
COMPUTATION TOOLS 2018

The Ninth International Conference on Computational Logics, Algebras,

Programming, Tools, and Benchmarking

ISBN: 978-1-61208-613-2

February 18 - 22, 2018

Barcelona, Spain

COMPUTATION TOOLS 2018 Editors

Glenn Luecke, Iowa State University, USA

Jaime Lloret Mauri, Polytechnic University of Valencia, Spain

 1 / 41

COMPUTATION TOOLS 2018

Forward

The Ninth International Conference on Computational Logics, Algebras, Programming, Tools,
and Benchmarking (COMPUTATION TOOLS 2018), held between February 18 - 22, 2018 -
Barcelona, Spain, continued a series of events dealing with logics, algebras, advanced
computation techniques, specialized programming languages, and tools for distributed
computation. Mainly, the event targeted those aspects supporting context-oriented systems,
adaptive systems, service computing, patterns and content-oriented features, temporal and
ubiquitous aspects, and many facets of computational benchmarking.

The conference had the following tracks:

 Advanced computation techniques

 Tools for distributed computation

Similar to the previous edition, this event attracted excellent contributions and active
participation from all over the world. We were very pleased to receive top quality
contributions.

We take here the opportunity to warmly thank all the members of the COMPUTATION TOOLS
2018 technical program committee, as well as the numerous reviewers. The creation of such a
high quality conference program would not have been possible without their involvement. We
also kindly thank all the authors that dedicated much of their time and effort to contribute to
COMPUTATION TOOLS 2018. We truly believe that, thanks to all these efforts, the final
conference program consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations and sponsors. We also gratefully thank the members of the COMPUTATION
TOOLS 2018 organizing committee for their help in handling the logistics and for their work that
made this professional meeting a success.

We hope COMPUTATION TOOLS 2018 was a successful international forum for the exchange of
ideas and results between academia and industry and to promote further progress in the area
of computational logics, algebras, programming, tools, and benchmarking. We also hope that
Barcelona provided a pleasant environment during the conference and everyone saved some
time for exploring this beautiful city.

 2 / 41

COMPUTATION TOOLS 2018 Chairs

COMPUTATION TOOLS 2018 Steering Committee

Ricardo Rocha, University of Porto, Portugal
Cristian Stanciu, University Politehnica of Bucharest, Romania
Ekaterina Komendantskaya, Heriot-Watt University, UK
Ralph Müller-Pfefferkorn, Technische Universität Dresden, Germany
Laura Carnevali, University of Florence, Italy

COMPUTATIONAL TOOLS 2018 Industry/Research Advisory Committee

Miroslav Velev, Aries Design Automation, USA
Cornel Klein, Siemens AG, Germany
Laura Nenzi, TU Wien, Austria
Cecilia Esti Nugraheni, Parahyangan Catholic University, Indonesia
Azahara Camacho, Carbures Defense, Spain
Keiko Nakata, SAP SE - Potsdam, Germany

 3 / 41

COMPUTATION TOOLS 2018

Committee

COMPUTATION TOOLS 2018 Steering Committee

Ricardo Rocha, University of Porto, Portugal
Cristian Stanciu, University Politehnica of Bucharest, Romania
Ekaterina Komendantskaya, Heriot-Watt University, UK
Ralph Müller-Pfefferkorn, Technische Universität Dresden, Germany
Laura Carnevali, University of Florence, Italy

COMPUTATIONAL TOOLS 2018 Industry/Research Advisory Committee

Miroslav Velev, Aries Design Automation, USA
Cornel Klein, Siemens AG, Germany
Laura Nenzi, TU Wien, Austria
Cecilia Esti Nugraheni, Parahyangan Catholic University, Indonesia
Azahara Camacho, Carbures Defense, Spain
Keiko Nakata, SAP SE - Potsdam, Germany

COMPUTATION TOOLS 2018 Technical Program Committee

Davide Arcelli, University of L'Aquila, Italy
Lorenzo Bettini, DISIA - Università di Firenze, Italy
Ateet Bhalla, Independent Consultant, India
Narhimene Boustia, University Saad Dahlab, Blida 1, Algeria
Azahara Camacho, Carbures Defense, Spain
Laura Carnevali, University of Florence, Italy
Emanuele Covino, Università degli Studi di Bari Aldo Moro, Italy
Marc Denecker, KU Leuven, Belgium
David Doukhan, Institut national de l'audiovisuel (Ina), France
António Dourado, University of Coimbra, Portugal
Andreas Fischer, Technische Hochschule Deggendorf, Germany
Tommaso Flaminio, DiSTA - University of Insubria, Italy
Khalil Ghorbal, INRIA, Rennes, France
George A. Gravvanis, Democritus University of Thrace, Greece
Fikret Gurgen, Bogazici University - Istanbul, Turkey
Hani Hamdan, Université de Paris-Saclay, France
Cornel Klein, Siemens AG, Germany
Ekaterina Komendantskaya, Heriot-Watt University, UK
Roderick Melnik, Wilfrid Laurier University, Canada
Ralph Müller-Pfefferkorn, Technische Universität Dresden, Germany
Keiko Nakata, SAP SE, Germany

 4 / 41

Adam Naumowicz, University of Bialystok, Poland
Laura Nenzi, TU Wien, Austria
Cecilia Esti Nugraheni, Parahyangan Catholic University, Indonesia
Javier Panadero, Open University of Catalonia, Spain
Mikhail Peretyatkin, Institute of mathematics and mathematical modeling, Almaty, Kazakhstan
Alberto Policriti, Università di Udine, Italy
Enrico Pontelli, New Mexico State University, USA
Ricardo Rocha, University of Porto, Portugal
Patrick Siarry, Université Paris-Est Créteil, France
Cristian Stanciu, University Politehnica of Bucharest, Romania
Martin Sulzmann, Karlsruhe University of Applied Sciences, Germany
James Tan, SIM University, Singapore
Miroslav Velev, Aries Design Automation, USA
Anton Wijs, Eindhoven University of Technology, The Netherlands
Marek B. Zaremba, Université du Québec, Canada

 5 / 41

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 6 / 41

Table of Contents

Diagonalization and the Complexity of Programs
Emanuele Covino and Giovanni Pani

1

HPC-Bench: A Tool to Optimize Benchmarking Workflow for High Performance Computing
Gianina Alina Negoita, Glenn Luecke, Shashi Gadia, and Gurpur Prabhu

6

License Plates Recognition of Mexican Private Vehicles
Carlos Hiram Moreno-Montiel, Benjamin Moreno-Montiel, Nicolas Trejo, and Martha Soto

13

Deep Learning: A Tool for Computational Nuclear Physics
Gianina Alina Negoita, Glenn R. Luecke, James P. Vary, Pieter Maris, Andrey M. Shirokov, Ik Jae Shin,
Youngman Kim, Esmond G. Ng, and Chao Yang

20

A Method for Recovering Speech Signals Heavily Masked by Music Based on the Affine Projection Algorithm
Robert Alexandru Dobre, Constantin Paleologu, Cristian Negrescu, and Dumitru Stanomir

29

Powered by TCPDF (www.tcpdf.org)

 1 / 1 7 / 41

Diagonalization and the Complexity of Programs
Emanuele Covino and Giovanni Pani

Dipartimento di Informatica
Università di Bari, Italy

Email: emanuele.covino@uniba.it, giovanni.pani@uniba.it

Abstract—Starting from the definitions of predicative re-
cursion and constructive diagonalization, we recall our spe-
cialized programming language that provides a resource-free
characterization of register machines computing their output
within polynomial time O(nk), and exponential time O(nnk

),
for each finite k. We discuss the possibility of extending this
characterization to a transfinite hierarchy of programs that
captures the Grzegorczyk hierarchy of functions at elementary
level. This is done by means of predicative operators, contrasting
to previous results. We discuss the feasibility and the complexity
of our diagonalization operator.

Index Terms—Hierarchies of complexity classes; Predicative
recursion; Constructive diagonalization.

I. INTRODUCTION AND POSITION OF THE PROBLEM

In [1], the Grzegorczyk’s classes of functions En (n =
0, 1, . . .), have been introduced, with the property that∪

n<ω En is the class of primitive recursive functions. In
order to define these classes, the hierarchy functions En have
to be introduced. They are essentially repeated iterations of
the successor function, i.e., E0(x, y) = x + y, E1(x) =
x2 + 2, En+2(0) = 2, En+2(x + 1) = En+1(En+2(x)).
Grzegorczyk’s classes can be defined as follows. E0 is the
class whose initial functions are the zero, successor and the
projection functions, and is closed under composition and
limited recursion. En+1 is defined similarly, except that the
function En is added to the list of the initial functions. En

is called the n-th Grzegorczyk class. Other sequences of
hierarchy functions have been used in literature, for instance
the Ackermann function. The reader can find properties and
theorems in [2]; we recall that the class E3 is the class of
the elementary functions E ′ (that is, the class of functions
containing the successor, projections, zero, addition, multipli-
cation, subtraction functions, and closed under composition
and bounded sum and product.)

Harmonizations of significant complexity classes with the
Grzegorczyk classes have been obtained by Leivant [3], Niggl
[4], and Bellantoni and Niggl [5]. In these papers, the class
of polynomial-time computable functions is characterized
by means of different definitions of predicative recursion
[6] or ramified recurrence [7], and starting from a set of
initial functions. Note that a predicative definition of a
recursive function is based on the idea that functions have
two kind of variables: those whose values are known entirely
(and which can be recursed upon, for instance), and those

whose values are still being computed (and are accessible
in a more restricted way, on the least significant digits, for
instance); these two types of variables are called safe and
normal in [6] (dormant and normal in [8]); roughly speaking,
normal variables are used only for recursive calls, while safe
variables are used only for substitution. This allows to discard
explicitly bounded schemes (like the limited recursion) to
characterize classes of functions.

In [5], the classes En are captured by closure under
composition of functions, and by counting the number of
infringements to the predicative principle made into the
recursive definitions. This is an alternative approach to look at
ramification: rather than controlling the type of the variables,
and how they are used in the definition of a recursive
function, first a definition of a function is given, and then
one examines it in order to see, or to count, how many levels
of impredicative definitions are used. Even if this approach
represents a detailed analysis of the effects of nesting re-
cursive definitions, we believe that counting the number of
violations to the predicative principle is as impredicative as
using limited recursion, or as adding a hierarchy function to
the list of initial functions.

In a previous paper [9], we introduced our version of pred-
icative recursion, together with a constructive diagonalization
operator; they allow us to define a hierarchy of programs
Tk (k = 0, 1, . . .), such that each program defined in Tk
is computable by a register machine within time bounded
by a polynomial nk; and to extend this hierarchy up to the
programs computable within exponential-time bound. In this
contribution we claim that our approach can be extended
further, and that our hierarchy reaches the level 3 of the
Grzegorczyk hierarchy. We address questions raised about
the complexity and feasibility of the diagonalization, and we
compare it to a recent different approach [10].

In Section II, we recall the definition of our programming
language, and the results holding on the finite levels of
our hierarchy of programs. In Section III, we introduce the
definition of diagonalization, we discuss its feasibility, and
we recall the result on programs with exponential-time com-
plexity. In Section IV, we extend the hierarchy of programs
up to the elementary level of the Grzegorczyk hierarchy.
In Section V, we compare our approach to Marion’s [10].
Conclusions and further work are in Section VI.

1Copyright (c) IARIA, 2018. ISBN: 978-1-61208-613-2

COMPUTATION TOOLS 2018 : The Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 8 / 41

II. BASIC INSTRUCTIONS, COMPOSITION OF PROGRAMS
AND RECURSION

In this section, we recall the basic instructions of our
programming language, together with the definition schemes
of composition and recursion over programs we introduced
in [9]. We then recall the definition of our finite hierarchy of
programs, which captures the polynomial-time computable
functions.

The language is built over lists of binary words, with
the symbol © acting as a separator between each word. B
denotes the alphabet {0, 1}, and a, b, a1, . . . denote elements
of B; U, V, . . . , Y denote words over B. r, s, . . . stand for
lists in the form Y1©Y2© . . .©Yn. ϵ is the empty word. The
i-th component (s)i of a list s = Y1©Y2© . . .©Yn is Yi.
|s| is the length of the list s, that is the overall number of
symbols occurring in s.

We write x, y, z for the variables used in a program, and
we write u for one among x, y, z. Programs are denoted with
letters f, g, h, and we write f(x, y, z) for the application of
the program f to variables x, y, z, where some among them
may be absent. In what follows, the length lh(f) of a program
f is the number of basic instructions and defining schemes
occurring in its definition.

The basic instructions allow us to manipulate lists of
words, adding digits to (or erasing parts of) each component;
the so-called simple schemes allow us to change the name of
some among the variables and to select between programs,
according to the value of the variables. The basic instructions
are:

1) the identity I(u) that returns the value s assigned to u;
2) the constructors Ca

i (s) that add the digit a at the right
of the last digit of (s)i, with a = 0, 1 and i ≥ 1;

3) the destructors Di(s) that erase the rightmost digit of
(s)i, with i ≥ 1.

Constructors Ca
i (s) and destructors Di(s) leave the input s

unchanged if it has less than i components. For instance, for
s = 01©11©©00, we have that |s| = 9, and (s)2 = 11; we
also have C1

1(01©11) = 011©11, D2(0©0©) = 0©©, and
D2(0©©) = 0©©.

Given the programs g and h, f is defined by simple
schemes if it is obtained by:

1) renaming of x as y in g, that is, f is the result of the
substitution of the value of y to all occurrences of x
into g. Notation: f =RNMx/y(g);

2) renaming of z as y in g, that is, f is the result of the
substitution of the value of y to all occurrences of z
into g. Notation: f =RNMz/y(g);

3) selection in g and h, when for all s, t, r we have

f(s, t, r) =

 g(s, t, r) if the rightmost digit
of (s)i is b

h(s, t, r) otherwise,

with i ≥ 1 and b = 0, 1. Notation: f =SELb
i (g, h).

Simple schemes are denoted with SIMPLE. For instance, if
f is defined by RNMx/y(g) we have that f(t, r) = g(t, t, r).
Similarly, f defined by RNMz/y(g) implies that f(s, t) =
g(s, t, t). For s = 00©1010, and f =SEL0

2(g, h), we have
that f(s, t, r) = g(s, t, r), since the rightmost digit of (s)2
is 0.

Given the programs g and h, the program f is defined
by safe composition of h and g in the variable u if it is
obtained by the substitution of h to u in g, if u = x or
u = y; the variable x must be absent in h, if u = z. Notation:
f =SCMPu(h, g). The rationale behind this definition will be
clear as soon as we will define the safe recursion scheme.

A modifier is obtained by the safe composition of a
sequence of constructors and a sequence of destructors, and
the class T0 is defined by closure of modifiers under selection
and safe composition. Notation: T0=(modifier; SCMP, SEL).
All programs in T0 modify their inputs according to the result
of some test performed over a fixed number of digits.

Given the programs g(x, y) and h(x, y, z), the program
f(x, y, z) is defined by safe recursion in the basis g and in
the step h if for all s, t, r we have{

f(s, t, a) = g(s, t)
f(s, t, ra) = h(f(s, t, r), t, ra),

with a ∈ B. Notation: f =SREC(g, h).
In particular, f(x, z) is defined by iteration of h(x) if for all
s, r we have {

f(s, a) = s
f(s, ra) = h(f(s, r)).

with a ∈ B. Notation: f =ITER(h). We write h|r|(s) for
ITER(h)(s, r) (i.e., the |r|-th iteration of h on s).

We recall that x, y and z are the auxiliary variable, the
parameter, and the principal variable of a program obtained
by means of the previous recursion scheme, respectively.
Note also that, according to the previous definitions, the
renaming of z as x is not allowed, and if the step program of
a recursion is defined itself by safe composition of programs
p and q, no variable x (i.e., no potential recursive calls)
can occur in the function p, when p is substituted into the
principal variable z of q. These two restrictions imply that
the step program of a recursive definition never assigns the
recursive call to the principal variable. This is the key to the
polynomial-time complexity bound intrinsic to our programs,
and fulfills the predicative criteria.

Given the previous basic instructions and definition
schemes, we are able to define the hierarchy of classes of
programs Tk, with k < ω, as follows:

1) ITER(T0) denotes the class of programs obtained by
one application of iteration to programs in T0;

2) T1 is the class of programs obtained by closure under
safe composition and simple schemes of programs in
T0 and programs in ITER(T0);
Notation: T1=(T0, ITER(T0); SCMP, SIMPLE);

2Copyright (c) IARIA, 2018. ISBN: 978-1-61208-613-2

COMPUTATION TOOLS 2018 : The Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 9 / 41

3) Tk+1 is the class of programs obtained by closure under
safe composition and simple schemes of programs in
Tk and programs in SREC(Tk), with k ≥ 1;
Notation: Tk+1=(Tk, SREC(Tk); SCMP, SIMPLE).

In [11] and [9] we proved the following two theorems
using as a model of computation the register machines
introduced by Leivant [7] . We have that

1) each program f(s, t, r) defined in Tk can be computed
by a register machine within time bounded by the
polynomial |s|+ lh(f)(|t|+ |r|)k, with k ≥ 1;

2) a register machine which computes its output within
time O(nk) can be simulated by a program f in Tk,
with k ≥ 1.

The previous result allowed us to prove the following
Theorem 2.1: A program f belongs to Tk if and only if f

is computable by a register machine within time O(nk), with
k ≥ 1.

We recall that register machines are polytime reducible to
Turing machines; thus, the sequence of classes Tk captures
PTIMEF (see [6] and [7] for similar characterizations of this
complexity class).

III. DIAGONALIZATION AND EXPONENTIAL-TIME
COMPUTABLE PROGRAMS

We recall the definition of structured ordinals and of hier-
archies of slow growing functions, as reported in [12]. Then,
we give the definition of diagonalization at a given limit
ordinal λ, based on the sequence of classes Tλ1 , . . . , Tλn , . . .
associated with the fundamental sequence of λ. A similar
operator can be found in [13], and we will discuss later
the relation between our diagonalization and its analogue in
[10]. Using safe recursion and diagonalization, we are able to
define a transfinite hierarchy of programs characterizing the
classes of register machines computing their output within
time between O(nk) and O(nnk

) (with k ≥ 1 and n the
length of the input), that is, the computations with time
complexity between polynomial- and exponential-time.

Following [12], we denote limit ordinals with greek small
letters α, β, λ, . . ., and we denote with λi the i-th element
of the fundamental sequence assigned to λ. For example,
ω is the limit ordinal of the fundamental sequence 1, 2, . . .;
and ω2 is the limit ordinal of the fundamental sequence
ω, ω2, ω3, . . ., with (ω2)k = ωk.

The slow-growing functions Gα : N → N are defined by
the recursion G0(n) = 0

Gα+1(n) = Gα(n) + 1
Gλ(n) = Gλn(n).

We slightly change the previous definition, and we define
the slow-growing functions Bα : N → N by the recursion B0(n) = 1

Bα+1(n) = nBα(n)
Bλ(n) = Bλn(n).

Note that Bk(n) = nk, Bω(n) = nn, Bω+k(n) = nn+k,
Bωk(n) = nn·k, Bωk(n) = nnk

, and Bωω (n) = nnn

;
moreover, we have that Bα+β(n) = Bα(n) · Bβ(n), and
that Gωα(n) = nGα(n) = Bα(n).

