
DEPEND 2014

The Seventh International Conference on Dependability

ISBN: 978-1-61208-378-0

November 16 - 20, 2014

Lisbon, Portugal

DEPEND 2014 Editors

Rolf Johansson, SP, Sweden

Carla Westphall, Federal University of Santa Catarina, Brazil

 1 / 66

DEPEND 2014

Foreword

The Seventh International Conference on Dependability (DEPEND 2014), held between
November 16-20, 2014 in Lisbon, Portugal, provided a forum for detailed exchange of ideas,
techniques, and experiences with the goal of understanding the academia and the industry
trends related to the new challenges in dependability on critical and complex information
systems.

Most of critical activities in the areas of communications (telephone, Internet), energy &
fluids (electricity, gas, water), transportation (railways, airlines, road), life related (health,
emergency response, and security), manufacturing (chips, computers, cars) or financial (credit
cards, on-line transactions), or refinery& chemical systems rely on networked communication
and information systems. Moreover, there are other dedicated systems for data mining,
recommenders, sensing, conflict detection, intrusion detection, or maintenance that are
complementary to and interact with the former ones.

With large scale and complex systems, their parts expose different static and dynamic
features that interact with each others; some systems are more stable than others, some are
more scalable, while others exhibit accurate feedback loops, or are more reliable or fault-
tolerant.

Inter-system dependability and intra-system feature dependability require more
attention from both theoretical and practical aspects, such as a more formal specification of
operational and non-operational requirements, specification of synchronization mechanisms, or
dependency exception handing. Considering system and feature dependability becomes crucial
for data protection and recoverability when implementing mission critical applications and
services.

Static and dynamic dependability, time-oriented, or timeless dependability,
dependability perimeter, dependability models, stability and convergence on dependable
features and systems, and dependability control and self-management are some of the key
topics requiring special treatment. Platforms and tools supporting the dependability
requirements are needed.

As a particular case, design, development, and validation of tools for incident detection
and decision support became crucial for security and dependability in complex systems. It is
challenging how these tools could span different time scales and provide solutions for
survivability that range from immediate reaction to global and smooth reconfiguration through
policy based management for an improved resilience. Enhancement of the self-healing
properties of critical infrastructures by planning, designing and simulating of optimized
architectures tested against several realistic scenarios is also aimed.

To deal with dependability, sound methodologies, platforms, and tools are needed to
allow system adaptability. The balance dependability/adaptability may determine the life scale
of a complex system and settle the right monitoring and control mechanisms. Particular
challenging issues pertaining to context-aware, security, mobility, and ubiquity require

 2 / 66

appropriate mechanisms, methodologies, formalisms, platforms, and tools to support
adaptability.

We take here the opportunity to warmly thank all the members of the DEPEND 2014
Technical Program Committee, as well as the numerous reviewers. The creation of such a high
quality conference program would not have been possible without their involvement. We also
kindly thank all the authors who dedicated much of their time and efforts to contribute to
DEPEND 2014. We truly believe that, thanks to all these efforts, the final conference program
consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the DEPEND 2014 organizing
committee for their help in handling the logistics and for their work to make this professional
meeting a success.

We hope that DEPEND 2014 was a successful international forum for the exchange of
ideas and results between academia and industry and for the promotion of progress in the field
of dependability.

We are convinced that the participants found the event useful and communications very
open. We hope Lisbon provided a pleasant environment during the conference and everyone
saved some time for exploring this beautiful city.

DEPEND 2014 Chairs:

DEPEND Advisory Chairs
Reijo Savola, VTT Technical Research Centre of Finland, Finland
Sergio Pozo Hidalgo, University of Seville, Spain
Manuel Gil Perez, University of Murcia, Spain
Petre Dini, Concordia University, Canada / China Space Agency Center - Beijing, China

DEPEND 2014 Industry Liaison Chairs
Piyi Yang, Wonders Information Co., Ltd., China
Timothy Tsai, Hitachi Global Storage Technologies, USA

DEPEND 2014 Research/Industry Chair
Michiaki Tatsubori, IBM Research Tokyo, Japan

DEPEND 2014 Special Area Chairs
Cross-layers dependability
Szu-Chi Wang, National Ilan University, Taiwan
Hardware dependability
Peter Tröger, Hasso Plattner Institute / University of Potsdam, Germany
Empirical assessments
Marcello Cinque, University of Naples Federico II, Italy
Security and Trust
Syed Naqvi, CETIC, Belgium

 3 / 66

DEPEND 2014

Committee

DEPEND Advisory Chairs

Reijo Savola, VTT Technical Research Centre of Finland, Finland
Sergio Pozo Hidalgo, University of Seville, Spain
Manuel Gil Perez, University of Murcia, Spain
Petre Dini, Concordia University, Canada / China Space Agency Center - Beijing, China

DEPEND 2014 Industry Liaison Chairs

Piyi Yang, Wonders Information Co., Ltd., China
Timothy Tsai, Hitachi Global Storage Technologies, USA

DEPEND 2014 Research/Industry Chair

Michiaki Tatsubori, IBM Research Tokyo, Japan

DEPEND 2014 Special Area Chairs

Cross-layers dependability
Szu-Chi Wang, National Ilan University, Taiwan

Hardware dependability
Peter Tröger, Hasso Plattner Institute / University of Potsdam, Germany

Empirical assessments
Marcello Cinque, University of Naples Federico II, Italy

Security and Trust
Syed Naqvi, CETIC, Belgium

DEPEND 2014 Technical Program Committee

Don Adjeroh, West Virginia University, USA
Muhammad Afzaal, National University of Computer and Emerging Sciences, Pakistan
Jose Ignacio Aizpurua Unanue, University of Mondragon, Spain
Murali Annavaram, University of Southern California, USA
Afonso Araújo Neto, University of Coimbra, Portugal
José Enrique Armendáriz-Iñigo, Universidad Pública de Navarra, Spain
Radu F. Babiceanu, Embry-Riddle Aeronautical University, USA
Ian Bayley, Oxford Brookes University, U.K.
Siegfried Benkner, University of Vienna, Austria
Jorge Bernal Bernabé, University of Murcia, Spain
James Brandt, Sandia National Laboratories, U.S.A.

 4 / 66

Andrey Brito, Universidade Federal de Campina Grande, Brazil
Lasaro Camargos, Federal University of Uberlândia, Brazil
Juan Carlos Ruiz, Universidad Politécnica de Valencia, Spain
Antonio Casimiro Costa, University of Lisbon, Portugal
Simon Caton, Karlsruhe Institute of Technology (KIT), Germany
Andrea Ceccarelli, University of Firenze, Italy
Binbin Chen, Advanced Digital Sciences Center, Singapore
Albert M. K. Cheng, University of Houston, USA
Marcello Cinque, University of Naples Federico II, Italy
Peter Clarke, Florida International University, U.S.A.
Luigi Coppolino, Università degli Studi di Napoli "Parthenope", Italy
Domenico Cotroneo, Università di Napoli Federico II, Italy
David de Andrés Martínez, Universitat Politècnica de València, Spain
Rubén de Juan Marín, Universidad Politécnica de Valencia, Spain
Vincenzo De Florio, University of Antwerp, Belgium & IBBT, Belgium
Ewen Denney, SGT/NASA Ames, U.S.A.
Catello Di Martino, University of Illinois at Urbana-Champaign, U.S.A.
Cesario Di Sarno, University of Naples Parthenope, Italy
Jonas Diemer, Symtavision, Germany
Nicola Dragoni, Technical University of Denmark - Lyngby, Denmark
Diana El Rabih, Université Paris 12, France
Cain Evans, Birmingham City University, UK
Nuno Ferreira Neves, University of Lisbon, Portugal
Francesco Flammini, Ansaldo STS, Italy
Gregory Frazier, Apogee Research, U.S.A.
Jicheng Fu, University of Central Oklahoma, U.S.A.
Cristina Gacek, City University London, United Kingdom
Marisol García Valls, University Carlos III de Madrid, Spain
Ann Gentile, Sandia National Laboratories, U.S.A.
Manuel Gil Perez, University of Murcia, Spain
Michael Grottke, University of Erlangen-Nuremberg, Germany
Nils Gruschka, University of Applied Science - Kiel, Germany
Ibrahim Habli, University of York, U.K.
Houcine Hassan, Universitat Politecnica de Valencia, Spain
Bjarne E. Helvik, The Norwegian University of Science and Technology (NTNU) - Trondheim, Norway
Luke Herbert, Technical University of Denmark, Denmark
Pao-Ann Hsiung, National Chung Cheng University, Taiwan
Jiankun Hu, Australian Defence Force Academy - Canberra, Australia
Neminath Hubballi, Infosys Lab Bangalore, India
Ravishankar K. Iyer, University of Illinois at Urbana-Champaign, U.S.A.
Arshad Jhumka, University of Warwick - Coventry, UK
Shouling Ji, Georgia Institute of Technology, USA
Zhanpeng Jin, State University of New York at Binghamton, U.S.A.
Yoshiaki Kakuda, Hiroshima City University, Japan
Zbigniew Kalbarczyk, University of Illinois at Urbana-Champaign, U.S.A.
Hui Kang, Stony Brook University, USA
Aleksandra Karimaa, Turku University/TUCS and Teleste Corporation, Finland
Dong-Seong Kim, University of Canterbury, New Zealand

 5 / 66

Ezzat Kirmani, St. Cloud State University, USA
Seah Boon Keong, MIMOS Berhad, Malaysia
Abdelmajid Khelil, Huawei Research, Germany
Kenji Kono, Keio University, Japan
Israel Koren, University of Massachusetts - Amherst, USA
Mani Krishna, University of Massachusetts - Amherst, USA
Mikel Larrea, University of the Basque Country UPV/EHU, Spain
Inhwan Lee, Hanyang University - Seoul, Korea
Matthew Leeke, University of Warwick, UK
Jane W. S. Liu, Academia Sinica, Taiwan
Yun Liu, Boeing Company, USA
Paolo Lollini, Dipartimento di Matematica e Informatica "U. Dini", Italy
Xuanwen Luo, Sandvik Mining, USA
Miroslaw Malek, Humboldt-Universitaet zu Berlin, Germany
Amel Mammar, Mines Telecom/ Telecom SudParis, France
Antonio Mana Gomez, University of Malaga, Spain
Gregorio Martinez, University of Murcia, Spain
Rivalino Matias Jr., Federal University of Uberlandia, Brazil
Yutaka Matsuno, Nagoya University, Japan
Manuel Mazzara, Polytechnic of Milan, Italy
Per Håkon Meland, SINTEF ICT, Norway
Carlos Julian Menezes Araujo, Federal University of Pernambuco, Brazil
Francesc D. Muñoz-Escoí, Universitat Politècnica de València, Spain
Jogesh K. Muppala, The Hong Kong University of Science and Technology, Hong Kong
Jun Na, Northeastern University, China
Syed Naqvi, CETIC, Belgium
Sarmistha Neogy, Jadavpur University, India
Mats Neovius, Åbo Akademi University - Turku, Finland
Hong Ong, MIMOS Bhd, Malaysia
Frank Ortmeier, Otto-von-Guericke-Universität Magdeburg, Germany
Roberto Palmieri, Virginia Tech, USA
Aljosa Pasic, ATOS Origin, Spain
Ronald Petrlic, Saarland University, Germany
Alfredo Pironti, INRIA Paris Rocquencourt, France
Wolfgang Pree, University of Salzburg, Austria
Feng Qin, Ohio State University, USA
Rolf Riesen, IBM Research, Ireland
Ruben Rios, University of Málaga, Spain
Paolo Romano, INESC-ID/IST, Portugal
Christian Rossow, VU University Amsterdam, Netherlands
Francesca Saglietti, University of Erlangen-Nuremberg, Germany
Felix Salfner, SAP Innovation Center - Potsdam, Germany
Reijo Savola, VTT Technical Research Centre of Finland, Finland
Sahra Sedighsarvestani, Missouri University of Science and Technology, U.S.A.
Jean-Pierre Seifert, Technische Universität Berlin & Telekom Innovation Laboratories, Germany
Dimitrios Serpanos, University of Patras & ISI, Greece
Muhammad Shafique, Karlsruhe Institute of Technology (KIT), Germany
Kuei-Ping Shih, Tamkang University, Taiwan

 6 / 66

Francois Siewe, De Montfort University, UK
Navjot Singh, Avaya Labs Research, USA
Alessandro Sorniotti, IBM research - Zurich, Switzerland
George Spanoudakis, City University London, U.K.
Kuo-Feng Ssu, National Cheng Kung University, Taiwan
Vladimir Stantchev, Berlin Institute of Technology, Germany
Neeraj Suri, TU-Darmstadt, Germany
Kenji Taguchi, National Institute of Advanced Industrial Science and Technology (AIST), Japan
Oliver Theel, University Oldenburg, Germany Sergio Pozo Hidalgo, University of Seville, Spain
Kishor Trivedi, Duke University - Durham, USA
Peter Tröger, Hasso Plattner Institute / University of Potsdam, Germany
Elena Troubitsyna, Aabo Akademi -Turku, Finland
Timothy Tsai, Hitachi Global Storage Technologies, USA
Sara Tucci-Piergiovanni, CEA List, France
Marco Vallini, Politecnico di Torino, Italy
Ángel Jesús Varela Vaca, University of Sevilla, Spain
Bruno Vavala, Carnegie Mellon University, USA | University of Lisbon, Portugal
Phan Cong Vinh, Nguyen Tat Thanh University, Vietnam
Hironori Washizaki, Waseda University, Japan
Byron J. Williams, Mississippi State University, USA
Victor Winter, University of Nebraska at Omaha, USA
Dong Xiang, Tsinghua University, China
Chun Jason Xue, City University of Hong Kong, Hong Kong
Hiroshi Yamada, Keio University, Japan
Liu Yang, Nanyang Technological University, Singapore
Piyi Yang, University of Shanghai for Science and Technology, China
Il Yen, University of Texas at Dallas, U.S.A
Hee Yong Youn, Sungkyunkwan University, Korea

 7 / 66

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 8 / 66

Table of Contents

A Fault-Injection Prototype for Safety Assessment of V2X Communication
Daniel Skarin, Benjamin Vedder, Rolf Johansson, and Henrik Eriksson

1

Fault-Detection Sensitivity Based Assessment of Test Sets for Safety-Relevant Software
Susanne Kandl and Jean-Marc Forey

5

Network-Security-Policy Analysis
Christian Pitscheider

10

Notification Support Infrastructure for Self-Adapting Composite Services
Erlend Andreas Gjaere, Per Hakon Meland, and Thomas Vilarinho

17

A Policy-based Middleware for Self-Adaptive Distributed Systems
Sun Jingtao and Satoh Ichiro

25

SLA Object and SLA Process Modeling using WSLA and BPM Notations,Towards defining a Generic SLA
Orchestrator Framework
Bukhary Ikhwan Ismail, Nurliyana Muty, Mohammad Fairus Khalid, and Hong Hoe Ong

32

HiPAS: High Performance Adaptive Schema Migration - Evaluation of a Self-Optimizing Database Migration
Hendrik Muller, Andreas Prusch, and Steffan Agel

41

Evaluation of Software-Based Fault-Tolerant Techniques on Embedded OS’s Components
Hosein Mohammadi Makrani, Amir Mahdi Hosseini Monazzah, Hamed Farbeh, and Seyed Ghassem Miremadi

51

Powered by TCPDF (www.tcpdf.org)

 1 / 1 9 / 66

A Fault-Injection Prototype for Safety Assessment of V2X Communication

Daniel Skarin, Benjamin Vedder, Rolf Johansson, and Henrik Eriksson

Department of Electronics

SP Technical Research Institute of Sweden

Borås, Sweden

e-mail: {daniel.skarin, benjamin.vedder, rolf.johansson, henrik.eriksson}@sp.se

Abstract— This paper describes an approach for injecting

faults in ad hoc vehicle networks. A prototype fault injector,

which makes it possible to investigate how a cooperative

vehicle system behaves in the presence of communication

errors, has been developed. The prototype shows a feasible way

to use fault injection as technique to produce evidence for a
safety case belonging to a cooperative automotive system.

Keywords-fault injection, safety assessment, IEEE 802.15.4,

V2X communication.

I. INTRODUCTION

In the past years, there has been a strong focus on
functional safety in the automotive domain. In 2011, the
standard ISO 26262 [1] was released, and currently the
industry is adopting the development procedure to the
standard. At the same time, automotive functions are getting
more and more complex; autonomous and cooperative
vehicles will soon move from prototypes to products. Safety
assessment of cooperative systems will put requirements on
evidence which show that communication failures are
handled in a safe way. This paper shows a way to inject
communication faults in cooperative systems as a technique
to produce evidence for a safety case.

Cooperative vehicle systems cover a wide range of
interdependence. Willke et al. [2] have suggested a
taxonomy defining four type levels. On type levels 1 and 2,
vehicles and infrastructure are exchanging information with-
out being dependent on it to achieve a safe behavior. On
type level 3, the functions rely on communicated informa-
tion from other vehicles about motion and actuator states to
ensure safe and/or efficient operation. On type level 4,
applications use inter-vehicle communication to reach a
common goal, e.g. driving in a road train (platooning). At
least on the type levels 3 and 4, safety requirements will be
allocated on the communication between the vehicles (V2V)
and between the cars and the infrastructure (V2I).

According to the ISO 26262 standard, safety require-
ments shall be refined from top-level safety goals to the
system components of the physical architecture. For safety-
related cooperative functions, this implies that some safety
requirements will be put on the V2V and V2I communica-
tion, respectively. Furthermore, the standard states what is
needed to argue in order to fulfil verification of the safety
requirements. For the higher integrity levels (ASIL C and
D), it is required to use fault-injection techniques to show
that safety mechanisms can handle all safety-relevant faults.

Fault injection in wireless communication used for
transfer of safety-critical information in ad hoc vehicle
networks needs further research. For computer systems
(hardware and software) communicating via wires, there is a
fairly long tradition of using fault-injection techniques and
tools [3]. Alena et al. [4] have investigated how the fault
tolerance of wireless sensor networks using IEEE 802.15.4
is affected by interference from other networks and multi-
paths. Boano et al. [5] present a solution which produce
repeatable and precise patterns of interference in wireless
sensor networks. Malicious faults (attacks) and some natural
faults in ad hoc networks can be assessed using the fault-
injection platform developed by de Andrés et al. [6].

In this paper, a fault-injection prototype is described.
The prototype is based on IEEE 802.15.4 since this standard
is used for communication in the automotive and aerospace
demonstrators of the KARYON project [7]. However, it is
straightforward to adapt the concept to other techniques to
be used in the automotive domain (IEEE 802.11p).

Section II introduces relevant fault models originating
from functional safety standards. The section also explains
how different failure modes can be emulated. Section III
describes the fault injection prototype, and Section IV
presents initial conclusions and future work.

II. FAULT INJECTION IN COMMUNICATION

A. Fault models

Standards for functional safety, such as ISO 26262 for
road vehicles and the generic IEC 61508, list failure modes
which are applicable for communication. Part 5 of ISO
26262 [1] lists failure modes for on-chip communication
and data transmission. The failure modes for data
transmission are applicable for wireless communication.
IEC 61508-2 [8] lists identical failure modes for communi-
cation. Other important failure modes for communication
are blocking access to communication channel [9] and
asymmetric information [10]. Table 1 summarizes failure
modes applicable for wireless communication.

Based on the diagnostic coverage that is claimed for a
safety mechanism, ISO 26262-5 Table D.1 [1] lists failure
modes that need to be analyzed. Failure modes for on-chip
communication are described next.

Stuck-at failures are described as a continuous low or
high signal at the pins of an element. They are applicable
for elements which have a pin-level interface for data,
control, address, and arbitration signals.

1Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 10 / 66

TABLE I. FAILURE MODES FOR COMMUNICATION

Failure mode Interpretation

Message

Corruption
The received data of a message is incorrect.

Message delay
A message is received later than expected by all, or

some, receivers.

Message loss A message is lost by all, or some, receivers.

Unintended

message

repetition

Receivers obtain two or more messages with the

same information instead of one message.

Resequencing
Messages are received with incorrect sequence

numbering.

Insertion of

message
Receivers obtain a message that they did not expect

Masquerading

(or incorrect

addressing)

A sender transmit messages using an id of a

different sender

Asymmetric

information

Information from a single sender is received

differently by receivers. It can also be that

information from a sender is only received by a

subset of the receivers

Blocking

access to a

communication

channel

Prevents nodes from accessing the communication

channel, similar to a babbling idiot.

The direct current fault model extends stuck-at failures

with stuck-open, open, or high impedance outputs, and short
circuits between signal lines. The analysis of the fault model
is applicable for data, control, address and arbitration
signals, but is mainly intended for main signals or on highly
coupled interconnections.

When several devices are connected to a bus, arbitration
is used to determine which device that controls the bus. No
arbitration and continuous arbitration are mentioned as
failure modes for on-chip communication in ISO 26262-5
[1]. Time out is mentioned in both IEC 61508 and ISO
26262, but neither standard describes the failure mode in
more detail.

Soft errors are caused by ionizing particles, supply
voltage noise, or cross-coupling between signal lines. The
consequence is one or several bit-flips in memories or bus
signals.

B. Emulating the Effects of Faults

The failure modes for wireless data communication can
be emulated using a combination of jamming, packet
injection, and packet sniffing. Jamming [5][11] is used to
prevent one or several nodes from receiving or sending
packets. Packet injection is used to insert additional,
duplicated or corrupted messages in the wireless network.
Packet sniffing allows the fault injection module to
eavesdrop the wireless traffic in a non-intrusive manner.
This is useful for logging and for triggering the injection of
different failure modes.

Table 2 shows how different failure modes can be
implemented by combining jamming and packet injection.
For example, the effects of a message delay can be emulated
by jamming to prevent nodes from receiving the original
message, and then resending the original message with a

delay. This assumes that we have a priori knowledge of the
content of the message. Message losses are emulated by
activating jamming when specific messages are being trans-
mitted by a node.

Figure 1 and Figure 2 illustrate how failure modes for
on-chip communication are emulated. The signal between
two elements passes through a fault injection module which
has the capability to modify the transmitted signal value.
For most failure modes, such as soft errors, a faulty signal
only relies on the value of the non-faulty signal as shown in
Figure 1. For short-circuits between signals, however, the
values of two or more signals are needed, as shown in
Figure 2.

TABLE II. EMULATING FAILURE MODES USING JAMMING AND

PACKET INJECTION

Failure mode Jamming
Packet

Injection

Message Corruption x x

Message delay x x

Message loss x

Unintended message repetition x

Resequencing x

Insertion of message x

Masquerading

(or incorrect addressing)
 x

Asymmetric information x x

Blocking access to a communication

channel
x

Element

Fault injection module

Signal
SignalFI

0/1
Element

Figure 1. Injection of stuck-at faults in a signal.

Element Element

Fault injection module

Signal 1

Signal 2 Signal 2FI

Signal 1FI

Figure 2. Injection of short-circuit failures between two signals.

C. Controlling When to Inject Faults

Figure 1 shows a state machine for controlling the fault
injection. The idle state has an internal counter to keep track
of the currently evaluated trigger. When all triggers have
been evaluated to true in the correct order, fault injection is
activated in the state “Start FI”. Following that, the “FI”
state is immediately entered.

2Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 11 / 66

Idle Start FI FI Stop FI Done

start_triggerN stop_triggerN !intermittent

intermittent

Figure 3. State machine to control the fault injection.

Initial

trigger1

Trigger1 ... TriggerN

trigger2 triggerN

!trigger2

!triggerN

TriggerN-1

triggerN-1

Figure 4. State machine to handle start and stop triggers for fault injection.

The “FI” state is exited when all stop triggers have been
fulfilled. Unless an intermittent fault is emulated, the fault
injection is stopped. For intermittent faults, there is a return
to the idle state and another wait for start trigger fulfillment.
Fault injection is activated using triggers which can be
based on: elapsed time, probability per received packet,
sender or receiver address of a packet, or data in the payload
of a packet. Several triggers can be combined so that fault
injection is started or stopped by a chain of events, as shown
in Figure 2. Using this approach, well-known packet loss
models such as Bernoulli and Gilbert-Elliot [12] can be
supported, as well as simple triggers based on, e.g., elapsed
time.

III. FAULT INJECTION PROTOTYPE

The fault injection concept described in the previous
section has been implemented for vehicle demonstrators in
the KARYON project [7]. The fault injection prototype can
be used for injecting failures in IEEE 802.15.4 data
communication, and in the on-chip communication. Figure
5 shows a picture of the fault injection node, which uses the
STM32F4 microcontroller from ST and the CC2520
communication chip from Texas Instruments. The node is
based on layout and hardware schematics which are freely
available from [13].

The fault injector uses ChibiOS/RT [14] as its operating
system, and implements the state machine described in
Section II.C. The following fault injection triggers are sup-
ported:

 Time – Enabled after a specified time has elapsed.

 Packet probability – Enabled with a specified
probability for each received packet.

 Packet destination address – Enabled when a
packet with a matching source address is received.

 Packet source address – Enabled when a packet
with a matching destination address is received

 Packet data – Enabled when the specified data
matches the received data

 The fault injector is configured using USB
commands, or by sending configuration packets via
IEEE 802.15.4.

Figure 5. RF board with STM32F4 and CC2520 based on [Vedder].

The prototype fault injector also provides packet logging

capabilities, which are useful for debugging purposes. The
CC2520 communication chip provides hardware support for
packet sniffing, which can be used as a non-intrusive
method of observing wireless traffic. The fault injector can
output captured packets in the packet capture (pcap) format
using a named pipe. The logged traffic can then be analyzed
in real-time using tools such as Wireshark which is an open
source network protocol analyzer. Figure 6 shows an
example of logged traffic in Wireshark.

The following failure modes are currently supported by
the fault injection prototype: message corruption, delay,
loss, insertion, unintended message repetition, masquerad-
ing, and blocking access.

3Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 12 / 66

Figure 6. Packet sniffing using the fault injection node and Wireshark.

For some of the failure modes, e.g. message delay,

message payload need to be known a priori. Proof-of-
concept fault injections have been successfully performed,
but no complete fault-injection campaigns have been run
yet.

IV. CONCLUSIONS AND FUTURE WORK

A prototype fault injector for digital communication, in
particular wireless communication, has been described. One
limitation with the approach is that communication chips
require some time to switch between receiving and sending.
For the CC2520 chip, the RX/TX turnaround time is 192µs.
For packets with a small payload, it might therefore not be
possible to trigger the fault injection and jam the packet
currently being received. This is something which will be
investigated in the near future.

The prototype has been tested on IEEE 802.15.4
communication, but the concept is straightforward to adapt
to other communication techniques, such as IEEE 802.11p.

The prototype shows that it is feasible to inject most
faults needed in a safety assessment according to the
requirements in functional safety standards.

ACKNOWLEDGMENT

This work has been supported by the EU under the FP7-
ICT program, through project 288195 Kernel-based
ARchitecture for safetY-critical cONtrol (KARYON).

REFERENCES

[1] ISO26262-5, “Road vehicles – Functional safety – Part 5: Product
development at the hardware level”, 2011.

[2] T. L. Willke, P. Tientrakool, and N. F. Maxemchuk, “A survey of

inter-vehicle communication protocols and their applications”, IEEE
Communications Surveys & Tutorials, vol. 11(2) , pp. 3-20, 2009.

