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The Second International Conference on Computational Logics, Algebras, Programming, Tools,
and Benchmarking [COMPUTATION TOOLS 2011], held between September 25 and 30, 2011 in Rome,
Italy, continued an event under the umbrella of ComputationWorld 2011 dealing with logics, algebras,
advanced computation techniques, specialized programming languages, and tools for distributed
computation. Mainly, the event targeted those aspects supporting context-oriented systems, adaptive
systems, service computing, patterns and content-oriented features, temporal and ubiquitous aspects,
and many facets of computational benchmarking.

We take here the opportunity to warmly thank all the members of the COMPUTATION TOOLS
2011 Technical Program Committee, as well as the numerous reviewers. The creation of such a broad
and high quality conference program would not have been possible without their involvement. We also
kindly thank all the authors who dedicated much of their time and efforts to contribute to
COMPUTATION TOOLS 2011. We truly believe that, thanks to all these efforts, the final conference
program consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the COMPUTATION TOOLS 2011
organizing committee for their help in handling the logistics and for their work to make this professional
meeting a success.

We hope that COMPUTATION TOOLS 2011 was a successful international forum for the
exchange of ideas and results between academia and industry and for the promotion of progress in the
areas of computational logics, algebras, programming, tools, and benchmarking.

We are convinced that the participants found the event useful and communications very open.
We also hope the attendees enjoyed the charm of Rome, Italy.
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Netty: A Prover’s Assistant
Eric Hehner and Lev Naiman
Department of Computer Science

University of Toronto
40 St. George Street, Toronto, Canada

Email: naiman@cs.toronto.edu

Abstract—Netty is a prover’s assistant. It supports a calcula-
tional style of proof, and allows the creation of proofs that are
correct by construction. It provides an intuitive interface that
allows direct manipulation of expressions. The key idea is that
instead of tactics for proof the user only needs to select the next
step of the proof from a list of suggestions. These suggestions are
usually the result of unification. Netty provides mechanisms to
facilitate proving, such as making use of local assumptions and
the use of monotonicity in subproofs. Program refinement from
specification can be done in Netty similarly to any other kind of
proof.

Index Terms—proof; calculation; tool

I. INTRODUCTION

Proof assistants have been created with various purposes.
One such purpose is complete automation; this is useful when
we need a proof and we care about the result rather than
the process. Such provers have been successful, although the
theories they can reason about are limited. Some add freedom
of theory by being only partially automatic, requiring some
user guidance to produce a proof, and are known as interactive
theorem provers. Examples of such provers include HOL,
PVS, and Coq [3][10][4]. Some tools have specific modes
for program verification. Other tools are specific to program
verification or refinement, and hence are restrictive to the
theories allowed [8]. Tools like Isabelle [9] require the user
to use tactics for proving, which requires the user to learn
another meta language. The most similar existing tool to Netty
is KeY [2], since it allows users to pick a rule to apply from
a list of applicable rules. In contrast, Netty allows users to
pick the result of applying rules. KeY does not support the
use of local assumptions or monotonicity, and is restricted to
the theories it allows.

Despite their usefulness, these tools present a difficulty
when used to teach logic. There are often complicated tactics
for proof, and perhaps some meta-language for performing
certain operations, or a scripting language for creating user-
defined tactics. This means that a user must learn a concept
that is almost as complicated as programming before being
able to prove any expression, regardless of how simple it is.

Netty [7] is a prover’s assistant named for Antonetta van
Gasteren (1952-2002), a pioneer of calculational proof. It
is based on work by Robert Will [11]. Its main purpose is
pedagogical; it aims to foster understanding about how a proof
is constructed and why each step is allowed. It supports a cal-
culational type of proof, that is similar to the successfully used

Structured Derivations [1]. It allows the direct manipulation of
expressions and subexpressions to advance a proof. Advancing
a proof is usually done by picking an expression from a list
of suggestions that Netty provides to be the next line. The
importance of this is that it allows a user to concentrate on
the proof itself rather than learning how to use the tool.

The paper is organized as follows: Section II discusses the
use and structure of calculational proof. Section III shows
how the main parts of Netty are integrated. Section IV shows
the structure, display and navigation of proofs in Netty.
Section V-E is about advancing a proof; it discusses how
Netty generates suggestions to proceed with proofs and how
the user interacts with the tool to advance the proof. This
section also discusses the special mechanisms in proof, and
how suggestions are filtered. Section VI shows how a program
refinement is performed (identical to any other proof).

II. CALCULATIONAL PROOF

Calculational proof is a fixed and structured format for
presenting proofs. It makes proofs and calculations equivalent
in that each step has an explicit justification, usually a law.
A human prover may have a reason for constructing a proof,
and they may have a proof strategy in mind, but these are
not our concerns; our concern is to provide a tool that makes
proof construction easy and fully formal. The advantage of a
fully formal proof is that its correctness is machine checkable.
It has been adopted by several researchers in formal methods
and used effectively for teaching mathematics at a high-school
level [1]. A calculational proof is a bunch of expressions with
connective operators between them, whose transitive relation
allows us to conclude something about the first and last
expression of the proof.

For example, a calculational proof that there is no smallest
integer might look like this:

¬∃〈n : int→ ∀〈m : int→ n ≤ m〉〉 Specialization
⇐ ¬∃〈n : int→ 〈m : int→ n ≤ m〉 (n− 1)〉 Function Apply
= ¬∃〈n : int→ n ≤ n− 1〉 Identity Law
= ¬∃〈n : int→ n− 0 ≤ n− 1〉 Cancellation
= ¬∃〈n : int→ 0 ≤ −1〉 Ordering
= ¬∃〈n : int→ ⊥〉 Quantifier Identity
= >

The top line of this proof can be read “there does not
exists n of type integer, such that for all m of type integer,
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n is less than or equal to m”, and the bottom line can be
read as “true”. The angle brackets serve as the scope of a
function and as the scope of a quantified variable (discussed
in Section V-C). Notational peculiarities are not the point here;
any reader interested in the notational details is referred to [6].
We say that a proof proves an expression ‘expn’ if we show
that expn = > or > ⇒ expn, and we say that it proves ¬expn
if expn = ⊥ or expn ⇒ ⊥. Hence in this example we say
we proved ¬∃〈n : int → ∀〈m : int → n ≤ m〉〉. Each line
in the proof has a hint to its right telling how the next line is
created. For example, the line ¬∃〈n : int → n ≤ n − 1〉 has
the hint ‘Identity Law’ saying that n is replaced by n− 0 in
the next line.

III. OVERVIEW

Fig. 1. Backbone

This flowchart illustrates the basic components of Netty.
Once a user starts a proof, next steps are generated and
filtered as described in Section V. The user can then accept a
suggestion, directly enter the next expression, or navigate the
proof as described in Section IV.

IV. PROOF DISPLAY AND NAVIGATION

Figure 2 is a screenshot of Netty’s calculation window.
It is divided into three parts: the proof pane (top left), the
suggestions pane (bottom left), and the context pane (right).

The proof pane contains the proof that has been built so
far, in the format described in the examples to follow. The
suggestion pane contains valid possible next steps in the proof.
The context pane displays the laws that are local to the current
context. In addition, there is one line selected by the user from
which to continue the proof, and it will be referred to as the
‘focus’. The box contains the direction in which the proof
is allowed to proceed, and hence limits the suggestions that
Netty provides for advancing the proof. The proof in Figure 3
serves to explicitly show every step of a Netty proof. Without
the boxed directions and vertical lines, we would have a proof

Fig. 2. Calculation Window

that very closely resembles a Structured Derivation that has
a main proof and several nested subproofs. The purpose of
the vertical lines is structural; they serve to mark the extent
of a proof (or subproof). The low corner brackets mark the
subexpression that is used in the following subproof, and the
high corner brackets mark the result of the subproof.

Fig. 3. Detailed Proof

A. Directions and Connectives

The idea of the direction is that in order to conclude some
relationship between the first and last line of a proof the
connectives for each line must have a transitive relation. For
example, the direction ⇐ in line 0 allows lines 13 and 14
to use either the = or ⇐ connective; the direction ⇒ in line
3 allows lines 4, 5, 8, 9, and 10 to use either the = or ⇒
connective; the direction ≥ in line 6 allows line 7 to use any
of the connectives =, ≥ or > . A direction of = allows only the
= connective. Notice that the direction symbol must have the
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Fig. 4. Compressed Proof

same type as the expression in the proof. In such a way Netty
can combine several theories, such as booleans, numbers, and
sets.

The direction remains constant throughout a single level of
proof, but can change as we zoom into or out of a subproof.
In line 0 the direction is ⇐ but we zoom past the ¬ sign
changing the direction in line 1 to ⇒.

The line in a parent proof directly after a subproof must also
have a connective. Without the subproof it is just a regular
line of proof, except that the justification for it is what the
subproof proves. It is as if the subproof was a lemma about
a subexpression of an expression in the main proof, which is
used just like any law, preserving any monotonic properties.
This is shown in line 7 of the example in Figure 4. The
connective for the subsequent line is determined as follows:
1. If the subproof proves equality, the new leading connective

is =
2. Otherwise the new leading connective is the direction of

the line we zoomed in from
The subsequent line is the same as the line before the

subproof, except that the subexpression that was considered
in the subproof is replaced with the last line of the subproof.

Such support for monotonicity is not strictly necessary in
order to produce proofs. However, it saves many unnecessary
steps, and is especially useful for program refinement where
a specification is strengthened to a program.

B. Zoom

The suggestions that are created for each line are depen-
dent on the whole expression, mostly because laws involve
unification. It would be terribly inefficient and cluttered if
we were to produce suggestions that included manipulations
on each subexpression. This is why unlike Fitch-style natural
deductions [5] we allow subexpression selection. By selecting
a subexpression of the focus we say we zoom-in, and hence
create a subproof. We can also return one level higher to the
parent proof by pushing a key, and we call this zooming out.
Only the direct subexpressions of the focus are available for
zoom. For example, while doing the proof in Figure 3, on line
5 we have the expression n ≤ n − 1. The parts that can be
zoomed into to create a subproof are n on the left and n− 1
on the right.

Zooming is done one level at a time, and getting to a
deeper subexpression is simply several zoom actions. The idea
is to make selection gestures simple, and not to require a
high degree of accuracy in clicking. It might appear useful
to be able to select a deeper subexpression directly in order
to proceed faster in the proof. However, this is actually
not faster. Selecting the right expression takes longer, and
navigating to other subexpressions also takes longer. Finally,
the presentation layer removes any unnecessary lines, as shown
in figure 4.

In Netty expressions are stored in a tree structure with four
main classes: literals, variables, scopes, and (function) applica-
tions. Literals represent values like 1, >, or 3.14. Variables are
not bound to any specific value, but they can be instantiated
during unification. Both variables and literals never have any
child nodes. Scopes are used to formally introduce variables,
give variables types, and to serve as functions. A scope is
of the form 〈var : domain → body〉. Applications have
an operator (of arbitrary fixity and number of keywords)
as the root, and operands as children. The reason that the
internal expression structure does not use curried functions
for all operators is to allow easy manipulation and use of
associativity in the presentation layer. The zoom mechanism
then works simply by making a sub-proof initially contain the
sub-expression that was selected by the user.

V. ADVANCING A PROOF

A. Unification

The most used algorithm to generate next steps for a proof
is unification. The standard unification algorithm is used, with
the exception that only the law will have variables that can
be unified with sub-expressions of the focus. We differentiate
variables and constants by universally quantifying variables.
For example, having the law ∀〈x : int → x ≥ 4 ⇒ x > pi〉
the unifier would attempt to unify x ≥ 4 ⇒ x > pi with the
focus, treating only x as a variable but pi as a constant. This
both provides a form for laws that is fully formal, and allows
Netty to distinguish variables from constants. In addition, if
an expression matches a law completely, then one of the
suggestions given is>. Similarly, if the focus is> then all laws
match. In addition, variables that are introduced in local scopes
differ from each other even if they have the same identifier. In
the one-point law ∃〈v : D → v = a ∧ fv〉 = 〈v : D → fv〉 a
the v on the left side is a different variable than the v on the
right side, and can hence be unified with different expressions.

Several law files can be used in Netty; these are plain-
text files which are read and parsed by Netty. They can be
created, deleted and modified by using any text editor. The
laws themselves are simply expressions.

Every line in a proof has some justification at its right
hand side (or between lines if more space is needed). This
justification is usually the application of some law, and hence it
is the name of the law that was applied. In addition, sometimes
there are steps that were not justified by a law, or where the
type checker could not determine if the focus was of the right

3

COMPUTATION TOOLS 2011 : The Second International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-159-5

                             9 / 44



type for the law. In these cases, we have a warning symbol,
indicating that a certain step is unchecked.

We have the Law Query display mechanism to show a user
how the next expression came about (that is, to demonstrate
unification). It can also be used to illustrate how the unification
algorithm works; for example, suppose somewhere in a proof,
we have the two lines:

x ∧ y ⇒ (y ∨ z ⇒ (z ⇒ x)) portation
= x ∧ y ∧ (y ∨ z)⇒ (z ⇒ x)

A click and hold will replace those lines in place by:

a ⇒ ( b ⇒ c ) portation
= a ∧ b ⇒ c

The fully formal law is:

∀〈a, b, c : bool→ (a ∧ b⇒ c) = (a⇒ (b⇒ c))〉

The Law Query shows the correspondence (unification) be-
tween the variables of the law body and subexpression in the
proof.

Occasionally one side of a law matches the focus, and the
other side of the law has unconstrained variables. Suppose
we have 0 as the focus. Then the right side of the law
x − x = 0 would match it, and the resulting suggestion
would be = x − x, leaving x unconstrained [7]. We can
have an arbitrary expression placed instead of x, and we
cannot generate all possible suggestions for it. Instead, for
each unconstrained variable Netty has a dialog box in which
a user can type. What is typed in one box for a given variable
is inserted into all boxes for that variable, so that the user only
has to type it in once.

B. Context

Context is a bunch of local laws in a proof. The idea of
context is to be able to make use of local assumptions and
to allow the user to only worry about the current expression.
At the top-level proof we have no local laws except for the
ones the user loaded from law files (discussed in Section V-E).
Zooming into subexpressions adds context, and zooming out
removes them. This implies that subproofs inherit context from
their parent proofs. Context expressions are used exactly like
laws, and hence suggestions are generated from them in the
exact same manner. The mechanism of context removes the
need for any explicit declaration of assumptions, since they can
simply be added as an antecedent to the top-level expression.
Here are some examples of context rules [6]:
• From a ∧ b , if we zoom in on a , we gain context b .
• From a ∨ b , if we zoom in on a , we gain context ¬b .
• From a⇒ b , if we zoom in on a , we gain context ¬b .
• From a⇒ b , if we zoom in on b , we gain context a .
• From if a then b else c fi , if we zoom in on a , we

gain context b 6= c .

• From if a then b else c fi , if we zoom in on b , we
gain context a .

• From if a then b else c fi , if we zoom in on c , we
gain context ¬a .

• From 〈var : domain → body〉, if we zoom in on body,
we gain context var : domain

To understand the context rules, consider the first one. If
we assume b when we zoom into a and b turns out to be true,
then we made the right choice. However, if b turns out to be
false, there is no harm done in any change to a that assumed
b, since the value of the entire expression remains the same
(false). Similarly, in the body of a function we can assume
var:domain, since a function must be applied to an element
of its domain.

Internally there is a stack of lists that keeps track of context;
we add a list of expressions to the context pane on a zoom-in
if a context rule is satisfied, and we pop a list on a zoom-out.
A zoom-in can add more than one expression to the current
context, since t he context expressions are then broken down;
each conjunct is gained as a separate law, and if the expression
gained is a negation, we push it down the expression tree and
perform a deep negation.

C. Scope

Expressions can contain functions, which declare variables.
A function has the form 〈var : domain → body〉. A user
can zoom into the body similarly to a zoom on any other
expression. Any mention of var within the function scope
refers to the locally declared var, which is different than
any other variable outside the scope with the same name.
When we zoom into the scope we might already have in the
current context expressions that include var. However, since
it is really not the same variable, such expressions cannot be
used inside the scope. Netty displays such unusable context
expressions at the bottom of the context list in grey. This is to
indicate that although we have not lost the context, it cannot
be used at present.

The type of variables is gained from their declaration within
a scope. If for example we want to prove ¬a⇒ (¬b⇒ ¬a),
we need to start with 〈a, b : bool→ ¬a⇒ (¬b⇒ ¬a)〉, which
gives the context of a : bool and b : bool when we zoom into
the function body. This way we maintain full formality and
give information to the type-checker.

D. Type Checking

The type checker is currently very basic. Literals are given
types when the expression is parsed, and variables are given
a type if they are declared through a function scope to have
a certain type. In addition, the type checker can be invoked
with a list of context expressions. In that case the type checker
attempts to find the type for any variables whose type has not
yet been determined. Functions can have multiple operands
and resulting types, which are read in through a configuration
file. For example, the type of ∧ might be bool→ bool→ bool.
If both operands are of type bool, then the type checker con-
cludes that the type of the expression is bool. The reason that
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functions can have many types is both to allow overloading of
functions and to allow greater freedom of theory; this method
allows users to define a theory simply through its axioms.