The finite hierarchy T0, T1, T2, . . . , Tk, . . ., captures the
register machines that compute their output with time
in O(1), O(n), O(n2), . . . , O(nk), . . ., respectively. Jumping
out of the hierarchy requires something more than safe
recursion. We already discussed in the Introduction the
approach presented in [5], that is, to define a ranking function
that counts the number of nested recursions infringing the
predicative definition of a program; a class of time-bounded
register machines can be associated to each level of the
ranking. On the other hand, given a limit ordinal λ, we
proposed in [9] a new operator that diagonalizes at level λ
over the classes Tλi , that is, that selects and iterates programs
in a previously defined class Tλi according to the length of
the input. There is no circularity in a program defined by
diagonalization, and we believe that this program isn’t less
predicative than a program defined by safe recursion. For
instance, at level ω, we select (and iterate i times) programs
in the classes Ti, where i is the length of the input; thus, the
first level of diagonalization captures the class of all register
machines whose computation is bounded by a polynomial.
By extending this approach to the next levels of structured
ordinals, we were able to reach the machines computing their
output within exponential time nnk

.
Given a limit ordinal λ with the fundamental sequence

λ0, . . . , λk, . . ., and given an enumerator program q such that
q(λi) = fλi , for each i, the program f(x, y) is defined by
diagonalization at λ if for all s, t

f(s, t) =ITER|t|(q(λ|t|))(s, t)

where{
ITER1(p)(s, t) = ITER(p)(s, t)
ITERk+1(p)(s, t) = ITER(ITERk(p))(s, t).

and fλi belongs to a previously defined class Cλi , for each
i. Notation: f =DIAG(λ). Note that the previous definition
requires that fλi ∈ Cλi , but there aren’t other requirements on
how the C’s classes are built. In what follows, we introduce
our transfinite hierarchy of programs, with an important
restriction on the definition of the C’s.

Given λ < ωω , Tλ is the class of programs obtained by
1) closure under safe composition and simple schemes of

programs in Tα and programs in SREC(Tα), if λ =
α+1; Notation: Tα+1=(Tα, SREC(Tα); SCMP, SIMPLE).

2) closure under simple schemes of programs obtained by
one application of diagonalization at λ, if λ is a limit
ordinal, with fλi ∈ Tλi , for each λi in the fundamental
sequence of λ. Notation: Tλ=(DIAG(λ); SIMPLE);

In [9] we proved that
1) each program f(s, t, r) defined in Tλ (λ < ωω) can be

computed by a register machine within time Bλ(n);

3Copyright (c) IARIA, 2018. ISBN: 978-1-61208-613-2

COMPUTATION TOOLS 2018 : The Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 10 / 41

2) a register machine which computes its output within
time O(Bλ(n)) can be simulated by a program f in
Tλ.

We then have that
Theorem 3.1: A program f belongs to Tα if and only if f

is computable by a register machine within time O(Bα(n)),
with α < ωω .

Two intertwined questions (not addressed in [9]) could
be raised about the enumerator q(λi). First, to which class
does the enumerator belongs? And what are its results?
For complexity reasons, it appears clear that the enumerator
should be defined into the same hierarchy of classes that
we are using to diagonalize; in particular, it can be defined
into the first class Tλ1 of every sequence Tλ1 , . . . , Tλn , . . .,
because it only has to write sequences of SREC’s and DIAG’s
according to the definition on the ordinal λi, in order to write
down the definition of fλi ∈ Tλi . This leads us to the second
question: the results of any program in our language are lists
of binary words, and they aren’t other programs. This means
that the enumerator must return the code of a program in Tλi ,
and not the program itself. Defining a code for every element
of our language is straightforward, but we must underline
that every time we diagonalize over a sequence of classes, we
should see the fλi

’s as codes of programs; this implies that an
interpreter is concealed in the definition of diagonalization.

IV. EXTENDING THE HIERARCHY TO THE ELEMENTARY
FUNCTIONS

In [9], the classes Tλ have been defined between level
1 and ωω , reaching the programs computable within ex-
ponential time. This hierarchy can be extended up to the
ordinal ϵ0, with ϵ0 = ωωω...

= sup{ω, ωω, ωωω

, . . .}; in
particular, Tϵ0 is the class of programs computable within
time O(Bϵ0(n)) = O(nnn...

). Given that a function f(n) is
elementary if and only if it is computable in time bounded
by nnn...

(see [14]), we have that Tϵ0 characterizes the class
of the elementary functions. The proof of this result is an
extension of the proof introduced in [9]; given λ < ϵ0, we
can prove that

1) each program f(s, t, r) in Tλ can be computed by a
register machine within time in O(Bλ(n));

2) every register machine computing its output within
time O(Bλ(n)) can be simulated by a program f in
Tλ.

Lemma (1) is proved by structural induction on the ordinal
λ, that can be a finite number, an ordinal β + 1, or a
limit ordinal: in each case we build the register machine
that computes the program f at level λ using the machines
provided by the inductive hypothesis, and we compute the
overall time consumption, showing that it respects the bound
Bλ(n). Lemma (2) is proved for each time-bounded register
machines showing that, given a program nxtM ∈ T0 that
simulates the transition between the machine’s configura-
tions, a program in the appropriate class Tλ can be built

as the iteration of nxtM , in order to simulate the overall
computation performed by the register machine itself. By (1)
and (2) we have that

Theorem 4.1: A program f belongs to Tα if and only if f
is computable by a register machine within time O(Bα(n)),
with α < ϵ0.

Our operators of predicative recursion and constructive
diagonalization can be used to provide a fine hierarchy of
classes between PTIME and E3. As far as we know, this is
the only characterization of these classes built "from below",
by means of constructive operators. Other characterizations,
like Oitavem [15], and Arai and Eguchi [16], capture the
elementary functions alone, and not in a hierarchy of classes,
using various forms of predicative recursion. Leivant [17],
captures E3 using an extension to higher types of ramified
recurrence.

V. MARION’S DIAGONALIZATION OPERATOR

In [10], the classes of functions Ik (k = 0, 1, . . .) are
defined on the cartesian product of natural numbers. The class
I0 is defined starting from a finite set of linear functions
and closing it by composition and flat recursion, defined as
follows: {

f(0, t) = g(t)
f(s+ 1, t) = h(s, t)

The class Ik+1 contains all the functions defined in Ik and
is closed by flat recursion and by (a version of) predicative
recursion and composition. It is proved that each class Ik
is the class of the functions computable within polynomial-
time bound nk; thus,

∪
k<ω Ik is the class of polynomial

time computable functions. The proof works by induction:
if a function g belongs to I0, then a function Fk computing
gn

k

can be defined as follows: F0(0, x, y) = g(y)
Fk+1(0, x, y) = y
Fk+1(s+ 1, x, y) = Fk(x, x, Fk+1(s, x, y))

Fk belongs to Ik, for all k. Note how the variable x is
used in order to jump from each class Ik to class Ik+1. In
the last line of the definition, the number of computations of
the function Fk+1 is set by using the first occurrence of x,
and the information about how many times all the remaining
functions Fk, . . . , F0 have to be computed is given by the
second occurrence of x itself. Now the small jump operator
is defined, in order to jump from every class to the next one:{

∆[Fk](0, x, y) = y
∆[Fk](r + 1, x, y) = Fk(x, x,∆[Fk](r, x, y))

It is proved in [10] that ∆[Fk](r, x, y) = Fk+1(r, x, y). If the
parameter k assumes the role of a variable, ∆ω is defined as
follows:

4Copyright (c) IARIA, 2018. ISBN: 978-1-61208-613-2

COMPUTATION TOOLS 2018 : The Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 11 / 41

∆ω[g](0, n, x, y) = g(y)
∆ω[g](r + 1, 0, x, y) = y
∆ω[g](r + 1, n+ 1, x, y) =

= ∆ω[g](r, x, x,∆ω[g](r + 1, n, x, y))

The operator ∆ω, which is not a polynomial function,
computes all the polynomial-time computable functions.
Contrasting with our approach, no enumerating functions
are used; starting from a function in I0, the small jump
operator defines a chaining of "growing" functions (w.r.t. the
time complexity) and this chaining is used to jump out of
polynomial class. The problem of how to define functions
with higher time-complexity is not addressed.

VI. CONCLUSIONS AND FURTHER WORK

In our previous work, we have used a version of safe recur-
sion and constructive diagonalization to define a hierarchy of
classes of programs Tλ, with 0 ≤ λ < ωω . Each finite level of
the hierarchy characterizes the register machines computing
their output within time O(nk); using the natural definition of
structured ordinals, and combining it with the diagonalization
operator, the transfinite levels of the hierarchy characterize
the classes of register machine computing their output within
time bounded by the slow-growing function Bλ(n), up to the
machines with exponential-time complexity. In this paper, we
have given a hint of how to extend our hierarchy further,
reaching the class E3 at level ϵ0.

While predicative recursion has been studied thoroughly,
we feel that the diagonalization operator as presented in this
work deserves a more accurate analysis. In particular, we
believe that it is as predicative as the recursion, and that it
could be used to stretch the hierarchy of programs in order
to capture the low Grzegorczyk classes above the elementary
level.

REFERENCES

[1] A. Grzegorczyk, Some classes of recursive functions. Rozprawy
Matematyczne, vol. IV, 1953.

[2] H. E. Rose, Subrecursion: functions and hierarchies. Clarendon press,
Oxford, 1984.

[3] D. Leivant, “Stratified functional programs and computational com-
plexity,” in Proceedings of the 20th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, (POPL’93),
Charleston, 1993, pp. 325–333.

[4] K.-H. Niggl, “The µ-measure as a tool for classifying computational
complexity,” Archive for Mathematical Logic, vol. 39, no. 7, 2000, pp.
515–539.

[5] S. Bellantoni and K.-H. Niggl, “Ranking primitive recursion: the low
Grzegorczyk classes revisited,” SIAM Journal on Computing, vol. 29,
no. 2, 1999, pp. 401–4015.

[6] S. Bellantoni and S. Cook, “A New Recursion-Theoretic Characteriza-
tion Of The Polytime Functions,” Computational Complexity, vol. 2,
1992, pp. 97–110.

[7] D. Leivant, Predicative recurrence and computational complexity I:
word recurrence and polytime, in Feasible Mathematics II, P.Clote and
J.Remmel (eds). Birkauser, 1994, pp. 320–343.

[8] H. Simmons, “The realm of primitive recursion,” Arch.Math. Logic,
vol. 27, no. 2, 1988, pp. 177–188.

[9] E. Covino and G. Pani, A Slow-growing Hierarchy of Time-bounded
Programs, in Advances in Intelligent Systems: Reviews’ Book Series,
Vol. 1. IFSA Publishing, Barcelona, Spain, 2017, pp. 151–171.

[10] J. Marion, “On tiered small jump operators,” Logical Methods in
Computer Science, vol. 5, no. 1, 2009.

[11] E. Covino and G. Pani, “A Specialized Recursive Language for
Capturing Time-Space Complexity Classes,” in The Sixth International
Conference on Computational Logics, Algebras, Programming, Tools,
and Benchmarking, (COMPUTATION TOOLS 2015), Nice, France,
2015, pp. 8–13.

[12] M. Fairtlough and S. Weiner, Hierarchies of provably recursive func-
tions, in Handbook of Proof theory, B. Samuel (ed), Studies in logic
and the foundations of mathematics, vol. 137. Elsevier, Amsterdam,
1998, chapter 3, pp. 149–207.

[13] S. Caporaso, G. Pani, and E. Covino, “A predicative approach to the
classification problem,” Journal of Functional Programming, vol. 11,
no. 1, 2001, pp. 95–116.

[14] N. Cutland, Computability: an introduction to recursive function the-
ory. Cambridge university press, Cambridge, 1980.

[15] I. Oitavem, “New recursive characterization of the elementary func-
tions and the functions computable in polynomial space,” Revista
Matematica de la Univaersidad Complutense de Madrid, vol. 10, no. 1,
1997, pp. 109–125.

[16] T. Arai and N. Eguchi, “A new function algebra of EXPTIME functions
by safe nested recursion,” ACM Transactions on Computational Logic,
vol. 10, no. 4, 2009, pp. 1–19.

[17] D. Leivant, “Ramified recurrence and computational complexity III:
higher type recurrence and elementary complexity,” Annals of Pure
and Applied Logic, vol. 96, no. 1–3, 1999, pp. 209–229.

5Copyright (c) IARIA, 2018. ISBN: 978-1-61208-613-2

COMPUTATION TOOLS 2018 : The Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 12 / 41

HPC–Bench:

A Tool to Optimize Benchmarking Workflow for High Performance Computing

Gianina Alina Negoita

Department of Computer Science
Iowa State University

Ames, Iowa, USA
Horia Hulubei National Institute

for Physics and Nuclear Engineering
76900 Bucharest-Magurele, Romania

Email: alina@iastate.edu

Glenn R. Luecke

Department of Mathematics
Iowa State University

Ames, Iowa, USA
Email: grl@iastate.edu

Shashi K. Gadia
and

Gurpur M. Prabhu

Department of Computer Science
Iowa State University

Ames, Iowa, USA
Email: gadia@iastate.edu

Email: prabhu@iastate.edu

Abstract—HPC–Bench is a general purpose tool to optimize
benchmarking workflow for high performance computing (HPC)
to aid in the efficient evaluation of performance using multiple
applications on an HPC machine with only a “click of a button”.
HPC–Bench allows multiple applications written in different
languages, multiple parallel versions, multiple numbers of pro-
cesses/threads to be evaluated. Performance results are put into a
database, which is then queried for the desired performance data,
and then the R statistical software package is used to generate the
desired graphs and tables. The use of HPC–Bench is illustrated
with complex applications that were run on the National Energy
Research Scientific Computing Center’s (NERSC) Edison Cray
XC30 HPC computer.

Keywords–HPC; benchmarking tools; workflow optimization.

I. INTRODUCTION

Today’s high performance computers (HPC) are complex
and constantly evolving making it important to be able to easily
evaluate the performance and scalability of parallel applica-
tions on both existing and new HPC computers. The evaluation
of the performance of applications can be long and tedious.
To optimize the workflow needed for this process, we have
developed a tool, HPC–Bench, using the Cyclone Database
Implementation Workbench (CyDIW) developed at Iowa State
University [1], [2]. HPC–Bench integrates the workflow into
CyDIW as a plain text file and encapsulates the specified
commands for multiple client systems. By clicking the “Run
All” button in CyDIW’s graphical user interface (GUI) HPC–
Bench will automatically write appropriate scripts and submit
them to the job scheduler, collect the output data for each
application and then generate performance tables and graphs.
Using HPC–Bench optimizes the benchmarking workflow and
saves time in analyzing performance results by automatically
generating performance graphs and tables. Use of HPC–Bench
is illustrated with multiple MPI and SHMEM applications [3],
which were run on the National Energy Research Scientific
Computing Center’s (NERSC) Edison Cray XC30 HPC com-
puter for different problem sizes and for different number of
MPI processes/SHMEM processing elements (PEs) to measure
their performance and scalability.

There are tools similar to HPC–Bench, but each of these
tools has been designed to only run specific applications and

measure their performance. For example, ClusterNumbers [4]
is a public domain tool developed in 2011 that automates the
processor benchmarking HPC clusters by automatically ana-
lyzing the hardware of the cluster and configuring specialized
benchmarks (HPC Challenge [5], IOzone [6], Netperf [7]).
ClusterNumbers, the NAS Parallel Benchmarks [8] and the
other benchmarking software are designed to only run and
give performance numbers for particular benchmarks, whereas
HPC–Bench is designed for easy use with any HPC application
and to automatically generate performance tables and graphs.
PerfExpert [9] is a tool developed to detect performance
problems in applications running on HPC machines. Since
it is designed to detect performance problems, PerfExpert is
different from HPC–Bench.

The objective of this work is to develop an HPC bench-
marking tool, HPC–Bench, as described above and then
demonstrate its usefulness for a complex example run on
NERSC’s Edison Cray XC30. This paper is structured as
follows: Section II describes the design of the HPC–Bench
tool, which is divided in five Parts. Section III describes the
complex example mentioned above. Section IV contains our
conclusions.

II. TOOL DESIGN

A simple definition of a workflow is the repetition of a
series of activities or steps that are necessary to complete a
task. The scientific HPC workflow takes in inputs, e.g., input
data, source codes, scripts and configuration files, runs the
applications on an HPC cluster and produces outputs that might
include visualizations such as tables and graphs. Figure 1
shows a typical example for the scientific HPC workflow
diagram.

Scientific HPC workflows are a means by which scientists
can model and rerun their analysis. HPC–Bench was designed
to optimize the evaluation of the performance of multiple
applications. HPC–Bench was implemented using the public
domain workbench called Cyclone Database Implementation
Workbench (CyDIW). CyDIW was used to develop HPC–
Bench for the following reasons:

6Copyright (c) IARIA, 2018. ISBN: 978-1-61208-613-2

COMPUTATION TOOLS 2018 : The Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 13 / 41

prepare source codes
write scripts and
configuration files

copy the input files
to the HPC cluster

submit the master script
to the job scheduler

Process 0
application 1
...
application n

Process 1
application 1
...
application n

Process p-1
application 1
...
application n

......

output 1
output 2
...
output n

copy the output files to
the local machine

process the output files
to generate
tables and graphs

share the results

Figure 1. An example for the scientific HPC workflow using n applications
that are run on p processes.

• It is easy-to-use, portable (Mac OS, Linux, Windows
platforms) and freely available [2].

• It has existing command-based systems registered as
clients. The clients used for HPC–Bench are the OS,
the open source R environment and the Saxon XQuery
engine.

• It has its own scripting language, which includes
variables, conditional and loop structures, as well as
comments used for documentation, instructions and
execution suppression.

• It has a simple and easy-to-use GUI that acts as an
editor and a launchpad for execution of batches of
CyDIW and client commands.

HPC–Bench uses CyDIW’s GUI and database capabilities for
managing performance data and contains about 1,000 lines of
code. HPC–Bench consists of the following five Parts with
illustrations taken from the example described in Section III:

Part 1: XML schema design. An XML schema, known as
an XML Schema Definition (XSD), describes the structure of
an XML document, i.e., rules for data content. Elements are
the main building blocks that contain data, other elements and
attributes. Each element definition within the XSD must have a
‘name’ and a ‘type’ property. Valid data values for an element
in the XML document can be further constrained using the
‘default’ and the ‘fixed’ properties. XSD also dictates which

subelements an element can contain, the number of instances
an element can appear in an XML document, the name, the
type and the use of an attribute, etc. The graphical XML
schema for this work was created and edited using Altova
XMLSpy, see Figure 2. Note the element ‘HPC EXP’ contains
a sequence of unlimited ‘Test’ elements, each ‘Test’ element
contains a sequence of 3 ‘Message’ elements, each ‘Message’
element contains a sequence of 12 ‘Implementation’ elements,
each ‘Implementation’ element contains a choice of unlimited
number of ‘Process Rank’ elements or 9 ‘Num Processes’
elements. Each ‘Process Rank’ and ‘Num Processes’ ele-
ments contain a sequence of ‘avg’, ‘max’, ‘median’, ‘min’
and ‘standard deviation’ elements. When using a ‘sequence’
compositor in XSD, the child elements in the XML do-
cument must appear in the order declared in XSD. When
using a ‘choice’ compositor in XSD, only one of the child
elements can appear in the XML document. In this work,
‘Process Rank’ element will appear in the XML document
for the first ‘Test’ element and ‘Num Processes’ otherwise.
‘Test’ elements stand for applications, ‘Message’ elements
stand for problem sizes, ‘Implementation’ elements stand for
parallel versions, ‘Process Rank’ elements stand for process’
rank, ‘Num Processes’ elements stand for number of MPI
processes/SHMEM PEs, while ‘avg’, ‘max’, ‘median’, ‘min’
and ‘standard deviation’ elements stand for statistical timing,
respectively.

Part 2: A password-less login to the HPC cluster was im-
plemented. Next, HPC–Bench writes scripts for the submission
of the batch jobs. One script is created for each application
in a loop and a master script. The master script sets up the
environment variables and calls the scripts for each application.
This is accomplished by doing the following:

• Use CyDIW’s loop structure, foreach, to loop through
each application.

• Use CyDIW’s build-in functions: createtxt, open, ap-
pend, appendln, appendfile and close to create scripts
as text files.

• Use the OS client system registered in CyDIW to copy
the files to the HPC cluster.

