB

Memory size of each executor 6GB

Memory fraction 0.4

Running mode Standalone

B. Experiment Results

We conduct experiments on three real-world datasets from
SNAP [8] and UCI Network Data Repository [9]-[13]. Each
dataset is represented as a graph with vertices and edges. To
revise the original k-means algorithm, we transfer the data to
an adjacency matrix, because the algorithm requires the
vertices’ features for clustering. Each column can be
considered as features of a vertex in the adjacency matrix. The
vertices connecting to same vertex should be assigned to the
same cluster. After finishing clustering, we calculate the
modularity to evaluate the performance of both our revised
method and the original k-means with adjacency matrix.
Spark has a software version of the common k-means
algorithm in Mlib, which is an API for machine learning.

 The runtime of an experiment does not include the time
of transferring original data to a matrix nor the time of
calculating the modularity. From the experimental results, we
see that even though the runtime of our proposed method is
longer than the common k-means in Mlib, the value of
modularity is much higher than the original k-means. All of
the experiments started with centers randomly picked.

Procedure k-core decomposition

1: Input
2: Graph: data in vertex is (degree, bool)

3: Output
4: Graph: data in vertex is K

5: Pseudo Code

6: While
7: Initial the Pregel send initial MSGs to all node

8: Graph.Vertex update (intitial MSGs)

9: MSGs = message merge (all message sent)
10: While messages.count > 0

11: Graph.Vertex update (messages)

12: MSGs = message merge (all message sent)

13: End while

14: K += 1

15: End while
16: Vertex update stage(messages)

17: If (message.bool) messages.degree =

max(origin, new degree)
18: Message.bool = origin && new bool

19: Message send stage

20: If (! v1.bool || ! v2.bool)
21: empty

22: Else if(v1.degree == k && v2.degree > k)

23: Send to v2 (1,true)
24: Send to v1 (0,false)

25: Else
26: Iterator.empty

27: Message merge stage

28: (Sum, a.bool && b.bool)

96Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 107 / 172

1) The dolphin social network

This is a famous social network dataset for graph
clustering. There is a network of frequent associations
between 62 dolphins in a community living off Doubtful
Sound, New Zealand [9]. In Fig. 3 (a), we can see that the
modularity gets higher when the number of clusters increases.
For example, our method gets an averaged value of
modularity up to 0.3924 upon splitting to five clusters.
Comparing the results reported in [14], they get the highest
scores on four clusters. Although the case of four clusters is
not the best result for our method, our proposed method still
gets an averaged Q to 0.387703. This is helpful for observing
a big group in real world.

In Fig. 3 (b), the runtime of our proposed method gets
significantly high from 5 to 6 (for the number of clusters).
Taking into account the modularity, the optimum case for the
number of clusters is five.

2) The social cycle in Facebook

In this section, the dataset is much bigger than the datasets
in the formal two experiments. The dataset is provided by J.
McAuley and J. Leskovec [11]. They collected data from
using an APP (Application) named social circle. There are
4039 vertices and 88234 edges. One edge between two
vertices means two vertices are friends. In Fig. 4 (b), we can
see that the runtime does not grow up when the data size
increases if the memory is still enough to handle the
experiments. This result also proves that Spark is fit for large-
size data rather than small-size data.

The Stanford website [8] not only provides the dataset for
researchers but also provides some basic analytic results. The
average clustering coefficient they provided is 0.6055. In our
method, we can find when the k = 4, 7, 8, 9, 10, the average
modularity is higher than 0.6055 and the highest modularity
is appearing when k = 9, which is the same number of clusters
for the data on website. We think this data has a clear
relationship between groups, because both methods obtain
good result. In our method, when k is 5 or 6, the performance
is worse than the case when k is 4. It is because that the four-
cluster structure is similar to the nine-cluster graph. We can
see from Fig. 4 (a) that the modularity reaches a local peak
when k is 4 .

3) Gnutella Network

This is the experiment with Gnutella peer-to-peer file
sharing network from August 2002. Nodes represent hosts in
the Gnutella network topology and edges represent
connections between the hosts [12][13]. There are 8717
vertices and 31525 edges in the graph. Compared to the
second experiment, this graph has double the number of
vertices but the number of edges is much less. On Stanford
website [8], we can see that for this kind of graphs with
strongly-connected components, only a small group can reach
each other. It also has bad coefficient in clustering. In k-means
with adjacency matrix, the modularity is almost approaching
zero, however, as shown in Fig. 5 (a), our proposed method
still gets the modularity average higher than 0.2. Although

this result is slightly less, our method still performs well for
k-means with loose grouping dataset.

For runtime shown in Fig. 5 (b), our proposed method is
faster than k-means with adjacency matrix for the cases when
k is from two to six. Actually, the edges are less dense so that
the k-mean algorithm spent time in computing many bad
features. We observe that when the data size grows, k-means
algorithm not only needs a large space and time to transfer
data for adjacency matrix but also needs more time to divide
the graph into small clusters.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a graph-based k-means
algorithm on Spark. Given a dataset, a graph could be
structured and fed into this algorithm for solving the
clustering problem. We also implemented the k-core
decomposition with GraphX API to find the centers of
clusters.

By spending more runtime, our proposed method would
be able to find clusters with higher modularity. If we take the
time for data processing into account, the total elapsed time
of our method will be approaching to that of k-means. It is
because the matrix structure used by k-means needs more
processing time especially for the sparse matrix of many
vertices with few edges. We find that k-core decomposition
still is a good method for finding centers of clusters.

The initial random centers have a large effect on the
performance of the k-means algorithm and our proposed
method. Runtime can be greatly reduced if the two methods
start with good initial points. Furthermore, even if the two
methods start with the same initial centers, they probably have
big difference in the clustering and the result value of
modularity. We also find that vertices with many neighbors
have great dominating effects. If we can select initial centers
nearby these vertices, we can gain a better result.

Future work is to improve the performance of our
proposed method further. The distributed k-core
decomposition could be improved by integrating with Pregel
algorithm. The original Pregel algorithm wastes a lot of time
in sending initial iterators that have impact on the
performance of GraphX. We plan to use the internal code of
GraphX Pregel API to reconstruct the k-core decomposition.

REFERENCES

[1] M. Zaharia, et al., “Spark: cluster computing with working sets” Hot

Cloud, vol. 10, 2010, pp.10-10.

[2] R. Xin, J. Gonzalez, M. Franklin, and I. Stoica “GraphX: A Resilien
t Distributed Graph System on Spark”, AMPLab, EECS, UC Berkele

y 2013

[3] W. Khaouid, M. Barsky, V. Srinivasan, and A. Thomo, "K-Core Deco
mposition of Large Networks on a Single PC," Proc. VLDB Endowm

ent, vol. 9, no. 1. 2015.

[4] G. Malewicz, et al., “Pregel: a system for large-scale graph processin
g,” Proc. 2010 ACM Intl. Conf. on Management of data, 2010.

[5] J. Hartigan and M. Wong, “A k-means clustering algorithm,” Applie

d Statistics, vol. 28, 1979, pp. 100-108.
[6] A. Montresor, F. Pellegrini, and D. Miorandi, “Distributed k-core dec

omposition,” IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 2, 2013,

 pp. 288–300.
[7] M. Newman, “Modularity and community structure in networks,” Pr

oc. Natl. Acad. Sci. USA, vol. 103, no. 23, 2006, pp. 8577-8582.

97Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 108 / 172

[8] Stanford Large Network Dataset Collection, http://snap.stanford.edu/

data/index.html [Jul, 6, 2016].

[9] D. Lusseau, et al., “The bottlenose dolphin community of Doubtful S

ound features a large proportion of long-lasting associations,” Behav

ioral Ecology and Sociobiology,” vol. 54, 2003, pp. 396-405.
[10] W. W. Zachary, “An information flow model for conflict and fission

in small groups,” J. Anthropological Research, vol. 33, 1977, pp. 452

-473.
[11] J. McAuley and J. Leskovec, “Learning to Discover Social Circles in

 Ego Networks,” NIPS, 2012.

[12] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph Evolution: Dens
ification and Shrinking Diameters,” ACM Trans. Knowledge Discov

ery from Data, vol. 1, no. 1, 2007.

[13] M. Ripeanu, I. Foster, and A. Iamnitchi, “Mapping the Gnutella Netw

ork: Properties of Large-Scale Peer-to-Peer Systems and Implication

s for System Design,” IEEE Internet Computing Journal, 2002.

[14] D. Lusseau and M. E. J. Newman, “Identifying the role that individu
al animals play in their social network,” Proc. R.SOC.LONDON B,

271:S477, 2004.
[15] “Hadoop,” http://hadoop.apache.org/.
[16] “MapReduce,” http://research.google.com/archive/mapreduce.html.

[17] J. Hartigan and M. Wang, “A K-Means Clustering Algorithm,” J.

Royal Statistical Society, vol. 28, no.1, 1979, pp. 100-108.

Figure 3. Modularity and runtime of dolphin social network.

Figure 4. Modularity and runtime of Facebook social network.

Figure 5. Modularity and runtime of Gnutella network.

0

0.1

0.2

0.3

0.4

0.5

2 3 4 5 6 7 8

M
o
d

u
la

ri
ty

Number of cluster
(a)

propose method k-means

0

10

20

30

40

50

2 3 4 5 6 7 8

R
u

n
ti

m
e

(s
ec

s)

Number of cluster
(b)

propose method k-means

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2 3 4 5 6 7 8 9 10

M
o
d

u
la

ri
ty

Number of cluster
(a)

propose method k-means

0

10

20

30

40

50

2 3 4 5 6 7 8 9 10

R
u

n
ti

m
e

(s
ec

s)

Number of cluster
(b)

propose method k-means

0

0.05

0.1

0.15

0.2

0.25

0.3

2 3 4 5 6 7 8

M
o
d

u
la

ri
ty

Number of cluster
(a)

propose method k-means

0

10

20

30

40

50

2 3 4 5 6 7 8

R
u

n
ti

m
e

(s
ec

s)

Number of cluster
(b)

propose method k-means

98Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 109 / 172

Data Placement Based on Data Semantics
for NVDIMM/DRAM Hybrid Memory Architecture

Gaku Nakagawa, Shuichi Oikawa
Department of Computer Science

University of Tsukuba
Tsukuba, Ibaraki, Japan

e-mail: {gnakagaw, shui}@cs.tsukuba.jp

Abstract— Non-Volatile Dual Inline Memory Module
(NVDIMM) makes it possible to expand the main memory with
non-volatile memory. However, constructing the main memory
only with NVDIMM is unrealistic because NAND Flash, the
most promising candidate as NVDIMM device, has several
shortcomings about write access. The hybrid memory
architectures with NVDIMM and Dynamic Random Access
Memory (DRAM) is a method to hide the shortcoming of
NAND Flash. In the architecture, we can offload write-hot data
to DRAM. In this paper, we utilize data semantics to
determine data placements on NVDIMM/DRAM hybrid
memory architecture. The architecture requires distributing
data between NVDIMM and DRAM. Data semantics (i.e.,
meaning of data) is useful for the decision for the data
placements. As a proof-of-concept, we executed a simulation
experiment to determine data allocation between NVDIMM
and DRAM based on the data semantics. As a result, we could
suppress write access to the NVDIMM area under only 0.2%
of the DRAM area.

Keywords-memory management; nvdimm; non-volatile memory.

I. INTRODUCTION

Non-Volatile Dual Inline Memory Module (NVDIMM)
[1] makes it possible to expand the main memory with non-
volatile memory. NVDIMM is an interface standard to
connect between solid state drive and Dual Inline Memory
Module (DIMM) slots [1]. Now, we can access SSDs (Solid
State Drives) only via an input/output bus, such as Serial
ATA (Serial Advanced Technology Attachment) and PCI-
Express (Peripheral Component Interconnect) [2]. With the
NVDIMM standard, we can access SSD via a memory bus.
It reduces the latency between Central Processing Unit
(CPU) and SSDs. Thus, NVDIMM makes it possible to use
SSD as part of the main memory.

Constructing the main memory only with NVDIMM is
unrealistic. It is required to combine NVDIMM and the
existing DRAM. NAND Flash, the most promising candidate
as NVDIMM device, has two shortcomings related to write
access. One is that the write access latency is much larger
than that of DRAM. The other is limited write endurance.
Thus, if we place data with many write access (write-hot
data) on NVDIMM, the system will lose its performance and
durability. The hybrid memory architectures with NVDIMM

and DRAM are methods to hide the shortcomings of NAND
Flash [3] – [5]. In the architectures, we can offload write-hot
data to DRAM.

NVDIMM/DRAM hybrid memory architecture requires
distributing data between NVDIMM and DRAM. It is ideal
that there are write-hot data on the DRAM area and write-
cold data on the NVDIMM area. A simple way is data
migration based on the number of write access. In the way,
all new data is placed on NVDIMM area. If the memory
manager detects write-hot data on NVDIMM area, it moves
the detected data to the Non-Volatile Memory (NVM) area.
However, the simple method has a problem. With this
method, the memory manager cannot detect write-hot data
before actual write access concentrations.

In this paper, we utilize data semantics to resolve this
problem. Data has its meaning in each program context (data
semantics). The semantics have their characteristics about
write access (i.e., write-hot or write-cold). With the
characteristics, we can determine the appropriate placement
area for each data.

As a proof-of-concept, we executed a simulation
experiment to determine data allocation between NVDIMM
and DRAM based on the data semantics. As a result, we
could suppress write access to the NVDIMM area under only
0.2% of the DRAM area.

The paper is organized as follows. Section II shows the
usefulness of data semantics for data placement on
NVDIMM/DRAM hybrid memory architecture. Section III
shows an evaluation experiment for a proof-of-concept.
Section IV shows the summary of this paper.

II. DATA PLACEMENT BASED ON DATA SEMANTICS

NVDIMM/DRAM hybrid memory architecture requires
determining data placement between NVDIMM and DRAM.
Data semantics is useful information for the decision. Each
program places its data in its memory area. The data have
semantics in each program context, such as numeric data,
string data, some data structures, and so on. Each data
semantic has its write access characteristics. For example, a
pointer that indicates the head of a linked list has the
possibility to be updated. In contrast, the string data that
contains command line arguments does not have the
possibility to be updated. We can predict whether data is
write-hot or write-cold based on the write access

99Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 110 / 172

characteristic of the data. With that prediction, we can
determine the appropriate placement area for each data.

Current operating systems do not know the data
semantics in user processes because they do not take care of
the data meaning. In this research project, we proposed a
method to determine the data placement at programming
language runtime level. In the method, a programming
language runtime manages data placement between the
allocated NVDIMM area and DRAM area based on the data
semantics. The proposed method focuses on class types in
the target program as the data semantics.

III. SIMURALATION EXPERIMENT

For a proof-of-concept, we executed a simulation
experiment for data placement based on data semantics. We
modify an existing Java language runtime to distribute data
between 2 separated areas: pseudo-NVDIMM area and
DIMM area. In the experiment, we did not use any
NVDIMM device. The NVDIMM area was standard
DRAM. Thus, the results did not take into account the
characteristics of NVDIMM. The simulation software is
implemented based on Jikes Research Virtual Machine (Jikes
RVM). The base version of Jikes was 10709.

In the simulation, the language runtime corrects the
characteristics of write access to each class type. The runtime
determines the write-hot classes based on the corrected
information. It determines data placement based on the list of
write-hot classes, i.e., it places the write-hot class instance on
DRAM area. The runtime often makes a miss decision. They
may place the write-hot data to NVDIMM. The runtime
detects the write-hot objects, as well as the write-hot class. If
it found a write-hot object on the pseudo-NVDIMM area, it
moves the object to the DRAM area. Also, it detects the
write-cold objects on DRAM area. When the runtime finds
them, it moves the detected object to the pseudo-NVDIMM
area. We executed a benchmark software on the simulation
software. We adopted the Jython benchmark from the
DaCapo benchmark suite [6], version 2006-10-MR2.

Fig. 1 describes the number of write accesses to each
memory area in chronological order. The blue and red lines
represent the number of write accesses to NVDIMM and
DRAM respectively. The green dotted line describes the sum
of the number of write accesses to the two areas. The data
shows that the number of write accesses to the pseudo-
NVDIMM was much lower than that of DRAM area. The
number of write accesses to the pseudo-NVDIMM area was
only 0.2.

Fig. 2 describes the data distribution between the DRAM
area and the pseudo-NVDIMM area. The data shows that
there was much data on the pseudo- NVDIMM area. The
maximum size of the DRAM area was 8.2 MiB. The average
size of the DRAM area was 6.1 MiB. The maximum size of
the pseudo-NVDIMM area was 29.9 MiB. The average size
of the pseudo- NVDIMM was 27.3 MiB.

The results show that we can reduce the number of write
access to the pseudo-NVDIMM area with data semantics.
The number of write accesses to the pseudo- NVM area was
much less than that to the DRAM area while the runtime
placed much data on the pseudo- NVDIMM area than on the
DRAM area.

IV. SUMMARY

In this paper, we propose a new approach for the data
placement decision on the hybrid memory architecture. The
proposed approach utilizes the data semantics to resolve the
problem. Data has data semantics in the program context.
The semantics have their characteristics about write access.
With the characteristics, we can determine the appropriate
placement area for each data. The results of a proof-of-
concept evaluation show that the proposed method has
significant merits for the data placement problem related to
the NVDIMM/DRAM hybrid memory architecture.

There are several future works. The important one is an
experiment on cycle-accurate computer architecture
simulators. In this paper, the accuracy of the experiment is
not sufficient because we did not use any real NVDIMM
devices. For a detailed discussion, we need a more accurate
evaluation. An experiment on the simulator that reproduces
memory access behavior (i.e., cycle-accurate simulator)
would be useful for that.

REFERENCES

[1] JEDEC Solid State Technology Association, “JEDEC Annou
nces Support for NVDIMM Hybrid Memory Modules”. [Onli
ne]. Available from: https://www.jedec.org/news/pressrelease
s/jedec-announces-support-nvdimm-hybrid-memory-modules,
2016.11.1.

[2] David A. Patterson and John L. Hennessy, “Computer
Organization and Design”, Fourth Edition. Morgan Kaufmann
Publishers Inc., 2008.

[3] G. Dhiman, R. Ayoub, R. Tajana, “PDRAM: A Hybrid
PRAM and DRAM Main Memory System,” in Proc. of the
46th Annual Design Automation Conference (DAC’ 09), pp.
664–669, 2009.

[4] P. Zhou, B. Zhao, J. Yang, Y. Zhang, “A durable and energy
efficient main memory using phase change memory
technology,” in 6th Annual International Symposium on
Computer Architecture (ISCA ’09), ACM, pp. 14–23, 2009.

[5] W. Zhang and T. Li, “Exploring Phase Change Memory and
3D Die-Stacking for Power/Thermal Friendly, Fast and
Durable Memory Architectures,” in Proc. of PACT’ 09, IEEE,
pp. 101–112, 2009.

[6] S. M. Blackburn, R. Garner, C. Hoffmann, A. Khang, K.
Mckinley, R. Bentzur, et al., “The DaCapo Benchmarks: Java
Benchmarking Development and Analysis,” in Proc. of the
21st annual ACM SIGPLAN conference on Object-Oriented
Programing, Systems, Languages, and Applications, ACM,
pp. 169–190, 2006.

100Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 111 / 172

Figure 2. Change of memory allocation sizeFigure 1. Change of write access

101Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 112 / 172

A Load Balancing Mechanism Based on Fuzzy Nonparametric Analysis of QoS
Parameters

Dmytro Halushko, Oleksandr Rolik

Department of Automation and Control in Technical
Systems, National Technical University of Ukraine “Kyiv

Polytechnic Institute”
Kyiv, Ukraine

e-mail: dmytro.halushko@lll.kpi.ua, o.rolik@kpi.ua

Volodymyr Samotyy
Department of Automatic Control and Information
Technology, Faculty of Electrical and Computer
Engineering, Cracow University of Technology

Cracow, Poland
e-mail:vsamotyy@pk.edu.pl

Abstract – Load balancing enables the increase the productivity
and quality of services being provided by data centers. It is
suggested to use virtual machines for a more flexible allocation
of data center resources. The proposed two-step method
provides a statistical evaluation of service quality without any
assumptions about the probability characteristics of the
processes occurring in the data center. The result of this
evaluation is used in load balancing between several virtual
machines. The proposed method is implemented in the
management system for the SLA-defined service quality
management. The results of this implementation are presented
in the paper.

Keywords – QoS; fuzzy logic; nonparametric statistics;
zonoids; load balancing.

I. INTRODUCTION

Data centers provide a scope of services to their
customers. Quality of Service (QoS) is specified in the
Service Level Agreement (SLA) and directly dependents on
the volume of Internet Technology (IT) resources they have
allocated, the number of users using this service, etc.

In order to avoid losses due to non-compliance of SLA,
the data center manager monitors the quality of provided
services. When quality degrades considerably, then the
volume of resources that support these services needs to be
increased. However, an excessive increase in the volume of
resources leads to financial losses for the data centers.
Therefore, it is necessary to implement a continuous
monitoring of the allocated resource volume in such a way
that the quality of this service will correspond to the
stipulations in the SLA with a minimum number of allocated
resources. Service Level Management and allocation of
resources are managed by control systems of the data center.
For the distribution of tasks or user requests to the data
centers, load balancers interacting with management systems
are used.

The remainder of the paper is organized as follows: in
Section II, the related work is discussed. The method which
enables to determine the quality of service provided is
described in Section III. In Section IV, the application of
estimated QoS value in load balancing is described.
Theoretical calculations have been confirmed by the
experiments, results of which are shown in Section V. The
paper is concluded with Section VI, where the results and
future research directions are addressed.

II. RELATED WORK

In [1], the authors propose a load balancing algorithm to
optimally distribute the incoming tasks in the cloud data
centers. In [2], the authors propose a virtualization
framework that makes background load balancing more
flexible and less resource intensive. The authors of article [3]
formulate a load balancing problem as a robust optimization
problem, that minimizes the worst-case cost of a given data
center’s services. Another approach to solving this problem
is described in [4]. The authors propose to differentiate the
SLA agreements with different kinds of hosting, using
several criteria.

In [5], the authors propose a method for aggregating
quality metrics of an IT infrastructure component to estimate
its functioning. The method is based on the graph-
representation of the IT infrastructure and a non-parametric
statistic. It enables to aggregate the parameters which have
different types and which impact the quality of component
functioning in generalized parameters. This method solves
the problem of generalization of element parameters by
representing them in a single parametric space with the
possibility of projection to the quality axis. This
generalization takes into account the probabilistic side of
consideration of elements not being attached to any
distribution by using non-parametric models.

One should also take into account the geolocation of the
data center servers. The authors in [6] propose to manage the
data center’s servers by activating or deactivating certain
servers in data center. This approach takes into account the
fact that not all servers of data centers are located at the same
place.

III. FUZZY NONPARAMETRIC ANALYSIS OF QOS

A data center is composed of many computation and
storage nodes. Each node has a series of IT resources, such
as central processing unit (CPU), random access memory
(RAM), physical memory, network bandwidth, etc.

The proposed two-step method provides a statistical
evaluation of QoS without any assumptions about the
probability characteristics of the processes occurring in the
data center.

102Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 113 / 172

A. Defining of the IT resources that affect the functioning
of data center’s services

Assume that the provider offers users a set { }is=S ,

1,i K= of services. For each service, one or several

identical virtual machines (VM) Vj,i, 1, ,ij M= 1, ,i K=

where Mi is the maximum number of VM, can be allocated
for the maintenance of the i-th service. Each VM supports
only one service.

Resources from a Rm, 1,m L= are allocated to each
virtual machine, where L represents the number of different
types of resources at the data center. The volume rm,i,

1, ,m L= 1,i K= of resources of the m-th type is allocated
to each VM supporting the i-th service. The volume of
allocated resources to each VM supporting the i-th service is

defined by requirements of the i-th, 1,i K= service. In the

course of operation, each VM Vj,i, 1, ,ij M= 1,i K=

actually involves the volume *
,m ir , 1, ,m L= 1,i K= of the

m-th resource type. The size *
,m ir dynamically changes and

depends on the number of users of the i-th service and the
type of user requests.

For each i-th service from a set of services S within
process of Service Level Management (SLM) quality

indicators are defined. The measure values ,b iq , 1, ib D= ,

1,i K= of quality approved by the customer are agreed upon

in SLA, where ,b iq is a value of the b-th indicator of quality

of the i-th service, and iD is the number of indicators of

quality of the i-th service. The services should be monitored
to ensure the specifications in the SLA level of QoS. For this

purpose, the control system defines the actual values
,

* ,
b i

q

1, ,ib D= 1,i K= of quality indicators, and compares them

to the approved values. SLM is aimed at the constant
maintenance of service quality at the approved level.

 *
, , 0, ,b i b iq q b i− → ∀ . (1)

As each service is provided by several VMs Vj,i,

1, ,ij M= 1,i K= , it is rather labor-consuming to trace the

current measure values
, ,

* ,
j b i

q 1, ,ij M= 1, ib D= , 1,i K=

of quality of each VM which provides the i-th service with
subsequent assessment of the final quality level of apply the
service provided by the data center. Therefore, authors
proposed to use the indirect method of a quality evaluation of
services by applying the methods of non-parametric analysis
and fuzzy logic. Use of fuzzy logic in case of a quality
evaluation of services is caused by the fact that the
assessment by the user of the services is received by the
service provider with use of the linguistic variable accepting
values from "it is very bad" to "perfect".

The essence of a method is that, on the basis of the
saved-up statistics for VM providing the i-th service, the

dependence of values
,

* , ,
b i

q b i∀ of quality indicators on

values *
, , ,m ir m i∀ of the involved volumes of the data center

resources is established. The management of services quality
comes down to the fact that the management system
permanently makes determination of the involved volumes

*
,m ir of resources of each VM Vj,i, 1, ,ij M= 1, .i K= Then

the management system estimates the current level
, ,

*

j b i
q of

the b-th, 1, ib D= quality indicator of service, provided by

VM Vj,i, 1, ,ij M= 1,i K= and causes the decision on

management of the level of services. At the same time, two
controlling mechanisms on the maintenance of the level of
services within SLA level are applied. One mechanism is
based on the scope of changes of the resources allocated for
service maintenance. In this work, an increase or reduction
of the number of VM providing services is performed. Other
mechanisms use load balancing for VM. At the same time,

for each i-th service, 1,i K= a new load balancer is initiated,
which is a component of the management system.

In the absence of assumptions about the nature of the

dependencies between the value
, ,

* ,
j b i

q 1, ,ij M= 1, ib D= ,

1,i K= of the service quality and the values *
,m ir , 1, ,im L=

1,i K= of used resource types, as well as the possibility of
the existence of any kind of relationship between the quality
of service provided by separate VMs and the total quality of
service provided by data center, it is expedient to apply
expert estimation, the fuzzy logic apparatus and the
apparatus of nonparametric analysis.

As in this paper homogeneous servers are being

considered, and VMs Vj,i, 1, ,ij M= which provide the i-th

service, have identical characteristics, then the dependence

established between an indicator of quality
, ,

* ,
j b i

q and volume

of the involved resources *
,m ir the index j can be excluded.

Geometric estimation of nonparametric statistics is used
in analysis of dependences between values of volumes

*
, , ,m ir m i∀ of resources which consume VMs providing the i-

th service and values of indicators of quality
,

* ,
b i

q 1, ,ib D=

1,i K= of the i-th service which it provides. The projection
of the zone responding to a certain value of the linguistic
QoS variable establishes connection of measured values of
quality with the VM resources.

B. Converting the quality indicators to fuzzy variables

By means of a fuzzy logical conclusion [7] the

dependence between values
,

* ,
b i

q 1, ,ib D= 1,i K= and

integral quality estimation ,iQ 1, ,i K= of the i-th service

which is also fixed within SLA is established. The integral
quality estimation ,iQ of the i-th service is usually described

by a linguistic variable and linguistic value, which
correspond to the quality estimation of the user.

103Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 114 / 172

Integral quality estimation iQ of the i-th service and

indicators of quality
,

* ,
b i

q b∀ of the i-th service are described

by linguistic values from sets of { }, ,Q
il ω 1, ,i K= 1, iω = Ω

and { }, , ,q
b il γ ,1, b iγ = Γ , where iΩ is the amount of the

linguistic values corresponding to integral quality estimation
of the i-th service, ,b iΓ is the amount of the linguistic values

describing the quality indicators , ,b iq 1, ib D= of the i-th

service 1, .i K= To each , ,Q
il ω 1, iω = Ω and , , ,q

b il γ

,1, b iγ = Γ are mapped to fuzzy sets ,
Q
i ωΨ and , ,

q
b i γΨ

respectively.

At the fuzzification stage, a degree of belonging , ,
q
b iL γ of

the values , , ,b iq b i∀ to fuzzy sets , ,
q
b i γΨ ,1, b iγ = Γ is

defined.

For each service ,is 1,i K= , the Li-dimentional space is

defined where to each axis the type Rm, 1,m L= of the data
center´s resource is mapped. At points of such space, the
value of coordinates corresponds to a certain value of the

volume of the involved resources *
,m ir of VM.

For all fuzzy values , , ,, 1,q
b i b il γ γ ∈ Γ the ,b iP reference

points having property (4) are chosen.

 , , ' , , '' ,
q q
b i b iL Lγ γ (4)

where ,', '' 1, b iγ γ ∈ Γ and ' ''γ γ≠ . Such points set

reference area in space for the fuzzy set , ,
q
b i γΨ .

For such point set the central ordered regions of the given
depth α is constructed. Due to a number of useful properties
described in the definitions [8] of central ordered regions, the
most suitable notation is zonoid [9] – a convex polyhedron
with such useful properties as:

• the affinity equivariance that "binds" the location
estimate to elements;

• the completeness of information that provides a
unique evaluation;

• the continuity in depth (depth defines the region
centrality);

• the distribution that ensures stability of the solution
to the input data;

• the bulge that simplifies the calculation of degree of
belonging.

The zonoid has an appearance of a convex polyhedron
and is set by formulas:

 () { }1 2, , , ,PZ conv U U Uα = … (5)

for]0,]
P

α
Β

∈ , and

1

1

,
1 1

1p pP P
conv U U

β
βα α Β+

=

Β

+ −∑

 (6)

for
1

[,],
P P

α
Β Β +

∈ where { }1,2,..., 1 ,PΒ ∈ −

{ } { }1 2 1, ,..., 1,2,..., ,Bp p p P+ ⊂ and { }1 2, , , PU U U… –

points on the basis of which the zonoid is constructed, P –
the number of such points.

To define the degrees of belonging , ,
q
b iL γ within the point

in time t, there is a point , ()i bU t in space, corresponding to

the current values of the involved VM resources in point t:

 { }* *
, ,1 ,, ,(),...,(()) .

ii b i Li bbU t r t r t= (7)

For each linguistic value , , ,q
b il γ ,1, b iγ = Γ the smallest

Euclidean distance , ,b id γ from a point , , ()i bU tγ to the zonoid

corresponding to this linguistic value is defined. The value

, ,
q
b iL γ is estimated by the formula:

{ }

,

, ,

, ,1 , ,2 , , , ,

1
1 ,

max , ,...,
b i

q
b i

b i b i b i b i

L
d d d d

γ

γΓ

= −
−

 (8)

where ,b iΓ – amount of the linguistic values describing

quality indicators , ,b iq 1, ib D= of the i-th service.

C. Reduction of service quality indicators, specified in the
SLA, to a single integral quality indicator

In order to establish the dependence of an integral quality

indicator iQ
, 1,i K= , from all quality indexes , ,b iq

1, ib D= of the i-th service, the fuzzy database is used. Rules
of such base are represented as follows:

 () [](), , , ,| 1, | 1, ,q Q
b i b i i iIF L THEN lγ ωγ ω ∧ ∈ Γ ∈ Ω (9)

for 1, .ib D=

Indicate ,
Q
iL ω as the degree of belonging to the fuzzy set

,
Q
i ωΨ , 1, iω = Ω . Its value is defined as the minimum of all

values derived from the fuzzy database rules (9)

corresponding to fuzzy value , , .q
b il γ

D. Calculation of the integral quality indicator of service

At a defuzzification stage for the i-th service the
numerical value of its integral quality indicator iQ is

calculated by a formula:

104Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 115 / 172

()

()

1

0

1

0

,

i

x
i

i

x

x F x dx

Q

F x dx

=

=

⋅

=
∫

∫
 (10)

where ()iF x is calculated by the formula:

 ()()(),,() , ,Q
ii iLF x agg imp xω ωµ= (11)

where ,i ωµ is the membership function of integral quality

indicator iQ to the fuzzy set ,
Q
i ωΨ , 1,i K= , 1, .iω = Ω

IV. LOAD BALANCING

Two control mechanisms are implemented in the
management system "SmartBase ITS Control", developed by
the National Technical University of Ukraine "Kyiv
Polytechnic Institute” for the SLA-defined service quality
management. The first of them assumes a change of the
number of VMs providing the i-th service, and the second –
the VM load balancing.

The algorithm of "SmartBase ITS Control" management
system during quality management of the i-th service
consists in the following.

For each VM Vj,i, 1, ,ij M= 1,i K= the current quality

of the provided service is defined. For this purpose, the value

of the involved volumes of resources *
, ,m ir 1, ,m L= 1,i K=

is defined for each VM.

Proceeding from value *
, ,m ir 1, ,m L= 1,i K= taking

into account expressions (6)–(8) the values , , ,q
b iL γ 1, ib D= ,

,1, b iγ ∈ Γ are calculated.

The calculated values , , ,q
b iL γ are substituted in rules (9)

of fuzzy database and degree of belonging to , ,Q
iL ω 1, iω = Ω

is defined.
To find a numerical value of an integral quality indicator

iQ of the i-th service for j-th VM, the center of mass is

determined by a formula (10) which represents the result of
aggregation of belonging functions ,i ωµ , bound above by the

values ,
Q
iL ω determined by formula (11).

If for all VMs Vj,i, 1, ,ij M= 1,i K= , the received

values of integral quality indicators iQ are lower than

stipulated within SLA, then the manageent system makes the
decision to increent the number of VMs that provide the i-th
service.

If for all VMs Vj,i, 1, ,ij M= 1,i K= the received values

of integral quality indicators iQ exceed the stipulations

within SLA, then the decision to decrement the consumption
of resources of the data center is made. Specifically the
number of available VMs for the i-th service is decremented.

If the received values of integral quality indicators iQ are

in norm limits, then the balancer distributes the user’s

requests between VMs Vj,i, 1, ,ij M= 1,i K= in proportion

to values iQ for each VM.

V. EXPERIMENTAL RESULTS AND ANALYSIS

As the experimental service, a Web service, which works
using the HTTP protocol had been selected (denoted as 1s).

The indicator of HTTP-service quality is the time of reaction
of the server for the user's request.

As there are no well-defined standards for the time of any
given loaded page, it had been decided to follow the
recommendations by [14] and to follow the
recommendations by Yandex. In said recommendations, it
was stipulated that the quality of HTTP service is considered
excellent if a server response time is less than 3 seconds,
satisfactory – from 3 to 6 seconds, and unsatisfactory if the
time of the server response is longer than 6 seconds.