E. Custom Suggestions

The most common way to proceed with a proof is to pick a
suggestion by clicking on one from the suggestion pane. Most
of the suggestions there are a result of unification with a law.
In addition to laws, we use programs to generate suggestions.
For example, it would be rather tedious to prove that 5+4 = 9
using only the construction axiom of natural numbers. Instead
we use a program that performs addition and outputs = 9 as a
suggestion to 5+ 4. From the user’s perspective there is little
difference, since the suggestions and justifications appear in
the exact same way.

Custom programs can make use of the available context, law
and current expression to generate suggestions. For example,
an assignment statement such as x:=e means that x is assigned
e, but every other variable in the state space remains the same.
If x and y are state variables, x:=e = x′=e ∧ y′=y. However,
in this theory the state space is not explicitly stated in the
assignment, but would be available in the context since state
variables need to be declared. The custom suggestion generator
searches the context and laws for all state variable declarations
and outputs a suggestion. In a sense, custom programs are the
equivalent of tactics in other provers, since they provide a
means other than unification to proceed with a proof.

There is one type of suggestion that is special: function
application. If we have 〈v : d → b〉 x as the focus, the
suggestion given is the result of applying the function to its
argument. Function application is not done by unification but
by a program, and hence it appears in the same manner as
a suggestion for addition. The difference is that in order to
apply a function to an argument it must be in the domain of
the function. For trivial checks, such as 1 : nat or a : nat
where we have the type of a in context, we have a simple
type checker to perform that check. However, in Netty the
concept of type is more general: the type of a variable is just
some bunch that the variable is an element or sub-bunch of [6].
This means that with the added power of this theory comes
the burden of non-trivial type checking. This is resolved in the
Logical Gaps and Direct Entry section.

F. Logical Gaps and Direct Entry

Direct entry is provided through a dialog box below the
current line which allows a user to type the next line of the
proof. This allows a proof to proceed when a part of it is still
unknown or there is no law for it yet. Proofs in Netty are
not required to be completely formal at all stages, and steps
without formal justification are marked with a warning sign to
indicate a possible logical gap in the proof. A user can return
to the unsafe line at any time to complete the proof.

Another method of introducing a logical gap is where the
type-checker for function application cannot determine if the
operands are of the right type. In that case we have a subproof
between the previous line and the focus that requires the user

to prove the operands are of the right type. For example, if
the function application in figure 5 was done somewhere in a
proof, the three dots indicate the need to complete a subproof.

Fig. 5. Type Proof

This kind of subproof is different in that it does not result
from zooming into a subexpression. It can be viewed as a
lemma proved in context. A similar gap in the proof would
happen if we were to apply a law where the type of the
operands is unclear. For the standard types, such as bool and
nat the type checker resolves almost all such problems. It is
only for complex types like lists where such a burden of proof
is necessary, as it might be non-trivial.

VI. PROGRAM REFINEMENT

Program refinement is done in the exact same manner as
any other proof using the program theory described in [6].
In the following example the task is to write a program that
cubes a number n using only addition, subtraction, and test
for zero. We will use two additional state variable x and y.
The initial specification is x′ = n3.

Fig. 6. Refinement

In Figure 6, we see an example of steps that are not fully
formal. Netty allows hiding lines, which might be used when
certain lines are deemed obvious in the proof. Lines 3 and 5 are
the results of either direct entry, line hiding, or a combination
of the two. If any line in the hidden or directly entered lines
is unsafe, the resulting line will have a warning symbol as
a justification. Allowing unsafe lines allows the user to take
larger steps in refinement and then return to fill in the gaps.
The resulting program without the proof, which we call cube,
is:
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procedure cube is

if x = 0 then x := 0. y := 0

else n := n− 1. cube. n := n+ 1.

x := x+ y + y + y − n− n− n− 2.

y := y + n+ n− 1

fi

As in the first example, the only necessary actions are a
combination of applying laws to change the focus and zooming
in on a subexpression to refine. Once all subexpressions have
been refined to a program the user will have refined the entire
program. The benefit that the zoom mechanism provides is that
it allows a user to safely ignore any other subexpression, while
having full use of all the local laws in the current context. For
example, in order to perform assignments Netty must know
all of the state variables. This information is obtained simply
by examining the context laws; if we have in context x : nat
and x′ : nat, Netty will conclude that x is a state variable of
type nat.

VII. CONCLUSION AND FUTURE WORK

Netty has been designed to make proving in the cal-
culational style easy, and we incorporate programming by
refinement smoothly as a special case. A lot of attention
has been paid to the user interface and ease of use. All
methods of proceeding with a proof have been delegated to
the generation of next step suggestions, while providing the
user with a convenient method of utilizing local assumptions
and monotonicity.

Netty has been implemented in Java, using standard GUI
libraries such as swing. We have not yet done any empirical
studies to test the usability and effectiveness of Netty. We plan
to test the effectiveness of the tool in a fourth-year course in
formal methods and in a circuit design course.

Netty is powerful enough to include program theory such
as the one in [6]. Instead of having to translate the code
into another language, it would be desirable to execute it
directly. We currently intend to use Scheme to implement the
execution of expressions that have been refined to a program.
It would also be desirable to advance the capabilities of the
type-checker. Improvements would include the accommoda-
tion of union-types, and checking some non-trivial expression
equality. Currently Netty has a concrete grammar that restricts
the available theories. It would be desirable to allow the
user complete freedom of theory, including how operators are
defined.

Currently, Netty presents suggestions simply in the order
that laws are entered in a law file. Ideally, suggestions should
be ordered with the most likely steps at the top of the list.
In addition, suggestions can be extended to patterns of steps.
There are several benefits to this such as allowing faster
proving and a more intuitive progression through the proof
while maintaining full formality. This could be absolutely in-
valuable to learning. The implementation of this sort of pattern

detection will likely involve a machine learning algorithm.
Currently the most suitable kinds of techniques appear to be
reinforcement learning techniques. We would need to use data
from our empirical studies as training data for the algorithm.
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Abstract—Spatio-temporal models have the potential to rep-
resent a wide variety of dynamic behaviour such as the growth
of bacteria, the dispersion of a pollutant or the changing spatial
patterns in house prices. Classical methods for the simulation
of such behaviours suffer from large computational demands
due to their high dimensionality. Recent advances in spatio-
temporal modelling have proposed a method based on a state-
space representation of the spatio-temporal integro-difference
equation. Although the dimension reduction obtained when
using this model is significant, it is frequently not sufficient
for online computation or rapid simulation. Thus this model
is revisited in this work and a method for further dimension
reduction based on a balanced realization of the state-space
model is developed. The results will show that the computa-
tional cost reduction obtained is significant at the expense of
a minor loss in accuracy.

Keywords-spatio-temporal simulation, balanced model reduc-
tion, integro-difference equation.

I. INTRODUCTION

Various natural phenomena in a wide spectrum of scien-
tific disciplines exhibit complex interactions over both space
and time. These interactions are particularly common in
biology, ecology, meteorology, epidemiology, physics, en-
vironmental science and economics. Broad ranging methods
have been used to describe spatio-temporal behaviour. For
example, in physics, reaction-diffusion processes have been
successfully modelled via Coupled Map Lattices (CML)
with parameters estimated directly from data [1], [2]. Geo-
statistical spatio-temporal models have also been estimated
from data in both ecological applications such as the moni-
toring of pollution [3] and in meteorology for, among others,
the modelling for rainfall [4] and wind behaviour [5], [6]. In
epidemiology, Auto-Regressive Moving-Average (ARMA)
models have been used to describe the diffusion of fowl-
pest diseases [7] while hierarchical Bayesian models have
been used to analyze geographic disease rates [8].

A problem common to most spatio-temporal models is
their usually high dimensionality leading to large com-
putational demands for simulation and prediction. Certain
methods suffer from further limitations such as the need of
CML to have data measured on a regular grid; an impractical
condition in applications such as meteorology and epidemi-
ology. Moreover, CMLs also require some knowledge of

the natural laws involved to propose an adequate model
structure. This knowledge is not always at hand when
modelling complex behaviour common for ecological or
meteorological applications. Finally, even when measure-
ments are taken on a regular grid, it is often required to
infer estimates at other locations among the measurement
sites. Unfortunately, most modelling strategies do not pro-
vide efficient and rigorous methods to perform such spatial
interpolations.

A promising mathematical description of spatio-temporal
behaviour that has the potential to overcome or minimize the
effect of these limitations is the Integro-Difference Equation
(IDE) [9], [10]. In this representation, the spatio-temporal
dynamics are governed by a convolution integral in space
and a difference equation in time, with the spatio-temporal
dynamics dictated by a convolution kernel. In some recently
proposed representations, the evolving field modelled by the
IDE is decomposed into a set of weighted basis functions
also used to decompose the convolution kernel [11], [12].
These decompositions allow the approximate representation
of the IDE by a finite dimension state-space model. This
framework has the advantage of decoupling the number
of states from observation locations with the potential of
overcoming the dimensionality issues hampering various
other models. Moreover, since in the proposed methods the
convolution kernel is completely estimated from data, no
prior knowledge of the natural laws involved is required.
Finally, since the spatio-temporal behaviour is represented
by a basis function decomposition, spatial interpolation is
both computationally efficient and mathematically sound.

Other recent additions to this IDE-based spatio-temporal
model have proposed a method based on spectral analysis
to identifying an adequate number of basis functions to
represent some measured behaviour [13], [14]. Nevertheless,
the models obtained may still suffer from large computa-
tional demands when the spatial bandwidth and/or the spatial
domain under investigation are large. Thus in this work a
method from systems theory is used to further reduce the
dimensionality of the model obtained. The errors introduced
by this order reduction procedure will be given analytically
and shown experimentally.

The remainder of this paper is organised as follows.
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In Section II the state-space representation of the IDE is
presented, followed by the dimension reduction procedure
and the errors introduced in Section III. Section IV expands
on the advantages of the proposed method based on a
synthetic example. Finally, Section V gives some concluding
remarks and possible future enhancements.

II. STATE-SPACE REPRESENTATION OF THE IDE

Consider the spatially continuous, temporally discrete
spatio-temporal process z(s, t) ∈ R : s ∈ S ⊂ Rn, t ∈ Z+

where n = {1, 2, 3, . . .}, S is a fixed spatial domain and s
and t are spatial and temporal indexes, respectively.

Definition 1. The temporally Markovian, spatially homoge-
neous, time invariant, Gaussian spatio-temporal IDE is given
by

z(s, t) =
∫
S
k(s− r)z(r, t− 1) d r +η(s, t) (1)

where k(s− r) : Rn → R is a spatially homogeneous
convolution kernel and η(s, t) is a zero mean stationary
Gaussian noise process with covariance Ση given by

Ση = COV[z(s, t), z(s +s, t+ t)] =

{
λ(s) if t = 0
0 otherwise

(2)

Remarks.
1) The spatio-temporal dynamics of the system are gov-

erned by the shape of the convolution kernel. The choice
on the space of the kernel is dictated by the process un-
der investigation; for example, simple reaction-diffusion
processes can be modelled by Gaussian kernels [9].

2) Although a spatially homogenous, time-invariant kernel
will be considered here, heterogenous, time-varying
kernels can easily be incorporated in the representation
as shown in [11].

3) The temporal dynamics are here limited to first order
Markovian, this assumption can be lifted by including
higher order terms with different convolution kernels.

The stochastic process z(s, t) is observed via a number
of identical noisy sensors located at {si, i = 1, 2, . . . , ny}
to obtain the data-set Y = {yt, t = 1, 2, . . . , T} where
yt = [y(s1, t) y(s2, t) . . . y(sny , t)]

>. Each sensor can be
characterized by the spatial convolution

y(si, t) =
∫
S
h(si− r)z(r, t)d r +v(t) (3)

where h(si− r) is the spatial response of the sensors used
and v(t) is a zero mean white Gaussian noise process
uncorrelated with η(s, t).

The direct computational representation of the stochastic
process z(s, t) is intractable due to the continuous nature
of the spatial domain. To overcome this problem, [11],
[12] have suggested a method based on basis function

decompositions of the stochastic process, the convolution
kernel, the spatial response of the sensor and the noise
covariance to obtain an approximate discrete state-space
representation of the IDE. In these methods, the state-
space dimension is given by the number of basis functions
used to decompose the dynamic field. In [13] a method
based on spectral analysis and multi-dimensional extensions
of Shannon sampling theorem have been used to obtain
an initial estimate of the number, position and parameters
of the basis functions used for the decomposition. Joint
estimation of the stochastic process and the convolution
kernel from noisy data can then be performed by a variety of
methods such as the dual Kalman filter [15], the Expectation
Maximization (EM) algorithm [16] or in a Bayesian setting,
by a 2-stage Gibbs sampler [17].

Such a state-space representation of the IDE requires that
the Assumptions 1 and 2 are satisfied.

Assumption 1 (Spatial Low-Pass Response). The spatio-
temporal process z(s, t) must exhibit a spectral low-pass
behaviours, that is:

Z(ν, t) ≈ 0 ∀ t, ν /∈ V (4)

where Z(ν, t) is the Fourier transforms of z(s, t) and V =
[0, νc]n, with νc being the spatial cut-off frequency.

Assumption 2 (Spatial Semi-Compact Support). The spatio-
temporal process z(s, t) must be semi-compactly supported,
that is:

z(s, t) ≈ 0 ∀ t, s /∈ S . (5)

Remarks.
1) Assumption 1 implies that the spatio-temporal process

must exhibit some spatial smoothness. Such a condition
is generally satisfied by most practical processes.

2) Assumption 2 implies that the spatial domain under
observation must be finite, again a condition that is
usually satisfied in most spatio-temporal studies.

Using the basis function approximations

z(s, t) ≈
nx∑
j=1

〈z(s, t), φxj (s)〉φxj (s) = x(t)> φx(s) (6)

k(s) ≈
nθ∑
j=1

〈k(s), φθj (s)〉φθj (s) = θ> φθ(s) (7)

h(s) ≈
nϑ∑
j=1

〈h(s), φϑj (s)〉φϑj (s) = ϑ> φϑ(s) (8)

λ(s) ≈
n%∑
j=1

〈λ(s), φ%j (s)〉φ%j (s) = %> φ%(s) (9)
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where

x(t) = [〈z(s, t), φx1(s)〉 . . . 〈x(s, t), φxnx (s)〉]>

θ = [〈k(s), φθ1(s)〉 . . . 〈k(s), φθnθ (s)〉]>

ϑ = [〈h(s), φϑ1(s)〉 . . . 〈h(s), φϑnϑ (s)〉]>

% = [〈λ, (s)φ%1(s)〉 . . . 〈λ(s), φ%n% (s)〉]>

φi(s) = [φi1(s) . . . φini (s)]>

(10)

and φi(s) are some chosen basis functions, an approximate
state-space representation of the IDE with known error
bounds is given by Theorem 1.

Theorem 1. Using the spatially discrete representations (6)
to (9) with Assumptions 1 and 2 satisfied, the stochastic
IDE of Definition 1 and the observation equation (3) can be
approximated by the finite dimension state-space model

x(t+ 1) = A(θ) x(t) + w(t) (11)

and
y(t) = C(ϑ) x(t) + v(t) (12)

where
A(θ) = Ψ -1

∫
S
φx(s)θ> Ξθ(s)d s (13)

Ψ =
∫
S
φx(s)φx(s)>d s (14)

Ξθ(s) =
∫
S
φθ(s− r)φx(r)>d r (15)

C(ϑ) =

 ϑ> Ξϑ(s1)
...

ϑ> Ξϑ(sny )


Ξϑ(s) =

∫
S
φϑ(s− r)φx(r)>d r (16)

w(t) ∼ N (0,Σw) (17)

with
Σw = Ψ−1

∫
S
φ%(s)%(s)>Ξ%(s)d s Ψ−> (18)

Ξ%(s) =
∫
S
φ%(s− r)φx(r)>d r (19)

and v(t) ∼ N (0,Σv) with Σv = σvIny ; with errors in the
approximation of z(s, t) given by

εz = |z(s, t)−x(t)> φx(s)| 6 ε′z

∫
Rn:ν>νc

Φx(ν)dν (20)

where
ε′z = sup

Rn:ν>νc

|Z(ν)Φ−1
x (ν)| (21)

Remarks.
1) Proof of Theorem 1 is given in [13].

2) The given error bounds assume that a closed form
solution for (14), (15), (16) and (19) exist. Such a
condition is satisfied by Gaussian basis functions.

3) The state evolution equation (11) of the state-space
model of Theorem 1 can be rewritten as

x(t+ 1) = A(θ) x(t) +Bẁ(t) (22)

where ẁ(t) is a zero-mean Gaussian white noise pro-
cess with covariance Σẁ = Inx and B being the
Cholesky decomposition of Σw, that is BB∗ = Σw
where B∗ denotes the conjugate transpose of B.

The computation cost of simulating a spatio-temporal
process using this model depends on the state-space model
dimension. Based on Theorem 1, good approximations can
only be obtained if the full spatial extent and the full band-
width are considered. This often results in computationally
expensive models. A choice to limit the system bandwidth
can be taken, but this results in the spatial smoothing of the
field estimates and predictions. As an alternative, Section III
presents a dimension reduction method based on a balanced
realization of the state-space model.