Part 3: HPC–Bench submits the batch job for execution on
the HPC cluster and waits for the job to finish. Suspending the
HPC–Bench execution is accomplished by doing the following:

• Launch the job.
• Store its id in a variable.
• Sleep until the ‘qstat’ command fails, by simply

checking the exit status of the ‘qstat’ command. Once
the job is completed, it is no longer displayed by the
‘qstat’ command.

HPC–Bench next copies the output text files from the HPC
cluster to the local machine and converts them to a single
written XML file (shown in Figure 3) that follows the XML
schema design from Figure 2. An ‘awk’ script parses the output
text files, then a ‘shell’ script uses the parsed data to create and
write the XML file. The XML file is then validated against the
XML schema. For example, the ‘type’ property for an element
in XSD must correspond to the correct format of its value in
the XML document, otherwise this will cause a validation error
when a validating parser attempts to parse the data from the
XML document.

7Copyright (c) IARIA, 2018. ISBN: 978-1-61208-613-2

COMPUTATION TOOLS 2018 : The Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 14 / 41

Figure 2. Graphical XML schema using Altova XMLSpy.

1 <HPC_EXP xsi:noNamespaceSchemaLocation="HPCExp.SKG.02.xsd" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance">

2 <Test Name="Accessing Distant Messages" Trials="256" testNum="1">
3 <Message messageSize="8 bytes" arraySize="1">
4 <Implementation Name="shmem_get">
5 <Process_Rank rank="1">
6 <avg>7.23570582569762599E-4</avg>
7 <max>9.7059558517284452E-3</max>
8 <median>6.10370678883798406E-4</median>
9 <min>4.41066222407330286E-4</min>

10 <standard_deviation>8.63328421202984395E-4</standard_deviation>
11 </Process_Rank>
12 <Process_Rank rank="2">
13 <avg>3.37445823354852112E-3</avg>
14 <max>1.40903790087463562E-2</max>
15 <median>3.11745106205747616E-3</median>
16 <min>2.52269887546855472E-3</min>
17 <standard_deviation>1.407381050750595E-3</standard_deviation>
18 </Process_Rank>
19 ... data for other ranks, implementations and messages...
20 </Implementation>
21 </Message>
22 </Test>
23 <Test Name="Circular Right Shift" Trials="256" testNum="2">
24 <Message messageSize="8 bytes" arraySize="1">
25 <Implementation Name="shmem_get">
26 <Num_Processes num="2">
27 <avg>7.08220533111203585E-4</avg>
28 <max>1.12190753852561432E-2</max>
29 <median>6.09745939192003327E-4</median>
30 <min>4.19825072886297339E-4</min>
31 <standard_deviation>9.3970636331058724E-4</standard_deviation>
32 </Num_Processes>
33 ... data for other number of processes, implementations,
34 messages and Tests ...
35 </Test>
36 </HPC_EXP>

Figure 3. The XML file containing the output data validated against
the XSD from Figure 2.

Part 4: HPC–Bench then queries the XML file for the de-
sired performance data using the XQuery language to generate

• performance tables

and

• the XML input files to the R statistical package that
will be used to generate various graphs.

Queries were declared as string variables in CyDIW and then
run. Nested foreach command was used to iterate through
applications 2 to 5 and through different problem/message
sizes. Each output generated by the queries was directed to
an XML file, see Figure 4.

1 // Loop through each Test from 2-5;
2 $CyDB:> foreach $$j in [2, 5]
3 {
4 // Loop through each message size: 8 bytes, 10 Kbytes and 1 Mbyte;
5 $CyDB:> foreach $$k in [1, 3] {
6 $CyDB:> set $$queryRatioTest$$j[$$k] := ...
7 $CyDB:> run $Saxon $$queryRatioTest$$j[$$k] out >> output_tableRatio_Test$$j_$$

messageSize2[$$k].xml;
8 }
9 }

Figure 4. Example setting the queries as variables and running the
queries.

8Copyright (c) IARIA, 2018. ISBN: 978-1-61208-613-2

COMPUTATION TOOLS 2018 : The Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 15 / 41

For the first application, we queried the average of the median
times over all the ranks for each problem/message size and
for each parallel version/implementation. See Figure 5 for
generating a performance table for application 1. For the
other applications we queried the median times for each run
(specified by the number of processes used) for each prob-
lem/message size and for each parallel version/implementation.
See Figure 6 for producing performance tables for applications
2 to 5.

1 $Saxon:>
2 <Test1TABLE1Ratios xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
3 <table border="1" >
4 {
5 l e t $a := doc("ComS363/Final_Project/input.MPI3.xml")//Test[@testNum="1"]
6 return
7 <tr> <td>Message Size</td>
8 <td >{$a/Message[@messageSize="8 bytes"]/Implementation[@Name="shmem_get"]/

@Name/string()}</td>
9 <td >{$a/Message[@messageSize="8 bytes"]/Implementation[@Name="mpi_get"]/

@Name/string()}</td>
10 <td >ratio1</td>
11 <td >{$a/Message[@messageSize="8 bytes"]/Implementation[@Name="shmem_put"]/

@Name/string()}</td>
12 <td >{$a/Message[@messageSize="8 bytes"]/Implementation[@Name="mpi_put"]/

@Name/string()}</td>
13 <td >ratio2</td>
14 <td >{$a/Message[@messageSize="8 bytes"]/Implementation[@Name="mpi_send_recv"

]/@Name/string()}</td>
15 <td >ratio3</td>
16 </tr>
17 }
18 {
19 l e t $a := doc("ComS363/Final_Project/input.MPI3.xml")//Test[@testNum="1"]
20 for $x in $a//@messageSize
21 l e t $i := $a/Message[@messageSize=$x]/Implementation[@Name=’shmem_get’]//median
22 l e t $j := $a/Message[@messageSize=$x]/Implementation[@Name=’mpi_get’]//median
23 l e t $k := $a/Message[@messageSize=$x]/Implementation[@Name=’shmem_put’]//median
24 l e t $l := $a/Message[@messageSize=$x]/Implementation[@Name=’mpi_put’]//median
25 l e t $m := $a/Message[@messageSize=$x]/Implementation[@Name=’mpi_send_recv’]//

median
26 return
27 <tr>
28 <td> {$x/string()} </td>
29 <td>{ round(avg($i) * 10000) div 10000.0} </td>
30 <td>{ round(avg($j) * 10000) div 10000.0} </td>
31 <td >{round(avg($j) div avg($i) * 100) div 100.0}</td>
32 <td>{ round(avg($k) * 10000) div 10000.0} </td>
33 <td>{ round(avg($l) * 10000) div 10000.0} </td>
34 <td >{round(avg($l) div avg($k) * 100) div 100.0}</td>
35 <td>{ round(avg($m) * 10000) div 10000.0} </td>
36 <td >{round(avg($m) div avg($i) * 100) div 100.0}</td>
37 </tr>
38 }
39 </table>
40 </Test1TABLE1Ratios>;

Figure 5. Query that gives a performance table for application 1.

1 $CyDB:> foreach $$j in [2, 5] // Loop through each Test from 2-5;
2 {
3 $CyDB:> set $$queryRatio_8bytes[$$j] :=
4 <Test$$j_TABLE$$j_Ratios_8bytes $$namespace>
5 <table border="1" >
6 {
7 l e t $a := $$xmldoc//Test[@testNum="$$j"]/Message[@messageSize="8 bytes"]
8 return
9 <tr> <td >Message Size</td > <td >8 bytes </td >

10 <tr> Number of Processes </tr>
11 <td >{$a/Implementation[@Name="shmem_get"]/@Name/string()}</td>
12 <td >{$a/Implementation[@Name="mpi_get"]/@Name/string()}</td>
13 <td >ratio1</td>
14 <td >{$a/Implementation[@Name="shmem_put"]/@Name/string()}</td>
15 <td >{$a/Implementation[@Name="mpi_put"]/@Name/string()}</td>
16 <td >ratio2</td>
17 $$implementationRatioString1[$$j]
18 </tr>
19
20 }
21 {
22 l e t $a := $$xmldoc//Test[@testNum="$$j"]/Message[@messageSize="8 bytes"]
23 for $x in $a/Implementation[@Name=’shmem_get’]//@num
24 l e t $i := $a/Implementation[@Name=’shmem_get’]/Num_Processes[@num=$x]/median
25 l e t $j := $a/Implementation[@Name=’mpi_get’]/Num_Processes[@num=$x]/median
26 l e t $k := $a/Implementation[@Name=’shmem_put’]/Num_Processes[@num=$x]/median
27 l e t $l := $a/Implementation[@Name=’mpi_put’]/Num_Processes[@num=$x]/median
28 return
29 <tr>
30 <td> {$x/string()} </td>
31 <td>{ round($i * 10000) div 10000.0} </td>
32 <td>{ round($j * 10000) div 10000.0} </td>
33 <td>{ round($j div $i * 100) div 100.0} </td>
34 <td>{ round($k * 10000) div 10000.0} </td>
35 <td>{ round($l * 10000) div 10000.0} </td>
36 <td>{ round($l div $k * 100) div 100.0} </td>
37 $$implementationRatioString2[$$j]
38 </tr>
39 }
40 </table>
41 </Test$$j_TABLE$$j_Ratios_8bytes>;
42 $CyDB:> set $$queryRatio_10Kbytes[$$j] :=....
43 ...
44 $CyDB:> set $$queryRatio_1Mbyte[$$j] :=....

45 }
46
47 // Produce the tables for Tests 2-5 for all message sizes;
48 // Loop through each Test from 2-5;
49 $CyDB:> foreach $$j in [2, 5]
50 {
51 $CyDB:> run $$prefix $$queryRatio_8bytes[$$j] out >> output_tableRatio_Test$$j_8bytes.xml;
52 $CyDB:> run $$prefix $$queryRatio_10Kbytes[$$j] out >> output_tableRatio_Test$$j_10Kbytes.xml

;
53 $CyDB:> run $$prefix $$queryRatio_1Mbyte[$$j] out >> output_tableRatio_Test$$j_1Mbyte.xml;
54 }

Figure 6. Query that gives performance tables for applications 2 to 5.

The database was then queried for the data needed to
generate the performance graphs. Figure 7 shows the query
that gives the median times for all the parallel versions/imple-
mentations for 8-byte messages for application 2. The XML
file containing the performance data obtained by this query is
shown in Figure 8.

1 $CyDB:> set $$query_plot_8bytes[2] :=
2 <Test$$j_plot$$j_8bytes $$namespace>
3 {
4 l e t $a := $$xmldoc//Test[@testNum="$$j"]/Message[@messageSize="8 bytes"]
5 for $x in $a/Implementation[@Name=’shmem_get’]//@num
6 return
7 <Num_Processes>
8 {
9 <num_pes> {$x/string()} </num_pes>,

10 <shmem_get> { round($a/Implementation[@Name=’shmem_get’]/Num_Processes[@num=$x]/
median * 10000) div 10000.0} </shmem_get>,

11 <mpi_get>{ round($a/Implementation[@Name=’mpi_get’]/Num_Processes[@num=$x]/median *
10000) div 10000.0} </mpi_get>,

12 <shmem_put>{ round($a/Implementation[@Name=’shmem_put’]/Num_Processes[@num=$x]/median

* 10000) div 10000.0} </shmem_put>,
13 <mpi_put>{ round($a/Implementation[@Name=’mpi_put’]/Num_Processes[@num=$x]/median *

10000) div 10000.0} </mpi_put>,
14 $$implementationString[$$j]
15 }
16 </Num_Processes>
17 }
18 </Test$$j_plot$$j_8bytes>
19 ;
20 $CyDB:> run $Saxon $$query_plot_8bytes[2] out >> output_plot_Test2_8bytes.xml;

Figure 7. Query that gives the performance data needed to generate
the performance graph for 8-byte messages for application 2.

1 <Root>
2 <Test2_plot2_8bytes xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
3 <Num_Processes>
4 <num_pes>2</num_pes>
5 <shmem_get>0.0005</shmem_get>
6 <mpi_get>0.0113</mpi_get>
7 <shmem_put>0.0013</shmem_put>
8 <mpi_put>0.0096</mpi_put>
9 <mpi_sendrecv>0.0026</mpi_sendrecv>

10 <mpi_isend_irecv>0.0037</mpi_isend_irecv>
11 <mpi_send_recv>0.0054</mpi_send_recv>
12 </Num_Processes>
13 <Num_Processes>
14 <num_pes>4</num_pes>
15 <shmem_get>0.0051</shmem_get>
16 <mpi_get>0.0169</mpi_get>
17 <shmem_put>0.007</shmem_put>
18 <mpi_put>0.0155</mpi_put>
19 <mpi_sendrecv>0.0093</mpi_sendrecv>
20 <mpi_isend_irecv>0.0076</mpi_isend_irecv>
21 <mpi_send_recv>0.0084</mpi_send_recv>
22 </Num_Processes>
23
24 </Test2_plot2_8bytes>
25 </Root>

Figure 8. The XML file generated by the query above for application
2.

Part 5: HPC–Bench uses R to generate the performance
graphs. This is accomplished by first converting the XML files
generated by the queries for graphs from Part 4 (see Figure 8
as an example) to R dataframes and then setting up the plotting
environment, e.g., the size of the graphs, the style of the X and
Y axes, graph labels, colors, legends, etc.

The first step for generating the performance graphs is
to install the “XML”, “plyr”, “ggplot2”, “gridExtra” and
“reshape2” R packages and load them in R. The “plyr”
package is used to convert the XML file to a dataframe.
Next, HPC–Bench reads the XML file into an R tree, i.e.,
R-level XML node objects using the xmlTreeParse() function.

9Copyright (c) IARIA, 2018. ISBN: 978-1-61208-613-2

COMPUTATION TOOLS 2018 : The Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 16 / 41

Then HPC–Bench uses the xmlApply() function for traversing
the nodes (applies the same function to each child of an
XML node). function(node) xmlSApply(node, xmlV alue)
does the initial processing of an individual Num Processes
node, where xmlValue() returns the text content within an
XML node. This function must be called on the first child
of the root node, e.g., xmlSApply(doc[[1]], xmlV alue). All
the Num Processes nodes are processed with the command
xmlSApply(doc[[1]], function(x) xmlSApply(x, xmlV alue)).
The result is a character matrix whose rows are variables and
whose columns are records. After transposing this matrix, it
is converted to a dataframe. As an example, see Figure 9 that
generates the dataframe shown in Table I for application 2.
This completes working with XML files and the rest is R
programming.

1 # Nodes traversing function
2 function(node) xmlSApply(node, xmlValue)
3 doc = xmlRoot(xmlTreeParse(inputFile.xml)
4 numLoop = xmlSize(doc[[1]])
5 tmp = xmlSApply(doc[[1]], function(x) xmlSApply(x, xmlValue))
6 tmp = t(tmp) # transpose matrix
7 df = as.data.frame(matrix(as.numeric(tmp), numLoop))
8 names(df)<- c("Number Processes", "shmem_get", "mpi_get", "shmem_put", "mpi_put", "

mpi_sendrecv", "mpi_isend_irecv", "mpi_send_recv")

Figure 9. Code to convert an XML file to an R dataframe.

TABLE I. THE R DATAFRAME GENERATED WITH THE CODE FROM
FIGURE 9 FOR 8-BYTE MESSAGE SIZE FOR APPLICATION 2.

Num shmem mpi shmem mpi mpi mpi mpi
Proc get get put put send- isend send

-recv irecv recv

1 2 0.0005 0.0113 0.0013 0.0096 0.0026 0.0037 0.0054
2 4 0.0051 0.0169 0.0070 0.0155 0.0093 0.0076 0.0084
3 8 0.0046 0.0178 0.0084 0.0171 0.0118 0.0106 0.0125
4 16 0.0056 0.0246 0.0088 0.0250 0.0124 0.0115 0.0137
5 32 0.0048 0.0289 0.0088 0.0269 0.0142 0.0126 0.0113
6 64 0.0053 0.0357 0.0112 0.0329 0.0144 0.0134 0.0160
7 128 0.0054 0.0494 0.0122 0.0378 0.0165 0.0190 0.0215
8 256 0.0057 0.0518 0.0120 0.0502 0.0207 0.0225 0.0232
9 384 0.0093 0.0584 0.0198 0.0540 0.0223 0.0224 0.0247

After obtaining the R dataframes, HPC–Bench sets up the
plotting environment as follows:

• Use the “ggplot2”,“gridExtra” and “reshape2” R pack-
ages to create graphs and put multiple graphs on one
panel.

• Write a function to create minor ticks and then write
another function to mirror both axes with ticks.

• Set and update a personalized theme:
theme set(theme bw()), theme update(. . .).

• For each application, plot the dataframe for each
problem/message size using the ggplot() function with
personalized options. See Figure 10.

1 p <- ggplot(data=df.melted, aes(x=‘Number Processes‘, y=value, group=variable, shape=factor(
variable), color=variable))

2 p <- p + geom_line(aes(linetype=variable)) + geom_point(fill = "white", size = 2.5)
3 p <- p + geom_line(aes(linetype=variable)) + geom_point(fill = "white", size = 2.5)
4 p <- p + scale_colour_manual(messageSize[c(i)], values=c("red", "red", "blue", "blue", "

brown4", "darkgreen", "green"), labels=c("SHMEM get", "MPI get","SHMEM put", "MPI
put", "MPI sendrecv", "MPI isend&irecv", "MPI send&recv"))

Figure 10. Code that generates a plot using the df dataframe.

For each application and for each problem/message size, HPC–
Bench plots the desired timing data for all versions/imple-
mentations. Next, for each application, HPC–Bench places the
three plots for different problem/message sizes (p1, p2 and

p3) into one panel using gtable to generate a graph, that is
then printed to PDF format, see Figure 11. At the end of the
HPC–Bench execution, performance graphs are displayed for
all applications in popup windows. Figures 14 and 15 illustrate
this.

1 ge <- gtable:::rbind_gtable(p1, p2, "first")
2 g <- gtable:::rbind_gtable(ge, p3, "first")
3 grid.newpage()
4 # grid.draw(ge) # draw 2 figures
5 grid.draw(g) # draw 3 figures, show the plot
6 # Print to pdf using pdf and plot
7 pdf(outputFile)
8 plot(g)
9 dev.off()

Figure 11. Code that places 3 plots into one panel.

Figure 12 shows the HPC workflow diagram for HPC–
Bench. The blue boxes are components of the HPC workflow,
which include input data and output data to manage, as well as
source codes, scripts and configuration files for the system. The
red boxes show the portions of the HPC workflow controlled
by HPC–Bench.

prepare source codes

Process 0
application 1
...
application n

Process 1
application 1
...
application n

Process p-1
application 1
...
application n

......

output 1
output 2
...
output n

write scripts and
configuration files

copy the input files
to the HPC cluster

submit the master script
to the job scheduler

copy the output files to
the local machine

place the output data
into a database

HPC-Bench

HPC-Bench
suspend execution
until the output files
are ready

query the database
for the desired
performance data

share the results generate tables
and graphs

Figure 12. HPC workflow diagram for HPC–Bench.

Since the output processing part cannot begin until all the
runs are complete, HPC–Bench suspends execution until all
the output data is available. HPC–Bench then puts the output
data into a database and queries it for the desired results.

III. EXAMPLE USING HPC–BENCH

In this section, we illustrate how HPC–Bench can be used
in a complex benchmarking environment. The example and the
benchmarking environment information come from [3]. The

10Copyright (c) IARIA, 2018. ISBN: 978-1-61208-613-2

COMPUTATION TOOLS 2018 : The Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 17 / 41

benchmark tests used for this example were: accessing distant
messages, circular right shift, gather, broadcast, and all-to-all.
Each test has several parallel versions, which use: MPI get, put,
blocking and non-blocking sends/receives, gather, broadcast
and alltoall routines as well as the SHMEM get, put, broadcast
and alltoall routines.

The NERSC’s Edison Cray XC30 with the Aries intercon-
nect was used for benchmarking. Edison has 5576 XC30 nodes
with 2 Intel Xeon E5-2695v2 12-chip processor for a total of
24 cores per node. There are 30 cabinets and each cabinet
consists of 192 nodes. Cabinets are interconnected using the
Dragonfly topology with 2 cabinets in a single group.