The VM resources are determined by the parameters that
are indirectly influencing HTTP server response time. Based
on the paper [14], it was defined, that the time of the page
loading, and the quality of HTTP-service are influenced by
following resources: the involved processor time, the free
RAM, and throughput of the communication channel.

For carrying out an experiment, three homogeneous
virtual machines 1,1 1,2 1,3, , .V V V are deployed. On VMs the

Apache Server and Java were installed. As test service the
Atlassian Jira was selected. It is rather resource-intensive
service. It is rather resource-intensive service therefore even
insignificant increase in the number of the users’ requests for
such service leads to noticeable increase in the value of
resources spent by VMs. At the initial point in time, only one
virtual machine is active. Other machines are in the sleep
mode to decrease data center resource consumption.

As VMs are homogeneous, the data center operators are
able to increase quickly the number of machines, if
necessary. CPU load (parameter r11), free RAM (parameter
r21) and bandwidth of network interface (parameter r31) are
resources that may be allocated for service s1 for

1,1 1,2 1,3, , .V V V

The workload is formed by Apache Jmetter during the
experiment. From 1 to 100 users’ requests per second have
been emulated. The emulation results without load balancing
are displayed in Fig. 1.

Fig. 1 shows that the load time increases dramatically on
the 20th second approximately. This is due to the increase in
the number of users’ requests from 1-25 to 75-100.

105Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 116 / 172

Figure 1. Emulation results without management system

The results of the same experiment, while using the
management system, are shown in Fig. 2.

Figure 2. Emulation results with management system

When the management system has determined that there
are not enough resources for providing service quality, it
launches an additional virtual machine. This happens after 20
seconds. Then, the load balancer begins distributing users’
requests between the virtual machines evenly.

With a more uniform VM workload increase, the
management system allowed to exclude unwanted delays
completely. Fig. 3 shows the simulation results without
control, but with a uniform workload increase.

Figure 3. Emulation results with a uniform workload increase without
management system

Fig. 4 displays the simulation results with the activated
management system, as proposed in the paper, with a
uniform workload increase.

Figure 4. Emulation results with a uniform workload increase with
management system

Simulation results have shown that the proposed load
balancing method works satisfactorily when the number of
user’s requests changes slightly. When a workload increases
sharply up to the critical point, the management system
needs some time to adjust to the new conditions.

This problem arises from the fact that the new virtual
machines need time to turn on. And even the fact that they
are in the sleep mode, but are not turned off completely, did
not allow them to react quickly enough to sudden changes in
the server’s workload.

If one of the backup virtual machines is left enabled, but
the load balancer for it is disabled, so that it does not send
requests until the moment when the active virtual machines
fully cope with the current workload, the response to sudden
workload surges will be more rapid.

Only providing unlimited resources would completely
eliminate the problems associated with the sharp increase in
workload at the servers, which is not feasible. But it is
possible to use the methods described in [2] to decrease the
reaction time.

VI. CONCLUSION AND FUTURE WORK

In this work, a load balancing management system for
data center servers based on the current quality of service is
proposed. It is suggested to use virtual machines for a more
flexible allocation of data center resources.

The advantage of this method of load balancing is that a
balancer determines the need for additional resources, being
based not on the number of resources involved, but on the
value of the integral quality indicator of services. The
proposed two-step method provides a statistical evaluation of
QoS without any assumptions about the probability
characteristics of the processes occurring in the data center.

In contrast to the method proposed in [5], the method
described in this paper allows to determine in advance the
time when there is a need for additional resources for the
given service. In [3], the authors have proposed a load
balancing algorithm, which operates at a consistently high
workload at the servers. The disadvantage of this method is
the increased consumption of data center resources at low

106Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 117 / 172

workloads. In [4], the authors have proposed to define SLA
service compliance of service quality on the proposed
criteria. In this study a similar method has been suggested.
But the use of fuzzy inferencing, when aggregating the
quality indicators overall, integral quality indicator provides
a more accurate assessment of the service quality.

HTTP-service experiments were carried out as an
example for showing operability of the proposed
management system. The experiments have shown the
efficiency of this method. The quality of the service under
consideration did not go beyond the norm in the
experiments.

However, the authors of this work have not considered
the problems described in [2], and [6]. The balancing method
proposed in this paper, in combination with the algorithms
described in [2], and [6], will improve the current method.
Also, the time of VM switching on will be reduced.

REFERENCES

[1] A. Kumar and M. Kalra, “Load balancing in cloud data center using
modified active monitoring load balancer,” International Conference
on Advances in Computing, Communication, & Automation
(ICACCA) (Spring), pp. 266—270, 2016.

[2] J. Duan, “A data center virtualization framework towards load
balancing and multi-tenancy,” IEEE 17th International Conference on
High Performance Switching and Routing (HPSR), pp. 14—21, 2016.

[3] T. Chen, Y. Zhang, and X. Wang, G. B. Giannakis “Robust
geographical load balancing for sustainable data centers,” IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 3526—3530, 2016.

[4] O. Shpur, B. Strykhalyuk, and O. Morushko, “The optimal
distribution of optical resources between data centers for providing
the required level of QoS,” the 13th International Conference on
Modern Problems of Radio Engineering, Telecommunications and
Computer Science (TCSET), pp. 649–651, 2016.

[5] O. Rolik, P. Mozharovskyy, V. Vovk, and D. Zaharov, “Constructing
quality metrics for IT infrastructure components using the
nonparametric statistics,” Visnyk NTUU “KPI” Informatics,
operation and computer science, vol. 53, pp. 160–169, 2011.

[6] L. Gu, D Zeng, A Barnawi, S Guo, and I. Stojmenovic, “Optimal
Task Placement with QoS Constraints in Geo-Distributed Data
Centers Using DVFS,” IEEE Transactions on Computers, vol. 64,
issue. 7, pp. 2049—2059, 2015.

[7] E.H. Mamdani, “Applications of fuzzy logic to approximate
reasoning using linguistic synthesis,“ IEEE Transanctions on
Computers, vol. 26, no. 12, pp. 182—1191, 1977.

[8] Y. Zuo and R. Serfling, “General notions of statistical depth
functions,” Ann. Statist, vol. 28, no 2, pp. 461—482, 2000.

[9] G. Koshevoy and K. Mosler, “Zonoid trimming for multivariate
distributions,” The Annals of Statistics, vol. 25, no. 5, pp. 1998—
2017, 1997.

[10] K. Mosler, T. Lange, and P. Bazovkin, “Computing zonoid trimmed
regions of dimension d>2,” Computational Statistics and Data
Analysis, vol. 53, issue 7, pp. 2500—2510, 2009.

[11] K. Mosler, “Multivariate dispersion, central regions and depth,” New
York. : Springer, p. 291, 2002.

[12] L.A. Zadeh, “Fuzzy Sets,” Information and Control, vol. 8, pp. 338—
353, 1965.

[13] Abu M. T. Osman, “On the direct product of fuzzy subgroups”, Fuzzy
Sets and Systems, vol. 12, pp. 87—91, 1984.

[14] Giovanni Giambene, “Resource management in satellite networks”,
Optimization and Cross-Layer Design, pp. 67—94, 2007

107Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 118 / 172

Dynamic Virtual Machine Allocation Based on

Adaptive Genetic Algorithm

Oleksandr Rolik, Eduard Zharikov

Department of Automation and Control in Technical

Systems, National Technical University of Ukraine

“Igor Sikorsky Kyiv Polytechnic Institute”

Kyiv, Ukraine

email:o.rolik@kpi.ua, email:zharikov.eduard@acts.kpi.ua

Sergii Telenyk, Volodymyr Samotyy

Department of Automatic Control and Information

Technology, Faculty of Electrical and Computer

Engineering, Cracow University of Technology

Cracow, Poland

email:stelenyk@pk.edu.pl, email:vsamotyy@pk.edu.pl

Abstract – The widespread use of the virtualization paradigm

in modern data centers has increased the necessity of

improving the management efficiency of virtual machine

allocation on physical machines (PM). Modern service

providers offer a large number of virtual machine types and

settings. The density of virtual machine placement per physical

server also complicates the solution of this problem. Under

these conditions, for solving such kind of problems, the

adaptive genetic algorithm (AGA) is proposed. The proposed

algorithm uses parametric and algorithmic adaptation

simultaneously by selecting the values for a genetic operator’s

parameters and by selecting the probabilities of applying these

operators. The AGA is evaluated for the solution of virtual

machine allocation problem and demonstrates efficiency

compared to the classical and the controlled versions of genetic
algorithm.

Keywords – data center; genetic algorithm; virtual machine;

resource management

I. INTRODUCTION

Data center resource management is an important and
urgent problem at the present time. The growth in the
number and complexity of modern data centers leads to an
increasing number of virtual machines (VMs) and opens new
challenges for management process automation. The
Infrastructure as a Service (IaaS) paradigm enables
customers to dynamically request the needed number of
virtual machines based on their business requirements. One
of the main tasks of managing resources in IaaS is the VMs
allocation on the physical servers of the infrastructure. The
VMs allocation process must be performed in a way that
results in a reduction in the number of physical servers and a
decrease in the energy consumption.

The use of genetic algorithms (GA) and their benefits
compared with heuristic methods to solve data center
resource management problems is shown in [1]. Classical
genetic algorithms (CGA) have their own specifics as GA
simultaneously use several types of genetic operators: unary,
binary, and multiple. It is difficult to choose the strategy to
generate values of probabilities for the use of certain
operators so that their application gives positive results for
the entire period of the GA. In addition, each operator has a

set of parameters that influence the results of the algorithm,
and to find the optimum values of these parameters is a
rather difficult task.

In [1], a managed genetic algorithm (MGA) is proposed.
It allows the adjustment of the parameters of the algorithm at
all stages of the problem solving. In addition, the MGA does
not suffer from the problems of the classic GA, such as
degeneration of the population, getting into local extremes,
etc. The main disadvantages of MGA are the need for the
participation of an administrator and its application to a
narrow class of problems. The solution to these problems of
GA in general is not possible, therefore it is necessary to
develop an effective strategy for the selection of the
operator’s parameters and for determining the probability of
applying these operators for the entire period of the GA.

The remainder of the paper is organized as follows: in
Section II, the related work is discussed, in Section III the
problem of genetic algorithm adaptation is analyzed and an
AGA is presented, in Section IV a particular case of the VMs
allocation in the data center with a homogeneous
configuration of the PMs is considered. This problem is
proposed to be solved using an AGA. In this section, the
results obtained by classical genetic algorithm, modified
genetic algorithm and adaptive genetic algorithm for solving
the considered problem are compared. Section V concludes
the paper discussing the results and future research
directions.

II. RELATED WORK

As stated in [2][3][4], there is a significant effort of
research in the data center resource management field
including resource provisioning, resource allocation,
resource brokering, resource scheduling, resource mapping,
and resource capacity planning. There are a lot of cloud
computing frameworks and systems proposed that have
specific mechanisms to provide and monitor resources,
including those using heuristics and new methods such as
load prediction mechanisms, considering imbalance of
workload and virtual machine interference.

Genetic algorithms are widely used for solving
computational problems of resource allocation in data
centers, and produce sufficient productive solutions [5][6]. In
these studies, one needs to determine the list of issues that

108Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 119 / 172

need to be figured out when using the GA to solve the
problems of different dimensions and constraints.

During the last decade, many approaches to various VM
placement problems have been proposed. In [7], the authors
propose to model the server consolidation problem as a
vector packing problem with conflicts using techniques
inspired by grouping genetic algorithm. The algorithm has
been tested in various scenarios and it allows to minimize the
number of servers used for hosting applications within
datacenters. Besides, it maximizes the packing efficiency of
the servers utilized.

In [8], the authors consider the virtual machine packing
problem as a multi-objective optimization problem and
propose to solve it by using genetic algorithm as one of the
meta-heuristics. The authors have implemented a virtual
machine packing optimization mechanism based on genetic
algorithm for a virtual cluster management system.

A hybrid genetic algorithm, using best fit decreasing
strategy, was proposed in [9] to deal with infeasible solution
due to the bin representation. The authors have proposed a
new approach based on correcting infeasible chromosomes
to prevent overflow of the bin. Hence, the new proposed
chromosomes were suitable for the application of the genetic
operators. They contributed to the execution time reduction.
The proposed algorithm was evaluated on the VM placement
problem and it lead to the usage of a minimum number of
physical machines.

Energy consumption in the communication network is
another subject of research related to the virtual machine
placement problem. The approach based on genetic
algorithm, that considers the energy consumption in both the
servers and the communication network in the data center,
was proposed in [10]. But the authors’ assumption about
network topology does not strictly correspond to the real data
center networks.

To solve the VM placement problem in a cloud data
center, the authors in [11] proposed to adopt a genetic
algorithm using the future workloads prediction with
Brown’s quadratic exponential smoothing. But their online
self-reconfiguration approach for reallocating VMs is
focused on serving three types of Web transactions, namely
browsing, shopping and ordering transactions.

To address fine-grained virtual machine resource
allocation and reallocation problem, a two-level control
system has been proposed in [12] to manage the mappings of
workloads to VMs and the mappings of VMs to physical
resources. An improved genetic algorithm with fuzzy multi-
objective evaluation has been proposed to efficiently solve
the VM placement problem, which is formulated as a multi-
objective optimization problem of simultaneously
minimizing total resource wastage, power consumption and
thermal dissipation costs.

In [13] [14], the idea of genetic operator adaptation and
adjustment of the probabilities of their use was proposed.
The disadvantage of these approaches is that the adaptation
of only one crossover operator was proposed. Another
disadvantage is that the possible approaches to adaptation are
used independently of each other.

As a rule, for the adaptation of the GA for specific tasks,
a certain control parameter is used [15][16]. The
effectiveness of the deterministic control has been proven for
some tasks [13], but its generalization is problematic.
Adaptive control [17] uses feedback to determine how the
parameters should be changed. With adaptive control [14], it
is necessary to introduce additional information that allows
to adjust the behavior of the operators.

Today, the main efforts of GA researchers are focused on
the adaptation of only one parameter. The most complete
combination of management forms [16] was presented in
[18], where the adaptation was performed simultaneously on
three parameters: probability of mutation, crossover, and
population size. Other forms of adaptive algorithms are
presented in [19][20][21].

III. THE ADAPTIVE GENETIC ALGORITHM

The main feature of the proposed algorithm is the use of
two adaptation strategies, so the process of obtaining the
solution is a cyclical repetition of two stages. In the first
stage, using the parametric adaptation, the algorithm selects
the most productive settings for each of the operators. In the
second stage, the parameter of performance is estimated and
the algorithm selects the most efficient type of operator
taking into account the results of algorithmic adaptation. If
the resulting solution does not satisfy the specified criteria,
the process is repeated from the first step.

The general formulation of the problem of genetic
algorithm adaptation can be reduced to minimizing a
function F that serves as a criterion for GA adaptation and
depends on parameters such as: types of operators to be used
in the evolutionary process, the frequency of use of these
operators and the values of the parameters with which the
operators are applied. Let us define the adaptation function

as (, , , , ,),M C M CF M C where M, С are the parameters

that govern the use of mutation and crossover operators, and
take values from the set {0, 1}, and the equality of the
parameter to 0 means that the operator does not take part in
the evolutionary process, and the equality of the parameter to
1 means that the operator takes part in the evolution process;

,M C are frequencies of the use of operators M and C

respectively which take values from the interval [0; 1];

,M C are the sets of possible values of mutation and

crossover operators.
Finding an explicit form of the function F, even for

simple cases, requires a huge amount of computation that
would negate all the benefits of GA. The use of structural
adaptation within the solution of IT infrastructure
management tasks is impossible, so when carrying out
adaptation it is proposed to use some information regarding
the properties of the function F. In the evolutionary process,
such information will be the types of operators and
parameters of these operators.

Genetic algorithms use several types of operators such as
unary (mutation), binary (crossover), and multiple (multi-
point crossover). Each type of operator has a set of
parameters that affect its behavior, and GA begins with
specific parameter values.

109Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 120 / 172

Suppose the set of types of operators is given as
1{ , ..., ,..., }z ZD d d d , where 1,z Z is the number of

types of operators used in the GA. One such example is the
modified crossover operator or the modified mutation

operator. Each type of operator , 1,zd z Z has a set of

parameters
,1 , ,X() (,..., ,...,),z

z z k z Yd x x x 1, .k Y For

example, the modified mutation operator has two parameters,

which correspond to probabilities
10p and

01p , and

crossover has only one parameter that is the number of
crossover points.

To generate new generations, the GA uses genetic
operators with parameters that correspond to its type. The
parameters take their values from some set or interval. For
modified mutation operator, the parameter’s values will be
selected from the interval [0, 1], whereas the parameter of
crossover operator can take any positive integer value, less

than (1)n .

The parametric adaptation applied to increase the chances
of survival and reproduction of the operators with the
parameter values, showed the best results. Consider the
AGA, which uses the types of operators from the set D. For

each type of operator zd D , 1,z Z the population of

parameter values is constructed. For example, if modified
mutation operator and modified crossover operator are
defined for AGA, then

10 01(_ , ,) {(0.1; 0.1; 0.9),alter rate p p (0.7;0.8;0),

(0.4;0.1;0.1)} is a fixed set of operator instances for

mutations and () {(1),(2),(1)}c n is fixed set of operator

instances for crossover.
Let us denote a set of operators used by AGA as

1{ ,..., ,..., }h HO op op op , 1,h H , where Н is a number of

operators in AGA.
The behavior of each operator is adjusted by changing its

parameters using an evolutionary procedure for each
operator. The evolutionary procedure operates in the space of
possible values of the operator. After starting the AGA,
changes in parameter values are made for each operator.
Since relatively small search space is optimized, a GA is also
used for the search of a set of the operator’s values, leading
to an improvement of the AGA results. GA is used for each
individual operator. Let us denote as operator’s stage of GA
(OGA) the GA that implements searching of the best
operator’s values.

The population for each operator will consist of
chromosomes, which are a set of possible values of the
operator’s parameters. A single-point crossover is used to
generate new populations. The OGA that is used to search
the best values in the space of a single type of the operator is
running as the GA procedure and is referred to as the main
stage of GA (MSGA). The MSGA is working on the direct
solution search. The resulting solution obtained by the use of
OGA is the initial data for MSGA. In this case, AGA is
viewed as a set of the OGA and the MSGA cycles.

The algorithmic adaptation task is solved at the MSGA
stage. This task is to increase the probability of use of

operators that provide the best solutions. To evaluate the
work of the operators, we introduce the following concepts.

The event – the use of a specific genetic operator.
Absolute improvement – an event when the value of the
objective function of the new generation is greater than the
value of the objective function of previous generations.
Improvement – the new generation has a better objective
function value than the parent’s one. Stabilization of
decision – the value of the objective function of the new
generation is slightly different from the parent’s one for a
number of epoch. Degeneration – the next generation has a
worse value of the objective function than the parent’s one,
and none of the generations are better than the parental.

Let us introduce the parameters of performance, showing
the efficiency of the operator in the current generation, and
being used as a feedback for the evolutionary process. Based
on the values of the performance indicators, the AGA
corrects the values of probabilities of using the operators.

The parameter of performance for the operator
hop ,

1,h H is defined as a function of four variables

(, , ,)
hop ae e pw w , where ae is the number of absolute

improvements, e is the number of improvements, pw is the
amount of stabilized solutions, w is the amount of
degeneration. The total number of events on the step of the

AGA is defined as N ae e pw w .

The performance parameter is introduced in order to
determine which of the operators provides the best solution
in the current step of AGA. The frequency of using operators
is taken into account with the relative frequencies of
occurrence of a certain type of events. When 0N the
relative frequency is calculated as follows: for an absolute

improvement – / ;ae ae N improvement – / ;e e N

stabilization of decision – / ;pw pw N degeneration –

/ .w w N

In this paper, we adopted the following procedure for
comparing the performance parameters, which will be
formulated as follows based on the example of the two
operators. An operator will be more productive if it has a
performance setting characterized by a large number of
absolute improvements. If the number of absolute
improvements is the same, the comparison is made on the
number of improvements. If the number of improvements is
also the same, the comparison is made on flat events. If this
comparison does not allow to select the best operator, then
the more productive will be the operator with less amount of
degeneration. If there is an equal number of degenerations,
then the mutation is used.

To determine the order of use of the operators we
introduced the concept of reward. For each operator

,hop O 1,h H the award ()hop is assigned, which

increases as a result of the accumulation of positive
experience. Primarily the operator with the greatest reward is

used. The value ()hop , 1,h H is constantly updated, and

the experience gained during recent tests is seen as more
urgent.

110Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 121 / 172

Let (),hop 1,h H be the rank of operator
hop

assigned depending on the performance such that the most
productive type of operator gets the highest rank. Moreover,
the assignment of the rank is made after completion of the
OGA. The awards are updated at the end of each AGA epoch
in accordance with formula (1)

 () () (), 1,h h hop op op h H

where is the attenuation factor that is constant in the set

{0, 1}. And 0 for the operator, that just came into the

work, and 1 means that all previous experience of the
operator is fully taken into account. The amplification factor

 is to recognize the best operators. The coefficient

having a value less than , is commonly used to ensure that

the operator is required to be used in AGA step.
An example for the two operators: crossover and

mutation, as well as limitations on the duration of the periods
as the amount of epoch is shown below.

Step 1: The setting of the stop condition of the algorithm,
which may be the number of epochs of genetic algorithm or
the algorithm duration.

Step 2. The initialization of the initial population
randomly within the constraints (3)–(5) and the following
rule: when accessing the population, each time its individuals
are sorted in descending order of objective function value.
The best representative of the population is saved as a stored
solution. The best population is remembered as a stored
population. Initially, the primary population is the stored
population.

Step 3: The initialization of the population of the
operator’s values randomly subject to the restrictions
imposed for each type of operator. For example, for the
mutation parameters and the crossover the following values

may be used
10 01(_ , ,) {(0.1; 0.1; 0.1),alter rate p p

(0.2;0.2;0.2), (0.3;0.3;0.3)} and () {(1),(2),(3)}c

respectively.
Step 4. The use of each value of the respective types of

operators to generate intermediate populations, with the help
of the objective function to select values which allow to
achieve the greatest performance indicators for each of the
type of operators. For example, for mutation it may be

10 01(_ , ,) (0.1; 0.1; 0.1)alter rate p p , for crossover it may

be () (1)c .

In the case of improvement of the obtained results, the
stored population is changed using the results obtained by
means of the most productive of the two operators, and the
stored solution is overwritten. If the performance of two
operators is identical, the mutation operator has to be chosen.
If this does not improve the initial solution, proceed to Step 3
and use OGA to adjust the values of the parameters using the
crossover operator.

If it was not possible to improve the parameters of the
operators by using crossover, then apply mutation to avoid
possible falling into local extremes. The use of mutation
parameter to adjust the values of parameters of the operators

is made on a cycle by using the following rules. The rule for
crossover is to increment the number of crossover points, and

if the number of points is equal to (1)n , to take the next

number of crossover points equal to 1. The rule for mutation
is to increase each of the values of mutation parameters by
0.1, and if the value of any of the parameters is 0.9, the next
value is set to 0.1. If the decision is not improving, the
algorithm finishes and the resulting solution is taken as the
most productive.

Step 5: The ranks assigning to operators, calculation of
awards, the use of the operators M times (the total number of
MSGA steps is equal to 2×M in the first epoch, and 3×M in
all subsequent) in descending order of reward value. If the
use of the operator has improved the decision, the solution
must be used as a new stored solution to the problem, and
then continue with the improved population.

Step 6. After a predetermined number of AGA steps, the
value of performance options is updated and the most
productive operator is chosen. For example, if the operator

10 01(_ , ,) (0.1; 0.1; 0.1)alter rate p p has been proven to be

the most productive, it needs to be saved and used in the next
epochs. Overwrite the stored solution.

Step 7. If the conditions of the AGA stop are not met,
then go to step 3 and start a new epoch. On the stage of the
OGA work, the most productive values for all types of
operators must be chosen. For example, if

10 01(_ , ,) (0.2; 0.2; 0.2)alter rate p p and () (1)c for

mutation and crossover respectively, then in MSGA step the
work on population will be carried out for the three operators

(the mutation operator
10 01(_ , ,) (0.1; 0.1; 0.1)alter rate p p

passes from the previous epoch). At the end of MSGA, count
and compare the performance parameters, and choose the
best of the three operators and go to the next epoch (Step 3).

Step 8. If the conditions of the AGA stop are fulfilled,
then finish the job, use the current stored solution as a
solution to the problem, otherwise go to step 3 and continue
to work to complete the stop conditions.

In this paper, we used the combined stopping condition
of the algorithm, which includes a predetermined time and
the number of evolution periods in which the optimization
result is not improving, and the growth of the objective
function stops. GA aims to improve the outcome during the
allotted time.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Formulation of the problem

The authors consider a particular case (policy) of the
VMs allocation in the data center with a homogeneous
configuration of the PMs and propose to solve this problem
using the adaptive genetic algorithm presented above. The
VM allocation on the physical servers of the IT infrastructure
relates to the problem of consolidation of computing
resources. The case of using homogeneous PM
configurations is chosen because it can be implemented
within a single cluster, which may be considered as a unit of
control in a data center. The mathematical model of the VMs
allocation on the PMs is represented as follows.

111Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 122 / 172

The data center contains a set of PMs 1 , , , nN N N

where n is the number of PMs. 1 , , mK K K is a set of

VMs that should be allocated to the PMs, where m is the

number of VMs. Each PM Nі, 1, ,i n is characterized by

two parameters that determine its computing capacity: Ωі is

the CPU capacity of the PM Nі, and i is the RAM capacity

of the PM Nі. Each VM Kj, 1, ,j m has the computational

resource requirements: j is the CPU time, and j is the RAM
size. It is necessary also to determine the VM allocation

matrix, jiR r , with the size of m×n, where

1,if VM is allocated on PM ,

0, otherwise.

j i

ji

K N
r

The matrix R is a solution to the problem and determines
the allocation of K VMs on the set N of PMs. The authors
consider that all PMs in set N have identical specifications
and, consequently, the same computing resources, so they

assume that Ωі = 1 and і = 1 for all 1, ,i n that is

 , {1,1}, for all 1 , { .} |
iі і NG і n

This assumption allows the authors to make a transition
from the measurement of PM computing resources in
absolute values when the memory is measured in gigabytes
and CPU frequency in GHz to a relative value. Then, the VM
needs are defined as part of the PM's resources, recalculated
in relation to the maximum possible value of 1. The number
of resources allocated to a virtual machine is determined by
the application requirements. The necessary resources for the
VM are recalculated with respect to the physical server and
they are part of it.

The authors consider also that resource needs of each
VM do not exceed the capabilities of the PM

 and for each 1 1, 1 , .
j j

j m

When solving the problem of VMs allocation for all PMs
from N, the following resource constraint must be satisfied

1 1

and for 1 ,1 .1 ,
m m

ji j ji j

j j

nr r і

Further, the authors introduce the vector ,iy y

1, ,i n where

1, if at least one VM is allocated on ,

0, otherwise.

i

i

N
y

Then the optimum criterion for solving the problem of
VM placement on PMs will be

1

min ,
n

i

i

y

that is the PMs should be filled with VMs so that the
minimum number of PMs are involved.

When the criterion (7) is satisfied the total cost S of the
data center and PMs maintenance and energy supply will be
minimized.

The objective function can be represented as follows:

1

n

i i

i

S s y

where si is the maintenance and energy supply costs for the i-
th PM.

In the case when the PMs in the data center have
identical specifications (i.e., homogeneous), the expression
(8) becomes

1

n

i

i

S s y

where s is the maintenance and energy costs per PM.
Taking into account the previous description, the

problem of K VMs allocation can be summarized as follows:
it is necessary to place the VMs on data center PMs so that
either the expression (8) or (9) reaches a minimum value.

The authors consider two cases, namely, the initial
placement of the VMs and also their change in placement
during the execution. The algorithm restarts when unused
resources are detected in PM. If the number of unused
resources on a PM is greater than the threshold, then that
server is added to a consolidation list. The algorithm restarts
if the total number of unused resources on the physical
servers, included in the consolidation list, exceeds the
resources of one PM. As a result, it is proposed to run the
AGA not for all PMs, but for PMs in the consolidation list.
All migrations initiated by the AGA at the previous stage
must be completed. The selection of the threshold value is
not considered in this work.

B. Evaluation

Experimental studies were performed on the data center
resource allocation problem solution using three algorithms:
the classical genetic algorithm, the managed genetic
algorithm [1] and the adaptive genetic algorithm presented in
this paper.

At the same time, studies were conducted for different
ratios of the number of VMs and PMs resources. For this
study, we considered three options for resource ratios that are
close to reality:

 the case of disproportionate resource requirements
when in relative units the requested amount of CPU
time is much higher than the requested amount of

112Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 123 / 172

RAM, i.e., j>>j, for all 1 , .j m This type of

problem occurs when a large number of applications
require complex calculations;

 the case of disproportionate resource requirements
when requested units of CPU is much less than the

requested amount of RAM, i.e., j<<j, for all

 1 , .j m This problem occurs when the VMs with

applications that require large amounts of data
processing are located on the servers;

 the most common practical case is when the amount
of the requested CPU and RAM for all VMs are
distributed randomly in the range [0.05; 0.6].

The ranges of computer resources requested by VM for
the different experiments are presented in Table 1.

TABLE I. THE RANGES OF COMPUTER RESOURCES REQUESTED BY VM

Experiment number RAM limitation CPU limitatiom

1 0.3—0.45 0.05—0.15

2 0.45—0.6 0.05—0.15

3 0.05—0.15 0.3—0.45

4 0.05—0.15 0.45—0.6

5 0.05—0.6 0.05—0.6

In [1], it has been proved that when the number of VMs
is less than fifty the heuristic and genetic algorithms give
approximately the same results, but with the increased
number of VMs the genetic algorithm provides a better
quality performance.

The evaluation of the quality of CGA, MGA and AGA
algorithms is performed in terms of the number of the PMs
released (turned off). As it is assumed that the physical
servers are homogeneous, they consume the same amount of
energy. It is assumed that to allocate each VM initially, a
separate PM is deployed. Next, using the proposed
algorithms placement of VMs on PMs are optimized with the
assessment of the maximum number of released PMs for
each of the algorithms. To compare the success of each
algorithm according to the criterion (7), the authors assessed
the number of unused physical servers, which were turned
off. It is obvious that, as a result of each algorithm work for
VM consolidation, the more PMs are turned off, the better.

Fig. 1 illustrates the dependence of the number of the
PMs released on the problem dimension (number of VMs) in
the case when the requested number of CPU and RAM for
all VMs is randomly distributed in the range [0.05; 0.6]. The
x-axis denotes the number of VMs, the y-axis denotes the
number of PMs released.

For comparing the MGA and the AGA results, the

concept of additional released PMs ВN is introduced. The

value ВN is defined as the difference between the number of

PMs
CGAN , released as a result of CGA, and the number of

PMs
MGAN and

AGAN released using the MGA and the AGA

respectively.
Thus, Fig. 2 shows a winning of the MGA and the AGA

regarding the CGA as a function of a number of additional

PMs released ВN from the dimension of the problem for

different ratios of the resources requested.

Figure 1. Dependence of the number of PMs released, from the problem

dimension.

The x-axis represents the number of VMs that need to be
placed on the PMs, y-axis represents the number of
additional PMs released for each of the algorithms.

The data for the experiments were generated randomly
with a uniform distribution law. The experimental results are
shown in Fig. 2.

The analysis of the results shown in Fig. 2 leads to the
following conclusions: (1) the use of the MGA and AGA is
more effective than the use of the CGA; (2) the AGA always
allows to get the best results on the VMs allocation,
regardless of the experimental conditions; (3) in the case of
dispersion over a wide range of requirements [0.05; 0.6]
(Fig. 2 b), the use of the AGA is the most effective.

V. CONCLUSION AND FUTURE WORK

One of the most important problems in the modern
virtualized environment is an allocation of virtual machines
on physical servers. Taking into account the large number of
types and virtual machine settings that modern service
providers offer, as well as the high density of virtual
machines per physical server the solution for this problem is
complicated.

In this work, the virtual machine allocation problem is
solved by using the adaptive genetic algorithm. The
proposed adaptive genetic algorithm uses parametric and
algorithmic adaptation simultaneously by selecting the
values for genetic operator’s parameters and by selecting the
probabilities of applying these operators. The authors' added
contribution regarding existing genetic algorithms is to apply
the adaptation, which consists in the change of probability of
using GA operators and in the change in the parameter
values of these operators depending on the nature of the
problems and on the results obtained during the problem
solving.

The adaptive genetic algorithm is evaluated for virtual
machine allocation problem solution and demonstrated
efficiency compared to classical and controlled versions of
the genetic algorithm. It is shown that the proposed
algorithm allows for an equal number of epochs to get better
results.

113Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 124 / 172

Figure 2. The dependence of the number of additionally released PMs on the dimension of the problem, when the requirements for the requ ested resources

are in the ranges: (a) to the CPU – [0.05; 0.15], to the RAM – [0.3; 0.45]; (b) to the CPU – [0.05; 0.6], to the RAM – [0.05; 0.6]

For future work, the authors plan to develop the
provisions of the adaptive genetic algorithm, to make
recommendations on configuring the algorithm’s parameters
for specific kind of tasks, and apply an adaptive genetic
algorithm for solving other tasks of the data center
management.

REFERENCES

[1] S. Telenyk, O. Rolik, P. Savchenko, and M. Bodaniuk, ”Managed
genetic algorithm in problems of virtual machines allocation in the

data center,” Scientific Journal of ChSTU, No 2, pp. 104-113, 2011

[2] A. Hameed et al., “A survey and taxonomy on energy efficient
resource allocation techniques for cloud computing systems,”

Computing, pp. 1–24, 2014.

[3] S. H. H. Madni, M. S. A. Latiff, Y. Coulibaly, and S. M. Abdulhamid,
“Resource scheduling for infrastructure as a service (IaaS) in cloud

computing: Challenges and opportunities,” Journal of Network and
Computer Applications, vol. 68, pp. 173–200, 2016.

[4] S. Singh and I. Chana, “A Survey on Resource Scheduling in Cloud
Computing: Issues and Challenges,” Journal of Grid Computing, pp.

1–48, 2016.

[5] S. Telenyk, O. Rolik, M. Bukasov, S. Androsov, and R. Rymar,
“Control of Data Centers’ Load and Resources Virtual Hosting,”

Scientific Journal of the Ternopil State Technical University, Vol 14,
No 4, pp. 198–210, 2009.

[6] S. F. Telenik, A. I. Rolik, M. M. Bukasov, and S. A. Androsov,

“Genetic algorithms of decision of tasks of management resources
and loading of centers of processing of data,” Automatic.

Automation. Electrical engineering complexes and systems, No 1
(25), pp. 106–120, 2010.

[7] S. Agrawal, S. K. Bose, and S. Sundarrajan, “Grouping genetic

algorithm for solving the server consolidation problem with
conflicts,” In GEC '09: Proceedings of the first ACM/SIGEVO

Summit on Genetic and Evolutionary Computation, New York, NY,
USA, pp. 1-8, 2009.