[3] H. Mei-Chen, T. K.Tsai, and R. K. Iyer, “Fault injection techniques

and tools”, IEEE Computer, vol. 30(4), pp. 75-82, 1997.

[4] R. Alena, R. Gilstrap, J. Baldwin, T. Stone, and P. Wilson, “Fault
tolerance in ZigBee wireless sensor networks”, Proc. 2011 IEEE

Aerospace Conference, March 2011, pp. 1-15.

[5] C. A. Boano et al., “Controllable radio interference for experimental
and testing purposes in wireless sensor networks,” Proc. IEEE 34th

Conference on Local Computer Networks, Oct. 2009, pp. 865-872.

[6] D. de Andrés, J. Friginal, J.-C. Ruiz, and P. Gil, ”An attack injection
approach to evaluate the robustness of ad hoc networks”, Proc. 15

th

IEEE Pacific Rim International Symposium on Dependable
Computing, Nov. 2009, pp. 228-233.

[7] Homepage of Kernel-Based ARchitecture for safetY-critical cONtrol,

http://www.karyon-project.eu/, accessed on 25
th
 of June 2014.

[8] IEC 61508-2, “Functional safety of electrical/electronic/program-

mable electronic safety-related systems – Part 2: Requirements for
electrical/electronic/programmable electronic safety-related systems”,

2010.

[9] H. Kopetz, “Real-time systems”, Kluwer, 1997.

[10] F. Cristian, “Understanding fault-tolerant distributed systems”,
Communications of the ACM, vol. 34, pp. 56-78, 1991.

[11] A. D. Wood, J. A. Stankovic, and G. Zhou, "DEEJAM: Defeating

energy-efficient jamming in IEEE 802.15. 4-based wireless
networks," Proc. 4th Annual IEEE Communications Society

Conference on Sensor, Mesh and Ad Hoc Communications and
Networks (SECON'07), June 2007, pp. 60-69.

[12] J.-P. Ebert and A. Willig, “A Gilbert-Elliot bit error model and the

efficient use in packet level simulation”, Technical Report, TKN-99-
002, Technical University of Berlin, 1999.

[13] Homepage of B. Vedder “CC2520 and STM32 RF boards”,

http://vedder.se/2013/04/cc2520-and-stm32-rf-boards/, accessed on
25

th
 of June 2014.

[14] Homepage of ChibiOS/RT, http://www.chibios.org, accessed on 25
th

of June 2014.

4Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 13 / 66

Fault-Detection Sensitivity Based Assessment of Test
Sets for Safety-Relevant Software

Susanne Kandl
Institute of Computer Engineering
Vienna University of Technology

Austria
Email: susanne@vmars.tuwien.ac.at

Jean-Marc Forey
Synopsys, Inc.

Grenoble
France

Email: Jean-Marc.Forey@synopsys.com

Abstract—In testing it is, in general, not possible (or at least
extremely time-consuming) to cover the complete input data
space, therefore usually a test set is selected for a given coverage
criterion (like decision coverage or similar). This restricted test
set covers only a part of the complete input data space with a
degraded fault-detection capability. The fault-detection capability
of a test set is given by the number ofdetectedfaults in relation
to the number of actual faults. In this work, we present a novel
approach for the assessment of test sets based on their fault-
detection sensitivity. The main goal of an efficient testing process
is to reduce the test effort while targeting a maximum number of
detected faults, i.e., an ideal test set requires a minimal execution
time for the test run (defined by the number of the test cases
and their individual run-times) with a maximum fault-detection
sensitivity. Therefore, our proposed test-set selection process is
not guided by a coverage criterion, but by the fault-detection
capability of the different test cases using the output of the
tool Certitude Functional Qualification System. We will apply our
strategy on a safety-relevant (regarding ISO 26262) case study
from the automotive domain focusing on the scalability of the
test-set selection strategy. Our work presents a novel method to
optimize the testing effort for software used in dependable systems
with respect to a decreased testing effort while sustaining a high
fault-detection capability.

Keywords–Dependable Systems, Testing, Fault-Detection Sensi-
tivity, Safety-Relevant Software.

I. I NTRODUCTION

The Verification and Validation (V&V) of safety-relevant
systems (a class of dependable systems) requires a tremen-
dously high amount of effort [1]. Besides techniques like
analysis or review, testing is one of the main methods to prove
the correctness of the system. The projectVerification and
Testing to Support Functional Safety Standards(VeTeSS) [2]
deals with the development of standardized tools and methods
for the verification of safety-relevant systems in the context
of ISO 26262 (Functional Safety for Road Vehicles) [3]. One
main aspect is to tackle the contradiction betweenreducing the
V&V-effort while enhancing the dependabilityof the safety-
relevant components. Usually, there is a correlation between
the testing effort and the confidence in the test process (the
test result, respectively) illustrated in the exemplary Figure 1.
An increasing testing effort results in a higher confidence in the
test process. After passing a critical mark in the testing effort
(indicated by the dashed line), the confidence in the testing
result increases only marginally approaching 100% confidence
in an asymptotic way for additional testing effort.

Figure 1. Correlation Between the Testing Effort and the Confidence in the
Test Process

The selection of the test set (the set of test cases) has a
significant impact on the testing effort and the resulting test
result. The example given in Figure 2 demonstrates this fact
(TD means Test Data: some input data to execute this branch;
TC stands for Test Case: an execution trace in the program).
The control flow of this example consists of 4 if-decisions.
Each decision has 2 branches, i.e., in the overall we have to
cover 8 branches for 100% Decision Coverage (DC). For that
we need test cases to cover all the branches (b1 + b2, b3 + b4,
b5 + b6, b7 + b8). Due to the redundancies in the traces this
results in 5 test cases (TC1, TC2, TC3, TC4, TC5). Starting
with Test SetTSINI consisting ofTC1 andTC5 shows that
4 out of 8 branches are covered, that means we achieve 50%
DC. Adding the test caseTC2 to TSINI results in covering 5
of the 8 branches, this equals 62,5% DC (i.e., an increase of
12,5%). Adding the test caseTC3 to TSINI results in covering
6 of the 8 branches, this equals 75,0% DC (i.e., an overall
increase of 25,0%). That means that both extended test sets
contain 3 test cases, but the latter one achieves better results
regarding the coverage criterion DC. AlthoughTC3 is longer
than TC2 (incorporating more test steps), usually the length
of the test cases has a negligible effect on the testing effort, as
the initialization of the test cases is the most time-consuming
part in the test-case execution.

The assessment of a test set based on a given coverage cri-
terion is a very common technique but studies (like [4] [5] [6])
indicate that structural coverage is a rather insufficient means
to determine the quality of the test set. Even sophisticated
coverage criteria like MC/DC (Modified Condition/Decision
Coverage) do not guarantee a high error-detection sensitivity
(see [7] [8]). What we arereally interested in is thefault-
detection sensitivityof a test set, that means the number of
detectedfaults in relation to the number ofactual faults for

5Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 14 / 66

Figure 2. Example for Test-Set Selection for Decision Coverage

a given test set. Faults are erroneous parts in the program
(colloquially aka: bugs), for instance, a mutated name of a
variable (variable_1 instead ofvariable_2). This moti-
vated the idea of a fault-detection sensitivity based assessment
of test sets. The main principle is to select the test set on
the basis of the powerfulness of test cases to detect faults.
For this we are using the analysis of the Certitude Functional
Qualification System [9]. This tool introduces artificial faults
into a program and determines which faults are covered by
specific test cases. Some of the test cases are capable to reveal
a high number of faults, whereas other test cases detect only
a few faults. The target is to assess a test set regarding the
fault-detection sensitivity (given by the capability of the test
cases to detect faults). To evaluate the feasibility of this idea
for a real industrial case study we apply our strategy to a case
study from the automotive domain (software for the selection
of the driving mode for an electric car).

In the remaining part of the paper, we give some basic
definitions (Section II) and describe the functionality of the
tool Certitude to explain how we are using this tool for our
approach (Section III). In the following, we elaborate our
strategy for fault-detection sensitivity based assessment of test
sets and present the questions addressed by our study (Section
IV). Finally, we give a short overview on our work in progress
to evaluate our approach on a case study (Section V) and
conclude with a summary of the paper and planned future
work (Section VI).

II. BASIC DEFINITIONS

A Test Set TS consists oftest cases. A Test CaseTC
is a trace in the execution of the program defined by the
variable valuesincluding the correct output for given input
data. Example: A test case for a functionsum(a, b) may
be (2; 3; 5). The size of a test setS(TS) is defined by the
number of test cases.

A fault is a mutation of the program (i.e., a deviation of the
correct implementation). We will consider faults for operators,
variables, and values.

A strong test case is a test case that is capable to detect
many faults. Aweak test case is a test case that is capable
to detect only a few faults. The fault-detection sensitivity of
a test caseF (TCx) is defined by the number of faults that
are detected by this test case. The fault-detection sensitivity
of a test setF (TS) is defined by the sum of the detected
faults of the test cases inTS, i.e.,F (TS) =

∑S(TS)
x=1 F (TCx).

The classification of test cases intostrongandweaktest cases
depends on the achieved values forF (TCx) for the test cases
in TS: A test case withF (TCx) = 10 may be astrong
test case in a test set with test cases with a maximum fault-
detection sensitivity of12, but it is rather aweak test case
when other test cases in this test set are able to detect, e.g.,
100 faults.

In the following, we will also distinguish between anEasy-
To-Detect (ETD) fault and aNot-Easy-To-Detect (NETD)
fault . Whereas the first one is detected by many test cases
(for instance, 27 out of 100 test cases), the second one is only
detected by a few test cases (for instance, 2 out of 100 test
cases). We define the number of test cases of a test set that are
capable to detect a specific fault (Ftly) D(Ftly) = #TCx (for
x = 1...S(TS)) with TCx detects the faultFtly, as the metric
to guide the classification of faults. The precise distinction
betweenEDT andNEDT faults depends on the concrete values
for a case study (the program under test and the applied test
set).

III. C ERTITUDE FUNCTIONAL QUALIFICATION SYSTEM

Basically, the tool Certitude Functional Qualification Sys-
tem by Synopsys Inc. [9] intends to measure the effectiveness
of a verification environment. It is able to identify verifica-
tion weaknesses that allow bugs to stay undetected in the
testing process and may lead to functional problems. The
basic principle of Certitude is to introduce mutations (i.e.,
artificial software faults) into the design and prove whether
the verification environment (the test set) is capable to detect
these faults or not, see Figure 3 (RTL refers to Register-
Transfer Level). Please, consider that this technique is different
to typical software fault injections with the intention to validate
fault-handling mechanism at runtime and to evaluate the way
a system behaves in the presence of faults (like [10]). The aim
of Certitude is to determine the capability of a verification
environment to detect design mutations (similar to [11] and
[12]).

Figure 3. Certitude Functional Qualification Process

If all (or at least most) of the artificially introduced bugs
are identified by the verification environment, this V&V-
environment is proven to begood. If many of the artificially
introduced bugs arenot identified by the verification environ-
ment, this indicates that the V&V-environment is insufficient.
Either some test cases (or specific test scenarios) are missing
or wrongly implemented, or the checks are not robust enough
(missing or broken). Certitude provides two different modes:
1. Theverification improvement modeanalyzes the verification
of the design and identifies specific holes and weaknesses.
2. The metric modeallows to measure the overall quality
of the verification environment in a quantitative way using a
statistical approach.

6Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 15 / 66

Certitude combines static analysis with mutation-based
techniques for introducing mutations (i.e., artificial bugs) into
the system under test, see Listing 1 for an example. In line 1,
the original version is given. Then the Boolean operatorOR
(|) is mutated to the Boolean operatorAND (&) resulting in
the faulty version in line 2.

1 a = b | c ;
2 a = b & c ;

Listing 1. Original Code and Faulty Program Code

After introducing the mutations, Certitude determines
whether the V&V-environment can activate (i.e., exercise) the
faulty code, propagate the effects to an observable point, and
detect the presence of the fault. This is done in three phases
(see Figure 4): a) In the fault model analysis phase, the
design is analyzed and appropriate faults are selected that will
be injected into the system. b) In the fault activation phase,
the specified tests (selected from the regression) are run once
and the behavior of the V&V-environment with respect to the
faults is analyzed. c) In the fault detection phase, selected test
cases from the V&V-environment are executed to measure
the ability of the V&V-environment to detect the faults.

Figure 4. Phases of the Certitude Functional Qualification

Furthermore, Certitude uses a proprietary algorithm to au-
tomatically classify and prioritize the faults (the injected faults
are qualified in a priority order). The subsequent qualifications
contain the results from the previous test runs and focus on
the remaining undetected faults. By this, it is possible to
find and fix weaknesses in the V&V-environment in an early
stage of the verification process, expand the set of qualified
faults (as both, the V&V-environment and the design, evolve),
achieve an incremental improvement over time, and minimize
the effort for analysis and debug.Latent faults are mutations
that have no impact on the program behavior. Some of them
can be recognized by Certitude in the diagnosis of the results
of the test run. At the moment, Certitude supports hardware
description languages, like VHDL [13] and Verilog [14], and
programming languages like C/C++.

Within the analyses of Certitude the tool provides a list that
shows for each executed test case the number ofactivated,
propagated, and detectedfaults. The code skeleton given in
Listing 2 demonstrates the meaning of the three different
terms: In line 2, the correct program version is given (with
i<11) and in line 3, the mutated (faulty) program version is
given (with i<=11). For the activation of this fault we need a
test case with the variablea equals the valueTRUE, otherwise
the fault is not activated at all. The propagation of a fault to an
observable failure is necessary to observe (and thus, detect) the
actual fault. A fault may cause an error (an invalid state in the

system behavior). An error may cause further errors (therefore
an error may act as a fault), or it may propagate and then be
observable. To propagate the injected fault, we need a test case
with the value 5 for the variablej . Only then we are able to
observe a deviation from the original program behavior caused
by the introduced fault.

1 while (a == TRUE) {
2 for (i =1; i <11; i++) { / / correct version
3 for (i =1; i <=11; i++) { / / mutation
4 pr int (i) ;
5 i f (j==5) {
6 product = i ∗ j ;
7 pr int (product) ;
8 }
9 }

10 i f (product > 50)
11 pr int (error_message) ;
12 else
13 pr int (OK) ;
14 }

Listing 2. Original Code and Faulty Program Code

The main output of Certitude for the quality assessment of
the V&V-environment (the underlying test set, respectively)
is the number of detected and undetected faults. If the ratio
of detected faults to the overall number of injected faults is
high, this indicates a matured and reliable test set, otherwise
the test set has to be improved. For further analysis, Certitude
also provides a list showing the number of activated (#ActF),
propagated (#PropF), and detected faults (#DetF) for each test
case, see the exemplary Table I.

TABLE I
EXAMPLE OUTPUT OFCERTITUDE

Test Case #ActF #PropF #DetF
TC1 80 70 50
TC2 60 50 20
TC3 20 10 5
etc. etc. etc. etc.

Assuming a total number of introduced faults of 100,TC1

appears to be astrongtest case, whereasTC3 is a ratherweak
test case regarding the lower number of detected faults.

The main purpose of the Certitude Functional Qualification
System is to provide the information that allows the test
engineer to improve the overall V&V-environment (i.e., the test
set) by identifying weaknesses of the V&V-environment (e.g.,
missing test cases) and improving the V&V-environment (by
adding these missing test cases). In the following, we present
an idea to use the tool Certitude for the selection of test sets
that require less testing effort while sustaining a high fault-
detection sensitivity.

IV. FAULT-DETECTION SENSITIVITY BASED
ASSESSMENT OFTEST SETS

The main idea of our strategy for the selection of a test
set is to include the test cases with a high fault-detection
sensitivity F (TCx) and to dismiss the test cases with a low
F (TCx). By this, we achieve a smaller test set (thus, reducing

7Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 16 / 66

the overall test effort). The fault-detection sensitivity based
assessment of test sets is instrumented by a) a parameter
for the number of detected faults by the definition of a
threshold-valueTDetF for detected faults: ifF (TCx) is
greater thanTDetF , thenTCx is included in the final test set
otherwise not. or b) a parameter for the targeted reduction
of the test set by defining a concrete value for the reduction
(e.g., 20% of the original test cases are omitted).

In this study, we are mainly interested in:

• What is the exact effect on the degradation of the fault-
detection sensitivity of the new test setF (TS) for a)
and b)? It may happen that a test case with a low
F (TCx) is discarded without any (negative) impact on
F (TS) because the related faults are anyway covered
by other (remaining) strong test cases. On the other
hand omitting a weak test case may have a significant
impact onF (TS) because this test case is required for
the activation of a couple of faults (without activation
of these faults they cannot be detected by the strong
test cases).

• What is the relation between the achieved reduction
regarding the test effort (correlating with the size of
the test set) and the resulting degradation of the fault-
detection sensitivity of the test setF (TS)? If we risk
to fail to detect important faults just by omitting 5
out of 1000 test cases (i.e., the effort reduction is
almost negligible), then the efficiency of the strategy
is questionable. Preliminary empirical results indicate
that omitting some of the weak test cases results
in a significant reduction of the test effort while
degrading the actual fault-detection sensitivityF (TS)
only marginally.

• Experiences so far suggest that for our analysis we
have to differ betweenEasy-To-Detect (ETD)faults
and aNot-Easy-To-Detect (NETD)faults. What does
a low/high number of ETD-/NETD-faults means for
our strategy? For a system with many ETD-faults, in
general, the omission of a weak test case has only a
tiny effect on the overallF (TS). This is not valid for
NETD-faults. Certitude also provides implicitly some
information to distinguish between ETD- and NETD-
faults. This information can support the evaluation of
our strategy.

• Is our strategy (due to computation time) feasible for
a real industrial case study? In general, determining
a minimal test set is decidable but, the problem is
NP-complete (that means the algorithm requires an
exponentially high effort), thus usually heuristics are
applied to find an optimal test set [15]. We try to avoid
this problem by only a few test cycles to determine
F (TS) and the values forF (TCx) for the initial test
set. Selecting the test cases for the improved test set
is linear and then we are executing the test runs for
the reduced test set.

V. EVALUATION ON AN INDUSTRIAL USE CASE

In our empirical evaluation, we focus on automotive soft-
ware written in the programming language C. One of our

industry partners provides a use case for an automatic gear
selection for an electric car. The Electric Vehicle Controller
(EVC) manages the functions for the gear selection of the
available states (for instance: Park; Reverse; Neutral; and
Drive, the function similar to automated transmission). The
main function of the use case allows the selection of the driving
mode from the four different available states. The initial test
set is generated automatically from a SysML-model of the use
case. With the final results of the empirical evaluation of our
strategy for fault-detection sensitivity based assessment of test
sets, we will be able to give clear recommendations for the
applicability, the benefits, and also the limitations of our novel
idea.

VI. CONCLUSION AND FUTURE WORK

Finding the optimal test set (minimal size and maximum
fault-detection capability) is a permanent ongoing challenging
task. Experienced test engineers may be able to write down
a few good test cases (good in finding faults), some of
them especially tuned to detect the faults/errors of a certain
program developer or adapted to intricate (thus error-prone)
parts of the system under development. Coverage metrics are
often used to determine the maturity of the test set based
on the assumption that an increase in the coverage induces
a better fault-detection sensitivity. In this work we present
a novel idea for the assessment of the quality of a test set
by the main attribute we are interested in, namely thefault-
detection sensitivity. For our strategy, we made use of the
tool Certitude Functional Qualification System that provides
us with the necessary information about the fault-detection
capability of the different test cases of a test set. Static
analysis combined with mutation-based fault injection yields
in precise information about the powerfulness/weakness of a
test case to detect faults. This information can be used for a
qualified selection of test cases to reduce the size of the test
set while preserving a desired test set quality (regarding the
fault-detection sensitivity). Our idea intends also to motivate a
test process stronger guided by fault injection instead of using
fault injection only as a recommended method prescribed by
standards for safety-relevant systems, like ISO 26262.

Besides finishing the analysis for the mentioned use case,
we plan to extend the evaluation of our strategy to (at least)
another case study. Not only the number, but also the type
of faults and the program structure influence significantly the
fault-detection sensitivity of a test set, so precise answers to the
listed questions can only be given after results from different
use cases. We also consider to address faults leading to a
multiple point failure (individual faults may lead only in com-
bination with another independent fault/with other independent
faults to a failure, the so-called multiple point failure). This
kind of faults are usually difficult to detect (as they are only
observable in the presence of other faults).

ACKNOWLEDGMENTS

This work has been partially funded by the ARTEMIS Joint
Undertaking and the National Funding Agency of Austria for
the project VeTeSS under the funding ID ARTEMIS-2011-1-
295311.

8Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 17 / 66

REFERENCES

[1] H. Kopetz, Real-Time Systems: Design Principles for Distributed Em-
bedded Applications, 2nd ed., ser. Series: Real-Time Systems Series.
Springer, 2011.

[2] “ARTEMIS VeTeSS: Verification and Testing to support functional
Safety Standards,” 2014, last visited: 09-22-2014. [Online]. Available:
http://www.vetess.eu

[3] ISO: International Organization for Standardization, “ISO 26262: Func-
tional safety – road vehicles,” 2011.

[4] M. Staats, G. Gay, M. Whalen, and M. Heimdahl, “On the danger
of coverage directed test case generation,” in Proceedings of the 15th
International Conference on Fundamental Approaches to Software
Engineering, ser. FASE’12. Berlin, Heidelberg: Springer-Verlag,
2012, pp. 409–424, last visited: 09-22-2014. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-28872-2_28

[5] K. Kapoor and J. Bowen, “Experimental evaluation of the variation
in effectiveness for DC, FPC and MC/DC test criteria,” Proceedings
International Symposium on Empirical Software Engineering, ISESE
2003, Sept.-1 Oct. 2003, pp. 185–194.

[6] J. Guan, J. Offutt, and P. Ammann, “An industrial case study of
structural testing applied to safety-critical embedded software,” in
Proceedings of the 2006 ACM/IEEE international symposium on
Empirical software engineering, ser. ISESE ’06. New York, NY,
USA: ACM, 2006, pp. 272–277, last visited: 09-22-2014. [Online].
Available: http://doi.acm.org/10.1145/1159733.1159774

[7] A. Dupuy and N. Leveson, “An empirical evaluation of the MC/DC
coverage criterion on the HETE-2 satellite software,” in Digital Avionics
Systems Conference, 2000. Proceedings. DASC. The 19th, vol. 1, 2000,
pp. 1B6/1–1B6/7 vol.1.

[8] S. Kandl and R. Kirner, “Error detection rate of MC/DC for a case
study from the automotive domain,” LNCS 6399: S.L.Min et al.(Eds.):
Proceedings of the 8th IFIP Workshop on Software Technologies for
Future Embedded and Ubiquitous Systems (SEUS 2010), Oct. 2010,
pp. 131–142.

[9] Synopsys Inc., “Certitude - functional qualifica-
tion system,” 2014, last visited: 09-22-2014. [On-
line]. Available:https://www.synopsys.com/TOOLS/VERIFICATION/
FUNCTIONALVERIFICATION/Pages/certitude-ds.aspx

[10] D. Alexandrescu, L. Sterpone, and C. Lopez-Ongil, “Fault injection
and fault tolerance methodologies for assessing device robustness and
mitigating against ionizing radiation,” in Test Symposium (ETS), 2014
19th IEEE European, May 2014, pp. 1–6.

[11] H. Do and G. Rothermel, “On the use of mutation faults in empirical
assessments of test case prioritization techniques,” IEEE Trans. Softw.
Eng., vol. 32, no. 9, Sep. 2006, pp. 733–752, last visited: 09-22-2014.
[Online]. Available: http://dx.doi.org/10.1109/TSE.2006.92

[12] J. Duraes and H. Madeira, “Emulation of software faults: A field
data study and a practical approach,” Software Engineering, IEEE
Transactions on, vol. 32, no. 11, Nov 2006, pp. 849–867.

[13] P. J. Ashenden, The Designer’s Guide to VHDL, 2nd ed. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2001.

[14] S. Palnitkar, Verilog HDL: A Guide to Digital Design and Synthesis,
Second Edition, 2nd ed. Upper Saddle River, NJ, USA: Prentice Hall
Press, 2003.

[15] M. J. Harrold, R. Gupta, and M. L. Soffa, “A methodology for
controlling the size of a test suite,” ACM Trans. Softw. Eng. Methodol.,
vol. 2, no. 3, Jul. 1993, pp. 270–285, last visited: 09-22-2014. [Online].
Available: http://doi.acm.org/10.1145/152388.152391

9Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 18 / 66

Network-Security-Policy Analysis

Christian Pitscheider

Dip. di Automatica e Informatica
Politecnico di Torino

Torino, Italy
christian.pitscheider@polito.it

Abstract—Computer network security is the first line of defence
to accomplish information assurance. The computer network is at
risk without a well-designed and flawless implemented network
security policy. The main problem is that network administrators
are not able to verify the network security policy. Although
further research has been carried out, it mainly concerns small
specific parts of the overall problem. This paper presents different
approaches from literature and highlights how they are correlated
and can operate together. This work summarizes the solutions
proposed in literature, points out their advantages, disadvantages
and limitations. To conclude, it proposes solutions for future
research in this area.

Keywords–Security Policy; Analysis; Reachability; Policy com-
parison.

I. INTRODUCTION

More and more computer networks are connected to the
Internet and remote sites are becoming more frequent. As
a result, computer networks have become a very complex
structure that is hard to manage. As some studies have shown,
firewall configuration errors are quite frequent [1][2]. The
studies point out that network administrators do not have a
good insight of the network and its configurations. Dedicated
tools and procedures are needed to support the daily work of
network administrators.

In literature, different approaches exist to help network
administrators in their daily workflows. In general, the ap-
proaches can be divided into two distinct categories: policy
analysis and policy generation. Policy analysis focuses on
existing and deployed configurations, while policy generation
focuses on automatically generating new configurations.

This survey gives a brief overview of policy generation but
its main focus is on policy analysis, and in particular on three
distinct policy analysis categories, namely, Conflict analysis,
Reachability analysis, and Policy comparison.

The main limitation of the papers concerning policy anal-
ysis is that they focus on one single type of security control
and cannot be applied to a complex computer network. For
example, Al-Shear proposes a solution to perform conflict
analysis of firewall policies [3]; however, this solution is not
able to model Network Address Translation (NAT) / Network
Address and Port Translation (NAPT) devices; therefore, com-
puter networks that include NAT/NAPT devices cannot be
analysed with this solution.

Another limitation is that the solutions are not compatible
with each other. A model of a security control used in one

approach cannot be reused in another. This means that a lot of
research time is lost on modelling various security controls for
each approach. For example, the reachability analysis model
in [4] can also handle NAT devices; but, since the analysis
model of this solution is not compatible with the one in [3],
the model of NAT/NAPT devices cannot be reused and a new
model must be defined to support this type of security control.

This paper first gives an extended overview of research
carried out in this field and highlights the advantages, dis-
advantages, and limitations. Based on this analysis, we show
that future research in this area should be concentrated on
a unified analysis model. We also discuss what features this
model should include and why such a model is desirable.

The rest of the paper is organized as follows. Section II
presents the theoretical background. Section III presents a
typical workflow that the network administrators may use to
configure firewalls. Section IV presents the research carried
out on different types of policy analysis techniques. Section V
presents the summary of what is missing in the literature and
how to fill the gap. Section VI concludes and summarizes the
paper.