III. DIMENSION REDUCTION

Balanced reduction methods of state-space models rely on
two steps:

1) The original state-space model is first transformed into
a balanced realisation with the states most effected by
noise being also the most observable states.

2) The states that are less effected by noise in the balanced
realisation (and therefore also less observable) are re-
moved to obtain an approximate truncated state-space
model.

The initial transformation into a balanced realization
requires that all states of the state-space model are both
perturbable and observable. This allows for a linear transfor-
mation of the state-space model into a balanced realization.
This balanced model can then be truncated to retain only
the perturbable and observable states. The perturbability and
observability requirements are ensured if conditions 1 and 2
are satisfied.

Condition 1 (Perturbability). All the states of the state-space
model of Theorem 1 are perturbable iff, the matrix

P = [B AB A2B . . . Anx−1B] (23)

is of full rank.

Condition 2 (Observability). All the states of the state-space
model of Theorem 1 are observable iff, the matrix

O = [C CA CA2 . . . CAnx−1]> (24)

is of full rank.

Remarks.
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1) For the state-space model of the IDE of Theorem 1,
conditions 1 and 2 are easily satisfied by a well spread
arrangement of both the sensors and basis functions
used to represent the dynamic field. Such an arrange-
ment requires that no two identical sensors or basis
functions are positioned at the same spatial location.

Given that these conditions are satisfied, a balance realiza-
tion of the state-space model of the IDE is given by Lemma
1.

Lemma 1 (Balance Realization). If conditions 1 and 2 are
satisfied, then a balance realization of the states space model
of Theorem 1 is given by:

x̆(t+ 1) = Ăx̆(t) + B̆ẁ(t) (25)

and the observation equation

y(t) = C̆x̆(t) + v(t) (26)

where x̆(t) = T x(t), Ă = TAT -1, B̆ = TB, C̆ = CT -1

and T ∈ Rnx ×Rnx is a linear transformation such that the
matrices P and O of the transformed model satisfy P>P =
O>O = Υ, where

Υ = diag(σ1, σ2 . . . σny ) (27)

and where {σi, i = 1, 2, . . .} are the Hankel singular values
of the state-space model with σ1 > σ2 > σ3 . . ..

Remarks.
1) Proof of Lemma 1 is given for general state-space

models in [19].
2) Conditions 1 and 2 ensure that the linear transforma-

tion T exists.
3) Standard matrix computation packages provide accu-

rate methods for obtaining the transformation matrix T .
These methods are mostly based on the contragradient
algorithm [18].

A reduced order model with known error bounds based
on the balanced realization of Lemma 1 is given in Theorem
2

Theorem 2. Using the balanced state-space model of
Lemma 1, an approximate reduced order state-space model
is given by:

x̃(t+ 1) = Ãx̃(t) + B̃w̃(t) (28)

and
y(t) = C̃x̃(t) + v(t) (29)

where x̆(t) = [x̃(t)> . . .]>, ẁ(t) = [w̃(t)> . . .]>, with
x̃(t), w̃(t) ∈ Rnr and

Ă =

(
Ã . . .
...

. . .

)
(30)

B̆ =

(
B̃ . . .
...

. . .

)
(31)

C̆ =
(
C̃ . . .

)
(32)

where Ã ∈ Rnr ×Rnr , B̃ ∈ Rnr ×Rnr and C̃ ∈
Rny ×Rnr , with a maximum error between the impulse
responses of the two systems denoted by ε and given by

ε = 2(σn+1 + σn+2 + . . .) (33)

Remarks.
1) Proof of Theorem 2 is given for general state-space

models in [19].
2) As nr → nx, the maximum error bound is reduced at

the cost of a higher dimensional model and thus higher
computational demands.

IV. EXAMPLE

To illustrate the advantages and assess the error introduced
by the proposed model reduction procedure, a synthetic
data-set was generated by the IDE of Definition 1 and
the observation process (3) using numerical integration. All
functions and parameters of the IDE and the observation
equation are as given in Table I.

Function or parameter Simulation Value
S ∈ [−6, 6]
t ∈ [0, 10]

k(s) = 0.35 exp(−s2) + 0.2 exp(−(s− 1)2)
λ(s) = δ(s)

z(s, 0) = 1√
4π

exp(
−(s)2

4
)

h(s) = 1
σ
√

2π
exp(− 1

2
s2

0.7
)

σ2
v = 0.01
ny = 25 (equally spaced)

Table I
IDE AND OBSERVATION EQUATION FUNCTIONS AND PARAMETERS.

Given the functions and parameters of Table I, a process
realisation generated by the IDE is shown in Figures 1.

A first approximate state-space representation of the IDE
as given in Theorem 1 is obtained. The state-space and
decomposition parameters chosen are as given in Table II.

Function or Parameter Simulation Value
nx = 13

φx(s) = exp
`
− s

0.4

´
basis locations for z(s, t) = {−6, − 5, . . . , 6}

Table II
STATE-SPACE MODEL ORDER, BASIS FUNCTIONS AND BASIS

LOCATIONS.

Based on this representation, the stochastic field shown
in Figure 1 is approximated by its discrete basis function
reconstruction ẑ1(s, t) shown in Figure 2.
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Figure 1. Typical spatio-temporal process z(s, t) generated by first order
numerical integration.

Figure 2. Approximate reconstructed spatio-temporal process ẑ1(s, t)
using the discretized model.

Note that the spatially discrete model has a state-space
dimension of nx = 13. Thus its system behaviour is captured
by a 13 × 13 matrix which is used in all the computa-
tions. Given this state-space representation and the model
reduction method of Theorem 2, a reduced order model
was obtained with all balanced states with Hankel singular
values σi < 0.1 removed. This reduced order model has
a state-space dimension of nx = 6 and therefore obtains a
significant reduction in computational costs since operations
are now performed on 6 × 6 matrices. This reduced order
model generates the approximate field ẑ2(s, t) shown in
Figure 3.

The error field e(s, t) showing the error in ẑ2(s, t) intro-
duced by the model reduction procedure when compared to
the discretized model field ẑ1(s, t) is shown in Figure 4. This
error field indicates that the model reduction procedure has
eliminated some higher frequency components but still pro-
duced a reasonable approximation to the original stochastic
field.

The Root Mean Squared Error (RMSE) between ẑ1(s, t)

Figure 3. Approximate reconstructed spatio-temporal process ẑ2(s, t)
using the reduced order model.

Figure 4. Error field e(s, t) between ẑ1(s, t) and ẑ2(s, t).

and ẑ2(s, t) for the example being considered is 0.051. To
verify the repeatability of this result, a Monte Carlo run of
100 different stochastic realizations was performed obtaining
the RMSE spread shown in Figure 5, with a mean and
standard deviation given by 0.0498± 0.0048.

Figure 5. Histogram of RMSE values.

The histogram of Figure 5, indicates the excellent re-

11

COMPUTATION TOOLS 2011 : The Second International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-159-5

                            17 / 44



peatability of the results obtained. Moreover, an error of
approximately 0.05 is equivalent to 8% of the average
measured observation; a remarkable accuracy considering
the 54% reduction in the state-space dimension.

V. CONCLUSION

Mathematical models of spatio-temporal phenomena are
continuously gaining in popularity in various scientific fields.
Such models are fundamental for mathematical simula-
tion and therefore prediction of spatio-temporal behaviour.
However, these models are frequently severely hampered
by the high computation demands of most spatio-temporal
simulation methods. Thus in this paper a simulation method
based on balanced model reduction of an IDE-based spatio-
temporal model is given. The simulation results show the
ability of the proposed method to represent spatio-temporal
behaviour accurately with significant reductions in the com-
putational costs.

Further work is currently being carried out on this com-
putational method to enhance its applicability to varied
applications. While a non-linear growth term, as required
in biomedical and ecological applications, has already been
included [14], heterogeneous and time-varying implemen-
tations have still to be developed. Moreover, applying this
computational method to various engineering applications,
such as fluid dynamics and mechanical structure analysis,
requires the inclusion of boundary conditions. Such addi-
tions are also being investigated.
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Abstract—We describe a model of Field Programmable Gate
Array based systems realised with the Stochastic Activity Net-
works formalism. The model can be used (i) to debug the
circuit design synthesised from the high level description of
the system, and (ii) to calculate the signal probabilities and
transition densities of the circuit design, which are parameters
that can be used for reliability analysis, power consumption
estimation and pseudo random testing. We validate the developed
model by reproducing the results presented in other studies for
some representative combinatorial circuits, and we explore the
applicability of the proposed model in the analysis of real-world
devices by analysing the actual implementation of a circuit for
the generation of Cyclic Redundancy Check codes.
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I. INTRODUCTION AND RELATED WORKS

Field Programmable Gate Array (FPGA) devices are widely
used components in many different application fields, includ-
ing safety-critical systems. Especially in embedded and mobile
applications, the assessment of such quality factors as power
consumption and reliability is of fundamental importance. It
has been shown that these factors may be estimated in terms
of signal probability [1], [2], [3], [4], that can be defined as
the fraction of clock cycles in which a given signal is high [5].
Another useful parameter is transition density, i.e., the fraction
of clock cycles in which a signal makes a transition [6].
Other applications of signal probabilities are soft error rate
estimation [7] and random testing [8]. Soft error rate is the
error rate due to Single Event Upsets, i.e., errors caused by
radiations, that are a major threat to system reliability. In
random testing, test patterns are generated at random to cover
as many as possible fault modes of the system. The statistical
distribution of the test patterns may be weighted according to
the input signal probabilities to optimise the coverage.

The computation of signal probabilities may rely on either
an analytical or a simulative approach. With analytical models,
exact values of signal probabilities can be computed, but
the computation is NP-hard in the general case [9], so it is
usually necessary to resort to heuristic approximations. With
a simulative approach, a model of the system is fed with inputs
whose values reflect the expected statistical properties, and the
simulated output signals are recorded and analysed to evaluate
the resulting properties.

In this paper, we present a model of FPGA circuit execution
that can be used to calculate the signal probabilities and

transition densities of a given FPGA design, starting from the
signal probabilities of the inputs. The model is based on the
formalism of Stochastic Activity Networks (SAN) [10] and it
has been developed with the Möbius tool [11].

In FPGA systems, a high-level design is implemented with
the configurable logic blocks made available by a given FPGA
chip. In order to attain a realistic model and satisfactory
accuracy of the analysis, the proposed model represents the
FPGA system at this implementation level.

The model is implemented by a simulator that takes as
input a description of the system to be simulated and a few
configuration parameters, including the signal probabilities of
the inputs, the number of simulated clock cycles etc. The
simulator generates input vectors according to the specified
signal probabilities of the inputs and the results are collected
and analysed using the features of the underlying Möbius
environment.

In the rest of this paper, the FPGA technology (Section II)
and the SAN formalism (Section III) are introduced, then
the formal model of FPGA circuit execution is presented
(Section IV) and a case study is shown as a proof of concept
(Section V). Conclusions and future work are in Section VI.

II. THE FPGA TECHNOLOGY

An FPGA is an array of programmable logic blocks, inter-
connected through a programmable routing architecture and
communicating with the output through programmable I/O
pads [12]. The programming of an FPGA device consists
in downloading a programming code, called bitstream, in its
configuration memory, that determines the hardware structure
of the system to be implemented in the FPGA, and thus the
functionality performed by the system.

The logic blocks may be simple combinatorial/sequential
functions, such as lookup tables, multiplexers and flip-flops, or
more complex structures such as memories, adders, and micro-
controllers. The routing architecture in an FPGA consists
of wires and programmable switches that form the desired
connections among logic blocks and I/O pads. Finally, the
I/O architecture is composed of I/O pads disposed along the
perimeter of the device, each one implementing one or more
communication standards.

An FPGA system is described at the Register-Transfer Level
(RTL) in terms of high-level registers and logic functions,
independent of their implementation on a particular device.
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An RTL specification is usually given in a hardware definition
language (HDL), such as VHDL or Verilog. At the netlist level,
a system is described in terms of its actual implementation,
targeted at a particular device and composed of the logic
blocks made available by the device, such as lookup tables
and flip-flops.

The implementation of an FPGA-based application involves
three main phases: (i) the RTL level design is specified with
schematics or with a textual description in a HDL; (ii) after an
FPGA chip has been selected, a chip-specific tool synthesises
the RTL description into a netlist, i.e., a textual description of
the network implementing the design; and (iii) the bitstream
is generated from the netlist.

III. THE SAN FORMALISM

Stochastic Activity Networks [10] are an extension of the
Petri Nets (PN). SANs are directed graphs with four disjoint
sets of nodes: places, input gates, output gates, and activi-
ties. The latter replace and extend the transitions of the PN
formalism. The topology of a SAN is defined by its input
and output gates and by two functions that map input gates
to activities and pairs (activity, case) (see below) to output
gates, respectively. Each input (output) gate has a set of input
(output) places.

Each SAN activity may be either instantaneous or timed.
Timed activities represent actions with a duration affecting
the performance of the modelled system, e.g., message trans-
mission time. The duration of each timed activity is expressed
via a time distribution function. Any instantaneous or timed
activity may have mutually exclusive outcomes, called cases,
chosen probabilistically according to the case distribution
of the activity. Cases can be used to model probabilistic
behaviours. An activity completes when its (possibly instanta-
neous) execution terminates.

As in PNs, the state of a SAN is defined by its marking, i.e.,
a function that, at each step of the net’s evolution, maps the
places to non-negative integers (called the number of tokens
of the place). SANs enable the user to specify any desired
enabling condition and firing rule for each activity. This is
accomplished by associating an enabling predicate and an
input function to each input gate, and an output function
to each output gate. The enabling predicate is a Boolean
function of the marking of the gate’s input places. The input
and output functions compute the next marking of the input
and output places, respectively, given their current marking.
If these predicates and functions are not specified for some
activity, the standard PN rules are assumed.

The evolution of a SAN, starting from a given marking µ,
may be described as follows: (i) The instantaneous activities
enabled in µ complete in some unspecified order; (ii) if no
instantaneous activities are enabled in µ, the enabled (timed)
activities become active; (iii) the completion times of each
active (timed) activity are computed stochastically, according
to the respective time distributions; the activity with the
earliest completion time is selected for completion; (iv) when
an activity (timed or not) completes, one of its cases is selected

according to the case distribution, and the next marking µ′ is
computed by evaluating the input and output functions; (v) if
an activity that was active in µ is no longer enabled in µ′, it
is removed from the set of active activities.

Graphically, places are drawn as circles, input (output)
gates as left-pointing (right-pointing) triangles, instantaneous
activities as narrow vertical bars, and timed activities as thick
vertical bars. Cases are drawn as small circles on the right
side of activities. Gates with default (standard PN) enabling
predicates and firing rules are not shown.

A. The Möbius Tool

Möbius [11] is a popular software tool that provides a com-
prehensive framework for model-based evaluation of system
dependability and performance. The Möbius tool introduces
shared variables and extended places as extensions to the SAN
formalism. Shared variables are global objects that can be used
to exchange information among modules. Extended places are
places whose marking is a complex data structure instead of a
non-negative integer. Enabling predicates and input and output
functions of the gates are specified as C++ code.

SAN models can be composed by means of Join and Rep
operators. Join is used to compose two or more SANs. Rep is a
special case of Join, and is used to construct a model consisting
of a number of replicas of a SAN. Models composed with Join
and Rep interact via place sharing.

Properties of interest are specified with reward functions. A
reward function specifies how to measure a property on the
basis of the SAN marking. There are two kinds of reward
functions: rate reward and impulse reward. Rate rewards
can be evaluated at any time instant. Impulse rewards are
associated with specific activities and they can be evaluated
only when the associated activity completes. Measurements
can be conducted at specific time instants, over periods of
time, or when the system reaches a steady state.

IV. DESCRIPTION OF THE MODEL

The model is split into a number of modules that interact
through place sharing. Each module identifies a different logi-
cal component of the FPGA: System Manager co-ordinates the
logical components; Input Vector models the signals applied
to the input pins; Combinatorial Logic models the memoryless
circuits; Sequential Logic models the storage elements.

The communication among modules reflects the logical
connections of the real FPGA components. The logical con-
nections are specified in a connectivity matrix, which is a
parameter of the model. This way, the logical connections are
not hardwired in the SAN models, and can be set up from a
text file generated with software tools, such as the Xilinx ISE
tool [13], on the basis of the specification of the FPGA.

The overall FPGA system model is shown in Figure 1. The
models of the logical components are represented with labelled
dark boxes, and their composition is obtained through the Join
and Rep operators. Each model, except System Manager, is
obtained by composing a number of replicas of customisable
template models. Each replica is uniquely identified by an
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Fig. 1. SAN model of the FPGA.

integer number. The co-ordination between System Manager
and replicas is accomplished through Execution Managers.

A. System Manager

The System Manager module orchestrates the activity of
the other modules of the system according to the following
steps: (i) an input vector, i.e., an n-tuple of the input signal
values, is applied to the input lines; (ii) the combinatorial
part of the system is executed; (iii) the clock tick arrives and
the sequential part of the system is executed. These steps are
repeated until all input vectors have been applied. Steps (ii)
and (iii) are repeated until a steady state is reached.