[8] H. Nakada, T. Hirofuchi, H. Ogawa, and S. Itoh, “Toward virtual

machine packing optimization based on genetic algorithm,” In
IWANN '09: Proceedings of the 10th International Work-Conference

on Artificial Neural Networks, Berlin, Heidelberg, pp. 651-654, 2009.

[9] M. A. Kaaouache and S. Bouamama, “Solving bin Packing Problem
with a Hybrid Genetic Algorithm for VM Placement in Cloud,”

Procedia Computer Science, Volume 60, pp. 1061-1069, 2015.

[10] G. Wu, M. Tang, Y. Tian, and W. Li, “Energy-Efficient Virtual
Machine Placement in Data Centers by Genetic Algorithm,” Neural

Information Processing, Volume 7665 of the series Lecture Notes in
Computer Science, Springer, pp. 315-323, 2012.

[11] H. Mi et al., “Online self-reconfiguration with performance guarantee

for energy-efficient large-scale cloud computing data centers,” Proc.
of the IEEE International Conference on Services Computing, pp.

514–521, 2010.

[12] J. Xu and J. Fortes, “Multi-objective virtual machine placement in
virtualized data center environments,” Proc. of the IEEE/ACM

International Conference on Green Computing and Communications
& 2010 IEEE/ACM International Conference on Cyber, Physical and

Social Computing, pp. 179–188, 2010.

[13] T. Back, “Optimal Mutation Rates in Genetic Search,” Fifth

International Conference on Genetic Algorithms: University of
Illinois at Urbana-Champaign, July 17–21, pp. 2–8, 1993.

[14] W. Spears, “Adapting Crossover in Evolutionary Algorithms,” Proc.

Of the 4th Annual Conference on Evolutionary Programming: San
Diego, California, March 1–3, pp. 367–384, 1995.

[15] Z. Michalewich, “Genetic Algorithms + Data Structures = Evolution

Programs,” Berlin: Springer, 1996.

[16] Z. Michalewich and D. Fogel “How to Solve It: Modern Heuristics,”
Berlin: Springer, 2002.

[17] B. Julstrom, “What Have You Done for me Lately? Adapting

Operator Probabilities in a Steady-State Genetic Algorithm,” Proc. of
the Sixth International Conference on Genetic Algorithms: University

of Pittsburgh, July 15–19, pp. 81–87, 1995.

[18] J. Lis and M. Lis, “Self-adapting Parallel Genetic Algorithms with the
Dynamic Mutation Probability, Crossover Rate and Population Size,”

Proc. of the 1st Polish National Conference on Evolutionary
Computation. Oficina Wydawnica Politechniki, Warszawskiej, pp.

324–329, 1996.

[19] A. Kosorukoff, “Using incremental evaluation and adaptive choice of

operators in a genetic algorithm,” Proc. of the Genetic and
Evolutionary Computation Conference: (GECCO-2002), New York,

USA, July 9–13, p. 688, 2002.

[20] M. Pelikan, D. Goldberg, and S. Tsutsui, “Combining the strengths of
Bayesian optimization algorithm and adaptive evolution strategies,”

Genetic and Evolutionary Computation Conference: (GECCO-2002),
New York, USA, July 9–13, pp. 512–519, 2002.

[21] D. Thierens, “Adaptive mutation rate control schemes in genetic

algorithms,” Congress on Evolutionary Computation: CEC’02,
Honolulu, Hawaii, May 12–17, pp. 980–985, 2002.

114Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 125 / 172

Software License Optimization and Cloud Computing

Anne-Lucie Vion - Noëlle Baillon
Orange SA

Paris, France
email: annelucie.cosse@orange.com
email: noelle.baillon@orange.com

Fabienne Boyer - Noël De Palma
Univ. Grenoble Alpes, LIG, CNRS

Saint-Martin-d'Hères, France
email: fabienne.boyer@imag.fr

email: noel.depalma@imag.

Abstract- In this article, we propose a review of Software
Asset Management (SAM) state of the art and existing tools
oriented in the Cloud perspective; it seems that Software
identification, through its complete virtualized lifecycle, is a
major lock in efficient control. In this context, we propose a
model and process architecture to cope with this complexity.
We underline innovative graph modeling benefits in this
contribution. We use a simple, but vivid example to prove
the validity of our model.

Keywords-Software Asset Management; SAM; License
optimization; Software uses.

I. INTRODUCTION

Software Asset Management (SAM) enables tracking software
uses with the finest possible granularity. The aim is to constantly
reconcile the real uses with the usage rights acquired from
software providers in order to optimize and control the risks of
non-compliance (i.e., counterfeiting). The current economic
climate underlines this particularly burning issue, as each non-
compliance situation is heavily penalized in financial aspects.

In this paper, we consider SAM processes in the context of
emerging technologies, namely virtualization and Cloud
environments. This change from traditional architectures to cloud
environments, virtualized to the extreme, is still a virgin territory.
Cloud environments add many degrees of complexity. Among
others, tracking software becomes more challenging because the
installation is disconnected from true physical infrastructure.
Altogether, the complexity of software lifecycle management, the
multiplication of actors in this cycle and the lack of efficient
tools, lead to an understandable disconnection between software
usages, associated hardware and the related licensing model.
Also, because cloud environments tend to automate software
lifecycle management, SAM processes are expected to be
automated as well. On the contrary, automation is currently
circumscribed to asset management in traditional architecture.

Going further, in cloud environments (Fig. 1), SAM is not
only assets management, but also service management, which
must be done in real time taking into account the fast rhythm of
changes: services are provisioned, configured, reconfigured and
decommissioned in a matter of minutes. Compliance risks are
increased by the ease and speed of provisioning, which can
bypass traditional centralized processes. In such conditions, SAM
controls are difficult to implement.

Yesterday Tomorrow
Software

Cycle
Long cycle Real time

Total costs Calculable Hidden and additional costs
Provisioning Centralized Built to be decentralized
Expenditure Organized Lower financial visibility
Licensing Complex rules Complex rules combination

Usage Understandable i.e., BYOD, multiplexing
Assets nature Software Cloud Services

Virtualization
1 software-1
hardware

Multiple layers: hardware
disconnection

Figure 1. Complexity factors brought about by cloud architecture.

The idea that will be developed in this paper is that turning to
the Cloud is not changing the object of SAM, but altering how
SAM processes should be designed. The contributions are the
following. We propose (i) an architecture for SAM in the cloud,
(ii) the related SAM management workflow, (iii) some major
implementation choices and (iv) a preliminary evaluation.

The remaining of this paper is organized as follows. Section 2
presents a synthesis of the state of the art and our related SAM
maturity scale, Section 3 describes our global architecture for
managing software, a model for managing installations and
usages on PaaS (Platform as a Service) layer and discusses the
choice of graph database to support our SAM model. Section 4
presents our first evaluation result, and we conclude in Section 5.

II. STATE OF THE ART

This section discusses the state of the art regarding SAM
solutions. We firstly recall the theoretical SAM models and then
describe the existing SAM tools. We end this section with a short
discussion on the “cloud-ready” dimension of SAM processes.

A. Theoretical SAM Models
One of the first studies leading to SAM considerations, in

1999, was proposed by Holsing and Yen [1] through a software
asset probation model and identification of five problem areas,
which actuate the need for software management: ethical, legal,
technical, managerial and economic.

In 2004, Ben-Menachem and Marliss [2] introduced the
“paradigm of change” based on methods, tools and procedures for
accurate overall Information Technology (IT) inventory
management. Thereby, they underline that investments in the
creation and maintenance of a dedicated software inventory is a
sine qua non prerequisite to proper long-term SAM.

In 2011, McCarthy and Herger [3] proposed a solution in four
points to combine IT, processes and business in SAM
perspectives: Discover software assets, mainly consisting in
achieving a scan of installed licenses; Reconcile purchased assets,
enables performing a procurement inventory; implementing
contract management; producing business intelligence reporting
“audit readiness” and compliance.

SAM tools are widely used in a lot of computing
environments. In 2014, for Gocek, Kania and Malecki [4], these
tools refer to software programs that discover and collect
information about software instances deployed in monitored
environments. As software owners continue to shift toward
complex software licensing schemes, SAM tools will continue to
play increasingly major roles.

B. SAM Tools
Several studies [5][6][7] show that people around the world,

all face the same difficulties to compare existing SAM tools. This
is mainly due to the exuberant marketing made by publishers
about features that appear similar between existing tools and the
lack of a model to classify them. The scope is absolutely not
defined between traditional architecture and the cloud
environment, as if the way to manage software assets in both
environments was similar. We can add that multiplication of tools

115Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 126 / 172

is also due to multiplication of actions to manage: i.e.,
management tools often perform discovery activities and
inventory. However, they rarely gather sufficient details on
software inventory to allow making informed decisions about
their elimination or even just to compare to usage rights acquired
by contracts.

We have developed the following SAM maturity scale,
illustrated in Fig. 2, to compare the existing SAM tools
regarding the features they provide. In Fig.2, four levels are
defined on a vertical axis about SAM maturity.

Figure 2. SAM processes maturity scale

(1) VISIBILITY: this level precisely identifies resources. In other
words, SAM tools providing this level of feature allow (i)
recognizing each device with its physical features, (ii)
identifying the virtual machines and the resources allocated
to them, and (iii) discovering any software installed on any
physical or virtual devices.

(2) IDENTIFICATION: this level consists in translating any
resource in its associated assets. In other words, it translates
software installation in terms of related licenses and
products user rights. It can be identifying a product as a
trial version or circumscribed to a particular scope;
diagnose that it belongs to a software suite or that it is an
option whose use is conditioned by the use of the basic
product.

(3) The third level, RISK MANAGEMENT consists in
reconciling data provided by the two previous levels:
VISIBILITY and IDENTIFICATION. In other words, the
goal is to compare product usage rights with real uses.
Mainly, the aim is to prevent two different risks: the first
one is a legal one, counterfeiting: using software without
license or with wrong way of licensing (nowadays, more
often due to the complexity of licensing models). The
second is a financial risk, over-deployment: not using
licensed software, or the license covers more usage rights
than needed.

(4) OPTIMIZATION: through the accurate view of installations,
usages and assets provided by the previous levels, it
becomes possible to identify ways to improve license
spends, and in fine to automate this optimization process in
a real time manner.

Fig. 3 illustrates the current state regarding existing SAM
tools. We can notice that the four levels previously introduced
do not have the same maturity. A lot of tools are really efficient
at the VISIBILITY level, in terms of discovery of resources on
equipped resources. Among others, we can cite BladeLogic [8],
Open Computer Software Inventory New Generation [9] (OCS),
System Center Configuration Manager [10] (SCCM).

Figure 3. Main functionalities and limitations of most popular SAM
tools

More problematic is the second level, especially because
matching between information from contracts, usages and
technical view from first level is, at least, not easy. At this
IDENTIFICATION level, we find tools like GLPI (Gestion
Libre Parc Informatique) [11] that manage resources discovered
in the first step, but are not able to truly identify product usage
rights. Contrary, tools proposed by Aspera [12], Snow [13] or
editors’ own solutions are able to manage product user rights
(PUR) and, for some of them, able to identify some risks of
over/under deployments (Snow, Spider [14], Aspera). However,
these tools are expensive, especially database updates, and do
not offer complete lifecycle tracking.

It is important to mention that software identification mainly
relies on tags (i.e., SoftWare Identification Tag (SWID tag) [15])
that record unique information about an installed software
application, including its name, edition, version, whether it’s
part of a bundle and more. The structure of SWID tags is
specified in the international standard ISO/IEC 19770-2:2015
[16], which defines an XML (eXtensible Markup Language)
data structure aiming to the precise identification of software,
regardless of the platform and the device on which it is installed.

Finally, regarding the last level, in the current situation,
despite the numerous risk management tools, the treatments are
still approximate and optimization difficult to automate.

C. Synthesis

One of the business benefits of cloud computing is its agility
and speed-to-market. Services are provisioned, configured,
released in a matter of minutes. Thus, while traditional SAM
processes assume long lifecycles (usually, we can consider 5 – 8
years for a software, it leads to long cycles of contract,
discovery, inventory and reconciliation), cloud accelerates these
processes up to real-time requirements.

A second issue to consider is the different levels of services
and multiplication of hidden costs in cloud environments. These
hidden costs may include cost of migration, integration with IT
systems, premium support services, new storage requirements,
data extraction cost, service renewal costs, etc.

Moreover, we underline that if SaaS (Software as a Service)
seems to reduce or even delete infringement risks (supposed to
be indexed on real usage), this use is in fact restricted in many
cases and is not often negotiable. In such cases, SAM should
have appropriate controls to ensure compliance with all
requirements and limitations (geographical scope, Restriction on
shared accounts, on non-employees/providers, partners, etc.,
time, transactions volume). It leads to multiplications of
complex rules, not only based on hardware metrics, but directly
on usages, sometimes more difficult to identify.

As said in Business Software Alliance (BSA), 2014 [17]
cloud services are often considered as operational expenses and
not as capital expenditures. It leads to several problems: (1) less
involvement in the contracting phase, (2) loss of control of
operational dependencies, (3) loss of known limits to final costs,
(4) lack of financial visibility, and (5) increased license
compliance risks.

116Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 127 / 172

III. PROPOSITION OF A SAM MODEL FOR THE
CLOUD

A. SAM Control Loop

Our SAM proposal takes into account the complete software
lifecycle, considering that each step feeds a SoftWare DataBase
(SWDB) and that every step is accompanied by one or more
SAM control (or SAM check-points). All possible information
related with the use of software should be captured and stored in
order to implement all the required usage controls.

Through the check-points, the SAM processes analyze the
current situation in real-time and confront the use of services
with the license stock. SAM processes also take potential
optimization decisions, creating a control loop.

Figure 4. SAM retroaction loop

In its basic form, the software lifecycle that we consider is
composed of 5 + 1 steps as shown in Fig. 4 and Fig. 5 – Fig.9;
some steps can be played several times:
1) Need’s Expression: the consumer justifies his need and choice
of software.
2) Purchasing: this step encompasses sourcing processes,
negotiation, contract, billing etc. At this stage, we get a Stock
Keeping Unit (SKU) identifying the purchased software and its
own [product] usage rights (PUR) created by the manufacturer
and acquired during purchasing processes.

Figure 5. SW lifecycle and SAM controls - Purchasing

3) Delivery: this step corresponds to the software receipt via
downloading platforms, preparation for installation on user
platform, entry into a software catalogue. Through this step, we
get a SWIG Tag containing the software’s SKU created by the
manufacturer and extendable with client-specific information.
SWID tag will be the default software identifier.

Figure 6. SW lifecycle and SAM controls – Delivery

4) Instantiation: The software is installed in an environment (for
instance, a given Cloud), in other words, the software is able to
be used.

Figure 7. SW lifecycle and SAM controls - Instantiation

5) Usage: a user consumes a service/software. Here, we have to
identify the cases where multiple users consume the same
service simultaneously and translate this in terms of use
(multiplexing, multidevice , etc.)

Figure 8. SW lifecycle and SAM controls - Usage

6) Optimization: this corresponds to confronting the
need/contract/installation/use with the license stock according to
a measure of consumption previously defined (metric). Here, we
can create a model of costs for any measure of use and identify
the most suitable scenario of consumption or of customer billing.

Figure 9. SW lifecycle and SAM controls - Optimization

117Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 128 / 172

B. Instance and usage capture

1) Focus on Instantiation
To implement SAM check-points over the instantiation step,

we need to make assumptions on the targeted cloud
environments, especially in terms of the PaaS layer that will be
used to deploy services. In a first design, we consider clouds
managed through the well-known and commonly used Cloud
Foundry [18] PaaS. We consider that it will be possible to apply
our model to a variety of PaaS, as long as they allow
instantiation/usage’s capture. In further works, we will extend to
Infrastructure as a Service (IaaS) layers.

Deploying an application through the Cloud Foundry (CF)
PaaS layer is done by running a push command from a
Command Line Interface (CLI), either as part of the CF build
packs or through a service broker:

Build pack. User pushes app bits (i.e. artefact: .jar, .war, tgz,
etc.) from desktop/CLI selecting one of the supported stack (i.e.,
Ubuntu)

Service broker pushes a docker image reference (public or
private registry), or a container specification reference

In both cases, a droplet is produced, taking into account
dependencies configuration. As a result, app instances are started
and run the image within quotas (Random Access Memory
(RAM), Computer Process Unit (CPU), etc.). Among others,
between push and application’s availability, CF uploads and
stores the application files, and examines and stores the
application’s metadata (for SAM purposes the SWID Tag
enriched by all relevant contractual information during delivery
step)

Before one can retrieve any application or service
information, one must retrieve the Cloud Controller (using the
Service Broker Application Programming Interface (API)). The
brain of this controller knows services and applications as well
as their instances and settings. The Cloud Controller exposes a
Rest (Representational State Transfer) API for all this
information through which the SAM processes can get the
necessary knowledge to perform their tasks.

2) Focus on usage
To implement SAM check-points over the USAGE step, we

need to get the knowledge of which applications are used. We
decided to achieve this first through the application rights
verification. In more detail (Fig. 10), we summarize the steps
performed when a user wants to use an application in our
context:
1. The user wants to access the cloud application via the user

portal
2. The user is identified and authenticated via a User

Identification and Information System Access libraries
3. The system checks permission of the authenticated user to

access the applications via the Application rights library
and if yes, return a certificate. This step allows collecting
usage information, especially the moment when a
certificate for using the application is issued or withdrawn.
The lifecycle of this certificate allows determining the time
of using the application and all its software components.

4. Embedding cookies and certificates, the user can start to
consume application

Figure 10. Use case of cloud app access

An application may embed several software services, so it is
necessary to cross the information on usage with internal
software cartography to be able to determine and affect usage
directly to software.

Application’s usages cannot be summarized only by a
number of access or minutes spent. We consider that it also
covers consumed resources (i.e., CPU, RAM, bandwidth, event
p/s, flow p/s, etc.).

Open-source tool Abacus [19] provides usage metering and
aggregation for Cloud Foundry services. This is implemented as
a set of REST micro-services that collect usage data, apply
metering formulas, and aggregate usage at several levels within
a Cloud Foundry organization. Runtime provider (CF Bridge)
submits application usage events (other runtime providers
submit other runtime usage events); external services providers
submit service usage events that are received and stored by
Abacus, metered, accumulated, aggregated to provide usage
reports and summaries.

We should recall that SAM’s purpose is to confront
contractual provision (PUR) with observed usages. Since we
assume usage capture, we should focus on this aim to direct our
implementation choices. Indeed, how we store the collected
information (instantiation + usage) influences comparison and
optimization operation’s efficiency and relevance.

C. Feeding the database

Each step previously described feeds a software database
(SWDB). Following software lifecycle, we can represent every
data injection summarized in Fig. 11:

Figure 11. Asynchrone feeding of SAM database

118Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 129 / 172

To implement this database, we adopted a graph-oriented
database. The lack of flexibity is the biggest weakness of
relational databases when the data structure may vary like for
SAM topic. Their scheme cannot support the dynamic real time,
and uncertain nature of data, new technologies and platforms.
Graph data models are centered on relationships. Just by
connecting nodes and relationships, it can generate sophisticated
models that fit closer to our problem (cohesive picture between
contracts, usages and installations) when relational databases
require us to infer connections between entities using special
properties such as foreign keys, or out-of-band processing like
map-reduce disconnecting the evolving schema and the actual
data model.

Each node in the graph database model contains a list of
relationship-records. These relationship records are organized by
type and direction and may hold additional attributes (Fig. 12).
Whenever one runs the equivalent of a JOIN operation, the
database just uses this list and has direct access to the connected
nodes, eliminating the need for expensive search / match
computation.

Figure 12. Graph modelization of SAM in Cloud

Graph representation makes the comparison between all
software dimensions easier: looking at this model, software is
logically linked to contracts, instances and user. The global
picture seems to be cohesive and we can identify Software
lifecycle, likewise tag’s cycle. It can be read like: “Entity signs
(a) Contract, which defines Software run by (a/n*) Instance(s)
etc.”

IV. EVALUATION

In our preliminary evaluation, we focused on the purchase-
delivery-instantiation-usage phases of our SAM model, omitting
the optimization phase that remains a future work. Our objective
was to validate the fact that our graph model can be managed
through a capture of PaaS usages (Cloud Foundry/Abacus in our
experience). To achieve this experience, we considered a well-
known software: an Oracle database.

We choose the Oracle Database Enterprise Edition (Oracle
DB EE) example for several reasons: (1) It is a vivid example for
the SAM community; one of the most often mentioned for the
complexity of its license management. (2) Oracle DB licenses can
be defined by several types of metrics, oriented on material (i.e.,
CPU) or user (i.e., Named User Plus). (3) It will allow us to
increase complexity of our use cases such as: integrating controls
between product’s link (options – standard product) and
constraints of uses.

In this theoretical evaluation, we will follow the Software
lifecycle proposed in Fig.4 and Fig.5-Fig.9 and refer to the Fig.2
SAM processes maturity scale: visibility, identification, risk
management and optimization.

1) Purchasing

For the purpose of our example, we will skip the first phase
of need/choice/approval, and directly start with purchasing
processes.

Figure 13. Example of Oracle's offer

Fig. 13 can be an extracted from “License Store’s” catalogue
proposing the product we need and are planning to buy.

Few elements (above) are necessary to identify precisely this
offer and determine the level of grants (PUR) given by this way
of licensing. These elements have to be collected in the purchase
order and reconciliated with data from the delivery order. In the
graph: The first step is to create our product, with a label
‘Software’ and several attributes found in the purchase order. In
the same way, we create a label ‘Retailer’ and ‘Editor’ to identify
a node ‘License Store’ and ‘Oracle’:
CREATE (m:Software { name : 'Oracle Database', version : '11g Release 2
(11.2)', sku:'E47877-06', category: 'Database'})
CREATE (z:Supplier {name : 'License Store'})
CREATE (n:Editor { name : 'Oracle' })

Then, we create several nodes with label ‘PUR’, which
represents scope of usage, metrics, environments, etc. The idea is
to create nodes, independent from products (not node properties)
to allow further comparison between product, version, etc. or
identify similar metrics.

CREATE (o:PUR {metric: 'processor', term : 'perpetual'})
CREATE (p:PUR {name: 'requirement', maximumCPU : 'no limit', RAM :
'OS max', DatabaseSize : 'no limit'})
CREATE (q:PUR {name: 'OperatingSystem', windows : 'yes', unix : 'yes',
linux : 'yes'})

Then, we create relations between nodes:

(1) Between an editor and product (EDITS): ‘Oracle’ edits
‘Oracle Database’.

(2) Between a product and PUR (DEFINES): ‘Oracle DB’ is
licensed under processor metric/ or can run on
windows/Unix/Linux/etc.

(3) Between a supplier and a product (DISTRIBUTES): ‘License
Store’ distributes ‘Oracle DB’. This relation is important
because contains all information about the contract:
financials, number, maintenance, etc. This link may be
multiple (unique relations), as many as the number of
contract.

This process and collect are essential to fulfill the Identification
requirements: PUR are translated in the SKU, this SKU enriches

119Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 130 / 172

the SWIDTag delivered during provisioning processes; it
guarantees the link between a contract and Software/ Software
and Instance.

2) Provisionning

After Global sourcing processes, our Oracle Database is
right now under exploitation teams’ responsibility. The software
can be packaged/enriched (i.e., tag) according to company’s
rules or considered like included in an Application before being
instantiated.

In our case, let us create a label Application and a node
‘HumanRessources’ which we’ll include in our Database.

The relations ‘CONTAINS’ is enriched by properties like a
project’s id or application’s project manager:

CREATE (n:Application {name :'HumanRessources', responsible :'Tom'})
MATCH (a:Software),(b:Application)
WHERE a.name = 'Oracle Database' AND b.name = 'HumanRessources'
CREATE (b)-[r:CONTAINS {id_project : '1234R'}]->(a)

3) Instantiation

To fulfill the step 1 (visibility) of the maturity scale, we
need to have an exhaustive view of infrastructure resources and
instantiation. The PaaS handles infrastructure resources (Virtual
Machine (VM), networking, storage), database instantiation,
Subscription to shared services, application deployment,
installation, configuration, application monitoring, application
log collection and interaction with app-ops (inventory/CMDB,
monitoring/alerting)

CF allows identifying allocated resources. Our experience is
here restricted to PaaS layer, it would be necessary to reach
underlying infrastructure (i.e., VMware, OpenStack etc.) to
obtain IaaS resources. All this chain allows to keep and know
information about the allocated ressources in each stage.

In our example, the application, which contains our database
has been deployed on the cloud via a “push” command and ran
as an instance. We stress that this instance contains metadata like
SWIDTag enclosed during the provisioning. A key part is now
to create links between instance and product which we bought.
Everything is based on the use of SKU number. The instance
knows and updates all SWIDtags of its components (i.e., Fig
14). This allows to create the link between the product in
catalogue and the installed product.

Figure 14. SWID Tag example for Oracle DB EE

MATCH (i:Instance),(a:Software)
WHERE i.software_id= a.sku
CREATE (i)-[c:INSTANCES]->(a)

4) Uses

The Oracle DB is expected to be accessed by both humans
and software (automated applications encompassing the

optimization phase of the SAM model as described previously in
the paper). Different queries can be performed on the different
links of the database.

The link ACCESS/AUTHACCESS has properties that
characterize the use (scope, duration, consumed resources, etc.)
captured by CF and accumulated/aggregated by Abacus. The
capture fulfills the step 2 of the SAM processes maturity scale.

MATCH (s:Software {name:'Oracle Database'})<-[:INSTANCES]-
(i:Instance)
RETURN s, i

“Show me all ‘INSTANCES’ relation(s) to ‘Oracle Database’”
will provide all instances related to Software. As we can identify
the Product Usage Rights (via the SWIDTag/SKU) by a direct
link between Software/PUR and Software/Instances, we can
fulfill first part of the step 3 (SAM processes maturity scale): the
risk management (here: counterfeit risk).

MATCH (i:Instance {name:'HumanRessources'})<-[:ACCESS]-(user)
RETURN i, user

“Show me all ‘ACCESS’ relation(s) to ‘HumanRessources” will
provide all access/authaccess related to Software. As we can
identify the Product Usage Rights (via the SWIDTag/SKU) by a
direct link between Software/PUR and Software/Access, we can
fulfill second part of the step 3 (here: over-deployment risk).

5) Basic control of inventory’s consistency

Obviously, a lot of queries would be necessary to implement
true SAM analysis. For the purpose of our example, let us study
quickly three of the most basic, but also the most important:

- What I bought ?

MATCH (e:Entity)-[g:SIGNS]-(c:Contract)-[r:DEFINES]->(s:Software)
MATCH (p:PUR)-[h:DEFINES]->(s) WHERE p.name='Metric'
RETURN e.name AS Entity, s.name AS Software, s.SKU AS SKU,
sum(r.quantity) AS Quantity, p.metric AS Metric,
c.date AS Date ORDER BY e.name, s.name, c.date

This query returns a table: the number of bought licenses order
by software and metric with a list of contract per software

- What I instanciated ?
This query returns a table: the number of instances per

software ordered by metric with collection of application
containing this software.

MATCH (v:VM)-[t:RUNS]->(i:Instance)-[r:RUNS]->(a:Application)-
[c:COMPOSEd_BY]->(s:Software)
RETURN s.category AS Category,s.name AS Software, s.SKU AS SKU,
count(t) AS InstanceNumber, collect(distinct(a.name)) AS Application

- Am I compliant ?
This last query consists in a verification of the ‘Processor’

metric (typical for Oracle). Basically, we have to multiply the
number of cores per processor of the physical machine hosting
the DB by the number of processors and by a coefficient given
by Oracle for each processor. It returns a table of licenses
ordered by the software, and he number of bought/instanciated
(according to Oracle licensing rules).

MATCH (s:Software) WITH s
MATCH (m:Machine)-[*]->(a:Application)-[co:COMPOSEd_BY]->(s)
MATCH (r:Resources)<-[h:HAS]-(m:Machine)
WITH s,((toFloat(r.core))*(toFloat(r.corefactor))*(toFloat(h.quantity))) AS
nbL, m,r
RETURN s.name as Software,s.SKU as SKU,
SUM(nbL) AS ProcessorLicenses

120Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 131 / 172

6) SAM Optimization

Optimization consists, first, in automating the rise of alerts.
When a countfeiting situation is detected (piracy, but mainly
editor’s metric misunderstanding) or when the use reaches or
exceeds a fixed threshold or the level of inventories, then,
purchasing/activating new licenses could be automated to adjust
the license stock, in real time.

When the visibility and identification steps are mastered,
optimization might consist of operating simulations:
usage/instantiation captures, may reveal some possibility to
renegociate a contract in a more favorable (financial) way: i.e.,
to change the Oracle DB negociated metric
(currentlypProcessor) into another metric (i.e., Access), more
appropriated to observed uses, or to project a future
software/license uses based on current observed situation. This
will be developped in further works.

V. CONCLUSION

Software is not like other IT assets that can be considered as
just software installation or in its intangible dimension provided
by the license that defines the scope of use. Both dimensions of
the software should always be considered in managing this asset.
Virtualization and Cloud technologies add a new degree of
complexity in the first dimension (material) when installation is
disconnected from true physical infrastructure. Altogether, the
complexity of software lifecycle management, the multiplication
of actors in this cycle and the lack of efficient tools, lead to a
disconnection between the software material and intangible
dimensions.

We point out in the article the problem of software
identification through its complete lifecycle and proposed a
reference model or architecture for SAM to cope this complexity.
This reference model also help getting a clear understanding on
how SAM can be applied in the cloud computing domain. Using
the Oracle DB example, we assess that our model works on
simple, but vivid SAM cases, and that choice of a graph model is
relevant.

Next steps will be (1) to increase complexity of the model, by
implementing more complex licensing rules (2) to show more
complex interface and queries allowing realistic SAM controls
and optimization; (3) to measure cost of interception of SW tags;
(4) to measure cost of interception of usages. Regarding step (2),
considering elastic applications will be a major step.

REFERENCES

[1] F. N. Holsing, and D. Yen, “Software Asset Management:

Analysis, Development and Implementation”, Information

Resources Management Journal (IRMJ) 12(3), pp.13, 1999

[2] M. Ben-Menachem, and G.S. Marliss, “Inventory

Information Technology System: Supporting the « Paradigm of

Change »”, IEEE Software, pp.34-43, 2004

[3] M. McCarthy, and L.M. Herger, “Managing Software

Assets in a Global Enterprise”, IEEE International Conference

on Services Computing, (pp. pp.560–567), 2011

[4] P. Gocek, P. Kania, B.Malecki, M. Paluch, and T. Stopa,

“Obtaining software asset insight by analyzing collected metrics

using analytic services”, US9424403 B2, Available from

https://www.google.com/patents/US9424403, 2014

[5] J. Disbrow,”Software vedor auditing trends : What to watch

for and how to respond”, Gartner (DOI G00230816), 2012

[6] J-D. Lovelock, Worldwide IT Spending Forecast”, Gartner

(DOI: G00323753), 2016

[7] C. Rudd, ITIL V3 Guide to Software Asset Management.

Broché, 2013

[8]www.bmcsoftware.fr/it-solutions/asset-management.html,

September, 2016

[9] www.ocsinventory-ng.org/fr/, September, 2016

[10]www.microsoft.com/fr-fr/server-cloud/products/system-

center-configuration-manager/, September, 2016

[11]www.glpi-project.org/, September, 2016

[12]www.aspera.com/fr/, September, 2016

[13]www.snowsoftware.com/fr, September, 2016

[14]www.brainwaregroup.com/en/solutions/software-asset-

management/spider-licence/, September, 2016

[15] www.tagvault.org, September, 2016

[16] ISO/IEC 19770-2:2015

[17]A.Hughes, Seizing Opportunity Through License

Compliance. BSA, Software Alliance, 2016

[18] www.cloudfoundry.org/, September, 2016

[19]https://github.com/cloudfoundry-incubator/cf-abacus,
January 2017

121Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 132 / 172

Policy Based Context Aware Service Level Agreement (SLA)

Management in the Cloud

Mhammed Chraibi

Abdelilah Maach

Dept of Computer Engineering

Ecole Mohammadia d’Ingénieurs

Universite Mohammed 5, Rabat, Morocco

e-mail: M.Chraibi@aui.ma

Souhail Meftah

Hamid Harroud

School of Science and Engineering

Al Akhawayn University in Ifrane

Ifrane, Morocco

e-mail: S.Meftah@aui.ma

Abstract—The lack of security and the inexistence of Quality

of Service tracking mechanisms limit the success of cloud

computing as a new technology, even if it demonstrates great

capabilities of solving a number of problems that almost all

organizations suffer from. This paper presents a novel way of

expressing Service Level Agreements (SLAs) and tracking them

to assure the client about the security and Quality of Service that

are provided by the Cloud Service Provider. Allowing the client

to combine specific security and Quality of Service metrics with

context information within SLAs, when they are expressed as

software policies, increases tremendously their expressiveness

and precision.

Keywords—Security; Quality of Service; Service level

Agreement; software policies;

I. INTRODUCTION

Cloud computing as a technology is changing the way
Information Technology (IT) is seen by private, public, and
independent organizations. None of them can survive in
today’s environment without heavily relying on IT. Therefore,
all of them are looking for innovative ways to have their data
and applications run. The quality of IT management might
give them the edge that they need over the competition. Cloud
computing, with the advantages it brings is, for many
organizations, the most viable alternative. Having their data
and applications managed by experts guaranteeing security
and Quality of Service (QoS) on a pay per use basis is an
incredible opportunity. Unfortunately, the fear of losing
control of data and information that is not hosted locally
anymore is stopping the organizations from migrating their IT
to the cloud.

Our research group firmly believes that, if organizations
were provided with the means to express their security and
QoS needs and were able to track how well the cloud service
provider is doing in taking care of those needs, they would be
more willing to migrate to the cloud. The research we present
in this paper consists of proposing software policies as a way
to represent and manage Service Level Agreements (SLAs).
The SLAs are the contract between the client and the Cloud
Service Provider (CSP). The SLAs must allow the clients to
express in terms of metrics what QoS and what security mean
for them. In addition to that, software policies, the way we
designed them, allow the integration of context information.
Context awareness does not only increase the expressiveness
of SLAs, but it also allows them to tackle any metrics
identified to increase security and Quality of Service.

In this paper, we start by describing what we mean by
context information within the cloud environment. Then, in
Section III, we present our policy based, context aware

Service Level Agreements design. In Section IV, we explain
the reasons why we opted for a middleware to incorporate the
management of SLAs in the cloud. Then, in Section V, we
discuss the testing of the prototype that we built as a proof of
concept. Finally, in the conclusion, we describe the future
work.

II. CONTEXT AWARENESS IN CLOUD COMPUTING

The definition of the context of an application within the

cloud is an exercise that has not been done by many

researchers. The reason behind this is the fact that every

application within the cloud has a different role and a different

context. When the cloud is used for offloading, the context of

the processing done in it relates to the domain where the

application operates. In this section, we will see how context

information is used to improve QoS in terms of efficiency,

performance, or security.