II. TECHNICAL BACKGROUND

A. Network Security Policy

A network security policy is a special kind of policy that
focuses on security aspects of a computer network. Network
security policies can be written in different formats and at
different levels of abstraction. On the one hand, very abstract
high-level policies exist which are written in natural language,
that express network-wide security goals. On the other hand,
concrete configuration of single security controls are written
in a device-specific configuration language. High-level policies
are easy to write and understand by humans but difficult
to elaborate on machines; concrete configurations which are
difficult to read and write for humans are easily interpreted by
machines.

B. Security controls

Security controls are appliances or software modules of
appliances within a computer network. They implement the
functionalities needed to enforce a network security policy.
Security controls can control the network traffic by blocking
certain packets or modifying it by changing header information
of certain packets. As an example, packet filters, stateful
firewalls, and application-level firewalls are used to control

10Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 19 / 66

the traffic, whereas IPsec gateways, Virtual Private Network
(VPN) terminators, and NAT/NAPT devices are able to modify
the traffic.

C. Policy Analysis

Each of the three main policy analysis types focuses on
a part of the analysis process, but they have overlapping
functions and common steps to reach their goal.

Conflict analysis searches for possible errors within a
single or a set of security policies. It searches for potential
semantic errors within correlated policy rules. Conflict analysis
can also be used to identify possible policy optimizations.
Conflict analysis can be applied to a single policy (Intra-
Policy analysis) or to set of policies of interconnected security
controls (Inter-Policy analysis).

Reachability analysis evaluates allowed communications
within a computer network. Furthermore, it can determine if a
certain host can reach a service or a set of services. In general,
reachability analysis is performed online by using tools such
as “ping” or “traceroute”. By using an accurate representation
of the network and its security policies, reachability analysis
can also be performed offline, during the design phase.

Policy comparison compares two or more network security
policies and represents the differences between them in an
intuitive way. Network security policies involved may include
single concrete security control configurations, sets of con-
figurations, and high-level policies of an entire network. One
of the best use-cases of policy comparison is to verify that a
desired network security policy is implemented correctly by
comparing the designed high-level policy with the concrete
network configuration.

III. NETWORK ADMINISTRATOR WORK-FLOWS

Research efforts in this field can be divided into two
main groups: policy generation that proposes a complete new
approach to policy definition, and policy analysis that tries to
give additional support to already deployed systems.

The policy generation approach forces network admin-
istrators to completely redefine their workflow and to use
less expressive configuration interfaces. Policy generation has
the disadvantage that administrators cannot rely anymore on
their previous work experience and have to trust a black box
policy generation tool. Probably the bigger disadvantage is
that already deployed systems cannot be integrated seamlessly,
instead they have to be reconfigured from scratch by mean of
policy generation tools.

The policy analysis approaches, works on already deployed
devices, thus it has the advantage that administrators can
continue their usual work and use policy analysis support only
during complex tasks. Deployed systems remain unchanged
and under the complete control of network administrators.

A. Policy generation workflows

The policy generation approach consists of three main
parts: a high-level security policy, a model of the network
topology and a policy refinement tool. The network administra-
tor specifies the desired network security policy using a high-
level language and abstractly represents the target network

topology. The high-level security policy and the network
representation are the input for the policy refinement tool. The
transformation process implemented by the tool produces the
device-specific configuration files.

The advantages of such approaches are limited by the ex-
pressiveness of the high-level policy, the number of supported
device types and device manufactures, and the optimization
that the transformation process introduces to the final config-
uration.

B. Policy analysis workflows

The application of policy analysis solutions proposed in
literature follow specific workflows. Conflict analysis searches
for potential errors within a configuration. Reachability analy-
sis allows the administrators to query if specific properties of
the configuration are true. Last but not least, policy comparison
helps network administrators to identify differences between
policies.

For a complete workflow from the design phase to im-
plementation, testing and maintaining a network policy, all
three analysis approaches must be applied. First, during the
design phase of a policy, network administrators express the
desired network security policy in a high-level language. Since
at the moment there are no enterprise grade transformation
tools to transform high-level policies into device specific con-
figurations, administrators have to create the configurations by
hand. The next step is to use a conflict analysis tool to identify
potential errors, performance issues and rules which are never
applied. After having reduced potential errors and performance
issues, administrators may use a reachability analysis tool to
verify that the key aspects of the desired policy are applied
correctly. The last step is to use a policy comparison tool to
compare the desired network security policy with the newly
created one.

Other activities can be performed after the configurations
have been deployed. Administrators may want to troubleshoot
a connection problem using the reachability analysis tool. Hav-
ing pinned down the connection problem to a missing firewall
rule, the administrator wants to verify that a modification of
this firewall configuration does not introduce conflicts and that
only the desired change is applied. First, he uses the conflict
analysis tool and afterwards he uses the policy comparison tool
to compare the original with the modified configuration.

IV. STATE OF THE ART

A. Policy refinement

In literature, different approaches exist towards automatic
policy generation. Even though they show a great potential, the
research is still ongoing and has not been adopted widely. Only
a few enterprise grade products exist which have implemented
such features and the adoption rate is fairly low. Algosec,
the leader in network security management, has only a few
thousand costumers. According to one of their surveys [5],
only 13.4% of network operators use a centralized policy
management whereas 74.8% do not use any type of automated
tools. The survey considers as centralized policy management
any type of policy analysis and policy refinement.

11Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 20 / 66

Bartal et al. propose a solution named Firmato [6]. It was
one of the first solution proposals in this area and supports
only packet filter firewalls. It is based on an entity-relationship
model of the security policy and of the network topology.
The entity-relationship model is compiled and translated into
firewall specific configuration files. The prototype was used
to manage a real network containing a single firewall with 50
rules.

Verma et al. [7] used a similar approach; the authors
present a firewall analysis and configuration engine named
FACE. It takes as input the network topology and a global
security policy written in a high level language. FACE has
two advantages over Firmato: firstly it can also analyse the
firewall configurations created and secondly it configures only
one secure path between source and destination instead of
inserting ACCEPT rules on every possible path.

Garcia-Alfaro et al. [8] proposed MIRAGE, a management
tool for the analysis and deployment of configuration policies.
It is based on the same principles as Firmato [6] and FACE
[7], but it is also capable of configuring intrusion detection
systems IDS and VPN routers. MIRAGE can also perform
policy analysis on already deployed configurations.

Casado et al. [9] take a different approach; they proposed
a solution named SANE. Instead of generating concrete con-
figurations for already deployed firewalls, it proposed a new
architecture where the network contains a central server which
controls all decisions made by the network devices.

B. Conflict analysis

In literature, conflict analysis is mainly applied only to
single types of security controls and there is no complete so-
lution that incorporates all types of security controls. Research
is mainly concentrated on Intra- and Inter-policy analysis of
packet filter and IPsec configurations.

The conflict analysis of policy was first introduced by Al-
Shaer and Hamed [3]. They presented a classification scheme
for packet filter rule relations, based on which they defined the
four types of intra-policy rule conflicts (shadowing, correlation,
generalization and redundancy). Two rules are shadowed when
they enforce different actions and both rules match the same
packets. Two rules are correlated when they enforce different
actions and both rules have some matching packets in common.
A rule is a generalization of a second rule when they enforce
different actions and the second rule matches the same packets
as the first one but not vice versa. Two rules are redundant
when they enforce the same action and match the same packets.

Al-Shaer et al. introduced an extension of the intra-policy
classification analysis, called inter-policy rule conflicts, in the
extension [10][11] of the first paper. Inter-policy analysis eval-
uates rule relations between serially-connected packet filters.
Al-Shaer et al. define five new intra-policy conflicts (shad-
owing, spuriousness, redundancy, correlation and irrelevance).
Two rules from two different firewalls are shadowed when they
match the same packets and the rule from the first firewall
blocks a packet that is permitted by the second rule. Two
rules from two different firewalls are spurious when they match
the same packets and the rule from the first firewall permits
the packet which is blocked by the second rule. Two rules

from two different firewalls are redundant when they match the
same packets and both rules block the packet. Two rules from
two different firewalls are correlated when they have some
matching packets in common and enforce different actions.
A rule is classified as irrelevant if there is no possible traffic
which can be matched by the rule, for example the source and
destination address belong to the same zone.

Based on the work of Al-Shaer et al., other researchers
proposed alternative models and classification schemas. These
works prove that Al-Shaers classification scheme is valid and
can be applied to real world scenarios. The main limitation of
all these approaches is that they cannot handle other security
controls but packet filters. Notable examples are: Firecrocodile
[12] and FIREMAN [13]. Firecrocodile [12], proposed by
Lehmann et al., was the first approach to help network
administrators to correctly configure PIX firewalls. The tool
builds a model which represents the PIX configuration file
and performs the analysis on it. In addition to conflict analysis
they verify also the configuration file for policy violations. Its
main limitation is that it can analyse only intra-policy packet
filtering rules of Cisco PIX configurations. FIREMAN [13],
proposed by Yuan et al., uses binary decision diagrams (BDDs)
to represent packet filtering policies. In addition to a intra-
policy analysis, it also verifies that an end-to-end policy is
correctly implement by the filtering configurations. The model
is designed for packet filters only and does not support any
other type of security control.

Garcia-Alfaro et al. [14] propose the integration of network
intrusion detection systems (NIDS). The model can detect both
intra- and inter-policy packet filter rule conflicts. The main
improvement over Al-Shaer’s model is that it can also handle
NIDS, and not only packet filters. The tool can also verify
which security controls are on the path of a given packet based
on its source and destination address. Another feature of this
model is that it can rewrite a policy in its positive or negative
form. The positive form of a policy contains only ALLOW
rules whereas the negative form contains only DENY rules.
This work has been later integrated into the MIRAGE tool
[8].

Abbes et al. [15] suggest a different approach to this topic
by using an inference system to detect intra-policy conflicts.
They use the inference system to construct a tree represen-
tation of the policy. The construction process is efficient and
optimized for memory consumption. The inference contains
a condition which stops the construction of a specific branch
when no conflict can be found. The resulting classification tree
contains potential rule conflicts in its leaves. The disadvantage
of this approach is that it is not able to check for inter-policy
conflicts, furthermore it is not capable of handling security
policies such as IPsec/VPN.

Only recently stateful firewalls have been integrated into
analysis models. One of the few examples is presented in
[16] and [17]. Cuppens and Garcia-Alfaro [16] propose a
solution for intra-policy analysis of stateful firewalls. With the
introduction of stateful firewalls they also present new types
of conflicts classes (intra-state and inter-state rule conflicts).
Intra-state rule conflicts occur only between stateful rules
and beside the known conflicts from the stateless analysis,
they include two new conflict types. The first new conflict
arises when the firewall blocks packets during the three-way

12Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 21 / 66

handshake. The second new conflict arises when the firewall
blocks packets during the connection termination. Inter-state
rule conflicts occur between stateful and stateless rules when
application layer protocols establish multiple connections and
at least one of this connections is blocked, an example of
such a protocol is FTP. The proposed algorithmic solution
to handle and eliminate such types of conflicts is based on
a general automata describing the stateful rules. This initial
work has been completed and formalized in [17]. Although
the introduction of stateful firewall into the analysis process
was a very important step, both solutions are still missing the
inter-policy analysis.

Basile et al. [18] present an new analysis model based on
the work of Al-Shaer. The authors introduce a new formal
model for policy specification, named Geometrical Model, it is
based on a set of rules, a default action and an ad hoc resolution
strategy. The presented model can identify all types of intra-
policy conflicts defined by Al-Shear. Furthermore, the authors
present two new conflict types: general redundancy anomaly
and the general shadowing anomaly. The general redundancy
anomaly occurs when a rule is redundant to the union of
multiple rules. The general shadowing anomaly occurs when
a rule is shadowed by the union of multiple rules.

Basile et al. [19] present, based on their Geometrical
Model, a extension which can perform conflict analysis of
application-level firewall configurations. The extended model
can identify all policy anomalies introduced in their previous
work. The main contribution of this work is the conflict
analysis of firewall rules including regular expressions. The
model transforms the regular expressions into deterministic
automata and calculates rule intersection based on them.

Fu et al. [20] present a first approach for IPsec policy
conflict detection. The analysis is performed on a set of
policy implementations written in a high-level language and
the policy conflicts are identified by verifying the implemented
policies against a desired one. Fu et al. define a conflict when
the policy implementations do not satisfy the requirements of
the desired policy. A simple example of such a policy conflict
is when the desired policy specifies that node A must have an
encrypted channel with host B, but the policy implementations
do not instantiate an encrypted channel from A to B. In
addition to conflict detection, the proposed solutions includes
also conflict resolution. The conflict resolution process tries to
find alternative policy implementations in order to satisfy the
desired policy.

Al-Shaer [21] formalizes the classification scheme of [20].
The proposed model not only incorporates the encryption
capabilities of IPsec, but also its packet filter capabilities.
The work can be seen as the extension of its packet filter
classification proposed by Al-Shaer et al. [11]. In particular
he identified two new IPsec conflicts (overlapping-session
and multi-transform conflict), both types are valid for inter
and intra-policy analysis. Nested session conflicts occur when
multiple IPsec session are established from the same source
to different remote hosts and the traffic is delivered to the
farther host before the nearer one. Multi-transform conflicts
occur when traffic protection is applied to already encapsulated
IPsec traffic and the second protection is weaker than the first
one. Al-Shaer presents in [22] a complete taxonomy of policy
conflicts concerning packet-filter and IPsec configurations.

This is the only approach who tries to perform conflict analysis
of two different security controls.

Li et al. [23] present a similar detection classification model
for IPsec security policy conflicts. The model takes in consid-
eration intra- and inter-policy conflicts but is not compatible
with the packet filter rule classification model presented by
Al-Shaer. Instead of the conflicts defined by Al-Shaer they
present a new alternative one. The new classification scheme
is essentially the same but has the advantage that its definition
is clearer and therefore easier to implement.

Niksefat and Sabaei [24] present a improved version of
Al-Shaer’s [21] solution. The new detection algorithm can
identify all IPsec conflicts defined by Al-Shaer but does
not support filtering conflicts. The solution uses a Binary
Decision Diagram (BDD) to represent IPsec policies. The main
improvement over Al-Shaer’s solutions is the performance of
the implementation. Beside the improved efficiency in the
implementation this approach can also resolve the detected
conflicts.

C. Reachability analysis

Reachability analysis can be performed both online and
offline. Online reachability analysis is performed on a deployed
system by injecting test packets and verifying on different
points of the network that those packets are present. Offline
reachability analysis is performed on a model of the system
without direct interaction with a real network.

Online reachability analysis in general is performed by
using tools such as ping, traceroute, and tcpdump. There
are only a few publications regarding this topic. The general
approach taken in literature is to insert a traffic generator and
a traffic analyser into the network. The most promising work
is presented by El-Atawy et al. [25] and Al-Shaer et al. [26],
they propose a traffic generator which analyses first the security
policy and based on this analysis, the most relevant packets are
generated. The limitation of this two approaches is that they
can be applied to single firewalls only.

Offline reachability analysis has the advantage that the sys-
tem to be analysed does not need to be deployed. This means
that it can be used during the design and maintenance tasks.
Furthermore, it can also verify reachability on alternative paths,
and therefore test fault-tolerance properties of the systems.

Mayer, Wool, and Ziskind [27] present a firewall analysis
engine called Fang. It is the first approach towards offline
reachability analysis of computer networks containing only
packet filters. The proposed solution takes as input the network
topology and the configuration files of the deployed packet
filters. A user interface to perform reachability queries is
provided and the queries are evaluated by the tool. In the
extended versions of the paper [28] and [29] the query interface
has been improved and the most relevant queries are generated
automatically by the tool.

Xie et al. based there reachability analysis on graph the-
ory and dynamic programming [30]. The solution is able
to calculate the upper and lower bound of reachability. The
upper bound defines that there is at least one possible path
for reachability and the lower bound defines that all possible
paths allow reachability. The model can be used to represent

13Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 22 / 66

static NAT, routing and filtering rules based on the destination
addresses, but it does not take into account the existence of
connectionless and connection-oriented protocols. Although
the correctness of the model is given, it is purely theoretical
and lacks experimental results. Bandhakavi et al. [31] present
an extension to Xie’s work to overcome limitations. They use
a more general model to describe firewalls, packet filtering
and transformation rules, thus adding the possibility to handle
policies that depend on source addresses and filtering states.

Khakpour and Liu [4] present a reachability analysis
tool called Quarnet. Quarnet supports connectionless (stateless
router/firewall and static NAPT) and connection-oriented trans-
port protocols (stateful router/firewall and dynamic NAPT).
The paper presents a model for calculating network reacha-
bility metrics and also includes a performance analysis. The
solution is based on an internal representation of the network
on which reachability queries are executed. The authors first
calculate a Firewall Decision Diagram (FDD) to represent
the global policy and afterwards compute two matrices which
contain the effective reachability information needed. Although
the single reachability queries are very fast to compute, it takes
quite a long time to compute the internal representation of the
network.

Another theoretical approach used to compute the network-
wide reachability, has been proposed by Sveda et al. [32].
This approach uses traditional graph-based algorithms, such
as Floyd-Marshall, whereas [30] and [31] require ad-hoc tech-
niques to mimic routing protocols. To calculate the reachability
of the network the authors use the encoding problem into SAT
instance solved by automatized solvers. They describe how to
represent both routing and filtering devices, but do not mention
how to express packet transformation rules.

Kazemian et al. [33] present a generalization of Xie’s
work [30] based on “Header space” information of packets.
Their algorithm is compatible with filtering, routing, and
transformation technologies. However, this approach is limited
to packet filters and cannot be used for filtering and security
devices which work at a higher level of the ISO/OSI stack.

D. Policy comparison

Fu et al. [20] present a solution proposal to verify the
correct implementation of IPsec policies. The algorithm pre-
sented takes as input high-level security policies describing
an implementation and compares it with a desired end-to-end
policy. Even though the algorithm is able to compare a desired
policy with its implementation, it cannot been used to compare
a modified policy with its original version. Furthermore, it
only supports IPsec policies and does not support routing or
other transformation policies. This approach is more directed
towards conflict analysis then policy comparison.

Liu et al. [34] and [35] propose to reduce configuration
errors by forcing network administrators to write two separate
concrete configurations and to compare them afterwards. The
two configurations are converted into two FDDs and the
comparison is performed onto the two FDDs. The comparison
algorithm merges the two FDDs and verifies that the action,
contained in the leaves of the tree, is the same at each point.
Possible conflicts found in the two FDDs must be corrected
manually by the administrators and without any correlation to

the original configurations. This approach can be generalized
and the two input policies may be seen as the original and the
modified policy.

Yin and Bhuvaneswaran [36] represent correlations be-
tween rules as spatial relations and show how this special
relations can be used to evaluate the impact of rule changes on
the policy. Filtering policies are represented by the so-called
SIERRA tree. A SIERRA tree is similar to a FDD, each level
of the tree represents a dimension of the special division. The
impact analysis can only be performed on single changes, such
as adding one rule, removing or replacing it. The performance
of the algorithm is very poor since to calculate the difference
between two policies containing 30 rules takes already several
seconds.

Liu et al. have published two papers on change-impact
analysis of firewall policies [37][38], his algorithm is based
on a FDD and supports the classic 5-tuple filtering rules.
Overlapping rules are eliminated during the creation of the
FDD and as a result the FDD represents a filtering policy
without overlapping rules. The algorithm is designed to support
four basic operations on firewall policies: rule deletion, rule
insertion, rule modification, and rule swap. The output of the
algorithm presents an accurate impact of a proposed change.
Furthermore, the algorithm is also capable of correlating
the impact of a policy change with a high-level security
requirement. Although the authors claim that the algorithm
is practical, neither of the two papers does a performance
evaluation of the presented algorithms.

Liu et al. [39] present a firewall verification tool which
takes as input a firewall policy and a given property. The
tool verifies that the policy satisfies the given property. The
tool is mainly useful for offline firewall debugging and trou-
bleshooting. The algorithm first converts the firewall policy
into a FDD and the verification process is performed on the
FDD. The verification process checks that all leafs, which are
correlated to the given property, enforce the desired action. A
implementation of the tool has been tested for performance
and shows excellent results. This solution is limited to one
single firewall and cannot verify the correct implementation
of a complete network.

Youssef et al. [40] propose a formal and automatic verifica-
tion method based on a inference system. The solutions certify
that a firewall configuration is sound and respect completely to
a security policy. In case that the configuration is not sound and
complete, the method provide the user with information tosolve
the issues. This paper only supports packet filter firewalls;
however in an extended version [41], Youssef et al. propose a
formal and automatic method to check also statefull firewall
configurations.

E. Summary

Table I summarizes the capabilities of the different ap-
proaches. Each row stands for one approach identified by
its citation number. The three analysis categories (conflict
analysis, reachability analysis and policy comparison) are
separated by horizontal lines. Each column stands for a specific
capability; the first four columns identifies the type of analysis
(intra-policy conflict analysis, inter-Policy conflict analysis,
reachability analysis, and policy comparison) and the last

14Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 23 / 66

seven columns identify the supported security control (packet
filter firewall, stateful firewall, application-level firewall, NIDS,
IPsec/VPN, NAT/NAPT, and routing).

TABLE I. SUMMARY

Int
ra-

Poli
cy

Int
er-

Poli
cy

Rea
ch

ab
ilit

y

Com
pa

ris
on

Pac
ke

t Filte
r

Stat
efu

l FW

App
lic

ati
on

NID
S

IP
sec

/V
PN

NAT/N
APT

Rou
tin

g

[3] ⊗ ⊗
[10] [11] ⊗ ⊗ ⊗
[12] ⊗ ⊗
[13] ⊗ ⊗ ⊗
[14] ⊗ ⊗ ⊗ ⊗
[15] ⊗ ⊗
[16] [17] ⊗ ⊗ ⊗
[18] ⊗ ⊗
[19] ⊗ ⊗ ⊗
[20] ⊗ ⊗ ⊗
[21] [22] ⊗ ⊗ ⊗ ⊗
[23] ⊗ ⊗ ⊗ ⊗
[24] ⊗ ⊗ ⊗
[4] ⊗ ⊗ ⊗ ⊗
[27] ⊗ ⊗
[28] [29] ⊗ ⊗
[30] ⊗ ⊗ ⊗ ⊗
[31] ⊗ ⊗ ⊗ ⊗
[32] ⊗ ⊗ ⊗
[33] ⊗ ⊗ ⊗ ⊗
[34] [35] ⊗ ⊗
[36] ⊗ ⊗ ⊗
[37] [38] ⊗ ⊗
[39] ⊗ ⊗
[40] ⊗ ⊗
[41] ⊗ ⊗ ⊗

By comparing the different approaches, the two major
limitations are evident. Firstly, the majority of papers is
concentrated only on packet filters and ignore other security
controls. Secondly, the papers mainly focus only on one of the
three analysis types (conflict analysis, reachability analysis and
policy comparison), and only a few try to combine different
approaches into one single model.

V. FUTURE RESEARCH

As it becomes clear from the analysis of research carried
out so far, there is a lack of interoperability among the various
models. This has three major disadvantages. Firstly, a security
control modelled for one research approach cannot be reused in
another one. Secondly, the execution time spent to instantiate
a model is repeated for each and every analysis performed on
network security policies. Thirdly, it is nearly impossible to
make a performance comparison of the different approaches
since they use different test scenarios or do not present a
performance evaluation at all.

By combining all the proposed analysis techniques into one
single extensible model, all of these disadvantages are elim-
inated and a proper analysis framework is created for future
research. Firstly, after a security control has been modelled,
evaluated and implemented it can be used by all types of
analysis techniques. Secondly, when a network administrator
wants to perform different types of analysis, he has to insert
the required information and instantiate the model just ones.
Thirdly, by having just one model, new algorithms can be
evaluated by comparing them directly to each other.

To accomplish this goal, the new model should have some
distinctive features, such as well-defined input formats, a flex-
ible structure, and extendible bindings. Furthermore, the new

model may include tests-scenarios to evaluate the performance
of new algorithms.

The new model has to take as input the network topology,
and the network security policies written in different formats
and for different security controls. For example, it could
take as input the global network security policy written in
a technology-independent formal language and the complete
network structure with all its concrete configurations. The
model can then perform a policy comparison between the two
input formats and verify that the implementation follows the
desired network security policy. As a further step, network
administrators can verify reachability of critical components
or perform a conflict analysis for better understanding.

The new model has to be flexible to accommodate all
types of security controls and network topologies. In order
to support all types of computer networks, the model should
be able to compose different security controls in different
order. Security controls should be modelled so that they are
completely independent form network topology.

The new model has to be extensible for new types of
security controls. In order to be prepared for future security
controls, the model has to be able to include new ones without
significant changes to the model itself.

VI. CONCLUSION

Need for better tools to support network administrators is
evident, from the number of publications regarding this topic.
Although publications are very promising, they are only at the
beginning. The analysis of articles has shown that the research
is concentrated on quite small sub-problems and there exists
no global solution to the problem.

By combining all research approaches into one single
model, the impact grows in two dimensions: first, the number
of possible analysis types, and second, the number of supported
security controls. This leads to a model that can perform
different policy analysis and, at the same time, covers a
wider range of security controls. This approach leads to two
improvements: firstly, reduced research effort and secondly,
reduced execution time.

The research effort is mainly reduced because security
controls have to be modelled only once and afterwards they
can be used for different policy analysis. The execution time is
reduced mainly because the model is shared by various policy
analysis and its creation has to be performed only once.

ACKNOWLEDGMENT

The research described in this paper is part of the
SECURED project, co-funded by the European Commission
(FP7 grant agreement no. 611458).

REFERENCES

[1] A. Wool, “Firewall Configuration Errors Revisited,” CoRR, vol.
abs/0911.1240, 2009, pp. 103–122.

[2] W. Avishai, “Trends in Firewall Configuration Errors: Measuring the
Holes in Swiss Cheese,” IEEE Internet Computing, vol. 14, no. 4, July
2010, pp. 58–65.

15Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 24 / 66

[3] E. Al-Shaer and H. Hamed, “Firewall Policy Advisor for anomaly
discovery and rule editing,” in IFIP/IEEE 8th Int. Symposium on
Integrated Network Management, Colorado Springs, CO, March 24–
28 2003, pp. 17–30.

[4] A. Khakpour and A. Liu, “Quarnet: A tool for quantifying static network
reachability,” IEEE/ACM Trans. Netw., vol. 21, no. 2, February 2009,
pp. 551 – 565.

[5] AlgoSec Inc., “Examining the dangers of complexity in network secu-
rity environments: Algosec survey insights,” 2012.

[6] Y. Bartal, A. Mayer, K. Nissim, and A. Wool, “Firmato: A novel firewall
management toolkit,” ACM Transactions on Computer Systems, vol. 22,
no. 4, November 2004, pp. 381–420.

[7] P. Verma and A. Prakash, “FACE: A Firewall Analysis and Configu-
ration Engine,” in 2005 Symposium on Applications and the Internet,
Trento, Italy, January 31 – February 4 2005, pp. 74–81.

[8] J. Garcia-Alfaro, F. Cuppens, N. Cuppens-Boulahia, and P. Stere,
“MIRAGE: a management tool for the analysis and deployment of
network security policies,” in SETOP 2010: 3rd International Workshop,
Athens, Greece, September 23 2011, pp. 203–215.

[9] M. Casado, T. Garfinkel, and A. Akella, “SANE: A protection archi-
tecture for enterprise networks,” in USENIX-SS06: USENIX Security
Symposium, Vancouver, Canada, July 31 – August 4 2006, pp. 137–151.