For this example, 2 cabinets in a single group (2x192
nodes) were reserved. Each application was run with 2 MPI
processes/SHMEM PEs per node using message sizes of 8
bytes, 10 Kbytes and 1 Mbyte and 2 to 384 MPI process-
es/SHMEM PEs.

Use of HPC–Bench is illustrated via CyDIW’s GUI, shown
in Figure 13. The GUI is intentionally designed to be as simple
as possible for ease-of-use: it has a “Commands Pane”, an
“Output Pane” and a “Console”. The “Commands Pane” acts
as an editor and a launch-pad for execution of batches of
commands, written as text files. The output can be shown in
the “Output Pane”, directed to files, or displayed in popup
windows. The “Output Pane” is an html viewer, but it can
display plain text as well. For example, a user can see an html
table computed by an XQuery query displayed in the “Output
Pane”. The html code or the display in an html browser can
be viewed without having to get out of the GUI in order to
use a text editor or an html browser. The “Console” displays
the status and error messages for the commands.

In CyDIW’s GUI, click “Open” and then browse to the
HPC–Bench file to open HPC–Bench. One can run all the
applications from scratch and produce the performance tables
and graphs in a “click of a button” by clicking the “Run All”
button. HPC–Bench displays one three-panel graph for each
application in a popup window. See Figures 14 and 15 as
examples for performance graphs produced by HPC–Bench.

Figure 14 shows the median time in milliseconds (ms)
versus the process’ rank for the accessing distant messages test
with 8-byte, 10-Kbyte and 1-Mbyte messages. The purpose
of this test is to determine the performance differences of
‘sending’ messages between ‘close’ processes and ‘distant’
processes using SHMEM and MPI routines. The curves rep-
resent various implementations of this test using the SHMEM
and MPI get and put routines, as well as the MPI send/receive
routines as shown in the legend. Figure 14 shows that times to
access messages within a group of two cabinets on NERSC’s
Edison Cray XC30 were nearly constant for each implemen-
tation, showing the good design of the machine.

Figure 15 shows the median time in milliseconds (ms)
versus the number of processes for the circular right shift test
with 8-byte, 10-Kbyte and 1-Mbyte messages. In this test, each
process ‘sends’ a message to the right process and ‘receives’ a
message from the left process. The curves represent various
implementations of this test using the SHMEM and MPI
get and put routines, as well as the MPI two-sided routines,
e.g., send/receive, isend/ireceive and sendrecv as shown in the
legend. Figure 15 shows that all implementations scaled well
with the number of processes for all message sizes.

HPC–Bench can be easily modified by clicking the “Edit”
button to run only selected applications or to change the
number of processes, library version or configuration to run
on, as well as to add more queries to do a different per-
formance analysis. Alternatively, one can run parts of HPC–
Bench selecting which parts to run and then clicking the
“Run Selected” button. This is useful when one would like
to produce additional tables and graphs from existing output
data without having to rerun the applications.

IV. CONCLUSION

HPC–Bench is a general purpose tool to minimize the
workflow time needed to evaluate the performance of mul-
tiple applications on an HPC machine at the “click of a
button”. HPC–Bench can be used for performance evaluation
for multiple applications using multiple MPI processes, Cray
SHMEM PEs, threads and written in Fortran, Coarray Fortran,
C/C++, UPC, OpenMP, OpenACC, CUDA, etc. Moreover,
HPC–Bench can be run on any client machine where R
and the CyDIW workbench have been installed. CyDIW is
preconfigured and ready to be used on a Windows, Mac OS
or Linux system where Java is supported. The usefulness of
HPC–Bench was demonstrated using complex applications on
a NERSC’s Cray XC30 HPC machine.

ACKNOWLEDGMENT

This research used resources of the National Energy Re-
search Scientific Computing Center (NERSC), a DOE Office
of Science User Facility supported by the Office of Science of
the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231. Personnel time for this project was supported by
Iowa State University.

REFERENCES
[1] X. Zhao and S. K. Gadia, “A Lightweight Workbench for Database

Benchmarking, Experimentation, and Implementation,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 24, no. 11, Nov. 2012,
pp. 1937–1949, DOI: 10.1109/TKDE.2011.169, ISSN: 1041-4347.

[2] “Cyclone Database Implementation Workbench (CyDIW),” 2012, URL:
http://www.research.cs.iastate.edu/cydiw/ [accessed: 2018-01-10].

[3] G. A. Negoita, G. R. Luecke, M. Kraeva, G. M. Prabhu, and J. P. Vary,
“The Performance and Scalability of the SHMEM and Corresponding
MPI Routines on a Cray XC30,” in Proceedings of the 16th International
Symposium on Parallel and Distributed Computing (ISPDC 2017) July
3–6, 2017, Innsbruck, Austria. IEEE, Jul. 2017, pp. 62–69, DOI:
10.1109/ISPDC.2017.19, ISBN: 978-1-5386-0862-3.

[4] “ClusterNumbers,” 2011, URL: https://sourceforge.net/projects/cluster-
numbers/ [accessed: 2018-01-10].

[5] “The HPC Challenge Benchmarks,” URL: http://icl.cs.utk.edu/hpcc/ [ac-
cessed: 2018-01-10].

[6] “IOzone,” URL: http://iozone.org/ [accessed: 2018-01-10].
[7] “Netperf,” URL: https://hewlettpackard.github.io/netperf/ [accessed:

2018-01-10].
[8] “The NAS Parallel Benchmarks derived from computational fluid dynam-

ics (CFD) applications,” URL: www.nas.nasa.gov/publications/npb.html
[accessed: 2018-01-10].

[9] M. Burtscher, B. D. Kim, J. Diamond, J. McCalpin, L. Koesterke, and
J. Browne, “PerfExpert: An Easy-to-Use Performance Diagnosis Tool for
HPC Applications,” in Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC 2010, November 13–19, 2010, New Orleans, LA, USA.
ACM/IEEE, Nov. 2010, pp. 1–11, DOI: 10.1109/SC.2010.41.

11Copyright (c) IARIA, 2018. ISBN: 978-1-61208-613-2

COMPUTATION TOOLS 2018 : The Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 18 / 41

Figure 13. CyDIW’s GUI showing the table generated by XQuery for 8-byte message for application 2, containing the same performance data as Table I.

● ●
●

●
●

● ● ●
●

● ●
●

● ● ● ● ● ● ● ● ●
● ● ● ● ●

● ● ●
●

●

● ●

●
● ● ● ●

● ● ●
●

● ● ● ● ● ●
● ● ●

●
●

●
●

● ●
●

●
●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●
●

●
●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

0

0.01

0.02

0.03

0.04

0.05

0.06

0

0.01

0.02

0.03

0.04

0.05

0.06

0

0.05

0.1

0.15

0.2

0 50 100 150 200 250 300 350

0 50 100 150 200 250 300 350

0 50 100 150 200 250 300 350
Process Rank

M
ed

ia
n

T
im

e
(m

s)
M

ed
ia

n
T

im
e

(m
s)

M
ed

ia
n

T
im

e
(m

s)

8 bytes
●

●

SHMEM get
MPI get
SHMEM put
MPI put
MPI send&recv

10 Kbytes
●

●

SHMEM get
MPI get
SHMEM put
MPI put
MPI send&recv

1 Mbyte
●

●

SHMEM get
MPI get
SHMEM put
MPI put
MPI send&recv

Test1: Accessing Distant Messages

Figure 14. An example of a graph generated by HPC–Bench for application
1, accessing distant messages test.

●
●● ● ● ● ● ●

●

●

●● ● ●
● ● ●

●

●
●● ● ● ● ● ●

●

●

●● ● ●
● ●

●

●

●●
●

● ● ● ● ●
●

●●● ● ● ●
● ●

●

0

0.02

0.04

0.06

0

0.02

0.04

0.06

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250 300 350

0 50 100 150 200 250 300 350

0 50 100 150 200 250 300 350
Number of Processes

M
ed

ia
n

T
im

e
(m

s)
M

ed
ia

n
T

im
e

(m
s)

M
ed

ia
n

T
im

e
(m

s)

8 bytes
●

●

SHMEM get
MPI get
SHMEM put
MPI put
MPI sendrecv
MPI isend&irecv
MPI send&recv

10 Kbytes
●

●

SHMEM get
MPI get
SHMEM put
MPI put
MPI sendrecv
MPI isend&irecv
MPI send&recv

1 Mbyte
●

●

SHMEM get
MPI get
SHMEM put
MPI put
MPI sendrecv
MPI isend&irecv
MPI send&recv

Test2: Circular Right Shift

Figure 15. An example of a graph generated by HPC–Bench for application
2, circular right shift test.

12Copyright (c) IARIA, 2018. ISBN: 978-1-61208-613-2

COMPUTATION TOOLS 2018 : The Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 19 / 41

License Plates Recognition of Mexican Private Vehicles

Carlos Hiram Moreno, Nicolás Trejo, Martha Soto

Departmento de Ingeniería en Sistemas Computacionales

Tecnológico de Estudios Superiores de Chimalhuacan

Chimalhuacán Estado de México

Email: {carlosmoreno, nicolastrejo, sistemasteschi}

@teschi.edu.mx

Benjamin Moreno-Montiel

Departamento de Ingeniería Eléctrica

Universidad Autónoma Metropolitana

México City

Email: bmm@xanum.uam.mx

Abstract— In most of the investigations about the recognition

of license plates from different countries it is assumed that they

have a white background, without texture patterns and with

black characters. Vehicle registration plates in Mexico are

different because they have different texture patterns and

colors in the background depending on the State of the

Republic; that is why the algorithms of recognition of these

plates are not always successful. This article proposes an

algorithm for the recognition of vehicle registration plates of

Mexico considering three phases: A) Normalization and

Binarization of the plate, which is achieved by using a

threshold factor, which separates dark colors that form letters

from the clearings that are at the bottom. B) Characterization

C) Modeling of symbols by technics such as Hu’s moment,

Fourier descriptors and correlation cross factors and D)

Classification, where we have used comparisons between

different techniques of template matching, Bayesian classifier

and Artificial Neural Networks to process images of plates

from different states. The results obtained are discussed at the

end of the present paper.

Keywords-license plate recognition; bayesian classifier; artificial

neural network; correlation factor; principal component

analysis; Hu’s moments.

I. INTRODUCTION

Recognition of license plates of vehicles has been
investigated throughout the world. We can find some
examples of recognition of license plates in countries like
Argentina [1], Bangladesh [2], China [3], Egypt [4], India
[5], Japan [6], Malaysia [7], among others. Normally, these
works consider four phases: 1) get the image of the vehicle
2) plates location inside the image, 3) characters extraction
and 4) classification or recognition of characters.

In most algorithms found in literature, it is assumed that
the plate has no textured patterns, the background is usually
white and the characters black allowing better character
recognition. However, in the case of Mexican plates it is not
the case. On one hand, they have patterns of texture in the
background and on the other hand, each State Government
can design their own pattern of background texture; this
generates more than 32 different plates, and this number
increase with changes in the government administration.

These structures in the vehicle registration plates of
Mexico make the traditional algorithms not working
properly, mainly in the phase of extraction of characters.

Another important thing to mention is that although each
State can design the background of its plates, the dimensions

of the plates and letters, as well as their style, must meet with
the features that are designated in the official Mexican
standard NOM-001-SCT-2-2000; these characteristics are
used to recognize the registration.

This work proposes an algorithm that segments each
character and recognizes them depending on their
characteristics of color and form. To properly segment the
characters, most of the background texture patterns were
eliminated by using a threshold factor, which separated the
dark colors that make up the letters from the light colors that
make up the background. Once filtered the background
texture, the image of the plate was binarized and both
vertical and horizontal histograms were obtained using the
technique of projection of profiles, just to obtain the
coordinates of the position used to segment characters. When
the images of the characters were obtained, we proceeded to
model them and characterize them using the techniques of
Hu’s moment, Fourier Descriptors, and Cross-correlation
factor. Data obtained at this stage was used as
complementary in the classification phase. Finally, in the
stage of classification, techniques of templates, Bayesian
classifier and artificial networks neural were used. The
results obtained are discussed at the end of the present work.

The article is organized in the following form: in Section
2 is presented the proposal of recognition of license plates.
Experiments conducted in the section are presented in
Section 3. A discussion of the results obtained is made in
Section 4 and the article ends with conclusions in Section 5.

II. PROPOSAL OF VEHICLE LICENSE PLATE RECOGNITION

Automatic Number Plate Recognition (ANPR) presented
in Fig. 1, consists essentially of four stages: 1) To get the
image of the vehicle using a camera, 2) Extract the image
plate, 3) Segment and remove the plate characters and 4)
Recognize the characters extracted.

In the present work is only discussed the segmentation
and recognition of characters, stages (3) and (4). Images
employed contain exclusively the region that conforms to the
plate, and has the following characteristics:

• Images of the plates must be obtained between 1 and
1.5 meters of distance between the camera and the
registration.

• They must not have lighting variations.

• Images are frontal or near frontal, meaning images
must have very small rotation angles.

• No occlusions or considerable physical damages.

13Copyright (c) IARIA, 2018. ISBN: 978-1-61208-613-2

COMPUTATION TOOLS 2018 : The Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 20 / 41

Figure 1. Stages of an ANPR system.

The developed algorithm in this work is presented and
consists of: 1) Standardization and binarization of the plate,
2) Segmentation of the characters, 3) Character modeling
and 4) Recognition of characters.

A. Normalization and Binarization of the plate

Normalization of the images is based on the standard
NOM-001-SCT-2-2000, where it is established that
dimensions of the plates must be of 2:1, so, all images are
resized at 700 ×350 pixels of being binarized. The same
standard also establishes the position in which the characters
must be collocated inside the plate, as well as the size and
the distance between them, as it is shown in Fig. 2.

Figure 2. Position of the characters inside the registration.

With this information is eliminated the upper and lower
sections of the original image, with the objective to get a
section that contains exclusively characters. The result is
shown in Fig. 3.

Figure 3. Example of sections elimination upper and lower; (a) original

image, (b) image obtained after sections elimination.

Due to the great variety of background colors in plates,
before being binarized, it was necessary to separate the

texture of the background from the numbers and letters of
plates.

It is important to mention that, in the present work, the
image colors are represented in the space RGB. In this space,
the colors are represented as a linear combination of the
vectors base in red, green and blue; the color of a pixel is
represented as ϕ=[r, g, b]. Fig. 4 shows the form of the RGB
space.

To develop the separation process, we use an
experimental threshold by graythresh function defined in
Matlab, which chooses the threshold to minimize the
interclass variance of the black and white pixels; the
threshold (δ) obtained is of 0.73. To separate what is in the
magnitude of a vector RGB, we start by performing a
comparison to classify a pixel in a region or another, shown
in Fig. 4.

Figure 4. RGB space and threshold of intensity.

In Fig. 4 it is showed the part of the space where the
colors from the characters are found. Separation was made
using the equation (1).

𝜃∗ = {
1⃗ , ‖𝜙‖ ≤ 𝛿

0⃗ , ‖𝜙‖ > 𝛿
 (1)

where 𝜂∗ = 0.73, 1⃗ = [1,1,1] and 0⃗ = [0,0,0]. With the
proposed method, it is managed to differentiate the
characters; the background was obtained and therefore the
possibility of binarizing the images. In Fig. 5 we show two
examples of binarized images using the Otsu method [8],
which is normally used for gray scales; therefore, when using
black and white is also a case for Otsu method.

Figure 5. Example of two images of plates binarized using the Otsu

method.

B. Characters Segmentation

The horizontal and vertical projection method is used to
segment characters [9]; this method has been used for similar
investigations in [6][10][11].

14Copyright (c) IARIA, 2018. ISBN: 978-1-61208-613-2

COMPUTATION TOOLS 2018 : The Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 21 / 41

Suppose we have an image 𝑰(𝒙, 𝒚) with 𝑤𝑖𝑑𝑒 = 𝑁 and
ℎ𝑒𝑖𝑔𝑡ℎ = 𝑀 (considering that 1 ≤ 𝑥 ≤ 𝑁 and 1 ≤ 𝑦 ≤ 𝑀),
the horizontal and vertical projections are defined as:

𝑃ℎ𝑜𝑟(𝑦0) = ∑𝐼(𝑥, 𝑦0)

𝑁

𝑥=1

, ∀𝑦 = 1,… ,𝑀 (2)

𝑃𝑣𝑒𝑟(𝑥0) = ∑ 𝐼(𝑥0, 𝑦)

𝑀

𝑦=1

, ∀𝑥 = 1,… ,𝑁 (3)

The histograms obtained by equations (2) and (3) allow

determining the coordinates of the area of each letter and
number in the plates. Fig. 6 shows an example of horizontal
and vertical projection of a binarized image.

Figure 6. Horizontal and vertical projection of a binarized image.

Fig. 7 shows some examples of segmented characters
used to do horizontal and vertical projections.

Figure 7. Examples of characters segmented using horizontal and vertical

projections.

C. Modelling of the characters

The techniques of Hu moments, correlation factor and
Fourier descriptors are compared because they are
comparison techniques in which objective values are
obtained, which identify classifications of letters and
numbers that will be used in techniques such as Bayesian
classifier and neural network.

Segmented characters are modeled using the Correlation
factor, Hu’s moment and Fourier descriptors.

1) Correlation factor: Correlation is a statistical

technique that quantifies the strength of the linear

relationship between two variables.
The quantification was performed using the coefficient

of Pearsons correlation linear [12], whose value ranges
between {-1 and 1}. Suppose we have the variables x and y,
and on the other hand, O={(x_1,y_1),…,(x_m,y_m)} is the
set of pixels coordinates to have a character extracted, the
correlation coefficient between both variables is calculated
as:

𝑟 =
∑ (𝑥 − �̅�)(𝑦 − �̅�)(𝑥,𝑦)∈𝑂

√∑ (𝑥 − �̅�)2(𝑥,𝑦)∈𝑂 ∑ (𝑦 − �̅�)2(𝑥,𝑦)∈𝑂

 (4)

2) Hu’s moment: Hu’s moments have been employed to

recognize characters in [13] and [14], to measure geometric

features as ellipticities [15] or circularities [16]. In the Hu’s

moment, the most representative is the centralized and

standardized moment, 𝜂𝑝𝑞, obtained with:

𝜂𝑝𝑞 =
𝜇𝑝𝑞

𝜇00
𝑐+1 (5)

In equation (5), c and 𝜇𝑝𝑞 is calculated as:

𝑐 =
𝑝 + 𝑞

2
, 𝑝 + 𝑞 = 2,3, … (6)

𝜇𝑝𝑞(𝑂) = ∑ (𝑥 − �̅�)𝑝

(𝑥,𝑦)∈𝑂

(𝑦 − �̅�)𝑞 (7)

where (�̅� , �̅�) is the coordinate of the centroid of the
objects, calculated as:

�̅� =
1

𝑚
∑ 𝑥 (8)

(𝑥,𝑦)∈𝑂

�̅� =
1

𝑚
∑ 𝑦

(𝑥,𝑦)∈𝑂

 (9)

It is important to mention that Hu’s moments are
invariant to the position, rotation, and scaling.

3) Fourier Descriptors: Given {(𝑥1, 𝑦1), … (𝑥𝑛, 𝑦𝑛)} ⊂
ℤ2 the set of points that form the outline of a letter, each

point is represented as a complex number.

𝑧𝑛 = 𝑥𝑛 + 𝑗𝑦𝑛 , 𝑤ℎ𝑒𝑟𝑒 𝑗 = √−1. (10)

Discrete Fourier transform of the set of points that make

up the outline of the characters can be calculated as follows:

𝐹(𝑢) =
1

𝑢𝜋
∑ 𝜑𝑛 [cos (

2𝜋𝑢𝑠𝑛

𝑠𝑚
)

𝑚

𝑛=1

− 𝑗𝑠𝑖𝑛 (
2𝜋𝑢𝑠𝑛

𝑠𝑚
)] (11)

It can be written as:

𝐹(𝑢) =
1

𝑢𝜋
∑ 𝜑𝑛𝑒𝑥𝑝 (

−2𝑗𝜋𝑢𝑠𝑛

𝑠𝑚
)

𝑚

𝑛=1

 (12)

Finally, the Fourier descriptors are obtained when

calculating the absolute values of the complex numbers:

𝑓(𝑢) = |𝐹(𝑢)| (13)

where 𝑢 = 1, 2, … , 𝑁 and N is the total number of

descriptors to obtain.