The SAN model of the System Manager is shown in Fig-
ure 2. The state of the modelled FPGA is given by the marking
of three shared places (input_lines, output_lines,
and internal_lines), which are vectors that encode the
value of the signals on the input, output, and internal lines of
the FPGA. Information on the occurrence of transitions on the
lines are also maintained in the model with the shared places
input_trans, output_trans, and internal_trans.
The state includes also two flags: steady_state_flag,
whose marking reports if the model has reached a steady
state; error_flag, whose marking reports if the model
reaches abnormal execution conditions, e.g., instability of the
combinatorial circuit. These flags can be used by analysts and
developers to check the consistency of the model specification
and to detect potential design problems in the FPGA.

The initial marking of System Manager is the fol-
lowing: places input_lines, output_lines, and
internal_lines are set according to an initial state of the
system; place signal_length contains a number of tokens
equal to the number of input vectors that will be applied; place
p0 contains one token; all other places hold zero tokens.

Initially, the instantaneous activity apply_inputs is en-
abled because p0 contains one token. When apply_inputs
completes, the application of an input vector is triggered by
activating module Input Vector (Section IV-B). The activa-
tion of the Input Vector module is obtained by moving the
token stored in p0 into the shared place sp0_0. When the
application of the input vector completes, module Input Vector
moves a token into sp1_1, and the instantaneous activity
executeCC of the System Manager becomes enabled.

When activity executeCC completes, the execution of
the combinatorial elements of the model starts by activating
module Combinatorial Logic (Section IV-C). The activation

of this module is obtained by moving the token stored in
sp1_1 into the shared place sp2_0. When the execution
of the combinatorial elements completes, the Combinatorial
Logic module moves a token into sp3_1, thus enabling the
timed activity executeSC of the System Manager.

When the timed activity executeSC completes, a clock
tick has arrived, and the execution of the sequential elements
starts by activating module Sequential Logic (the token stored
in sp3_1 is moved into sp4_0). When the execution of the
sequential elements completes, the Sequential Logic module
(Section IV-C) moves a token into sp5_1. If the system
has reached a steady state, a token is also moved into
steady_state_flag.

At this point, the instantaneous activity finalise is
enabled. When finalise completes, the marking of the
model is updated according to the following three cases: (i)
signal_length holds more than one token; in this case,
the marking of p0 is incremented by one; this marking triggers
the application of a new input vector; (ii) signal_length
holds zero tokens and the system state is not steady (i.e.,
steady_state_flag contains zero tokens); in this case,
a token is moved into sp1_1; this marking triggers a
new execution of the combinatorial and sequential parts
of the model; (iii) signal_length has zero tokens and
steady_state_flag has one token; in this case, the
system has reached the final steady state and the execution
terminates; a token is moved into p3 and no activity will be
further enabled in the model.

B. Input Vector

The Input Vector module applies an input vector to the input
lines. The elements of the input vector are generated according
to the signal probability of the corresponding signal. The total
number of input lines is a model parameter (Nin ).

The module consists of a manager sub-module, which co-
ordinates the concurrent execution of activities in the model,
and a number of customised template model replicas, each of
which applies an input value to an input line.

1) Execution Manager: This sub-module co-ordinates the
parallel execution of the Input Signal replicas. The SAN model
is shown in Figure 3(a).

In the model, all places initially contain zero tokens, except
the shared places that model the FPGA state (input_lines,
output_lines, and internal_lines); places sp0 and
sp1 coincide (through renaming in the Join operator) with
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Fig. 2. SAN Model of the System Manager.

(a) Execution Manager.

(b) Input Signal.

Fig. 3. Sub-modules of the Input Vector SAN model.

places sp0_0 and sp1_1 of System Manager, and are thus
shared between the two sub-modules. Places spA and spB are
shared with the Input Signal sub-modules; spA is a vector of
Nin Booleans; one token in position i encodes a true value
for the corresponding element, and triggers the i-th replica of
Input Signal.

Activity pe_start is enabled when System Manager
moves a token into sp0. When the activity completes, the
parallel execution of the Input Signal replicas starts: gate OG0
is executed, and Nin tokens are moved in the shared vector
spA (one token for each element of the vector). When the
parallel execution of the Input Signal replicas concludes, the
shared place spB contains Nin tokens, and the input gate
IG0 enables pe_end, which completes immediately. When
pe_end completes, all tokens stored in spB are removed,
and one token is moved into sp1 to signal System Manager
that the input lines have been updated with the input vector.

2) Input Signal: This sub-module models the application
of a signal value at an input line. The SAN model is shown in
Figure 3(b). We exploit the semantics of the case probabilities
to specify the signal value in terms of the probability of having
a logical zero or a logical one.

The Input Signal sub-module is replicated Nin times, in
order to have one sub-module instance for each input line.
Replicas have unique identifiers, which are used to associate
each replica to an input line.

All places of the model are initially empty, except
componentID, whose marking specifies the identifier of
the sub-module instance. Activity signal_value of the
sub-module with identifier i is enabled when the Execution
Manager moves a token in the i-th position of spA. When

(a) Iterative Execution Manager.

(b) Generic Component.

Fig. 4. Sub-modules of the Combinatorial and Sequential Logic SAN model.

signal_value of replica i completes, one of the two output
gates is executed to apply a signal value to input line i, and a
token is added to element i of spB.

C. Combinatorial and Sequential Logic

The Combinatorial Logic and the Sequential Logic modules
define the execution of the memoryless elements and the
storage elements, respectively, of the FPGA.

Similarly to Input Vector, both models consist of a manager
sub-module and a number of customised template model repli-
cas, each of which models the functionalities of an elementary
component in the FPGA (either a memoryless element or a
storage element).

1) Iterative Execution Manager: This sub-module co-
ordinates the parallel execution of the sub-module replicas.
This module is an iterative version of the Execution Manager
sub-module used in Input Vector. This iterative version is used
to repeatedly activate the parallel execution of the components
until either the modelled elements reach a steady state, or a
maximum number of iterations has been performed.

The SAN model of the Iterative Execution Manager is
shown in Figure 4(a). In the model, all places initially
contain zero tokens, except the shared places that model
the FPGA state (input_lines, output_lines, and
internal_lines), and max_iterations, whose mark-
ing specifies the maximum number of iterations needed to
complete the execution of the modelled elements. In the case
of combinatorial elements, the maximum number of iterations
depends on the interconnection among elements; in the case
of sequential elements, the number of iterations is always one.

We describe the Iterative Execution Manager in conjunc-
tion with the Combinatorial Elements module, as the same
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description applies also to the Sequential Elements module.
In the model of the Iterative Execution Manager, shared

places sp0 and sp1 coincide (through renaming in the Join
operator) with the shared places sp2_0 and sp3_1 of System
Manager, and are thus shared between the two submodules.
Places spA and spB are shared with the Combinatorial sub-
modules. Moving one token in position i of spA encodes
a true value for the element in position i, and triggers the
execution of the i-th replica of Input Signal. The total number
of combinatorial elements is a model parameter (Nc).

Activity pe_start is enabled when System Manager
moves a token into sp0 and max_iterations contains
at least one token. When the activity completes, the parallel
execution of the combinatorial elements starts: gate OG0 is
executed, the marking of max_iterations is decremented
by one, and Nc tokens are moved in the shared vector
spA (one token for each element of the vector). When the
parallel execution of the combinatorial elements concludes,
the shared place spB contains Nc tokens, and the input gate
IG0 enables pe_end, which completes immediately. When
pe_end completes, all tokens stored in spB are removed, and
one token is moved into sp1 to signal System Manager that
the execution of the combinatorial elements has completed.

2) Combinatorial and Sequential Elements: These ele-
ments are modelled through a customisable SAN model,
denominated Generic_Component (Figure 4(b)).

The set of combinatorial (sequential) elements is obtained
by replicating Nc (Ns) times the Generic Component model,
where Nc (Ns) is the total number of combinational (sequen-
tial) elements. Each replica has a unique identifier, used to
specify the functionality of each model instance.

All places of the model are initially empty, except
componentID, which specifies the replica identifier, and
input_lines, output_lines, and internal_lines,
representing the current system state. The instantaneous ac-
tivity execute of replica i is enabled when the Iterative
Execution Manager moves a token in the i-th position of spA.
When the execution activity of replica i completes, the
function specified in gate OG0 is executed, and a token is
added to spB.

V. ANALYSIS

This section presents the results obtained through the simu-
lation of the proposed SAN models using the Möbius [11] tool.
The goal of the presented analysis is two-fold: (i) to validate
the developed model for the FPGA, by reproducing the results
presented in other studies for some representative combinato-
rial circuits; (ii) to explore the applicability of the proposed
model in the analysis of real-world devices, by analysing
the actual implementation of a circuit for the generation of
Cyclic Redundancy Check (CRC) codes. CRC is a widely used
error-detection scheme used in data communication systems to
contrast communication failures due to the unreliable nature
of the physical links between devices. When data needs to be
reliably transmitted over an unreliable link, the sending device
includes a CRC field in the transmitted message; this way, the

Fig. 5. Example of combinatorial circuit used for validation.

Fig. 6. A circuit to generate CRC code (adapted from [15]).

receiving device can check if the received message is damaged
and, in such case, arrange for a message retransmission.

A. Validation of the Model

To validate our model, we considered the combinatorial
circuits presented in various related works and we checked that
we were able to reproduce the same results. Let us consider,
as a representative case, the combinatorial circuit of Figure 5,
which has a reconvergent fanout. The analytical results for
signal probability are reported in [14] (we show such results
on the upper side of the lines).

The signal probabilities computed with our model corre-
spond with those reported in [14]; specifically, after 10000
simulation runs, we obtained an average relative error of
2 · 10−4, never exceeding 6 · 10−4. This cross-validation
exercise reinforced our confidence in the correct definition of
the model.

B. Analysis of a Circuit for CRC generation

As a case study, we consider the FPGA implementation of
a circuit for the generation of IEEE 802.3 CRC codes [15]. A
simplified schematic of a 4-bit data bus circuit that generates
8-bit CRC codes is shown in Figure 6. In the figure, d is the 4-
bit data bus, init, calc, and d_valid are control signals,
and update is a combinatorial network that computes the
next state for the output register r0.

The Verilog code for the circuit, which is publicly available
from the Xilinx web site, was compiled into a netlist with the
Xilinx ISE tool [13]. The resulting netlist has 8 input signals,
12 output signals, 20 matching I/O buffers, 17 LUTs, and
19 flip-flops. We modelled the netlist according to the method
described in Section IV and we used the model to compute the
signal probabilities and transition densities of the signals on
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the internal lines of the circuit. The experiments have been set
up to reproduce the signal values during a CRC calculation:
the control pins load_init and reset are always low;
calc is always high; d_valid switches between high and
low levels at each clock cycle; input pins d[3:0] are high
with probability Pi, where i is the index of the input pin.

The measurements have been obtained as follows: (i) A
simulation run consists in applying a number nr of con-
secutive test vectors, where r identifies the run; the test
vectors elements are generated with a uniform probability
distribution, assuming independence between elements and
between vectors; (ii) for each signal i, we defined two reward
functions: pri, which returns, for each run r, the number of
clock cycles in which the i-th signal is high; tri, which returns,
in each run r, the number of clock cycles in which the signal
makes a transition. The signal probability Pri and transition
density Tri of signal i for run r are then computed by dividing
pri and tri, respectively, by nr.

We obtain a quantitative assessment of signal probability
and transition density for every line of the circuit. The number
of test vectors used for the experiment is nr = 48, which
corresponds to the length of an IEEE 802.3 address field.
The number of simulation runs needed to obtain a confidence
level of 95% for this circuit was between 5K and 10K. The
time needed to execute 1K simulation runs of the model on
a 2.67 GHz Intel Core i5 was about 2 minutes.

Some results are shown in Figure 7. The plots shown in the
figure report (on the y axis) the value of signal probability
and transition density of three internal lines connected to
multiplexer mux0 when varying (on the x axis) the signal
probability of the input lines d[3:0]. In order to simplify
the presentation of the results, in the experiments we imposed
that the signal probability varies identically on all input lines.

VI. CONCLUSIONS AND FUTURE WORK

A general model for the execution of FPGA circuits at
the netlist level has been defined with the SAN formalism
and a simulator has been developed with the Möbius tool.
The proposed model is suitable (i) to debug the actual FPGA
circuit design synthesised from the high level description
of the system and (ii) to compute signal probabilities and
transition densities of the design. It is worth noting that, even
if the analysis has focused on FPGA systems, the model is
applicable to general sequential circuits.

As further work, we intend to extend the model to study
system reliability with fault-injection techniques, and we in-
tend to exploit the capabilities of the SAN formalism to model
both independent or correlated faults.
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Abstract—This paper presents a formal diagram-based ver-
ification technique for multi-agent systems. A multi-agent
system is a collection of intelligent agents that interact with
each others and work together to achieve a goal. We view multi-
agent systems as parameterized systems which are systems
that consist of several similar processes whose number is
determined by an input parameter. The motivation of this
work is that by treating multi-agent systems as parameterized
systems, the specification and verification processes can be
done in the same way regardless of the number of agents
involved in the multi-agent systems. In this paper, we show how
predicate diagrams* can be used to represent the abstractions
of parameterized multi-agent systems described by specifica-
tions written in TLA*. The verification process is done by
integrating deduction verification and algorithmic techniques.
The correspondence between the original specification and
the diagram is established by non-temporal proof obligations;
whereas model checker SPIN is used to verify properties over
finite-state abstractions.

Keywords-multi-agent systems; parameterized systems; verifi-
cation; predicate diagrams*; TLA*; TLA+.

I. INTRODUCTION

A multi-agent system is understood as a collection of
intelligent agents, in this case are software or programs that
interact with each others and work together to achieve a
goal. Sycara [22] said that ”Agent-based systems technology
has generated lots of excitement in recent years because
of its promise as a new paradigm for conceptualizing,
designing, and implementing software systems. This promise
is particularly attractive for creating software that operates
in environments that are distributed and open, such as the
internet.” Because of this promise, many researches on
multi-agent systems have been conducted. Most of these
researches concentrate on the specification and verification
of the agents’ behaviors and the coordination among agents.

In this work, we focus on multi-agent systems which
consist of several similar processes. Having this property,
a multi-agent system can be viewed as a parameterized
system, which is a system that consists of several similar
processes whose number is determined by an input pa-
rameter. Many interesting systems are of this form. One
of them is mutual exclusion algorithms for an arbitrary
number of processes wanting to use a common resource.

The motivation of this work is that by treating multi-
agent systems as parameterized systems, the specification
and verification processes can be done more easily. Both
processes are expected to be done in the same way regardless
of the number of agents involved in the multi-agent systems.

Verification consists of establishing whether a system sat-
isfies some properties, that is, whether all possible behaviors
of the system are included in the properties specified. It is
common to classify the approaches to formal verification
into two groups, which are the deductive approach and
the algorithmic approach. The deductive approach is based
on theorem proving and typically reduces the proof of a
temporal property to a set of proofs of first-order verifica-
tion conditions. The most popular algorithmic verification
method is model checking [6], [7], [21]. Although this
method is fully automatic for finite-state systems, it suffers
from the so-called state-explosion problem.

The need for a more intuitive approach to verification
leads to the use of diagram-based formalisms. Basically, a
diagram is a graph whose nodes represent sets of system
states and whose edges represent the transition of the sys-
tems. Diagram-based approach combines the advantages of
deductive and algorithmic approach, which are the process
is goal-directed, incremental and can handle infinite-state
systems.

In the context of parameterized systems, to provide
methods for the uniform verification of such systems is a
challenging problem. One solution of this problem is to
treat or to represent a family of objects as a single syntactic
object. This technique is called parameterization.

In [20], a diagram-based verification for parameterized
systems is proposed. The diagrams, which are called pred-
icate diagrams*, are variants of diagrams proposed by
Cansell et al. In [5], they presented a class of diagrams called
predicate diagrams and showed how to use the diagrams in
formal verification. In [20], a little modification of the defini-
tion of the original predicate diagrams is made, in particular
the definition related to the actions. Instead of actions, the
new approach concentrates only on parameterized actions
which are actions of the form A(k). This form of actions is
usually used in modeling actions of a particular process in
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the system. TLA* [17] is used to formalize this approach
and TLA+ [13] style is used to write specifications.

This paper is structured as follows. Section II explains
briefly the formal specification of parameterized systems
in TLA*. Section III describes the definition and the use
of predicate diagrams* in the verification of parameterized
systems. The next section describes the aplication of this
approach on a case study which is block world problem.
Discussion about the result and some related works are given
in Section V. Finally, conclusion and future work will be
given in Section VI.

II. PAMETERIZED SYSTEMS SPECIFICATION

This work is restricted to a class of parameterized systems
that are interleaving and consist of a finitely, but arbitrarily,
discrete components. Let M denote a finite and non-empty
set of processes running in the system. A parameterized
system can be described as a formula of the form:

parSpec ≡ ∀k ∈ M : Init(k) ∧¤[Next(k)]v[k] ∧ L(k).

where
• Init is a state predicate describing the global initial

condition,
• Next(k) is an action characterizing the next-state re-

lation of a process k,
• v is a state function representing the variables of the

system and
• L(k) is a formula stating the liveness conditions ex-

pected from the process or subsystem k.