[10] E. Al-Shaer and H. Hamed, “Discovery of policy anomalies in dis-
tributed firewalls,” in INFOCOM 2004, Hong Kong, Cina, March 7–11
2004, pp. 2605–2616.

[11] E. Al-Shaer, H. Hamed, R. Boutaba, and M. Hasan, “Conflict classi-
fication and analysis of distributed firewall policies,” IEEE Journal on
Selected Areas in Communications, vol. 23, no. 10, October 2005, pp.
2069–2084.

[12] N. Lehmann, R. Schwarz, and J. Keller, “FIRECROCODILE: A
Checker for Static Firewall Configurations,” in SAM06: International
Conference on Security & Management, Las Vegas, NV, June 26–29
2006, pp. 193–199.

[13] L. Yuan, H. Chen, J. Mai, and C.-n. Chuah, “FIREMAN: A Toolkit for
FIREwall Modeling and ANalysis,” in IEEE Symposium on Security
and Privacy, Berkeley/Oakland, CA, May 21–24 2006, pp. 199–213.

[14] J. Garcia-Alfaro, N. Boulahia-Cuppens, and F. Cuppens, “Complete
analysis of configuration rules to guarantee reliable network security
policies,” International Journal of Information Security, vol. 7, no. 2,
April 2007, pp. 103–122.

[15] T. Abbes, A. Bouhoula, and M. Rusinowitch, “An inference system for
detecting firewall filtering rules anomalies,” in SAC08: ACM sympo-
sium on Applied computing, Fortaleza, Brazil, March 16–20 2008, pp.
2122–2128.

[16] F. Cuppens, “Handling Stateful Firewall Anomalies,” in SEC2012:
Information Security and Privacy Conference, Heraklion, Greece, June
4–6 2012, pp. 174–186.

[17] J. Garcia-Alfaro, F. Cuppens, N. Cuppens-Boulahia, S. Martinez, and
J. Cabot, “Management of stateful firewall misconfiguration,” Comput-
ers & Security, vol. 39, no. A, November 2013, pp. 64–85.

[18] C. Basile, A. Cappadonia, and A. Lioy, “Network-Level Access Con-
trol Policy Analysis and Transformation,” IEEE/ACM Transactions on
Networking, vol. 20, no. 4, August 2012, pp. 985–998.

[19] C. Basile and A. Lioy, “Analysis of Application-Layer Filtering Policies
With Application to HTTP,” IEEE/ACM Transactions on Networking,
vol. PP, no. 99, December 2013, pp. 1–1.

[20] Z. Fu, S. F. Wu, H. Huang, K. Loh, F. Gong, I. Baldine, and
C. Xu, “IPSec/VPN Security Policy: Correctness, Conflict Detection,
and Resolution,” in International Workshop, POLICY 2001, Bristol,
UK, January 29–31 2001, pp. 39–56.

[21] E. Al-Shaer, H. Hamed, and W. Marrero, “Modeling and Verification
of IPSec and VPN Security Policies,” in 13th IEEE Int. Conference on
Network Protocols, Boston, MA, November 6–9 2005, pp. 259–278.

[22] E. Al-Shaer and H. Hamed, “Taxonomy of conflicts in network security
policies,” IEEE Communications Magazine, vol. 44, no. 3, March 2006,
pp. 134–141.

[23] Z. Li, X. Cui, and L. Chen, “Analysis And Classification of IPSec
Security Policy Conflicts,” in FCST06: Japan-China Joint Workshop
on Frontier of Computer Science and Technology, Fukushimna, Japan,
November 17–18 2006, pp. 83–88.

[24] S. Niksefat and M. Sabaei, “Efficient Algorithms for Dynamic Detection
and Resolution of IPSec/VPN Security Policy Conflicts,” in 2010 24th
IEEE International Conference on Advanced Information Networking
and Applications, Perth, WA, April 20–23 2010, pp. 737–744.

[25] A. El-Atawy, T. Samak, Z. Wali, E. Al-Shaer, F. Lin, C. Pham,
and S. Li, “An Automated Framework for Validating Firewall Policy
Enforcement,” in POLICY07 : 8th IEEE International Workshop on
Policies for Distributed Systems and Networks, Bologna, Italy, June
13–15 2007, pp. 151–160.

[26] E. Al-Shaer, A. El-Atawy, and T. Samak, “Automated pseudo-live
testing of firewall configuration enforcement,” IEEE Journal on Selected
Areas in Communications, vol. 27, no. 3, April 2009, pp. 302–314.

[27] a. Mayer, a. Wool, and E. Ziskind, “Fang: a firewall analysis engine,”
in 2000 IEEE Symposium on Security and Privacy, Berkeley, CA, May
14–17 2000, pp. 177–187.

[28] A. Wool, “Architecting the Lumeta Firewall Analyzer,” in 10th USENIX
Security Symposium, Washington, DC, August 13–17 2001, pp. 85–97.

[29] A. Mayer, A. Wool, and E. Ziskind, “Offline firewall analysis,” Inter-
national Journal of Information Security, vol. 5, no. 3, July 2006, pp.
125–144.

[30] G. Xie, D. Maltz, A. Greenberg, G. Hjalmtysson, and J. Rexford, “On
static reachability analysis of IP networks,” in INFOCOM2005: 24th
Annual Joint Conference of the IEEE Computer and Communications
Societies, Miami, FL, March 13–17 2005, pp. 2170–2183.

[31] S. Bandhakavi, S. Bhatt, C. Okita, and P. Rao, “Analyzing end-to-
end network reachability,” in IM09: IFIP/IEEE Int. Symposium on
Integrated Network Management, Long Island, NY, June 1–5 2009, pp.
585–590.

[32] M. Sveda, O. Rysavy, and G. D. Silva, “Static Analysis of Routing and
Firewall Policy Configurations,” in ICETE10: 7th International Joint
Conference, Athens, Greece, 2012, pp. 39–53.

[33] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
Static checking for networks,” in NSDI12: 9th USENIX conference on
Networked Systems Design and Implementation, San Jose, CA, April
25–27 2012, pp. 9–9.

[34] A. Liu and M. Gouda, “Diverse Firewall Design,” in Int. Conference
on Dependable Systems and Networks, Florence, Italy, June 28 – July
1 2004, pp. 595–604.

[35] A. Liu and M. Gouda, “Diverse Firewall Design,” IEEE Transactions
on Parallel and Distributed Systems, vol. 19, no. 9, September 2008,
pp. 1237–1251.

[36] Y. Yin and R. Bhuvaneswaran, “Inferring the Impact of Firewall Policy
Changes by Analyzing Spatial Relations between Packet Filters,” in
ICCT06: Int. Conference on Communication Technology, Guilin, China,
November 27–30 2006, pp. 1–6.

[37] A. Liu, “Change-impact analysis of firewall policies,” in 12th European
Symposium On Research In Computer Security, Dresden, Germany,
September 24–26 2007, pp. 155–170.

[38] A. Liu, “Firewall policy change-impact analysis,” ACM Transactions
on Internet Technology, vol. 11, no. 4, March 2012, pp. 1–24.

[39] A. Liu, “Formal Verification of Firewall Policies,” in 2008 IEEE
International Conference on Communications, Beijing, China, May 19–
23 2008, pp. 1494–1498.

[40] N. Ben Youssef, A. Bouhoula, and F. Jacquemard, “Automatic verifi-
cation of conformance of firewall configurations to security policies,”
in 2009 IEEE Symposium on Computers and Communications, Sousse,
Tunisia, July 5–8 2009, pp. 526–531.

[41] N. B. Youssef and A. Bouhoula, “Dealing with Stateful Firewall
Checking,” in DICTAP2011, Dijon, France, June 21–23 2011, pp. 493–
507.

16Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 25 / 66

Notification Support Infrastructure for
Self-Adapting Composite Services

Erlend Andreas Gjære, Per Håkon Meland and Thomas Vilarinho
SINTEF ICT, Software Engineering, Safety and Security

Trondheim, Norway
Email: {erlendandreas.gjare, per.h.meland, thomas.vilarinho}@sintef.no

Abstract—Building reliable software services based on service
components supplied by partners and third parties in potentially
complex chains of providers, is inherently challenging. In the
case of cloud-based services, providers may offer not only
software (web services) but also infrastructure (e.g., processing
and storage). Making composite services trustworthy and reliable
requires all parties to be open about changes that may impact
their customers, and they must inevitably deal with a fluctuating
threat picture. In this paper, we describe a publish/subscribe-
based notification infrastructure which allows a Service Runtime
Environment (SRE) to receive alerts about changes and threats
in service components. Notifications arise from both human and
automated monitoring, and are published to a notification broker
which handles subscriptions and message distribution. The SRE
is enabled to react to these notifications automatically through
adaptation of the service composition, based on rules that can
syntactically match the contents of received notifications. In
addition to describing the technical implementation, we show
an example of how a composite service from the Air Traffic
Management (ATM) domain can instantly adapt itself when it
receives a notification about a threatened service component. We
also demonstrate how a mobile client app is used to keep humans
aware of the notifications.

Keywords–Security notifications; self-adaptability; accountabil-
ity, composite services.

I. INTRODUCTION

With the emerging paradigm of composite services, i.e.,
software services composed of functionality provided by sev-
eral services components—changes or attacks on a service
component implies an attack or change to the composite
service as a whole. Service compositions in general are highly
distributed and have a complex nature. They expose a greater
attack surface than traditional stand-alone systems, and intro-
duce multiple layers of policies, which may not be compatible.
Web services and cloud-based software components may be
offered by third party parties and potentially in long provider
chains, and can be used in compositions along with other
services. In the age of cloud computing, the importance of
breach notifications is emphasised due to the need for trans-
parency throughout entire chains of service providers—seeking
trustworthiness through accountability [1].

To make these kinds of services reliable enough, we
need a holistic approach to how they are built in terms of
security and accountability. The entire line-up of involved
service components and providers must be considered in terms
of how situations need to be mediated and mitigated where
(unwanted) changes or threats occur [2]. Simply having control
over which relevant third parties (and fourth parties, etc.) our

provider deals with is of course a place to start. Preventive
measures in this context today are to a large extent being
based on risk assessments, contractual relationships and audits.
Reactive measures, on the other hand, include notifications
via email, phone, remote log file-streams and dashboards
for mediating significant changes and security incidents. The
contents of these are however not as predictable as needed
for triggering corrective activities automatically in composite
services. Preparing for “failure” is equally needed to prepare
a composite service for reacting this way.

To be able to respond to changes in an effective and
truly timely manner, we need notifications that are machine-
readable and syntactically clear in such a way that they can be
used to trigger automatic adaptation of a composite service.
This, however, requires a higher level of refinement than
traditional log streams provide, and either automated or human
processing of low-level input may be needed in advance to
infer (and mediate) useful correlations between several more
atomic log events. At the same time, notifications being sent
if only a change or threat is actually encountered, could allow
organisations to exchange more information without revealing
“too much”. We therefore seek a notification infrastructure
where service providers report in a convenient and standardised
way on behalf of themselves, and are equally able to receive
notifications from the others corresponding to which service
components are being used at any time.

There are strong regulatory reasons why such a notifica-
tion infrastructure needs to be realised. The European Union
implemented a breach notification law in the Directive on
Privacy and Electronic Communications (ePrivacy Directive)
in 2009 [3]. In this directive, it is stated under article 4,
paragraph 2 that “In case of a particular risk of a breach of
the security of the network, the provider of a publicly available
electronic communications service must inform the subscribers
concerning such risk and, where the risk lies outside the scope
of the measures to be taken by the service provider, of any
possible remedies, including an indication of the likely costs
involved.” Similarly, security breach notification laws have
been enacted in most U.S. states since 2002 (the only states
with no law are currently Alabama, New Mexico and South
Dakota) [4].

Our main goal with this paper is to describe a notification
infrastructure that can support automatic application of correc-
tive measures to service compositions at runtime. The approach
includes a publish-subscribe based infrastructure for message
delivery, along with a way to prepare rules at design-time for
enabling automated response at runtime. We demonstrate our

17Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 26 / 66

Figure 1: An outline of how composite services can be prepared and deployed ready for automatic adaptation, supported by an
infrastructure for security notifications.

infrastructure by allowing a composite service in our Service
Runtime Environment (SRE) to dynamically substitute one of
its components without downtime, upon receiving notification
about a threat. We also describe our accompanying mobile
client app, which receives the same notification and can show
them to a layperson, not necessarily a security expert, but for
instance someone who has some kind of responsibility for the
composite service.

Our work complements similar approaches from the past,
such as Zheng and Lyu [5], who propose a user-collaborative
failure data sharing mechanism for service-oriented systems.
What separates our work from the rest is the focus on security
violations and threats, as opposed to reliability in general.

This paper is structured as follows: Section II presents our
approach at a high level including a user scenario that describes
how to prepare for escalations, and what the output might
be. Technical details of our implementation work are provided
in Section III. Section IV discusses various technical design
choices, shortcomings and challenges, related and future work,
before Section V concludes the paper.

II. APPROACH

Figure 1 shows how our notification infrastructure can be
used to support automatic adaptation of composite services. In
this section, we illustrate the approach with a practical use case
example from the Air Traffic Management (ATM) domain: The
pilot of an aircraft uses our composite service to retrieve up-
to-date information about the airport to where the flight is
destined. The airport report is built from data pulled simul-
taneously from several web services and service providers. It
includes both geographical information, the current weather,
a few local observations related to, e.g., oil or water on the

runway, and finally, a map onto which this information is
plotted.

A. Notifications

At the core we have the notification messages, which tie ev-
erything together. These are designed in particular to facilitate
real-time communication of security and change events within
distributed systems (of systems), especially between service
providers and across geographical boundaries. We do not claim
it to be a perfect design—it is a prototype—but we do have
a version, which supports automated adaptation of composite
services based on a number of security requirements [6].

Each notification message needs to identify the resource it
concerns. Since composite services deal with web services, and
all such services each have their own public endpoint Uniform
Resource Locator (URL), we use this URL as the unique
service ID. The service ID is needed to create subscriptions
and to match received notifications with local rules in the SRE.
The notifications are further typed into a specific category,
i.e., one of those specified in Table I (first column). Some
of the notifications types have support for a few sub-types
in a hierarchy below. These sub-types may be essential to
provide an appropriate response to the received notification,
for instance where different sub-types of threats require dif-
ferent countermeasures, and commonly agreed values here
are needed. There is also a value field required for each
notification. The value is needed to specify the actual status
of the notified type (and sub-type), e.g., if a threat is on the
rise or if it has passed, which is expressed with probability
as a float value between 0 and 1. The value can also be a
simple string, or even a Javascript Object Notation (JSON) [7]
object (a human-readable format for transmitting data). Self-
adaptation may be based on the value, so there is a need to

18Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 27 / 66

TABLE I: NOTIFICATION TYPES AND CONTENT SPEC-
IFICATION

ThreatLevelChange Supports several sub-types of threat families, e.g.,
DDoS attack, Service injection, Vulnerable crypto
library, Trust poisoning, etc. Value specifies the
probability of a threat being encountered (between
0 and 1). Also possible to specify a threat ID from
a common threat repository for linking to a very
specific threat (and more info on-line).

SecurityPropertyChange Supports sub-types with various security proper-
ties to detail how a service is implemented in
terms of security, e.g., Encryption, Backup cycle,
etc. Implementation details are to be provided in
the value field, such as length of backup cycle.

ContextChange Supports sub-types describing the context of the
service, e.g., Server site location, Backup location,
etc. In these particular cases, a location name (e.g.,
country) would go into the value field.

ContractViolation Supports sub-types for violated properties in cases
where a violation is detected during service con-
tract matching with consumer policy, e.g., Sepa-
ration of duty, Binding of duty, etc.

ServiceChange Intended for composite services to provide an up-
date if a recomposition has been made and hence
a service component has been substituted. Sub-
types such as Component added and Component
removed can be used, or even Service not provided
if a service is taken (temporarily) down due to a
vulnerable component that could not be replaced.

TrustLevelChange Specifies a level of trustworthiness (between 0
and 1). The values need to be published by an
authoritative source for trust ratings (not self-
declared).

standardise a format to use for each individual notification type
(and sub-type) here.

B. Composite Service Design and Response Preparation

To create composite services we use the Business Process
Model and Notation (BPMN) [8] and a modified graphical tool
[6] to model the service specification as a process consisting of
BPMN service tasks. In our example shown in Figure 2, visible
as boundary error intermediate events [9], we have modelled
a threat DDoS-attack occurs on service component due to
the importance of high availability. The Distributed Denial of
Service (DDoS) threat can in this case be both monitored and
dealt with quite easily, so we want to be notified whenever an
attack occurs. Instead of just allowing the attacked component
to bring down our entire composition, we need to prepare
the composite service to switch automatically to another map
component not under attack.

Figure 2: A composite service process is modelled in BPMN,
with triggering events for notification on changes and threats.

Based on the triggering events modelled in the composite
service definition, rules can be defined in the model to address
the scenarios we are able to foresee. It is the service tasks,

not the actual web service components, which are targeted in
the scope of these rules. This makes the rules independent of
the actual service component implementations we choose to
deploy, and we do not need to define individual rule-sets for
each potential composition plan.

For each rule, one must define the same properties as a
notification would be expected to carry to get a match. This
includes setting the notification type, sub-type and/or a value
with some comparison of either equal to (also used for string
comparison), larger than (or equal) and smaller than (or equal).
In the scope section of the rule editor, it is further possible to
define where in the process the rule shall apply. If a particular
threat or change occurs for a component, we might not need
to perform reactive measures unless it happens before, after or
during the execution of a particular task in our process. We
also have an option to launch an additional service process,
e.g., one that might initiate hardening of other parts of the
system, and/or send notification messages to clients and/or
service technicians. In the end, we might end up with a list of
several rules for several service tasks, or simply one for the
one we have defined in our case study, as shown in Figure 3.
Recent work by Salnitri et al. [10] goes into more details on
rule definition and execution.

To perform a recomposition in our use case, we need
an alternative service specification ready where another func-
tionally equal service component is used to realise the map
plotting task. We define one composition plan where the report
generation is done based on the map service from Google, and
we define another where the same responsibility is served by
Bing. One of these plans will be then deployed as default.
When there is a threat notification and the other composition
plan is not affected by it, then this plan is considered more
appropriate and can be deployed immediately in place of the
attacked one. It is, however, not always the case that we have
two candidate components for the same service task. One
might also set the rule to simply stop providing the entire
composite service, e.g., if a non-replaceable component has
changed its policy and becomes no longer compliant.

C. Filtered Input From Sensors and Community

In order to generate notifications in the first place, there
must obviously be some kind of monitoring in place for
service components. In the case of cyber-threats, some service
providers have dedicated security operations to monitor and
process low-level input from e.g., syslog. Security Informa-
tion and Event Management (SIEM) systems are used to
gather and correlate security events from multiple logging
sources both in real time and aggregated from previous events,
and are sometimes purchased as a service from third party
providers. This, however, does not normally involve logs from
other organisations, except when changes are already publicly
disclosed. Some monitoring efforts are also performed on a
national level or sometimes by joint efforts across, e.g., an
entire business sector, such as the Norwegian financial sector
cybercrime unit [11]. Such intelligence could be a valuable
source of input for an even wider community in the global
service market. Apart from trustworthiness ratings, which need
to come from an independent source, it should at least be
possible to publish alerts for services provided by oneself.

19Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 28 / 66

Figure 3: A rule has been defined for responding to a DDoS-attack on the map service.

Figure 4: The SRE has replaced the Google map service with
Bing Maps through a recomposition.

In the security community, there are also people who
for instance create scanner bots, which are used to check
the Internet for particular vulnerabilities, such as in the case
of the Heartbleed bug [12]. A threat “Vulnerable crypto
library” could then be warned against with the notification
infrastructure, both when it is publicly disclosed and detected
on a particular server, as well as immediately when the server
has been patched (with a 0 value). In the particular case
of Heartbleed, it would also be possible to add a threat ID
referring to, e.g., the Common Vulnerability and Exposures
(CVE) database [13] (in this case CVE-2014-0160), which
would provide a pointer to more specific information. Assur-
ance from the security community would however be necessary
to validate the notifications, or else it would be easy to inject
malicious notifications and cause severe business disruption
for service providers who are shut out.

Regardless of input source, notifications are collected
through the common web service interface provided for pub-
lishers. For SIEM or Security-as-a-Service (SaaS) products, it
is easy to add support for invoking this notification service
by an operator. We have implemented a web interface to
be available for manual reporting, and have integrated other
independent monitoring platforms, such as a threat monitoring
module [14], which is able to infer the required level of
semantics and trigger appropriate notifications. As long as the
format can match what the SRE is able to interpret from the
notifications, the rules are in practice agnostic to monitoring
implementations.

D. Notification Receivers

In order to trigger events in the self-configuring service
process, the SRE must be able to receive such notifications
and align these with the previously defined and deployed rules.
Since a threat monitor has now purportedly detected that the
original map service used in our case study is hit by a DDoS-
attack, the SRE is notified about this through subscriptions
based on the deployed service composition. As it can find a
match with the rule we previously defined on DDoS-attacks,
the SRE initiates the specified action according to that rule,
which is here to try a recomposition.

Since we had support for two different map services
providing the same functionality, we have in practice prepared
an additional composition plan for the airport report composite
service. When the notification concerning a DDoS-attack on
the map service is triggered and received by the SRE, a
service verification mechanism [15] can tell us that the first
plan no longer satisfies our security requirements. The rule
in Figure 3 will initiate a recomposition accordingly. The
original composition plan with the DDoS-ed map service will
be ignored, and the second plan becomes the top-ranked. The
recomposition proceeds with deploying the second composi-
tion plan, containing the alternative map service instead of the
original one. Nevertheless, the same level of functionality is
provided, as illustrated with Figure 4 where the airport reports,
before (to the left) and after recomposition, are lined up next
to each other.

While monitoring and responding to changes and threats
in real time is our main goal, we also need to store the
notifications for future reference. A common repository for
historical security and service change notifications is valuable
for doing research on previous events. There are of course
questions to answer in this respect, e.g., how the repository
should be managed and to what level of explicitness historical
data should be made accessible over time. A repository could
provide insights on questions like, e.g., cascading events be-
tween service providers, temporal aspects of incident/response,
etc. Issues that must be dealt with in this context, as well as for
the industry as a whole, is about the fear of negative publicity,
customer repercussions and lost revenue caused by being “too”
open. Instead of being seen as accountable, some may see
service providers that do their job on reporting incidents as
having inferior security.

20Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 29 / 66

TABLE II: MESSAGING PATTERNS APPLIED IN OUR
IMPLEMENTATION

Event message Notification messages are used to transmit events
from one service to another. These notifications
are reliable and asynchronous.

Publish-Subscribe Channel The provider of the notification sends the event
on a publish-subscribe channel, which delivers a
copy of a particular event to each receiver. The
receivers must have expressed an interest in such
event on beforehand.

Data-Type Channel The different notification types enables the re-
ceivers to easily interpret the incoming events.

Guaranteed Delivery The notification infrastructure uses a store and
forward mechanism to ensure message durability.

Message Bus Independent systems and services of various types
are able to communicate in a loosely coupled
fashion through the use of the message bus pattern.

Event-Driven Consumer The receving parties automatically consume mes-
sages as they become available.

III. IMPLEMENTATION DETAILS

To operate a self-adapting distributed service infrastruc-
ture at runtime, a supporting system for Machine-to-Machine
(M2M) messaging across networks was needed. Since there
may be an endless number of services and SREs utilising this
infrastructure, we cannot provide all messages to everyone.
A publish-subscribe channel pattern was found suitable for
this, since each service provider already needs to define which
service components are to be used in a service composi-
tion. Appropriate subscriptions can be derived automatically
from these service specifications. Registering the subscriptions
should be handled by the SRE, which will then receive
notifications only about threats for relevant services.

In addition to publish-subscribe, we have designed the
notification infrastructure according to a number of messaging
patterns in service-oriented architectures. Table II gives an
overview of these, based on Chatterjee [16].

A. Notification Message Broker

The entire infrastructure relies on the delivery of noti-
fications to subscribers. In a publish-subscribe architecture,
this is the responsibility of the message broker. In addition
to dispatching the messages and providing an endpoint for
subscriptions, the broker will receive notifications to publish
from authorised publishers.

Our implementation builds on Apache ActiveMQ [17] in
this role, utilising the de-facto standard Java Message Service
(JMS) [18] specification to provide compatibility with many
platforms and messaging protocols. A broad variety of wire
level protocols are supported, meaning that brokers can be
connected to clients built with any programming language or
platform with a compatibility for just one of these protocols.
The performance of ActiveMQ brokers can be scaled up
horizontally by configuring several instances in a network of
brokers, if needed. Our broker is in addition deployed on a
cloud-based infrastructure, for further increase in scalability.

The notifications are organized in a hierarchy of JMS topics
and sub-topics, in practice building a single subscription string.
The first part of the subscription string contains the service ID.
Then, below that topic there are different sub-topics mapping
to the different security notification types, each part of the

subscription string separated with a dot ’.’. With this hierarchy,
one could decide to subscribe to all notifications from a service
or particular types or sub-types within that service. If no type
or sub-type is specified, the wild-card ’>’ will match all topics
from that character and onwards in the subscription string.
In this way, topics for each of the notification types can be
created dynamically, without needing to explicitly subscribe to
all of them individually, and without risking topics that no-one
subscribes to. Hence, new sub-topics can be added and those
subscribing to the main topic will start receiving notifications
from the new sub-topic as well.

In addition, the entire hierarchy has common root nodes
where one can set the access control level for all notifi-
cations below them. With that in mind, we created an en-
tirely public channel (“pub”) that anyone can subscribe to
anonymously, but not publish through. For publishing noti-
fications, the publishing client needs to authenticate to the
broker. Apache ActiveMQ authentication/authorization con-
figuration capabilities offer the possibility of implementing
authentication able to access/subscribe to notifications from
another channel, e.g., a service level that for instance would
require formal contracts to be established between partici-
pating parties in advance. An ActiveMQ JMS topic corre-
sponding to a service notification will finally have the for-
mat pub.[serviceName].[notificationType].[subType]. So, for
example, the topic pub.http://demo-aniketoswp6.rhcloud.com/
googlemap/service.ThreatLevelChange.DDoS attack on ser-
vice component would map into:

• Channel: Public

• Service ID: http://demo-aniketoswp6.rhcloud.com/
googlemap/service

• Notification Type: ThreatLevelChange

• Sub-Type: DDoS attack occurs on service component

In our implementation, we have granted subscription and
notification retrieval access to all clients (anonymous access),
and publish access only to authorized users. However, this
set-up could be configured differently on the broker, allowing
specific settings per topic or subtopic. For the authentication
regarding the authorized access, we have used a simple XML
configuration file, mainly because it was just a prototype
implementation. In a real deployment, one could have relied on
ActiveMQ support for Java Authentication and Authorization
Service (JAAS) [19] or LDAP. When it comes to encryption
of the messages, we have been using Transport Layer Security
(TLS) encryption towards both publishers and subscribers.
However, due to a limitation of the Android mobile client
library used for the wire protocol, we had to support messaging
in clear text towards the mobile client app.

B. Service Runtime Environment

The SRE is responsible for executing the composite service
at runtime. We have implemented ours using the Activiti En-
gine [20], which can take BPMN composition plans as input,
as they have been built with our graphical modelling tool. In
the runtime engine, all BPMN is converted to executable code,
based on the standard and without further manual work.