15Copyright (c) IARIA, 2018. ISBN: 978-1-61208-613-2

COMPUTATION TOOLS 2018 : The Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 22 / 41

D. Characters Recognition

For the characters recognition four techniques are used:
1) Template matching, 2) Bayesians classifier and 3)
Artificial Neural Networks (ANN) and Principal Component
Analysis, which will be explained in more detail below.

1) The template matching: The comparison of templates

is a technique that consists of comparing the image of the

character to be recognized with a series of known templates;

its similarity can be measured to identify the character that

contains the image to be classified. This technique has been

used for the same purpose in [18] and [21]. When an image

must be classified, it is compared with all the images of the

templates and the maximum value of similarity is obtained:

Ξ𝜎 = 𝑀𝑎𝑥(𝑟𝜎), ∀σ ∈ (0, 1, … , 9, A, B, … , Z) (14)

With the value of Ξ𝜎 it is defined what symbol is the content

in the image.

2) Bayesian classifier: The Bayesian classifier [19] is

based on the Bayes theorem where it is assumed that the

vector of characteristics is a multivariate Gaussian

distribution. 𝐶 = {𝑘1, … , 𝑘𝑛} is the set of 𝑛 class; the

probability that an object A is a class 𝑘𝑖 is denoted

by 𝑝(𝑘𝑖|𝑨). The Bayes theorem:

𝑝(𝑘𝑖|𝐀) =
𝑝(𝐀|𝑘𝑖)𝑝(𝑘𝑖)

𝑝(𝑨)
 (15)

For Bayesian classification, it is chosen the class 𝑘𝑖

where 𝑝(𝐴|𝑘𝑖)𝑝 (𝑘𝑖) is larger. This way the observed object
A is assigned to the class 𝑘𝑖. We assume that the probability
of the feature vector of object A is of class kj (𝑝(𝐀|𝑘𝑖)), has
a Gaussian Distribution with mean μ and with covariance
matrix Ω defined as follows:

𝑃(𝐴|𝑘𝑖) =
1

Δ
𝑒𝑥𝑝 [−

1

2
(𝐴 − 𝜇𝑗)

𝑇
Ω𝑗

−1(𝐴 − 𝜇𝑗)]

Where Δ = (2𝜋)𝑚/2(detΩ𝑗)
1/2

and 𝑚 is the dimension

of the feature vectors.

3) Artificial Neural Network: It is a mathematical model

that is inspired by the way biological neurons work. The

ANN [20] is applied in the learning of tasks where each

instance is described by a set of values that represent its

Special features and where the function objective f (A) can

take any value from a finite set V. In the present work, there

are implemented two ANN, one dedicated to the

classification of numbers and another for letters. The ANN

deployed is of type Backpropagation, activated by the

sigmoid function.

4) Principal Component Analysis: The Principal

Components Analysis (PCA) is a technique in which a set of

correlated variables are transformed to another set of not

correlated variables that is a linear combination from the

original variables in which most of these variables can be

removed with minimal loss of the original information; this

characteristic allows the PCA to be employed to reduce the

dimensionality of a large set of data losing the least of

information.

III. EXPERIMENTS

To perform the experimentations phase it was employed
a database of 70 images of plates from the 31 States of the
Mexican Republic, except Mexico City because these entity
license plates are different (contain 6 characters instead of 7).
This database was chosen because it was considered the
sampling by convenience. The images were captured at a
distance of 1.5 to 3 meters between the camera and the plate,
seeking a uniform lighting and subsequently normalized to
700 × 350 pixels.

Experimentation was made in two phases:

• Training to recognize letters and numbers

• License plate recognition.

A. Training torecognizer letters and numbers

To test the recognizers, 738 characters, 374 letters, and
364 numbers were used. In Table I we showed the number of
characters used in each case. That number is not equal for all
symbols since they do not appear with the same frequency in
the license plate.

Three types of characters recognizers were implemented:
1) coefficient of correlation 2) Bayesian classifier and 3)
Artificial Neural Network (ANN). These last 2 networks
were implemented, one for numbers and another for letters.

TABLE I. NUMBER OF EXAMPLES USED DURING THE TRAINING.

A B C D E F G H J K L

14 9 11 17 16 18 26 21 20 13 14

M N R P S T U V W X Y

13 14 20 17 12 18 18 21 13 15 18

Z 0 1 2 3 4 5 6 7 8 9

16 27 27 40 32 41 50 43 34 33 37

In the case of the Bayesian classifier and ANN, a vector

of 8-dimension characteristics was used at first, formed by 7
Hu’s moment and correlation Factor; the results to classify
the numbers and letters are shown in Table II. In the present
experiment, the networks are two layers with the following
structure: {8,10} for numbers and {8,23} for letters.

TABLE II. RESULTS OF CLASSIFICATION WITH 7 HU’S MOMENT AND

THE CORRELTION FACTOR

 Bayesian classifier

Character Hits % Hits %

Numbers 246/364 67.58 333/364 91.48

Letters 294/374 78.60 273/374 72.99

16Copyright (c) IARIA, 2018. ISBN: 978-1-61208-613-2

COMPUTATION TOOLS 2018 : The Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 23 / 41

Subsequently, vectors were added with characteristics 30
and 60 Fourier descriptors, forming vectors of dimension 38:
7 Hu’s moment, 30 Fourier descriptors and correlation
factor, and dimension 68: correlation factor, 7 Hu’s moment
and 60 Fourier descriptors. Results obtained in the tests with
the Bayesian classifier can be observed in Table III.

In this experiment, neural networks were also
implemented for the 38 and 68 features, establishing several
elements per layer experimentally. For example, the structure
for network with 38 features is: letters = {38, 76, 23} and
numbers = {38, 38, 10}. Both networks correctly classified
100% of the examples.

TABLE III. BAYESIAN CLASSIFIER RESULTS WITH 38 AND 68

FEATURES.

 Bayesian classifier

Character 38 hits % 68 hits %

Numbers 325/364 89.40 331/364 91.50

Letters 360/374 96.4 369/374 98.7

Finally, the Principal Components Analysis was

observed to reduce the dimension of the vector of
characteristics in the following way:

1) 38 features vector: The number of vectors
decreased to 9 components, while the letters vectors
went from 38 to 8 items. Neural networks
implemented in this case have the following
composition: numbers: {9, 27, 36, 10}, Letters: {8,
16, 32, 23}.

2) 68 features vector: The number of vectors

decreased to 13 components, while the letters
vectors went to only 11. Neural networks
implemented in this case have the following
composition: Numbers: {13, 26, 13, 10}, Letters:
{11, 22, 46, 23}.

B. Recognition of Vehicle`s registration.

Table IV shows the number of images of plates used by
State.

TABLE IV. EXAMPLES NUMBER OF REGISTRATIONS BY STATE.

Aguascalientes
Baja California

Norte

Baja California

Sur
Campeche Chihuahua

2 1 0 2 2

Colima Coahuila Chiapas Durango
Estado de

México

1 2 2 1 3

Guerrero Guanajuato Hidalgo Jalisco Michoacán

3 4 3 4 4

Morelos Nuevo León Nayarit Oaxaca Puebla

2 2 3 2 2

Querétaro Quintana Roo San Luis Potosí Sinaloa Sonora

4 1 4 3 1

Tabasco Tamaulipas Tlaxcala Veracruz Yucatán

2 2 1 2 2

Zacatecas Total

3 70

The results obtained in the test what the recognizers

developed are shown in Figure 8.

Figure 8. Results of classification plates to different three organizers

implemented.

To consider recognition of the registration as a success we

use the following criteria: A registration is successfully

recognized if all their characters are classified correctly.

Otherwise, those registrations are not recognized

successfully.

IV. DISCUSSION

In the development of this proposal, there were
implemented 3 types of recognizers: 1) correlation factor, 2)
Bayesian classifier and 3) Artificial neuronal network. Out of
these techniques, the correlation Factor had the best
performance as it can be seen in Fig. 8. The main problem
with this technique is comparing the examples of plates
presented in Table IV with a properly chosen template. This
is due, on one hand, to the segmented characters that may
have an excess of noise, and on the other hand, to the size
and shape of the character.

 Using the Bayesian classifier with only 8 features we got
a percentage of hits of 2.85%. However, when it increased
the number of features with Fourier descriptors, the
percentage increased to 45.7% with 38 features and 48.57%
with 68 characteristics. When the Principal Components was
incorporated, the percentage decreased by 8%. This shows
that the cumulative variance cannot be greater than 95%.

For neural networks, with 38 features we obtained
47.50% of hits and 17.14% with 68 features. When using 8
and 9 principal components with 38 features, performance
decreased only by 5%. On the other hand, when using 13 and
11 principal components with 68 features, the number of hits
increased to 43.85%. This shows that increasing the number
of elements in character modeling is not always the best
alternative.

The classification mistakes in the Bayesian classifier
recognizer is presented in the following form: (a) Number 9
is classified as 6 and 4, 1 is recognized as 7 and 8 is

17Copyright (c) IARIA, 2018. ISBN: 978-1-61208-613-2

COMPUTATION TOOLS 2018 : The Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 24 / 41

classified as 0. (b) Letters: J and T are classified as L and H,
respectively, and letters X and M are recognized as W.

The classification mistakes in artificial neural networks
are: (a) Number 9 is recognized as 6 and vice versa, 5 as 3
and in some cases 4 as 9. (b) Letter R is classified as K; L is
recognized as J; M is rated as W and vice versa; V is
recognized as A.

In the two previous classifiers, an error that occurs in
both is that they cannot recognize characters that have a very
similar structure; some examples are 5 and 8 and H and K, or
characters that look like their rotated version such as M and
W, 6 and 9, and V and A.

V. CONCLUSIONS

In this paper, we proposed an algorithm for recognition

of vehicle registration plates of Mexico, which consider

different texture patterns and colors in the background of

plates. This is an improvement with respect to other works,

since most consider plates formed with black characters on

white background.

In the case of the vehicle registration plates of Mexico,

they have different texture patterns and colors in the

background; so, when we applied the traditional algorithms,

their performance was considerably affected. This was

mainly due to the segmentation of characters; they are

usually extracted with part of the texture of the background,

getting incorrect characters.

The results showed that the proposed algorithm is robust

because in tests recognition using the Pearson correlation

coefficient we obtained a 91.42% of recognized characters.

In this case, we used techniques of template matching,

which showed that characters segmentation was adequate.

This proposed algorithm used the Mexican official

standard NOM-001-SCT-2-2000, which specifies the

dimensions of the plate, and the size and location of the

characters; this information provided the phase of

segmentation of characters.

By experimentation, it was obtained a threshold of pixel

intensity for each character that allows us to separate them

from the background characters with more precision.

Although the recognition was minimal, it should be

considered that the misclassification of a single character

implies that the plate is not acknowledge successfully,

therefore, a finer threshold to decide when a plaque is or is

not recognized must be established.

Using the characterization of the correlation coefficient,

Hu’s moments and Fourier descriptors allowed to recognize

the characters successfully. So, even though results obtained

in the phase of license plate recognition were low, good

results were achieved in an individual way.
For some alphanumeric characters of the plates, such as

the M and W, 6 and 9, A and V, based on the characteristic
that the moments of Hu are invariant, the recognition was
wrong. This was because, in an invariant process, the
characters are described through a set of quantifiable features
(very similar in the previous characters), that are insensitive
to any type of deformation. For the rotation characters in the

Hu's moments is necessary to apply mechanisms to reduce
the number of misrecognized characters, for example, Chain
Codes. For these, we chose a starting point and travelled the
border in a clockwise direction indicating the direction the
border is following, thus having a qualitative and quantitive
recognition.

This study is original with respect to Automatic Number
Plate Recognition (ANPR) literature and addresses harder
use-case than those commonly evaluated. We believe the
performances of the proposed algorithm should be compared
to open-source ANPR engines addressing textured
immatriculation plates management.

The dataset we used in this study is small: 2 plates per
Mexican state, resulting in 9 to 26 examples for each letter,
which is rather low to train and evaluate robust systems. This
is the reason why it is necessary to increase the size of the
database to improve the results of the proposed algorithm.

REFERENCES

[1] Gazcón, N. F. (2012). Automatic vehicle identification for

Argentinean license plates using intelligent template
matching. Pattern Recognition Letters , 33 (9), 1066--1074.

[2] Siddique, N. A. (2012). Development of an automatic vehicle
license plate detection and recognition system for Bangladesh.
Electronics & Vision (ICIEV), 2012 International Conference
on Informatics , 688--693.

[3] Y. Wang, J. C. (2015). License Plate Recognition Based on
SIFT Feature. Optik - International Journal for Light and
Electron Optics.

[4] M.A. Massoud, M. S. (2013). Automated new license plate
recognition in Egypt. Alexandria Engineering Journal.

[5] Nasipuri, S. S. (2014). iLPR: an Indian license plate
recognition system. Multimedia Tools and Applications.

[6] Cheng, Y. a. (2004). Car license plate recognition based on
the combination of principal components analysis and radial
basis function networks. 7th International Conference on
Signal Processing , 2, 1455--1458.

[7] Al Faqheri, W. a. (2009). A real-time Malaysian automatic
license plate recognition (M-ALPR) using hybrid fuzzy.
IJCSNS International Journal of Computer Science and
Network Security , 9 (2), 333--340.

[8] Otsu, N. (1979). A Threshold Selection Method from Gray-
Level Histograms. IEEE Transactions on Systems, Man and
Cybernetics , 62-66.

[9] Erick Cuevas, D. Z. (2010). Procesamiento digital de
imagenes con MATLAB y Simulink. México: Alfaomega Ra-
Ma.

[10] Duan, T. D. (2005). Building an automatic vehicle license
plate recognition system. Proc. Int. Conf. Comput. Sci. RIVF ,
59--63.

[11] Qin, Z. a. (2006). Method of license plate location based on
corner feature. 6th World Congress on Intelligent Control and
Automation , 2, 8645--8649.

[12] A. Lind Douglas, A. W. (2012). Estadística Aplicada a los
Negocios y la Economía. Mexico D. F.: McGraw Hill.

[13] Wong, W.-H. a.-C.-M. (1995). Generation of moment
invariants and their uses for character recognition. Pattern
Recognition Letters , 16, 115--123.

[14] Gómez González, S. a. (2011). Desarrollo de un sistema
prototipo de reconocimiento de digitos usando momentos
invariantes. Universidad Tecnológica de Pereira.

18Copyright (c) IARIA, 2018. ISBN: 978-1-61208-613-2

COMPUTATION TOOLS 2018 : The Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 25 / 41

[15] Zunic, D. a. (2014). Shape ellipticity from Hu moment
invariants. Applied Mathematics and Computation , 226, 406-
-414.

[16] Zunic, J. a. (2010). A Hu moment invariant as a shape
circularity measure. Pattern Recognition , 43 (1), 47--57.

[17] Steven L. Eddins Rafael C. Gonzalez, R. E. (2004.). Digital
Image Processing Using. Pearson Prentice Hall.

[18] Du, S. a. (2013). Automatic license plate recognition (ALPR):
A state-of-the-art review. IEEE Transactions on circuits and
systems for video technology , 23 (2), 311--325.

[19] Tom, M. M. (1997). Machine Learning. Ithaca, N. Y.:
McGraw-Hill.

[20] T. Hagan Martín, B. D. (2014). Neural Network Design.
ISBN-10: 0971732116

[21] Hu, M.-K. (1962). Visual Pattern Recognition by Moment
Invariants. IRE Transactions on Information Theory , 179-1z

19Copyright (c) IARIA, 2018. ISBN: 978-1-61208-613-2

COMPUTATION TOOLS 2018 : The Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 26 / 41

Deep Learning: A Tool for Computational Nuclear Physics

Gianina Alina Negoita∗†, Glenn R. Luecke‡, James P. Vary§, Pieter Maris§, Andrey M. Shirokov¶‖,
Ik Jae Shin∗∗, Youngman Kim∗∗, Esmond G. Ng†† and Chao Yang††

∗Department of Computer Science, Iowa State University, Ames, Iowa, USA
Email: alina@iastate.edu

†Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest-Magurele 76900, Romania
‡Department of Mathematics, Iowa State University, Ames, Iowa, USA

Email: grl@iastate.edu
§Department of Physics and Astronomy, Iowa State University, Ames, Iowa, USA

Email: jvary@iastate.edu, pmaris@iastate.edu
¶Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow 119991, Russia

Email: shirokov@nucl-th.sinp.msu.ru
‖Department of Physics, Pacific National University, Khabarovsk 680035, Russia
∗∗Rare Isotope Science Project, Institute for Basic Science, Daejeon 34047, Korea

Email: geniean@ibs.re.kr, ykim@ibs.re.kr
††Lawrence Berkeley National Laboratory, Berkeley, California, USA

Email: egng@lbl.gov, cyang@lbl.gov

Abstract—In recent years, several successful applications of the
Artificial Neural Networks (ANNs) have emerged in nuclear
physics and high-energy physics, as well as in biology, chem-
istry, meteorology, and other fields of science. A major goal
of nuclear theory is to predict nuclear structure and nuclear
reactions from the underlying theory of the strong interactions,
Quantum Chromodynamics (QCD). With access to powerful
High Performance Computing (HPC) systems, several ab initio
approaches, such as the No-Core Shell Model (NCSM), have been
developed to calculate the properties of atomic nuclei. However,
to accurately solve for the properties of atomic nuclei, one faces
immense theoretical and computational challenges. The present
study proposes a feed-forward ANN method for predicting the
properties of atomic nuclei like ground state energy and ground
state point proton root-mean-square (rms) radius based on NCSM
results in computationally accessible basis spaces. The designed
ANNs are sufficient to produce results for these two very different
observables in 6Li from the ab initio NCSM results in small basis
spaces that satisfy the theoretical physics condition: independence
of basis space parameters in the limit of extremely large matrices.
We also provide comparisons of the results from ANNs with
established methods of estimating the results in the infinite matrix
limit.

Keywords–Nuclear structure of 6Li; ab initio no-core shell
model; ground state energy; point proton root-mean-square radius;
artificial neural network.

I. INTRODUCTION
Nuclei are complicated quantum many-body systems,

whose inter-nucleon interactions are not known precisely. The
goal of ab initio nuclear theory is to accurately describe nuclei
from the first principles as systems of nucleons that interact by
fundamental interactions. With sufficiently precise many-body
tools, we learn important features of these interactions, such
as the fact that three-nucleon (NNN) interactions are critical
for understanding the anomalous long lifetime of 14C [1].
With access to powerful High Performance Computing (HPC)
systems, several ab initio approaches have been developed to
study nuclear structure and reactions, such as the No-Core

Shell Model (NCSM) [2], the Green’s Function Monte Carlo
(GFMC) [3], the Coupled-Cluster Theory (CC) [4], the Hyper-
spherical expansion method [5], the Nuclear Lattice Effective
Field Theory [6][7], the No-Core Shell Model with Continuum
[2] and the NCSM-SS-HORSE approach [8]. These approaches
have proven to be successful in reproducing the experimental
nuclear spectra for a small fraction of the estimated 7000 nuclei
produced in nature.

The ab initio theory may employ a high-quality realistic
nucleon-nucleon (NN) interaction, which gives an accurate
description of NN scattering data and predictions for binding
energies, spectra and other observables in light nuclei. Dae-
jeon16 is a NN interaction [9] based on Chiral Effective Field
Theory (χEFT), a promising theoretical approach to obtain a
quantitative description of the nuclear force from the first prin-
ciples [10]. This interaction has been designed to describe light
nuclei without explicit use of NNN interactions, which require
a significant increase of computational resources. It has also
been shown that this interaction provides good convergence of
many-body ab initio NCSM calculations [9].