A. Context information for performance improvement

Mobile Cloud Computing, for example, is currently a

research hotspot. Scientists are looking into ways to allow

mobile applications run their processing and data analysis in

the cloud. They are aware that one of the major challenges

facing them, the moment they consider offloading as an

alternative, is the performance of the network. CloudAware is

a context aware framework that contains a context manager

entity responsible for collecting and analyzing network data to

predict the status of the network at a point in time and make

sure that the processing and communication of the data is done

in a reasonable amount of time [1]. The context manager, once

it has received the data from network sensors and other tools,

performs a set of intelligent data mining operations in order to

predict the future situation of the network [1]. This leads to the

improvement of the overall network performance.

B. Context information for security management

Context aware role based access control is the solution

described by [2]. The use of context information in order to

provide a personalized service and “dynamic adaptation” of

access control requires collecting continuously context data.

To move into useful information, a few steps are described,

such as:

 Context pre-processing

 Context analyzing

 Context providing

The huge amount of data received from the different

context acquiring tools (both hardware and software) is

considered big data. Therefore, intelligent, machine learning

122Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 133 / 172

algorithms are utilized by [2] in order to filter and have readily

available context information. Such quality context

information allows for state of the art role based access control

without adding a big load to the overall system performance.

C. Multiplicity of cloud context providers

Within a cloud environment, any context aware platform,

middleware, or application needs to be able to handle

incoming context data from a wide variety of sources.

Depending on the nature of the source, different processing of

the data may be done to be transformed into information that

will be used in order to perform the appropriate actions. In [3],

the authors raise the point that heterogeneity of incoming

context data must be handled and they review the literature

and analyze the way it is done. In the framework that they

present, named MobiLife, the context data is all received by

an entity called the context provider. That entity has three

main responsibilities:

 It receives data from the different context sources,

analyzes it, checks the ontology being used

 It advertises the availability of the context

information

 It responds to requests of context information

Such a central entity is necessary because of the different

sources of context data. They also mention how new needs of

modeling of context data are there since context aware

applications do not rely anymore on location only as it was the

case previously.

III. CONTEXT AWARE SERVICE LEVEL AGREEMENTS FOR

SECURITY AND QUALITY OF SERVICE

 SLAs are the contract that exists between the cloud service
provider and the cloud application. The accuracy of the SLA is
the key to a healthy relationship between those entities.
Therefore, there is a need for a way that allows the detailed
expression of SLAs and monitoring to know if the SLAs are
being respected or not. In this section, we present our policy
specification language that is used to represent SLAs. Then,
we go deeper into the metrics that the policy specification
language must allow the SLAs to express. Finally, we show
examples of SLAs and how they are represented.

A. SLA Specification Language

 In a previous work, our team developed a policy
specification language that allows the expression of policies to
manage security in quickly changing environments [4]. Figure
1 shows the structure of the Service Level Agreement using
our policy specification language.
 The first Attribute of the SLA is the ID. It represents a
unique identifier to each Service Level Agreement. It allows
the tracking and modification of SLAs. It is the only attribute
that is not assigned a value by the client. Second, every SLA
has a Subject. It is the entity responsible for enforcing the
policy’s action. Usually, the subject is a Policy Enforcement
Point (PEP) that wraps the client application. More details
about the PEP are given in Section IV.

Figure 1. SLA policy based structure

 The next attribute is the Target. It is the entity on which
the action defined by the SLA is executed. Obviously, every
Service Level Agreement contains the action itself that is
triggered in case the conditions are met, and a priority that
allows conflict resolution between policies. Finally, every
SLA has a type. Obligation SLAs are triggered when a change
in the context happens and a notification is generated. On the
other hand, Authorization policies are triggered when a
request, from the client application, is received asking to
verify if an SLA is being respected or not.
 The condition set, as shown in Figure 1, is composed of
four different attributes. The major attribute is the metric that
is being evaluated. It also contains the value against which the
metric is compared. The comparison is done through an
operator such as: greater, smaller, equal. Finally, since an SLA
can have a set of conditions, they are linked using connectors.
These connectors are based on First Order Logic (FOL) in
order to allow for as much flexibility as possible.

B. SLA Metrics

SLAs describe for both parties (the client and the cloud
provider) expectations and act as a roadmap for change in the
cloud service. Actually, just as an IT project needs a roadmap
that comprises a set of clearly defined deliverables, an SLA is
also crucial for working with cloud infrastructure. In fact, to
develop a consistent and an effective SLA, a list of important
criteria needs to be mentioned [5]. The following are some of
the most important criteria:

 Availability: describes the percentage of the
availability of the service agreed upon during
working and non working days. For example: 99.9%
during work days, 98.5% for nights/weekend.

 Performance: this element describes the maximum
response times for a specific service.

 Security/privacy of the data: this element is related to
the section described above concerning the
confidentiality, integrity, availability, and
accountability of the data stored within the cloud. An
example of a rule regarding security is: encrypting all
stored and transmitted data.

 Disaster Recovery expectations: this element
describes the commitment sated by the cloud
provider to ensure the recovery of data in case of
disaster that may affect the main data center.

123Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 134 / 172

 Location of the data: this element describes the
location where data are stored. This rule should be
consistent with local legislation.

 Access to the data: this rule defines the way the client
will be using to access its data. An example of this
rule would be: data retrievable from provider in
readable format.

 Portability of the data: this element describes the
identity of another provider that may own the client’s
data whenever the main provider encounters a
problem. In fact, it is possible for the cloud provider
to not mention any other cloud provider.

 Change management process: this part deals with
process a service should go through to be updated or
add new functionalities.

 Exit strategy: this part describes how smooth the exit
from the data center of the cloud provider is.

 While going through the literature, we have identified two
major categories of metrics that can be expressed within
SLAs. The first category contains metrics to assess the Quality
of Service offered by the CSP, while the second one contains
metrics that are used to assess the security of the environment
offered by the CSP. In both categories, we could subdivide the
metrics based on the level of service offered by the CSP:
Software as a Service (SaaS), Storage as a Service, Platform
as a Service (Paas), and Infrastructure as a Service. In Figure
2, we classify the metrics that we can assess when we are
considering the Quality of Service offered by the CSP.
 Since security is one of the most important aspects that
clients consider before making the decision to move the
management of their data and services to the cloud, we have
identified, in Figure 3, the different metrics that need to be
expressed in an SLA to assure clients of the security of their
assets.
 Identifying the different metrics that need to be specified
and detailed in SLAs is an important step that will allow us to
design our policies. In fact, our team is still working and
making progress in detailing the metrics and bringing them to
a lower level of granularity. In the next section, we present
two policy based SLAs in order to show the way they are
represented using our policy specification language.

C. Examples of SLAs

 Figure 4 shows two policies that represent SLAs. We
intentionally decided to give the example of a QoS SLA and
the example of a security SLA.

From the first policy, the user is enforcing the fact that as
agreed with the CSP, in case of maintenance work, the
services of the client applications must not be down for more
than 2 hours and it has to be between 3 and 5 AM. This
example shows clearly how a policy can be used to combine
metrics extracted from Service Level Agreement with context
information (in this example, time) to express the users
preferences in terms of Quality of Service. The second policy,
on the other hand, deals exclusively with a security issue
management. The user wants to be notified in the case of an
intrusion detection where the latency of response is more than
80ms. The choice of then 80ms is specific to the client’s own
knowledge about the application. Finally, from the two
examples, we demonstrate how clients can express their

Quality of Service requirements and security requirements
using software policies. These policies are a representation of
the Service Level Agreement between the client and the cloud
service provider.
 In the next section, we will show the architecture of our
system and explain how the policy based SLA management
system fits within the cloud environment.

IV. SLA MANAGEMENT WITHIN THE CLOUD

A. Opting for a Middleware Solution

 Our policy based security management system was
previously used within the context of mobile computing.
When we started thinking of re-modeling it to adapt to the
needs of cloud environment, the question of how to insert the
software in the cloud was raised. When we were dealing with
mobile environments, one of the major concerns that arose
was the amount of processing needed by the system versus the
mobile device’s computing power and battery life. We are not
the only ones who struggled with such an issue. In [8], the
authors show that there is a direct impact of offloading on
energy saving in mobile devices. Computation offloading is
defined as “sending heavy computation to resourceful servers
and receiving the results from these servers” [9]. In other
words, instead of having the heavy computations take place at
the level of the mobile device, given that there is an Internet
connection available, and a safe medium to transmit the data
and instructions, the computations can be delegated to a
powerful server (or the cloud). The results can then be sent
back to the mobile device. In the same line, researchers have
proposed frameworks for developing software to make use of
offloading.

Figure 2. Quality of Service SLA metrics [6]

124Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 135 / 172

Figure 3. Security SLA metrics [7]

In [10], for example, a framework was tested to considerably
reduce execution time of different types of applications given
that a fast and reliable network connection is available
between the mobile device and the server.

 Learning from that experience, we decided that the policy
based security management in the cloud should offload client
applications from SLA management and the processing it
incurs. Using a middleware is the best way to offer to cloud
client applications. Since both the middleware and the
applications are run by the same physical platform, the issue
of latency in response that existed in mobile environments
[11][12] does not exist anymore. Figure 5 shows how our
system fits within the cloud.

B. Middleware Architecture

The middleware contains three main components, as we
can see from Figure 5. We have described in detail each one of
them in our previous work [4]. The major tasks performed by
each one of them are summarized as follows:

 Tool Abstraction Layer (TAL): This component is
responsible for collecting context data. This context
data can be obtained by software tools just like it can
be obtained by Radio Frequency IDentification
(RFID) readers or other hardware tools. The tool
abstraction feeds the received data to the context and
services management system.

 Context and services management system receives
data from the TAL and transforms it into useful
(needed) context information. It does so by
processing the data through the following services:

o Data transformation services
o Data dissemination services
o Data filtering services
o Data aggregation services
o Duplicate removal services
o Data replacement services

The way the services are managed is also through
policies.

Figure 4. QoS and Security SLA example

 Policy management system contains the following:
o Policy Decision Point (PDP): Entity

responsible for checking the data provided
in a request or a context change notification
against the client’s policies. The PDP then
enforces the action of the policy or not.

o Policy manager: Entity responsible for
adding policies, removing policies, or
updating policies.

o Policy conflict manager: Entity responsible
for resolving conflict between different
policies whose conditions are met and that
need to be triggered.

o Policy information base: this entity is a
repository where all policies are stored.

Figure 5. Policy based SLA management system in the cloud

125Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 136 / 172

 Policy Enforcement Points (PEP): are wrapping
entities that have access to enforce policy actions on
the target entities. This access is provided by the
client applications through method calls.

 Our team has developed a prototype for the middleware
and we started proceeding with the evaluation and testing, as
we show in the next section.

V. SLA MANAGEMENT MIDDLEWARE EVALUATION AND

TESTING

The International Organization for Standardization (ISO)
and the International Electrotechnical Commission (IEC), in
the standard ISO/IEC 9126, later on revised to ISO/IEC
25010:2011, identified the different criteria to evaluate the
quality of a software as being: Functionality, Reliability,
Usability, Efficiency, Maintainability, and Portability [13]. In
this section, we will discuss how our middleware performs in
each one of those categories keeping in mind that we are
talking about a prototype meant for the sole purpose of
building a proof of concept.

A. Functionality

The Policy based security management system is
responsible for managing and enforcing the SLA policies
provided by the client application. In that sense, once the
policies are obtained from the client, they are stored in the
policy information base and retrieved for evaluation when a
request pertaining to the client is received. In our software,
only the policies that have as a target the client’s application
are retrieved, each one of the conditions is checked against the
data in our context base and a decision on whether the action
of the policy is to be triggered or not is made. Therefore, the
middleware fulfills the functionality for which it was designed
in terms of suitability and accuracy.

The quality of the context information is managed by the
software policies that deal with the requests incoming from the
different software tools that provide us with raw data. There
are some cases, where a piece of data comes only from one
source where it might be given by the CSP itself. For example,
the data about availability of the cloud services is posted every
month on the website of the cloud service provider. We have
not yet identified a tool that can provide us with such an
information. Therefore, our context base is fed with data
coming from the website of the service provider. Since this
process is public, it is up to the client to choose whether to
rely on the accuracy of that data in order to formulate their
policies of Service Level Agreements. Finally, the policy
based security management middleware still fulfills its
functionality.

The system is reliable because no external entity can
interfere with its processing. The policy management entity
and context management entity only receive requests that
come from the Policy Enforcement Point, which is part of the
middleware. Therefore, the system is reliable and will perform
the expected actions the way it was designed to.

B. Reliability

In the context of the discussion, the real threat to reliability
is the interaction between the PEP and the client application,

and the way the PEP intercepts the incoming requests, models
them and forwards them to the policy decision point. The
communication protocol between the PEP and the client
application (it is also the process by which an application
registers to the services of the middleware) is part of the future
work. As for metrics such as maturity, and fault recovery we
will only be able to test for them when we deploy on the
cloud.

C. Maintainability

When we were thinking of the maintainability of the
middleware, only one thing came to mind: we have designed
the software for maintainability. Policy based systems are by
definition maintainable. Since they are managed by policies,
to maintain the software all that is required is remove the
obsolete policies and replace them with updated versions. In
terms of Analyzability, the accountability tag on the policies
(audit tag) allows the system to keep track of all the policies
whose actions have been triggered. Once new policies are in
place it is straight forward to design requests that will test the
impact of the policies on the system. Several scenarios have
been described before showing how we can use requests to
test the policies; therefore, we can say that the system is
changeable and stable. As for testability, we have run several
performance tests and the results are shown below.

D. Usability & Portability

The programming language and programming platform
that we have used are synonyms of portability. The JAVA
language and J2EE environment need no introduction and one
of their major advantages is portability. As for usability, the
client applications, once they have submitted their security
policies, their interaction will remain with the Policy
enforcement point. A graphical user interface is being
developed in order to allow the clients to express their
business rules and have them translated into software policies.
The user interface is meant to be as user friendly as possible.
All the translation into the policy attributes and XML will be
transparent to the user.

E. Efficiency (Performance)

One of the major motivations behind opting for the
middleware as a way to include the policy based SLA
management middleware in the cloud is to offload the tracking

TABLE 1. TESTING ENVIRONMENT

CPU Intel core i5 3221M 2.5Ghz

RAM 4 GB

Operating System Windows 8 professional (64bits

version)

IDE Netbeans 8.0.2

and management of SLAs from the client applications. The
moment we think about offloading, we want to know how
much extra processing time will incur when the services of our
middleware are being used. For performance testing, Table 1
shows the platform that we have used.

126Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 137 / 172

In the first scenario, we wanted to investigate the impact of
having multiple clients in our system on the performance of
the system with regards to the requests received for a specific
client. In the scenario, we have designed 100 policies and we
sent 20 requests. During the first run, all the 100 policies
belong to client 1. Then, we keep only 80 policies from client
1 (the one to whom the requests are directed) and we add 20
new policies from 4 other clients and we see the impact it has
on the average request processing time. We continue using the
same technique and, at each step, we reduce the number of
policies of client 1 by 20 and increase the other clients’
policies by 20. The results are shown in Figure 6.

We see from the graph that the processing time per request
decreases with the number of client policies. The more
policies we have, the more conditions we check the request
against and therefore the more processing time is required.
What is interesting for us to see is compare these results with
the equivalent ones in the previous figures. That comparison
can give us an idea about the impact of having multiple clients
versus having one single client on the overall performance.

In the second scenario, we send 20 requests when client 1
owns 60 policies, when he/she owns 40 policies, and when
he/she owns 20 policies. Figure 7 shows the average response
time when the user is the only client in the environment versus
when the environment is shared.
 When we first look at Figure 7, we are surprised to see that
the response time in shared environment is less than the one in
the environment where a client is alone. But the tendency
changes as we increase the number of policies. This is
explained by the nature of policies. It just happens that the
policies used in the first test (20 requests, 20 policies in a non-
shared environment) contained more conditions leading to a
higher processing time. When we increase the number of
policies, it normalizes the number of conditions within a

Figure 6. Response time based on the % of client policies in shared
environment

policy and makes the performance in shared environments less

than the one in non-shared environments. The reason behind

that is the time that is used in selecting the client policies.

VI. CONCLUSION

 Policy based management has proven efficient in many
environments. First, we have used policies to manage security
in mobile environments. Then, we adapted our work to the
context of security management in the cloud. Here, we are
modeling and testing the management of Service Level
Agreements. Next, we are investigating policy based
management in mobile cloud computing. Also, the next step in
our project is to devise a set of policies that would express the
needs of Quality of Service and security for a real life client.
At the university, we have a private cloud which is the ideal
environment for us to perform the necessary set of tests in
order to see how the system performs.

Figure. 7. Performance in shared environment Vs non-shared environment

REFERENCES

[1] G. Orsini, D. Bade, and W. Lamersdorf, “Cloudaware: Towards context
adaptive mobile cloud computing,” in IFIP/IEEE IM 2015: 7th
Intern.Workshop on Management of the Future Internet (ManFI), 2015.

[2] S. Hiray and R. Ingle, “Context-aware middleware in cyber physical
cloud (CAMCPC)”. Proceedings of the 2013 International Conference
on Cloud & Ubiquitous Computing & Emerging Technologies
(CUBE)”, Pune, India, 15–16 November 2013, pp. 42–47.

[3] N. Gupta and A. Agrawal, “Context Aware Mobile Cloud Computing:
Review”, 2nd International Conference on Computing for Sustainable
Global Development (INDIACom), pp. 1061–1065, 2015

[4] M. Chraibi, H. Harroud, and M. Maach, “Personalized security in
mobile environment using software policies”, UBICOMM 2011 : The
Fifth International Conference on Mobile Ubiquitous Computing,
Systems, Services and Technologies, Nov 2011, Lisbon, Portugal.

[5] http://www.facilities.ac.uk/j/free-cpd/155-slas-and-service-
specifications, retrieved: December, 2016

[6] M. Alhamad, T. Dillon, and E. Chang, “Conceptual SLA framework for
cloud computing”, 4th IEEE International Conference on Digital
Ecosystems and Technologies, 2010, doi:10.1109/dest.2010.5610586

[7] M. Hoehl, “Proposal for standard Cloud Computing Security SLAs -
Key Metrics for Safeguarding Confidential Data in the Cloud”, Used
from:

127Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 138 / 172

https://isc.sans.edu/forums/news/Proposal+for+standard+Cloud+Compu
ting+Security+SLAs+Key+Metrics+for+Safeguarding+Confidential+Da
ta+in+the+Cloud/893991/studies on magneto-optical media and plastic
substrate interface”, IEEE, retrieved: December, 2016

[8] K. Kumar and Y. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?” IEEE Comput, pp. 51–56, 2010

[9] K. Kumar, J. Liu, Y. Lu, and B. Bhargava, "A Survey of Computation
Offloading for Mobile Systems", In the Journal of Mobile Networks and
Applications, Springer, pp. 129–140, 2012.

[10] E. Cuervo, "MAUI: Making Smartphones Last Longer with Code
Offload", Proc. 8th ACM MobiSys, 2010

[11] C. Shi, K. Habak, P. Pandurangan, M. Ammar, E. Zegura, and M. Naik,
"Cosmos: Computation offloading as a service for mobile devices",
ACM MobiHoc, 2014

[12] H. Flores, S. N. Srirama and R. Buyya, "Computational offloading or
data binding? bridging the cloud infrastructure to the proximity of the
mobile user", Proceedings 2nd IEEE International Conference on Mobile
Cloud Computing, Services, and Engineering, 2014

[13] http://www.iso.org/iso/catalogue_detail.htm?csnumber=35733,
retrieved: December, 2016

128Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 139 / 172

Advancing the Micro-CI Testbed for IoT Cyber-Security Research and Education

William Hurst, Nathan

Shone &

Abdennour El Rhalibi,
Department of Computer

Science

Liverpool John Moores

University

Byrom Street

Liverpool, L3 3AF, UK

{W.Hurst, N.Shone,

A.Elrhalibi}@ljmu.ac.uk

Andreas Happe
AIT Austrian Institute

of Technology,

Austria

andreas.happe@ait.ac.at

Ben Kotze
Department of Electrical,

Electronic and Computer

Engineering,

Central University of

Technology, Free State,

South Africa

bkotze@cut.ac.za

Bob Duncan
Computer Science

University of Aberdeen

Aberdeen, UK

Email:

bobduncan@abdn.ac.uk

Abstract— Physical testbeds offer the ability to test out cyber-

security practices, which may be dangerous to implement in a

real-life scenario. They also provide a means to educate students

and researchers on effective cyber-defence practices. However,

the majority of existing non-virtualised physical testbeds are

costly, inaccessible, and are often location constrained. As such,

modern education and research for control system security is

becoming increasingly reliant on virtualised labs and tools. Any

learning or research undertaken using these tools, however, is

based around the limitations and characteristics of such tools, as

well as any assumptions made by their developers. Virtual

testbeds are not perfect. Additionally, the accuracy of data

resulting from emulations and models may be further decreased

if used outside of their intended usage scenario. As such, this

paper presents a discussion on the effectiveness of physical

testbeds over simulation approaches. In addition, an approach

for the design and construction of a replicable, cost-effective

testbed for cyber-security education and training is presented.

Keywords—Testbed, Cyber-Security, Education

I. INTRODUCTION

Simulation-based testbeds are used to construct data for cyber-

security experimentation, testing and education purposes [1].

A virtualised approach offers significant cost savings and a

self-paced and active approach to learning. However, it has

several key limitations including: no hands-on experience, no

real-world training with specific equipment and no experience

in identifying and interpreting incorrect or uncharacteristic

data. Simulation is effective at representing ‘correct’

behaviour. However, critical infrastructure systems need to be

protected against situations where they are exposed to extreme

abnormal events. Unfortunately, in such circumstances,

systems do not always behave in the way expected or respond

in the same consistent manner. Similarly, it is therefore

difficult to accurately model how a system’s erratic behaviour

might cascade and impact other parts of the infrastructure.

Additionally, a simulation testbed approach is constructed

through the developer’s mental model of how the system

functions. In result, the data generated is constructed. Whereas,

in a physical approach, data is, instead, captured. This can be

for example, communication, control and physical system

characteristics in a unified environment [2]. Both simulation

data and captured data are used for research purposes [3].

Captured, also known as observational data, is generally

irreplaceable and tends to offer further realistic analysis over

simulation approaches. Yet, simulation is mainly used, as

testing in ‘real’ scenarios has the potential to impact human

well-being [4]. For that reason, testbed projects are often

presented to bridge the cyber-physical divide and offer a safe

environment for cyber-security testing and training [5].

However, many existing approaches, as outlined in the related

research section, are either costly, not-replicable or involve an

element of simulation in their design.

The research presented in this paper provides an ideal

solution. The practical element involved in the Micro-CI

project introduces a level of realism that is difficult to match

through simulation alone. As such, this project provides

innovative research opportunities for the testing and

development of security enhancements in a real-life scenario.

This is evaluated through a cyber-attack case study, to

demonstrate the capability to construct different data set types.

As such, the aim of the research is to have a practical output; a

fully working critical infrastructure testbed named Micro-CI.

The goal is to demonstrate the suitability of the datasets

generated by the Micro-CI testbed for the following

advantages.

 Pedagogical benefits: Research has shown that practical

learning opportunities are vital to students becoming

comfortable with cyber-security concepts. In addition,

users will learn the functioning of infrastructures and

their security systems through reverse engineering. A lack

of experience produces immaturity for systems

understanding, in an era where cyber-security experts are

in high demand [6];

 Cost effectiveness: Project has been designed to be as

cost effective as possible. We estimate that at the time of

writing the paper, replicating the experiments can be

achieved for under £100;

 Portability and Dataset: As the project components are on

a miniaturised bench-top scale, it enables them to be

packed away, stored and transported with ease. Projects

can still be moved and/or stored whilst partially

assembled. We envision that the testbed can be purchased

129Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 140 / 172

and assembled by other researchers in the future. In

addition, as outlined later in the paper, the amount of real

data which can be generated in a relatively short time

period offers advantages over larger testbed constructions.

The remainder of this paper is organised as follows. Section

2 presents an insight into the motivation behind this work and

a discussion on related projects. Section 3 details the approach

taken for the Micro-CI testbed development. Section 4

presents an evaluation and the paper is concluded in Section 5.

II. BACKGROUND

Internet of Things (IoT) is growing as a new model for the

expansion of the Internet, and can be held as the next

revolution in distributed systems and pervasive computing

technologies. It is predicted that in the next decade, it will

transform everything in people's everyday lives due its major

influence on so many areas of the industry: critical

infrastructure, education, healthcare, city management,

business, innovation, community, cultural heritage and many

more. In this new emerging technology, IoT would be

effortlessly assimilated within data science infrastructures,

producing data and generating knowledge. Traditionally, data

was stored upon few centralised hosts. All connections to

them were protected by perimeter security, connected clients

themselves were input/output devices with very limited

capabilities. Security mostly focused upon the few centralised

components.

A. The Cyber-Threat

As technology moved onwards, things became

decentralised. Desktop computers, with their myriad of

installed software systems and applications, and often lacking

professional administrative care, became a new battle ground.

In hindsight, this was an evolutionary step that led to even

more decentralised networks; the current manifestation being

the internet of things (IoT) and connected industrial control

systems (ICS). Initially, these were attacked too, e.g., Stuxnet

[15] or reports of attacks against honeypots posing as nuclear

power plants. However, recently, they have also become

weapons that endanger other systems too – they are now

commonly part of large distributed high-bandwidth distributed

denial of service (DDoS) attack botnets [16]. There's an

abundance of insecure IoT and ICS devices, fitting to a

common cloud-theme. For example, one can currently buy a

botnet-as-a-sevice for around $7500 for a 100000 device

botnet.

While decentralisation is still the best hope in the face of

state-based offensive actors, its security implications still need

further analysis. With the rise of desktop computers, attackers

started to pivot between captured desktops, utilising retrieved

credentials to move between networks and gain further data.

To prevent these attacks, security on and between desktops

was improved. Personal firewalls and malware detection tools

were deployed on desktops; network segregation and traffic

scanning was performed between them. This reduced the

available attack surface.

IoT and ICS now introduce even more communication

paths, while the IoT/ICS devices themselves are sometimes

lacking resources for essential security tasks. This allows

attackers to traverse more freely between devices while the

devices themselves are worse protected when compared to

traditional computers and servers. The latter is not just due to

reduced performance; IoT devices employ different hardware

architectures, some of the most commonly used architectures

lack hardware support for basic hardware security techniques

such as memory protection. This is related to the monetary

and power consumption related requirements. While desktop

computers are always connected to a power outlet and may

(now) cost a substantial amount of money, IoT devices are

power limited or run on battery-power and must not cost more

than a couple of dollars. Power utilisation might be of higher

importance than security.

Another distinction is their usage pattern. Desktops are

personal computers, named due to their direct usage through

human users. IoT/ICS devices are often not directly monitored

by users. While security problems can ultimately be of the

highest consequences, they might not be detected immediately.

Even if faults are detected, end users might not have the

means of easily updating those systems. While a desktop

computer is built by commodity hardware and runs (mostly)

standard software, IoT and ICS devices are often build for a

special purpose and employ special software. If the vendor

ceases product support, the device will gain additional

security problems that might not be solvable over time.

Educational material must adapt to this new reality. In

particular, they should focus on the distributed nature of

deployed systems and not on a single high-value target. The

interaction between the control system and distributed “cheap”

and insecure sensors should be part of any testbed. Simulation

of update mechanisms and transport mechanisms that are not

standard Ethernet cables should be included to resemble the

real world. We fear, that without an adequate testbed the next

generation of defensive IT professionals will have an even

harder task as the current generation already has.

The growing cyber-threat has led to a switch in research

focus from physical protection to digital infrastructure

security measures. However, this cyber-security research is

hampered by a lack of realistic experimental data and

opportunities to test new theories in a real-world environment.

B. Related Projects

For that reason, projects such as SCADAVT, have

developed simulation-based testbeds, which builds upon the

CORE emulator, for building realistic SCADA models [7]. In

their approach, Almalawi et al., develop a framework to

construct a water distribution system [7]. The testbed consists

of SCADA components, including the Modbus/TPC slave and

master, and the Modbus/TPC HNI server. Functioning

together, the testbed employs the use of the dynamic link

library (DLL) of EPANET to simulate the water flow within

the system. The testbed combines the use of existing

techniques to produce a novel testbed application. The system

130Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 141 / 172

tested through a case study involving a DDoS attack to

demonstrate that convincing data-construction is possible.

Software-based simulation data, such as this approach, is often

used to test theoretical cyber-security systems; however, the

data is constructed through emulators.

Examples of simulation approaches include a SCADA-

testbed constructed using TrueTime, and Matblab Simulink.

In their research, Farooqui et al., discuss the effectiveness of

TrueTime, which is used for simulating controller task

network transmissions and continuous plant dynamics [8]. To

evaluate their testbed, two varied DoS attack scenarios are

conducted. The first is an attack on the PID Controllers, the

second involves the generation of false control signals for a

specific actuator node. Whilst, the research is noteworthy, in

that TrueTime can be used to model network data to a detailed

level. This means that a close evaluation of the effects of 2

different DoS attacks can be understood when affecting the

normal system behaviour. There is, however, no comparison

with a physical application presented. Meaning that, the

mental model of the researchers is being evaluated.

PentesterLab, is an online tool for educating users on

exploiting SQL injections in a PHP-based website [9]. The

idea is to educate how the technique can be used for gaining

access to administration pages. Unlike the above simulation

approaches, PentesterLabs, has a focus on education and

teaching about the techniques used to implement an attack.

Whilst beneficial for an attack, there is a limited realism as the

application is set to a predefined attack scenario.

Other projects do recognise the need to integrate physical

components into testbed developments. For example, Van

Leeuwen et al., propose a methodology, which is a hybrid

testbed combining real and simulated components [10]. The

idea, much like the research presented in this paper, is to

develop a testbed, which is transportable and functions on a

single unified-platform. The main challenge faced by the

hybrid approach, as detailed, is that the simulated components

must be able to cope with the real-time functionality of the

physical components. To compensate for this, estimation

algorithms are implemented in order to support the real-time

functionality of the simulation.

This type of approach is referred to as cyber-physical,

where an amalgamation of both simulation tools and physical

components are merged to develop a testbed. One of the more

advanced cyber-physical-based testbeds is detailed by Siaterlis

et al., who present an emulation-capable testbed construction

termed EPIC [11]. The testbed is able to recreate the cyber-

part of interconnected critical infrastructures and makes use of

multiple software simulators to represent physical components.

The testbed demonstrates effective results under cyber-

security experimentation. However, the technical construction

of the testbed means that it would not be an ideal tool for

pedagogical use and the replicability would be unfeasible.

Physical testbed constructions are common place, but often

are bespoke and expensive to recreate. Heracleous et al., for

example, detail the design and construction of a critical

infrastructure testbed, which is able to emulate the operation

and faults commonly found in a water supply system, such as

leaks or pump and value faults [12]. Specifically, the testbed

emulates a small-scale version of a city water supply system.

The system, makes use of tanks, pipes, pumps and valves to

process the water. A SCADA system is in place to act as the

control system software. However, whilst the testbed is an

effective achievement, the large-scale implementation of the

device, with for example 15000 m3 tanks in place, means that

replicability costs would be high and not accessible to the

average researcher. The nature of the testbed also means that

it is confined to one critical infrastructure type and is not

adaptable to additional critical infrastructure varieties or

indeed capable of experiments on networked critical

infrastructures.

C. Discussion

To summarise, by using simulation-based techniques, a

hands-on learning experience is missed. This can be an

integral experience for understanding effective cyber-security

practices and techniques. It also means that the development

of new and innovative cyber defence systems are tested

against mental models as opposed to a real-world scenario. In

addition, the background research presented above, has also

led us to believe, that while effective physical testbeds are in

existence, there is limited access and replicability for

researchers and students. As such, we consider also the

following main challenges related to cyber-security education.

 Traditional school education is limited, even security

certifications are seldom hands-on. While applicable for

managerial roles, this is not sufficient for technical

personnel;

 Traditional virtual machine-based labs focus upon single

high-value targets. This does not resemble the IoT with

its multitude of connected devices. Some labs, e.g.,

Offensive Security Certified Professional (OSCP), do

offer advanced functions in this pivotal area, but they

mostly focusing upon segregated networks;

 Traditional protection techniques are not 100% fitting for

IoT. Hardware architectures sometimes lack basic

hardware requirements for security techniques, e.g., IoT

CPUs often lack a Memory Management Unit (MMU)

and thus cannot perform memory protection. Power usage

is more important than security;

 Typical web-application centric testbeds do focus on

web-application technologies. Within IoT and ICS there

is a development back to insecure technologies like telnet,

etc.;

 IoT and ICS have the same update problem as mobile

devices. For example, the process for automatically

installing updates. These update procedures can be

attacked by offensive actors.

131Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 142 / 172

As such, in the following section, our approach is put

forward for the development of a hackable and replicable

testbed for cyber-security training and education.

III. APPROACH

The testbed will be developed based on the Semantic sensor

networks (SSN) [17], which was proposed by the W3C

semantic sensor network incubator group (SSN-XG) [18], to

describe and discover IoT devices and their data.

A. Previous Implementation

In our past work, we presented the design of a rudimentary

water distribution plant testbed [13]. As illustrated in Figure 1,

there are two reservoir tanks, which are fed by two pumps

moving water from external sources. The remote terminal unit

is used to monitor the outgoing flow rate and water level, to

dynamically adjust the pump speed ensuring adequate

replenishment of the reservoir tanks. However, vulnerabilities

exist in the system, meaning that it is possible for an external

source to cut off the water supply or flood the reservoir tanks.

Figure 1. Physical wiring schematics

This can be achieved by switching off or speeding up either

of the pumps used to control the water flow. The practical

implementation of the testbed includes the following physical

components: an Arduino Uno Rev. 3 as the RTU, two 12v

peristaltic pumps as the water pumps, two liquid flow meters,

two water level sensors, two amplification transistors, diodes,

resistors and an LCD. In the schematics shown in Figure 1,

potentiometer symbols have been used in place of sensors;

this is due to the limited symbols available in the blueprint

software. As the maximum output of the Arduino is only 5v,

transistors amplify this to the 12v required by the pumps.

Lastly, the diodes are used to ensure the current can only

travel in one direction, thus preventing damage to the Arduino.

The hardware specification used is modest, meaning there

is scope for future expansion; yet is sufficient in size to

produce realistic infrastructure behaviour datasets for research

purposes. The construction is displayed in Figure 2. For the

purpose of this experiment, the Arduino board remains

connected to a PC via a USB cable (although this could be

replaced with a network connection for similar experiments).

The system is also inactive. Through this USB connection, a

serial connection is established to supply a real-time data feed,

which is recorded and preserved by the PC (as illustrated in

Figure 2).

Figure 2. Testbed Construction

The metrics collected in this instance include: Water level

sensor1/2 readings, Flow meter1/2 readings and Pump1/2

speeds. These readings are taken from each sensor every 0.25

seconds (4Hz) and written to the serial data stream.

B. Implementation

The above testbed can be used for simple data collection,

which in turn can be used to understand simple cyber-attack

behaviours, such as Distributed Denial of Service (DDoS)

attacks [14]. However, to advance this, the testbed must be

open to penetration testing experimentation and further

realistic attack scenario creation. To achieve this, we

incorporated an Internet of Things approach. Specifically, the

testbed was made Internet-ready with the integration of a

webpage which allows for the control of the individual device

components. The framework layout is presented in Figure 3.