For the SRE, we have a plug-in [6] that is able to
connect to the notification broker and create subscriptions

21Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 30 / 66

based on the rules attached to a service deployment. Whenever
a composition plan is deployed, it includes all service IDs
needed to create the subscriptions. For each service ID in
the composition, there is a corresponding JMS topic being an
individual channel of notifications, which a client can subscribe
to. Accordingly, when subscribing to notifications for several
services, there must be registered individual subscriptions
for each of these services. The granularity of the rules will
determine the relevance in cases of, e.g., slight variations in
threat levels (not all changes will actually trigger an action).

The plug-in is a Java client implementation using the
ActiveMQ library to connect to the broker. When subscriptions
are made, the plug-in starts to listen for incoming notifications
according to the made subscriptions. When a notification
arrives, it compares it with all active rules for a potential
match. The rules are simple XML-representations of what
was described at design-time, having elements for each of
the notification properties to match, as well as an element
controlling scope and one controlling action(s) to perform.

Figure 5: Screenshot of the Android client app for receiving
notifications on-the-go.

C. Android Client App

The client app is perhaps not a critical part of the infras-
tructure, but might indeed be a useful one. While we have
a reference implementation available for a regular Java-based

subscription client—and any client can subscribe to the topics
using any one of the protocols supported by the ActiveMQ
broker—this does not fit very well with the usage scenario of
receiving updates at any time. A mobile client app, on the other
hand, can always be brought along by the person(s) responsible
for monitoring a service, listening silently in the background
and then notifying when something happens.

A working implementation of our client app for the An-
droid mobile operating system has been made. Its functionality
is currently rather simple, just enabling users to subscribe
(and unsubscribe) to services, and show a feed of the updates.
The app does not support choosing the exact type or sub-
type of notification of each service to subscribe to, but this
is a limitation set to simplify the graphical user interface. The
notification feed is a vertical time-line where new notifications
are placed on top, much like in social media. Notifications are
filtered on either service alone (by tapping from the unfiltered
list, which is seen in Figure 5) or both service and notification
type together (by tapping from the service filtered list). The
app allows the broker address to be customised.

In terms of connecting to and communicating with the
ActiveMQ broker, our app utilises the binary MQ Telemetry
Transport (MQTT) protocol [21]. MQTT is designed with a
simple API, a fixed header of just 2 bytes length and a light
keep-alive mechanism. MQTT is with its very small overhead
especially suitable for small-footprint devices, as witnessed
by its use in Facebook’s mobile messenger application [22].
MQTT has support for publish-subscribe, and its community
develops client libraries for several platforms. When our
notification app was implemented, the most popular MQTT
client library was the Java-based MQTT-Client library from
Fusesource [23]. This library does however not support TLS,
but since integration worked out-of-the box, we decided to
use it for our initial implementation. The MQTT connection
is handled by a service, which maintains the connection even
if the app is not running in the foreground.

The app creates subscription strings for topics in the broker
based on service ID, and receives notifications as soon as they
are published. The performance can however depend on the
available data connection speed, as the case always is for
mobile devices. If the mobile client has been offline, any noti-
fications that have been published during this time-frame will
be received immediately upon re-connection. This is achieved
with durable subscriptions (using a customisable time-out).
The notifications are delivered according to the quality of
service specified when either establishing the connection or
publishing the message, depending on the protocol used. In
order to identify anonymous subscribers between sessions, the
app identifies itself with the unique device ID provided by the
operating system, each time it connects to the broker.

IV. DISCUSSION

The challenges of the notification infrastructure presented
in this paper are very much similar to the ones ENISA [24]
has identified for the European Union (EU) with data breach
notification requirements for the electronic communications
sector, in the ePrivacy Directive [3]. The bullets below explain
our view on how these are or should be handled:

22Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 31 / 66

• Risk prioritisation: The seriousness of a breach should
determine the level of response, and breaches should
be categorised according to specific risk levels. With
our solution, the first prioritisation is done by the
receiver when he determines which notifications he
wants to subscribe to—as is the nature of a publish-
subscribe architecture. Secondly, there are dedicated
notifications for changes in threat level, and the re-
ceiver can specify threshold values for when corrective
actions should be applied. If the receiver has missed
out on subscribing to certain threats these notifications
will never be received. This is a weakness in cases
where entirely new threats appear.

• Communication channels: Operators want assurances
that notification requirements will not negatively im-
pact their brands. Here, the objectives should be
to prevent tampering of messages and ensure that
false breach reports are not submitted. The current
implementation of our notification infrastructure have
several weaknesses, e.g., there is only a weak authen-
tication scheme for the notification source, and noti-
fications are not signed. However, the authentication
scheme could be improved by configuring LDAP or
JAAS on the ActiveMQ broker, and the encryption
of the messages exchanged with the mobile client
could be achieved by using a MQTT client library
with TLS support, e.g., IBM’s MQTT SDK [25].
A comprehensive list of requirements for a secure
logging infrastructure has further been described by
the Common Event Expression (CEE) project [26],
which should be taken into account in future work.

• Resources: Budgetary allocations for regulatory au-
thorities should reflect new regulatory responsibilities.
The notification infrastructure itself is cloud deploy-
able and can be scaled up and down according to
needs. The cost of brokering notifications is very low.
If the reporting from service providers is handled
automatically by sensors, this cost is negligible as
well, while involving manual human labour increases
cost. These costs could in turn be reduced with par-
ticipation from Computer Security Incident Response
Teams (CIRTs), collaborating across sectors or even
across borders, such as within the EU.

• Enforcement: Data controllers will be less incentivised
to comply with regulations if regulatory authorities do
not have sufficient sanctioning powers. In addition to
regulatory authorities, sending out breach notifications
should be motivated by contractual terms between
the service provider and consumer, audits from an
independent third party, as well as a genuine desire
to achieve trust by being open. A late disclosure of
incidents will in many cases damage the reputation of
a service provider more than the incident itself.

• Undue delay in reporting: Regulatory authorities want
to see a short deadline for reporting breaches to
authorities and data subjects [..] Service providers,
however, want their resources to be focused on identi-
fying if the problem is serious and solving the problem,
instead of spending time reporting details, often pre-
maturely, to regulatory authorities. Our notifications

are primarily short messages that can be distributed
rapidly. Due to the nature of publish-subscribe, mes-
sages will be delivered as soon as they are published
and the subscriber is online. Such messages takes
little time and effort to create, especially if done
automatically. Therefore, delays are not considered a
major obstacle. Within the EU, telecommunications
operators and ISP providers must inform national
authorities within 24 hours after breach detection with
at least an initial set of information, with more details
to follow within three days [27].

• Content of notifications: Operators want to make
sure that the content of the notifications does not
impact negatively on customer relations. Regulatory
authorities, however, want to see that the notifications
provide the necessary information and guidance in
line with the rights of the data subjects. As stated
above, our messages as short, early warnings that do
not contain much information by themselves. More
detailed content can be sent out at later stage through
other means. Since we can send notifications wrapped
entirely as JSON objects, we are also able to extend
the value of the notification messages as a JSON ob-
ject with additional properties to enable customisation
as needed. A potential threat to all notification systems
is related to fake notification and manipulation of
reputation based systems. We refer to one of our
previously published paper for a deeper discussion on
this [28].

A few related efforts have been made on standardising
security event message content and formats, but we are un-
aware of efforts with the purpose of supporting automated
service composition. While our work started in the experi-
mental end with self-adaptable service compositions in mind,
standardisation is needed at some point. There will definitively
be potential to learn from similar initiatives, however at the
time of writing there seems to be little activity in the area.
The already mentioned CEE project [26] was for instance
initiated to standardise event descriptions to support auditing
and users’ ability to comprehend event log and audit data.
CEE defines both delivery methods and filtering, as well
as an event structure—although in a flat manner. CEE is
extensible in a way that can redefine any part of the taxonomy,
although that might not be a good thing for a publish-subscribe
infrastructure. The project has however been shut down due to
a lack of financial support. The Distributed Audit Services
(XDAS) specification [29] was similarly created to support
the principle of accountability and detection of security policy
violations in distributed systems. XDAS defines a taxonomy
of events categories (layers) comprising varying levels of
semantics and context, but is very focussed on recording events
for correlating audit trails. The specification is hence largely
targeted at auditing and compliance, and has not become a
formally approved standard. Work on XDAS v2 appears to
have been initiated in recent years, but without publishing any
significant progress.

Having a notification infrastructure by itself is obviously
of little value if there are neither agents creating notifica-
tions nor anyone receiving them. Together with academia and
industry (18 partners in total), we have evaluated the API,

23Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 32 / 66

integration and performance with others tools for monitoring
and adaptation service-oriented systems. Results from this
evaluation shows high levels of satisfaction for installation,
documentation, integration and stability [30]. Our focus for
future work evolves around integration with new tools and
securing the infrastructure itself.

V. CONCLUSION

We have demonstrated a distributed notification infrastruc-
ture that facilitates runtime management and adaptation of
service compositions. Though a service component may be
regarded as reliable and secure enough when the composite
service is designed, its security and privacy properties and
attributes for quality of service can change during its life-time.
In addition, risks are not static, and threats and vulnerabilities
in service components can impact the overall security level of
a composite service. Due to regulatory pressure and a need for
trustworthiness through accountability in service composition
chains, we believe that the concept of a common notification
infrastructure is needed. Further work is however needed in
terms of securing the infrastructure, research is needed on how
it could be managed in practice, and standardisation work is
needed to agree on notification content descriptions.

ACKNOWLEDGEMENT

The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grants no 257930 (Aniketos), 317631
(OPTET) and 371550 (A4Cloud). The authors are not affiliated
with any of the service providers referenced in the use case,
and the events described are purely hypothetical.

REFERENCES

[1] S. Pearson et al., “Accountability for cloud and other future Internet
services,” 4th IEEE International Conference on Cloud Computing
Technology and Science Proceedings, Dec 2012, pp. 629–632.

[2] E. A. Gjære and P. H. Meland, “Threats management throughout the
software service life-cycle,” EPTCS, vol. 148, 2014, p. 114.

[3] European Commission, “Directive on privacy and electronic communi-
cations,” Tech. Rep., 2002.

[4] National Conference of State Legislatures. Security
breach notification laws. [Online]. Available: http://www.
ncsl.org/research/telecommunications-and-information-technology/
security-breach-notification-laws.aspx [retrieved: September, 2014]

[5] Z. Zheng and M. R. Lyu, “Collaborative reliability prediction of
service-oriented systems,” in Proceedings of the 32Nd ACM/IEEE
International Conference on Software Engineering - Volume 1, ser.
ICSE ’10. New York, NY, USA: ACM, 2010, pp. 35–44. [Online].
Available: http://doi.acm.org/10.1145/1806799.1806809

[6] Aniketos project. AniketosEU on GitHub. [Online]. Available:
https://github.com/AniketosEU [retrieved: September, 2014]

[7] ECMA International, ECMA-404 The JSON Data Interchange Standard,
Std., October 2013.

[8] Object Management Group, Business Process Model and Notation
(BPMN) Version 2.0, Std., January 2011.

[9] P. H. Meland and E. A. Gjære, “Threat Representation Methods for
Composite Service Process Models,” International Journal of Secure
Software Engineering, vol. 4, no. 2, 2013, pp. 1–18.

[10] M. Salnitri, E. Paja, and P. Giorgini, “Preserving compliance with
security requirements in socio-technical systems,” in Proceeding of
Cyber Security and Privacy (CSP) forum 2014, 2014.

[11] FinansCERT. Norwegian financial sector cybercrime unit. [Online].
Available: http://www.finanscert.no/engelsk.html [retrieved: September,
2014]

[12] Riku, Antti, Matti and Neel Mehta. Heartbleed bug. [Online]. Available:
http://heartbleed.com/ [retrieved: September, 2014]

[13] MITRE Corporation. Common vulnerabilities and exposures
(cve) database. [Online]. Available: http://cve.mitre.com/ [retrieved:
September, 2014]

[14] Aniketos project, “Deliverable D4.3 Algorithms for responding to
changes and threats,” Tech. Rep., August 2013.

[15] B. Zhou et al., “Secure service composition adaptation based on
simulated annealing,” in 6th Layered Assurance Workshop, 2012, p. 49.

[16] S. Chatterjee. Messaging Patterns in Service-Oriented Architecture,
Part 1. [Online]. Available: http://msdn.microsoft.com/en-us/library/
aa480027.aspx [retrieved: September, 2014]

[17] The Apache Software Foundation. Apache ActiveMQ website. [Online].
Available: http://activemq.apache.org/ [retrieved: December, 2014]

[18] Oracle, Java Message Service Specification, Std., November 1999.
[19] Oracle. Java Authentication and Authorization Service (JAAS)

Reference Guide. [Online]. Available: http://docs.oracle.com/javase/
8/docs/technotes/guides/security/jaas/JAASRefGuide.html [retrieved:
September, 2014]

[20] Activiti. Activiti bpm platform website. [Online]. Available: http:
//www.activiti.org/ [retrieved: September, 2014]

[21] IBM and Eurotech, MQTT V3.1 Protocol Specification, Std.,
July 2014. [Online]. Available: http://public.dhe.ibm.com/software/dw/
webservices/ws-mqtt/mqtt-v3r1.html

[22] L. Zhang. Building Facebook Messenger. [Online].
Available: https://www.facebook.com/notes/facebook-engineering/
building-facebook-messenger/10150259350998920 [retrieved: Septem-
ber, 2014]

[23] Fusesource. MQTT-Client An Open Source Java MQTT v3.1
Client. [Online]. Available: http://mqtt-client.fusesource.org/index.html
[retrieved: September, 2014]

[24] S. Górniak et al., “Data breach notifications in the eu,” ENISA, Tech.
Rep., 2011.

[25] IBM Corporation. Getting started with the MQTT client for Java
on Android. [Online]. Available: http://www-01.ibm.com/support/
knowledgecenter/SS9D84 1.0.0/com.ibm.mm.tc.doc/tc10130 .htm [re-
trieved: September, 2014]

[26] MITRE Corporation, “CEE Log Transport (CLT) Specification,”
Tech. Rep., 2012. [Online]. Available: https://cee.mitre.org/language/1.
0-beta1/clt.html

[27] European Commission. Digital Agenda: New specific rules for
consumers when telecoms personal data is lost or stolen in EU.
[Online]. Available: http://europa.eu/rapid/press-release IP-13-591 en.
htm [retrieved: September, 2014]

[28] P. H. Meland, “Service injection: A threat to self-managed complex
systems,” in Dependable, Autonomic and Secure Computing (DASC),
2011 IEEE Ninth International Conference on, Dec 2011, pp. 1–6.

[29] The Open Group, Distributed Audit Services (XDAS), Std., January
1997.

[30] Aniketos project, “Deliverable D7.3 Results of the final validation and
evaluation of the ANIKETOS platform,” Tech. Rep., May 2014.

24Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 33 / 66

A Policy-based Middleware for Self-Adaptive Distributed Systems

Jingtao Sun and Ichiro Satoh

Department of Informatics. School of Multidisciplinary Science
The Graduate University for Advanced Studies

National Institute of Informatics
Tokyo, Japan

Email: {sun, ichiro}@nii.ac.jp

Abstract—This paper presents a novel approach to dynamically
adapting distributed applications to changes in environmental
conditions. e.g., available network resources and users require-
ments. The key idea behind the approach is to introduce the
relocation of software components to define functions between
computers, as a basic mechanism for dynamic adaptation on
distributed systems. It also introduces application-specific built-
in policies for relocating software components to define high-
level adaptation by human-readable declarative policy scripts. It
is constructed as a middleware system for Java-based general-
purposed software components. This paper describes the design
and implementation of the approach with several applications,
e.g., remote information retrieval and distributed media service.

Keywords–software component; policy-based; self-adaptive;
middleware; Distributed System; architecture-level.

I. INTRODUCTION

Distributed systems are essentially dynamic in the sense
that computers and applications may be dynamically added
to or removed from them or networks between computers
may be disconnected or reconnected, dynamically. Therefore,
the running of software components of which an application
consists, should be depended by nature, so that the systems
can adapt to various changes at component runtime systems.
On the other hand, the running of software components on
a distributed system should be adapted to and reuse them on
different distributed systems.

Distributed applications are executed for multiple-purposes
and multiple users whose requirements may change in various
cases. However, on a variety of distributed systems, their struc-
ture may also changes. Adaptation must support the variety
and change in the underlying systems and the requirements of
applications should be separated from business logic. There-
fore, we distinguish adaptation concerns and business logic
concerns by using the principle of separation of concerns so
that developers for applications can concentrate their business
logic rather than adaptation as mush as possible. A solution to
this is to introduce concern-specific languages for separating
adaptive concerns from business logic concerns. There have
been several attempts [3][7] to support the separation of con-
cerns on non-distributed systems, but adaptation mechanisms
in distributed systems tend to be complicated, so that it is
difficult to define primitive adaptation.

This paper addresses the separation of adaptation concerns
from application-specific logic concerns in distributed systems.
We assumed that a distributed application would consist of one
or more software components, which might run on different
computers through networks. Our proposed approach has two

key points. The first is to introduce policies for relocating soft-
ware components as a basic adaptation mechanism. The second
is to provide nature-inspired relocation policies for application-
specific adaptations. When the changes have occurred, e.g., in
the requirements of applications and the structures of system,
its software components would automatically be relocated to
different computers according to their policies to adapt to
changes. We are constructing a middleware system for building
and operating self-adaptive distributed systems.

The proposed approach is based on adaptive deployment
of software components, but is different from other existing
works [2][6][7], the functions of which are inside software
component. If this components are adapted, other component
may have serious problems. For example, they can not com-
munication with the adapted ones. On the other hand, the relo-
cation of software components do not lose potential functions
of components. This problem may seem to be simple, but it
makes their applications resilient without losing availability,
dependability, and reliability. In fact, our approach can provide
adaptation between general-proposed approaches in distributed
systems.

This paper focuses on the middleware we have developed to
simplify the design and deployment of policy-based runtime
system in real applications. Section 2 describes the require-
ments of distributed systems and gives readers the key idea
behind the proposed approach. Section 3 gives an overview of
how to design the policy-based middleware and what kind of
adaptations are driven by declarative policy scripts. Following
this, Section 4 describes how we implemented such runtime
system support software components. Section 5 describes
several applications of this middleware to demonstrate its
strengths. Section 6 describes related work, with conclusions
and planned future work described in Section 7.

II. APPROACH

In distributed systems, the requirements of applications
or users and the environments of distributed systems often
change, so they have to adapt to these changes inside of
themselves. But in real environments, applications should not
be necessary to recompile one more again in order to adapt to
use a different network architecture or layout. This is because
most of existing adaptation technology needs a large amount
of resources to adapt the requirements of the applications or
adaptation is limited or adaptive contents cannot be predicted.
Therefore, we decided to propose a novel approach to re-
locate the running software components form one computer
to another one, to adapt to changes for distributed systems,

25Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 34 / 66

e.g., adapting to distributed systems, networks architectures or
available resources.

A. Requirements
Most existing distributed systems have been statically

constructed based on several types of system architectures,
e.g., client-server, peer-to-peer and master-slave according to
their original requirements. However, with the development
of in-depth in distributed systems, some of the requirements
may be changed, wherefore the distributed systems need to
dynamically adapting themselves. For example, computers and
networks may have failures or some new computers may be
added to or removed from the networks, or the requirements
of applications, which may be running on different computers.
Therefore, distributed systems need some abilities to adapt
to such changes. Furthermore, to support drastic changes in
system structures, distributed system architectures themselves
require to change.

In this section, we describe the requirements of our policy-
based middleware as follows:
• Self-adaptation: Distributed systems essentially lack

no global view due to communication latency between
computers. Software components, which may be run-
ning on different computers, need to coordinate them
to support their applications with partial knowledge.

• Separation of concerns: software components of which
an application consist should be defined independently
in our adaptation mechanism. On the other hand, these
software components will deploy themselves to desti-
nation computers, according to the predefined policies
or user-defined policies, which can be developed by
system operators or be automatically executed by
themselves.

• General-purpose: Various of applications are run-
ning on distributed systems. Therefore, our adaptation
mechanism should be implemented as a practical
middleware to support general-purpose applications.

• Reduce Input/Output cost: The costs of Input/Output
handling are huge in distributed systems, e.g., when
users send reading requests to front-ends servers, they
have to find out the requested files in the first, and then
reading the content of the files line by line, until the
ends of files. For this reason, the cost of Input/Output
requires to be reduced.

• Dependability: In order to improve the dependability
of distributed systems, middleware systems do not
require to support a centralized management for soft-
ware components and make sure that data keep their
consistency.

Computers on distributed systems may have limited re-
sources, e.g., processing, storage resources, and network ar-
chitectures. Therefore, our approach should be available with
such limited resources, whereas many existing adaptation
approaches explicitly or implicitly assume that their targets
of distributed systems have enriched resources.

B. Adaptation
Our approach separates software components from their

policies for adaptation. This is because the user-defined poli-
cies can be reused to reduce the cost of compiling themselves
once more.

1) Deployable software components: Generally, an appli-
cation consists of one or more software components, which
may be running on different computers. Therefore, in our
approach, these components can be deployed at other com-
puters, according to its deployment policies. It is defined as a
collection of Java objects in the current implementation. It also
has an interface, which called references. By executing them,
soft components can migrate to destination computers, and
then communicate with the destination components through
dynamic methods invocation.

2) Deployment policy for adaptation: Each component can
have one or more policies, where each policy is basically
defined as a pair of information on where and when the
component is deployed. Before explaining deployment policies
in the proposed approach, we have to discuss policy scripts for
adaptation on distributed systems. We describe these concepts
as follows:

• This approach does not support any adaptation in-
side software components. Because software com-
ponents should be general-purposed and adaptation-
independendent.

• Each component has one or more policies, where
policy specifies the relocation of their components and
instructs them to migrate to destination computers,
according to specified conditions.

• Each policy specifies as a pair of a condition part and
at most one destination part. The former is written
in a first-order predicate logic-like notation, where
predicates reflect information about the system and
application. The latter refers to another component
instead of itself. This is because such policies should
be abstracted away from the underlying systems.

C. Destination of policies
Under the user-defined destination of policies, as Figure

1 shows, software components can be dynamically deployed
at destination computers and the destinations of policies can
be easily changed for reuse by other distributed systems. The
policies are described as follows:

!""#$%"&'()*'+&%,
!"#$%

!"#$&

!"#$"%&%'!

"

!"($)*'%&*

!"#$"%&%'

!"($)*'%&*

!"#$"%&%'

!"#$"%&%'!

"

-.#/$0&(1)*'+&%,!"#$%

!"#$&

+&,'-%)'-"%

."#$"%&%'

!"#$"%&%'!

"

!"#$"%&%'!

"

!"$/0"1

!"#$"%&%'!

"

+&,'-%)'-"%

."#$"%&%'

2/.3+4&'().'+&%, 56$.'#$"&'()*'+&%,
!"#$% !"#$%

!"#$& !"#$&

!"#$"%&%')
!7!

!"#$"%&%'!

"

!"#$"%&%'!

"

!"#$"%&%'!

"

!"#$"%&%'!

"

+&,'-%)'-"%

."#$"%&%'

+&,'-%)'-"%

."#$"%&%'

!"#$"%&%'!

"

!"#$"%&%'!

"

Figure 1. Destination of policies.

• Attraction: Frequent communication between two
components yields stronger force. The both or one of
the components are dynamically deployed at comput-
ers that other computers are located at.

26Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 35 / 66

• Spreading: Copies of software components are dy-
namically deployed at neighboring and propagated
from one computer to another over a distributed sys-
tem. This policy progressively spreads components for
defining functions over the system and dynamically
adds to the lack of the functions.

• Repulsion: Computers are deployed at computers in
a decentralized manner to avoid collisions among
them. This policy migrates software components from
regions with high concentrations of components to low
concentrations.

• Evaporation: Excess of components results in over-
loads. The same or compatible functions must be dis-
tributively processed to reduce the amount of load and
information. The policy consists in locally applying
to synthesize multiple components or periodically to
reduce the relevance of functions.

This approach assumes that an application consists of one
or more software components, which provide their own func-
tions and may be running on different computers. It introduces
the adaptive deployment of software components but not of
adaptive functions inside software components. If functions
inside software components are adapted, other components,
which communicate with the adapted ones, may have serious
problems. However, the relocation of software components
does not lose the potential functions of components. This may
seem to be simple but it makes their applications resilient
without losing availability, dependability, or reliability. It can
also separate adaptation from components, which define appli-
cation logic, because components themselves are defined and
executed independently of any adaptation.

III. DESIGN

The proposed approach dynamically deploys components
to define application-specific functions at computers according
to the policies of the components to adapt distributed applica-
tions to changes on distributed systems.

A. Dynamically adaptive system architecture
Our middleware architecture consists of three parts (Figure

2). The first part is the adaptation manager, the second part is
runtime system and the third part is distributed applications.
From this architecture, we can notice that:

• The first part is a component runtime system, which
is responsible for executing software components, mi-
grating software components and enabling them to in-
voke methods at other software components. However,
by using these methods, the software components need
to be serialized in the first, then migrate themselves
from one computer to others. When these software
components arrived at destination computers, they
can communicate with the components of destination
computers, according to naming inspection.

• The second part is adaptation manager, which is
responsible for our runtime system. However, it can
control the behaviour of components, select policies
from destination database and fetch them and de-
termine themselves where the software components
should be moved. The policies are written by an
Event-Condition-Action format scripting language.

!"##$%&'(%

!"#$%&'()*)$'&

+')$%#,$%-#
.,$,/,)'

+%)$0%/"$'.(1223%4,$%-#

(5'$6-07(,#.(-2'0,$%#8()*)$'&(0')-"04')

92'4%:4,$%-#(-;

0'<"%0'&'#$)

+%)$0%/"$'.()-;$6,0'

4-&2-#'#$)

)%*%+,"-.

/%("'$"0',"-.

1'2".3

)%4-5(+%6#"(%+,-("%4

)5.,"2%678

1.,2$,$%-#(&,#,8'0(

!-.",-(".3

9%:';"-5(6%.3".%

<-$"+=6>%,+:

<-$"+=678

<-$"+=6;'$"#',"-.6,--$4

=-3%4%') +')$%#,$%-#

?'(,6@A ?'(,6BA

?'(,6CA

Figure 2. Middleware architecture.

• The third part consists in distributed applications,
which can be designed by any general-purposes.

B. Component runtime system
Every runtime system allows each component to have

at most one activity through the Java thread library. When
the life-cycle state of a component is changed, e.g., when it
create, terminates, duplicate, or migrates to another computer.
The runtime system issues spcific events to the software
component. To capture such events, each component can have
more than one listener object that implements a specific listener
interface to hook certain events issued before or after changes
have been made in its life-cycle state. Through this method, we
can easily hide the differences between the interfaces of objects
at the original and other computers. Each runtime system
can exchange components with other runtime system through
TCP channels by using Object Input/Output Stream. When a
component is transferred over networks, not only the code of
the components, but also their state can be transmitted into
a bit stream by using Java’s object serialization package, and
then the bit stream is transferred to the destination computers.
The runtime system which is run on the receiving side receives
and unmarshals the bit stream. When components have been
deployed at destination computers, their methods should still
be able to be invoked from other computers, which are running
at local or remote computers.