III. PREDICATE DIAGRAMS*

Basically, a predicate diagram* is a finite graph whose
nodes are labeled with sets of (possibly negated) predicates,
and whose edges are labeled with actions as well as op-
tional annotations. This section gives a brief description of
predicate diagrams*. For a detail explanation for predicate
diagrams*, the readers may consult [20].

A. Definition

It is assumed that the underlying assertion language
contains a finite set O of binary relation symbols ≺ that
are interpreted by well-founded orderings. For ≺∈ O, its
reflexive closure is denoted by ¹. We write O= to denote
the set of relation symbols ≺ and ¹ for ≺∈ O.

Definition 1. Assume given two finite sets P and A of
state predicates and parameterized action names. A predicate
diagram* G = (N, I, δ, o, ζ) over P and A consists of :
• a finite set N ⊆ 2P of nodes where P denotes the set

of literals formed by the predicates in P ,
• a finite set I ⊆ N of initial nodes,
• a family of δA where A ∈ A of relations δA⊆N×N ;

we also denote by δ the union of the relations δA, for

A ∈ A and write δ= to denote the reflexive closure of
the union of these relations,

• an edge labeling o that associates a finite set
{(t1, 1), . . . , (tk, k)}, of terms ti paired with a relation
≺i∈ O= with every edge (n,m) ∈ δ, and

• a mapping ζ : A → {NF,WF,SF} that associates
a fairness condition with every parameterized action
in A; the possible values represent no fairness, weak
fairness, and strong fairness.

A parameterized action A ∈ A can be taken at node n ∈
N iff (n,m) ∈ δA holds for some m ∈ N . The set of nodes
where A can be taken is denoted by En(A) .

A run of a predicate diagram* is a sequence of triples, ρ =
(s0, n0, A0)(s1, n1, A1) . . . where si is a state, ni ∈ N is a
node and Ai ∈ A ∪ {τ} (τ denotes stuttering transition). A
trace through a predicate diagram*, σ = s0s1 . . ., is defined
as the set of those behaviors that correspond to fair runs
satisfying the node and edge labels.

B. Verification using predicate diagrams*

The verification process using predicate diagrams* is done
in two steps. The first step is to find a predicate diagram*
that conforms to the system specification. Theorem 1 is used
to prove the conformance.

Theorem 1. Let G = (N, I, δ, o, ζ) be a predicate diagram*
over P and and A, let parSpec = Init ∧ ¤[∃k ∈ M :
Next(k)]v ∧ ∀k ∈ M : L(k) be a parameterized system.
If all the following conditions hold then G conforms to
parSpec:

1) For all n ∈ I , |= Init → n.
2) |≈ n ∧ [∃k ∈ M : Next(k)]v →

n′ ∨
∧

(m,A(k)):(n,m)∈δA(k)

〈∃k ∈ M : A(k)〉v ∧m′

3) For all n,m ∈ N and all (t,≺) ∈ o(n,m):
a) |≈ n ∧m′ ∧

∧

A(k):(n,m)∈δA(k)

〈∃k ∈ M : A(k)〉v → t′ ≺ t.

b) |≈ n ∧ [∃k ∈ M : Next(k)]v ∧ n′ → t′ ¹ t.
4) For every parameterized action A(k) ∈ A such that

ζ(A(k)) 6= NF:
a) If ζ(A(k)) = WF then

|= parSpec → WFv(∃k ∈ M : A(k)).
b) If ζ(A(k)) = SF then

|= parSpec → SFv(∃k ∈ M : A(k)).
c) |≈ n → ENABLED 〈∃k ∈ M : A(k)〉v holds

whenever n ∈ En(A(k)).
d) |≈ n ∧ 〈∃k ∈ M : A(k)〉v → m′ holds for all

n,m ∈ N such that (n,m) /∈ δA(k).

The second step of the verification process is to prove
that all traces through a predicate diagram* satisfy some
property F . In this step, a diagram predicate* is viewed as
a finite transition system. As a finite transition system, its
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Figure 1. An example of block world problem.

runs can be encoded in the input language of standard model
checkers such as SPIN [3].

IV. THE BLOCK WORLD : A CASE STUDY

A. Problem statement

One of the most famous planning domains in artificial
intelligence is the block world problem. This problem can
be briefly described as follows [23]: given a set of cubes
(blocks) on a table and two types of robots whose task is
to change the vertical stacks of blocks, from the initial con-
figuration into a new different configuration. It is assumed
that only one block may be moved at a time: it may either
be placed on the table or placed atop another block. Any
block that is, at a given time, under another block cannot
be moved. Each robot has different capability: one robot is
only capable of ’freeing’ one block from another, while the
other is only capable of ’moving’ one block and putting it
on top of another.

As illustration, Figure 1 shows an example of this prob-
lem. There are four blocks on the table. Each block is
labeled with a number. The left-hand side represents the
initial state of the world or initial configuration, whereas the
right-hand side represents the goal (the final configuration)
to be achieved.

B. Specification

From the problem statement, it is clear that the agents or
the robots in the block world problem are not homogeneous.
In order to model this problem as a parameterized system
as required, one simple solution is taken, which is: (1)
every robot is associated with an integer stating its type
and (2) the capabilities of every robot type’s are stated in a
separate action. This is done in order to give an impression
that the robots have different capabilities. Only now, an
additional condition or precondition is added to each action.
The homogeneity requirement is still guaranteed by using
the same Next action for each agent.

The specification for the block world problem is given
in Figure 2. In this specification we use a set of positive
integers, Blocks, to represent the collection of the blocks
and an array ag type to identify the agent’s type.

To represent the state or configuration of the blocks,
we use an array whose elements are pairs of non-negative
integers. Each element represents the condition of a block.

isDone ≡ CState = FState
move(k) ≡ ∧ ¬isDone ∧ ag type[k] = 1

∧ ∃x, y ∈ Blocks :
∧ x 6= y
∧CState[x] = 〈0, 0〉 ∧ CState[y][2] = 0
∧CState′ = [CState EXCEPT ![x][1] = y,

![y][2] = x]
free(k) ≡ ∧ ¬isDone ∧ ag type[k] = 2

∧ ∃x, y ∈ Blocks :
∧ x 6= y
∧CState[x][2] = 0 ∧ CState[y][2] = x
∧CState′ = [CState EXCEPT ![x] = 〈0, 0〉,

![y][2] = 0]
Init ≡ ∧ CState = IState ∧ CState 6= FState

∧ ∀k ∈ M : ag type[k] ∈ {1, 2}
Next(k) ≡ Move(k) ∨ Free(k)

L(k) ≡ WFv(Move(k))∧WFv(Free(k))
v ≡ 〈CState〉

BWorld ≡ ∧Init ∧¤[∃k ∈ M : Next(k)]v
∧∀k ∈ M : L(k)

Figure 2. Specification for Block World Problem.

For example, if the second element of the array is 〈3, 1〉
then it means that the block number 3 is under the block
number 2 and the block number 1 is on the block number 2.
A special number, 0, is used to represent table or nothing.
Thus, the initial configuration of Figure 1 is represented
by 〈〈0, 2〉, 〈〈1, 0〉, 〈0, 0〉, 〈0, 0〉〉 and the final configuration
is represented by 〈〈0, 3〉, 〈0, 0〉, 〈1, 0〉, 〈0, 0〉〉.

Three state arrays are used, which are IState, CState
and FState. Each array is used to represent initial, final,
and current configuration, respectively. Current configuration
records the last configuration of the system. The goal is
achieved whenever isDone is true, which means that the
current and the final configuration have the same values.

Action move(k) can be taken only by an agent whose
capability is to move a block from the table and put it
onto another block. Action free(k) can be taken only by an
agent whose capability is to free one block on the top of a
stack and put it on the table. Formula CState′ = [CState
EXCEPT![x][1] = y, ![y][2] = x] in move(k) action means
that except the values of CState[x] and CState[y], the
values of CState′ won’t change after the action is taken.

The values of Blocks, ag type, IState, and FState de-
pend on the problem instance at hand. If the number of boxes
and agent types change, we simply change Blocks and
ag types accordingly. This holds also for the capabilities
of the agents. We need only to add precondition to every
action as explained.

C. Verification

We take a problem instance in Figure 1 for the verification
purpose. The following formulas are added to our specifica-
tion in Figure 2:
• Blocks ≡ {1, 2, 3, 4}
• IState ≡ 〈〈0, 2〉, 〈1, 0〉, 〈0, 0〉, 〈0, 0〉〉
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Figure 3. Predicate diagrams* for Block World Problem.

• FState ≡ 〈〈0, 3〉, 〈0, 0〉, 〈1, 0〉, 〈0, 0〉〉
The verification can be stated as to prove the following

theorem:
BWorld → ¤(Init → ♦isDone).

For the first step, we have to find a suitable predicate
diagram* for the BWorld. Figure 3 depicts one of the
possible predicate diagrams* for BWorld.

We set P to contain six predicates. The union of those
predicates define the properties of system’s states that hold
on every node. There are two predicates that are not written
explicitly, which are :k ∈ {1, 2} and ∀k ∈ M : ag type ∈
{1, 2}. These predicates hold on every node. We also use two
sets Moved and Freed which are sets of integers to indicate
the blocks that can be moved or can be freed, respectively.
It is assume that the following conditions hold:
• ∀i ∈ Blocks : i ∈ Moved ↔ (∃j ∈ Blocks : i 6=

j ∧ CState[i] = 〈0, 0〉 ∧ CState[j][2] = 0)
• ∀i ∈ Blocks : i ∈ Freed ↔ (∃j ∈ Blocks : i 6=

j ∧ CState[i]〈j, 0〉 ∧ CState[j][2] = i)

Using Theorem 1 it can be shown that the predicate
diagram* in Figure 3 conforms to the specification in Figure
2. This is done by proving the following formulas:
• Init → ¬isDone ∧ ¬(CState = IState) ∧ Moved =
{3, 4} ∧ Freed = {2}

• ¬isDone ∧ ¬(CState = IState) ∧ Moved = {3, 4} ∧
Freed = {2} ∧ [∃ ∈ M : Next(k)]v →
(¬isDone′ ∧ ¬(CState′ = IState′) ∧Moved′ = {3, 4} ∧
Freed′ = {2})∨
((〈∃k ∈ M : free(k)〉v ∧ ¬isDone′ ∧ ¬(CState′ =
IState′) ∧Moved′ = {3, 4} ∧ Freed′ = {2, 3, 4})∨
(〈∃k ∈ M : free(k)〉v ∧ ¬isDone′ ∧ ¬(CState′ =
IState′) ∧Moved′ = {} ∧ Freed′ = {1, 2, 3, 4}))

• ¬isDone∧¬(CState = IState)∧Moved = {}∧Freed =
{1, 2, 3, 4} ∧ [∃ ∈ M : Next(k)]v →
(¬isDone′ ∧ ¬(CState′ = IState′) ∧ Moved′ = {} ∧
Freed′ = {1, 2, 3, 4})∨

((〈∃k ∈ M : move(k)〉v ∧ isDone′ ∧ ¬(CState′ =
IState′) ∧Moved′ = {2, 4} ∧ Freed′ = {3})∨
(〈∃k ∈ M : move(k)〉v ∧ ¬isDone′ ∧ ¬(CState′ =
IState′) ∧Moved′ = {1, 2, 3, 4} ∧ Freed′ = {1, 2, 3, 4}))

• ¬isDone∧¬(CState = IState)∧Moved = {1, 2, 3, 4}∧
Freed = {1, 2, 3, 4} ∧ [∃ ∈ M : Next(k)]v →
(¬isDone′ ∧ ¬(CState′ = IState′) ∧ Moved′ =
{1, 2, 3, 4} ∧ Freed′ = {1, 2, 3, 4})∨
((〈∃k ∈ M : free(k)〉v ∧ (isDone′ ∧ ¬(CState′ =
IState′) ∧ Moved′ = {} ∧ Freed′ = {1, 2, 3, 4} ∨
¬isDone∧¬(CState = IState)∧Moved = {1, 2, 3, 4}∧
Freed = {1, 2, 3, 4}))∨
(〈∃k ∈ M : move(k)〉v ∧ ¬isDone′ ∧ (¬(CState′ =
IState′)∧Moved′ = {2, 4}∧Freed′ = {3}∨¬isDone∧
¬(CState = IState) ∧ Moved = {1, 2, 3, 4} ∧ Freed =
{1, 2, 3, 4}))

• (isDone ∧ ¬(CState = IState) ∧ Moved = {2, 4} ∧
Freed = {3}) ∧ [∃ ∈ M : Next(k)]v →
(isDone′ ∧ ¬(CState′ = IState′) ∧ Moved′ = {2, 4} ∧
Freed′ = {3})

• (¬isDone ∧ ¬(CState = IState) ∧ Moved = {3, 4} ∧
Freed = {2, 3, 4}) ∧ [∃ ∈ M : Next(k)]v →
(¬isDone′ ∧ ¬(CState′ = IState′) ∧Moved′ = {3, 4} ∧
Freed′ = {2, 3, 4})∨
((〈∃k ∈ M : free(k)〉v∧(¬isDone′∧CState′ = IState′∧
Moved′ = {3, 4} ∧ Freed′ = {2}))∨
(〈∃k ∈ M : move(k)〉v ∧ ¬isDone′ ∧ (¬(CState′ =
IState′) ∧Moved′ = {} ∧ Freed′ = {3, 4}))

• (¬isDone ∧ ¬(CState = IState) ∧ Moved = {} ∧
Freed = {3, 4}) ∧ [∃ ∈ M : Next(k)]v →
(¬isDone′ ∧ ¬(CState′ = IState′) ∧ Moved′ = {} ∧
Freed′ = {3, 4})∨
((〈∃k ∈ M : free(k)〉v ∧ (¬isDone′ ∧ ¬(CState′ =
IState′) ∧Moved′ = {3, 4} ∧ Freed′ = {2, 3, 4})))

The next step we encode the diagram in the input language
of SPIN. We use 12 variables, which are:
• action and node to indicate the last action taken and

the current node,
• done to indicate whether isDone is true or not,
• cistate to indicate whether CState = IState is true

or not,
• m1, m2,m3, and m4 to represent predicate 1 ∈

Moved, 2 ∈ Moved, 3 ∈ Moved and 4 ∈ Moved,
respectively, and

• f1, f2, f3, and f4 to represent predicate 1 ∈ Freed,
2 ∈ Freed, 3 ∈ Freed and 4 ∈ Freed, respectively,

The theorem to be proven is now can be written as
¤((¬done ∧ cistate ∧ ¬m1 ∧ ¬m2 ∧ m3 ∧ m4 ∧ ¬f1 ∧
f2 ∧ ¬f3 ∧ ¬f4) → ♦(done ∧ ¬cistate ∧ ¬m1 ∧ m2 ∧
¬m3∧m4∧¬f1∧¬f2∧ f3∧¬f4)). Last, by using SPIN
we model-checked the resulted transition system. As result,
we concluded that the specification satisfies the property we
want to prove.

V. RELATED WORK

Many works are devoted to the formal specification of
multi-agent systems. Most of these works concentrate on the
specification of the agents’ behaviors and the coordination
among agents. Abouaissa et al. [1] presented a formal
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approach for specification of multi-agent systems. This ap-
proach is based on roles and organization notions and high-
level Petri nets and is applied on a multi-modal platform
associating combined rail-road transportation system. Mer-
ayom et al. [16] proposed a formalism called Utility State
Machines for specifying e-commerce multi agent systems.
Brazier et al. [3] used the DESIRE framework to specify
a real-world multi-agent application on a conceptual level.
Originally DESIRE is designed for formal specification of
complex reasoning systems. Fischer and Wooldridge [9]
described first step towards the formal specification and ver-
ification of multi-agent systems, through the use of temporal
belief logics. This work is closed to the one of Taibi [23].
The similarity is that we use TLA-based to formalize our
approaches. However, Taibi’s work did not treat the multi
-agent systems as parameterized systems.

Besides formal specification, formal verification is also a
popular topic in the field of multi-agent systems. Several
approaches can be found in [2], [10], [11], [15], [23].
In [11], Giese et al. presented an approach for making
complex multi-agent system specifications. Every specifica-
tion includes a detailed environment model that amenable
to verification. The verification process is done by means
of simulation and formal verification. Taibi used TLC,
the TLA model checker, to verify the specification [23].
Gaud et al. proposed a formal framework based on multi-
formalisms language for writing system specification and
used abstraction to reduce the state space of the system
[10]. Ayed et al. proposed a diagram-based verification by
using AUML protocol diagrams for representing multi-agent
systems. These diagrams are then translated into event-B
language for verification purpose [2]. In [15], Massaci et
al. concerned about the use of access control for limiting
the agent capability of distributed systems. They presented
a prefixed tableau method for the calculus of access control.
The calculus was the basis for the development and the
verification of an implemented system.

Because diagrams can reflect the intuitive understanding
of the systems and their specifications, they are proposed to
be used for verification. A diagram can also be seen as an
abstraction of the system, where properties of the diagram
are guaranteed to hold for the systems as well. In particular,
the use of diagrams in verification of distributed systems
can be found; for example in [5] the author proposed the
use of predicate diagrams, introduced in [4], for analyzing
a self-stabilizing algorithm.