Figure 3. IoT Framework

To begin with, a webpage, which can be used to control a

light on the Arduino board and a basic HTML page with

buttons to turn it on an off was set up. This enables the

possibility to add pumps/flow controls/etc. and control them

132Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 143 / 172

through the web page. Other IoT devices can connect to the

webserver through the Arduino Ethernet shield, which is

where security and penetration testing can take place. The

Arduino Ethernet shield provides access to the web server and

the testbed. The Client PC displays the control screen for the

testbed. Figure 4 displays the IoT setup, where the phone in

the middle (which can also be replaced with a raspberry pi

instead) represents the web server (1) and it is accessed

through the Arduino’s wifi shield (2). The laptop and second

phone (3) represent other IoT devices which can connect to

the webserver, if given the correct IP address. At this stage it

becomes possible to integrate security, firewall and intrusion

detection systems to identify unauthorised access of the web

page.

Figure 4. Testbed Extension

Specifically, the proposed system focuses on a water

distribution plant; however, the design is extendable and

testbeds can be extended to incorporate other infrastructure

types, such as an ecologically-aware power plant.

IV. EVALUATION

This testbed is evaluated through the demonstration of a

Distributed Denial of Service attack.

A. Test Case Scenario

The metrics collected in this instance include: Water level

sensor1/2 readings, Flow meter1/2 readings and Pump1/2

speeds. These readings are taken from each sensor every 0.25

seconds (4Hz) and written to the serial data stream.

To examine the quality of the data produced by the Micro-

CI implementation, a dataset was recorded over the period of

1 hour. During this time, the testbed was operating under

normal parameters (i.e. no cyber-attacks were present).

Essentially, this means that the pump speeds are configured to

slowly continue filling the tanks at a controlled speed until full

(even if no water is being used) and to cover the current rate

of water consumption (if possible). The outflow (water being

consumed) is a randomly applied value within a specific range

(to make usage patterns more realistic). In this instance, the

water source pipe is 60% smaller than the outflow pipe, which

allows for a more accurate representation of overflow.

The initial configuration of the testbed was as follows:

Tank1 is 65% full, Tank2 is 69.9% full, Outflow1 is

functioning at 20 + (1-35)% of capacity and Outflow 2 is

operating at 30 + (1-35)% of capacity. A small sample of the

data obtained at 00:10.5 of run time is shown in Table 1. From

this dataset, we can see that there is no significant variation

present in the data. We can also see that all the metrics

maintain consistent trends in operation.

TABLE 1 – PHYSICAL TESTBED DATA SAMPLE (%)

Sample (t) P1 P2 P3 P4 P5 P6

00:10.5 65.0 69.9 47.3 55.4 81.9 85.1

00:10.7 65.0 69.9 39.4 48.5 74.1 78.8

00:11.0 65.0 69.9 39.4 53.4 74.1 83.1

00:11.2 65.0 69.9 33.6 50.5 69.0 81.1

00:11.5 65.0 69.9 41.4 39.7 76.0 70.2

Components:

 P1 - Water Level 1 - this depicts the water level in tank

one.

 P2 - Water Level 2 - this depicts the water level in tank

two.

 P3 - Water Flow 1 - this refers to the flow rate through

pipe one.

 P4 - Water Flow 2 - this refers to the flow rate through

pipe two.

 P5 - Pump Speed 1 - this is the operating speed of pump

one which controls the flow of water from tank one.

 P6 - Pump Speed 2 - this is the operating speed of pump

two which controls the flow of water from tank two.

For this case study, data for the water distribution plant is

recorded whilst operating under normal conditions. This

allows for the building of a behavioural norm profile for the

system, in order to identify anomalies. Within the testbed,

during the DDoS attack, only intermittent readings from the

sensors are received, forcing it to make drastic (and therefore

uncharacteristic) changes to the pump speeds, rather than

gradual as when operating as normal. In this cyber-attack

dataset, a DDoS attack is launched against the RTU’s

communications channel, so it is only able to get sensor

readings intermittently. Whilst no new values are readily

available, the RTU will continue to maintain the previous

pump speed.

In Figure 5, the components are displayed along the x-axis,

with labels 1 to 6. The y-axis displays the operating capacity

of the component. The exact behaviour induced by this

experiment was relatively unknown. The results obtained

showed that one tank kept filling whilst the other maintained

the same level. As such, Figure 5 displays box plots of the

distribution values for the testbed data for normal behaviour.

Figure 6 displays the alteration in data when in a cyber-

attack scenario. The change in behaviour, as a result of the

attack, can be seen in the average value changes in the

datasets, as previously for the simulation dataset. Particularly

a change in the output for P5 is visually apparent.

2
3

1

133Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 144 / 172

Figure 5. Distribution values for Testbed Normal Data Plot

Figure 6. Distribution values for Cyber-Attack Data Plot

The data constructed during normal operation and under

cyber-attack is used to assess the potential of the data to be

used for cyber-security training and research. The data is

evaluated using data classification techniques to identify the

nature and timing of the conducted cyber-attacks.

V. CONCLUSION AND FUTURE WORK

One of the most effective aspects of the Micro-CI testbed, as

demonstrated in this paper, is its expandability. This means

the scale of the testbed can be expanded to incorporate

additional components and sensors. One of the aims of this

project is to devise a testbed, which is suitable for cyber-

security training and research. It is our belief that the use of

real-life data is more suitable for cyber-security research, than

that of simulation only. However, as with all solutions, there

are some drawbacks to our approach. The first is that the use

of low cost hardware reduces the level of accuracy that can be

achieved. For example, the Arduino Uno uses an ATMega

microcontroller, which is only capable of recording 4-byte

precision in double values. This can present problems if

precision is a crucial part of the research being undertaken.

This can be mitigated by purchasing more expensive hardware.

Another limitation is that in comparison to simulation

software, the practical approach may require a greater level of

improvement to students’ skillsets (which is not a detrimental

attribute), and a longer initial construction time, to accomplish

a working implementation.

REFERENCES

[1] S. Badri., P. Fergus., and W. Hurst., Critical infrastructure automated
immuno-response system (CIAIRS), In Proceedings of the IEEE

International Conference on Control, Decision and Information

Technologies, 2016
[2] A. Ashok., P. Wang., M. Brown., and M. Govindarasu., Experimental

evaluation of cyber-attacks on Automatic Generation Control using a

CPS Security Testbed, In Proceedings of the IEEE Society General
Meeting on Power & Energy, 2015

[3] Boston University Libraries, Research Data Management, What is

‘Research Data’?, reference, available at
[http://www.bu.edu/datamanagement/background/whatisdata/], access

08/12/2016
[4] G. Bernieri., F. Del Moro., L. Faramondi., and F. Pascucci., A testbed

for integrated fault diagnosis and cyber security investigation, In

Proceedings of the IEEE International Conference on Control, Decision
and Information Technologies, 2016

[5] P. Singh., S. Garg., V. Kumar., and Z. Saquib, A testbed for SCADA

cyber security and intrusion detection, In Proceedings of the IEEE

Conference on Cyber Security of Smart Cities, Industrial Control

System and Communications, 2015

[6] B. Somekh., C. Lewin., D. Saxon., D. Woodrow., et al., Evaluation of
the DfES ICT Test Bed Project, The Qualitative Report, Coventry:

Becta, 2007

[7] A. Almalawi., Z. Tari., I. Khalil., and A., Fahad, SCADAVT-A
framework for SCADA security testbed based on virtualization

technology, In Proceedings of th 38th IEEE Conference on Local

Computer Networks, 2013
[8] A. A Farooqui., S. S. Haider Zaidi., A. Y Memon., and S. Qazi., Cyber

Security Backdrop: A SCADA testbed, In Proceedings of the IEEE

Computing, Communications and IT Applications Conference, 2014
[9] PentesterLab, available at [https://pentesterlab.com/] accessed

08/12/2016.

[10] B. Van Leeuwen., V. Urias., J. Eldridge., C. Villamarin., and R.
Olsberg, In Proceedings of the IEEE International Carnahan

Conference on Security Technology, 2010

[11] C. Siaterlis., B. Genge., and M. Hohenadel., EPIC: A Testbed for
Scientifically Rigorous Cyber-Physical Security Experimentation.,

IEEE Transactions of Emergining Topics in Computing, 2014

[12] C. Heracleous., E. E. Miciolino., R. Setola., F. Pascucci., D. G. Eliades.,
G. Ellinas., C. G. Panayiotou., and M. M. Polycarpou., Critical

Infrastructure Online Fault Detection: Application in Water Supply

Systems, In Proceedings of the Springer Journal on Critical
Information Infrastructures Security, vol 8985, pp 94-106

[13] W. Hurst., N. Shone., Q. Shi., and B. Bazli., Micro-CI: A Critical

Systems Testbed for Cyber- Security Research, In Proceedings of The
Eighth International Conference on Emerging Networks and Systems

Intelligence, At Venice, Italy, Volume: Special Session on Big Data

Analytics in Critical Systems (BDA-CS), 2016
[14] K. Alieyan., M. M. Kadhum., M. Anbar., and S. Ul Rehman., et al., An

overview of DDoS attacks based on DNS, In Proceedings of the IEEE

International Conference on Information and Communication
Technology Convergence, 2016.

[15] Bill Miller and Dale Rowe. A survey SCADA of and critical

infrastructure incidents. In Proceedings of the 1st Annual conference
on Research in information technology (RIIT '12). ACM, New York,

NY, USA, 51-56, 2012.

[16] Marjan Kuchaki Rafsanjani and Neda Kazeminejad. Distributed denial
of service attacks and detection mechanisms. J. Comp. Methods in Sci.

and Eng. 14, 6, 329-345, 2014.

[17] Compton M et al., The SSN ontology of the W3C semantic sensor
network incubator group, Web semantics: science, services and agents

on the World Wide Web, vol 17. Elsevier, London, 2012

[18] Semantic Sensor Network Incubator Group.
https://www.w3.org/2005/Incubator/ssn/. Retrieved Dec 2016

134Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 145 / 172

Development of a Secure Cloud Based
Learning Environment for Inclusive Practice

in Mainstream Education

Nigel Beacham
Computing Science

University of Aberdeen
Email: n.beacham@abdn.ac.uk

Bob Duncan
Business School

University of Aberdeen
Email: bobduncan@abdn.ac.uk

Abstract—The use of IT based systems in mainstream education
brings a particular focus to bear on security. When these systems
involve the use of cloud, the challenge increases exponentially.
There are a great many benefits to be gained from cloud use,
and therefore, we argue that developing a suitable approach to
provide a secure cloud based learning environment, which would
be used to facilitate use for inclusive practice in mainstream
education would be a worthwhile goal. We demonstrate how to
develop such an approach, which we believe could provide a more
effective approach than traditional technology based approaches.

Keywords–Inclusive education; security; privacy;cloud system.
I. INTRODUCTION

Educational systems are complex socio-technical systems
and we need to consider what makes this so. Introducing
educational services through the cloud can open pupils and
staff to further exploitation, which we need to investigate
[1][2]. We must bear in mind that the use of technical solutions
alone can never succeed. Any solution must be addressed
from a social engineering perspective, which considers the
political, personal and social aspects. This paper addresses
this important issue from this different perspective in order
to address both the special needs of all involved, the special
security and privacy issues raised by using a cloud based
solution, and the other security and privacy factors, which must
be taken into account.

Proper security and privacy for any web based system is
challenging. When cloud systems are used, these challenges
become considerably more difficult to address successfully.
Thus, in Section II, we discuss the motivation for this work. In
Section III, we discuss the educational needs and requirements,
which must be satisfied in order to deliver the aims and
goals of the work. In Section IV, we outline the security
requirements needed to deliver the goals and aims of this work,
and in Section V, we explain how achieving these security
requirements will meet the security goals of the project. We
discuss our conclusions and future work in Section VI.

II. MOTIVATION

Virtual Learning Environments (VLE)s tend to be perceived
as providing tools for specific individuals and not as tools for
everybody [3]. They tend to be used for what is suggested as
inclusion; to facilitate a pupil’s ability to participate in learning
[4]. We argue that such tools allow the pupils to access learning
materials and/or curriculum, and in doing so, can allow pupils
to sometimes integrate within the classroom [5]. To be seen as

fully inclusive, they should be made available for everybody,
including teachers, parents, support staff and other agencies,
if appropriate. Instead of the emphasis being on the use of
VLEs to allow individuals to participate, there needs to be a
greater emphasis on the way all those in the class use VLEs
to allow all to participate. Consequently, at present, little is
understood about the way VLEs can be made available and
used for everybody. Looking at current practices using VLEs,
they tend to be used by pupils in schools under the control of
teachers, despite teachers tending not to use VLEs themselves
as part of their teaching practice. With a huge variety of
VLEs available, teachers often lack confidence, awareness and
knowledge of VLEs, particularly in how best to use them in
the classroom [6]. Naturally, it can take teachers extra time
and effort to consider how to use VLEs within the classroom
for those pupils who are deemed as requiring such support.
VLEs tend to be made available only to those children within
their school who require them, and only to those areas the
educational system deems require their use [7].

Even when VLEs are made available to a pupil outwith the
school, they are often reported as failing to work appropriately
and many VLEs are only available for use within a particular
class. There are also numerous reports of many materials in
VLEs residing on the shelf, often unused. Where VLEs have
been used effectively in schools, it is unclear how useful they
were, the impact they had on the children’s learning, whether
it is used in terms of integration or inclusion, and whether
the tools were available from home and outside the school.
Whether VLEs are made available or not, it can leave pupils
excluded in class and also at home. New ways of observing
and analysing the way VLEs are used need to be explored and
better understood [8]. Whilst many children see technology
as just part of life, some pupils see the computer and the
use of VLEs as essential in all aspects of their learning.
This is particularly evident from those pupils with disabilities,
who have access to VLEs through assistive technologies and
computers at home that support their needs, as opposed to
those available in school. For other pupils, some may not wish
to use VLEs as part of a differentiated task but as part of
‘normal’ class work. Furthermore, savvy teachers and pupils
consider the limitations of some VLEs as being restrictive,
especially when similar open source tools are free.

The impact of technology on learning is much more
difficult to determine than first thought. Factors inside and
outside school can impact on the use of VLEs for learning. For

135Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 146 / 172

example, barriers within schools can prevent the use of open
source tools, while outside school, they are widely and freely
available to all [9]. We believe that a cloud based approach
can fulfil many of the practical requirements that must be
addressed. Principal among these is the adaptable approach,
with rapid scalability, and the ability to tailor resource usage
to the demands of teaching in order to optimise operating
costs. The use of cloud facilities also removes the barriers
associated with rolling out large scale computing projects using
traditional distributed hardware and software. This means the
system could quickly and easily be scaled out to service not
just a single school, but many schools within a region, or
indeed across a country. We cover many of these technical
points in later sections. Thus, our discussions throughout this
paper are based on the premise that we will use a cloud based
approach. We are acutely aware that pupils can be open to
exploitation and grooming within VLEs, not just at school, but
also in home and community environments. We are aware that
pupils, teachers and administrative and support staff must be
made ready for the step change in approach needed to ensure
a high level of cloud-based security as the main mechanism
by which we can ensure security and privacy inside the VLE.
The lessons learned from this robust approach to security and
privacy in this VLE can provide pupils with the foundation
for a key skill in protecting the secure development of their
personal on-line future. In the next section, we address the
educational needs and requirements, which must be delivered
in order to develop a successful system.

III.THE EDUCATIONAL NEEDS AND REQUIREMENTS

It is likely that teachers may lack preparedness in under-
standing the proper use of tools and techniques to monitor
and retain a secure and safe VLE, a vital part of ensuring
the successful running of a safe and secure environment, so
this must form part of the preparation for the use of such a
system [9]. We must also consider current VLE limitations in
the context of Transformability theory.

Transformability theory is a framework for transforming
learning capacity [10]. It provides a way of conceptualising
learning capacity and how to improve it through the teaching
practices used by teachers and schools [11][12][13]. Underpin-
ning the theory are the three principles: co-agency; everybody;
and trust. Co-agency relates to teachers, pupils, parents and
support services being a joint enterprise. Everybody relates to
teachers, pupils, parents and support services being respon-
sible and committed to all pupils in a learning community.
Trust relates to building close trusting relationships between
teachers, pupils, parents and support services. This theory not
only provides a lens within which to research, reflect and
inform the ways Assistive Technology (AT) and Information
and Communications Technology (ICT) are generally used
to enable meaningful participation in learning, but can guide
teachers on what to do, and not to do, in their practice with
cloud-based VLEs to improve security.

In educational terms, AT focuses on providing access to
materials and the curriculum [4]. Research on the development
and use of AT tends to centre on investigating how tools
improve access. This is only one of a number of aspects, which
need to be addressed to improve the capacity to learn. Other
aspects include the role AT plays in enhancing collaboration,
achievement, acceptance and recognition of learner diversity,
and furthermore how effective using a particular AT is to facili-

tate collaboration, achievement and acceptance and recognition
of diversity. It is these aspects, which tend to be ignored, and as
many teachers will know, make an important difference in im-
proving learning capacity. An inclusive pedagogical approach
draws attention to these additional aspects. Theories such as
transformability help inform teachers not only to use AT to
improve access to the materials and the curriculum but also to
address the other crucial aspects of learning capacity [14][15].

Thus, we need a theoretical framework to extend inclusive
education practices to security – in effect using a transforma-
bility theory approach. By this means, we can ensure that not
just technical staff are aware of preparedness in cloud-based
security, but everybody in the learning ecosystem does too.
This co-agency approach between pupils, parents, teachers,
administrators and technical staff is vitally important and is
required to keep pupils and staff safe, not just for the duration
of their learning, but as a solid foundation to ensure their
lifelong online protection. This will also help us to satisfy the
need to develop closer trust within learning communities as a
whole, and to ensure everybody perceives and benefits from
being recognised, accepted and included [16].

IV.SECURITY REQUIREMENTS TO BE ADDRESSED

The well recognised security requirements of any enterprise
are confidentiality, integrity and availability (CIA). Duncan
and Whittington [17], suggest that we should also add the
goals of sustainability, resilience and ethics. The traditional
approach to satisfy the CIA requirements, are access control,
plus encryption, for confidentiality; transaction monitoring,
possibly with encryption, for integrity; and redundancy for
availability. Long term sustainability comes from providing a
system that works, achieving the goals set for it, providing
value for money, and does so in a reliable fashion. Resilience
comes from providing a system that is resilient to unexpected
shock; and a business continuity mechanism or policy, can
assist with this task. Ethical behaviour on the part of all the
actors in a cloud ecosystem can be delivered where all parties
are properly accountable, and through their individual ethical
behaviour, demonstrate they will not try to gain personal
advantage at the expense of others within the ecosystem.

These goals are generally well understood by enterprises,
and are often approached using technical solutions. However,
in any business environment, the business architecture com-
prises a combination of people, process and technology [18],
not by technology alone. The people of any business are gen-
erally recognised as being the weakest link, and whether it is
a FTSE100 world class enterprise, a government organisation,
a small firm, or an educational body, the fact remains that
the people in the organisation present the largest threat. When
we talk about people in the context of this paper, we refer
to the description for everybody in Section II, above. To this,
we must add all the agents involved in the cloud ecosystem,
and of course, the attack community. The bad guys have long
recognised that the weakest part of any IT system is actually
the users of that system, which is why they have long been
developing and polishing the very successful practice of social
engineering. Thus, proper user training must be undertaken.

Since cloud computing is enabled by use of the internet,
then web based applications present some of the most success-
ful attack vectors for the bad guys. While web vulnerabilities
are well understood, we can see from data collected by the
Open Web Application Security Project (OWASP) [19], who

136Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 147 / 172

publish a top ten list of web security vulnerabilities every three
years, that these attacks continue to be perpetrated successfully
year on year. OWASP provide the most comprehensive list of
the most dangerous vulnerabilities and a number of very good
mitigation suggestions. The last three OWASP lists for 2007,
2010 and 2013 are provided in TABLE I, below.

TABLE I. OWASP TOP TEN WEB VULNERABILITIES — 2013 - 2007 [19]

2013 2010 2007 Threat
A1 A1 A2 Injection Attacks
A2 A3 A7 Broken Authentication and

Session Management
A3 A2 A1 Cross Site Scripting (XSS)
A4 A4 A4 Insecure Direct Object

References
A5 A6 - Security Misconfiguration
A6 - - Sensitive Data Exposure
A7 - - Missing Function Level

Access Control
A8 A5 A5 Cross Site Request

Forgery (CSRF)
A9 - - Using Components with

Known Vulnerabilities
A10 - - Unvalidated Redirects

and Forwards

These lists are based on the result of analysis of successful
security breaches across the globe, and highlight the most
easily breached areas in web based systems. It illustrates the
worst ten web vulnerabilities in computing systems globally.
While these vulnerabilities are relatively easy to address, it is
concerning that they continue to recur year after year. Thus,
these should all be addressed. There are likely to be additional
potential vulnerabilities, which also must be considered, not
necessarily only technical issues such as we have illustrated
above. Duncan and Whittington [17], identified ten key man-
agement issues, which also must be addressed. Often these are
not properly thought through by management.

The ten key management security issues identified are: The
definition of security goals; Compliance with standards; Audit
issues; Management approach; Technical complexity of cloud;
Lack of responsibility and accountability; Measurement and
monitoring; Management attitude to security; Security culture
in the company; and the threat environment. Further details on
each of these key areas of potential weakness are provided
in [17]. As quickly as security researchers come up with
solutions to new vulnerabilities, the bad guys, in turn, come
up with successful attacks against these fixes. This continual
“arms race”, means that it is also essential to ensure a proper
monitoring system forms part of the design framework. Also,
since cloud provides easy scalability of resources to track the
demand curve, it will also be necessary to have a system
that can track the addition of new instances, the shutting
down of instances no longer required, and the extraction
of suitable audit trail and system logging data for forensic
examination purposes in the event of a breach. These security
requirements we propose go much further than conventional
technical approaches in use until now. It is clear from recent
annual security breach reports such as [20][21][22], which
clearly demonstrate the security and privacy problems still
faced today. The same attacks continue to be successful year
on year. Looking at this five year summary of Verizon reports
shown in TABLE II below, we can see the result of failing to
use a complete solution to the security problem:

It is clear that a more complete solution must be used, and
we have outlined the essential components of such a system. A

TABLE II. VERIZON TOP 5 SECURITY BREACHES — 2010-2014
(1=HIGHEST)

[23][24][25][26][20]

Threat 2010 2011 2012 2013 2014
Hacking 2 1 1 1 1
Malware 3 2 2 2 2
Misuse by company employees 1 4 5 5 5
Physical theft or unauth. access 5 3 4 3 4
Social Engineering 4 5 3 4 3

cloud service provider might well have a secure and effective
technical cloud solution, but it will be useless if cloud users
are compromised by a successful social engineering attack.

V. HOW THIS MEETS SECURITY GOALS

There are many challenges, which must be met by cloud
based systems, meaning a far more rigorous approach is
needed. A fundamental requirement is the use of a proper
monitoring system [27]. Without one, it will be almost impos-
sible to tell that a system has been breached. With no proper
audit trail and sufficient forensic evidence, it will be extremely
difficult to understand precisely which data has been accessed,
modified, ex-filtrated or deleted. The popular approach to cloud
cyber security generally centres around technical solutions.
For the reasons stated in Section IV, this will always prove
inadequate in the face of adversaries with ever improving skill
levels and attack tool sets. Thus, our proposed framework must
incorporate some addition components. Cloud can necessarily
create and destroy instances at will, in order to scale up,
or down, as demand dictates, so it will be necessary to
have some level of control and monitoring system to log
each new instance as it is created, or deleted, and should
constantly monitor the instance throughout its life-cycle, to
ensure it continues to function as expected, and has not been
compromised by an attack.

The controller function should be created in a separate
server from the running instances. The data logs and any audit
trail should be stored in another separate secure server running
immutable database software to guard against attack. Neither
of these systems should run any other software, and should not
be exposed to public access on the internet. Each should run
behind a strong firewall, and should be protected by intrusion
detection software. In addition, the main system should also
run behind a secure cloud firewall, and should also run intru-
sion detection software. Access should be delivered via multi-
step authentication, to protect against common password attack
strategies. There are three ways to do multi-step authentication:

1) Something the user knows (e.g., a password, partial
password, pass phrase, or personal identification number
(PIN), challenge response (the user must answer a ques-
tion, or pattern), or security question);

2) Something the user has (e.g., wrist band, ID card, security
token, mobile phone with built-in hardware token, soft-
ware token, or mobile phone holding a software token);

3) Something the user is or does (e.g., fingerprint, retinal
pattern, signature, face, or voice identifier).

The minimum use of two of the categories with three or
more questions to be successfully answered before access is
granted, provides an extremely secure level of access control,
without the use of passwords. We have outlined how there
are many more threats than just those that can be solved
by technical means alone. These additional threats are very
effective, yet relatively simple to guard against. The approach

137Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 148 / 172

we have outlined here is not technically difficult to achieve,
nor expensive to implement, yet these steps, taken in concert
with conventional technical solutions, can prove invaluable
in the fight against attack. This section considers the above
security threats from the perspective of transformability theory
and its three underlying principles. Transformability theory
has as its underlying philosophy ‘Learning without Limits’.
Based on this premise, we suggest that security threats should
be faced in a similar fashion — ‘Security without Barriers’.
From a social perspective the more barriers are erected, the less
secure communities will be. Thus, it is important to develop
a culture of ethical hacking between agencies. A culture that
ensures everybody is involved and included so they acquire the
knowledge and skills to keep them safe from, and prepared for,
cyber security threats. Core to this is the need to develop trust
within the community so focus can be targeted outside, in the
knowledge that inside, the community is soundly built.

Threats caused by e.g., pupils targeting their peers by
sending SMSs, emails and tweets, etc., need to be confronted
and addressed immediately and openly within the learning
environment. The perpetrator, their parents and other necessary
agencies need all to be aware. This may not reduce the stress
on the targeted pupil but does identify and expose the perpetra-
tor and their behaviour. Such an approach requires everybody’s
participation, trust and involvement. Action needs to focus
on improving respect and acceptance with the outcome of
changing behaviour. Physical threat or unauthorised access can
be reduced when working with and through others. Working
on activities requiring the synchronisation of two or more
agents can reduce the likelihood a third party will obtain
unauthorised access. We encourage more use of computer-
supported collaborative learning (CSCL)[28][29], approaches
and tools. Social engineering threats ultimately tend to target
entire communities rather than individuals within.

VI.CONCLUSION

We have outlined the problems faced when considering
the use of a cloud based technology solution in mainstream
education, and in particular where the learning environment
is used for inclusive practice. We argue for a more inclusive
approach to ethical hacking; providing an environment that
encourages security without barriers; all of which can be used
for communities as well as a society built on trust. Transforma-
bility theory provides a framework, which introduces a positive
mind-set that together, communities such as those within
education, can address security threats within both educational
systems and any socio-technical system. It provides a common
language from a social engineering perspective to discuss and
deal with threats; and provides a way to measure and monitor
environments for threats in the future. Such an approach will
be developed and piloted and provide useful knowledge in the
implementation of cloud-based security.

As we move towards virtual and augmented collaborative
learning environments such as Second Life, inclusive peda-
gogies must have more dynamic security. Many real-world
social skills are replicated in these virtual and augmented
worlds [30]. It is therefore important that inclusive pedagogies
are adaptable for physical and virtual learning environments,
including considering the role AT can play in enabling mean-
ingful participation in learning within such multi-dimensional
environments. To date, few ATs can be integrated effectively
within groupware systems in mainstream education.

REFERENCES

[1] S. K. Beach, “Usable cybersecurity: Human factors in cybersecurity
education curricula, ” Natl. Cybersecurity Inst. J., 2014, p. 5.

[2] N. Sultan, “Cloud computing for education: A new dawn?” Int. J. Inf.
Manage., vol. 30, no. 2, 2010, pp. 109–116.

[3] G. Attwell et al., “Personal learning environments-the future of eLearn-
ing?” Elearning Pap., vol. 2, no. 1, 2007, pp. 1–8.

[4] L. Florian and J. Hegarty, ICT and special educational needs: a tool for
inclusion. McGraw-Hill Education (UK), 2004.

[5] N. Beacham and K. McIntosh, “Student teachers’ attitudes and beliefs
towards using ICT within inclusive education and practice,” J. Res. Spec.
Educ. Needs, vol. 14, no. 3, 2014, pp. 180–191.

[6] N. Sclater, “eLearning in the cloud,” Int. J. Virtual Pers. Learn. Environ.,
vol. 1, no. 1, 2012, pp. 10–19.

[7] S. Hubackova, “Pedagogical foundation of eLearning,” Procedia-Social
Behav. Sci., vol. 131, 2014, pp. 24–28.

[8] E. Wiebe and D. Sharek, “eLearning,” in Why Engagem. Matters.
Springer, 2016, pp. 53–79.

[9] N. Beacham, “Developing NQTs e-pedagogies for inclusion,” Institution
University of Aberdeen, May 2011.

[10] S. Hart, A. Dixon, M. Drummond, and D. McIntyre, “Learning without
limits,” in Sage Handb. Spec. Educ., 1st ed. Open University Press, 2008,
ch. 38, pp. 499–514.

[11] L. Florian and J. Spratt, “Enacting inclusion: A framework for inter-
rogating inclusive practice,” Eur. J. Spec. Needs Educ., vol. 28, no. 2,
2013, pp. 119–135.

[12] L. Florian, K. Young, and M. Rouse, “Preparing teachers for inclusive
and diverse educational environments: Studying curricular reform in an
initial teacher education course,” Int. J. Incl. Educ., vol. 14, no. 7, 2010,
pp. 709–722.

[13] C. Forlin and D. Chambers, “Teacher preparation for inclusive educa-
tion: Increasing knowledge but raising concerns,” Asia-Pacific J. Teach.
Educ., vol. 39, no. 1, 2011, pp. 17–32.

[14] S. Riddell, “Social justice, equality and inclusion in Scottish education,”
Discourse Stud. Cult. Polit. Educ., vol. 30, no. 3, 2009, pp. 283–296.

[15] T. Mortimore, “Dyslexia in higher education: Creating a fully inclusive
institution,” J. Res. Spec. Educ. Needs, vol. 13, no. 1, 2013, pp. 38–47.

[16] M. Ainscow and A. Sandill, “Developing inclusive education systems:
The role of organisational cultures and leadership,” Int. J. Incl. Educ.,
vol. 14, no. 4, 2010, pp. 401–416.

[17] B. Duncan and M. Whittington, “Enhancing cloud security and privacy:
The power and the weakness of the audit trail,” in Cloud Comput. 2016
7th Int. Conf. Cloud Comput. GRIDs, Virtualization. Rome: IEEE, 2016,
pp. 125–130.

[18] PWC, “UK information security breaches survey - Technical Re-
port 2012,” London, Tech. Rep. April, 2012. [Online]. Available:
www.pwc.com Last accessed: Jan 2017

[19] OWASP, “OWASP top ten vulnerabilities 2013,” 2013. [Online]. Avail-
able: https://www.owasp.org/ Last accessed: Jan 2017

[20] Verizon, “2014 Data breach investigations re-
port,” Tech. Rep. 1, 2014. [Online]. Available:
http://www.verizonenterprise.com/resources/reports/rp Verizon-DBIR-
2014 en xg.pdf Last accessed: Jan 2017

[21] PWC, “2014 Information security breaches survey: Technical report,”
Tech. Rep., 2014.

[22] Trustwave, “Trustwave global security report,” Tech. Rep., 2013. [On-
line]. Available: https://www2.trustwave.com/2013GSR.html Last ac-
cessed: Jan 2017

[23] W. Baker et al., “Data breach investigations report,” Tech. Rep., 2010.
[24] Verizon, “2011 Data breach investigation report: A study conducted by

the Verizon RISK team in cooperation with others,” Verizon/USSS, Tech.
Rep., 2011.

[25] Verizon, N. High, T. Crime, I. Reporting, and I. S. Service, “2012 Data
breach investigations report,” Verizon, Tech. Rep., 2012.

[26] Verizon, “Verizon2013,” Tech. Rep., 2013.
[27] B. Duncan and M. Whittington, “The importance of proper measure-

ment for a cloud security assurance model,” in 2015 IEEE 7th Int. Conf.
Cloud Comput. Technol. Sci., Vancouver, 2015, pp. 1–6.

[28] Wikipedia, “Computer supported collaborative learning,” 2017.
[Online]. Available: https://en.wikipedia.org/wiki/Computer-
supported collaborative learning Last accessed: Jan 2017

[29] S. Järvelä and A. F. Hadwin, “New frontiers: Regulating learning in
CSCL,” Educ. Psychol., vol. 48, no. 1, 2013, pp. 25–39.

[30] A. Dix, J. Finlay, G. Abowd, and R. Beale, “Evaluation techniques,”
Hum. Comput. Interact., 2004.

138Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 149 / 172

Corporate Governance, Risk Appetite and Cloud
Security Risk: A Little Known Paradox. How Do

We Square the Circle?
Bob Duncan

Computing Science
University of Aberdeen

Email: bobduncan@abdn.ac.uk

Yuan Zhao
Accounting and Finance
University of Aberdeen

Email: y.zhao@abdn.ac.uk

Mark Whittington
Business School

University of Aberdeen
Email: mark.whittington@abdn.ac.uk

Abstract—In today’s corporate world, the notion of corporate
governance has taken a more important role in the management
of large corporates. There is a growing consensus that large
corporates ought to take more of a stewardship approach to
running a company in a clear attempt to move away from the
agency theory approach, with all its attendant problems and
issues. A fundamental component of corporate governance con-
cerns the adequate recognition of risk faced by the organisation
and dealing with it appropriately. Traditional corporate IT risk
is well understood, as are the mitigation strategies needed to
address this important area. Large corporates also understand
risk theory well, and how finding the right balance between
risk and profitability is key to ensuring profitability can be
maximised while ensuring long term sustainability and resilience
are also achieved. We assert that the cloud computing paradigm,
while economically attractive to corporates, provides such a
step change from traditional IT paradigms, that new risks have
evolved, which are not well understood, leading to the possibility
of unintended exposure to these sometimes considerable risks.
We propose a different approach to the quantification of these
risks, which we believe will provide a more robust approach to
understanding the potential exposure they face when using cloud.

Index Terms—Corporate governance; corporate stewardship;
risk appetite; cloud security risk.

I. INTRODUCTION

Achieving effective information security in the cloud is not
a trivial process. There are many challenges to overcome, and
sometimes those challenges arise from the most unexpected
places. There are a great many influences, which bear down
on the successful outcome of meeting this important goal, and
often, a number of these influencing factors are not aligned.

This presents managers with something of a paradox when
it comes to satisfying all the demands placed upon them,
particularly when it comes to satisfying the rules of good
corporate governance, managing risk effectively and balancing
this with the primary goal of a company, which is to maximise
the resources of that company for the benefit of the share-
holders. This fiduciary responsibility of management to the
shareholders has been a fundamental tenet of good corporate
management for a very long time.