C. Adaptation mechanism
The policy-based deployment of components is managed

by adaptation managers, where they are running with software
component runtime systems and they have not any centralized
management servers. Each component runtime system period-
ically advertises its address to other runtime systems through
UDP multicasting, and then these computers can return their
addresses and capabilities to the destination computers through
TCP channels. Each policy is specified as a pair of conditions
and actions. The former is written in a first-order predicate
logic-like notation and its predicates reflect various system and
network properties, e.g., network connections and application-
specific conditions and the utility rates and processing capa-
bilities of processors. The latter is specified as a relocation of

27Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 36 / 66

components. Our adaptation was intended to be specified in a
rule-style notation.

1) Adaptation policy specification format: The adaptation
manager offers an interpreter to execute the specification
format. Since we need to predict conflicts and divergences
that result from adaptations, we need to design a format
for specifying adaptations policies, which are given as the
relocation of components according to changes in their systems
and the requirements of their applications. The format consists
of conditions at destination parts. The two parts are defined
based on a theoretical foundation to verify the validation
of adaptations. The former is written in a first-order predi-
cate logic-like notation, where predicates reflect information
about the system and applications. e.g., the utility rates and
processing capabilities of processors, network connections,
and application-specific conditions. The latter represents the
deployment and duplication of components in our adapta-
tion instead of any application-specific behaviors, including
communications and state transition, of the components. It is
formulated as a process calculus.

Since policies are written in a XML format (as Figure
3 shows), it can be defined outside components. In addition,
these user-defined policies can be reused for other components,
and the components can be reused with other policies. For now,
our adaptation manager provides four built-in policies. Each
policy contains [Event-Condition-Action] three main tags. We
can define the name of this policy in Event tag. The Condition
tag shows when the software components should be migrated
or not. It can be freely defined by the users or developers
of distributed systems. Our interpreter is different from the
existing researches [13][15], because our approach is focused
on components migration, so in Action tag, we can judge the
software components where to relocate or whether to migrate
or not.

!"#$%&'()*+,-./012/&(-3,4+-5./6789:/";
!<,%+3=&+4&.&;
&&&&!>99&?'(-@&,A&<,%+3=&&99;

!?'(-@;
!BC$(;&&C)+)0&&!DBC$(;

!D?'(-@;
!>99&E,-4+@+,-&,A&<,%+3=1(151F&G)(4+3C@(0F111G)(4+3C@(-&&99;
!E,-4+@+,-;

&&&&&&&&&&&&&&&&C4CG@+'(HI%(H*+J(&;.&$C#HI%(H*+J(&KK&
&&&&&&&&&&&&&&&&&&&&&&&&&&&&C4CG@+'(HLC-4M+4@N&;.&I#(4H'C%O(
& !DE,-4+@+,-;

!>99&7N(&4(*@+-C@+,-&,A&)(%,3C@+,-&&99;
!P3@+,-;&&&&

!4(*@+-C@+,-;
QA&R3,-4+@+,-&..&@)O(ST

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&$+5)C@(&R3,$G,-(-@&0FUF3,$G,-(-@&BF&
&&&4(*@+-C@+,-HQ<F&4(*@+-C@+,-HG,)@&S
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&)(3C%%&R3,$G,-(-@&0FUF3,$G,-(-@&BF&
&&&$(@N,4H-C$(&S
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&V&(%*(&T&
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&O-W+5)C@(&RS
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&V

!D4(*@+-C@+,-;
!DP3@+,-;

!D!<,%+3=;

Figure 3. Policy format.

For example, to adapt remote information retrieval. In this
sense, we can define an attraction policy and execute this
format in adaptation manager as follows:

• When a component has an attraction policy for another
component, if the condition specified in the policy is
satisfied, the policy instructs the the former to migrate
to the current computer of the latter.

• When a component has a spreading policy, the policy
will make a copy of the component and instructs the
copy to migrate to the current computer.

• When a component has a repulsion policy for an-
other component, if this computer have the same
or compatible components, this policy will migrate
this component which communication with another
component to the current computer.

• When a component has an evaporation policy, if
the condition specified in the policy is satisfied, it
terminates.

When the external system detects changes in environmental
conditions, the runtime system can self-adaptive to migrate
the search component to remote computer. If this remote
computer is failure or waiting processing in threads, the search
components can relocate to other computers, according to the
user-defined policies. Then, the search component can fetch
files inside of itself. Once the retrieval completed, the search
component will return back, according to the attraction policy.
However, the details will be described in Section 5.

IV. IMPLEMENTATION

This section describes the current implementation of a
middleware system based on the proposed approach.

A. Component runtime system
Each component is a general-purpose and programmable

entity, which defined as a collection of Java objects and
packaged in the standard JAR file format. It can migrate
and duplicate themselves between computers. Our runtime
system is similar to a mobile agent platform, but it has been
constructed independently of any existing middleware systems.
This is because existing middleware systems, including mobile
agents and distributed objects, have not supported the policy-
based relocation of software components. Our middleware
system is built on the Java Virtual Machine (JVM), so it can
abstract away between different operating systems.

The current implementation basically uses the Java object
serialization package to marshal or duplicate components. The
package dose not support the capture of stack frames of
threads. Instead, when a component is duplicated, the runtime
system issues events to it to invoke their specified methods,
which should be executed before the component is duplicated
or migrated. Furthermore, this system suspends their active
threads. We also implement this system by using our original
remote method invocation between computers instead of Java
Remote Method Invocation (RMI); this is because Java RMI
dose not support object migration.

B. Adaptation manager
The adaptation manager is running on each computer and

consists of two parts: a database of policies and an event
manager. The former will compile and execute user-defined
policies and the latter will receive events from the external
systems and notify changes in the underlying systems and
applications.

28Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 37 / 66

We describe a process of the relocation of a software
component, according to user-defined policies.

• When a component creates and arrives at a computer,
it automatically registers its deployment policies with
the database of the current adaptation manager.

• The manager periodically evaluates the conditions of
the policies maintained in its database.

• When it detects the policies whose conditions are
satisfied, it deploys software components at desti-
nation computer, according to the selected policies
migrate component to the destination computer and
dynamically invoke the methods of destination soft-
ware components.

Two or more policies may specify on different destina-
tion computers, under the same condition that drive them.
The current implementation provides no mechanism to solve
conflict between policies. So, we assume that policies would
be defined without any conflicts right now. The destination
components may enter divergence or vibration models due
to conflicts between component policies. In addition, they
may have multiple deployment policies. However, the current
implementation dose not exclude such divergence or vibration.

V. APPLICATIONS

This section describes two applications of the proposed
approach.

A. Adaptive remote information retrieval
Suppose users who are using search engines to find certain

text patterns from data located at remote computers like Unix’s
grep command. A typical approach is to fetch files from remote
computers and locally find the patterns from all the lines of
the files. However, if the sum of the volume of its result or the
size of a component for searching patterns from data is bigger
than the volume of target data, the approach is efficient. In this
case, the components should be executed at remote computers
that maintain the target data rather than at local computers.
However, it is difficult to select where the components is to
be executed because the volume of the result may be not
known before. The proposed approach can solve this problem
by relocating such components from local computers to remote
computers while they are running. Figure 4 shows our system
for adaptive remote information retrieval, which consists of
client, search, and data access manager components. The
client component and the data access manager component are
stationary components. The search component supports finding
text lines that match certain patterns provided from the client
component in text files that it accesses via the data access
manager component. It has an attraction policy that relocates
itself from local to remote computers when the volume of its
middle result is larger than the size of component; otherwise,
it relocates from remote to local computers.

Although the volume of the result depends on the content of
the target files and the patterns, it is typically about one over
hundred less than the volume of the target files. Therefore,
the cost of our system is more efficient in comparison with
Unix’s grep command. This means that our approach enables
distributed application to be available with limited resources
and networks. Our approach is self-adaptive in the sense that
it enables the search component to have its own adaptation

!"#$%

!"#$&

!"#$%&'
()*+)%$%&!

,-&-'
-(($..'
*-%-/$0
!)*+)%$%&

1$-0(2'
()*+)%$%&!

,-&-
3-.$

,-&-'
-(($..'
*-%-/$0
!)*+)%$%&

,-&-
3-.$

!"#$%&'
()*+)%$%&!

1$-0(2'

()*+)%$%&!

'()$*"#+,%

'()$*"#+,%

'()$*"#+,&

'()$*"#+,&

'()$(-#-",)./+0".(-

1(20113,

4#".-/,

50"0

6#)("#13,

4#"27.-/,50"0,8(1.23

9+#1(20"(.(-:

!)%4#&#)%5
$6/67'"-/$01#8$')9'1$-0(2'

()*+)%$%&':';)"<*$')9'0$.<"&

Figure 4. Adaptive remote information retrieval.

policy and manages itself according to the policy indepen-
dently of these components themselves. It is independent of its
underlying systems because the destination of our component
relocation is specified as components, instead of computers
themselves and they can be reused also. Furthermore, when the
remote or local computer is failure, our system can migrate the
retrieval programs to another computer, according to the user-
defined policies for go on progressing without termination pro-
cesses. This is the difference between traditional approaches
and ours.

B. Adaptive distributed media service
Suppose a media distribution service, including video

streaming [17]. Because of the sizes of media contents tend to
be large recently, so that the cost of transmitting such contents
from back-end servers to front-end servers and from front-end
servers to clients becomes huge. Therefore, it is necessary in
the vicinity of the data processing to save the high costs of
data transmission.

We assume that users send requests to front-end servers,
and convert video data via front-end servers before fetching
them. Figure 5 shows our system for adapting distributed
media service, which consists of client, search, Drawing UI
component, and data access manager components. The client
component and the data access manager component are station-
ary components. The search component supports to response
the requests from users. When the tasks becomes excessive in
a short time, the front-end server will become a bottleneck.
The Drawing UI component supports to adapt to the size of
the screens.

In this case, clients may fail to connect to or have to wait
while data have processed by front-end servers. Therefore, the
front-end servers components should be dynamically deployed
at the back-end servers and processed at the back-end ones
on behalf of the front-end ones. If the back-end servers have
enough resources for processing. The contents at back-end
servers do not need to be relocated and copied. This approach
can reduce the cost of transmitting the content from the back-
end servers to the front-end servers so that it is useful to avoid
heavy traffic between the servers.

On the other hand, we assume that users try to select media
contents from front-end servers, because they are responsible
for managing the selections of contents and drawing UIs for

29Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 38 / 66

!"#$%

!"#$%&'
()*+)%$%&'

,-&-'
-(($..'
*-%-/$0
!)*+)%$%&

,-&-
1-.$

&'#()(*+",#+-

!)%2#&#)%3
$4/45'.#6$')7'8$-0(9'()*+)%$%&'

:';)"<*$')7'0$.<"&

./01,#+-

8$-0(9'
()*+)%$%&!

23'45+6

(37#

8(#7*0/"*5*+9 :#;*"#7<=

>#"045+6=-/"/=

!"#$?

!"#$%&'
()*+)%$%&!

,-&-'
-(($..'
*-%-/$0
!)*+)%$%&

,-&-
1-.$

&'#()(*+",#+- ./01,#+-

,0-=#%/'>?'
()*+)%$%&!

23'45+6

(37#

8(#7*0/"*5*+9@*0/77<=

>#"045+6=-/"/=

Figure 5. Adaptive distributed media service.

users to do. By using our approach, we can relocate the
running components for selecting media from front-end servers
to clients when clients have much capability to manage and
draw UIs.

These deployments of software components can be spec-
ified in our policy-based middleware for adaptations and au-
tomatically invoked methods of destination components when
conditions of policies are satisfied.

VI. EXPERIMENT

In this paper, we present the implementation of the pro-
posed system on OS X, which has Intel Core i7 2GHz as
CPU and 8GB memory and the download/upload speed of
internet is 8.586KB/s and 15.83KB/s. The implementation uses
raw socket to obtain all packages and is described in Java
programming language. For experiment, this paper prepares
a network environment where to adapt remote information
retrieval. The experiment in this paper compares the cases use
and non-use the proposed adaptation middleware system. In
the experiment, we assume that one user retrieves a keyword
named JAVA and we searched the keyword in three types of
files.

A. Result of Experiment
The first one type of file has the data size of 17KB. The

second one that the size of data is 1.1MB. The data size of
the third one is 104MB. In addition, we compare the speed of
search the same keyword in our system. Figure 6 shows the
result of experiment for adapting remote information retrieval.

!"#$%&'&(#&#")* !"#$)+#%&'&(#&#")*

,-./

0"12%3"42

,5,6/

,786/

,59:32;

.2<=)>'

?@A@

?@A@

?@A@

85:-32;

,95,B32;

B5,,32;

85CB32;

C5,-32;

Figure 6. Results of experiment.

By the three sets of data, we know that if the file becomes
larger, our self-adaptive middleware system can significantly
reduce the time of remote information retrieval. From the first
set of data, we know that when the size of retrieved file is

almost as large as the retrieval programs, the processing time
of our self-adaptive middleware system is longer than non-
adaptation system. This is because, the deploy objects of soft-
ware components in our middleware require serialization/de-
serialization between local and remote sides. However, the
non-adaptation system does not require its. From the second
set of data, we know that when the size of retrieved file is
almost 10 times larger than the retrieval programs, our system
is slightly stronger than without adapted remote information
retrieval. However, by the last set of data, we clearly know that
when the size of the file becomes 100 times, the search time of
our middleware system will spend half time of non-adaptation
information retrieval. Furthermore, we can not only reduce
remote information retrieval time through our approach, we
can also enhance distributed systems reliability, dependability
,and availability. For example, when the remote computer fails,
our system will temporarily freeze the retrieval programs, and
migrate its to another computer. Then these programs will be
thawed and resumed in remote side.

VII. RELATED WORK

This section describes a selection of related research in the
fields of distributed systems. It compares our approach with
several existing adaptation approaches for distributed systems.

Many researchers have explored adaptation mechanisms
for distributed systems [4][5][18]. They can be classified into
three types. The first is to dynamically change coordination be-
tween programs, which are running on different computers for
their adaptation, e.g., CORBA-based middleware [6][7][8][10].
This is one of the most typical adaptive coordination that
enables client-side objects to automatically select and invoke
server-side objects according to changes in their requirements
of applications or system architectures. However, this type
is limited. Because it only modifies the relationships be-
tween distributed programs instead of the computers, which
are executing them. The second is to change programs for
defining functions of which an applications consists, e.g.,
genetic programming [11]. It needs more resources to select
generations of programs. On the other hand, it is difficult
to predict their adaptation. Distributed systems should be
predictable because they are often used for mission-critical
applications. The third type is policy-based middleware on
distributed systems [2][3][12][16]. By using policies to define
the conditions of software components, these approaches can
migrate the components to specified computers by a specified
adaptation language, seems like [1][13][15]. However, the
specified computers may be not a good choose. Because
the specified computers may be have not enough available
resources or the processing of threads are waiting several task
or the connection has been broken. Conversely, our proposed
approach can autonomously select the destination of deployed
software components. Therefore, they do not care the computer
is a specified one or not. It is a more general-purpose.

On the other hand, our approach can change the computers
that execute programs for self-adaptation. Therefore, it enables
the programs to escape from computers, which may have
system failures or be shutdown.

The relocation of software components have been studied
in the literature on mobile agents [9][14]. By using the
technology, we may be able to dynamically relocate the execut-
ing programs of components. Furthermore, like ours, several

30Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 39 / 66

mobile agent platforms support mechanisms for mobility-
transparence, where the mechanisms enables programs, which
may be migrated to remote computers to continue to work
on other computers. However, the technology itself does
not intend to support adaptation so that it cannot abstract
away adaptation from application-developers. Furthermore, our
approach is inherently designed for dynamic adaptation on
distributed systems.

VIII. CONCLUSION

This paper proposed an approach to adapt distributed ap-
plications by predefined or user-defined policies. It introduced
the relocation of software components between computers
as a basic mechanism for adaptation. It separated software
components from their adaptations in addition to underly-
ing systems by specifying policies outside the components.
It is simple, but it provided various adaptations to support
resilient distributed systems without any centralized manage-
ment. It was available with limited resources because it had no
speculative approaches, which tended to spend computational
resources. The relocation of components may have security
problems, e.g., executions malicious programs, but it is can
be solved by receiving only the programs that are transmitted
from secure and reliable computers with authentication tech-
niques. It was constructed as a general-purpose middleware
system on distributed systems instead of any simulation- based
systems. Components could be composed from Java objects
like JavaBean modules. We described several approaches with
practical applications.

REFERENCES

[1] J.-X. Li, B. Li, L. Li and T.-S. Che, ”A policy language for adaptive web
services security framework.” In: Software Engineering, Artificial Intel-
ligence, Networking, and Parallel/Distributed Computing, 2007. Eighth
ACIS International Conference on. IEEE, 2007. pp. 261-266.

[2] J. Keeney and V. Cahill, ”Chisel: A policy-driven, context-aware, dy-
namic adaptation framework.” Policies for Distributed Systems and
Networks, 2003. Proceedings. POLICY 2003. IEEE 4th International
Workshop on. IEEE, 2003. pp. 3-14.

[3] K. Yang, G. Alex and T. Chris, ”Policy-based active grid management
architecture.” Networks, 2002. ICON 2002. 10th IEEE International
Conference on. IEEE, 2002. pp. 243-248.

[4] A. Tripathi, ”Challenges designing next-generation middleware systems.”
Communications of the ACM 45.6 ,2002, pp. 39-42.

[5] V. Issarny, C. Mauro and G. Nikolaos, ”A perspective on the future
of middleware-based software engineering.” 2007 Future of Software
Engineering. IEEE Computer Society, 2007. pp. 244-258.

[6] B. Gordon S, B. Lynne, I. Valerie, T. Petr and Z. Apostolos, ”The role
of software architecture in constraining adaptation in component-based
middleware platforms.” Middleware 2000. Springer Berlin Heidelberg,
2000. pp. 164-184.

[7] D. Kulkarni and T. Anand, ”A framework for programming robust
context-aware applications.” Software Engineering, IEEE Transactions
on 36.2. 2010. pp. 184-197.

[8] R. Olejnik, B. Amer and T. Bernard, ”An object observation for a
Java adaptative distributed application platform.” Parallel Computing in
Electrical Engineering, 2002. PARELEC’02. Proceedings. International
Conference on. IEEE, 2002. pp. 171-176.

[9] I. Satoh, ”Mobile agents.” Handbook of Ambient Intelligence and Smart
Environments. Springer US, 2010. pp.771-791.

[10] J. Zhang and B. H. Cheng, ”Model-based development of dynamically
adaptive software.” Proceedings of the 28th international conference on
Software engineering. ACM, 2006. pp. 371-380.

[11] Koza and R. John, ”Genetic programming: on the programming of
computers by means of natural selection.” Vol. 1. MIT press, 1992.

[12] M. Luckey and E. Gregor, ”High-quality specification of self-adaptive
software systems.” Proceedings of the 8th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems. IEEE
Press, 2013. pp. 143-152.

[13] Anthony and J. Richard, ”A policy-definition language and prototype
implementation library for policy-based autonomic systems.” Autonomic
Computing, 2006. ICAC’06. IEEE International Conference on. IEEE,
2006. pp. 265-276.

[14] R. Montanari, T. Gianluca and S. Cesare, ”A policy-based mobile agent
infrastructure.” Applications and the Internet, 2003. Proceedings. 2003
Symposium on. IEEE, 2003. pp. 370-379.

[15] N. Damianou, D. Naranker, L. Emil and S. Morris, ”The ponder policy
specification language.” Policies for Distributed Systems and Networks.
Springer Berlin Heidelberg, 2001. pp. 18-38.

[16] D. Ferraiolo and G. Serban, ”The Policy Machine: A novel architecture
and framework for access control policy specification and enforcement.”
Journal of Systems Architecture 57.4. 2011. pp. 412-424.

[17] Z.-J. Lei and D. G. Nicolas, ”Context-based media adaptation in perva-
sive computing.” Electrical and Computer Engineering, 2001. Canadian
Conference on. Vol. 2. IEEE, 2001. pp. 913-918.

[18] A. Uribarren, J. Parra1, R. Iglesias1, J. P. Uribe1 and D. Lopez-de-Ipina,
”A middleware platform for application configuration, adaptation and
interoperability.” Self-Adaptive and Self-Organizing Systems Workshops,
2008. SASOW 2008. Second IEEE International Conference on. IEEE,
2008. pp. 162-167.

31Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 40 / 66

SLA Object and SLA Process Modelling using WSLA and BPM Notations

Towards defining a Generic SLA Orchestrator Framework

Bukhary Ikhwan Ismail, Nurliyana Muty, Mohammad Fairus Khalid, Ong Hong Hoe

Advanced Computing Lab

MIMOS Berhad

Kuala Lumpur, Malaysia

ikhwan.ismail@mimos.my, nurliyana.muty@mimos.my, fairus.khalid@mimos.my, hh.ong@mimos.my

Abstract— SLA monitoring and enforcement ensure service

dependability. In an ever challenging market, service providers

strive to compete in the IT business by offering new innovative

services. Fast to market and reliable Quality of Service goes

hand in hand in determining the market leader. To address

these challenges, a flexible and comprehensive tool is required

to automate the provisioning of SLA and Service Level

Management processes. Based on our investigation there is no

single framework, which is flexible enough to orchestrate SLA

provisioning for multiple services. To address this problem, we

first describe the SLA object concepts and redefine the SLA

management processes. It introduces an extended WSLA

model and tiering mechanism, to promote modularity and

reusability of the SLA model. We propose to model the SLA

management process using the Business Process Management

Notation to simplify and reduce the planning, design, and

implementation effort in defining the SLA offerings. Both of

these models act as guidelines to attain a generic SLA

framework towards any service adaptation.

Keywords-Service Level Agreement; Service Level

Management; WSLA; Business Process Management;

Dependable Service

I. INTRODUCTION

Service is a means of delivering value or functions,
which the provider offers, to the subscribers. Business
applications, software functions and infrastructural services
are some examples. Subscribers require a certain level of
service delivery guarantee and the Provider needs to ensure
the dependability aspect of service fulfilment. In IT Service
Management (ITSM), Service Level Agreement (SLA)
provides a well-known standard in ensuring service delivery
guarantee. The SLA captures the requirements and
expectations of service guarantee where both parties agree.
The SLA contract formalizes the requirements of; and not
limited to Quality of Service (QoS) parameters;
responsibilities of both parties; warranties or actions to be
taken; compensations; guarantee coverage and service
limitations or exclusion clauses [1].

Service Level Management (SLM) is a discipline of
proactive methodology and procedures used to ensure
adequate levels of service are delivered in accordance with
business priorities at an acceptable cost [2]. Most SLA
management strategy considers two common phases; (1) the
negotiation of the contract – the formalisation of objectives,

action guarantee and violations and (2) the monitoring of its
fulfilment in real-time –the proof of service delivery [3].

In this paper, we analyse several prominent research
works in the areas of service delivery governance from the
provider’s perspective. We conclude that 1) Most SLA
frameworks implement on a specific service or specific
service domain. Interpretation of QoS attributes such as
availability, reliability, or performance is unique to the
service domain. For example, storage availability versus web
services availability differs greatly. It affects the way the
SLA is calculated and action logic to perform. To adapt the
same framework for new implementation would be
impossible. 2) The SLA implementation is embedded within
service infrastructure - For example, the SLA rules or logics
are buried implicitly in the application code [4]. It would be
impossible to utilize the same framework for new
implementation. 3) The dynamics of SLM - Not all of the
process activities e.g., SLA negotiation, template definition
and compensation to name a few, are required in order to
deliver service level guarantees. Each research project
usually defines a fix set of SLM process while in actual
implementation, not all of the processes are required. To
adapt the same predefined sets of SLA management process
for another service is unsuitable.

There are four main contributions of this paper. 1) A
survey of multiple SLA research projects, which deduced the
importance of SLA concepts, objects and SLM, processes
surrounding the SLA management and the governance of
service delivery guarantees. 2) A proposed new form of SLA
and SLM process meta-model to illustrate the interactions
and usage of SLA data objects with the SLM process
activities. 3) An extension of existing Web Service Level
Agreement (WSLA) model to support additional SLM
processes that enable the separation of the SLA service
information, the logics within the SLA, the implementation
to enforce the SLA and runtime information of the model.
Lastly, 4) an introduction of a modelling technique using
Business Process Management to model the SLM process.

This paper is organized as follows. Section II summarizes

the SLM processes. Section III, discusses the requirements

and analysis towards the importance of generic SLA

framework. Section IV, presents related works, Section V,

discusses the SLA concepts and SLM meta-model. Section

VI and VII describes the SLA Object and Process Model

respectively. We conclude our work in the last section.

32Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 41 / 66

II. STATE OF THE ART SERVICE LEVEL MANAGEMENT

SURVEY

In order to define a generic SLM framework for service
delivery guarantee, it is imperative to deduce and capture
important phases and process activities of SLM. Here, we
present our survey derived from multiple related SLA
management research works. The investigation consists of
24 SLA projects survey by the EU commission, 2 known
SLA frameworks; WSLA & WS-Agreement, 2 ITSM
standards; ITILv3 and CoBiT Delivery & Support, 10
individual SLA projects and 3 related SLA products in order
to broaden our investigation and the applicability of SLM.
Full reference list for each process activity is in TABLE I.
We identified and generalized the process activities, which
from our point of view, is adequately generic and sufficient
for any service adaptation.

There are 4 main stages in the SLM lifecycle; 1)
Requirement Specification – the requirement stage for
service and SLA input; 2) Instantiation and Management –
negotiation of SLA and instantiation of service and SLA; 3)
Enforcement – to monitor and assure QoS during service
runtime; and 4) Conclusion –handles the closure of service
and any reimbursement of credits due to breaches in the SLA
contract. There are similar works in defining these stages. In
[5] defines the 5 stages while [6] shows 4 stages where these
stages are categorized by its processes.

A. Requirement Specification Stage

1) SLA Template Definition - is the process of

requirement capturing of the SLA contract where Service

Level Objective (SLO), guaranteed state, compensation,

exclusion clauses of service are defined. In ITSM practices,

it includes the requirements of Operating Level Agreement

(OLA), defining the service support organization structure,

support contract and Underpinning Contract (UC) [7].

Output of this activity is to translate the SLA document into

a machine readable format e.g., XML, ontology or rules.

B. Instantiation & Management Stage

Here we define 4 processes:-

1) Service & SLA Offering– is the process which

advertise the service e.g., Virtual Server; CPU core,

memory, etc; and the service SLA attributes e.g., QoS,

performance, availability or exclusion clauses prior to the

service subscription process.

2) Negotiation - handles the negotiation process of SLA

requirements between the provider (a system providing the

service) and subscriber (a system or customer). The

negotiation parameter is usually limited to the qualities,

which the provider is able to satisfy. The output of this

activity is an agreed SLA by both parties.

3) Mapping and translation – In an SLO, the service

parameters to be guaranteed can be in high level description,

which is close to business or application requirement

language. This process bridges the gap between both. The

process translates the high-level metrics i.e., application

response time and maps it to the low-level resource

parameter; i.e., transaction per-second,

transaction response time, etc. Translation

includes both functional requirements e.g., performance,

capacity and non-functional requirements e.g., availability,

redundancy, security to be translated and mapped.

4) Service Provisioning – creates the actual service

instance and SLA in an enforced state.

C. Enforcement Stage

Enforcement is the most important stage to ensure
service delivery guarantee and service dependability during
service runtime [5][8][9]. There are 5 important processes:-

1) Monitoring - obtains the infrastructure or application

performance metrics which acts as input for the SLA’s

violation detection process.