Properties of 6Li and other nuclei, such as 3H, 3He, 4He,
6He, 8He, 10B, 12C and 16O, were investigated using the ab
initio NCSM approach with the Daejeon16 NN interaction
and compared with JISP16 [11] results. The results showed
that Daejeon16 provides both improved convergence and better
agreement with data than JISP16. These calculations were per-
formed with the code MFDn [12]–[14], a hybrid MPI/OpenMP
code for ab initio nuclear structure calculations. However, one
faces major challenges to approach convergence since, as the
basis space increases, the demands on computational resources
grow very rapidly.

The present work proposes a feed-forward Artificial Neural
Network (ANN) method as a different approach for obtaining
the properties of atomic nuclei such as the ground state
(gs) energy and the ground state (gs) point proton root-
mean-square (rms) radius based on results from readily-solved
basis spaces. Feed-forward ANNs can be viewed as universal

20Copyright (c) IARIA, 2018. ISBN: 978-1-61208-613-2

COMPUTATION TOOLS 2018 : The Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 27 / 41

non-linear function approximators [15]. Moreover, ANNs can
find solution when algorithmic methods are computationally
intensive or do not exist. For this reason, ANNs are considered
a more powerful modeling method for mapping complex non-
linear input-output problems. The output values of ANNs are
obtained by simulating the human learning process from the set
of learning examples of the input-output association provided
to the network. Additional information about ANNs can be
found in [16][17].

Although the gs energy and the gs point proton rms
radius are ultimately determined by complicated many-body
interactions between the nucleons, the variation of the NCSM
calculation results appears to be smooth with respect to the
two basis space parameters, h̄Ω and Nmax, where h̄Ω is
the harmonic oscillator (HO) energy and Nmax is the basis
truncation parameter. In practice, these calculations are limited
and one can not calculate the gs energy or the gs point proton
rms radius for very large Nmax. To obtain the gs energy and
the gs point proton rms radius as close as possible to the exact
results, the results are extrapolated to the infinite model space.
However, it is difficult to construct a simple function with a
few parameters to model this type of variation and extrapolate
the results to the infinite matrix limit. The advantage of ANN
is that it does not need an explicit analytical expression to
model the variation of the gs energy or the gs point proton
rms radius with respect to h̄Ω and Nmax. The feed-forward
ANN method is very useful to find the converged result at
very large Nmax.

In recent years, ANNs have been used in many areas of
nuclear physics and high-energy physics. In nuclear physics,
ANN models have been developed for constructing a model
for the nuclear charge radii [18], determination of one and
two proton separation energies [19], developing nuclear mass
systematics [20], identification of impact parameter in heavy-
ion collisions [21]–[23], estimating beta decay half-lives [24]
and obtaining potential energy curves [25]. In high-energy
physics, ANNs are used routinely in experiments for both
online triggers and offline data analysis due to an increased
complexity of the data and the physics processes investigated.
Both the DIRAC [26] and the H1 [27] experiments used ANNs
for triggers. For offline data analysis, ANNs were used or
tested for a variety of tasks, such as track and vertex re-
construction (DELPHI experiment [28]), particle identification
and discrimination (decay of the Z0 boson [29]), calorimeter
energy estimation and jet tagging. Tevatron experiments used
ANNs for the direct measurement of the top quark mass [30]
or leptoquark searches [31]. In terms of types of ANNs, the
vast majority of applications in nuclear physics and high-
energy physics were based on feed-forward ANNs, other types
of ANNs remaining almost unexplored. An exception is the
DELPHI experiment, which used a recurrent ANN for tracking
reconstruction [28].

This research presents results for two very different phys-
ical observables for 6Li, gs energy and gs point proton
rms radius, produced with the feed-forward ANN method.
Theoretical data for 6Li are available from the ab initio
NCSM calculations with the MFDn code using the Daejeon16
NN interaction and HO basis spaces up through the cutoff
Nmax = 18. This cutoff is defined for 6Li as the maximum
total HO quanta allowed in the Slater determinants forming the
basis space less 2 quanta. The dimension of the resulting many-
body Hamiltonian matrix is about 2.8 billion at this cutoff. We

return to discussing the many-body HO basis shortly. However,
for the training stage of ANN, data up through Nmax = 10
was used, where the Hamiltonian matrix dimension for 6Li
is only about 9.7 million. Comparisons of the results from
feed-forward ANNs with established methods of estimating the
results in the infinite matrix limit are also provided. The paper
is organized as follows: In Section II, short introductions to the
ab initio NCSM method and ANN’s formalism are given. In
Section III, our ANN’s architecture is presented. Section IV
presents the results and discussions of this work. Section V
contains our conclusion and future work.

II. THEORETICAL FRAMEWORK
The NCSM is an ab initio approach to the nuclear many-

body problem for light nuclei, which solves for the properties
of nuclei for an arbitrary NN interaction, preserving all the
symmetries. Naturally, the results obtained with this method
are limited to the largest computationally feasible basis space.
We will show that the ANN method is useful to make pre-
dictions at ultra-large basis spaces using available data from
NCSM calculations at smaller basis spaces. More discussions
on these two methods are presented in each subsection.

A. Ab initio NCSM Method
In the NCSM method, the neutrons and protons (separate

species of nucleons) interact independently with each other.
The Hamiltonian of A nucleons contains kinetic energy (Trel)
and interaction (V) terms

HA = Trel + V

=
1

A

∑
i<j

(~pi − ~pj)2

2m
+

A∑
i<j

Vij +

A∑
i<j<k

Vijk + . . . ,
(1)

where m is the nucleon mass, ~pi is the momentum of the i-
th nucleon, Vij is the NN interaction including the Coulomb
interaction between protons and Vijk is the NNN interaction.
Higher-body interactions are also allowed and signified by the
three dots. The HO center-of-mass (CM) Hamiltonian with a
Lagrange multiplier is added to the Hamiltonian above to force
the many-body eigenstates to factorize into a CM component
times an intrinsic component as in [32]. This way, the spurious
CM excited states are pushed up above the physically relevant
states, which have the lowest eigenstate of the HO for CM
motion.

With the nuclear Hamiltonian specified above in (1), the
NCSM solves the A-body Schrödinger equation using a matrix
formulation

HAΨA(~r1, ~r2, . . . , ~rA) = EΨA(~r1, ~r2, . . . , ~rA), (2)

where the A-body wave function is given by a linear combi-
nation of Slater determinants φi

ΨA(~r1, ~r2, . . . , ~rA) =

k∑
i=0

ciφi(~r1, ~r2, . . . , ~rA), (3)

and where k is the number of many-body basis states, con-
figurations, in the system. To obtain the exact A-body wave
function one has to consider infinite number of configurations,
k = ∞. However, in practice, the sum is limited to a
finite number of configurations determined by Nmax. The
Slater determinant φi is the antisymmetrized product of single
particle wave functions φα(~r), where α stands for the quantum

21Copyright (c) IARIA, 2018. ISBN: 978-1-61208-613-2

COMPUTATION TOOLS 2018 : The Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 28 / 41

numbers of a single particle state. A common choice for the
single particle wave functions is the HO basis functions. The
matrix elements of the Hamiltonian in the many-body HO basis
is given by Hij = 〈φi|Ĥ|φj〉. For these large and sparse
Hamiltonian matrices, the Lanczos method is one possible
choice to find the extreme eigenvalues [33].

To be more specific, our limited many-body HO basis is
characterized by two basis space parameters: h̄Ω and Nmax,
where h̄Ω is the HO energy and Nmax is the basis truncation
parameter. In this approach, all possible configurations with
Nmax excitations above the unperturbed gs (the HO configura-
tion with the minimum HO energy defined to be the Nmax = 0
configuration) are considered. Even values of Nmax correspond
to states with the same parity as the unperturbed gs and are
called the “natural” parity states, while odd values of Nmax

correspond to states with “unnatural” parity.
Due to the strong short-range correlations of nucleons in a

nucleus, a large basis space, or model space, one that is often
not feasible, is required to achieve convergence. To obtain the
gs energy and other observables as close as possible to the
exact results one has to choose the largest feasible basis spaces.
Next, if numerical convergence is not achieved, which is often
the case, the results are extrapolated to the infinite model space.
To take the infinite matrix limit, several extrapolation methods
have been developed (see, for example, [34]).

B. Artificial Neural Networks
ANNs are powerful tools that can be used for function

approximation, classification and pattern recognition, such as
finding clusters or regularities in the data. The goal of ANNs
is to find a solution efficiently when algorithmic methods are
computationally intensive or do not exist. An important advan-
tage of ANNs is the ability to detect complex non-linear input-
output relationships. For this reason, ANNs can be viewed as
universal non-linear function approximators [15]. Employing
ANNs for mapping complex non-linear input-output problems
offers a significant advantage over conventional techniques,
such as regression techniques, because ANNs do not require
explicit mathematical functions.

ANNs are defined as computer algorithms that mimic the
human brain, being inspired by biological neural systems.
Similar to the human brain, ANNs can perform complex tasks,
such as learning, memorization and generalization. They are
capable of learning from experience, storing knowledge and
then applying this knowledge to make predictions.

A biological neuron has a cell body, a nucleus, dendrites
and an axon. Dendrites act as inputs, the axon propagates
the signal and the interaction between neurons takes place
at synapses. Each synapse has an associated weight. When
a neuron ‘fires’, it sends an output through the axon and the
synapse to another neuron. Each neuron then collects all the
inputs coming from linked neurons and produces an output.

The artificial neuron (AN) is a model of the biological
neuron. Figure 1 shows a representation of an AN. Similarly,
the AN receives a set of input signals (x1, x2, ..., xn) from
an external source or from another AN. A weight wi (i =
1, ..., n) is associated with each input signal xi (i = 1, ..., n).
Additionally, each AN that is not in the input layer has another
input signal called the bias with value 1 and its associated
weight b. The AN collects all the input signals and calculates
a net signal as the weighted sum of all input signals as

net =

n+1∑
i=1

wixi, (4)

where xn+1 = 1 and wn+1 = b.
Next, the AN calculates and transmits an output signal,

y. The output signal is calculated using a function called an
activation or transfer function, which depends on the value of
the net signal, y = f(net).

. . .

x
1

x
2

x
n

1

input signals

xw
1

xw
2

xw
n

xb

weights

f(net)

output signal

y

Figure 1. An artificial neuron.

ANNs consist of a number of highly interconnected ANs
which are processing units. One simple way to organize ANs
is in layers, which gives a class of ANN called multi-layer
ANN. ANNs are composed of an input layer, one or more
hidden layers and an output layer. The neurons in the input
layer receive the data from outside and transmit the data via
weighted connections to the neurons in the hidden layer, which,
in turn, transmit the data to the next layer. Each layer transmits
the data to the next layer. Finally, the neurons in the output
layer give the results. The type of ANN, which propagates the
input through all the layers and has no feed-back loops is called
a feed-forward multi-layer ANN. For simplicity, throughout
this paper we adopt and work with a feed-forward ANN. For
other types of ANN, see [16][17].

Figure 2 shows an example of a feed-forward three-layer
ANN. It contains one input layer, one hidden layer and one
output layer. The input layer has n ANs, the hidden layer
has m ANs and the output layer has p ANs. The connections
between the neurons are weighted as follows: vji are the
weights between the input layer and the hidden layer, and wkj
are the weights between the hidden layer and the output layer,
where (i = 1, ..., n), (j = 1, ...,m) and (k = 1, ..., p). In
this example, the input layer has no activation function, the
hidden layer has activation function f and the output layer
has activation function g. It is also possible to have a different
activation function for each individual neuron.

The activation function in the hidden layer, f , is different
from the activation function in the output layer, g. For function
approximation, a common choice for the activation function
for the neurons in the hidden layer is a sigmoid or sigmoid–like
function, while the neurons in the output layer have a linear

22Copyright (c) IARIA, 2018. ISBN: 978-1-61208-613-2

COMPUTATION TOOLS 2018 : The Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 29 / 41

input layer

output layer

hidden layer

x
1

x
i

x
n

y
1

y
j

y
m

z
1

z
k

z
p.

.

.

v
11

v
1i

v
1n

v
j1

v
ji

v
jn

v
m1

v
mi

v
mn

w
11

w
1j

w
1m

w
k1 w

kj

w
km

w
pm

w
pjw

p1

Figure 2. A three-layer ANN.

function:
f(x) =

1

1 + e−ax
, (5)

where a is the slope parameter of the sigmoid function and

g(x) = x. (6)

The neurons with non-linear activation functions allow the
ANN to learn non-linear and linear relationships between
input and output vectors. Therefore, sufficient neurons should
be used in the hidden layer in order to get a good function
approximation.

In the example shown in Figure 2 and with the notations
mentioned above, the network propagates the external signal
through the layers producing the output signal zk at neuron k
in the output layer

zk = g(netzk) = g(

m+1∑
j=1

wkjf(netyj))

= g(

m+1∑
j=1

wkjf(

n+1∑
i=1

vjixi)).

(7)

The use of an ANN is a two-step process, training and
testing stages. In the training stage, the ANN adjusts its
weights until an acceptable error level between desired and
predicted outputs is obtained. The difference between desired
and predicted outputs is measured by the error function, also

called the performance function. A common choice for the
error function is mean square error (MSE).

There are multiple training algorithms based on various
implementations of the back-propagation algorithm [35], an
efficient method for computing the gradient of error functions.
These algorithms compute the net signals and outputs of each
neuron in the network every time the weights are adjusted as
in (7), the operation being called the forward pass operation.
Next, in the backward pass operation, the errors for each
neuron in the network are computed and the weights of the
network are updated as a function of the errors until the
stopping criterion is satisfied. In the testing stage, the trained
ANN is tested over new data that was not used in the training
process. The predicted output is calculated using (7).

One of the known problems for ANN is overfitting: the
error on the training set is within the acceptable limits, but
when new data is presented to the network the error is large.
In this case, ANN has memorized the training examples, but
it has not learned to generalize to new data. This problem can
be prevented using several techniques, such as early stopping,
regularization, weight decay, hold-out method, m-fold cross-
validation and others.

Early stopping is widely used. In this technique the avail-
able data is divided into three subsets: the training set, the
validation set and the test set. The training set is used for
computing the gradient and updating the network weights and
biases. The error on the validation set is monitored during
the training process. When the validation error increases for a
specified number of iterations, the training is stopped, and the
weights and biases at the minimum of the validation error are
returned. The test set error is not used during training, but it is
used as a further check that the network generalizes well and
to compare different ANN models.

Regularization modifies the performance function by
adding a term that consists of the mean of the sum of squares
of the network weights and biases. However, the problem with
regularization is that it is difficult to determine the optimum
value for the performance ratio parameter. It is desirable to
determine the optimal regularization parameters automatically.
One approach to this process is the Bayesian regularization
of David MacKay [36]. The Bayesian regularization algorithm
updates the weight and bias values according to Levenberg-
Marquardt [35][37] optimization. It minimizes a linear com-
bination of squared errors and weights and it also modifies the
regularization parameters of the linear combination to generate
a network that generalizes well. See [36][38] for more detailed
discussions of Bayesian regularization.

For further and general background on the ANN and
how to prevent overfitting and improve generalization refer
to [16][17].

III. ANN DESIGN
The topological structure of ANNs used in this study

is presented in Figure 3. The designed ANNs contain one
input layer with two neurons, one hidden layer with eight
neurons and one output layer with one neuron. The inputs
were the basis space parameters: the HO energy, h̄Ω, and the
basis truncation parameter, Nmax, described in Section II. The
desired outputs were the gs energy and the gs point proton rms
radius of 6Li. An ANN was designed for each desired output:
one ANN for gs energy and another ANN for gs point proton
rms radius. The optimum number of neurons in the hidden
layer was obtained according to a trial and error process.

23Copyright (c) IARIA, 2018. ISBN: 978-1-61208-613-2

COMPUTATION TOOLS 2018 : The Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 30 / 41

..
..
..
.

1

2

1

2

3

6

7

8

1

input layer hidden layer output layer

N
max

hΩ

proton

rms radius

-

energy

or

Figure 3. Topological structure of the designed ANN.

The activation function employed for the hidden layer was
a widely-used form, the hyperbolic tangent sigmoid function

f(x) = tansig(x) =
2

(1 + e−2x)
− 1, (8)

where x is the input value of the hidden neuron and f(x)
is the output of the hidden neuron. tansig is mathematically
equivalent to the hyperbolic tangent function, tanh, but it
improves network functionality because it runs faster than
tanh. It has been proven that one hidden layer and sigmoid-
like activation function in this layer are sufficient to approxi-
mate any continuous real function, given sufficient number of
neurons in the hidden layer [39].

MATLAB software v9.2.0 (R2017a) with Neural Network
Toolbox was used for the implementation of this work. As
mentioned before in Section I, the data set for 6Li was taken
from the ab initio NCSM calculations with the MFDn code
using the Daejeon16 NN interaction [9] and basis spaces up
through Nmax = 18. However, only the data with even Nmax

values corresponding to “natural” parity states and up through
Nmax = 10 was used for the training stage of the ANN.
The training data was limited to Nmax = 10 and below since
future applications to heavier nuclei will likely not have data
at higher Nmax values due to exponential increase in the
matrix dimension. This Nmax ≤ 10 data set was randomly
divided into two separate sets using the dividerand function in
MATLAB: 85% for the training set and 15% for the testing set.
A back-propagation algorithm with Bayesian regularization

with MSE performance function was used for ANN training.
Bayesian regularization does not require a validation data set.

For function approximation, Bayesian regularization pro-
vides better generalization performance than early stopping in
most cases, but it takes longer to converge. The performance
improvement is more noticeable when the data set is small
because Bayesian regularization does not require a validation
data set, leaving more data for training. In MATLAB, Bayesian
regularization has been implemented in the function trainbr.
When using trainbr, it is important to train the network until
it reaches convergence. In this study, the training process is
stopped if: (1) it reaches the maximum number of iterations,
1000; (2) the performance has an acceptable level; (3) the
estimation error is below the target; or (4) the Levenberg-
Marquardt adjustment parameter µ becomes larger than 1010.
A good typical indication for convergence is when the max-
imum value of µ has been reached. During training, one can
choose to show the Neural Network Training tool (nntraintool)
GUI in MATLAB to monitor the training progress. Figure 4
illustrates a training example as it appears in nntraintool.

Figure 4. Neural Network Training tool (nntraintool) in MATLAB.

Note the ANN architecture view and the training stopping
parameters with their ranges.

24Copyright (c) IARIA, 2018. ISBN: 978-1-61208-613-2

COMPUTATION TOOLS 2018 : The Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 31 / 41

IV. RESULTS AND DISCUSSIONS
Every ANN creation and initialization function starts with

different initial conditions, such as initial weights and biases,
and different division of the training, validation, and test data
sets. These different initial conditions can lead to very different
solutions for the same problem. Moreover, it is also possible to
fail in obtaining realistic solutions with ANNs for certain initial
conditions. For this reason, it is a good idea to train several
networks to ensure that a network with good generalization is
found. Furthermore, by retraining each network, one can verify
a robust network performance.

Figure 5 shows the training procedure of 100 ANNs with
architecture mentioned in Section III using the trainbr function
for Bayesian regularization. Each ANN is trained starting
from different initial weights and biases, and with different
division for the training and test data sets. To ensure good
generalization, each ANN is retrained 5 times.

1 net = fitnet(8, ’trainbr’);
2 net.performFcn = ’mse’;
3 numNN = 100;
4 numNNr = 5;
5 NN = cell(numNNr, numNN);
6 trace = cell(numNNr, numNN);
7 perfs = zeros(numNNr, numNN);
8 % train numNN ANNs
9 for i = 1:numNN

10 % retrain each ANN numNNr times
11 for j = 1:numNNr
12 [NN{j}{i},trace{j}{i}] = train(net, x, t);
13 y2 = NN{j}{i}(x2);
14 perfs(j, i) = perform(NN{j}{i}, t2, y2);
15 net = NN{j}{i};
16 end
17 % reinitialize initial weights and biases
18 net = init(net);
19 end
20 minPerf = min(perfs(:))
21 [rowMin, colMin] = find(perfs == minPerf)
22 net = NN{rowMin}{colMin};
23 tr = trace{rowMin}{colMin};

Figure 5. Training 100 ANNs and retraining each ANN 5 times to
find the best generalization.