VI. CONCLUSION

We have shown how a multi-agent system can be viewed
and thus can be formally specified and verified as a param-
eterized system. In particular, we define a general form for
specification of parameterized multi-agent systems in TLA*.
By considering a case study, we have shown that a multi-
agent system whose agents are not homogenous still can be

specified as a parameterized system.
In this paper, we have successfully write specification and

verify the block world problem. This problem is an example
of multi-agent system whose agents are not homogeneous.
In order to fulfill the homogeneity requirement, we add
preconditions to actions in the specification to guarantee that
only the appropriate agent may take a particular action. For
verification process we use predicate diagram* to represent
the abstractions of the systems. The correspondence between
the original specification and the diagram is established
by non-temporal proof obligations; whereas model checker
SPIN is used to verify properties over finite-state abstrac-
tions.

In the context of parameterized systems, there are two
classes of properties that may be considered, namely the
properties related to the whole processes and the ones related
to a single process in the system. It is planned to investigate
those properties of the block world problem. The verification
will be conducted by using a diagram-based verification
called parameterized predicate diagrams [18], [19].
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Abstract—This paper presents JClassic+
δε, a description

logic with default and exception that is expressive enough to
be of practical use, which can reason on default knowledge
and handle a ”weakened kind of disjunction”, allowing a
tractable subsumption computation. JClassic+

δε is an extension
of JClassicδε, with the connective lcs, which has the same
properties as the LCS external operation to compute the least
common subsumer of two concepts. JClassic+

δε is defined with
an intensional semantics. We developp this reasoner to define an
access control model, where default and exception connectives
are used in representation of context to allow authorization.
Consideration of context in access control allows definition
of dynamic permissions, for example, permissions given to a
doctor in a normal context are not the same that we are in an
emergency context.

Index Terms—Description Logic; Defaults and Exceptions;
Reasoner; disjunction; access control.

I. INTRODUCTION

The purpose of access control models is to assign per-
missions to users. The most interesting would be to have
the ability to set dynamic permissions dynamic, i.e., context-
dependent.

Context may be unique, as it may be a relationship between
a number of situations such as emergency or epidemic risk.
For this, we need connectors that allow us to represent this
information. The reasoner JClassic+δε has been developed for
this purpose. Unlike the work of Ventos et al. [1], [2], we did
not stay at the theoretical level, but rather we implemented the
reasoner.

Donini [3] shows that concept disjunction makes subsump-
tion computation co-NP-Complete. However, disjunction is
very useful for knowledge representation.

In this paper, we present a decription logic-based system,
named JClassic+δε, whose set of connectives is the union of
JClassicδε connectives and the ”lcs” connective. The ”lcs”
connective is a kind of ”weakened disjunction” allowing us to
preserve a tractable subsumption computation (subsumption in
JClassicδε has been proved correct, complete and tractable
in [4]).

The ”lcs” connective has the same properties as the LCS
external operation introduced by Borgida et al. [5] which
computes the least common subsumer of two concepts. It was
introduced by Ventos et al. in Classic to allow disjunction with
a reasonable computation [1], [2].

Because of JClassicδε has been given an intensional se-
mantics, JClassic+δε is provided with an intentional semantics
(called CL+

δε) based on an algebraic approach. For this, we
have first to build an equational system which highlights the
main properties of the connectives. The equational system
allows to define axiomatically the notion of LCS.

In this paper, we first present our system JClassic+δε, we
give then definition of ”lcs”. We finally illustrate the use of
this tool for access control.

In access control, permission are given to user depending on
the actual context. The context can be that the default one in
our case represented by the default connector (δ), it can be an
exception to the current context represented by the connector
Exception (ε), as it can be a conjunction or a disjunction of
several contexts.

To this end, the reasoner JClassicδε has been enriched by
the operator of minimum disjontion in order to have a good
level of expressiveness with a polynomial complexity.

II. JClassic+δε
JClassic+δε is an non monotonic reasoner based on descrip-

tion logic with default and exception [6] which allows us to
deal with default and exceptional knowledge.

The set of connectives of JClassic+δε is the union of the
set of connectives of ALδε [6] presented in [4], [7], [8] and
the connective ”lcs”.

The connective δ intuitively represents the common notion
of default. For instance, having δF ly as a conjunct with
Animal in the definition of the concept Bird states that birds
generally fly.

The connective ε is used to represent a property that is not
present in the description of the concept or of the instance
but that should be. For instance, the definition of Penguin in
JClassic+δε is Penguin ≡ Bird u Flyε. The Flyε property
expresses the fact that fly should be in the definition of Penguin
since it is a bird. The presence of Flyε in the definition
of Penguin makes it possible to classify Penguin under the
concept Bird.

Formally, the subsumption relation uses an algebraic se-
mantics. The main interest of this approach is the introduction
of the definitional point of view of default knowledge: from
the definitional point of view, default knowledge can be part
of concept definition whereas from the inheritance one it is
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only considered as a weak implication. A map between the
definition of concept and its inherited properties is described.
This combinating of definitional and inheritance levels im-
proves the classification process. Figure 1 describes the general
architecture of our system.

Fig. 1. Architecture of JClassicδε

In this section, we first present the syntax of our system, we
then give details about its algebraic semantic and we conclude
this section by presenting the mechanism of inference in our
tools.

A. Syntax of JClassic+δε
The set of connectives of JClassic+δε is the union of the

set of connectives of CLδε [6] and the connectives δ and ε.
JClassic+δε is defined using a set R of primitive roles, a set
P of primitive concepts, the constant ⊥ (Bottom) and > (Top)
and the following syntax rule (C and D are concepts, P is a
primitive concept, R is a primitive role).
C,D → > the most general concept

| ⊥ the most specific concept
| P primitive concept
| C uD concept conjunction
| ¬P negation of primitive concept (This

restriction to primitive concept in the negation is a choice to
avoid the untractability)

| ∀r : C C is a value restriction on all roles R
| δC default concept
| Cε exception to the concept
| ClcsD concept disjunction

δ and ε are unary connectives, u is a binary conjunction
connective and ∀ enables universal quantification on role
values.

B. Semantic of JClassic+δε
We endow JClassic+δε with an intentional algebraic seman-

tic denoted CL+
δε.

This framework covers the different aspects of the formal
definition of concepts and subsumption in our language. The
calculating of denotations of concepts in CL+

δε is used in

computing subsumption in the algorithm Subδε. CL+
δε allows

first to show that Sub+δε is correct and complete and secondly
to give a formal characterization of calculation of subsumption
used in the implementation of JClassic+δε.

1) EQ: an equational system for JClassic+δε: In order to
serve as the basis for the definition of an algebraic seman-
tics, an equational system EQ is defined. From a descriptive
point of view, the calculation of subsumption consists on the
comparison of terms through the equational system EQ. This
system fixes the main properties of the connectives and is used
to define an equivalence relation between terms and then to
formalize the subsumption relationship.
∀A,B,C ∈ JClassic+δε:
01: (A uB) u C = A u (B u C)
02: A uB = B uA
03: A uA = A
04: > uA = A
05: ⊥ uA = ⊥
06: (∀R : A) u (∀R : B) = ∀R : (A uB)
07: ∀R : > = >
08: (A lcs B) lcs C = A lcs (B lcs C)
09: A lcs B = B lcs A
10: A lcs A = A
11: A lcs > = >
12: A lcs ⊥ = A
13: (δA)ε = Aε

14: δ(A uB) = (δA) u (δB)
15: A u δA = A
16: Aε u δA = Aε

17: δδA = δA

Axioms 01 to 07 are classical; they concern description
logic connectives properties [9], [10]. Axioms 08 to 12
concern the connective ”lcs”. The following ones correspond
to ALδε connectives properties[6], i.e., properties of δ and ε
connectives.

Descriptive Subsumption:
We denote vd for descriptive subsumption. vd is a partial

order relation on terms. Equality (modulo the axioms of EQ)
between two terms is denoted =EQ. =EQ is a congruence
relation which partitions the set of terms, i.e., =EQ allows
to form equivalence classes between terms. We define the
descriptive subsumption using the congruence relation and
conjunction of concepts as follow:

Definition 1: (Descriptive Subsumption)
Let C and D two terms of JClassic+δε, C vd D, i.e., D

subsume descriptively C, iff C uD =EQ C.
From an algorithmic point of view, terms are not eas-

ily manipulated through subsumption. We adopt a structural
point of view closer to the algorithmic aspect of computing
subsumption. This allows us to first formalize calculation
of subsumption in the implementation of JClassic+δε and
secondly to endow JClassic+δε with an intensional semantics.
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To define the subsumption relation between two concepts
using their description, we need to compare them. For this,
concepts are characterized by a normal form of their properties
rather than by the set of their instances.

2) Normal Form of concept: We present in this section the
structural point of view for the subsumption in JClassic+δε.
This point of view has two main advantages: it is very close to
the algorithmic aspects and is a formal framework to validate
the algorithmic approach which is not the case description
graph.

We define a structural concept algebra CL+
δε which is used

to give an intensional semantic in which concepts are denoted
by the normal form of their set of properties. The structural
point of view of subsumption consist then to compare the
normal forms derived by applying a homomorphism from set
of terms of JClassic+δε to elements of CL+

δε.

CL+
δε: an intensional semantic for JClassic+δε

From the class of CL-algebra, we present a structural
algebra CL+

δε which allows to endow JClassic+δε with an
intentional semantic.

Element of CL+
δε are the canonical intentional representation

of terms of JClassic+δε (i.e., Normal form of the set of their
properties). We call an element of CL=

δε normal forms.
Definition of CL+

δε means definition of a homomorphism h
which allows to associate an element of CL+

δε to a term of
JClassic+δε.

Using the equational system, we calculate for each concept
a structural denotation which is a single normal form of this
concept. The calculation of a normal form from a description
of a concept can be seen as a result of term “rewriting” based
on the equational system EQ.

The normal form of a concept defined with description
T (noted nf(T)) is a couple 〈tθ, tδ〉 where tθ contains strict
properties of T and tδ the default properties of T.
tθ and tδ are 3-tuple of the form (π,r,ε) with:
π: is a set of primitive concepts in description T.
r: has the form 〈R, c〉 where :

R: is the name of Role.
c: is the normal form of C, if the description contains

the property ∀R : C.
ε: set of 3-tuple with the form (π, r, ε).

Example:
The normal form of concept A ≡ B u C u δD is:
nf (A) = (〈{B,C} , ∅, ∅〉 , 〈{B,C,D} , ∅, ∅〉).

Structural Subsumption:
Two terms C and D of JClassic+δε are structurally equiv-

alent iff their normal forms are equal. We denote vs for
structural subsumption. vs is a partial order relation.

The structural equality of two terms of JClassic+δε is noted
=CL. =CL is a congruence relation as EQ in descriptive
subsumption.

We define the structural subsumption using the congruence
relation and conjunction of concepts as follow:

Definition 2: (Structural Subsumption)
Let C and D two terms of JClassic+δε, C vs D; i.e., D

subsume structurally C, iff C uD =CL C.
Theorem 1: (Equivalency between descriptive subsump-

tion and structural subsumption)
Let C and D two terms of JClassic+δε, C vs D⇔ C vd D.
To infer new knowledge in this system, the susbsumption

relation is used. In the next section, we outline the subsump-
tion algorithm handling defaults and axceptions named Subδε.

III. INFERENCE IN JClassic+δε
There are several reasoning services to be provided by

a DL- system. We concentrate our work on the following
basic ones, which are Classification of concepts (TBox) and
instance checking (ABox). These two services basically use
the subsumption relation.

A. The Subsumption Relation

Borgida [5] defines the subsumption based on a set theoretic
interpretation as follow: “The concept C subsume D, if and
only if the set of instances of C include or is equal to a set of
instances of D”.

However, the general principle of computing subsumption
between two concepts is to compare their sets of properties,
not their sets of instances.

For this, we use an intensional semantics which is closer
to the algorithmic aspects of computing subsumption, and this
by defining a normal form of description called descriptive
normal form.

Algorithm of Computing Subsumption Subδε
Subδε is an algorithm of computing subsumption of the

form Normalization- Comparison. It is consists of two steps,
first, the normalization of description, and then a syntactic
comparison of the obtained normal forms.

Let C and D be two terms of JClassic+δε. To answer the
question “Is C subsumed by D?” we apply the following
procedure. The normal forms of C and “C u D” are calculated
with the procedure of normalisation.

There are two steps in the comparison. We compare the
strict parts of the two concepts. If these are equal, then we
compare the default parts. If the two normal forms are equal,
the algorithm returns “Yes”. It returns “No” otherwise.

The completeness, correctenness and the polynomial com-
putation of JClassicδε have been proved in [4].

We detailed in the next section the connective ”lcs”.

IV. THE COMPUTATION OF ”LCS”
The least common subsumer has been introduced in de-

scription logic by Borgida et al. [5] as an external operation
to compute the LCS of two concepts.

The LCS of two concepts A and B belonging to a language
L is the most specific concept in L that subsumes both A and
B.

Definition 3: Let L a terminological language, v the nota-
tion of subsumption relation in L
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LCS: L × L → L
LCS(A,B) → C ∈ L iff:
A v B and B v C (C subsume both A and B),
@ D ∈ L such that A v D,B v D and D ⊆ C (i.e., there is

no common subsumers to A and B which is subsumed strictly
by C)

The next algorithm is to compute the LCS where input are
the normal form of two concepts A1 and A2 and the output
is the LCS of A1 and A2.

Let a and b two normal forms A and B with a and b 6= b0
(b0 is the normal form of ⊥).

Algorithm 1 LCS
Require: a=≺ aθ,aθ �C and b=≺ bθ,bθ �C two normal forms

of A and B.
Ensure: c=≺ cθ,cθ �C the normal form of LCS(A,B)
cθπ ← aθπ ∩ bθπ
cθr ← ∅
for all ≺r, d � ∈ aθr do

if ∃ ≺r, e � ∈ bθr then
f ← LCS(d,e)
cθr ← cθr ∪ ≺r, f �

end if
end for
cθε ← aθε ∩ bθε
cδπ ← aδπ ∩ bδπ
cδr ← ∅
for all ≺r, d � ∈ aδr do

if ∃ ≺r, e � ∈ bδr then
f ← LCS(d,e)
cδr ← cδr ∪ ≺r, f �

end if
end for
cδε ← aδε ∩ bδε

Our system can be used in differents application; we choose
to use to model an access control model.

V. APPLICATION TO ACCESS CONTROL

To show how we can use our description logic-based
system and how we can infer a new knowledge, we define a
knowledge base adapted to formalize a dynamic access control
model.

In this model, authorization to subject are assigned depend-
ing on context. We consider first that the context is by default
normal, and we represent it using the operator of default (δ).
Then, each change of context is considered as an exception to
the current context, this change is represented by the operator
of exception (ε). We give, as an example, one ABox of a
medical information system to show how authorization can be
deduced.

- Using the instances in Table 1, the system infers that in
organization X, each person who play the role of Patient is by
default permitted to consult his Med-rec and add this instance
to the ABox : δPermission(P1).

where:
δPermission(P1) v PermisionAv.Activity(Consult)u

PermissionR.Role(Patient)uPermissionV.V iew(Med−
rec) u PermissionOr.Organization(X)

Using the previous ABox, we show how deduction can be
done in differents contexts.

• Access control in a default context: Suppose that
user Marc wants to read Med-rec1; can he obtains that
privilege?
We know that:
-Marc plays role of Patient in organization X: Em-
ploy(E1);
-and, Med-rec1 is an object used in the view Med-rec:
Use(U1);
-and, Read is considered as a consultation activity: Con-
sider(C1);
-and finally, by default, in organization X, each per-
son who plays the role of Patient is permitted to con-
sult his Medical records, when Normal context is true:
δPermission(P1).
Formally, we write:
Employ(E1) u Use(U1) u Consider(C1) u
δPermission(P1)
Using security rules, we can deduce that the preceding
proposition subsumes δIs− permitted(I1).
where:
Is − permitted(I1) v Is −
permittedAc.Action(Read) u Is −
permittedS.Subject(Marc) u Is −
pemittedO.Object(Med− rec1)
And because Is − permitted(I1) v δIs −
permitted(I1), we can deduce that Marc is permitted
to read his medical records.

• Access control if context “Serious-disease” is true:
Suppose that Marc has a serious disease and he wants
to read his medical records; did he have this right?
In the context Serious-disease, the system deduce a new
instance P2 and we add to the ABox the next rule:
Permision(P1)ε v δPermission(P2)
We know that:
-Marc plays role of Patient in organization X: Em-
ploy(E1);
-and, Med-rec1 is an object used in the view Med-rec:
Use(U1);
-and, Read is considered as a consultation activity: Con-
sider(C1);
-and finally, by default, in organization X, each person
who plays the role of Patient is permitted to consult his
Medical records, when context Serious-disease is true:
δPermission(P2).
We obtain:
Employ(E1) u Use(U1) u Consider(C1) u
δPermission(P2)
≡ Employ(E1) u Use(U3) u Consider(C1) u
δPermission(P1)ε
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ABox
Organization(X);
Role(Patient);
Subject(Marc);
View(Med-rec);
Object(Med-rec1);
Action(Read);
Activity(Consult);
Employ(E1) v EmployS.Subject(Marc) u EmployR.Role(Patient)
uEmployOr.Organization(X);
Use(U1) v UseO.Object(Med− rec1) u UseV.view(Med− rec)
uUseOr.Organization(X);
Consider(C1) v ConsiderAc.Action(Read) u ConsiderAv.Activity(Consult)
uConsiderOr.Organization(X);

TABLE I
ABOX

We know that Aε ≡ δAε, we obtain:
≡ Employ(E1) u Use(U1) u Consider(C1) u
Permission(P1)ε

Using security rules, we can deduce that the precedent
proposition subsumes Is− permitted(I1)ε.
And, because Is − permitted(I1) 6v Is −
permitted(I1)ε, we cannot deduce Is-permitted(I1).
Therefore Marc is not permitted to read his medical
records when he has a serious disease.