2) Violation detection –monitors reactively the SLO

parameters for any potential violation breach.

3) Violation prevention – to detect a violation before it

occurs where a proactive or predictive mechanism might be

use.

4) Violation corrective action– corrective action which

is triggered by a violation detection or violation prevention

process in order to repair or reduce the onset of the

violation.

5) Violation Escalation – to escalate error, fault or

failure information to system administrator where manual

corrective actions can be executed.

D. Conclusion Stage

This stage consists of 5 main processes:-

1) Termination of service & SLA – handles the 1) proper

closure due to an end of subscription; or 2) termination of

service caused by a breach in the service contract.

2) Accounting & Billing – handles the charging

mechanism to the subscriber.

3) Resolution – to provide remedial action or

compensation of breached SLA to the subscriber.

4) SLA template archiving – to store previous SLA

documents and its related information for future references.

5) SLA Review – continous review of SLA and its

performance for manual SLA management as defined in

ITIL v3 [7] and CoBiT [10].
We have listed out necessary SLM processes, which are

deem important for the adaptation of our generic SLM
framework. We however, did not list out other processes,
which are too unique for a specific service implementation or
explain further the derivatives of each process i.e.,
monitoring; dynamic monitoring, scalable monitoring or
negotiation; re-negotiation or auto-negotiation processes [8].

III. AN ANALYSIS TOWARDS A GENERIC SLA FRAMEWORK

To justify our argument in requiring a generic SLA

framework, we provide concrete analysis in the next few

sections which discusses the dynamics of the SLM

33Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 42 / 66

management processes, SLA offering and deployment

variations.

A. The Variation and Dynamics of the SLM Process

TABLE I. VARIATION OF SLM PROCESSES IN SLA IMPLEMENTATION

E
U

 R
esearch

W
S

-A
g

reem
en

t

W
S

L
A

F
ram

ew
o

rk

C
o
B

iT

IT
IL

 v
3

e-b
u
sin

ess

F
o
r S

O
A

A
 lo

g
ic b

ased

S
L

A

Im
p
ro

v
in

g
 E

n
t.

p
erf

S
L

A
@

S
O

I

M
u
lti-lev

el

lay
ered

 clo
u
d

in
fra

IR
M

O
S

C
lo

u
d
4
S

O
A

O
P

T
IM

IS

W
S

R
R

U
p
tim

e

S
erv

iceN
o
w

 [8] [11] [5] [10] [7] [12] [13] [4] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23]

Templ. Def. X X X X X X X X X X X X X

Offering X

Negotiation X X X X X X X X X X X

Map & Trans X X X X

Serv. Provision X X X X X X X X X X X

Monitoring X X X X X X X X X X X X X X X X X X

Vio. Detection X X X X X X X X X X

Vio. Prevention X X

Vio. Corrective X X X X X X X X X

Vio. Escalation X X X X X

Termination X

Acc. & Billing X

Resolution X X

Archiving X

Review X X

From the investigation done on the SLM management

activities in Section II, we created a comparison matrix
TABLE I, to show the variation of management process
implemented in each project. For each project, we marked
the processes that are being adapted. We concluded that not
all of the process or activities are compulsory. For example,
negotiation, mapping and translation, accounting, billing,
resolution and compensation are some of the optional
components. While SLA template definition, monitoring and
violation detection can be considered as the core must-have
component by deducing the total number of adaptation of the
processes.

B. Types of SLA Offering

SLA offering is a service delivery guarantee commitment
that the provider is willing to offer to the subscriber. The
process takes place before service is instantiated. The design
of the SLA offering is based on pricing strategy, customer
segmentation profiling or other business factors. We
conclude there are 4 types of SLA offering categories, which
can affect overall implementation of the SLM process.

1) Common to all and 2) Template based SLA; are

widely used type of SLA contracts. Both types are

considered as a non-negotiable contract, whereas the SLA

for a particular service is fixed and applies to all or a

particular segments of users. When the SLA breached, the

provider will compensate by providing service credits into

the customer’s account or provides other forms of remedial

compensation [24]. This type of SLA does not require any

negotiation process or mapping and translation of

monitoring metrics as the service delivery is static i.e., non-

negotiable service guarantees are common to all users. It

may however focus on violation prevention or self-healing

capabilities in order to reduce the violation-breached effects.
3) Negotiable template based SLAs and 4) custom based

SLAs provide flexibility to the subscriber to tune the
requirements to match the intended workload. Requirements
example are cost, pricing, performance, availability or other
attributes [16][17]. Both SLA categories require a
negotiation process or its derivatives e.g., auto-renegotiation
[18], dynamic negotiation [19][20] or negotiation across
multiple service layers [15] i.e., between subscribers and
service providers or between service providers and another
service provider in a multi-level service deployment setup. It
may require mapping and translation of high level metrics to
low level metric [18][15] as the definition of SLA
requirements are open for interpretation.

C. Service Deployment Variation; IaaS as a Case Study

IaaS provides infrastructural services such as compute,
storage and network. Each IaaS Infrastructure deployment is
unique and the deployment depends on the service functional
requirements, cost, hardware, software or technology
choices. It makes monitoring efforts; the core component of
SLA system variable. We illustrate the complexity of IaaS
deployment in TABLE II, which shows possible
combinations of storage technology, transport, medium and
backend options to host VM’s virtual disk where multiple
combinations can be constructed for a single deployment.

TABLE II. VIRTUAL MACHINE’S STORAGE DEPLOYMENT VARIATION

Disk
Storage

Transport

Storage

medium

Storage

backend

File

qcow2,

raw,
vmdk

Local Local Local Disk

Over network

NFS, OCFS,

GFS
JBOD, SAN

CephFS,Gluster Distributed
Storage

Block

Over network CEPH RBD

Local LVM
JBOD, SAN

Over network iSCSI, AoE, FC

We further emphasize the complexity with the example
of a virtual disk deployment variation in Figure 1, where a
VM can run in shared storage in setup A or local storage in
setup B. Both setups require the VM Availability SLA
parameter to be guaranteed but with different metrics to
monitor in Setup A; needs to monitor host, switches, NFS
storage as compared to Setup B, which runs on a local disk.

Figure 1. Deployment variation to host VM’s Virtual Disk

NETWORK
SWITCH

NFS Storage

LOCAL
STORAGE

HOST NIC

VM
AVAILABILITY

Setup A Setup B

HOST

Host avail

Host NIC up/down

Switch perf & avail

Storage avail

34Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 43 / 66

The deployment setup will dictate the choice of
performance metrics to be monitored and available
corrective actions to be used. This will influence the SLA’s
violation detection, violation prevention, and violation
corrective action components. In short, the service
deployment will dictate the SLA enforcement process
activities.

IaaS provides a good case study with multiple service
types and multiple service deployment scenarios in order to
test the concept of generic, flexible and compose-able SLA
orchestrator framework.

Our investigation shows that SLM activities or processes
are neither static nor absolute. It depends on multiple factors
such as SLA offering types, business requirements or certain
technical difficulties, which makes it harder to implement
some of the components. A generic and flexible framework
is needed in order to orchestrate the SLA offering by
implementing all, or certain of the components towards
service levels guarantee delivery.

IV. RELATED WORK

Here, we describe two aspects of related work, the

modelling of SLA and the modelling of SLM activities.

A. Data Modelling

WSLA is a framework which specifies SLAs for Web-
Services implementation [25]. WS-Agreement – an OGF
standard for the creation and specification of SLA [13].
SLAng model is the SLA for a spectrum of Internet Services
and provides its own internal language specification [26] and
lastly, a generic SLA semantic model for e-business
outsourcing contract is taken as part of the survey [12]. All
the above projects use UML and Object Constraint Logic
(OCL) to model the SLA objects and its relationships and
present it into XML schema format. In our view, this is the
most suitable representation of SLA document.

Paschke, Dietrich & Kuhla [4], captures selected portion
of the SLA agreement using rules and logical based
Knowledge Representation concepts. Rules can be used in
the function to evaluate conditions or violations in the
expression for Action Guarantee. From our investigation,
rule based only represents a portion of the SLA information.
Service information relationships, between objects or
descriptive information of the SLAs rely on other forms of
representation.

Ontology based SLA model is another form of
representation [14] . It captures business service performance
requirements key indicators such as KPI (Key Performance
Indicator and QKI (Quality Key Indicators) to define the
SLA parameter. In our view, to support modularity and
multiple service adaptation, domain specific knowledge
should not be modelled within the same model. This hinders
the generality of service implementation. For example,
“availability” for software and hardware is defined
differently.

Based on our literature review, we believe it is most
suitable to use the UML object diagram and OCL to
represent the SLA model. UML diagrams are a well-
accepted software analysis and design tool. It is simple and

captures a high level of information of the overall SLA
document. It is sufficient to represent concepts and
relationship information such as cardinality, aggregation and
inheritance of those concepts.

B. SLM Modelling

There are several projects, which try to model the process
flow of SLM using business process modelling. Correia &
Abreu [27] proposed, a Model Driven Engineering (MDE)
approach in modelling SLM activities for IT service SLA
specification and processes. It uses the BPMN notation to
create a process meta-model.

Corriea & Amaral [28] proposed a domain specific SLA
Language Specification and Monitoring (SLALOM). It
focuses on mapping of SLA to BPM notation for SLA
implementation on ITIL standards. ServiceNow [23], an
enterprise monitoring tool, uses a simplified form of BPMN
notation for designing escalation, notification to user and
scripting to automate tasks.

These are among several projects, which have the same
SLM modelling objectives as ours. It provides an insight on
the application and applicability of process modelling in the
SLA management domain.

V. SLA OBJECT & SLM PROCESS META MODEL

In this section, we present our deduction of SLA & SLM
meta-models. We map each of SLA objects with the
processes and activities of SLM to show its interactions.
Figure 2 identifies the SLA data object or concept; presented
in rectangular and functional process; represented in rounded
rectangular. We show that, 1) compulsory; denoted as (C) –
a must have activity or SLA object 2) optional; denoted as
(O) - categorized as supporting activities or objects where
the provider may adapt or drop.

Our SLA model extends the WSLA with additional
concepts denoted as (N). In the existing WSLA model, there
is no process, which uses the exclusion and coverage
clauses. Both of these are being utilized by the resolution
process. Pricing Information object provides information to
calculate billing and accounting. We included the violation
and service action repair object to support the violation
detection, prevention, corrective action processes.

In the implementation of the SLA system, it is common
to combine the business process flow, business logic and
data model in single implementation. For example, the SLA
contract rules are buried implicitly in the application code
[4]. It is therefore hard to maintain the SLA when a new
requirement is introduced and may require extensive re-
implementation efforts. We opted the concept of addressing
system complexity [29] by adapting common techniques
such as abstraction and modularity.

VI. SLA DOCUMENT – DATA MODELLING

SLA modelling is the process of synthesizing information
within the SLA document and translates it into a model for
the consumption of Information Systems. From a high-level
perspective, modelling captures the service definition,
objectives and guaranteed actions.

35Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 44 / 66

To model the SLA document requires domain experts in
depth understanding of the ITSM practices. Thus instead of
creating a new model, we opted an existing one. We chose
an SLA model that is generic enough to be able to describe
multiple services implementation and a model that is non-
specific to any service implementation. We opted the WSLA
as our case study.

The WSLA describe an SLA framework for web-service
implementation. It is generic enough to be adapted by
multiple service categories, such as service management,
networks or business application. The data model captures
the crucial attributes, which is used to measure and monitor
the QoS parameters, violation detection, repair actions
logics, and escalation mechanism to authorized parties [25].
The WSLA framework provides a layout of a SLA document
schema and provides multiple custom type object definitions.
The WSLA consists of 3 major parts: 1) Service Definition –
captures the service definition, the SLA parameter to
guarantee and metrics to monitor 2) Obligation – captures
the SLO and action guarantees towards the state or the
violation, and 3) Parties involved - between the signatory or
supporting party that supports SLM.

To use and implement the WSLA introduces a new set

of challenges in the creation, modification and management

of the SLA template. WSLA does not separate the 1) service

objects definition description and relationship; with 2)

rules, logics and algorithm and 3) runtime and

implementation information. Thus, the reusability – using

the parts-of the SLA model and portability – to be able to

export or import parts-of the SLA model is not possible. For

example, in WSLA SLAParameter it captures the “how to

measure”, “how to aggregate” into a compositeMetrics and

includes, which “party” is responsible to provide the metric

value. From our point of view, this information is only

unique for a particular service implementation and mixing

the modelling information with the implementation

information will hinder reusability & portability.

Based on these challenges we segmentize the SLA model
and decouple with clear natural separation boundary by
adapting the Separation of Concern, a design technique to
achieve modularity as being implemented in [4][15][16][30].
Modularity promotes reusability and portability parts-of the
SLA model i.e., by allowing the provider to reuse or imports
parts of the SLA model for new service implementation.
This is to satisfy and support multiple implementation of the
service based on the challenges defined in Section I.

We suggest 4 separations of the SLA model:-

1) WHAT-IS the SLA-Model (SLA-M) – information

about the ServiceDefinition, ServiceObject,

SLAParameter and its relationship;
2) WHAT-IF the SLA-Logics (SLA-L) – the logics and

rules of SLO, actionGuarantee, and monitoring

calculation. It may consist of measurementDirectives
expression which calculates composite metrics i.e., high-
level metrics such as availability may consist of multiple
low-level metrics aggregation. Both can be defined using a

combination of function and expression;
 3) HOW-TO the SLA Implementation (SLA-I) – the
service implementation information such as Obligation-

action, monitoring GET metricURI endpoints, action SET

actionURI endpoints together with;
 4) THE RUNTIME (SLA-R) - the SLA information,
which is populated during service and SLA runtime. For
example, signatory parties information, and possibly the QoS
parameters.

The SLA-M can be considered as a SLA service
catalogue, which defines (ServiceDefinition) and

quality attributes to guarantee (serviceObjects) and SLA

Parameter to monitor (SLAParameter) the provider
guarantees. It is considered as a non-volatile SLA data model
where it is rarely changed unless the provider can guarantee

a new serviceObject. We explain further based on,

extends the SLA-M ServiceObject type.

ServiceDefinition is a Virtual Machine service,

Provides input to

Define

Verify againts

Act as an input

Triggers

Escalated to

May result in

Requires

Maps

Publishes

Input for

Captures

Depends on

Stores old

(C) Service Definition

(C) SLA Document

(C) Service Objects

(C) Guarantee

(C) Action
Guarantee

(C) SLO

(C) Obligation

(C) SLA
Parameter

(C) Parties

(C)Metrics

(O) Measurement
Directives

(N) (C) Violation
(N) (O) Service Action

Repair

(O) SLA Archiving

(O) Template Definition

(O) Service & SLA Offering

(O)Mapping &
Translation

Maps

(C) Violation Detection (O) Violation Prevention(C) Monitoring

(O) Escalation

(O) Negotiation

(O) Billing & Accounting

(O) Termination of Service

Between

Requires

 Monitors

Requires

Triggers

Triggers

(O) Resolution

(N) (O) Pricing
Information

(N) (O) Coverage
Clauses

(O) Violation Corrective
Actions

Triggers

Requires

(N) (O)Exclusion
Clauses

Figure 2. SLA Objects and SLM Process Meta-model

36Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 45 / 66

where the serviceObjects may consist of
VMAvailability, VMBootTime and VMNetworkPerformance.

For each of the ServiceObject, the provider has agreed
to guarantee these qualities. By guarantying these qualities,
we assume the providers have tested, able to collect the
monitoring metrics and probably have a corrective action
plan in hand to maintain the SLA for these qualities. If new

ServiceObject is introduced, then a new sets of

SLAParameter, metrics, SLO and

ActionGuarantee needs to be laid out.

TABLE III. TIERING WSLA EXAMPLE

Type WSLA Elements Examples

SLA-R ServiceProvider

Name

Role

Contact

Action

MIMOS cloud service

Provider

Kuala Lumpur, MY

n/a

SLA-D ServiceDefinition

Name

Description

Virtual Machine Service

Virtualize infrastructure

SLA-D ServiceObject

Name

Desc

Schedule

Trigger

Constant

VMAvailability

Virtualization Availability

24X7 Coverage

On Service Hooks

99.99%

SLA-D SLAParameter

Name

Unit

Type

Category

VMAvailabilityUptimeRatio

%

FLOAT

Availability

SLA-I Metric 1

Name/Type/Unit/Func

tion

VMStatus / INT / Boolean /N/A

SLA-I

SLA-L

Metric 2

Name/Type/Unit/

Function

VMUptimeRatio / LONG / % /

If(VMStatus==0) Then VMUptimeRatio-1%

SLA-R

SLA-L

SLO

Name

ValidityStart

ValidityEnd

Expression

VMUptimeSLO

01:01:00 2014/06/01

When Subscription Ends

PREDICATE= GREATERTHAN

SLAParameter >Name =

VMAvailabilityUptimeRatio, Value=0.95

The SLA-I is the require information in the

implementation phases. For example, GET – to fetch the
monitoring data information or service status, and SET – to
react based on the violation status. All of the above depends
on the deployment setup landscape. This information is
rarely changed unless the same SLA-I model is applied to
another service deployment setup. The SLA-I captures time

or interval information such as schedule starts and stops,

period e.g., “SLO is valid only on working days”,

interval of monitoring data to be fetch or send
notification response in intervals.

The SLA-L captures the rules, and logic. In WSLA, it

can be in a form of evaluation expression or function

in SLO, or ActionGuarantee e.g., “live migrate the VM if
underlying HW components fail”. A sample SLA-L is SLO
expression, for example VMAvailabilityUptimeRatio >=
0.95 as depicted in table above. SLA-L can be depicted in 2
forms; 1) monitoring logics or violation detection; 2)
violation prevention or violation correction action logic. The
logic can change depending on the requirements, towards the
service. For example, changing how the availability formula
calculation or modify the action to perform once a violation
is detected will affect the SLA-L.

SLA-R is the SLA runtime information during
instantiation and enforcement stages. It records information
captured during SLA instantiation and the enforcement
lifecycle. In Negotiation process such as contractual
information; parties involves in the SLA agreement,
agreement date, and agreement validity period are captured
into the SLA-R.

VII. SERVICE LEVEL MANAGEMENT – PROCESS

MODELLING

Business Process Management (BPM) transforms real
world business processes into a process model
representation. Several standards are available, for example
BPMN, EEML, Flowchart, BPEL and IDEF3. Business
Process Model & Notation (BPMN) is one of the most
widely accepted process modelling standards. It creates a
standardized bridge between business process design and
process implementation. To design a process, Business
Process Diagram (BPD) provides a flowcharting technique to
create graphical models of the process called workflow. The
same workflow, with enough customization and coding, can
be executed by any BPM System (BPMS) e.g., Activiti,
Bonita, jBPM. Thus, it reduces the gap between analysis,
design and implementation of the system.

Due to the nature of dynamics of SLM process varieties,
we need an approach, which could address the design,
analysis and implementation challenges. We propose to use
BPMN, and utilize the BPD to model the SLM. To model,
we need to identify the SLA concept, process flow and
interactions of system component, required state, triggering
events etc. It will act as a guideline for implementing the
SLM into BPMN.

In delivering the SLA, SLM activities manage the SLA
states throughout creation, instantiation, enforcement and
termination. The provider needs to orchestrate the SLM
activities. Here, we try to explain those processes and see its
applicability throughout the state of service and SLA
(TABLE IV).

 t1 t2 t3 t4 t5 t6

Service State Instantiation Runtime Terminate

Service Activities Service Offering Service deployment Service termination

SLA & SLM

State

SLA, SLM

creation

SLM Instantiation SLA Instantiation SLA enforced SLA & WF SLM

terminated, SLA Archiving

SLM Activities Template

definition

 SLA Negotiation process SLA Deployment,

Mapping & Translation

Evaluation & Enforcement,

monitoring

Conclusion - Accounting,

Settlement/Penalties/reward

T-WSLA State Define SLA-

D, SLA-I and

SLA-L

Display the SLA-M info to the

customer; Service Definition,

SLAParameter and exclusion.

Capture the SLA-R

Signatory information

between parties

 The SLA-L and SLA-I will

be used throughout the

service runtime state

TABLE IV. SLA, SLM, SERVICE AND T-WSLA STATE AND ACTIVITIES

37Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 46 / 66

TABLE V. CONCEPTUAL MAPPING OF SLA TO BPMN NOTATION

At t0, the assumption is made that the service is ready

to serve the customer. In t1, the creation of SLA data model
(SLA-D, SLA-I, SLA-L) and SLM process model is
formalized by the provider. This is the design and creation

state of T-WSLA Object & SLM process workflow. At t2,
the service & SLA agreement is offered to the user and the

SLM workflow starts in parallel. In t3, the SLA enters the
negotiation process. The negotiation process is not
compulsory and depends on the design of the SLM. Once
negotiation completes, we populate contractual information

into the SLA-R. In t4, the service and SLA is instantiated.

In t5, the Service is running and the SLA is in enforced
mode where continuous evaluation, enforcement and
monitoring are executed. The SLA-Logic that includes the
SLO, goals, metric calculation and SLA-I i.e., monitoring

URI and action URI is continuously used in t5. At T6,
when the service is terminated, the SLA & SLM activities
will be stopped. The SLA conclusion processes like
accounting, settlement, penalties or rewards may run in both

t5 and t6 and not exclusively in t6 since penalties can be
compensated even during service runtime.

A. Conceptual Modelling of SLA to BPMN

Concept SLA Entity BPMN

To show the data object transition

between processes

T-WSLA Data Object

To visualize signatory parties or

communication between systems or

components.

Role &

Organization

Lanes & Pool

To express individual SLM process negotiation,

enforcement,

service offering,

conclusion

Sub-process; Process

elements; tasks,

gateway, events

To calculate composite metrics or

SLA parameter

 Monitoring

metrics, SLA

Parameters

To express complex violation

logics

 Violation

detection,

prevention, action

ActionGuarantee expresses a

commitment to perform action if a

given precondition is met.

Action Guarantee

SLO expresses commitment to

maintain a particular state of the

service over a period of time.

SLO logics Sub-process for

complex representation

of SLO and business

rules

Any rules expressed in the SLA

document.

SLA Exclusion,

Termination

clauses, penalties

Business rules or

conditional Events

To escalate message, system signal

to another party or system

component.

Escalation events Intermediate throwing

or end (escalation,

message, signal) events

To receive violation events. Violation events Start or intermediate

catching (error,

message, signal) events

Scheduling of SLA or Monitoring. Schedule Timer Event

SLA period or others. Period Timer Event

To depict interval i.e., monitoring

collection intervals.

Intervals Timer Event

There are 4 basic categories of notations, 1) flow object

(Event, Activity, Gateway) –core objects types to represent

the operation logics. 2) Connecting objects (sequence,
message, association flow) – to show communication or
interaction, 3) swimlanes (pools, lane) – to illustrate different
functional capabilities or responsibilities. And 4) artifacts (
Data Objects, Group, Annotation)- as a supplementary
notation [31].

A conceptual mapping is discussed in TABLE V between
the SLA [25] to BPMN 2.0 specification [32]. This provides
a guideline on how to use the BPMN in modelling the SLM
process is possibly incomplete or accurate and open for
improvement. To illustrate further, we can express the SLA
violation triggers from monitoring tool or workflow sub-

process as start or intermediate catching;

error, message or signal events or escalation of

events to parties can be formalize using intermediate

throwing or end; escalation, message or signal

events. Any form of rules for example, SLA exclusion,

and terminations can be put into complex business

rules or simplified conditional events at process

flow gateways.

B. Example of IaaS Service into BPM Notation

To illustrate BPMN notation, we present the VM
availability Service Object into BPMN notation in
Figure 3. It shows the a) Enforcement stage and b)
conclusion stage; processes. This process model facilitates
the SLA specification in the design phase of SLM activities
as well as the interpretation of events during SLA
monitoring.

BPMN, similar to BPEL deals with two parts of process
modelling 1) the abstract – partially specified processes that
are not intended to be executed, which hides some of the
required operational details of a process. Abstract processes
serve as a descriptive role with more than one possible use
case, which includes the behaviour or events of the process
i.e. the communication, function or states of processes. It
acts as a management discipline where it was used originally
for people-to-people communication through BPD
modelling. The process may highly underspecify where the
process is presented in high-level descriptions. 2) The
executable business process is an actual behaviour of a
participant in business interactions which is executed in a
BPM-system (BPMS) such as Activiti or jBPM [33].

While this paper presented the SLM into the BPMN
abstract process design model, it is imperative to mention
that the implementation to deliver SLA will requires more
programming effort in order for it to run in a BPMS
workflow engine.

We have modelled the SLM and monitoring logics into
BPMN, which can be executed on workflow engines.
However, to reduce the traffic and monitoring overhead, it is
best to push and translate the workflow into monitoring
specific implementation through bash scripts or any available
monitoring scripting available.

38Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 47 / 66

VIII. CONCLUSION & FUTURE WORK

In this paper, we have summarized relevant SLA objects
and SLA management processes towards a generic SLA
management framework. To design a good SLA orchestrator
tool it is imperative to properly 1) represent the SLA
document into a suitable SLA model and 2) SLM
management process into a suitable process language
notation. Based on our survey, we have derived the SLA and
SLM meta-model to show the relationship, interaction and
categorize those items as compulsory or optional. In
designing the SLA offering and its management process, the
framework should be flexible enough to incorporate or drop
any of the process or object as the SLA offering is never a
fixed process cycle.

 To model the SLA, we opted for WSLA and extended its
concepts in order to support new SLA process activities. We
then proposed a tiered mechanism within the WSLA, which
separates the information, logics, implementation and
runtime information to promote reusability parts-of the
model. We illustrate the usage with an example of an IaaS
VM availability scenario.

To model the processes, we provide a concrete
conceptual mapping of SLA objects and concepts to the
notation of BPMN. In our opinion, the BPMN is the most
suitable process modelling language in order to design and
implement SLA. The BPMN captures the nature, variation of
design and dynamics of the SLM processes. We believe

that by correctly defining those two models it will act as a
guideline in creating the SLA offering.

For future work, a proof of concept of the framework is
required. The tool should be flexible in defining some or a
combination of the SLA management process. IaaS would be
a suitable test case as it is a complex and ever-changing
technology.

REFERENCES

[1] J. Happe, W. Theilmann, A. Edmonds, and K. T. Kearney, “Service
Level Agreements for Multi-Level SLA Management,” Service Level

Agreements for Cloud Computing, P. Wieder, J. M. Butler, W.
Theilmann, and R. Yahyapour, Eds. New York, NY: Springer New

York, pp. 13–26, 2011.

[2] R. Sturm, W. Morris and M. Jander, “Foundations of Service Level
Management.” Indianapolis: SAMS Publisher, p. 272, 2000.

[3] I. Rosenberg, A. Conguista, and R. Kuebert, “Management for

Service Level Agreements,” Service Oriented Infrastructures And
Cloud Service Platforms For The Enterprise, T. Dimitrakos, J.

Martrat, and S. Wesner, Eds. Springer Berlin Heidelberg, pp. 103–

124, 2010.
[4] A. Paschke, J. Dietrich, and K. Kuhla, “A logic based sla

management framework,” in Semantic Web and Policy Workshop

(SWPW) at 4th Semantic Web Conference (ISWC 2005), 2005.
[5] A. Keller and H. Ludwig, “The WSLA framework: Specifying and

monitoring service level agreements for web services,” J. Netw. Syst.