The performance function, such as MSE, measures how
well ANN can predict data, i.e., how well ANN can be
generalized to new data. The test data sets are a good measure
of generalization for ANNs since they are not used in training.
A small performance function on the test data set indicates
an ANN with good performance was found. In this work, the
ANN with the lowest performance on the test data set is chosen
to make future predictions.

Using the methodology described above, two ANNs are
chosen to predict the gs energy and the gs point proton rms
radius. The ANN prediction results for the gs energies and gs
proton rms radii of 6Li are presented in detail in this section.
Comparison with the ab initio NCSM calculation results is also
provided for the available data at Nmax = 12− 18.

Figure 6 presents the gs energy of 6Li as a function of
the HO energy, h̄Ω, at selected values of the basis truncation
parameter, Nmax. The dashed curves connect the NCSM
calculation results using the Daejeon16 NN interaction for
Nmax = 2 − 10, in increments of 2 units, used for ANN
training and testing. The solid curves link the ANN prediction
results for Nmax = 12 − 70. The sequence from Nmax =
12− 30 is in increments of 2 units, while the sequence from

Nmax = 30 − 70 is in increments of 10 units. The lowest
horizontal line corresponds to Nmax = 70 and represents
the nearly converged result predicted by ANN. Convergence
is defined as independence of both basis space parameters,
h̄Ω and Nmax. The convergence pattern shows a reduction in
the spacing between successive curves and flattening of the
curves as Nmax increases. The gs energy provided by the
ANN decreases monotonically with increasing Nmax at all
values of h̄Ω. This demonstrates that the ANN is successfully
simulating what is expected from theoretical physics. That is,
in theoretical physics the energy variational principle requires
that the gs energy behaves as a non-increasing function of
increasing matrix dimensionality at fixed h̄Ω and, furthermore,
matrix dimension increases with increasing Nmax.

Figure 6. Calculated and predicted gs energy of 6Li as a function of h̄Ω at
selected Nmax values.

To illustrate the ANN prediction accuracy, the NCSM cal-
culation results and the corresponding ANN prediction results
of the gs energy of 6Li are presented in Figure 7 as a function
of h̄Ω at Nmax = 12, 14, 16, and 18. The dashed curves
connect the NCSM calculation results using the Daejeon16
NN interaction and the solid curves link the ANN prediction
results. The nearly converged result predicted by ANN is also
shown above the horizontal axis at Nmax = 70. Figure 7
shows good agreement between the calculated NCSM results
and the ANN predictions up through Nmax = 18. Actual
NCSM results always converged from above towards the exact
result and become increasingly independent of the basis space
parameters, h̄Ω and Nmax. That the ANN result is essentially
a flat line at Nmax = 70 and that the curves preceding it
form an increasingly dense pattern approaching Nmax = 70
both provide indications that the ANN is producing a valid
estimate of the converged gs energy.

The gs rms radii provide a very different quantity from
NCSM results as they are found to be more slowly convergent
than the gs energies and they are not monotonic. Figure 8
presents the calculated gs point proton rms radius of 6Li as a
function of h̄Ω at selected values of Nmax. The dashed curves
connect the NCSM calculation results using the Daejeon16 NN
interaction up through Nmax = 10, while the solid curves link
the ANN prediction results above Nmax = 10. The highest

25Copyright (c) IARIA, 2018. ISBN: 978-1-61208-613-2

COMPUTATION TOOLS 2018 : The Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 32 / 41

Figure 7. Comparison of the NCSM calculated and the corresponding ANN
predicted gs energy values of 6Li as a function of h̄Ω at

Nmax = 12, 14, 16, and 18. The lowest horizontal line corresponds to the
ANN nearly converged result at Nmax = 70.

curve corresponds to Nmax = 90 and successively lower
curves are obtained with Nmax decreased by 10 units until
the Nmax = 30 curve and then by 2 units for each lower
Nmax curve. The rms radius converges monotonically from
below for most of the h̄Ω range shown. More importantly, the
rms radius shows the anticipated convergence to a flat line
accompanied by an increasing density of lines with increasing
Nmax. These are the signals of convergence that we anticipate
based on experience in limited basis spaces and on general
theoretical physics grounds.

Figure 8. Calculated and predicted gs point proton rms radius of 6Li as a
function of h̄Ω at selected Nmax values.

The NCSM calculated values and the corresponding pre-
diction values of the gs point proton rms radius of 6Li are
presented in Figure 9 for Nmax = 12, 14, 16, and 18. The
dashed curves link the NCSM calculation results using the

Daejeon16 NN interaction and the solid curves connect the
ANN prediction results. As seen in this figure, the ANN pre-
dictions are in good agreement with the NCSM calculations,
showing the efficacy of the ANN method.

Figure 9. Comparison of the NCSM calculated and the corresponding ANN
predicted gs point proton rms radius values of 6Li as a function of h̄Ω for
Nmax = 12, 14, 16, and 18. The highest curve corresponds to the ANN

nearly converged result at Nmax = 90.

Table I presents the nearly converged ANN predicted
results for the gs energy and the gs point proton rms radius of
6Li. As a comparison, the gs energy results from the current
best theoretical upper bounds at Nmax = 10 and Nmax = 18
and from the Extrapolation B (Extrap B) method [34] at
Nmax ≤ 10 are provided. Similar to the ANN prediction, the
Extrap B result arises when using all available results through
Nmax = 10. The ANN prediction for the gs energy is below
the best upper bound, found at Nmax = 18, which is about 85
KeV lower than the Extrap B result.

There is no extrapolation available for the rms radius, but
we quote in Table I the estimated result by the crossover-
point method [40] to be ∼ 2.40 fm. The crossover-point
method takes the value at h̄Ω in the table of rms radii results
through Nmax = 10, which produces an rms radius result that
is roughly independent of Nmax.

TABLE I. COMPARISON OF THE ANN PREDICTED RESULTS WITH
RESULTS FROM THE CURRENT BEST UPPER BOUNDS AND FROM OTHER

ESTIMATION METHODS.

Observable Upper Bound Upper Bound Estimationa ANN
Nmax = 10 Nmax = 18 Nmax ≤ 10 Nmax ≤ 10

gs energy (MeV) -31.688 -31.977 -31.892 -32.024
gs rms radius (fm) – – 2.40 2.49

a The Extrap B method [34] for the gs energy and the crossover-point method [40] for
the gs point proton rms radius

It is clearly seen from Figures 7 and 9 above that the
ANN method results are consistent with the NCSM calcula-
tion results using the Daejeon16 NN interaction at Nmax =
12, 14, 16, and 18. Table I also shows that ANN’s results are
consistent with the best available upper bound in the case of
the gs energy. The ANN’s prediction for the converged rms
radius is slightly larger than the result from the crossover-point

26Copyright (c) IARIA, 2018. ISBN: 978-1-61208-613-2

COMPUTATION TOOLS 2018 : The Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 33 / 41

method and more consistent with the trends visible in Figure 9
at the higher Nmax values. To measure the performance of
ANNs, MSE for the training subsets up through Nmax = 10,
as well as on the second test set for data at Nmax = 12, 14, 16,
and 18, are provided in Table II.

TABLE II. THE MSE PERFORMANCE FUNCTION VALUES ON THE
TRAINING AND TESTING DATA SETS AND ON THE Nmax = 12, 14, 16, AND

18 DATA SET.

Data Set Whole Set Training Set Testing Set1 Testing Set2
Nmax ≤ 10 Nmax ≤ 10 Nmax ≤ 10 Nmax = 12 − 18

gs energy (MeV) 4.86 × 10−4 5.04 × 10−4 3.80 × 10−4 0.0072
gs rms radius (fm) 7.88 × 10−7 4.49 × 10−7 2.74 × 10−6 9.24 × 10−7

The small values of the performance function in Table II
above indicate that ANNs with good generalizations were
found to predict the results.

V. CONCLUSION AND FUTURE WORK
Feed-forward ANNs were used to predict the properties

of the 6Li nucleus such as the gs energy and the gs point
proton rms radius. The advantage of the ANN method is that
it does not need any mathematical relationship between input
and output data. The architecture of ANNs consisted of three
layers: two neurons in the input layer, eight neurons in the
hidden layer and one neuron in the output layer. An ANN was
designed for each output.

The data set from the ab initio NCSM calculations using
the Daejeon16 NN interaction and basis spaces up through
Nmax = 10 was divided into two subsets: 85% for the training
set and 15% for the testing set. Bayesian regularization was
used for training and doesn’t require a validation set.

The designed ANNs were sufficient to produce results for
these two very different observables in 6Li from the ab initio
NCSM. The gs energy and the gs point proton rms radius
showed good convergence patterns and satisfy the theoretical
physics condition, independence of basis space parameters in
the limit of extremely large matrices. Comparisons of the
results from ANNs with established methods of estimating the
results in the infinite matrix limit are also provided. By these
measures, ANNs are seen to be successful for predicting the
results of ultra-large basis spaces, spaces too large for direct
many-body calculations.

As future work, more Li isotopes such as 7Li, 8Li and 9Li
will be investigated using the ANN method and the results will
be compared with results from improved extrapolation methods
currently under development.

ACKNOWLEDGMENT
This work was supported by the Department of Energy

under Grant Nos. DE-FG02-87ER40371 and DESC000018223
(SciDAC-4/NUCLEI). The work of A.M.S. was supported by
the Russian Science Foundation under Project No. 16-12-
10048. Computational resources were provided by the Na-
tional Energy Research Scientific Computing Center (NERSC),
which is supported by the Office of Science of the U.S. DOE
under Contract No. DE-AC02-05CH11231. Personnel time for
this project was also supported by Iowa State University.

REFERENCES
[1] P. Maris et al., “Origin of the Anomalous Long Lifetime of 14C,”

Physical Review Letters, vol. 106, no. 20, May 2011, pp. 202 502–
202 505, DOI: 10.1103/PhysRevLett.106.202502.

[2] B. R. Barrett, P. Navrátil, and J. P. Vary, “Ab Initio No Core Shell
Model,” Progress in Particle and Nuclear Physics, vol. 69, Mar 2013,
pp. 131–181, DOI: 10.1016/j.ppnp.2012.10.003, ISSN: 0146-6410.

[3] S. C. Pieper and R. B. Wiringa, “Quantum Monte Carlo Calcu-
lations of Light Nuclei,” Annual Review of Nuclear and Particle
Science, vol. 51, no. 1, Dec 2001, pp. 53–90, DOI: 10.1146/an-
nurev.nucl.51.101701.132506.

[4] K. Kowalski, D. J. Dean, M. Hjorth-Jensen, T. Papenbrock, and
P. Piecuch, “Coupled Cluster Calculations of Ground and Excited States
of Nuclei,” Physical Review Letters, vol. 92, no. 13, Apr 2004, pp.
132 501–132 504, DOI: 10.1103/PhysRevLett.92.132501.

[5] W. Leidemann and G. Orlandini, “Modern Ab Initio Approaches and
Applications in Few-Nucleon Physics with A ≥ 4,” Progress in
Particle and Nuclear Physics, vol. 68, Jan 2013, pp. 158–214, DOI:
10.1016/j.ppnp.2012.09.001, ISSN: 0146-6410.

[6] D. Lee, “Lattice Simulations for Few- and Many-Body Systems,”
Progress in Particle and Nuclear Physics, vol. 63, no. 1, July 2009,
pp. 117–154, DOI: 10.1016/j.ppnp.2008.12.001, ISSN: 0146-6410.

[7] E. Epelbaum, H. Krebs, D. Lee, and U. G. Meißner, “Ab Initio Calcula-
tion of the Hoyle State,” Physical Review Letters, vol. 106, no. 19, May
2011, pp. 192 501–192 504, DOI: 10.1103/PhysRevLett.106.192501.

[8] A. M. Shirokov, A. I. Mazur, I. A. Mazur, and J. P. Vary, “Shell Model
States in the Continuum,” Physical Review C, vol. 94, no. 6, Dec 2016,
pp. 064 320–064 323, DOI: 10.1103/PhysRevC.94.064320.

[9] A. Shirokov et al., “N3LO NN Interaction Adjusted to Light Nuclei in
ab Exitu Approach,” Physics Letters B, vol. 761, Oct 2016, pp. 87–91,
DOI: 10.1016/j.physletb.2016.08.006, ISSN: 0370-2693.

[10] R. Machleidt and D. Entem, “Chiral Effective Field Theory and Nuclear
Forces,” Physics Reports, vol. 503, no. 1, June 2011, pp. 1–75, DOI:
10.1016/j.physrep.2011.02.001, ISSN: 0370-1573.

[11] A. Shirokov, J. Vary, A. Mazur, and T. Weber, “Realistic Nuclear
Hamiltonian: Ab Exitu Approach,” Physics Letters B, vol. 644, no. 1,
Jan 2007, pp. 33–37, DOI: 10.1016/j.physletb.2006.10.066, ISSN: 0370-
2693.

[12] P. Sternberg et al., “Accelerating Configuration Interaction Calcula-
tions for Nuclear Structure,” in Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing – International Conference for High
Performance Computing, Networking, Storage and Analysis (SC 2008)
Nov. 15–21, 2008, Austin, TX, USA. IEEE, Nov 2008, pp. 1–12, DOI:
10.1109/SC.2008.5220090, ISSN: 2167-4329, ISBN: 978-1-4244-2834-
2.

[13] P. Maris, M. Sosonkina, J. P. Vary, E. Ng, and C. Yang, “Scaling
of Ab-initio Nuclear Physics Calculations on Multicore Computer
Architectures,” Procedia Computer Science, vol. 1, no. 1, May 2010, pp.
97–106, ICCS 2010, DOI: 10.1016/j.procs.2010.04.012, ISSN: 1877-
0509.

[14] H. M. Aktulga, C. Yang, E. G. Ng, P. Maris, and J. P. Vary, “Improving
the Scalability of a Symmetric Iterative Eigensolver for Multi-core
Platforms,” Concurrency and Computation: Practice and Experience,
vol. 26, no. 16, Nov 2014, pp. 2631–2651, DOI: 10.1002/cpe.3129,
ISSN: 1532-0634.

[15] K. Hornik, M. Stinchcombe, and H. White, “Multilayer Feedforward
Networks are Universal Approximators,” Neural Networks, vol. 2, no. 5,
Mar 1989, pp. 359–366, DOI: 10.1016/0893-6080(89)90020-8, ISSN:
0893-6080.

[16] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford
University Press, 1995, ISBN: 978-0198538646.

[17] S. Haykin, Neural Networks: A Comprehensive Foundation. Prentice-
Hall Inc., 1999, Englewood Cliffs, NJ, USA, ISBN: 978-0132733502.

[18] S. Akkoyun, T. Bayram, S. O. Kara, and A. Sinan, “An Artificial Neural
Network Application on Nuclear Charge Radii,” Journal of Physics G:
Nuclear and Particle Physics, vol. 40, no. 5, Mar 2013, pp. 055 106–
055 112, DOI: 10.1088/0954-3899/40/5/055106.

[19] S. Athanassopoulos, E. Mavrommatis, K. A. Gernoth, and J. W.
Clark, “One and two Proton Separation Energies from Nuclear Mass
Systematics Using Neural Networks,” Sep 2005, arXiv:0509075 [nucl-
th].

[20] S. Athanassopoulos, E. Mavrommatis, K. Gernoth, and J. Clark,
“Nuclear Mass Systematics Using Neural Networks,” Nuclear

27Copyright (c) IARIA, 2018. ISBN: 978-1-61208-613-2

COMPUTATION TOOLS 2018 : The Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 34 / 41

Physics A, vol. 743, no. 4, Nov 2004, pp. 222–235, DOI:
10.1016/j.nuclphysa.2004.08.006, ISSN: 0375-9474.

[21] C. David, M. Freslier, and J. Aichelin, “Impact Parameter Determination
for Heavy-ion Collisions by use of a Neural Network,” Physical Review
C, vol. 51, no. 3, Mar 1995, pp. 1453–1459, DOI: 10.1103/Phys-
RevC.51.1453.

[22] S. A. Bass, A. Bischoff, J. A. Maruhn, H. Stöcker, and W. Greiner,
“Neural Networks for Impact Parameter Determination,” Physical Re-
view C, vol. 53, no. 5, May 1996, pp. 2358–2363, DOI: 10.1103/Phys-
RevC.53.2358.

[23] F. Haddad et al., “Impact Parameter Determination in Experimental
Analysis Using a Neural Network,” Physical Review C, vol. 55, no. 3,
Mar 1997, pp. 1371–1375, DOI: 10.1103/PhysRevC.55.1371.

[24] N. Costiris, E. Mavrommatis, K. A. Gernoth, and J. W. Clark, “A Global
Model of β−–Decay Half–Lives Using Neural Networks,” Jan 2007,
arXiv:0701096 [nucl-th].

[25] S. Akkoyun, T. Bayram, S. , and N. Yildiz, “Consistent Empirical Phys-
ical Formula for Potential Energy Curves of 38–66Ti Isotopes by Using
Neural Networks,” Physics of Particles and Nuclei Letters, vol. 10,
no. 6, Nov 2013, pp. 528–534, DOI: 10.1134/S1547477113060022,
ISSN: 1531-8567.

[26] “DIRAC Experiment,” URL: http://www.cern.ch/DIRAC [accessed:
2018-01-17].

[27] “H1 Experiment,” URL: http://www-h1.desy.de [accessed: 2018-01-17].
[28] R. Frühwirth, “Selection of Optimal Subsets of Tracks with a Feed-back

Neural Network,” Computer Physics Communications, vol. 78, no. 1–
2, Dec 1993, pp. 23–28, DOI: 10.1016/0010-4655(93)90140-8, ISSN:
0010-4655.

[29] P. Abreu et al., “Classification of the Hadronic Decays of the Z0 Into b
and c Quark Pairs Using a Neural Network,” Physics Letters B, vol. 295,
no. 3–4, Dec 1992, pp. 383–395, DOI: 10.1016/0370-2693(92)91580-3,
ISSN: 0370-2693.

[30] S. Abachi et al., “Direct Measurement of the top Quark Mass,” Physical
Review Letters, vol. 79, no. 7, Aug 1997, pp. 1197–1202, DOI:
10.1103/PhysRevLett.79.1197.

[31] B. Abbott et al., “Search for Scalar Leptoquark Pairs Decaying to
Electrons and Jets in pp Collisions,” Physical Review Letters, vol. 79,
no. 22, Dec 1997, pp. 4321–4326, DOI: 10.1103/PhysRevLett.79.4321.

[32] D. H. Gloeckner and R. D. Lawson, “Spurious Center-of-Mass Motion,”
Physics Letters B, vol. 53, no. 4, Dec 1974, pp. 313–318, DOI:
10.1016/0370-2693(74)90390-6.

[33] B. N. Parlett, The Symmetric Eigenvalue Problem. Classics in Applied
Mathematics, 1998, DOI: 10.1137/1.9781611971163, ISBN: 978-0-
89871-402-9.

[34] P. Maris, J. P. Vary, and A. M. Shirokov, “Ab Initio No-Core Full
Configuration Calculations of Light Nuclei,” Physical Review C,
vol. 79, no. 1, Jan 2009, pp. 014 308–014 322, DOI: 10.1103/Phys-
RevC.79.014308.

[35] M. T. Hagan and M. B. Menhaj, “Training Feedforward Networks with
the Marquardt Algorithm,” IEEE Transactions on Neural Networks,
vol. 5, no. 6, Nov 1994, pp. 989–993, DOI: 10.1109/72.329697, ISSN:
1045-9227.