Our policy language allows us to have more than one
exception in a context. Exception at an even level cancel
the effects of exceptions and therefore infers the property by
default [6].

Supose that we have a disjunction of context, for example
”context default or context serious disease”, here we can use
the connective ”lcs” to deduce permission

• lcs(default context, context of serious disease): Suppose
that user Marc wants to read Med-rec1; can he obtain that
privilege?
We know that:
-Marc plays role of Patient in organization X: Em-
ploy(E1);
-and, Med-rec1 is an object used in the view Med-rec:
Use(U1);
-and, Read is considered as a consultation activity: Con-
sider(C1);
and we have the two previous permissions Permission(P1)
and Permission(P2), defined respectively for the default
context and context of serious disease.
We obtain:
Employ(E1) u Use(U1) u Consider(C1) u
lcs(δPermission(P1), δPermission(P2))
≡ Employ(E1) u Use(U3) u Consider(C1) u
lcs(δPermission(P1), δPermission(P1)ε)
using lcs properties, we obtain:
≡ Employ(E1) u Use(U1) u Consider(C1) u
δPermission(P1)
Using security rules, we can deduce that the precedent
proposition subsumes δIs− permitted(I1).
And, because Is − permitted(I1) v δIs −

permitted(I1), we can deduce Is-permitted(I1). There-
fore Marc is permitted to read his medical records when
he has a serious disease or when the context is normal.

VI. CONCLUSION

The work presented in this paper has led to the definition
of a new system based on description logic expressive enough
to be used as part of an application and to represent default
knowledge and exceptional knowledge. The JClassic+δε high-
lights the interests and the relevance of defaults in conceptual
definition. For the JClassic+δε language, we have given a set
of axioms outlining the essential properties of the connectives
from this definitional point of view: property links default
characteristics to exceptional or strict ones. This set of axioms
induces a class of CL+

δε-algebra of which the terms are concept
descriptions. Using the conjunction connectives u and ”lcs”,
the set of concept can be partially ordered w.r.t the equational
system (descriptive subsumption in free algebra). JClassic+δε
is defined with a universel algebraic corresponding to a deno-
tational semantic, where terms are denoted exactly by sets of
strict and default properties.

This system consists of three modules: a module for rep-
resenting knowledge, a module to use that knowledge and a
module to update knowledge. The module which allows to use
knowledge is endowed with a subsumption algorithm which
is correct, complete and polynomial.

In our work, the description logic is endowed with an
algebraic intensional semantics, in which concepts are denoted
by a normal form of all their properties. These normal forms
(i.e., elements of the intensional semantic) are used directly
as an input to the algorithm of subsumption and algorithm of
deductive inferences.

To show how we can use our system, we applied it to
access control. We developed a contextual access control
model in which authorization are assigned to users depending
on context. We represent this kind of authorization using the
two operators of default (δ) and exception (ε).

An interseting topic for future research is to extend our
tool to take into account spacial-temporal context to make our
system more expressive with keeping a reasonable complex-
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ity. We also envisage to explore other appropriate and real
applications.
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Abstract—We investigate the relationship between C++ tem-
plate metaprogramming and computational complexity, show-
ing how templates characterize the class of polynomial-time
computable functions, by means of template recursion and
specialization. Hence, standard C++ compilers can be used as
a tool to certify polytime-bounded programs.
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I. INTRODUCTION

According to [7], template metaprograms consist of
classes of templates operating on numbers and types as
a data. Algorithms are expressed using template recursion
as a looping construct and template specialization as a
conditional construct. Template recursion involves the use
of class templates in the construction of its own member
type or member constant. Templates were introduced to C++
to support generic programming and code reuse through
parameterization. This is done by defining generic functions
and objects whose behaviour is customized by means of
parameters that must be known at compile time, entirely.
For example, a generic vector class can be declared in C++
as follows:

template <class T, int N> class vector
{ T data[N]; };

The class has two parameters: T, the type of the vector’s
elements, and N, the length of the vector. The command
line vector<int,5> instantiates the template by replacing
all occurrences of T and N in the definition of vector with
int and 5, respectively.

Templates are also able to perform static computation. The
first example of this behaviour was reported in [22] and [23],
where a program that forces the compiler to calculate (at
compile time) a list of prime numbers is written; this ability
is largely described by [7], [25], [26] and [9]: C++ may be
regarded as a 2-level language, in which types are first-class
values, and template instantiation mimics off-line partial
evaluation. For instance, the following templates compute
the function pow(y, x) = xy;

template <int Y, int X> class pow
{public: enum {result=X∗pow<Y-1,X>::result };};

template <int X> class pow<0,X>
{public: enum {result=1};};

The command line int z=pow<3,5>::result, produces at
compile time the value 125, since the operator A::B refers to
the symbol B in the scope of A; when reading the command
pow<3,5>::result, the compiler triggers recursively the
template for the values <2,5>, <1,5>, until it eventually
hits <0,5>. This final case is handled by the partially
specialized template pow<0,X>, that returns 1. Instructions
like enum{result = function<args>::result;} represent the
step of the recursive evaluation of function, and produce the
intermediate values. This computation happens at compile
time, since enumeration values are not l-values, and when
one pass them to the recursive call of a template, no static
memory is used (see [24], chapter 17). Thus, the compiler
is used to compute metafunctions, that is as an interpreter
for metaprogramming.

In [28], the following definition is given: a restricted meta-
language captures a property when every program written in
the restricted metalanguage has the property and, conversely,
for every unrestricted program with the property, there exists
a functionally equivalent program written in the restricted
metalanguage. An example of capturing a property by means
of a restricted language is given in [3]: any partial recursive
function can be computed at compile-time returning an error
message that contains the result of the function. This is
achieved specifying primitive recursion, composition, and
µ-recursion by means of C++ template metaprogramming.
A sketch of this result is in Section II-B.

On the other hand, the problem of defining syntactical
characterizations of complexity classes of functions has been
faced during the 90’s; this approach has been dubbed Implicit
Computational Complexity (ICC), and it aims at studying
the complexity of programs without referring to a particular
machine model and explicit bounds on time or memory.
Several approaches have been explored for that purpose, like
linear logic, rewriting systems, types and lambda-calculus,
restrictions on primitive recursion. Two objectives of ICC
are to find natural implicit characterizations of functions of
various complexity classes, and to design systems suitable
for static verification of programs complexity. In particular,
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[2], [8], [11], [13], [14] studied how restricted functional
languages can capture complexity classes.

In this paper we investigate the relationship between
template metaprogramming and ICC, by defining a recursive
metalanguage by means of C++ templates; we show that it
captures the set of polynomial-time computable functions,
that is, functions computable by a Turing machine in which
the number of moves — the time complexity — is bounded
by a polynomial. We also show that our approach can be
extended to recursion schemes that are more general than
those used in ICC. This result makes two contributions.
First, it represents an approach to the automatic certification
of upper bounds for time consumption of metaprograms.
The compilation process certifies the complexity of the
program, returning a specific error when the complexity is
not polynomial. Second, there are few, if not any, character-
izations of complexity classes made by metaprogramming;
in particular, the result is achieved with a real, industrial
template language, one that was constructed for doing real
programming. Moreover, we do not define any extension of
the language; we simply use the existing C++ type system
to perform the computation.

The paper is organized as follows: in Section II we discuss
some works related with our approach, and we recall some
known results that we will use later; in Section III we
show how to represent some polytime computable functions
by means of template metaprogramming and how to rule
out those functions that are not polytime (this is done
by imposing some restrictions on the role of the template
arguments); in Section IV we define the Poly-Temp language;
in Section V we show that Poly-Temp is equivalent to
the class of polynomial-time computable functions; finally,
conclusions and further work are in Section VI.

II. RELATED WORKS

A. C++ metaprogramming and functional programming

The prevailing style of programming in C++ is imperative.
However, the mechanics of C++ metaprogramming shows a
clear resemblance to dynamically-typed functional language,
where all metaprograms are evaluated at compile time. This
is clearly stated in [19]: they extended the purely functional
language Haskell with compile-time metaprogramming (i.e.,
with a template system à la C++), with the main purpose to
support the algorithmic construction of programs at compile-
time.

In [12], it is recalled how function closure can be mod-
elled in C++ by enclosing a function inside an object such
that the local environment is captured by data members
of the object; this idiom can be generalized to a type-
safe framework of C++ class templates for higher-order
functions that supports composition and partial applica-
tion, showing that object-oriented and functional idioms
can coexist productively. In [15] and [16], a rich library
supporting functional programming in C++ is described,

in which templates and C++ type inference are used to
represent polymorphic functions. Another similar approach
is in [20], where a functional language inside C++ is pro-
vided by means of templates and operator overloading. Both
approaches provides functional-like libraries in run-time,
while computations made by means of our metalanguage are
performed at compile-time, totally. Coevally, [10] developed
the template-implemented Lambda Library, which adds a
form of lambda functions to C++. All these approaches lead
to the introduction of lambda expression in C++ standard.

B. The computational power of C++ compilers
The first attempt to use C++ metaprogramming to capture

a significant class of functions has been made by [3]; they
presented a way to specify primitive recursion, composition,
and µ-recursion by means of C++ templates. The result is
not astonishing, provided that C++ templates are Turing
complete (see [27]), but the reader should note that the
technique used in the paper is based on the partial evaluation
process performed by C++ compilers.

Number types are used to represent numbers; the number
type representing zero is class zero { }. Given a number
type T, the number type representing its unary successor is
template<class T> class suc { typedef T pre;}.

A function is represented by a C++ class template, in
which templates arguments are the arguments of the func-
tion. For example,

template<class T> class plus2
{typedef suc<suc<T>> result;};

is a function type that computes the function f(x) = x+ 2.
The instructions

plus2<suc<zero>>::result tmp;
return (int) tmp;

returns an error message including
suc<suc<suc<zero>>>, that is the value of f(1).
In particular, given a two-variable function f defined by
primitive recursion from g and h,{

f(0, x) = g(x)
f(y + 1, x) = h(y, x, f(y, x))

function type F of f is expressed by the following templates,
where G and H are the class templates computing g and h.

template <class Y, class X> class F
{typedef typename

H<typename Y::pre, X,
typename F<typename Y::pre, X>::result >

::result result;};

template <class X> class F<zero,X>
{typedef typename G<X>::result result; };

Similar templates can be written to represent composition
and µ-recursion, and to extend the definition to the general
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case on n variables; thus, the whole class of partial recursive
functions can be expressed by template metaprogramming.
For instance, templates times and pow can be defined as
follows, where add returns the sum of its two arguments
and is defined in the same way.

template<class Y, class X> class times
{typedef typename

add<X, typename times<typename Y::pre, X>
::result>::result result;};

template <class X> class times<zero,X>
{typedef zero result};

template<class Y, class X> class pow
{typedef typename

times<X, typename pow<typename Y::pre,X>
::result>::result result;};

template <class X> class pow<zero,X>
{typedef zero result}.

C. Capturing complexity classes by function-theoretic char-
acterization

Syntactical characterizations of relevant classes of func-
tions have been introduced by the Implicit Computational
Complexity approach, that studies how restricted functional
languages can capture complexity classes; in general, sev-
eral restricted recursion schemes have been introduced, all
sharing the same feature: no explicit bounds (as in [4]) are
imposed in the definition of functions by recursion.

In order to show the relation between template metapro-
gramming and polynomial-time computable functions we
need to recall that this class is defined in [2] as the smallest
class B containing some initial functions, and closed under
safe recursion on notation and safe composition. This result
is obtained by imposing a syntactic restriction on variables
used in the recursion and composition; they are distinguished
in normal or safe, and the latter cannot be used as the
principal variable of a function defined by recursion. In
other words, one does not allow (safe) recursive terms to be
substituted into a (normal) position which was used for an
earlier definition by recursion. Normal inputs are written to
the left, and they are separated from the safe inputs by means
af a semicolon. A function in B can be written as f(~x; ~y);
in this case, variables xi are normal, whereas variables yj
are safe.
B is the smallest class of functions containing the initial

functions 1-5 and closed under 6 and 7.
1) Constant: 0 (it is 0-ary function).
2) Projection: πn,m

j (x1 . . . , xn;xn+1 . . . , xn+m) = xj ,
for 1 ≤ j ≤ m+ n.

3) Binary successor: si(; a) = ai, i ∈ {0, 1}.
4) Binary predecessor: p(; 0) = 0, p(; ai) = a.

5) Conditional:

C(; a, b, c) =

{
b if a mod 2 = 0
c otherwise.

6) Safe recursion on notation: the function f is defined
by safe recursion on notation from functions g and hi
if {

f(0, ~x;~a) = g(~x;~a)
f(yi, ~x;~a) = hi(y, ~x;~a, f(y, ~x;~a)).

for i ∈ {0, 1}, g and hi in B; y is called the principal
variable of the recursion.

7) Safe composition: the function f is defined by safe
composition from functions h, ~r and ~t if

f(~x;~a) = h(~r(~x; );~t(~x;~a))

for h, ~r and ~t in B.
When defining a function f(yi, ~x;~a) by safe recursion

on notation from g and hi, the value f(y, ~x;~a) is in a
safe position of hi (right-side of the semicolon); and a
function having safe variables cannot be substituted into
a normal position of any other function, according to the
definition of safe composition. Moreover, normal variables
can be moved into a safe position, but not viceversa. By
constraining recursion and composition in such a way, class
B results to be equivalent to the class of polynomial time
computable functions.

III. TEMPLATE REPRESENTATIONS OF SOME POLYTIME
FUNCTIONS

We show how to represent some polytime computable
functions by means of template metaprogramming, imposing
some restrictions on the role of the template arguments,
following the mechanism introduced in [2]. Functions ⊕ and
⊗ can be expressed by safe recursion as follows:{

⊕(0;x) = x
⊕(y + 1;x) = succ(;⊕(y;x)).{
⊗(0; a) = 0
⊗(b+ 1; a) = ⊕(a;⊗(b; a)).

The recursive call ⊗(b; a) is assigned to the safe variable
x of ⊕, and one cannot re-assign this value to a normal
variable of ⊕ (by definition 7, previous section, one cannot
assign a function with safe variables to a normal position).
For this reason, the following definition of ⊗ and both
definitions of ↑ are not allowed in B.{

⊗(0; a) = 0
⊗(b+ 1; a) = ⊕(⊗(b; a); a).{
↑ (; 0, x) = 1
↑ (; y + 1, x) = ⊗(x; ↑ (; y, x)).{
↑ (; 0, x) = 1
↑ (; y + 1, x) = ⊗(↑ (; y, x);x).
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When defining the C++ templates that represent the previ-
ous three functions (or, in general, functions in B), we have
to mimic the normal/safe behaviour by putting beside each
variable a two-value flag; flags’ values are defined according
to the following rules:

1) each flag is equal to normal, initially;
2) flags beside variables assigned with recursive calls are

changed to safe;
3) a compiler error must be generated whenever a vari-

able labelled with a safe flag is used as principal
variable of a recursion; this is done by adding a
negative specialization (see below for its definition).