However, there is also a recognition that a company needs
to be managed responsibly in a sustainable way to ensure the
continued existence of the company, such that it be capable of
withstanding sudden market shock, in other words is resilient
to market forces, and added to this is the requirement to act
in a responsible, accountable and ethical manner.

A modern requirement of a company is that there is now
a recognition that information forms a key element of the
resources of that company, and that it is therefore necessary to
safeguard this information properly. This is further reinforced
following the introduction of, sometimes punitive legislation
[1][2], to ensure that companies achieve this goal.

For those member states of the EU, and for the UK post
Brexit, there is a new “Bogey man” on the horizon — the
forthcoming General Data Protection Regulation, which is
scheduled to be brought into law in May 2018. This will
require a considerable number of changes to be implemented
in corporate systems in order to comply with this legislation.
The level of fines proposed takes compliance fines to a new
high, and will definitely attract the attention of board members.

In Section II, we discuss some background on all these
issues. In Section III, we consider how the Financial Services
Sector approach cyber risk, in Section IV, we consider why
this might be important for company cloud users. In Sec-
tion VI, we consider how this might work; and in Section VII,
we discuss our conclusions.

In the next section, we will take a look at these important
areas to see what we can learn.

II. BACKGROUND

We start by looking at Corporate Governance, followed by
Risk Appetite, IT Risk and Cloud Security. This first area we
look at will be Corporate Governance.

A. Corporate Governance Literature

We can trace some of these issues back to the early 1930s,
when Berle and Means [3], commented how setting up a
large company was now beyond the means of any single
person, which would lead to the popularity of the large
company, where we would see the concept of the separation

139Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 150 / 172

of management and ownership. This, in turn, would ultimately
lead to the evolution of Agency Theory [4]. One of the
fundamental flaws of Agency Theory is the inability to control
greed, and this became one of the fundamental weaknesses of
this theory, leading to the uncontrolled growth of management
remuneration.

In the UK, the financial de-regulation, which took place
in the 1980s, would lead to extremes of corporate financial
excess, including corporate scandals, such as the Bank of
Credit and Commerce International (BCCI), Maxwell and the
controversy over directors’ pay. Government responded to
this by commissioning the 1992 Cadbury Report [5]. This
resulted in the introduction of the “Combined Code”, to
which all large UK corporates should adhere, by reporting
in their annual return whether they “comply or explain” with
the recommendations of the report. A year later, Jensen [6],
wrote about the effect of technological innovation and internal
control systems failures. Jensen and Chew [7] investigate the
effects of the takeover boom of the 1980s. The Combined
Code was subsequently updated [8]–[11].

Still in the UK, UK corporate governance continues to
evolve with incremental but increasing awareness of corpo-
rate responsibilities to more than just shareholders and also
a widening recognition of risk and societal impact — all
relevant to cloud security. One recent example of this wider
trend would be the Modern Slavery Act (2015) requiring an
annual statement with a home page link explaining the steps
the company has taken to expose and take out slavery in
their supply chain [12]. This has some relevance as minor
web breaches probably are not consequential to shareholders
especially if not disclosed, in a similar way slavery is probably
even advantageous — perhaps we are slowly moving away
from shareholder dominance.

In the US, after the introduction of the Sarbanes-Oxley Act
(SOX) in 2002 [1], Bauer et al [13], Bratton [14], Brickey [15],
Holmstrom [16], Mitchell [17] and Rosen [18] all wrote about
the implications for corporate governance. In the UK, Higgs
[19], updated the Combined Code, and the effects of SOX were
also addressed for the Financial Reporting Council [20]. The
Organisation for Economic Co-operation and Development
(OECD) [21] published its principles of corporate governance.
Further updates to the code took place [22]–[25], and the
next significant change occurred in 2012, when the Financial
Reporting Council (FRC) recommended a new Stewardship
Code be adopted [26].

It is worth pointing out that there is a fundamental difference
between the approach adopted by the UK and the US. The UK
have adopted a principles based approach, whereby general
principles are established, and companies are required to
“comply or explain” in their annual report. This means there
is little need to constantly change legislation to keep up. By
contrast, the US have adopted a rules based regime, whereby
very specific legislation is enacted to determine what corpo-
rates must do. While the goals and requirements are generally
clear, it has spawned a high-end legal and accounting industry,
which constantly seeks to probe and push the boundaries in

order to gain advantage, while retaining the ability to achieve
compliance. Thus, the US government must constantly rewrite
and update the rules to keep pace with these continuous
attempts to subvert the rules — a considerable ongoing task.
Regulators too, will have a more challenging task to keep
on top of all these attempts to subvert the rules. Duncan
and Whittington [27] provide some useful background on this
area, including corporate legislation and standards compliance
issues.

The clear and evolving message to come through from all
these changes is that there is now a much greater emphasis
on the need to identify and address risk properly. The global
financial crash of 2008 really brought home the importance
of effective risk management. Banks, in particular, had been
“going through the motions” rather than really paying attention
to the possibility that some of these risks were very real, and
the consequences of failing to address them properly would
have a catastrophic impact on not just their own business, but
the global economy as a whole. It is also the case that financial
regulators were themselves pretty much caught asleep on the
job. Thus, we will next look at risk appetite.

B. Risk Appetite

Risk appetite can be described as the amount and type
of risk that an organisation is willing to take in order to
meet their strategic objectives. Risk needs first to be properly
identified, and the consequent financial implications properly
measured or estimated should the risk identified arise. The
probability of occurrence of each risk identified, must also be
calculated. Such identified risks must then either be accepted,
mitigated against, or declined, depending on the risk appetite
of management. Usually, there is a correlation between risk
and reward. The more profit that can be generated, usually
the greater the risk the organisation is exposed to. Often, this
risk considerably exceeds the potential amount of profit to be
generated.

All companies generally have developed a mission state-
ment, or vision statement. Where financial goals or targets are
identified, it will be necessary to identify the risk requiring to
be taken to achieve such goals and targets. This identifies the
minimum required risk that must be taken in order to meet
the goals or targets. If the risk required is unrealistic, i.e., too
high, then the goals or targets should be adjusted, otherwise
this will automatically lead the company to accept dangerous
levels of risk.

In any event, the risk capacity of the company must be
identified, as must the risk tolerance. These are not the same
thing. Risk capacity tries to identify the extent to which
the investment strategy can withstand negative events without
seriously affecting the achievement of the goals or targets
of the company. Whereas risk tolerance considers the extent
to which a company is willing to risk a less favourable
outcome in pursuit of a possible greater outcome. This can
be considered a psychological trait, and if company managers
happen to have have a high tendency towards the psychopathic
spectrum of behaviour, there is a greater chance of a mismatch

140Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 151 / 172

arising between risk capacity and risk tolerance, leading to
a less well considered attitude towards the real risk being
undertaken [28].

This leads management to seek an economic equilibrium be-
tween profit and risk, such that they can maximise profit con-
strained by their understanding of risk. Where the company is
run by prudent management, they will usually decide to accept
those risks, which they understand really well, mitigate risks,
which they are prepared to accept, but where they mitigate the
extent of the risk accepted, possibly by the use of insurance,
to minimise their exposure, and decline all risk they do not
understand. This will usually lead to a safe performance, if
somewhat unexciting. Duncan and Whittington [29], argued
that where the management approach to running the company
is biased towards the traditional agency based management
approach, rather than a stewardship approach, the company is
likely to have a higher risk appetite. Successful use of this high
risk approach can lead to complacency over time, resulting
in a more cavalier assessment of risk within the company,
which can ultimately lead to hubris developing, leading to
the acceptance of much higher risk levels than have been
understood. When this approach goes wrong, the results can
be catastrophic [30].

Risk culture in a company evolves from a system of values
and behaviours present in that company, which will shape the
risk decisions of management and employees. An important
element of risk culture is the development of a common
understanding of a company and its business purpose or aims.

C. IT Risk

In large corporates, the area of IT risk in traditional dis-
tributed systems is generally very well understood. There
are some very good security standards, such as the joint
International Organization for Standardization (ISO) and the
International Electrotechnical Commission (IEC) (ISO/IEC),
ISO/IEC 27000 [31], Control Objectives for Information and
Related Technologies (COBIT) [32], and the Payment Card
Industry Data Security Standard (PCI DSS) [33], which are
well adopted by large corporates. Indeed, by 2012 [34], some
two thirds of FTSE100 companies were either fully or partially
compliant with the ISO/IEC 27000 series of security standards.
While this is a laudable approach, it must be considered that
compliance alone will not guarantee security [27].

The attack community are continually developing and ex-
ploiting new vulnerabilities, and thus a stringent and robust
approach to system monitoring must be in place. There is
little point in having a certificate to show compliance, if the
company fails to detect a breach. Many breaches are not picked
up until some time later. The risk emanating from this can turn
out to be expensive. Recently, ASUS settled for $400,000 after
they were sued by the Federal Trade Commission (FTC) [35],
because they were not providing updates for their insecure
routers. The new EU General Data Protection Regulation
(GDPR) will come into force in May 2018. It will increase this
(monetary) problem for companies with a maximum monetary
penalty of up to 4% of global turnover.

D. Cloud Security

Often, companies will seek to prove they have achieved
security through assurance. This assurance is usually achieved
by compliance with standards, or by audit. However, one of
the difficulties with cloud computing is that there are over 30
standards bodies who have been working on cloud security
standards, and we are yet to see a fully comprehensive cloud
security standard evolve [27]. There are difficulties too, with
the method of compliance audit undertaken [36], which can
have a considerable impact on the effectiveness of the audit
exercise.

The fact that we have no complete cloud security standard
is a major issue, meaning large corporates might be missing
the potential to identify the increased risk arising from running
their own software on the cloud. In the multi-tenancy, multi
layer, environment of cloud computing, many forget that the
solid corporate firewall they have so carefully developed for
their corporate distributed systems does not extend to the cloud
environment.

There is much we can learn from the approach taken by
one of the most exposed market sectors to cyber risk — the
financial services sector. This market sector is a prime target
for cyber attacks. Liquid cash, particularly in electronic form is
much easier to attack than large physical objects. Thus, in the
next Section, we consider the approach taken to evaluating
cyber risk in the financial services sector. These risks are
well understood, and the risk models developed are now very
advanced, and highly accurate.

III. CYBER RISK IN THE FINANCIAL SERVICES SECTOR

Cyber risk has attracted increasing awareness for financial
risk management in recent years. Financial intermediaries such
as banks, investment companies, and insurance companies are
the prime targets for cyber crimes. Figure 1 shows the average
cost of cyber crimes incurred by companies of a specific
industry, started from financial services, energy and utilities,
and followed by defence and aerospace, and technology. The
financial service sector has undergone a tremendous techno-
logical transformation, resulted from the adoption of digital
banking, Financial Technology (FinTech), mobile applications,
cloud computing, etc.

A. Cyber Risk in Financial Risk Management

It is of great importance to quantify cyber risk for finan-
cial risk management. Four types of risk - credit, liquidity,
market, and operational — can affect the potential outcome /
performance of financial investments for companies. Value at
Risk (VaR) is a popular approach among modelling techniques
used by financial institutions to quantify the market risk of
investment. However, the model can not foresee a ‘black
swan event’, a low-probability occurrence with high-value
impact. Cyber VaR can be used to model the cyber risk, with
consideration for cyber black swan events. A cyber VaR model
can be used to estimate the likely loss of an organisation in the
event of cyber attacks during a time period. The components
of the VaR framework consist of the existing vulnerabilities of

141Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 152 / 172

Fig. 1. AVERAGE ANNUAL COMPANY COSTS OF CYBERCRIME IN
$MILLIONS

a system, the maturity of defending the system, the frequency
of successful breaches, the tangible and intangible assets
of the company, the types of attachers and their attacking
motivations, etc. The adoption of cyber VaR can be helpful
for a company to quantify the potential loss of a cyber attack.

B. Crypto-Currency in the Financial Sector

Crypto-currency, which is a form of virtual currency that
uses crypography for security, may present increasing threat
that negatively impact the cyber security of finance. Based
on new applications of information technology, these virtual
currencies attempt to remove money and banking from the
control of sovereign governments, and they represent one of
the most disruptive innovations ever in consumer finance.
The underlying distributed ledger technology has many other
potential applications in diverse areas such as property reg-
istration, accounting and auditing, gambling and financial
derivatives.

The potential threat of this emerging technology motivates
a better understanding of crypto-currency. It has essentially
resulted from a technical experiment, with no monetary value.
It has grown to an industry with more than 510 crypto-
currencies with market value of $5.5 billion, composed of
bitcoins. Although crypto-currencies have the advantage of
higher efficiency and transparency for conducting transactions,
reducing banking fees and bringing technological innovation to
the financial industry, they are also used by cyber-criminals as
they are not connected to any central banks and not regulated
in many countries.

In the next Section, we explain why this model could be
relevant to corporate cloud users.

IV. WHY IS THIS RELEVANT TO CORPORATE CLOUD
USERS?

In order to properly identify what risk is in the case of
using cloud computing, users should first start with their prior
evaluation of IT risk in regard to their existing distributed non-
cloud setup. Since they will have been running these systems
for a very long time, it is likely that the risks will be well
understood. However, where a company assumes that because

they understand these existing risks well, they will be well
able to handle cloud risk, they will be placing themselves in
considerable danger.

However, once they make the decision to move to cloud,
simply moving software systems across to the cloud and
assuming all past risks will continue as they have traditionally
been identified, is a fallacy, and could lead them into a false
sense of security. IT risk does not equal cloud risk. Any cloud
ecosystem is far more complex than a traditional distributed IT
system, and there are far more actors in the cloud ecosystem,
meaning it is far more difficult to ensure a proper lavel of
security can be achieved.

Many modern companies present an attractive target and
will be subject to a raft of attacks, from a variety of different
sources. These attacks will come from state sponsored actors,
industrial espionage, hacktivists, specialist criminal gangs, and
talented amateurs.

State sponsored actors will be exceptionally well resourced,
will be very highly skilled, with the capability to breach
systems, and leaving a minimal footprint. They are extremely
hard to detect, and difficult to protect against, but may only
be interested in keeping an eye on what the company is up
to, in order to provide their government with the means to
understand how other countries are progress in what may be
a competitive market for their country. Thus, stealing cash is
not likely to be high on their priority list.

Those who perpetrate industrial espionage generally have a
view to getting their hands on new technology, either to sell
to a rival, or to simply sell on the black market. They will
generally be well skilled, independently well resourced from
past espionage activities, and highly persistent. While that may
have a long term impact on the company, they are less likely
to be looking to steal cash.

Hacktivists are often very skilled, highly motivated towards
their cause, although less well resourced than the previous
groups. They usually are not concerned with stealing cash,
but are concerned with exposing perceived wrongdoing by
the target company. They are primarily motivated to cause
maximum embarrassment, sometimes will seek to disrupt
physical systems to highlight their cause, but generally are
not interested in staling cash. Where they disrupt systems, the
knock on damage could be substantial.

Specialist criminal gangs can range from well resourced
and well skilled groups, down to small scale criminals, who
will often “rent an attack” from the dark web. The primary
goal of these groups is to steal cash, or to obtain intelligence,
which will enable them to steal the cash at a later time. They
tend to be very resourceful, highly skilled at social engineering
attacks, and can often buy in the attack tools they require from
the dark web.

The amateur group can range from very talented amateurs
down to complete amateurs just trying to breach large systems
in order to boast about it. The really talented ones are much
harder to catch. While they can be very skilled, and have
limitless patience and time to spend on the attacks, they often
are poorly resourced, which can inhibit their activities. The

142Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 153 / 172

complete amateurs can be problematic from the damage they
sometimes cause as they try to get into systems, or after
they get there. The majority are not after cash, but the really
talented ones can cause a huge amount of disruption.

So, with all these different actors constantly trying to get
into company systems, why is the financial services sector of
interest to cloud users? It is simply the fact that they have
been targets of attack for a very long time, due to the very
liquid nature of their business. Over the past decades, they
have become very skilled in developing risk attack models to
evaluate the risks they face, and are getting really good at it.

Equally, large companies often invest cash surpluses to
maximise revenue production while they accumulate cash in
preparation for their next expansion pus, thus in the process
becoming greater targets. The attack actors have become adept
at gathering a wide range of business intelligence in addition
to learning how to analyse and understand financial statements,
thus are able to pick better targets to attack.

Thus, companies must learn how best to evaluate properly
they very real risks they face. In the next section, we consider
how they might go about achieving this.

V. FINDING THE BALANCE

Risk is a fundamental part of any company. The main goal
of any company is to maximise the generation of profit in a
sustainable way. In order to achieve this goal, it is necessary
to define what the target return will need to be. This provides
the risk requirement needing to be accepted in order to achieve
the desired outcome.

Assuming this risk requirement to be both practical and
achievable, the management of the company will then evaluate
all the risks in order to understand what they are taking
on, not just to achieve the goals of the corporation, but to
satisfy the requirements and obligations incumbent upon them,
such as compliance with legislation, regulation, standards, best
practice and accepted ethical standards of doing business.
Enterprises need to be sustainable in the long run and resilient
to shock. Each of these requirements can cause a conflicting
pull on company management to ensure the best outcome can
be achieved.

Not all risks must be taken by a company. Rather, they need
to evaluate which risks to accept, which to mitigate, and which
to decline, in order that they can satisfy all the requirements
placed upon them. Clearly, some level of compromise will
need to be made in order to find a suitable balance.

The best approach for achieving this balance is first to
understand fully the extent of each risk, and to assess properly
whether they are prepared, or need to accept each risk. By
identifying those they must accept, if they understand the risk
properly, they will be better placed to evaluate whether each
risk should be accepted in full, in part, or rejected.

The use of a good evaluation model will provide a better
means of achieving this goal more easily. This is why we
suggest adopting the financial services VaR model on IT risk
as a foundation for adapting it to also cover cloud risk.

VI. HOW WILL IT WORK?

The application of cyber VaR would be of help to estab-
lish the minimum standard on covering the limits and risk
assessment of cyber security. Based on the literature [37][38],
the current challenge of quantifying and validating cyber VaR
is the lack of quality data. Another shortcoming of the VaR
measure is that it can be ‘useless’ for small probabilities with
a significant outcome event. In finance literature, the Monte
Carlo simulation and other measures have been proposed to
tackle this. To address the impact / size of the outcome, the
tail event or extreme event is defined as the largest percentage
of losses measured relative to the respective VaR. Thus,
the extreme event for cyber risk can be considered for risk
management of cyber security.

VII. CONCLUSION

We have demonstrated how traditional and well understood
approaches to IT security risk do not work well with trying
to identify and evaluate cloud cyber risk. We have highlighted
how cloud risks differ from traditional distributed systems,
and illustrated weaknesses in existing approaches. We have
looked at how cyber risk is tackled in the financial services
sector, and suggest how adapting the proposed cyber risk VaR
model might help to improve cloud cyber risk assessment, thus
helping companies to find a better balance between risk and
reward.

We note that the National Institute of Standards and Tech-
nology (NIST) and the Cloud Security Alliance (CSA) have
both introduced new updated approaches to cloud cyber risk.
These and other national organisations are co-operating more
with the ISO, who have produced a number of risk standards,
such as ISO 31000 on corporate risk, ISO/IEC 27005 on
information security risk management. We propose to review
how their approach has been updated and will seek to discover
whether any of these changes might be implemented into our
system.

We are in the process of agreeing a plan to carry out a
pilot development of this proposed system, and to compare its
performance against existing approaches to evaluate how well
it performs, with a view to providing the means of assessing
the best level of risk awareness that is possible.

REFERENCES

[1] Sox, “Sarbanes-Oxley Act of 2002,” p. 66, 2002. [Online]. Available:
news.findlaw.com/hdocs/docs/gwbush/sarbanesoxley072302.pdf Last ac-
cessed: Jan 2017

[2] Crown, “Data Protection Act 1998,” 1998. [Online]. Available: http://
www.legislation.gov.uk/ukpga/1998/29/contents Last accessed: Jan 2017

[3] A. A. Berle and G. G. C. Means, The modern corporation and private
property, 1932. [Online]. Available: https://books.google.co.uk/books?id=
mLdLHhqxUb4C Last accessed: Jan 2017

[4] M. C. Jensen and W. H. Meckling, “Theory of the firm: Managerial
behavior, agency costs and ownership structure,” Int. Libr. Crit. Writings
Econ., vol. 3, no. 214, pp. 191–246, 2008.

[5] A. Cadbury, “The financial aspects of corporate governance,” HMG, Lon-
don, Tech. Rep., 1992. [Online]. Available: http://www.ecgi.org/codes/
documents/cadbury.pdf Last accessed: Jan 2017

[6] M. C. Jensen, “The modern industrial revolution, exit, and the failure of
internal control systems,” J. Finance, vol. 48, no. 3, pp. 831–880, 1993.

143Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 154 / 172

[7] M. C. Jensen and D. Chew, “US corporate governance: Lessons from the
1980’s,” Harvard Univ. Press, no. December 2000, pp. 1–47, 1995.

[8] R. Greenbury, “Directors’ remuneration - Report of
a study group chaired by Sir Richard Greenbury,”
HMG, London, Tech. Rep., 1995. [Online]. Available:
http://www.emeraldinsight.com/journals.htm?articleid=848139&show=abstract
Last accessed: Jan 2017

[9] R. Hampel, “Committee on corporate governance,” London, Tech. Rep.,
1998.

[10] S. Turnbull, “Corporate governance: Theories, challenges and
paradigms,” SSRN Electron. J., pp. 1–97, 2000.

[11] P. Myners, “Institutional investment in the United Kingdom: A review,”
HMG, London, Tech. Rep., 2001.

[12] H. Gov, “Transparency in supply chains etc. A practical guide,” 2015.
https://www.gov.uk/government/uploads/system/uploads/attachment
data/file/471996/Transparency in Supply Chains etc A practical
guide final .pdf Last accessed: Jan 2017

[13] R. Bauer, N. Guenster, and R. Otten, “Empirical evidence on corporate
governance in Europe: The effect on stock returns, firm value and
performance,” J. Asset Manag., vol. 5, no. 2, pp. 91–104, 2004.

[14] W. W. Bratton, “Enron, Sarbanes-Oxley and accounting: Rules versus
principles versus rents,” Soc. Sci. Res., vol. 48, no. 4, pp. 1023–1056,
2003.

[15] K. Brickey, “From Enron to WorldCom and be-
yond: Life and crime after Sarbanes-Oxley,” 2003.
[Online]. Available: http://heinonlinebackup.com/hol-cgi-
bin/get pdf.cgi?handle=hein.journals/walq81§ion=19 Last accessed:
Jan 2017

[16] B. Holmstrom and S. N. Kaplan, “the State of U.S. corporate gover-
nance: What’s right and what’s wrong?” J. Appl. Corp. Financ., vol. 15,
no. 3, pp. 8–20, mar 2003.

[17] L. E. Mitchell, “The Sarbanes-Oxley Act and the reinvention of cor-
porate governance?” Villanovo Law Rev., vol. 48, no. 4, pp. 1189–1216,
2003.

[18] R. E. Rosen, “Risk management and corporate governance: The case of
Enron,” Conn. Law Rev., vol. 35, no. 1157, pp. 1157–1184, 2003.

[19] Financial Reporting Council, “The combined code on corporate gover-
nance,” HMG, London, Tech. Rep. July, jan 2006. [Online]. Available:
http://doi.wiley.com/10.1111/1467-923X.00209 Last accessed: Jan 2017

[20] Financial Reporting Council, “The Turnbull Guidance as an evaluation
framework for the purposes of Section 404(a) of the Sarbanes-Oxley Act,”
Financial Reporting Council, London, Tech. Rep., 2004.

[21] G. Clinch, B. Sidhu, and S. Sin, “OECD principles of corporate
governance,” Organisation for Economic Co-Operation and
Development, Tech. Rep. 4, may 1999. [Online]. Available:
http://www.oecd.org/corporate/ca/corporategovernanceprinciples
/33977036.pdf Last accessed: Jan 2017

[22] Financial Reporting Council, “The combined code on corporate gover-
nance,” Financial Reporting Council, London, Tech. Rep. July, 2006.

[23] Financial Reporting Council, “Review of the 2003 combined code:
Summary of responses to the review,” Financial Reporting Council,
London, Tech. Rep., 2006.

[24] Financial Reporting Council, “Review of the implementation of the
2006 combined code: Regulatory impact assessment,” Financial Reporting
Council, London, Tech. Rep., 2008.

[25] Financial Reporting Council, “The UK corporate governance code,”
Financial Reporting Council, London, Tech. Rep. September, 2010.
[Online]. Available: http://www.nonexecutivedirector.co.uk/images/files/
UKCorporateGovernanceCodeSeptember2012.pdf Last accessed: Jan
2017

[26] Financial Reporting Council, “The UK stewardship code,” Financial
Reporting Council, London, Tech. Rep., 2012.

[27] B. Duncan and M. Whittington, “Compliance with standards, assurance
and audit: Does this equal security?” in Proc. 7th Int. Conf. Secur. Inf.
Networks. Glasgow: ACM, 2014, pp. 77–84.

[28] J. W. Barnard, “Shirking, opportunism, self-delusion and more: The
agency problem today,” 48 Wake For. Law Rev., pp. 745–770, 2013.

[29] B. Duncan and M. Whittington, “Company management approaches
— stewardship or agency: Which promotes better security in cloud
ecosystems?” in Cloud Comput. 2015. Nice: IEEE, 2015, pp. 154–159.

[30] N. M. Brennan and J. P. Conroy, “Executive hubris: The case of a bank
CEO,” Accounting, Audit. Account. J., vol. 26, no. September, pp. 172–
195, 2011.

[31] ISO, “ISO/IEC 27000:2009,” 2014. [Online]. Available: www.iso.org

[32] IT Governance Institute, Cobit 4.1, 2010.
[33] PCI Security Standards Council LLC, “Data Security Standard: Re-

quirements and Security Assessment Procedures,” PCI Security Standards
Council, Tech. Rep. November, 2013.

[34] PWC, “UK information security breaches survey - Technical report
2012,” London, Tech. Rep. April, 2012. [Online]. Available: www.pwc.
comwww.bis.gov.uk Last accessed: Jan 2017

[35] FTC, “ASUS settles FTC charges that insecure home routers and
“cloud” services put consumers’ privacy at Risk,” 2016. [Online].
Available: https://www.ftc.gov/news-events/press-releases/2016/02/
asus-settles-ftc-charges-insecure-home-routers-cloud-services-put Last
accessed: Jan 2017

[36] B. Duncan and M. Whittington, “Reflecting on whether checklists can
tick the box for cloud security,” in Proc. Int. Conf. Cloud Comput.
Technol. Sci. CloudCom, vol. 2015-Febru, no. February. Singapore: IEEE,
2015, pp. 805–810.

[37] C. Biener, M. Eling, and J. H. Wirfs, “Insurability of cyber risk: An
empirical analysis,” Geneva Pap. Risk Insur. Issues Pract., vol. 40, no. 1,
pp. 131–158, 2015.

[38] P. Pandey and E. A. Snekkenes, “A performance assessment metric
for information security financial instruments,” in Information Society
(i-Society), 2015 Intl. Conf. on, 2015, pp. 138–145.

144Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 155 / 172

Security and Privacy Requirements Engineering Methods for Traditional and
Cloud-Based Systems: A Review

Argyri Pattakou and Christos Kalloniatis

Privacy Engineering and Social
Informatics Laboratory,
Department of Cultural

Technology and Communication,
University of the Aegean

University Hill
GR 81100 Mytilene, Greece

Email: a.pattakou@aegean.gr, chkallon@aegean.gr

Stefanos Gritzalis

Information and Communication Systems
Security Laboratory,

Department of Information
and Communications Systems Engineering,

University of the Aegean
GR 83200 Samos

Greece
Email: sgritz@aegean.gr

Abstract—As the software industry experiences a rapid growth in
developing information systems, many methodologies, technolo-
gies and tools are continuously developing in order to support the
system implementation process. However, as security and privacy
have been considered important aspects of an information system,
many researchers presented methods that, through a number of
specific steps, enable system designers to integrate security and
privacy requirements at the early stage of system design. Different
security and privacy engineering methods have been presented
in order to be applied in traditional or cloud architectures. This
paper reviews a number of security and privacy requirements
engineering methods in both areas and presents a comparative
study between these methods.

Keywords–security; privacy; requirements; engineering meth-
ods; traditional architectures; cloud computing.

I. INTRODUCTION

For many decades, as the software industry has been con-
stantly growing, the main interest of software engineers was to
deliver new software releases rapidly, with no bugs and with
the appropriate functionality. Under these circumstances, new
tools, methodologies and technologies have been introduced
in order to support system analysis and design, as well as
software implementation. However, in the last decade, the
software engineers community has realized that security and
privacy are very important aspects in software engineering and,
as a result, all the development software systems have to ensure
security and privacy of the stored data [1]-[6].

As the interest of software engineers was mainly in de-
veloping new software, security and privacy was considered
during implementation stage more as an ad-hoc process rather
than an integrated process at the system design level. However,
each late detection of possible security or privacy vulnera-
bilities has been proven to be extremely costly and time-
consuming. Indeed, many researchers argue that security and
privacy requirements have to be considered at the system
analysis and design stage as security and privacy constraints
might affect software functional requirements. In this direction,
we need mechanisms in order to elicit and analyse security and
privacy requirements through a number of well-defined steps.

However, as the software industry was faced with a lack
of integrated security and privacy requirements engineering

methods, many researchers focused on introducing methods
that support the elicitation of security and privacy requirements
during the system design process. A requirement engineering
method in the area of security and privacy can support en-
gineers to define critical assets and the threats against them,
to identify with accuracy security or/and privacy goals and to
examine any kind of conflicts between them in order to come
up with a clear and resistant set of security or/and privacy
requirements.

Security and privacy requirements engineering methods
have been built based on different approaches because, for each
method, security and privacy requirements can be derived from
different processes. For instance, some methods were intro-
duced as goal-oriented methodologies as security and privacy
goals might affect functional goals while other methods put as
central issue potential risks and threats in order for security and
privacy requirements to be derived. Different approaches can
cover possible limitations or gaps among methods, as well as
provide a variety of options to system analysts and designers
in order to select the method that best fits the system into
consideration.

During the last decade, literature has presented a number
of security and privacy requirements engineering methods that
support system designers and developers to implement secure
and privacy-aware information systems hosted in traditional
architectures. Some methods consider security or privacy
requirements separately, but some other methods consider
privacy as a subset of security. Recent literature efforts [6]-[8]
emphasize the need for parallel examination of security and
privacy requirements under the same unified framework, as a
possible security breach might affect users privacy and vice
versa. However, few steps have been taken in this direction
[9].

On the other hand, as cloud computing architecture intro-
duces special characteristics, security and privacy requirements
methods have to be developed in order to cover these special
needs [10]-[12]. However, as the cloud computing area still
suffers from a lack of integrated requirements engineering
methods, methods that were initially introduced for traditional
architecture systems were extended in order to be applied in
cloud systems as well [13]. But, at the moment, a method

145Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 156 / 172

for cloud architecture that supports the parallel examination of
security and privacy concepts has not been introduced.

In this paper, we present a number of security and privacy
requirements methods that have been introduced in the last
decades in order to support system design and analysis in
traditional or cloud architectures. Also, we present a com-
parative study among methods that demonstrates the need
for designing a framework that will consider security and
privacy together under a holistic unified approach. Section 2
presents a set of security and privacy requirements engineering
methods for traditional architectures and a comparative study
among them. Section 3 is referring to security and privacy
requirements engineering methods that can be applied in a
cloud environment and Section 4 concludes the paper.

II. SECURITY AND PRIVACY REQUIREMENTS
ENGINEERING METHODS IN TRADITIONAL

ARCHITECTURES

A. Security and Privacy Requirements Engineering methods

1) Security Quality Requirements Engineering (SQUARE)
Methodology: SQUARE methodology [14] was introduced
because the software industry was missing an integrated model
for eliciting and analyzing security requirements. The proposed
methodology is a risk-driven method that supports the elicita-
tion, categorization, prioritization and inspection of the secu-
rity requirements through a number of specific steps. SQUARE
also supports the performance of risk assessment in order to
verify the tolerance of the system against possible threats.
The final output of this method is a document that includes
all the necessary security requirements that are essential in
order for the security goals of the system to be satisfied. The
methodology introduces the terms of security goal, threat and
risk but does not take into consideration the assets and the
vulnerabilities of the system. The application of SQUARE
methodology requires the participation and the cooperation
between stakeholders and the requirements engineering team
in order to identify with accuracy all the necessary security
requirements at the early stage of the development process.
SQUARE does not refer to the elicitation of privacy require-
ments.

2) Model Oriented Security Requirements Engineering
(MOSRE): As many research efforts conclude that consider-
ing non-functional requirements after system design can be
proved very costly, P. Salini and S. Kanmani introduced a
security requirements engineering framework (MOSRE) [15]
for Web applications that considers security requirements at
the early stages of the development process. The framework
covers all phases of requirements engineering and suggests the
specification of the security requirements alongside with the
specification of system requirements. The authors suggest the
identification of the objectives, stakeholders and assets of the
Web application during the inception phase. The elicitation
phase includes the identification of non-security goals and
requirements in parallel with security goals, the identification-
categorization-prioritization of threats and system vulnerabil-
ities and a risk assessment process in order to elicit the final
security requirements. Next phases include the analysis and
modeling, the categorization-prioritization and the validation
of the final security requirements. The framework does not
support the elicitation of privacy requirements.

3) Security Requirements Engineering Framework (SREF):
Haley et al. [16] introduced a problem based approach in
order to elicit and analyze security requirements. The authors
describe an iterative process of four steps. During these
steps, security goals can be identified after the identification
of functional (business) requirements. The identification of
security goals includes the identification of system assets and
a threat analysis. Risk assessment is also supported during
the identification of security goals. However, in order to elicit
security requirements from these security goals, the authors
of Security Requirements Engineering Framework (SREF)
[16] take security requirements as constraints for functional
requirements of the system under consideration and these
constraints satisfy one or more security goals. The authors also
encourage the use of problem diagrams to capture functional
requirements with such constraints. The framework includes
the notion of trust assumptions and the construction of satisfac-
tion arguments by system analysts in order to validate security
requirements. Privacy requirements are not considered by this
framework.

4) Eliciting Security Requirements from the Business Pro-
cess Models : N. Ahmed and R. Matulevicius introduced
an asset based approach in order to elicit security goals
from business process models and translate them into security
requirements [17]. The method consists of two stages. At the
first stage, an early analysis is performed in order to determine
business assets that must be protected against security risks
and security goals. At the second stage, the elicitation of
security requirements is performed during examination of the
security risk of business assets in five contextual areas: access
control, communication channel, input interfaces, business
services and data store. The final result is the elicitation of
security requirements and the generation of business rules that
satisfy security goals of the system under consideration. This
framework does not support categorization, prioritization and
validation of security requirements.