[36] D. J. MacKay, “Bayesian Interpolation,” Neural Computation, vol. 4,
no. 3, May 1992, pp. 415–447, DOI: 10.1162/neco.1992.4.3.415, ISSN:
0899-7667.

[37] D. W. Marquardt, “An Algorithm for Least-Squares Estimation of
Nonlinear Parameters,” Journal of the Society for Industrial and Applied
Mathematics, vol. 11, no. 2, June 1963, pp. 431–441, SIAM, DOI:
10.1137/0111030, ISSN: 2168-3484.

[38] F. D. Foresee and M. T. Hagan, “Gauss-Newton Approximation to
Bayesian Learning,” in Proceedings of the International Joint Confer-
ence on Neural Networks, vol. 3. IEEE, Jun 1997, pp. 1930–1935,
DOI: 10.1109/ICNN.1997.614194.

[39] G. Cybenko, “Approximation by Superpositions of a Sigmoidal Func-
tion,” Mathematics of Control, Signals and Systems, vol. 2, no. 4, Dec
1989, pp. 303–314, DOI: 10.1007/BF02551274, ISSN: 1435-568X.

[40] S. K. Bogner et al., “Convergence in the No-Core Shell Model
with Low-Momentum Two-Nucleon Interactions,” Nuclear
Physics A, vol. 801, no. 1, Mar 2008, pp. 21–42, DOI:
10.1016/j.nuclphysa.2007.12.008, ISSN: 0375-9474.

28Copyright (c) IARIA, 2018. ISBN: 978-1-61208-613-2

COMPUTATION TOOLS 2018 : The Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 35 / 41

A Method for Recovering Speech Signals Heavily Masked by Music Based on the
Affine Projection Algorithm

Robert Alexandru Dobre, Constantin Paleologu, Cristian Negrescu, and Dumitru Stanomir
Telecommunications Department

Politehnica University of Bucharest
Bucharest, Romania

email: rdobre@elcom.pub.ro, pale@comm.pub.ro, negrescu@elcom.pub.ro, dumitru.stanomir@elcom.pub.ro

Abstract—The importance of multimedia materials in justice is
increasing. For example, a security camera recording could
provide the evidence needed to clarify a given situation. The
problems that arise are linked to the authenticity or
intelligibility of the materials. There are situations in which the
key material, (for example, a dialogue) is heavily masked. This
paper presents the performances obtained by the Affine
Projection Algorithm within a method for recovering speech
signals masked by music. The results help in deciding if audio
monitoring a certain acoustic environment could prove useful if
the proposed method for extracting the speech is used
afterwards.

Keywords-multimedia forensic; noise reduction; adaptive
filtering; affine projection algorithm.

I. INTRODUCTION

The rate at which multimedia materials are captured is
increasing as the required technology nowadays can be fit into
a smartphone. These recordings could prove to be important
evidence in trials. But before they can be considered, they
must be investigated to determine if they are the original
versions and if the key element (image, video, sound) is clear.
The domain that studies the methods that can be used to
determine if a multimedia material is original or not is known
as multimedia authentication and it is a subdomain of
multimedia forensic. The other direction is represented by
noise reduction, which has the main task to enhance the key
element in an audio or video material. The contribution
presented in this paper is part of the latter category and
investigates the following situation: if suspects have to discuss
something of great importance, it is very likely to do it in
person. To decrease the chances to be intercepted (recorded),
they could turn loud a nearby music system and the music
would heavily mask their dialogue, making any recording gear
placed in the room apparently useless. The masking melody
can be identified thanks to software like Shazam. The signal
recorded by the equipment placed in the room could be
processed to subtract the musical part, revealing the dialogue.
Even if the masking melody is identified and available, it
cannot be subtracted directly because in the recording it
appears affected by the acoustic environment (by the acoustic
impulse response of the room). This is because the sound
waves reflect on the walls of the room and other surfaces
placed there (furniture, people, etc.) before arriving on the

surface of the microphone and being recorded. The acoustic
impulse response of the room can be modelled by a finite
impulse response (FIR) filter. The method for extracting the
speech signal is illustrated in Figure 1. The speech and the
masking music signal propagate through the room and are
captured by the microphone. If the original musical signal and
the acoustic impulse response of the room are available, a
replica of the recorded music signal can be obtained and
subtracted from the recording, unveiling the dialogue. It can
be considered the classical adaptive noise reduction
configuration in which the musical signals play the role of two
replicas of the same noise signal.

In Figure 1, sdialogue(t) represents the clean speech signal
(without the effect of the room), and nmelody(t) is the masking
melody. The impulse response of the filter that models the
acoustic environment of the room is h(t) and r(t) is the
recorded signal, i.e., the sum of the clean signals affected by
the acoustics of the room. The recorded signal is used to
identify the masking melody. The heavier the masking, the
easier the task of the music identification software. Having the
identified song, one only needs the acoustic impulse response
of the room to be able to reveal the dialogue. The adaptive
algorithm used to estimate h(t) is the affine projection
algorithm (APA) because of its decent convergence speed and
average computational complexity. An estimate for sdialogue(t)
is the error signal of the algorithm, denoted by e(t). The error
signal will not be the clean speech signal, but the speech signal
affected by the acoustics of the room. This effect is not
problematic (if the acoustic environment is not heavily
reverberant) because this is what it is heard naturally when one
speaks in a room [1]. The paper investigates the effects of the
length and sparsity of the impulse response of the filter (which
models the acoustic environment) on the considered
algorithm.

Figure 1. The adaptive noise reduction configuration modelling the real
dialogue interception situation.

h(t)

hest(t)

sdialogue(t)

+
nmelody(t)

nmelody(t)

e(t)≈sdialogue(t)
r(t)

Σ
+

−

29Copyright (c) IARIA, 2018. ISBN: 978-1-61208-613-2

COMPUTATION TOOLS 2018 : The Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 36 / 41

It is important to note that the system in Figure 1, which
models the considered interception configuration, was
described in continuous time, for simplicity. The adaptive
filtering is a typical digital signal processing (DSP)
application and all the results presented in this paper are
obtained using DSP. The required operations to pass from
continuous time modelling to the actual processing (sampling,
quantization, etc.) do not need special attention as they do not
introduce effects that should be considered, if properly done.

Besides this introduction, the paper consists of three
sections as follows: Section II generally presents some key
adaptive filtering notions, three adaptive algorithms, and the
measures used to characterize the performance and impulse
responses, Section III presents the experimental configuration
and discusses the results, and Section IV concludes the paper.

II. ADAPTIVE FILTERING

An adaptive filter is a linear system whose impulse
response is computed according to an optimization algorithm.
The following descriptions are expressed in discrete time
(where n is the time index) and only real signals are
considered in this paper. An adaptive algorithm processes two
signals, generally named in the literature as the input signal
[denoted with x(n)] and the desired signal [denoted with d(n)],
in a way that would minimize a cost function. Depending on
the definition of the cost function, various adaptive algorithms
exist. The method discussed in the paper uses the APA. A
short description of the least-mean-squares (LMS) and the
normalized LMS (NLMS) algorithms detailed in [2] and [3]
will be presented further because it offers a better
understanding of APA in particular, and of the adaptive
filtering in general. Besides the aforementioned notations, in
the equations will also be found the following: w – the
adaptive filter’s coefficients vector and e – the error signal,
which are well-known notions in adaptive filtering literature.

A. The LMS and NLMS algorithms

The cost function in the case of the LMS algorithm gives
the name of the algorithm. It is defined as:

22 () () ,n e n d n yC n

where ()y n is the output of the adaptive filter. Minimizing

the cost function with respect to the w vector gives the
following update equation:

 T1 1 ,n n n d n n n w w x w x

where
T

 is the transposition operator and is the step size

parameter. The values of that assure the convergence of the

algorithm must respect the relation:

2

0
tr

R

where R is the autocorrelation matrix of the input signal,
which is given by:

 TE n nR x x

tr{} represents the trace of a matrix, and E{} denotes
mathematical expectation. The main advantage of the LMS
algorithm is its simplicity, but equations (3) and (4) highlight
its main problem, i.e., the values that assure the convergence
are dependent on the input signal. This issue is solved in the
NLMS algorithm in which the step size is scaled by the short
time estimated power of the input signal. The update equation
for the coefficients of the adaptive filter in the case of the
NLMS algorithm becomes:

T

T

1
1

n d n n n
n n

n n

x w x
w w

x x

where δ is the regularization parameter, which avoids the
division by zero (if the power of the input signal is estimated
as zero), and

T

, 1 , , 1 ,n x n x n x n L x

where L is the length of the adaptive filter. The step size that
now assures the convergence of the algorithm can be chosen
in the 0 2 interval, independent on the data to be

processed. Even if in the case of the NLMS algorithm the step
size can be easily chosen, the disadvantage of this algorithm
is its lack of flexibility (only one parameter – the step size –
can be modified to get the desired behavior of the algorithm).

B. The affine projection algorithm

The APA [4] brings another degree of freedom in choosing
the working parameters. Besides the step size [5] found also
in the NLMS algorithm, a new “projection order” parameter
(denoted by M) is introduced. It indicates how many input
signal vectors [x(n)] are used when computing the w vector.
An M L matrix is built using the M input signal vectors:

 T = , 1 ,..., 1n n n n M + A x x x

and equation (5) becomes:

1

T T1 + ,Mn n n n n n

w w A A A I e

where MI is the identity matrix of order M and, consequently:

 = ,n n ne d y

30Copyright (c) IARIA, 2018. ISBN: 978-1-61208-613-2

COMPUTATION TOOLS 2018 : The Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 37 / 41

T

, 1 ,..., 1n d n d n d n M d

 1n n n y A w

The downside of introducing this new parameter is an
increase in computational complexity.

C. Performance measurements of adaptive algorithms and
sparsity degree of impulse responses

In the problem stated in the introduction, the adaptive filter
should estimate an unknown filter (the acoustic impulse
response of the room). In the ideal event of a perfect
estimation, the two filters would be identical. In real working
conditions, perfect estimation is not likely to occur. In order
to characterize how close the impulse response of the adaptive
filter is to the impulse response to be estimated, a measure
named “misalignment” (denoted with m) is introduced. Its
computation is straightforward and, using the notations
introduced in Figure 1, it can be written as:

2

t.b.e.m n n n w w

where t.b.e. nw is the impulse response to be estimated and

 is the l2 norm.

Because of its large dynamic range, the misalignment is
preferred to be expressed in dB. A misalignment as small as
possible is desired. Another wanted behavior is that the
misalignment should get to very small values in short time.
The measure that qualitatively characterizes this property is
the convergence speed (a high convergence speed is sought).
The parameters of an adaptive algorithm should be tweaked to
get the fastest convergence speed and the smallest steady-state
misalignment. As seen in the previous subsection, greater
flexibility comes at a cost of computational power.

A property of impulse responses which is of great
importance especially in the case of acoustic systems is
“sparsity”. An impulse response is called “sparse” when only
a small part of the values that compose it have notable values
and others are insignificant. There are more ways in which the
sparsity degree (denoted with χ) can be computed. In practice,
good results are obtained using the following relation:

 t.b.e. 1
t.b.e.

t.b.e.

1
L

L L L

w
w

w

where
1

 is the l1 norm. The value returned by equation (13)

can be between 1 and 0, the former indicating a high sparsity
degree (there are only some dominant values in the analyzed
vector). The effect of the sparsity degree on the behavior of
the APA [6],[7] in the studied speech enhancement
configuration is also investigated in the current paper.

III. EXPERIMENTAL RESULTS

Six impulse responses with various lengths and degrees of
sparsity were used in the experiments. The considered impulse
responses are illustrated in Figure 2 to Figure 7 and their
degree of sparsity computed with equation (13) is mentioned.
A speech and a musical signal were summed in a −40 dB
signal-to-noise ratio (music in the role of noise) and then
filtered with each of the presented impulse responses. Then
the APA was used (with the original music signal as input and
filtered mixture as desired signal) to estimate the acoustic

Figure 2. Acoustic impulse response with L=1001 and
χ = 0.73852.

Figure 3. Acoustic impulse response with L=1001 and
χ = 0.45617.

Figure 4. Acoustic impulse response with L=2048 and
χ = 0.7344.

31Copyright (c) IARIA, 2018. ISBN: 978-1-61208-613-2

COMPUTATION TOOLS 2018 : The Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 38 / 41

impulse response, measuring the performance with equation
(12).

The situation presented in the introduction supposes that
the acoustic environment [represented by h(t)] does not
change in time. In real scenarios, this is very unlikely to
happen because people would change their position, doors
could be opened or closed etc. which would lead to a
modification of the acoustic properties of the room. The
duration of the signals used in the simulation was chosen to be
20 seconds. This provides a sufficient time to draw
conclusions about the performances of the algorithm and

keeps the simulation running time acceptable on most
computers. A change in the impulse response that models the
unknown filter was considered, implemented as an 8 samples
time shift, after 10 seconds have passed. This is useful because
it can highlight the ability of the algorithm to follow any
changes that could occur in the acoustic properties of the
room. The results are shown in Figure 8 to Figure 13 below.

The impulse responses that participated in the
investigation have two lengths: 1001 (the ones illustrated in

Figure 5. Acoustic impulse response with L=2048 and
χ =0.64495.

Figure 6. Acoustic impulse response with L=2048 and
χ = 0.6085.

Figure 7. Acoustic impulse response with L=2048 and
χ = 0.48781.

Figure 8. Misalignment of the APA when estimating the
impulse response from Figure 2.

Figure 9. Misalignment of the APA when estimating the
impulse response from Figure 3.

Figure 10. Misalignment of the APA when estimating the
impulse response from Figure 4.

32Copyright (c) IARIA, 2018. ISBN: 978-1-61208-613-2

COMPUTATION TOOLS 2018 : The Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 39 / 41

Figure 2 and Figure 3) and 2048 samples (shown in Figure 4
to Figure 7). This large difference helps identifying how the
behavior of the proposed method based on the APA is affected
by the length of the impulse responses. A longer impulse
response has the significance of a more reverberant room (for
example rooms with less furniture and very hard walls). Each
of the two lengths category contains impulse responses with
very different sparsity degrees. It can be seen, for example,

that the impulse response illustrated in Figure 3 has the same
length as the one in Figure 2, but a considerably smaller
sparsity degree. This helps investigating in the same time the
effect of two key properties of impulse responses (length and
sparsity degree) on the considered method. The adaptive
algorithm was run for projection orders equal to 1 (in this case
the APA is equivalent with the NLMS algorithm and
represents a typically used reference for the performance), 2,
4, and 8.

From the length point of view, the results are clear: the
algorithm shows better results (lower misalignment) in the
given simulation time for shorter impulse responses.

In the case of sparsity degree, the results show that sparse
impulse responses lead to better performances. This can be
observed for the impulse responses that have a length equal to
1001 samples, the first (shown in Figure 2) having a larger
sparsity degree (0.73852) than the second one (Figure 3,
sparsity degree equal to 0.45617), but also for the longer ones
(the impulse responses in Figure 4 and Figure 7 have lengths
equal to 2048 samples, but the sparsity degree of the first is
equal to 0.7344 is greater than of the latter, 0.48781). Those
results are shown in Figure 8 and Figure 9 for the first
considered pair and in Figure 10 and Figure 13 for the second
pair. The impulse responses illustrated in Figure 5 and Figure
6 have equal lengths and similar sparsity, so that the
performances of the algorithm used by the forensic method
were very similar in their cases (results shown in Figure 11
and Figure 12). The obtained graphs suggest that the method
should be used if the room in which the intercepting device
(microphone) is placed is small and not very reverberant.

It is of great importance to notice that the APA manages
to obtain a misalignment less than −15 dB for all the impulse
responses that were studied. It was determined that values for
the misalignment greater than −10 dB lead to an unintelligible
recovered speech signal. In the situations considered in this
work, the best all-around results are obtained for a projection
order equal to 8. In this case, the worst-case scenario is
obtained when estimating the impulse response from Figure 7
(which has a large length and a relatively low sparsity degree).
Up to 5 seconds of recovered speech signal could still be
unintelligible (the time needed by the algorithm to get to −10
dB misalignment). For short and sparse impulse responses, the
usage of a projection order larger than 4 does not bring an
increase in performance to worth the extra cost of
computational power.

It can be concluded that the APA based forensic method
for recovering speech signals heavily masked by music is
showing robustness properties and can be used when the
recording was done in various acoustic environments. It also
shows very good performances if the acoustic impulse
response of the room is short and sparse (e.g., offices).

IV. CONCLUSION AND FUTURE WORK

In this paper, the problem of recovering a speech signal
heavily masked by music was described.

It was shown how a dialogue interception scenario can be
modelled using adaptive filters (the adaptive noise reduction
configuration). Short theoretical description of the LMS,
NLMS, and APA helps to understand why the latter is a good

Figure 11. Misalignment of the APA when estimating the
impulse response from Figure 5.

Figure 12. Misalignment of the APA when estimating the
impulse response from Figure 6.

Figure 13. Misalignment of the APA when estimating the
impulse response from Figure 7.

33Copyright (c) IARIA, 2018. ISBN: 978-1-61208-613-2

COMPUTATION TOOLS 2018 : The Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 40 / 41

candidate to such signal processing method, thanks to its good
performances, flexibility, and decent computational demands.

To evaluate the reliability of the method in various
situations, a collection of six impulse responses with different
lengths and sparsity degrees were used to simulate the
acoustic environment in which the intercepting device was
placed. To further increase the realism of the modelled
scenario, a sudden change in the acoustic environment was
introduced at the half of the investigation time, as an 8 samples
time shift of the impulse response.

The results show that the method offers good performance
especially for short and sparse impulse responses. In all the
considered situations, the adaptive algorithm managed to
obtain a misalignment equal or smaller than −15 dB, which
indicates that the recovered signal has fair to high chances to
be intelligible, confirming the versatility of the method. For
short and sparse impulse responses, a projection order equal
to 4 is recommended. In harsher situations, an M parameter
equal to 8 could be needed to avoid getting a recovered speech
signal with long unintelligible parts.

Since the effect of a change in the acoustic environment
seems to be very clear (a large modification of the
misalignment), new applications could be investigated in
future works (e.g., monitoring of the acoustic environment).

ACKNOWLEDGMENT

This work was supported under the Grants SeaForest
86/2016, E-STAR 113/2016, and SenSyStar 190/2017.

REFERENCES

[1] R. A. Dobre, C. Negrescu, and D. Stanomir, “Development and

testing of an audio forensic software for enhancing speech
signals masked by loud music,” Advanced Topics in
Optoelectronics, Microelectronics, and Nanotechnologies
2016, pp. 100103A-100103A-7, 2016.

[2] S. Haykin, Adaptive Filter Theory. Fourth Edition, Upper
Saddle River, NJ:Prentice-Hall, 2002.

[3] A. H. Sayed, Adaptive Filters. New York, NY: Wiley, 2008.

[4] K. Ozeki and T. Umeda, "An adaptive filtering algorithm using
an orthogonal projection to an affine subspace and its
properties," Electron. Commun. Jpn., vol. 67-A, pp. 19-27,
May 1984.

[5] C. Paleologu, J. Benesty, and S. Ciochina, "A variable step-size
affine projection algorithm designed for acoustic echo
cancellation," IEEE Trans. Audio, Speech, Language
Processing, vol. 16, pp. 1466-1478, Nov. 2008.

[6] C. Paleologu, J. Benesty, and S. Ciochina, Sparse Adaptive
Filters for Echo Cancellation. Morgan & Claypool Publishers,
Synthesis Lectures on Speech and Audio Processing, 2010.

[7] C. Paleologu, S. Ciochina, and J. Benesty, "An efficient
proportionate affine projection algorithm for echo
cancellation," IEEE Signal Processing Lett., vol. 17, pp. 165-
168, Feb. 2010.

34Copyright (c) IARIA, 2018. ISBN: 978-1-61208-613-2

COMPUTATION TOOLS 2018 : The Ninth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Powered by TCPDF (www.tcpdf.org)

 41 / 41

http://www.tcpdf.org