The template representation of ⊕ is the following (for
sake of conciseness, we use enumeration values instead of
typedef typename definitions, and integers instead of their
class template representation):
]define normal 0;
]define safe 1;

template<int Y, int flagy, int X, int flagx> class sum
{enum {result= 1+sum<Y-1, flagy, X, flagx>::result };};

template<int flagy, int X, int flagx>
class sum<0, flagy, X, flagx> {enum {result= X };};

template<int Y, int X, int flagx>
class sum<Y, safe, X, flagx>
{enum {result= sum<Y, safe, X, flagx>::result };};

The instruction sum<2,normal,3,normal>::result re-
turns the expected value, by recursively instantiating the
first template sum for the values <2,3> and <1,3>, until
<0,3> is reached (we omit here the flags); this value
matches the second specialized template, which returns 3.
The third template is introduced to avoid the substitution of
other recursive calls or functions into variable Y, according
to previous rule 3. This specialization is in the general form

template <args> class error <spec-args>
{enum {result= error<spec-args>::result };};

and in this case the compiler stops, producing the error
’result’ is not a member of type ’error<spec-args>’. The
template representation of ⊗ is the following:

template<int Y, int flagy, int X, int flagx> class prod
{enum {result=
sum<X,flagx, prod<Y-1, flagy, X, flagx>::result, safe

>::result};};

template<int flagy, int X, int flagx>
class prod<0, flagy, X, flagx> {enum {result= 0};};

template<int Y, int X, int flagx>
class prod<Y, safe, X, flagx>
{enum {result= prod<Y, safe, X, flagx>::result};};

By rule 2, the flag associated with the recursive
call of prod which occurs into sum is switched to
safe, and by rule 3, the last template specializa-
tion is introduced to prevent the programmer from
assigning another recursive call or function to Y.
The instruction prod<2,normal,3,normal>::result instan-
tiates the first template sum for values 3, normal,
prod<1,normal,3,normal>::result, and safe, respectively;
thus, the product is recursively evaluated. As shown above,
one can also define prod by exchanging the arguments of
sum, that is by assigning the recursive call of prod to the
safe variable of sum, as follows:

template<int Y, int flagy, int X, int flagx> class prod
{enum {result=
sum< prod<Y-1, flagy, X, flagx>::result, safe, X, flagx

>::result};};

The instruction prod<2,normal,3,normal>::result
instantiates the template sum for values prod<1,normal,
3,normal>::result, safe, 3, and normal, respectively; this
instantiation matches the values of the third template of
sum’s definition, and a compile-time error is produced (as
expected, since we are trying to assign the recursive call
of prod to the principal variable of sum). The template
representation of the exponential function is

template<int Y, int flagy, int X, int flagx> class esp
{enum {result=
prod<esp<Y-1, flagy, X, flagx>::result, safe, X, flagx

>::result};};

template<int flagy, int X, int flagx>
class esp<0, flagy, X, flagx>
{enum {result=1 };};

template<int Y, int X, int flagx>
class esp<Y, safe, X, flagx>
{enum {result= esp<Y, safe, X, flagx>::result};};

The instruction esp<2,normal,3,normal>::result in-
stantiates the template prod for the values esp<1, normal,
3, normal>::result, safe, 3, and normal, respectively;
this matches the third template of prod’s definition, and a
compiler error ’result’ is not a member of type ’prod<1,
safe, 3, normal>’ is produced. If one exchanges the roles
of prod’s variables, the following template is written:

template<int Y, int flagy, int X, int flagx> class esp
{enum {result=
prod<X, flagx, esp<Y-1, flagy, X, flagx>::result, safe

>::result};};

In this case the error occurs in the third template of
sum’s definition. In what follows, we will show that every
partial recursive function in B can be represented by C++
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templates that follow rules 1-3. If the specific error message
is generated when compiling a function type F, this means
that F represents a function f in a way that is not class B.

IV. TEMPLATE REPRESENTATION OF POLYTIME

In this section we define the Polytime language. Let nor-
mal and safe be notations for constants 0 and 1, respectively
(this means, in C++ code, ]define normal 0 and ]define
safe 1). Binary number types represent binary numbers, and
are constructed recursively. We use the typedef typename
mechanism (following [3]) instead of enumerated values;
this allows us to write natural definitions of binary succes-
sors and predecessor and, in what follows, of composition
and recursion on notation.

Number types representing the constant function 0 and bi-
nary successors of any number type T are in Figure 1; those
representing the binary predecessor of any number type T are
in Figure 2. According to these definitions, and intuitively
using the composition template defined in Figure 4, the
number 1101 can be represented by suc1 <suc0 <suc1 <
suc1 <zero,safe>,safe>,safe>,safe>. The predeces-
sor of any type number T is represented by pre<T,
safe>::result. Each specialization has to implement the
safe/normal behaviour on templates arguments (that is, on
functions’ variables). For example, it is mandatory in our
system that the binary successors and the predecessor oper-
ate on safe arguments: thus, we add negative specializations
to templates suc0, suc1 and pre, forcing them to produce a
significant compiler error when the flag associated with the
argument T is normal.

template<> class zero { typedef zero result;}

template<class T> class suc0 <T, safe>
{typedef suc0 <T, safe> result;};

template<class T> class suc1 <T, safe>
{typedef suc1 <T, safe> result;};

template<class T> class suc0 <T, normal>
{typedef typename suc0 <T, normal>::result result;}

template<class T> class suc1 <T, normal>
{typedef typename suc1 <X, normal>::result result;}

Figure 1: Templates for zero and binary successors

Templates for projection and conditional are defined in
Figure 3. The first three specializations in myif definition are
introduced to handle the cases in which the first argument
C ends with 1 or 0, and the three arguments are safe,
simultaneously. The fourth specialization returns an error
when one or more arguments are normal.

The class template F that represents the safe composition
of templates H, R and T is defined in Figure 4. Flags
associated with R and T into H have values normal and

template<> class pre<zero,safe> {typedef zero result;};

template<class T> class pre<suc0 <T, safe>, safe>
{typedef T result;}

template<class T> class pre<suc1 <T, safe>, safe>
{typedef T result;}

template<class T> class pre<suc0 <T, safe>, normal>
{typedef typename pre<suc0 <T, safe>, normal>

::result result;}

template<class T> class pre<suc1 <T, safe>, normal>
{typedef typename pre<suc1 <T, safe>, normal>

::result result;}

Figure 2: Templates for binary predecessor

template< class X1, int F1, . . ., class Xn, int Fn > class Πj

{typedef Xj result }

template<class C, class X, class Y> class myif
<suc1 <typename pre<C,safe>::result,safe>, safe,

X, safe, Y, safe>
{typedef Y result;};

template<class C, class X, class Y> class myif
<suc0 <typename pre<C,safe>::result, safe>, safe,

X, safe, Y, safe>
{typedef X result;};

template<class C, class X, class Y>
class myif <zero, safe, X, safe, Y, safe> {typedef X result;};

template<class C, int FC , class X, int FX , class Y, int FY >
class myif
{typedef typename if<C, FC , X, FX , Y, FY >

:: result result;};

Figure 3: Templates for projections and conditional

safe, respectively; this implies that the value of T cannot
be used by H as a principal variable of a recursion. The
last specialization produces a compiler error if the variable
X in R is safe, and R is used into H, simultaneously (X
can be assigned with a safe value into R, harmlessly; but
this cannot be done when R is substituted into a normal
variable of H). This definition matches the definition of safe
composition given in section II-C, and can be extended to
the general case, when X and A are tuples of values, and R
and T are tuples of templates.

We introduce now an extended definition of recursion,
w.r.t. the definition given in [2]. A function f is defined by
n-ple safe recursion on notation from functions h, g1 . . . gn,
m1 . . .mn if{
f(~y, ~x;~a) = gi(~x;~a) if one of yi is 0
f(~y, ~x;~a) = h( ~m(y), ~x; f( ~m(y), ~x;~a)) otherwise
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template<template<class X, int FX > class R,
class X, int FX , class A, int FA > class F
{typedef typename
H< typename R<X, FX >::result, normal,

typename T<X, FX , A, FA >::result, safe
>::result result; };

template<template <class X> class R, class X, int FX ,
class A, int FA >

class F <R<class X, safe>, X, FX , A, FA >
{typedef typename F<R<class X, safe>, X, FX , A, FA >

::result result; };

Figure 4: Templates for safe composition

where ~m(y) stands for the sequence m1(y1), . . . ,mn(yn),
and each mi is a sequence of binary predecessors.

Similarly, the class template F that represents the n-ple
safe recursion on notations from templates H, G1, . . .,
Gn and M1, . . ., Mn is defined in Figure 5, where each
Mi (i = 1 . . . n) is a sequence of predecessors applied
to a binary number type which is not zero, and where
we write template<X1, F1, . . ., Xn, Fn > instead of
template<class X1, int F1, . . ., class Xn, int Fn >, for
sake of simplicity. This definition can be extended to the
general case, when X and A are tuples of variables.

template <Y1, F1, . . ., Yn, Fn, X, FX , A, FA > class F
{typedef typename
H<typename M1 <Y1 >::result, F1,

. . .
typename Mn <Yn >::result, Fn,
X, FX , A, FA,
typename F<typename M1 <Y1 >::result, F1,

. . .
typename Mn <Yn >::result, Fn,
X, FX , A, FA >::result,

safe>::result result;};

template <Y1, F1, . . ., Yi−1, Fi−1, Fi,
Yi+1, Fi+1, . . . Yn, Fn, X, FX , A, FA >

class F<Y1, F1, . . ., Yi−1, Fi−1, zero, Fi,
Yi+1, Fi+1, . . . Yn, Fn, X, FX , A, FA >

{typedef typename Gi <X, FX , A, FA >::result result;};

template <Y1, F1, . . ., Yi−1, Fi−1, Yi,
Yi+1, Fi+1, . . . Yn, Fn, X, FX , A, FA >

class F<Y1, F1, . . ., Yi−1, Fi−1, Yi, safe,
Yi+1, Fi+1, . . . Yn, Fn, X, FX , A, FA >

{typedef typename F<Y1,F1,. . .,Yi−1,Fi−1,Yi,safe,
Yi+1,Fi+1,. . . Yn,Fn,X,FX ,A,FA >::result result;};

Figure 5: Templates for n-ple safe recursion

We set to safe the value of the flag associated with the
recursive call of F into H (rule 2, Section III); we specialize
F to compute the base cases of the recursion (where one of
the templates Gi has to be computed); and we introduce the

last n templates because the programmer is not allowed to
assign a recursive call to one of the principal variables Y1,
. . ., Yn (rule 3).

We define the language Poly-Temp as the smallest class of
templates containing zero, suc0, suc1, pre, myif, Πj and
closed under safe composition and n-ple safe recursion on
notations. The polynomial-time functions will be represented
exactly by those templates in Poly-Temp with all normal
flags.

V. Poly-Temp CAPTURES POLYTIME

In this section, we state that every function computable
within polynomial time by a Turing machine can be ex-
pressed in Poly-Temp; in order to do this, we recall that
Polytime is captured by class B [2], and we prove that
B is represented by templates in Poly-Temp (Theorem
5.1). Conversely, we show that any template in Poly-Temp
is polynomial-space bounded (Theorem 5.2) and hence
polynomial-time bounded (Theorem 5.3).

Theorem 5.1: For each function f in B, there exists a
C++ template program F such that F computes f (at compile
time).

Proof: (by induction on the construction of f ). We
denote binary number types with the capital letters X, Y,
A, C, and the related flags with FX , FY , FA, FC ; we write
(1) template<X, FX , Y, FY > instead of template<class
X, int FX , class Y, int FY >; and (2) p<X> instead of
typename pre<X,safe>::result, for sake of simplicity.

Base. Templates defined in section IV (constant, binary
successors, predecessor, conditional and projections) triv-
ially compute the basic functions of B.

Step. Case 1. Let f be defined by safe recursion on nota-
tions from functions g(x; a), h0(y, x; a, s) and h1(y, x; a, s),
that are computed, by the inductive hypotheses, by templates
G, H0 and H1, respectively. f is represented in Poly-Temp
by the following template F:

template <Y, FY , X, FX , A, FA > class F
{typedef typename myif<Y, safe

typename H0 <p<Y>, FY , X, FX , A, FA,
typename
F<p<Y>, FY , X, FX , A, FA >::result,
safe>::result, safe

typename H1 <p<Y>, FY , X, FX , A, FA,
typename
F<p<Y>, FY , X, FX , A, FA >::result,
safe>::result, safe

>::result result };

template <FY , X, FX , A, FA >
class F<zero, FY , X, FX , A, FA >
{typedef typename G<X, FX , A, FA >::result result};

36

COMPUTATION TOOLS 2011 : The Second International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-159-5

                            42 / 44



template <Y, X, FX , A, FA >
class F<Y, safe, X, FX , A, FA >
{typedef typename F<Y, safe, X, FX , A, FA >

::result result};

F is obtained by n-ple safe recursion (Figure 5) and safe
composition (Figure 4) from templates if, H0 and H1.

Case 2. Let f be defined by safe composition from
functions h(p; q), r(x; ) and t(x; a), that are computed,
by the inductive hypotheses, by templates H, R and T,
respectively. The template F computing f is defined in
Figure 4.

To prove that any template in our language is polynomial-
time bounded, we find a polynomial-space bound for the
length of any template belonging to Poly-Temp. For sake of
brevity, we omit the flags and we write safe inputs to the
right of a semicolon, and normal ones to the left, following
the notation used by Bellantoni and Cook. We also use
“(. . .)" instead of “< . . . >". This implies that if a template
F is defined by n-ple safe recursion from templates H, G1,
. . ., Gn and M1, . . ., Mn, we write

F(Y,X; A) = Gi(X; A) if one of Yi is zero
= H(M(Y),X; A,F(M(Y),X; A)) otherwise

where M(Y) stands for M1(Y1), . . . ,Mn(Yn), and each Mi

is a sequence of binary predecessors.
Theorem 5.2: For each template F in Poly-Temp, there

exists a polynomial qF such that

|F(X; A)| ≤ qF(|X|) + max
i
|Ai|

where X and A are the variables labelled with normal and
safe, respectively, and qF(|X|) stands for qF(|X1|, . . . , |Xn|).

Proof: (by induction on the construction of F ).
Base. If F is a constant, binary successors, predecessor,

conditional or projection template, then we have |F(X; A)| ≤
1 +

∑
i |Xi|+ maxi |Ai|.

Step. Case 1. If F is defined by n-ple safe recursion we
have, by induction hypotheses, the polynomials qG1

, . . . , qGn

and qH bounding G1, . . . ,Gn and H, respectively; that is,

|F(. . . , zero, . . . ,X; A)| ≤ qGj (|X|) + maxi |Ai|, and
|F(Y,X; A)| ≤
qH(|M(Y)|, |X|) + max(maxi |Ai|, |F(M(Y),X; A)|).

Define qF such that

qF(|Y|, |X|) = |Y| · qH(|Y|, |X|) +
∑

jqGj
(|X|).

We have that |F(. . . , zero, . . . ,X; A)| ≤ qF(|zero|, |X|) +
maxi(Ai). We also have

|F(Y,X; A)| = |H(M(Y),X; A,F(M(Y),X; A))|
≤ qH(|M(Y)|, |X|)+

max(maxi |Ai|, |F(M(Y),X; A)|)
≤ qH(|M(Y)|, |X|)+

max(maxi |Ai|, qF(|M(Y)|, |X|) + maxi |Ai|)
≤ qH(|M(Y)|, |X|)+

qF(|M(Y)|, |X|) + maxi |Ai|
≤ qH(|M(Y)|, |X|)+
|M(Y)| · qH(|M(Y)|, |X|) +

∑
jqGj

(|X|)+
+ maxi |Ai|

≤ (|M(Y)|+ 1) · qH(|M(Y)|, |X|)+∑
jqGj

(|X|) + maxi |Ai|
≤ |Y| · qH(|M(Y)|, |X|)+∑

jqGj
(|X|) + maxi |Ai|

≤ |Y| · qH(|Y|, |X|) +
∑

jqGj
(|X|) + maxi |Ai|

≤ qF(|Y|, |X|) + maxi |Ai|

Case 2. If f is defined by safe composition we have, by
induction hypotheses, qH, qR and qT bounding H, R and T,
respectively; we have

|F(X; Y)| = |H(R(X; ); T(X; Y))|
≤ qH(|R(X; )|) + |T(X; Y)|
≤ qH(qR(|X|)) + |T(X; Y)|
≤ qH(qR(|X|)) + qT(|X|) + maxj |Yj |

Let qF(|X|, |Y|) be qH(qR(|X|))+qT(|X|). We have the result.

Note that templates in Poly-Temp are polynomially time-
bounded too, when evaluated. Indeed, base templates (zero,
Πj , suc0, suc1, if) are bounded by the length of their argu-
ments; for composition templates, observe that the composi-
tion of two polynomial-time templates is still a polynomial
time template; for recursion templates, it is well known that
recursion on notation can be executed in polynomial time if
the result of the recursion is polynomially length-bounded
and the step and base functions are polytime, as in our case.
Thus, we have

Theorem 5.3: Each template F in Poly-Temp is evaluated
in polynomial time.

VI. CONCLUSIONS AND FURTHER WORK

In summary, we have defined a restricted metalanguage by
means of C++ templates, and we have shown that it captures
at compile time the set of polynomial-time computable func-
tions. As we mentioned in the Introduction, a contribution
of this result is that it could provide the theoretical base
for the construction of tools for the formal certification of
upper bounds for metaprogramming time consumption. As
an anonymous referee says, "normal" meta-programs do not
follow the restriction imposed by our metalanguage; thus, a
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sensible prosecution of this work could be the analysis of
transformation methods from "normal" metaprograms to "re-
stricted" ones. Nevertheless, even if our template language
is admissible C++, there is no doubt that programming in
it should be hard, due to the extra annotations encoded as
templates parameters; one may think to hide them into traits
[18] containing representation of numbers and of related
flags; in this way we’d be able to obtain a neater language.
However, obscure error messages from C++ compilers could
inhibit this as a workable approach. The programmer is
not able to understand why and where in the program he
used a recursive variable in the wrong way; static interfaces
techniques [17] could help us to provide a clearer meaning
to error messages.

Even if this is a clumsy characterization of a complexity
class, it is worth noting that the three rules introduced
above can produce polynomial time bounded templates when
applied to all kinds of recursions, not only to primitive recur-
sion; it seems that our approach improves the understanding
of polynomial-time computation’s nature, allowing us to use
more expressive recursive schemes.
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