5) Security Requirements Engineering process (SREP):
Mellado et al. presented SREP method [18] in order to provide
a unified framework that considers concepts from requirements
engineering and security engineering as well. Security Re-
quirements Engineering Process (SREP) is an iterative and
incremental security requirements engineering process and is
aiming to integrate security requirements at the early stages
of software development life cycle [19]. SREP is an asset-
based method, as well as a threat and risk driven method and
it is based on the integration of Common Criteria [20] into the
software life cycle in order to specify security requirements
and validate that products meet security goals. The main
idea of the proposed framework is that the unified process is
divided into four phases: Inception, Elaboration, Construction
and Transition. Each phase might include many iterations of
nine activities (definitions, identification of assets, security
objectives and threats, risk assessment, elicitation of secu-
rity requirements, categorization-prioritization, inspection and
repository improvement) but with different emphasis depend-
ing on what phase of the lifecycle the iteration is in [18]. Also,
the authors propose the use of Security Resources Repositories
to store sets of requirements that can be reused in different
domains. Privacy requirements have not been considered by
the authors.

6) Secure Tropos: Tropos methodology [21] was intro-
duced by Castro et al. in order to cover system requirements

146Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 157 / 172

during the whole software development process. However,
Tropos methodology gives a strong focus on the early stage
of system analysis. The framework includes five development
phases: early requirements, late requirements, architectural
design, detailed design and implementation. However, security
concepts have not been considered in any of theses phases.
Thus, Mouratidis et al. extended Tropos methodology in order
to accommodate security concepts during the requirements
analysis. The extension is called Secure Tropos [22] and
utilizes only the early and late requirements phases of Tropos
framework. Secure Tropos introduces the concept of security
constraints. According to the authors, security constraints are
a set of conditions, rules and restrictions that are imposed on a
system and the system must operate in such way that none of
them will be violated [22]. In the early requirements phase, a
security diagram is constructed in order to represent the con-
nection between security features, threats and mechanisms that
help the satisfaction of security goals. The security diagram is
taken into consideration at the late requirements phase in order
for the designers to impose security constraints to the system-
to-be. The enforcement of security constraints in different parts
of the system can facilitate the disclosure of possible conflicts
between requirements.

7) KAOS: In 2000, KAOS [23] was first introduced as
a goal-oriented requirements engineering method in order to
elaborate requirements from high level goals. According to
the authors, the fulfillment of goals might be blocked by
some exceptional agent behaviors that are called obstacles.
In KAOS method, these obstacles have to be identified and
resolved, through the elaboration of scenarios between soft-
ware and agents, in order to produce a reliable system [24].
However, due to the fact that KAOS methodology considers
only functional requirements, authors extended KAOS [25] in
order to elaborate security requirements as well. The main
idea of the extended framework is to build two models. A
model of the system-to-be, that will describe the software
and the relations between goals, agents, objects, operations
and requirements and an anti-model that will capture possible
attackers, their goals and system vulnerabilities in order to
elicit all possible threats and security requirements to prevent
such treats. Security requirements that derived by the anti-
model as countermeasures have to be integrated in the original
model.

8) PresSure: In 2014, Fabender et al. introduced a
problem-based methodology, which is called presSure [26]-
[27] in order to identify security needs during requirements
analysis of software systems. The identification of security
requirements is based on functional requirements of a system-
to-be and on the early identification of possible threats. The
methodology supports the modeling of functional requirements
through problem diagrams. At next stage and after identi-
fying the critical assets of the system and the rights of the
authorized entities, possible attackers and their abilities have
to be determined. Based on that information, a set of graphs is
generated in order to visualize flows of possible threats related
to the attackers access to critical assets. Security requirements
derived from the analysis of these graphs. For each identified
asset, every functional requirement is related with possible
threats and security requirements.

9) LINDDUN: LINDDUN [28] was first introduced in
2010 by Deng et al. as a privacy threat analysis framework
in order to support the elicitation and fulfillment of privacy

requirements in software-based systems. According to the
LINDDUN methodology, after designing a data flow diagram
(DFD) of the system, privacy threats are related to the listed
elements of the DFD. Threats in LINDDUN are categorized
in seven types: Linkability, Identifiability, Non-repudiation,
Detectability, Information Disclosure, Content Unawareness,
Policy and consent Non-compliance. The method uses privacy
threats trees and misuse cases in order to collect the threat
scenarios of the system. Trough these misuse cases, privacy
requirements can be extracted. Also, LINDDUN supports the
prioritization and validation of privacy threat through the
process of risk-assessment, before eliciting the final privacy
requirements and before selecting the appropriate privacy-
enhancing technologies. The authors of LINDDUN also map
privacy-enhancing technologies to each privacy requirement
in order to support system designers to select the appropriate
techniques that satisfy privacy requirements.

10) SQUARE for privacy: After noting that, apart from
security, privacy needs more attention during developing soft-
ware systems, the authors of SQUARE methodology [14]
adapted their approach in order to support the elicitation of
privacy requirements at the early stages of software develop-
ment process [29]. The extended framework includes the same
steps as the original SQUARE method in conjunction with
the Privacy Requirements Elicitation Technique (PRET) [30],
a technique that supports the elicitation and prioritization of
privacy requirements. This technique uses a database of privacy
requirements based on privacy laws and regulations. However,
the authors note that the database needs to be updated as the
laws change and conclude that a new integrated tool is needed
in order to support the elicitation of security and privacy
requirements in parallel.

11) PriS: PriS [31] has been introduced by Kalloniatis et
al. as a goal-oriented approach in order to integrate privacy
requirements into the system design process. The main idea of
this methodology is that privacy requirements are considered
as organizational goals and adopts the use of privacy-process
patterns in order to describe the impact of privacy goals to the
affected organizational processes, to model the privacy-related
organizational processes and to support the selection of the
system architecture that best satisfies these processes. Thus,
the authors of PriS cover the gap between system design and
implementation phase. According to PriS, the identification
of privacy goals is based on eight privacy concepts namely
authentication, authorization, identification, data protection,
anonymity, pseudonymity, unlinkability and unobservability.

12) Secure Tropos and PriS metamodel: According to the
above methodologies, most of the approaches in requirements
engineering tend to consider security and privacy separately or
consider privacy as a subset of security. However, a number
of research efforts [6]-[7] support that security and privacy are
two different concepts that have to be examined separately but
under the same unified framework. Under these circumstances,
Islam et al. [9] introduced a model-based process that considers
security and privacy concepts in parallel at the early stage of
system analysis. This process integrates two different engi-
neering methods. Secure Tropos is used as the main method
in order to identify and analyse security requirements of the
system under consideration. However, as privacy concepts
are not considered through this method, Secure Tropos is
extended integrating the PriS solution. Thus, security and
privacy requirements can be identified and analysed in order

147Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 158 / 172

to meet the goals but also the appropriate architecture and
implementation technique can be selected in order for privacy
goals to be satisfied.

B. A Comparison of Security and Privacy Requirements En-
gineering Methods

Many different approaches in the area of security and
privacy requirements engineering have been presented in the
previous section. Table 1 summarizes and compares the afore-
mentioned methodologies. A table entry that is labeled with Y
or N means that the relevant criterion is considered or not by
the relevant method.

A first remark is that most methods consider explicitly
security or privacy requirements in order to design secure
systems. On the other hand, the extension of KAOS method
considers privacy as a subset of security. However, as privacy
has separate aspects than security and a security incident might
have a serious impact in user's privacy and vice versa, security
and privacy requirements have to be examined in parallel under
the same framework in order to design secure systems[6]-[8].
The meta-model presented by Islam et al. [9] is able to support
security and privacy requirements as it combines concepts from
Secure Tropos and PriS methodologies that deal with security
and privacy issues separately.

It is worth noting that all the aforementioned method-
ologies can be applied at the early stage of system analysis
and design as a late reconsideration of security and privacy
requirements can be extremely costly and time-consuming.
LINDDUN, PriS methodology and therefore Secure Tropos
and PriS metamodel include steps in order to fill the gap
between system design and implementation stage and to sup-
port developers to select the most appropriate implementation
technique.

Each methodology has been build by using a different
approach. MOSRE, Secure Tropos, KAOS, PriS and the Secure
Tropos and PriS meta-model have been introduced as goal-
oriented methodologies as security and privacy requirements
are considered as organizational goals that have to be satisfied
by the system into consideration. On the other hand, SQUARE
methodology and SQUARE extension for integrating privacy
requirements have been based on risk analysis results. It
is worth noting that even if SQUARE method supports the
identification of system threats and the corresponding vulner-
abilities, the assets of the system that have to be secured are
not considered by the method. On the contrary, the proposed
methods by Ahmed et al. [17], MOSRE, SREF and SREP
support risk analysis on business assets in order to elicit
security requirements. Additionally, as many methodologies
have integrated steps in order to support threat identification,
SREP and LINDDUN put threat analysis in the center of their
attention in order to elicit security or privacy requirements.
SREF and presSure have been introduced as problem-based
methods as the analysis and the elicitation of security require-
ments comes from the analysis of problem diagrams.

Regarding the categorization/prioritization criterion, it
could be noticed that for many methods this step is a log-
ical extension of a risk analysis process. A categorization
and prioritization of security or privacy requirements is an
important aspect of many approaches, as, during this process,
system designers have to decide if the implementation cost
of a requirement is comparable with the value of the secured

asset. SQUARE, MOSRE, SREP, LINDDUN and PriS sup-
port categorization/prioritization of requirements. Additionally,
most of the approaches, SQUARE, MOSRE, SREF, SREP,
PriS and the Secure Tropos with PriS metamodel include steps
for requirements inspection. Finally, MOSRE, Secure Tropos,
PriS and Secure Tropos with PriS meta-model examine the
existence of any conflicts between requirements and security
or privacy goals.

Table 2 presents the security and privacy requirements
that each method aspires to cover. Where ∼ is labeled, that
means that the author of the method does not specify the
requirements.

III. SECURITY AND PRIVACY REQUIREMENTS IN CLOUD
COMPUTING ENVIRONMENT

In the recent years, as cloud computing has rapidly grown,
many research efforts have been presented that consider se-
curity and privacy into the development process. Almorsy
et al. [10] introduced a Model-Driven Security Engineering
at Runtime (MDSE@R) approach for multi-tenant cloud-
based applications. MDSE@R supports different tenants and
service providers security requirements at runtime instead of
design time by externalizing security from the application.
More specific, service providers may impose some security
controls as mandatory but multi tenants can also add extra
security requirements at runtime at their own instance of the
application. Fernandez et al. [11] presented a method on how to
build a cloud Security Reference Architecture (SRE). An SRE
is an abstract architecture that describes functionality without
implementation details and includes security mechanisms to
the appropriate places in order to provide a degree of security.
This approach includes threat identification and uses misuse
patterns in order to describe how an attack can be performed.
Through this process, it can be verified that security patterns
have been selected correctly and have been placed properly
in the cloud architecture. In 2015, Perez et al [12] presented
a data-centric authorization solution, namely SecRBAC, in
order to secure data in the cloud. SecRBC is a rule-based
approach that provides data managing authorization to CSP
through roles and object hierarchies. The authorization model
uses advanced cryptographic techniques in order to protect data
from CSP misbehavior also. In 2016, Mouratidis et al. [13]
extended Secure Tropos requirements engineering approach
for traditional software systems in order to enable modeling
of security requirements that are unique in cloud computing
environment and to support the selection of the appropriate
cloud deployment model as well as the cloud service provider
that best satisfies security requirements of the system under
consideration. In 2013, Tancock et al. [32] presented the archi-
tecture of a Privacy Impact Assessment (PIA) tool in order to
identify and evaluate possible future security and privacy risks
on data stored in a cloud infrastructure. The risk summary that
derives from PIA tool takes into consideration aspects like who
the cloud provider is, what is the trust rating and what security
and privacy mechanisms are used. As threat modeling is an
important aspect for developing secure systems, Cloud Privacy
Threat Modeling (CPTM) methodology [33] was proposed in
order to support the identification of possible attacks and to
propose the corresponding countermeasures for a cloud system
through a number of specific steps. However, CPTM was
designed in order to support only EU data protection directives

148Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 159 / 172

TABLE I. COMPARISON OF SECURITY AND PRIVACY ENGINEERING METHODS

Method Requirements Approach Stage Assets Risk Assessment Categorization/Prioritization Threats Req. Inspection Conflicts Identification

SQUARE Security Risk driven Early Design N Y Y Y Y N

MOSRE Security Goal oriented Early Design Y Y Y Y Y Y

SREF Security Problem based Early Design Y Y N Y Y N

N. Ahmed et al. Security Asset based Early Design Y Y N N N N

SREP Security Threat based Early Design Y Y Y Y Y N

Secure Tropos Security Goal oriented Early/Late Design Y N N Y N Y

KAOS Security Goal oriented Early Design N Y N Y N N

PresSure Security Problem based Early Design Y N N Y N N

LINDDUN Privacy Threat driven Early/Late Design N Y Y Y N N

SQUARE for privacy Privacy Risk driven Early Design N Y Y Y Y N

PriS Privacy Goal oriented Early/Late Design - Implementation N N Y N Y Y

Secure Tropos with PriS Security/Privacy Goal oriented Early/Late Design - Implementation Y N N Y Y Y

*Y=Yes, N=No

TABLE II. SECURITY AND PRIVACY REQUIREMENTS PER METHOD

Method Requirements

SQUARE CIA

MOSRE CIA, Authentication, Authorization, Auditing

SREF CIA, Accountability

N. Ahmed et al. CIA, Authentication, Authorization

SREP ∼

Secure Tropos CIA, Access control, Non-repudiation, Authentication, Accountability

KAOS CIA, Privacy, Authentication, Non-repudiation

PresSure CIA

LINDDUN Unlinkability, Anonymity, Pseudonimity, Plausible deniability, Undetectability, Unobservability, Confidentiality, Content awareness, Policy & consent compliance

SQUARE for privacy ∼

PriS Identification, Authentication, Authorization, Data protection, Anonymity, Pseudonimity, Unlinkability, Unobservability

Secure Tropos with PriS All SecureTropos and PriS requirements

**CIA=Confidentiality, Integrity, Availability

and as a result the methodology presented a number of
weaknesses in threat identification. Thus, A. Gholami and
E. Laure [34] extended CPTM methodology in order to be
complied with various legal frameworks. As it is hard for
an organization to choose the appropriate cloud deployment
type (public, private, hybrid or community), K. Beckers et al.
presented a method that can support requirements engineers
to decide which cloud deployment model best fits the privacy
requirements of the system under consideration [35]. This
approach is based on a threat analysis in parallel with the
privacy requirements that the system shall satisfy and some
other facts and assumptions about the environment like the
number of stakeholders on each deployment scenario and the
domains that have to be outsourced into a cloud.

Despite the fact that all these contributions develop dif-
ferent kind of mechanisms or processes that consider security
and privacy issues in the context of cloud computing, most of
them present a number of limitations. Some of them are related
to specific cloud service models. MDSE@R is referred to a

Software as a Service service (SaaS) model while the method
for building a Security Reference Architecture is referred to
an Infrastructure as a Service (IaaS) service model. On the
other hand, most of the proposed frameworks, methods or
processes in the context of cloud computing deal exclusively
with security or privacy issues or in some cases privacy is
considered as a subset of security. For instance, MDSE@R,
secRBAC and SecureTropos consider only security issues
while the Privacy Assessment Impact Tool (PIA), CPMT and
the method for selecting the appropriate cloud deployment
model focus explicitly on privacy issues. In our previous work
[8], we presented the reasons why security and privacy have
to be considered as two different concepts but have to be
examined under the same unified framework. This framework
has also been presented in our work. Nevertheless, one of the
most important issues is that most of the proposed frameworks
that are based on the idea of cloud computing integrate security
and privacy controls during implementation phase and not
earlier in requirements phase. But, such practices might create

149Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 160 / 172

late corrections in security and privacy requirements which
means additional cost and severe delays in project delivery.

As cloud computing is a new and continuously developing
environment, many research efforts have been presented over
the last decade that highlight the need of adopting security
and privacy mechanisms from the early stage of development
life cycle. Nevertheless, until today security and privacy in the
context of cloud computing is still performed as an ad-hoc
process rather than an integrated process in the development
life cycle. As it is mentioned above, Mouratidis et al. [13]
presented a requirements engineering method in order to
model cloud security requirements at the design level but
no privacy requirements have been considered. Under these
circumstances, literature presents a lack of integrated methods
that through a number of specific steps could be able to support
the parallel elicitation and analysis of cloud security and
privacy requirements from the early stage of system design.
It is worth noting that a security and privacy requirements
engineering method at the design level should include steps
in order to fill the gap between analysis and implementation
phase in order to support system developers to select the
appropriate technologies that best satisfy security and privacy
requirements.

IV. CONCLUSION AND FUTURE WORK

In this paper, we presented a set of security and privacy
requirements engineering methods that have been introduced
by several researchers. Our research has focused on two areas:
on those methods that aim to support software engineers to
design and develop information systems hosted in traditional
architectures and on those methods that can be applied in cloud
systems.

As already mentioned, different security and privacy re-
quirements engineering methods have been introduced in the
past as software engineers community agree that security and
privacy is still an integral part of the information systems
design process. Referring to traditional architectures, there are
different approaches that each method has been based on. For
instance, security or privacy requirements can be derived from
the determination of security or privacy goals, from the results
of a risk analysis or from problem diagrams. Additionally,
as it is clear from the above analysis, most researchers deal
with security or privacy issues separately, a fact that can
cause possible conflicts and late reconsiderations in functional
requirements.

On the other hand, cloud computing is a more demanding
structure as it introduces special characteristics like multi-
tenancy and on-demand services. Special characteristics intro-
duce new security and privacy concepts that software engineers
have to take into account during system designing and devel-
oping. However, even though cloud computing presents a rapid
growth last decade, all methods that have been presented by
researchers present limitations while it is noting the lack of
integrated methods that support the elicitation and analysis of
security and privacy requirements in parallel.

The purpose of this research is to demonstrate that in
cloud computing area there is a lack of integrated requirements
engineering methods that consider security and privacy as
two different concepts that have to be examined in parallel
under the same unified framework. This study along with our
previously proposed conceptual framework [8] will be the base

for developing a new methodology in the cloud computing area
that will consider security and privacy under the same unified
framework.

REFERENCES

[1] I. M. Alharbi, S. Zyngier, and C. Hodkinson, ”Privacy by design and
customers perceived privacy and security concerns in the success of e-
commerce,” Journal of Enterprise Information Management, vol.26, no.6,
2013, pp. 702-718

[2] R. Cullen, ”Culture, identity and information privacy in the age of digital
government”, Online Information Review, vol.33, no.3, 2009, pp. 405-
421

[3] Z. Karake Shalhoub, ”Trust, privacy, and security in electronic business:
the case of the GCC countries”, Information Management Computer
Security, vol. 14, no.3, 2006, pp. 270-283

[4] M. Meingast, T. Roosta, and S. Sastry, ”Security and privacy issues
with health care information technology”, Engineering in Medicine and
Biology Society, 2006. EMBS’06, 28th Annual International Conference
of the IEEE, 2006, pp. 5453-5458

[5] S. E. Sarma, S. A. Weis, and D. W. Engels, ”RFID systems and security
and privacy implications”, International Workshop on Cryptographic
Hardware and Embedded Systems, Springer Berlin Heidelberg, 2002,
pp. 454-469

[6] S. Gritzalis, ”Enhancing Web privacy and anonymity in the digital era”,
Information Management and Computer Security, vol. 12, no. 3, 2004,
Emerald Group Publishing Limited, pp. 255-288

[7] C. Kalloniatis, E. Kavakli, and S. Gritzalis, ”Addressing privacy require-
ments in system design: The PriS method”, Requirements Engineering
Journal, vol. 13, no.3, 2008, pp. 241- 255

[8] A. Pattakou, C. Kalloniatis, and S. Gritzalis, ”Reasoning About Security
and Privacy in Cloud Computing under a Unified Meta-Model”, In
Proceedings of the Tenth International Symposium on Human Aspects
of Information Security Assurance, HAISA 2016, pp. 56

[9] S. Islam, H. Mouratidis, C. Kalloniatis, A. Hudic, and L. Zechner,
”Model based process to support security and privacy requirements engi-
neering”, International Journal of Secure Software Engineering (IJSSE),
2012, vol.3, no.3, pp. 1-22

[10] M. Almorsy, J. Grundy, and A. S. Ibrahim, ”Adaptable, model-driven
security engineering for SaaS cloud-based applications”, Automated
software engineering, vol.21, no.2, 2014, pp. 187-224

[11] E. B. Fernandez, R. Monge, and K. Hashizume, ”Building a security
reference architecture for cloud systems”, Requirements Engineering,
2015, pp. 1-25

[12] J.M.M. Perez, G. M. Perez, and A. F. Gomez-Skarmeta, ”SecRBAC:
Secure data in the Clouds”, IEEE Transactions on Services Computing,
2016

[13] H. Mouratidis, N. Argyropoulos, and S. Shei, ”Security Requirements
Engineering for Cloud Computing: The Secure Tropos Approach”,
Domain-Specific Conceptual Modeling, Springer International Publish-
ing, 2016, pp. 357-380

[14] N. R. Mead and T. Stehney, ”Security quality requirements engineering
(SQUARE) methodology”, ACM, 2005, vol.30, no.4, pp. 1-7

[15] P. Salini and S. Kanmani, ”Model oriented security requirements
engineering (MOSRE) framework for Web applications”, Advances in
Computing and Information Technology, Springer Berlin Heidelberg,
2013, pp. 341-353

[16] C. Haley, R. Laney, J. Moffett, and B. Nuseibeh, ”Security require-
ments engineering: A framework for representation and analysis”, IEEE
Transactions on Software Engineering, 2008, vol. 34, no. 1, pp. 133-153

[17] N. Ahmed and R. Matulevicius, ”A Method for Eliciting Security
Requirements from the Business Process Models”, In CAiSE (Fo-
rum/Doctoral Consortium), 2014, pp. 57-64

[18] D. Mellado, E. Fernandez-Medina, and M. Piattini, ”A common criteria
based security requirements engineering process for the development
of secure information systems”, Computer standards interfaces, vol.29,
no.2, 2007, pp. 244-253

[19] B. Fabian, S. Grses, M. Heisel, T. Santen, and H. Schmidt, ”A com-
parison of security requirements engineering methods”, Requirements
engineering, 2010, vol.15, no.1, pp.7-40

150Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 161 / 172

[20] Infrastructure, Public Key, and Token Protection Profile, ”Common
criteria for information technology security evaluation.” National Security
Agency, 2002

[21] J. Castro, M. Kolp, and J. Mylopoulos, ”Towards requirements-driven
information systems engineering: the Tropos project”, Information sys-
tems, vol.27, no.6, 2002, pp. 365-389

[22] H. Mouratidis, ”A natural extension of tropos methodology for mod-
elling security”, 2002

[23] A. V. Lamsweerde and E. Letier, ”Handling obstacles in goal-oriented
requirements engineering”, IEEE Transactions on Software Engineering,
vol.26, no.10, 2000, pp. 978-1005

[24] S. Pachidi, ”Goal-Oriented Requirements Engineering with KAOS”,
2009

[25] A. V. Lamsweerde, ”Elaborating security requirements by construction
of intentional anti-models”, Proceedings of the 26th International Con-
ference on Software Engineering, IEEE Computer Society, 2004

[26] S. Fassbender, M. Heisel, and R. Meis, ”Functional requirements
under security pressure”, Software Paradigm Trends (ICSOFT-PT), 9th
International Conference on IEEE, 2014

[27] S. Fabender, M. Heisel, and R. Meis, ”Problem-Based Security Re-
quirements Elicitation and Refinement with PresSuRE”, International
Conference on Software Technologies, Springer International Publishing,
2014, pp. 311-330

[28] M. Deng, K. Wuyts, R. Scandariato, B. Preneel, and W. Joosen,
”A privacy threat analysis framework: supporting the elicitation and
fulfillment of privacy requirements”, Requirements Engineering, 2011,
vol.16, no.1, pp. 3-32

[29] A. Bijwe and N. R. Mead, ”Adapting the square process for privacy
requirements engineering”, 2010

[30] S. Miyazaki, N. Mead, and J. Zhan, ”Computer-aided privacy require-
ments elicitation technique”, Asia-Pacific Services Computing Confer-
ence, APSCC’08, IEEE, 2008

[31] C. Kalloniatis, E. Kavakli, and S. Gritzalis, ”Addressing privacy require-
ments in system design: the PriS method”, Requirements Engineering,
vol.13, no.3, 2008, pp. 241-255

[32] D. Tancock, S. Pearson, and A. Charlesworth, ”A privacy impact
assessment tool for cloud computing”, Privacy and security for Cloud
computing, Springer London, 2013, pp. 73-123

[33] A. Gholami, A. S. Lind, J. Reichel, J.E. Litton, A. Edlund, and E.
Laure, ”Privacy threat modeling for emerging biobankclouds”, Procedia
Computer Science, 2014, vol. 37, pp. 489-496

[34] A. Gholami and E. Laure, ”Advanced cloud privacy threat modeling”,
arXiv preprint arXiv:1601.01500, 2016

[35] K. Beckers, S. Fabender, S. Gritzalis, M. Heisel, C. Kalloniatis, and R.
Meis, ”Privacy-Aware Cloud Deployment Scenario Selection”, In Inter-
national Conference on Trust, Privacy and Security in Digital Business,
2014, September, pp. 94-105, Springer International Publishing

151Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 162 / 172

Trust Managemement Parameters in Cloud Computing Environments

Zafeiroula Georgiopoulou
Department of Digital Systems,

University of Piraeus
Piraeus, Athens

e-mail: roulageorgio@ssl-unipi.gr

Costas Lambrinoudakis
Department of Digital Systems,

University of Piraeus
Piraeus, Athens

e-mail: clam@unipi.gr

Abstract— In cloud computing environments, successful trust
management can compensate the countermeasures that have
been adopted for mitigating the security and privacy risks that
the cloud comes across. This paper identifies the parameters
that a trust model should include. These parameters are
presented together with a detailed analysis of how, each of
them, could be applied/utilized by the trust model for
quantifying the trust of the cloud providers to their users.

Keywords- Cloud Computing; Trust; Trust Managemen;’
Trust Models; Privacy; Trust metric

I. INTRODUCTION

Cloud computing is a technology that has emerged in all
aspects of modern Information Technology infrastructure
providing comparative advantages to organizations.
However, this deployment and cloud tenancy create major
security concerns and loss of trust that mainly comes with
the loss of physical perimeter control. During the previous
years, several scientists have addressed the issue of proper
trust management [1].

A fine-tuned trust management would be a very good
countermeasure for many security and privacy risks in cloud
environments. The main reason for such a conclusion is that
having in place proper trust management mechanisms, users
can select providers based on their requirements and
trustworthiness and, at the same time, providers can reject or
accept users based on how trustful they are.

The novelty of the trust management model proposed in
this paper is that it allows cloud providers to monitor in real-
time the users of their services. Based on our previous
literature review research [1], we propose a list of trust
parameters, together with an in depth description of how
trust management can be applied per parameter.
Furthermore, the proposed model includes a trust metric that
will be capitalized for quantifying trust [3].

The structure of the paper is as follows: The next section
defines the trust modeling parameters that should be
considered for facilitating proper trust management of the
users by the cloud providers. Section III explains how the
aforementioned trust parameters could be combined in order
to produce the “trust metric” that will quantify the trust of
cloud providers to their users. The last section concludes the
paper and provides pointers for future work.

II. TRUST PARAMETERS

Defining the correct trust parameters is a key point for
successful trust management. They should take into account
all the aspects and factors of a cloud architecture that could
affect trust. The proposed list of trust parameters follows
next.

A. Trusted Access Points

A user typically connects to the cloud from a pre-defined
range of devices. By device we mean any electronic device
that a cloud user could employ for accessing cloud services
(Laptops, desktops, mobile phones, tablets, etc.). The range
of devices that have been already used for connecting to the
cloud, and thus fulfill the security policy criteria of the
provider, will be referred as “Trusted Access Points”.

A trust security policy should take into account the
access point and extra attention should be paid in the case of
new devices. In favor of “Trusted Access Points”, a table
with the principal characteristics per device, as listed next,
should be maintained in a central repository within the
perimeter of the cloud provider.

a) User ID: Uniquely identifies every user in the cloud.
b) Unique Device ID: Uniquely identifies each device

that a client is utilizing to access the cloud. This unique
identifier is the result of a salted encrypted combination of
the Device Type and its MAC address.

c) Type: Categorization of device (Mobile, Laptop,
Desktop, Tablet etc.)

d) Operating System: The device’s operating system
will be stored since it affects the security parameters. For
instance, an Android device is considered less safe from a
Windows Server device.

e) Date of Last Connection: Information on the date
and time that a specific device accessed the cloud.

All the above will be maintained from a “Trusted Access
Point Agent”, which will monitor the devices employed by
each user.

Every time that a user requires to access the cloud an
identification / authorization process will be invoked
specifically for the purposes of the “Trusted Access Point”.
The identification part aims to verify if the user’s device has
been already whitelisted, by checking a central repository
named “Trusted Access Points”. If the user attempts to

152Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 163 / 172

access the cloud with an unknown device, a security flag will
be raised, initiating a process that will check whether the
specific device can be included in the Trusted Access Points
repository or not.

The unknown devices must be identified and should
fulfill the security policy’s minimum requirements. For
instance, mobile devices can be prohibited from the security
policy [4].

B. Location

Determining the geo-location of a device is the process of
defining, in a precise manner, the latitude/longitude
coordinates of the device together with some other
characteristics like country, city, address, zip code and time
zone. Based on Isaca’s definitions [5], Geolocation data are
generated and collected either in an active mode, referred as
user-device-based geolocation, or in a passive mode, referred
as table look-up or data correlation server-based geolocation.
Table 1 [5] summarizes these modes and the technologies
that each mode employs.

TABLE I. MODES OF GEOLOCATION DATA GENERATION AND
COLLECTION

Mode Collection Method Technologies Involved

Active:
User—
Device-
based

• Uses firmware and
software on user’s
computer or wireless
device
• Location determined via
GPS chip and/or
triangulation using cellular
tower information
• Request-response model

• GPS
• Assisted GPS (A-GPS)
•Wi-Fi—Wireless
positioning
• 3G/4G
•Mobile applications—
iPhone, Android devices,
BlackBerry®

Passive:
Data-
lookup—
Sever-
based

Involves use of third-party
geolocation service
providers, e.g., Quova®,
NetGeo,Bering Media
• Based on nonlocation-
specific IP address
acquired from user device
or service set identifiers
(SSIDs) for wireless
networks
• Correlation with stored IP
or SSID databases
obtained from purchase
records, user-provided
information, network
analysis of trace routes and
domain name system
(DNS) host names

• IP location—Whois
lookup, DNS LOC,
geographic names in
domain name user or
application information,
timing data using ping
inference based on
routing data, e.g.,
traceroute monitoring of
Internet service provider
(ISP) networks
• 3G/4G
•Wi-Fi—Wireless
positioning

A far as privacy issues are concerned, the proposed

model will need the IP Geolocation. Assuming that an
accurate method for retrieving the location of a cloud client
exists, we will consider how this affects the trustfulness of
the client, justifying the fact that a trust security policy
should take into account geolocation information [5]-[8].

A user usually accesses the cloud from specific locations.
This range of locations will be referred as “Trusted
Geolocation Coordinates”. To maintain this information, the

main characteristics of each user location, as listed next, will
be recorded in a central repository within the perimeter of the
cloud provider.

a) User ID: Uniquely identifies every user in the
cloud

b) Location: Latitude and longitude coordinates of
each user location

c) IP address: The IP address that the user is utilizing
to access the cloud

d) City: The City from which the user is accessing the
cloud

e) Zip: The Zip code of the user’s access location
f) Time Zone: The Time Zone of the user’s location
g) Last Access: Information about the date and the

time that a user accessed the cloud for the last time
form a specific location.

All the above will be maintained from the “Location
Agent”. Then, an allowed zone of latitude/longitude
coordinates will be defined that a user could be pinpointed.
This zone comes from the combination of coordinates and an
acceptable distance that has been specified at the initial
configuration of the model. Every time a user accesses the
cloud an identification and authorization method regarding
geolocation characteristics is initiated. The identification
process checks a central repository named “Trusted
Geolocation Coordinates”, in order to verify if the user has
been allowed before to access the cloud from the same
location and its allowed perimeter. If the user is trying to
access the cloud from an unknown location a security flag is
raised until a decision of whether that location should, or
should not, be included in the list of trusted locations is
reached. Clearly, the Location Agent should invoke
mechanisms against IP spoofing.

C. Behavior

In all types of systems (cloud and conventional), a user
follows a similar pattern of actions (behavior). In other
words, the behavior of a user is expected to be similar within
different sessions [1] [10].

A trust security policy should take into account the
behavior characteristics of its users. More specifically it is
necessary to monitor the data that a user is typically
accessing and to consider cases of abnormal behavior. The
typical user behavior, in terms of the data that he is accessing
and the actions that he is performing, will be referred as
“Trusted Behavior”. In order to monitor the behavior of a
user the cloud provider should monitor the following
information.

a) User ID: Uniquely identifies every user in the
cloud.

b) Application Unit: During the initialization of the
proposed model, the cloud resources are logically
separated in isolated application units.

c) Authorization granted: Boolean value of whether
the user has the appropriate rights to access the
specific application unit.

153Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 164 / 172

d) Type of action: Monitors the user actions; i.e. the
user tried to view, write, update or delete
information.

e) Last Action: Information about the date and the
time that a user performed a specific action.

The audit trail for data access, maintained in the “Trust
Behavior Table”, will be aggregated by the Trust Behavior
Agent. Indicative overall aggregated values follow:

a) The average number of accesses to each data
category.

b) The average user throughput (bandwidth for
upload and download).

c) Volume of data transfers from CSP to the user.
d) Volume of data transfers from the user to CSP.
e) Average duration of user access.
f) Unauthorized modification or view access

endeavors.
The thresholds related to data access should be clearly

defined. As a minimum, one threshold for every aggregated
value is needed. The Trust Behavior Agent will monitor all
users’ data accesses and if any of the aforementioned
thresholds has been violated a security warning will be raised
from the agent. A relevant algorithm will process the
information and will decide if the specific user should be
excluded from the trusted data access behavior or not.

D. Resources

A cloud user typically consumes specific resources while
using the cloud. By Resources we refer to network and
hardware components that the user consumes while
connected to cloud. The various resources utilized by a user
during a specific session will be monitored and will be
referred as “Trusted Resources”.

The trust security policy of the proposed model will take
into account the resources consumed by a user and in case of
excessive use a security warning will be issued. In order to
maintain a “Trusted Resources” table, the following
information will be traced:

a) User ID: Uniquely identifies every user in the
cloud.

b) Unique Device ID: Uniquely identifies each device
that a client is utilizing. Maintained in the Trusted
Access Point table.

c) Session Length: The total session time.
d) Bandwidth: Bandwidth of cloud network used.
e) Device Memory: Device memory used; depicted as

percentage of the total device memory.
f) Cloud Memory: Cloud memory used; depicted as

percentage of the total cloud memory.
g) CPU Threads: CPU usage on user’s device.
h) Network Ports: List of ports that the user it

utilizing on the cloud.
i) Volume of data sent: Number of bytes sent by the

user during the current session.

j) Volume of data received: Number of bytes received
by the user during the current session.

The above information will be maintained by a Trust
Resource Agent. Thresholds, regarding the resource limits,
are necessary. During each session the Trust Resource Agent
will monitor the consumption of cloud resources and in case
that the thresholds are violated a security warning will be
issued.

E. Authentication

Another major parameter of the proposed trust model is
the authentication behavior of the cloud user. To this end, the
following information will be monitored:

a) User ID : Uniquely identifies every user in the
cloud.

b) Unsuccessful Logins: Number of times that the user
tried to access the cloud services without success.

c) Token Used: Metric regarding the security of the
tokens used

d) Wrong authentication method: In cloud
environments that support multiple authentication
methods the endeavor to use the wrong method
should be monitored.

The above information will be processed by a “Trust
Authentication Agent”. A trust authentication value per user
will be calculated/updated, based on pre-defined values,
during every authentication process. When the value for a
user falls below a specific threshold, he will not be
considered a trusted user any more. Log in will be banned
and further procedures will be required in order to reestablish
trust.

F. Feedbacks

In cases of outsourcing, feedback on consumers who had
transactions with other service providers is required.
Specifying a common feedback trust metric, regarding
trustfulness, between providers, will facilitate the
consideration of this information. To this end a “Feedback
Trust Table”, should be maintained in a central repository
within the perimeter of the cloud provider:

a) User ID : Uniquely identifies every user in the
cloud.

b) Unsuccessful Logins: Number of times that the user
tried to access the cloud services without success.

c) Token Used: Metric regarding the security of the
tokens used

d) Wrong authentication method: In cloud
environments that support multiple authentication
method the endeavor to use wrong method should
be monitored.

The above information will be processed by a
“Provider’s Feedback Agent”. Every time a user endeavors
to access the cloud, the agent will search the relevant table
for feedbacks. If the overall feedback value is below a
threshold, the user will not be considered trusted and relevant
actions should be taken.

154Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 165 / 172

G. Access Point Security

Since trust management is part of the security policy, it is
evident that the security of the access point – user’s
computer, phone tablet, etc. – should be taken into account
as an important parameter in the trust metric. To this respect,
a Security Evidence collector should be available on the
provider’s side and assuming that the user gives his consent,
the agent will collect information regarding the user’s device
security. The most important items that should be checked
are the following:

a) Use of antivirus
b) Use of firewall
c) Operating System’s Updates and Patches are

installed
d) List of Software installed

Based on the collected data, an access point security
value will be assigned to every user’s device. If the security
value for a user device is below some threshold, it will not be
allowed to enter the cloud.

III. TRUST METRIC

The definition of a Trust Metric facilitates the
quantification of the degree to which a cloud user can be
trusted by a cloud provider and it is necessary to establish
trust between the two entities. A simple way to implement
this trust metric could be the use of a binary discrete model
where the trust values are set ‘high’, for a highly trusted
entity, or ‘low’ for an untrusted entity.

In order to measure trust with the proposed model, a
metric that will quantify, in a general manner, the
trustfulness of each user is necessary. The range of trust
values (TV) is set to be between 0 to 10; 0 being the
minimum trust value and 10 the maximum. Furthermore, the
proposed trust metric will employ a weighting factor for
every of the aforementioned trust parameters. The weighting
factors will represent the importance of each trust parameter
and are:

 WAP : Weighting of Trusted Access Point
 WL : Weighting of Geo-location characteristics
 WDA : Weighting of Data Access
 WR : Weighting of Resources
 WA : Weighting of Authentication
 WF : Weighting of Feedback
 WAS: Weighting of Access Point Security
 WFP1…N : Weighting of future parameters
Weights will take values between 0 to 1. The proposed

Trust Metric will be:
TAP*WAP + TL*WL + TDA*WDA + TR*WR + TA*WA + TF*WF

+ TAS*WAS + TFP1*WFP1 + TFP2*WFP2 +……. + TFPn*WFPn

IV. CONCLUSIONS & FUTURE WORK

Cloud Computing is a widely accepted technology but it
raises a lot of security issues. The goal of our work is to

improve the current status by applying proper trust
management methods and surpass security risks. In this
paper the trust parameters that a cloud trust model should
take into account are presented together with an analysis of
how these parameters can be monitored. Furthermore, the
need for a trust metric, that will quantify the trust of the
cloud provider to the user, has been highlighted.

For the future, we aim to provide an overall simulation of
the proposed trust model, presenting experimental results
from measurements of the trust parameters and the way they
are used to calculate the trust metric.

ACKNOWLEDGMENT

This work has been partially supported by the Research
Center of the University of Piraeus.

REFERENCES

[1] L. Wenjuan, P. Lingdi, and P. Xuezeng, "Use trust
management module to achieve effective security
mechanisms in cloud environment," in International
Conference on Electronics and Information Engineering
(ICEIE), vol. 1, Kyoto, Japan, 2010, pp. 14-19.

[2] Z. Georgiopoulou, C. Lambrinoudakis,“Literature Review of
Trust Models for Cloud Computing”, International
Conference On Cloud Computing And Big Data (CloudCom-
Asia), Hong Kong, 2016.

[3] P. D. Manuel, T. Selve, and M. I. Abd-EI Barr, "Trust
management system for grid and cloud resources" in First
International Conference on Advanced Computing (ICAC
2009), Chennai, India, 2009, pp. 176-181.

[4] Y. Zhimin, Q. Lixiang, L. Chang, Y. Chi, and W.
Guangming, "A Collaborative Trust Model of Firewall-
through based on Computing" in 14th International
Conference on Computer Supported Cooperative Work in
Design (CSCWD), Shanghai, China, 2010, pp. 329 - 334.

[5] Geolocation: Risk, Issues and Strategies, ISACA,
Geolocation: Risk, Issues and Strategies

[6] B. Tang , R. Sandhu, “Cross-Tenant Trust Models in Cloud
Computing”, Information Reuse and Integration (IRI), 2013
IEEE 14th International Conference on 14-16 Aug. 2013.

[7] B. Eriksson, P. Barford, J. Sommersy, and Robert Nowak, “A
Learning-based Approach for IP Geolocation NIST
Interagency Report 7904, December 2012

[8] E. K. Banks, M. Bartock, K. Fiftal, D. Lemon, K, Scarfone,
U. Shetty et al., “Trusted Geolocation in the Cloud: Proof of
Concept Implementation”, International Journal of Computer
Science and Information Technologies, Vol. 3 (2) , 2012,
3328 – 3333.

[9] B. K. Dewangan1, P. Shende2, “The Sliding Window
Method: An Environment To Evaluate User Behavior Trust In
Cloud Technology”, International Journal of Advanced
Research in Computer and Communication Engineering, Vol.
2, Issue 2, February 2013.

[10] T. Li-qin, L. Chuang "Evaluation of User Behavior Trust in
Cloud Computing" 2010 International Conference on
Computer Application and System Modeling (ICCASM
2010)

155Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 166 / 172

The Greater The Power, The More Dangerous The Abuse: Facing Malicious

Insiders in The Cloud

Nikolaos Pitropakis

School of Electrical and Computer Engineering

Georgia Institute of Technology

Atlanta, United States of America

e-mail: pitropakis@gatech.edu

Christos Lyvas, Costas Lambrinoudakis

Department of Digital Systems

University of Piraeus

Piraeus, Greece

e-mail: {clyvas,clam}@unipi.gr

Abstract—The financial crisis made companies around the

world search for cheaper and more efficient solutions to cover

their needs in terms of computational power and storage. Their

quest came to end with the birth of Cloud Computing

infrastructures. However, along with the new promising

technology, new attack vectors were born, and one old and

known threat, that of Malicious Insiders reappeared. Insiders

can use their privileged position inside the Cloud

infrastructure to accomplish or help in attacks against a Cloud

infrastructure. In this paper, we propose a practical and

efficient intrusion detection system solution for Cloud

infrastructures based on Graphical Processing Unit (GPU)

acceleration. Our solution monitors the deployed virtual

machines operations and especially those of the host Operating

System’s, known as Dom0, correlating the collected

information to detect uncommon behavior based on the Smith-

Waterman algorithm. Our proposal makes possible the

cooperation of a variety of known hypervisors along with every

known GPU acceleration unit used, thus offering the maximum

of security mechanics while at the same time minimizing the

imposed overhead in terms of Central Processing Unit (CPU)

usage.

Keywords-Cloud Computing; Security; Malicious Insider;

IDS; GPU Acceleration.

I. INTRODUCTION

While economic growth is considered low in the vast
majority of the global market, Cloud Computing
infrastructures have grown beyond imagination. Their
revenues jumped by 25% for 2016 with strong estimated
growth ahead. Leading Amazon Web Services (AWS) and
Microsoft Azure grew 53% in 2016 [9]. AWS, which
introduced the concept of Cloud Computing managed to
generate revenue of 13 billion dollars in 2016. As migration
services become more convenient and at the same time more
appealing, more companies will choose the pay-per-use
model that Cloud Computing offers.

Cloud Computing by design cannot offer physical
isolation among Virtual Machines (VMs), since all resources
are shared. Various attack vectors have been developed [24]
and continue to be updated following the lead of security
experts, trying to identify shared resources and gain
unauthorized access to them. Hypercall attack injection [18],
co-residency detection, shared memory vulnerabilities [26]
and privilege escalation [7], are only a few examples of the

attack vectors that could harm the confidentiality, integrity
and availability of Cloud systems and data. It is a fact that
Cloud infrastructure’s attack surface is an expanded version
of older Information Technology (IT) infrastructures,
because a potential adversary can make use of additional
attacking points to explore a vulnerability (e.g., a VM, a
management platform or other components). Malicious
Insider threat has reappeared and has become the main
reason for data leakage as 1 out of 3 organizations have
experienced an insider attack in the year 2016 [10].

Several approaches have been proposed to augment
security in Cloud infrastructures. Most of them inherit their
operational methodologies from conventional IT systems.
The most popular approaches among the community try
either to scatter the information among the whole
infrastructure (in terms of data storage) [13] or implement
multiple Intrusion Detection Systems (IDS) [17] and audit
mechanisms [15]. Several of them monitor system calls to
detect malicious activities [2][25][29]. The recent trend is to
migrate the entire VM to another part of the infrastructure,
thus forcing the potential attacker to be one step behind [43].
Most of them are unable to detect attacks against the Cloud
from privileged users and especially attacks, which are
orchestrated by multiple VMs.

Thus, we introduce Modified And Deterring Realtime
Observation Wards (MAD CROW) for detecting malicious
activities against the VM and against the Cloud infrastructure
itself. The principle of our approach is to monitor the
hypercalls of the VMs independently and the system calls of
the privileged domain (Dom0 in XEN [41], Virtual Machine
Manager (VMM) in Kernel-based Virtual Machine (KVM)
[14]), in a way similar to a host based IDS, combining all
gathered information to protect each VM and the whole
Cloud infrastructure at the end of the day.

To be more specific, we make use of mechanisms that
trace hypercalls (Xentrace in the case XEN [42], Perfm
KVM in the case of KVM [20]) and systemcalls (strace
command [34]) and process them in order to generate attack
patterns and process abnormal behaviors. In contrast to other
cloud IDSs [5] that use machine learning classifiers as black-
box, the proposed system generates attack patterns using the
Smith-Waterman algorithm [30] and performs similarity
tests between the attack patterns and the data (hypercalls and
system calls) collected to decide whether the cloud
infrastructure is under attack or not, with a certain level of

156Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 167 / 172

confidence. Since our approach operates on the Cloud
infrastructure as a service layer, in a transparent manner, no
modifications to the underlying layers are required.

Overall, the contributions of the paper could be
summarized as follows:

 We introduce a hybrid solution, which depends on
hypercalls and system calls to detect abnormal
behavior in Cloud infrastructures.

 We enhance the performance of this solution using
GPU acceleration instead of CPU computational
resources

 Our solution is adaptable depending on the resources
(GPU) and the Cloud infrastructure (hypervisor used)

The rest of the paper is organized as follows: Section II
offers some background information while Section III
provides a related literature review. Section IV introduces
the malicious insider threat model. Section V presents our
approach to detect malicious activities in Cloud
infrastructure. Finally, Section VI draws the conclusions
giving some pointers for future work as well.

II. BACKGROUND

A. Hypervisors

A hypervisor is in most cases a software, which acts as a
layer between the hardware and the VMs. Basically, it is a
level of abstraction that isolates either operating systems or
applications from the underlying computer hardware. This
abstraction allows the underlying host machine hardware to
independently operate one or more virtual machines as
guests, allowing multiple guest VMs to effectively share the
system's computational resources, such as processor,
memory, storage, network bandwidth, etc. There are two
implementations of the hypervisor concept worth
mentioning, one is XEN and the other is KVM.

Figure 1. XEN Architecture.

In the case of XEN in Figure 1. , its designers developed
a microkernel, placed over the computer’s hardware, making
possible to run many instances of the operating system.
Domain 0 is the privileged VM, containing all the drivers for

the hardware and the control platform for the rest of the
VMs. As demonstrated in Figure 2. KVM is also a mini
kernel, this time completely attached to the Linux kernel,
meaning that every distribution after 2.6.20 contains the
KVM hypervisor by default. The difference is that instead of
using a middleware with drivers, as XEN does, KVM has
excellent hardware support.

Figure 2. KVM Architecture.

B. Hypercalls

In either case, as the hypervisor is responsible for
monitoring all privileged actions, VMs have to transfer
control into the hypervisor to execute sensitive instructions.
This procedure is materialized by hypercalls. The latter are
very similar to system calls in conventional operating
systems. A software interrupt transfers control from the VM
into the hypervisor, where every operation is validated and
then executed. After the operation is completed, the control
returns to the VM that made the call initially. Hypercalls, as
system calls, differ depending if the architecture is x86 or
x64. Their structure is similar to system calls, including
parameter passing (for example a XEN hypercall definition:
HYPERVISOR_mmu_update(const struct mmu_update
reqs[], unsigned count, unsigned *done_out, unsigned
foreigndom)).

C. Graphical Processing Unit Acceleration

The creation and usage of more computational resources
demanding algorithms, along with the birth of big data,
pushed the worldwide community towards parallel
computing. As CPUs can be too expensive, the scientific
community turned to GPUs. Modern GPUs have an
architecture that enables them to make fast simple
mathematical and logical calculations, using multiple cores,
which were commonly used for graphics representation.
When a medium ranged GPU can offer more than 1000
cores, it is more energy and cost efficient than any other
CPU antagonist. There are two technologies commonly used,
NVIDIA’s Compute Unified Device Architecture (CUDA)
[19] and AMD’s High Performance Computing [4], which

157Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 168 / 172

relies on OpenCL™ cross-platform programming language
[45].

It is feasible to access GPUs at high performance, within
all the major hypervisors, thus taking advantage of all the
benefits that Cloud Computing platforms can offer, along
with the accessibility of on-demand accelerator hardware.
This procedure is called GPU passthrough technology and
permits any virtual machine to access one or more GPUs. It
is accomplished using two strategies, either API remoting
with device emulation or PCI passthrough. Recently,
researchers proved that GPU passthrough technology can
take advantage of 96-100% of the base systems performance
[39].

III. RELATED WORK

Several attempts to track, disable or counter the
malicious insider threat have been recorded. However, the
majority of these solutions achieve their goal by focusing on
a very specific aspect of the cloud, such as the employees or
the network, while only a minority of them aim to provide a
general purpose solution [3][11][15][28][32][33][35][36].
Solutions that propose monitoring of system calls and
invocation of statistical methods for identifying normal and
malicious acts are [2][8][12][21][23][25][29].

Coull’s work [6] has inspired the initial CROW method.
They used the system calls as a series of genes and made use
of the Smith Waterman algorithm. However, they did not use
entire patterns, something that has resulted in many false
positives and false negatives. Compute Unified Device
Architecture (CUDA) involvement was proposed by
Ioannidis et al. [37] for executing Snort [31]. In [1] Haddad
et al. propose a scheme aiming to detect network attacks,
consisting of Snort for signature based detection and Support
Vector Machine (SVM) for anomaly detection. Furthermore,
Vasiliadis et al. [38] proved that GPU acceleration is so
efficient that can be used by malicious parties in order to
increase the robustness of malware against analysis and
detection.

Milenkoski et al. [18] created “HInjector”, which is a
customizable framework, able to inject hypercall attacks
during regular operation. This is the reason why Wang et al.
[40], created a mechanism that aims to protect the hypercall
interface by preventing untrusted hypercalls from running,
using randomization techniques.

IV. THREAT MODEL

According to Maybury et al. [16] the term “insider”, for
an organization system, applies to anyone with approved
access, privilege, or knowledge of the information system
and its services and missions. “Malicious insider” is defined
as someone motivated to adversely impact an organization’s
mission through a range of actions that compromise
information confidentiality, integrity, and/or availability
taking advantage of his/her privileges. This terminology
covers mostly traditional IT systems. A modern update
would be that a malicious insider is someone who acts either
actively or passively. In the first case, an active malicious
insider is motivated by himself to harm an organization. A
passive malicious insider, is a victim of phishing or other

social attack (social engineering, phishing, etc.), whose
actions are orchestrated by an external attacker.
Consequently, he uses his privileges to harm an organization,
without his will.

In the case of Cloud Computing, we define as insider an
entity who: (a) Works for the cloud host, (b) Has privileged
access to the cloud resources and (c) Uses the cloud services.
All cloud insiders are mostly privileged users, who either at
will or not, compromise a Cloud infrastructure’s security.
Depending on their privileges, the impacts from their actions
vary from a temporary break of network or a service, to
users’ privacy violation or loss/exposure of data. There is
infrastructure related information, such as the network
topology that can be extracted only by privileged users. For
example, a malicious user will try to make a map of all
available VMs, in order to choose his next target, which will
give him more information and will help him to violate the
security of a Cloud infrastructure or a user’s privacy.

As hypercalls are like system calls, this gives the ability
to the potential attackers to perform or inject hypercall
attacks, which can take any form known from system calls,
such as argument highjacking or mimicry [44]. Another
tactic commonly used, is to fake a series of hypercalls with
ultimate purpose to sniff the information from other VMs. In
addition to that, Cloud infrastructures lack physical isolation
by default because of their architecture, something that offers
the opportunity to several VMs to get information from
shared sources of the Cloud ecosystem such as memory
(cache or main memory) retrieving personal information for
the co-residents. Ristenpart et al. [26] first proved this
concept by performing cross VM side channel attacks on
Amazon EC2, measuring in that way the activity of other
users. Similarly, Rochsa and Correia [27] proved that, by
using the memory of a VM, sensitive information about its
users can be acquired, such as social security number,
credentials and other personal information.

There are other cases, where attackers combine utilities
and tools, whose functionalities are commonly perceived as
benign, in order to perform an attack. An example of such a
case are the commands “nslookup”, “ping” and the nmap
tool, which can access publicly available information
regarding network topologies and OS, for a specific
ecosystem of VMs. The results from those commands
orchestrate a “co-residence” or “co-tenacy” attack [26].
Furthermore, following the way of thinking of commonly
employed Advanced Persistent Threats, this kind of
information may prove useful in the future as it leads to
exploits of vulnerabilities relevant to OS version and the
other characteristics of a VM. Another kind of attack that can
be performed inside a virtual network, is a network stress
attack named “smurf” where the attacker launches numerous
ping requests, thus congesting the corresponding public and
private interfaces and eventually causing Denial Of Service.
Modified And Deterring Cloud Realtime Observation Wards

A. Overview

The proposed scheme, namely MAD CROW is a
modified and improved version of another proposed solution
[22]. Its goal is to facilitate detection of malicious privileged

158Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 169 / 172

users in the cloud, regardless of if they use the non-
privileged VM, or the privileged VM Domain0 or Dom0 or
VM0. It also provides functionality of traditional IDS
implementations by individually monitoring the health of
each employed VM. Its unique feature is the use of both
hypercalls for the non-privileged VMs and system calls for
Dom0. To the best of our knowledge, it is the first of this
kind. It’s high level architecture is depicted in Figure 3.

Figure 3. The MAD CROW Architecture.

As highjacking techniques exist and can fool the system

call tracing inside a VM, the proposed scheme makes use of
a filtering system for hypercalls. Each time a hypercall is
initiated, it is recorded in the hypercall sequence of the
specific VM that made the call into the audit VM. So, we
propose a unified mechanism, which has signatures in terms
of hypercall sequences relevant to the operations of each
VM. This mechanism constantly detects the hyper calls
through the hypervisor, using GPU acceleration instead of
CPU usage. Whenever an attack signature is detected by the
audit VM, a security alert is generated for the security
officers to act. In the case of Dom0 as it is the privileged VM
and the highest in the hierarchy, being able to damage the
entire cloud infrastructure, the system calls detection is
mandatory. To be specific, a mechanism is installed inside
the privileged VM and detects its system calls through the
kernel. Whenever something abnormal is detected, an alert
reaches the audit VM. In both cases, the detection is
achieved using GPU acceleration and passthrough
technology, in both the Audit VM and privileged VM
tracking mechanism.

The sub-system, which implements the audit mechanism,
is responsible to monitor the health of each of the VMs either
through hypercalls (non-privileged) or through system calls
(privileged). Additionally, it generates new attack signatures,
based on the hypercall and system call patterns of the
attacks. The proposed scheme makes also use of a detection
module, which monitors each VM and utilizes the attack
signatures for computing their similarity with the sequences
of hypercalls generated by the non-privileged VMs. In the
case of the privileged VM, the same monitoring is achieved
using system calls attack signatures. Calculating the
similarity score is a very intense procedure, in computational
terms, especially in terms of CPU and RAM.

With respect to GPU passthrough technology, our
approach focuses on transferring the majority of the
introduced overhead to the GPUs. Consequently, the rest of
the computational resources of the infrastructure remain
almost idle in terms of usage so as to serve the needs of the
other users. This procedure has become possible through the
architectures of NVIDIA’s Compute Unified Device
Architecture (CUDA) and AMD’s High Performance
Computing, which uses OpenCL™ cross-platform
programming language [45]. Both are parallel computing
platforms that provide access to the virtual instruction set
and memory of GPUs.

B. Attack Signature Generation

The attack signature generation process is very similar to
the CROW methodology [22], but with one major difference.
This time we track system calls, for the privileged VM, and
hyper calls for all other VMs. The methodology is very
simple and intuitive. A significant number of hypercalls and
system call patterns is collected, following multiple
executions of the same attack. Then, we make use of the
Smith Waterman algorithm [30], to process our data. Each
hypercall and system call consists of symbols, drawn from a
finite discrete alphabet. So, our goal is to find the longest
common subsequence to all sequences in a set of sequences,
making the Smith Waterman algorithm an excellent choice
for our purpose.

The signature extraction is very similar to malware
analysis, since the attack is known a priory. Thus, the
malware is executed several times in order to get the
corresponding signatures. More specifically, the algorithm
runs in pairs of sequences of the hypercalls or system calls
for the same attack. Then, the number of sequences is
reduced to half, using the best similarity match either for
hyper calls or for system calls. After all results have been
processed, the attack signature is generated. It must be
stressed that the privileged VM is able to execute a
significant number of attacks on its own, while all the others
can both act alone or even cooperate in order to achieve a
successful attack. Consequently, according to Figure 4. the
proposed methodology can retrieve the appropriate
information and when all the segments of an attack are
collected to signal an alarm, even though other benign
executions interfere and create noise in the sequences of
either hypercalls or system calls. We should not forget that
simple commands, such as “nslookup” are harmless on their
own, but when combined with others may result in mapping
an entire network ecosystem [26].

Segment 1

R
a

w
 h

y
p

e
rc

a
ll

Segment 2

Segment 3 P
a

tt
e

rn

Noise

Segment 1

Noise

Noise

Segment 2

Noise

Segment 3

A
n

alysis A
lgo

rith
m

Figure 4. The segments of the attack pattern are found through the

hypercall sequence using as analysis the Smith-Waterman algorithm

159Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 170 / 172

C. Detection

The attack signatures created from the former procedure,
either as sequences of hypercalls or as sequences of system
calls, are used for the detection of potential malicious acts.
Specifically, the audit VM, keeps signatures in a database.
To achieve the detection of an attack against the VM or the
cloud infrastructure itself, the hypercalls of the VMs and the
system calls of the privileged VM are monitored and
forwarded to the detection module.

Its task is to identify the attack segments into the entire
sequence of hypercalls or system calls, avoiding the possible
noise that has been created by various other irrelevant system
procedures and thus making the same steps as the attack
signature generation. In the case where all the segments of an
attack are identified, then an alert in the audit VM is
triggered. This alert motivates the operators of the audit
station to take immediate action and enforce the employed
policy.

It must be noted that even in cases where the attack
segments are executed in different VMs, which is a typical
choice of attackers in order to avoid detection, the proposed
scheme will again detect the attack. Additionally, a
handshake, between the audit station and each of the VMs, is
initiated every two seconds in order to update the audit
station about VM communication and thus protect the
system from potential actions that aim to hide an attack.

V. CONCLUSIONS AND FUTURE WORK

Considering modern IDS systems do not focus on cloud
insider attacks, the MAD CROW detection method has been
proposed. It utilizes both hypercalls and system calls to
detect privileged user attacks. The detection mechanism is
based on Smith Waterman algorithm, adapted in a parallel
implementation, usable by any GPU architecture and
passthrough technology.

Currently, we are experimenting with different
implementations and GPU setups, willing to achieve
maximum stability, efficiency and productivity. Our
experimentation includes different machine learning
techniques and feature extraction that would allow us to
improve the signature generation mechanism and
consequently the accuracy of our detector.

ACKNOWLEDGMENT

This work has been partially supported by the Research
Center of the University of Piraeus.

REFERENCES

[1] A. Haddad, Zayed, M. Hanoune, and A. Mamouni, “A
Collaborative Network Intrusion Detection System (C-NIDS)
in Cloud Computing.” International Journal of
Communication Networks and Information Security 8, no. 3,
p. 130, December 2016.

[2] A. Suaad S., and S. D. Wolthusen, “Detecting anomalies in
IaaS environments through virtual machine host system call
analysis.” Internet Technology And Secured Transactions,
2012 International Conferece For. IEEE, pp. 211-218,
December 2012.

[3] M. A. AlZain, E. Pardede, B. Soh, and J. A. Thom, ”Cloud
computing security: from single to multi-clouds.” System

Science (HICSS), 2012 45th Hawaii International Conference
on. IEEE, pp. 5490-5499, January 2012.

[4] AMD High Performance Computing. [Online]. Available
from: http://www.amd.com/en-
us/products/graphics/workstation/firepro-remote-
graphics/gpu-compute# .12 January 2017

[5] A. Bakshi, and B. Yogesh, “Securing cloud from ddos attacks
using intrusion detection system in virtual machine.” Second
International Conference on Communication Software and
Networks, (ICCSN'10), IEEE, pp. 260-264, 2010

[6] S. Coull, J. Branch, B. Szymanski, and E. Breimer, “Intrusion
detection: A bioinformatics approach.” Computer Security
Applications Conference, 2003. Proceedings. 19th Annual,
IEEE, pp. 24-33, December 2003

[7] Enisa, “Cloud Computing – Benefits, Risks and
Recommendations for Information Security” , 2009

[8] E. Eskin, W. Lee, and S. J. Stolfo, “Modeling system calls for
intrusion detection with dynamic window sizes.” DARPA
Information Survivability Conference & Exposition II
(DISCEX'01), Proceedings. Vol. 1. IEEE, PP/ 165-175, 2001.

[9] Geekwire. [Online]. Available from:
http://www.geekwire.com/2017/cloud-computing-revenues-
jumped-25-2016-strong-growth-ahead-researcher-says/. 12
January 2017

[10] Helpnetsecurity. . [Online]. Available from:
https://www.helpnetsecurity.com/2016/09/30/insider-attack/.
12 January 2017

[11] C. H. H. Le, “Protecting Xen hypercalls”, Doctoral
dissertation, University of British Columbia, July 2009

[12] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion
detection using sequences of system calls.” Journal of
computer security 6, no. 3, pp. 151-180, 1998.

[13] R. L. Krutz, R. D. Vines, “Cloud Security: A Comprehensive
Guide to Secure Cloud Computing.” Wiley Publishing,
Indianapolis, August 2010.

[14] KVM Hypervisor. [Online]. Available from:
http://www.linux-kvm.org/. 12 January 2017

[15] G. Magklaras, S. Furnell, and M. Papadaki, “LUARM-An
audit engine for insider misuse detection.” WDFIA, pp. 133-
148, 2011.

[16] M. Maybury, P. Chase, B. Cheikes, D. Brackney, S. Matzner,
T. Hetherington, B. Wood, C. Sibley, J. Marin, and T.
Longstaff, “Analysis and detection of malicious insiders.”
MITRE CORP BEDFORD MA, 2005.

[17] C. Mazzariello, R. Bifulco, and R. Canonico, “Integrating a
network IDS into an open source cloud computing
environment.” Sixth International Conference on Information
Assurance and Security, IEEE, pp. 265-270, 2010

[18] A. Milenkoski, B. D. Payne, N. Antunes, M. Vieira, and S.
Kounev, “HInjector: injecting hypercall attacks for evaluating
VMI-based intrusion detection systems.” Poster Reception at
the 2013 Annual Computer Security Applications Conference
(ACSAC 2013), 2013.

[19] NVIDIA CUDA. [Online]. Available from:
http://www.nvidia.com/object/cuda_home_new.html. 12
January 2017

[20] Perf KVM. . [Online]. Available from: http://www.linux-
kvm.org/page/Perf_events. 12 January 2017

[21] N. Pitropakis, A. Pikrakis, and C. Lambrinoudakis.
“Behaviour reflects personality: detecting co-residence
attacks on Xen-based cloud environments.” International
Journal of Information Security 14, no. 4, pp.299-305, 2015.

[22] N. Pitropakis, D. Geneiatakis, and C. Lambrinoudakis, “Till
All Are One: Towards a Unified Cloud IDS.” International
Conference on Trust and Privacy in Digital Business.
Springer International Publishing, pp. 136-149, 2015.

160Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 171 / 172

[23] N. Pitropakis, D. Anastasopoulou, A. Pikrakis, and C.
Lambrinoudakis, “If you want to know about a hunter, study
his prey: detection of network based attacks on KVM based
cloud environments.” Journal of Cloud Computing 3, no. 1 p
20, 2014.

[24] N. Pitropakis, E. Darra, N. Vrakas, and C. Lambrinoudakis,
“It's All in the Cloud: Reviewing Cloud Security.” Ubiquitous
Intelligence and Computing, 2013 IEEE 10th International
Conference on and 10th International Conference on
Autonomic and Trusted Computing (UIC/ATC). IEEE, pp.
355-362, 2013.

[25] S. Rawat, V. P. Gulati, A. K. Pujari, and V. R. Vemuri,
“Intrusion detection using text processing techniques with a
binary-weighted cosine metric”, Journal of Information
Assurance and Security 1, no. 1, pp. 43-50, 2006.

[26] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey,
you, get off of my cloud: exploring information leakage in
third-party compute clouds.” Proceedings of the 16th ACM
conference on Computer and communications security (CCS),
ACM, pp. 199-212, 2009.

[27] F. Rocha, and M. Correia, “Lucy in the sky without
diamonds: Stealing confidential data in the cloud.”
Dependable Systems and Networks Workshops (DSN-W),
2011 IEEE/IFIP 41st International Conference. IEEE, pp.
129-134, 2011.

[28] R. Sandhu, R. Boppana, R. Krishnan, J. Reich, T. Wolff, and
J. Zachry, “Towards a discipline of mission-aware cloud
computing.” Proceedings of the 2010 ACM workshop on
Cloud computing security workshop, ACM, pp. 13-18, 2010.

[29] A. Sharma, A. K. Pujari, and K. K. Paliwal, “Intrusion
detection using text processing techniques with a kernel based
similarity measure.” computers & security 26, no. 7, pp. 488–
495, 2007.

[30] T. F. Smith, and M. S. Waterman, “Identification of common
molecular subsequences.” Journal of molecular biology 147,
no. 1,pp. 195–197, 1981.

[31] Snort IDS. [Online]. Available from: https://www.snort.org/ .
12 January 2017

[32] J. Spring, “Monitoring cloud computing by layer, part 1.”,
IEEE Security & Privacy 9,no. 2, IEEE, pp. 66-68, 2011.

[33] S. J. Stolfo, M. B. Salem, and A. D. Keromytis, “Fog
computing: Mitigating insider data theft attacks in the cloud.”
Security and Privacy Workshops (SPW), 2012 IEEE
Symposium. IEEE, pp. 125-128, 2012.

[34] Strace command. [Online]. Available from:
https://linux.die.net/man/1/strace. 12 January 2017

[35] S. Sundararajan, H. Narayanan, V. Pavithran, K. Vorungati,
and K. Achuthan, “Preventing Insider attacks in the Cloud.”
Advances in Computing and Communications, Springer
Berlin Heidelberg, pp. 488-500, 2011.

[36] A. Tripathi, and A. Mishra, “Cloud computing security
considerations.” Signal Processing, Communications and
Computing (ICSPCC), 2011 IEEE International Conference,
IEEE, pp. 1-5, 2011.

[37] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P.
Markatos, and S. Ioannidis, “Gnort: High performance
network intrusion detection using graphics processors
International Workshop on Recent Advances in Intrusion
Detection 2008, Springer Berlin Heidelberg , pp. 116-134,
2008.

[38] G. Vasiliadis, M. Polychronakis, and S. Ioannidis, “GPU-
assisted malware.” International Journal of Information
Security 14, no. 3, pp. 289-297 , 2015.

[39] J. P. Walters, A. J. Younge, D. I. Kang, K. T. Yao, M. Kang,
S. P. Crago, and G. C. Fox, “GPU passthrough performance:
A comparison of KVM, Xen, VMWare ESXi, and LXC for
CUDA and OpenCL applications.”, IEEE 7th International
Conference on Cloud Computing, IEEE, pp. 636-643, 2014.

[40] F. Wang, P. Chen, B. Mao, and L. Xie, “Randhyp: preventing
attacks via xen hypercall interface.” IFIP International
Information Security Conference, Springer Berlin Heidelberg,
pp. 138-149, 2012.

[41] XEN Hypervisor. . [Online]. Available from:
http://www.xenproject.org/developers/teams/hypervisor.html.
12 January 2017

[42] Xentrace. [Online]. Available from:
https://blog.xenproject.org/2012/09/27/tracing-with-xentrace-
and-xenalyze/ 12 January 2017

[43] Y. Zhang, M. Li, K. Bai, M. Yu, and W. Zang, “Incentive
compatible moving target defense against vm-colocation
attacks in clouds.”, IFIP International Information Security
Conference, Springer Berlin Heidelberg, pp. 388-399, 2012.

[44] Z. Wang, X. Jiang, W. Cui, and P. Ning, “Countering Kernel
Rootkits with Lightweight Hook Protection.”, 16th ACM
Conference on Computer and Communications Security,
ACM, pp. 545–554, 2009.

[45] OpenCL™. [Online]. Available from:
https://www.khronos.org/opencl/ 12 January 2017

161Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

Powered by TCPDF (www.tcpdf.org)

 172 / 172

http://www.tcpdf.org