Manag., vol. 11, no. 1, pp. 57–81, 2003.
[6] X. Liu, Y. Yang, D. Yuan, G. Zhang, W. Li, and D. Cao, “A Generic

QoS Framework for Cloud Workflow Systems,” 2011 IEEE Ninth

International Conference on Dependable, Autonomic and Secure
Computing, pp. 713–720, 2011,.

V
M

 A
v
a

ila
b

ili
ty

 S
e

rv
ic

e
 O

b
je

c
t

V
io

la
ti
o

n
 d

e
te

c
ti
o

n
C

o
m

p
e

n
s
a

ti
o

n
V

io
la

ti
o

n
 C

o
rr

e
c
ti
o

n
 A

c
ti
o

n

Repeat Monitoring

Recheck VM

Status

If (VMSTATUS=DOWN)

Calculate VM

Total Down

Get hourly fee

structure

Calculate

compensation

Credit

Compensation

to user account

Check

Host OK

Check

Hypervisor

OK

Check NFS

OK

Check all

component

 are ok

Restart

VM

VM is still down after

 restart & relaunch

Call VMStatus

WebService

If VMStatus

==

DOWN

VM Availability SLA breached

Relaunch VM

on another Host

VM is down

AND

VM has restarted?

If VMSTATUS=UP

If (VMSTATUS==UP)

End Subprocess

Sla violation

VM DOWN

Start Timer

And

Stop until VMSTATUS=UP

User ticket

VM DOWN

Notify user account

 has been credited

Wait 3 min

for VM to UP

VM Down Signal

Start

GET

VMStatus

Wait 5 second

for reply

RECIEVED

VMStatus

Wait every

30 second

Check VM Availability

99.99%

VM

Terminated

Signal Restart VM
Escalate to admin

problem not solved

by self-healing

Terminate all workflow if

VM termination signal or

End of Service Notification

received by the system

Start self-healing from

either from signal or

message

 Figure 3. Enforcement & compensation BPMN Notation

39Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 48 / 66

[7] OSIATIS S.A, “Service Level Management - Introduction and

Objectives,” 2014. [Online]. Available from: http://itil.osiatis.es. 06-
Apr-2014

[8] D. Kyriazis, “Cloud Computing Service Level

Agreements;Exploitation of Research Results,” European Commision
Directorate General Communications Networks, Content and

Technology, Technical Report, 2013.

[9] V. C. Emeakaroha, I. Brandic, M. Maurer and S. Dustdar, “Low level
metrics to high level SLAs-LoM2HiS framework: Bridging the gap

between monitored metrics and SLA parameters in cloud

environments,” The 2010 High Performance Computing and
Simulation Conference (HPCS 2010), pp. 48–54, 2010.

[10] ISACA, “Information Systems Audit and Control Association.”

[Online]. Available from: http://www.isaca.org/. 23-Oct-2014
[11] “WSAG4J Programming Model.” [Online]. Available from:

http://wsag4j.sourceforge.net/site/server/programming_model.html.

06-Apr-2014
[12] C. Ward, M. J. Buco, R. N. Chang, and L. Z. Luan, “A Generic SLA

Semantic Model for the Execution Management of e-Business

Outsourcing Contracts,” E-Commerce and Web Technologies, pp.
363–376, 2002.

[13] H. Ludwig, “WS-Agreement Concepts and Use–Agreement-Based

Service-Oriented Architectures,” IBM Research Division, Technical
Report, 2006.

[14] A. Asosheh and P. Hajinazari, “Towards improving enterprise

performance with Service Level Agreements,” Telecommunications
(IST), 2012 Sixth International Symposium, pp. 913–918, 2012.

[15] W. Theilmann, J. Lambea, F. Brosch, S. Guinea, P. Chronz, F.
Torelli, J. Kennedy, M. Nolan, G. Zacco, G. Spanoudakis, M. Stopar

and G. Armellin, “SLA@SOI Final Report,” European Commission

Information Society and Media, Technical Report, 2011.
[16] W. Theilmann, J. Happe, C. Kotsokalis, A. Edmonds, K. Kearney,

and J. Lambea, “A reference architecture for multi-level sla

management,” Journal of Internet Engineering, vol. 4, no. 1, pp. 289–
298, 2010.

[17] I. Haq, I. Brandic, and E. Schikuta, “SLA Validation in Layered

Cloud Infrastructures,” Economics of Grids, Clouds, Systems, and
Services, R. Y. Philipp Wieder, Joe M. Butler, Wolfgang Theilmann,

Ed. Springer Berlin Heidelberg, pp. 153–164, 2010.

[18] “IRMOS Project.” [Online]. Available from:
http://www.irmosproject.eu/. 23-Oct-2014

[19] “Cloud4SOA Project.” [Online]. Available from:

http://www.cloud4soa.eu/. 23-Oct-2014
[20] “OPTIMIS Project.” [Online]. Available from: http://www.optimis-

project.eu. 23-Oct-2014

[21] M. Smithson, “Applying SOA Governance Using WSRR,
DataPower, and WS-Policy.” [Online]. Available from: https://www-

950.ibm.com/events/wwe/grp/grp004.nsf/vLookupPDFs/Applying

SOA Governance Using WSRR, DataPower, and WS-
Policy/$file/Applying SOA Governance Using WSRR, DataPower,

and WS-Policy.pdf. 23-Oct-2014

[22] “Uptime Software.” [Online]. Available from:
http://www.uptimesoftware.com/. 20-Jun-2014

[23] Servicenow, “Service Level Agreements.” [Online]. Available from:

https://wiki.servicenow.com/index.php?title=Service_Level_Agreeme
nts_(SLA)_Plugin. 01-Jun-2014

[24] J. Meegan, G. Singh, S. Woodward, S. Venticinque, M. Rak, D.

Harris, G. Murray, B. D. Martino, Y. L. Roux, J. McDonald, R. Kean,
M. Edwards, D. Russell and G. Malekkos, “Practical Guide to Cloud

Service Level Agreements version 1.0,” Cloud Standard Consumer

Council, Technical Whitepaper, 2012.
[25] H. Ludwig, A. Keller, A. Dan, R. P. King and R. Franck, “Web

service level agreement (WSLA) language specification,” IBM

Corporation, Technical Report, 2003.
[26] J. Skene, D. D. Lamanna, and W. Emmerich, “Precise service level

agreements,” International Conference on Software Engineering

(ICSE 2004), pp. 179 – 188, 2004.
[27] A. Correia and F. B. e Abreu, “Model-driven service level

management,” 4th International Conference on Autonomous

Infrastructure, Management and Security (AIMS 2010), pp. 85–88,

2010.
[28] A. Correia, F. B. e Abreu and V. Amaral “SLALOM: a Language for

SLA Specification and Monitoring,” Computing Research Repository

(CoRR 2011), pp. 556–567, 2011.
[29] J. Saltzer and M. Kaashoek, “Principles of computer system design:

an introduction.” Morgan Kaufmann, 2009.

[30] A. Solberg, D. Simmonds, R. Reddy, S. Ghosh, and R. France,
“Using Aspect Oriented Techniques to Support Separation of

Concerns in Model Driven Development,” 29th Annu. Int. Comput.

Softw. Appl. Conf., vol. 1, pp. 121–126, 2005.
[31] S. A. White, “Introduction to BPMN,” IBM Cooperation, Technical

Paper, pp. 1–11.

[32] “BPMN 2.0 by Example-version 1.0,” Object Management Group,
Technical Paper, 2010.

[33] Acitiviti, “What is BPM.” [Online]. Available from:

http://activiti.org/faq.html#WhatIsBpm. 07-Mar-2014

40Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 49 / 66

HiPAS: High Performance Adaptive Schema Migration

Evaluation of a Self-Optimizing Database Migration

Hendrik Müller, Andreas Prusch, Steffan Agel

Pasolfora GmbH

An der Leiten 37, 91177 Thalmässing, Germany

{hendrik.mueller|andreas.prusch|steffan.agel}@pasolfora.com

Abstract – HiPAS is a database migration method, aimed at

reducing downtime during offline migrations by automatically

adapting to available system resources. Investigating the

applicability of adaptive capabilities for database migrations,

two stages of system complexity, adaption and anticipation,

were mapped onto the requirement of utilizing a system up to

an optimal degree in order to achieve the shortest possible

transfer duration. The developed method is automated by

implementing the HiPAS software, which adapts to its

environment by continuously monitoring relevant system

information, and increasing or decreasing the current

parallelization degree whenever necessity is assumed. To

enable a flexible adaption, the total amount of migration data

is partitioned into equal sized transfer jobs being distributed

across available instances and networks. Since HiPAS is

invoked on the database layer, and controlled by a temporarily

created autonomous database user, migration metadata is

stored inside tables thus being highly integrated with the actual

migration data. HiPAS was designed and evaluated iteratively

following the IS research framework and reveals significant

downtime reduction potential compared to non-adaptive

migration approaches like Oracle “Data Pump”. Our results

serve as a contribution to all researchers and practitioners in

investigating fields of application for adaptability mechanisms.

Keywords-Adaptability; Anticipation; Database Migration;

Parallelization.

I. INTRODUCTION

The rapid technical developments inside changing
markets, as well as the need for efficiency enhancements,
mainly driven by cost pressure, require to transfer running
information systems occasionally into a new environment,
which fulfills the operational requirements in a more suitable
way. This process is referred to as software migration [1] and
meanwhile the software’s availability can be limited
depending on the chosen migration method. Regarding this,
basically two approaches can be differentiated:

 online Migration: continuous availability

 offline Migration: interrupted availability
In some critical environments, a downtime is not

acceptable, thus online migrations need to be performed.
This paper deals with the variety of cases, which do not
require a costly and complex online migration and a planned
downtime is tenable. In that case the main concern is to keep
the downtime as small as possible since the duration of

unavailability may result in opportunity costs. In particular,
we target migrations applying the “big-bang” strategy [2],
thus data is fully migrated at once in contrast to incremental
migrations. Since the legacy system (source system) is shut
down during the data transfer, starting the target system,
referred to as cut-over [3], cannot be performed before all
required data has been transferred to the target system’s
database. The length of downtime depends on the migration
approach taken. For database migrations, different system
layers can be involved determining the performance and
granularity of data selection (see Section 2). We investigated
the applicability of adaptive capabilities for database
migration software in order to reduce the necessary
downtime by parallelizing data transfer up to an optimal
parallelization degree, which will be continuously adapted to
the system’s load capacity. Prior tests indicated, that
overloading the target or source systems resources leads to a
temporary stagnation of the whole migration progress,
whereas a low utilization wastes available resources, thus
underachieving existing downtime reduction potential.

The developed approach “HiPAS” (High Performance
Adaptive Schema Migration) is intended to provide
dependability and interruptibility, since migration software
should be able to identify where to resume an interrupted
migration process instead of starting from scratch avoiding
the necessity of rescheduling a planned downtime.

Further technically conditioned features will be added in
Section 3 as consequences of the preliminary considerations.
Section 4 summarizes HiPAS´ architecture by means of
introducing adaptability challenges of the subsequent
described migration process. The adaptive capabilities are
outlined in Section 6 and 7. Finally, in Section 8, we evaluate
HiPAS, which refers to both the designed migration method
and the migration software, currently implemented in Oracle
PL/SQL syntax comprising 8,540 lines of source code.

II. PRESENT MIGRATION APPROACHES

As introduced previously, migration approaches can be
differentiated regarding the availability of the migrated
systems into online and offline migrations. For stated
reasons, we focus offline migrations, which can be further
classified concerning their own characteristics and their
applicability for certain database characteristics:

 invocation layer

 support for change of platform

41Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 50 / 66

 support for change of endianness

 support for change of character set

 downtime proportionality
The divergence of the source and target database in terms

of platform, endianness and character set technically limits
the available migration methods. A critical decision criterion
for the remaining contemplable methods is the demand for
downtime shortness resulting in lower opportunity costs
during the unavailability of the database and all relying
applications. The fact, that a high throughput for data
transfer was achieved as yet by eliminating upper layers and
protocols, leads to the conflicting goals of flexibility and
performance when selecting a migration method. The lower
a layer a migration is invoked on the more flexibility is lost,
since changes of database characteristics might not be
supported and the possible granularity for migration data
selection decreases. Finally, downtime proportionality refers
to the entity, which the downtime length depends on; this can
be the amount of migration data or the data alteration rate if
incremental methods are used.

When designing HiPAS, we pursued the goal of
achieving a short downtime and at the same time providing
the flexibility of migrating between divergent databases and
selecting the data as granular as possible. This was achieved
by invoking the migration on database layer without ever
leaving this layer during the whole migration process and by
parallelizing the data transfer adaptively in respect of the
system’s resources. Therefore, we add “adaptability” as a
further decision criterion for migration software capabilities.

III. PRELIMINARY CONSIDERATIONS

The performance of migration software highly depends
on how well its design fits to the operating environment and
the intended range of functions. Previous system and data
analyses are necessary to conclude with a migration design,
which has been aligned to the findings in multiple iterations
following the guidelines of design science in information
system research [4]. Figure 1 shows, how the designed
artefact HiPAS is related to its environment and
knowledgebase base inside the information systems research
framework.

People
Usability

Organizations
License Costs

Platform Change
Downtime Shortness

Technology
Compatibility

Reliability
Interruptibility

No temporary storage

Developed Artefact
HiPAS

Utilizing Adaption for
Database Migrations

Evaluation
Multiple Test Runs

Varying Storage Systems
Varying Networks

Foundations
Law of Adaption
Utilization Law

Little´s Law
Implementation

Methodologies
Data Analyses

KPI based Measures

Environment IS Research Knowledge Base

Assess Refine

Application in the
Environment

Additions to the
Knowledgebase

B
u

si
n

es
s

N
ee

d
s

A
p

p
lic

ab
le

 K
n

o
w

le
d

ge

Figure 1. HiPAS as an IS Research Artefact (Adapted from Information

Systems Research Framework [2]).

HiPAS was intended to be built upon findings of
preliminary analyses (Knowledgebase) described in this
Section as well as business requirements (Environment) and
from then on has been improved continuously, based on
evaluation runs performed in a variety of different
environments provided generously by customers.

A. Enterprise Data Structures

When moving existing data files to the target system, as
migration approaches invoked on storage and database layer
do (see Section 2), the valuable downtime is partly spent
migrating unnecessary or useless data. The allocated size of a
data file implies unused space and indexes. To gain an
overview of typical storage occupancies, we analyzed 41
SAP systems productively running at a German public
authority by querying the allocated disk space, the used disk
space and the space used for indexes with a result shown in
Figure 2.

Figure 2. Average Structure of Allocated Data.

For these 41 SAP Systems, we identified an overall
amount of 93.08 TB allocated data. From this amount, about
28 TB (30 %) represented allocated space, which was not yet
filled with data. From the used space of 65 TB, about 22 TB
(24% of the overall amount) were filled with indexes. The
remaining 43 TB (46% of the overall amount) represent the
actual relevant data, which necessarily needs to be
transferred into the target database within a migration.
Indexes can be created at the target system and do not have
to be transferred, thus saving network bandwidth. Depending
on the layer the migration is invoked on, unused but
allocated data can be excluded as well.

In this case, if all of the analyzed SAP systems needed to
be migrated, migration tools not supporting data selection
would utilize all involved system resources for transferring
data, of which approximately 54% is useless on the target
system. Invoking a migration method on software layer
enables both excluding useless data autonomously and
implementing self-adaptability.

B. Endianness

When performing a database migration, the byte order in
which the source and target system store bytes into memory
needs to be considered. This byte order is referred to as
endianness and data is stored into data files accordingly, so
the endianness can affect the amount of available migration
methods and the overall needed downtime.

A major part of migration demanding customers served
by the authors of this paper currently initiate migration
projects due to licensing and maintenance costs, this amount

42Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 51 / 66

is strongly influenced by an increasing number of platform
migrations from Solaris to Linux, requiring subsequent
migrations on upper layers such as the databases tier. The
latest International Data Corporation (IDC) report on
worldwide server market revenues substantiates this
observation by stating, that Linux server revenue raised from
17% in Q4 2010 to 23.2% in Q2 2013 compared to Unix
decreasing from 25.6% down to 15.1% [5]. The Unix-based
Solaris operates on processors following Oracle´s SPARC
architecture, whereas Linux distributions can be used on
systems based on Intel processors. When migrating from
Solaris to Linux accordingly the endianness changes from
big endian to little endian, so the data files cannot simply be
moved without converting them before or after the transfer.

Alternatively to converting data files, the database
migration can be invoked on a layer, which supports saving
the data into new files on the target system such as export-
import-tools as well as HiPAS do. In this case, migration
performance can be enhanced by means of adaptive
capabilities.

C. Storage I/O Controller

As a consequence of the requirement for downtimes as
short as possible, a utilization degree of the underlying
storage systems has to be achieved, which enables short
response times. The overall amount of requests inside a
system (N) equals the product of arrival rate (a) and average
response time (R) as expressed by Little´s Law [6]:

 (1)

In addition the Utilization Law [7] defines the utilization
(U) of the I/O controller as the product of arrival rate and
average processing time (RS):

 (2)

By combining these relations, it becomes clear that the
response time depends on the I/O controller’s utilization as
described within the following formula: [8]

 (3)

The relation shows, that the response time does not
change linearly to the utilization. At higher utilizations, the
response time grows exponentially as clarified in Figure 3.

R
es

p
on

se
 T

im
e

70% 100%0%

Figure 3. Relation of Utilization and Response Time.

By adapting to the source and target system resources,
HiPAS continuously changes the utilization of the I/O
controller in order to achieve an optimal relation of response
time and utilization supporting the shortest possible overall
duration. The storage manufacturer EMC generally describes
an average utilization of 70% as optimal [8].

IV. HIPAS ARCHITECTURE

Following the goals introduced in Section 1, we designed
the HiPAS migration method as describes in the following.

A. Everything is a Tuple

When performing an automated and controllable
migration, a number of interim results arise, e.g., during the
analysis of source data. Keeping these information as well as
logging and status information is necessary for the
administrator to manage and verify the migration and for the
software itself to handle parallel job executions
autonomously. The necessity for saving and querying
migration metadata leads to HiPAS’s design paradigm of not
leaving the database layer during the whole migration
process. Interim results such as generated DDL and DML
Statements for later execution are represented by tuples of
tables inside a temporary migration schema enjoying
advantages of the databases transactional control
mechanisms. The paradigm of everything being a tuple is
emphasized by the following list:

 objects to create are tuples (table “cr_sql”)

 data to transfer are tuples (table “transfer_job_list”)

 running jobs are tuples (table “mig_control”)

 parameters are tuples (table “param”)

 logs are tuples (table “logging”)
After a migration has been performed, its success and the

transferred data´s integrity have to be verified. Since logging
information was stored during the whole process inside the
logging table, SQL can be leveraged to query for certain
transferred objects or states or both. Sorting, calculating and
analytical capabilities of SQL are utilized as well for
optimizing the migration process, thus there is no need for
any other migration application on operating system level
then the database management system (DBMS) itself.

B. Adaptability and Dependability Problems

When designing the migration method and

implementing the related software, several challenges had to

be faced. In this Section, we will briefly introduce some of

the most interesting problems and their intended solutions:

 Utilization Problem

 Knapsack Problem

 Distribution Problem

 Dependency Problem

 Index Problem

Subsequently described solution approaches for the above

listed problems will provide an overview of the conceived

migration method. In-depth Sections are referenced.

1) Utilization Problem: Utilization cannot be planned

generally since systems behave differently depending on

43Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 52 / 66

their resources and further running processes. During the

evaluation phase performed migration test runs having a

preliminary defined static parallelization degree, verify this

statement, which leads to the risk of both overloading a

system and on the other, hand not utilizing idle resources.

Derived from the relationship between utilization and

response time described in Section 3-C, Figure 4 shows how

the overall performance, in terms of response time, behaves

at increasing parallelization degrees:

R
es

p
on

se
 T

im
e

Figure 4. Expansion when Overloading the Storage System.

By choosing the currently optimal parallelization degree

adaptively at any time, HiPAS targets an optimal and

dynamic utilization and, in this way, reduces the risk of

utilizing the systems too much or not enough.

Parallelization is implemented by means of background jobs

started through the database scheduler. In this way, the yet

manual task of finding the optimal parallelization degree for

the respective system environment is intended to be done by

HiPAS automatically and adaptively, implicating the ability

to change this value dynamically during the whole transfer

process.

2) Knapsack Problem: From an amount of objects,

defined by their weights and values, a subset with limited

weight and maximum total value has to be chosen [9]. This

knapsack problem reflects the challenge of choosing optimal

combinations of different sized tables to transfer in parallel,

since the available computing resources are limited. Large

tables should be preferred in a way of starting their transfer

at the beginning of the migration process, because a possible

failure can require a restart of the table transfer thus delaying

the whole migration when started too late. HiPAS

circumvents the knapsack problem by dividing large tables

into equal sized partitions, which can be transferred in

parallel. This offers flexibility in scheduling the data transfer

and dynamically adapting the current parallelization degree.

3) Distribution Problem: Depending on the migration

environment, the accruing work load can be distributed on

multiple instances of a cluster. In terms of network

bandwidth, multiple database links can be created on

different physical network connections between the source

and target system. In this case, HiPAS will distribute data to

be transferred equally on the available database links in order

to utilize the total available bandwidths. In case of a real

application cluster (RAC), HiPAS distributes running

transfer jobs on the available instances. Then the fact of the

previously mentioned partitioning of large tables needs to be

considered. We optimized the data buffers of the instances

by distributing transfer jobs, which continue a large table, to

the instance, which already transferred previous parts of the

same table to avoid reloading the table into multiple buffers

of different instances. The corresponding algorithm is

explained in Section 7-D.

4) Dependency Problem: When invoking the migration

on database layer, dependencies among the transferred

objects need to be considered for the transfer order. Surely,

users need to exist before importing data into created tables

and granting permissions found in the source schema.

Constraints like foreign keys have to be disabled temporary,

so HiPAS does not have to spend time for calculate a strict

and inflexible transfer order. If reference partitioning was

used inside the source schema, a parent table needs to exist

before the child table can be created following the same

partitions. For considering such dependencies, HiPAS

calculates a transfer schedule in the first place. Since

possible existing triggers will be transferred as well, they

need to be disabled during the migration process in order to

avoid unexpected operations on the target system, e.g.,

invoked by an insert trigger.

5) Index Problem: Indexes can either be created directly

after table creation or after the table has been filled with data.

When creating the index before data load, they will be built

“on the fly” during the transfer phase, in contrast, after data

load, an additional index buildup phase would need to be

scheduled. The right time for indexing depends on the target

storage system and network bandwidths. In case of a highly

powerful storage system, it might be reasonable to build the

indexes directly during data import since the network

represents the bottleneck of the whole migration and the

storage system would idle otherwise. On the other hand,

storage systems can be overloaded when indexes have to be

created at import time. Consequently, the decision about the

indexing time is another use case for the adaptive capabilities

of HiPAS explained in Section 7-C.

V. COMPONENTS AND MIGRATION PROCESS

Assuming, that both source and target database system
have been physically connected preliminary and are
configured to be accessible by each other, the migration
process consists of three main phases invoked on the target
system, which are briefly described subsequently:

1. Installation and Pre-Transfer (Step 1-3)
2. Adaptive Data Transfer (Step 4-6)
3. Post-Transfer and Uninstallation (Step 7)
Figure 6 on the next page shows the steps of these

phases, which are invoked on the target system.

A. Installation and Pre-Transfer

Following the paradigm of not leaving the database layer, an

additional and temporary schema is created inside both

source and target database during an automated installation

phase. All subsequent operations will be done by the owner

44Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 53 / 66

logging

transfer_job_list

mig_control

cr_sql

Temporary Migration Schema: MIG_ADM

Target Schema:
 e.g. SAPSR3

Source Schema:
e.g. SAPSR3

cr_sql_remote

logging

other

Temporary Migration

Schema: MIG_ADM

copy_table(_range)

build_transfer_schedule

get_schemas

_and_tables

paramexecute_next_

tab_job

Create schemas,

create_tables

otherS
o

u
rc

e
 D

a
ta

b
a

s
e

T
a

rg
e

t D
a
ta

b
a

s
e

1

2

3

4

5 optimizer6 migration_report7

Figure 6. HiPAS Architecture.

of this schema. Creating this user as well as creating and

compiling a PL/SQL package, needed for performing the

migration, is part of an automated installation process. Prior

to the data transfer phase, the source schemas need to be

analyzed and accordingly created inside the target database.

For this purpose, SQL statements for creating the identified

objects will be generated and stored inside the table

“cr_sql_remote”. This table will be copied to the target site

and contains information regarding the objects to be created

and its creation status. In addition, every operation

performed causes status information to be written into the

table “logging” (see Figure 5), enabling the database

administrator to perform any necessary analysis, e.g., by

querying for possible errors during or after the migration:

select logdate, loginfo from logging where info_level
= ‘ERROR’;

After the initial analyses of the source schema, all

identified objects have the status “init” and will therefore be

created by HiPAS at the target site. All objects containing

“created” inside their corresponding status column will be

ignored, enabling the whole migration process to be paused

and continued at any time. The table “param” (see Figure 5)

serves as a user interface for parameterizing HiPAS

manually beforehand, in case certain adaptive capabilities

shall not be utilized.

Techniques like reference partitioning inside the source

schema have to be considered and will determine the order

of creation, since child tables will not be created and

partitioned unless the related parent table exists. The Index

creation is either part of the pre-transfer or will be initiated

after all tables are filled with data. HiPAS decides

automatically for the most suitable approach depending on

the storage system and network bandwidth as described in

Section 7-C.

B. Adaptive Data Transfer

The data transfer is based on two simple SQL statements:

 Insert into a table as selecting from a source table

 Querying remote tables through a database link

The combination of these statements makes it possible to

fill local tables with remotely selected data. The resulting

command is generated and parameterized at runtime:

sql_stmt := 'insert /*+ APPEND */ into "' || schema ||

'"."' || table_name || '" select * from "' || schema

|| '"."' || table_name || '"@' || db_link;

This statement is generated and executed by transfer

jobs. The number of transfer jobs running in background is

adapted continuously and depends on the resource

utilization. As a pre-transfer stage, metadata of all objects

stored in the source schema has been inserted into a table

named “transfer_job_list”. Tables to be transferred,

exceeding a defined size, will be partitioned and, thus,

transferred by multiple transfer jobs. In this case, the job

type changes from “table” to “table_range” and row IDs

mark the range’s start and end (see Figure 5).

TRANSFER_JOB_LIST

OWNERPS

ROW_ID_START

ROW_ID_END

OBJECT_NAMEPS

OBJECT_TYPEPS

PARTITION_IDPS

BLOCKS

STATUS

MIG_CONTROL

JOB_IDPS

COMMAND

STATUS

STARTED

ENDED

STATUS_UPD

JOB_ID
PS
FK

LOGGING

LOGDATEPS

LOGINFOPS

SQLPS

MODULE

INFO_LEVEL

PARAM

PARAM_NAMEPS

PARAM_VALUE

PARAM_COMMENT

Figure 5. Metadata Entities for the Adaptive Data Transfer Phase.

Through partitioning, HiPAS can adapt more flexible to the

current utilization, since the number of parallel jobs can be

reduced or increased more frequently. HiPAS’ table

“mig_control” (see Figure 5) lists all background jobs

transferring the objects stored in “transfer_job_list”. In this

respect the column “command” inside “mig_control” serves

as an interface for controlling the transfer process, either

autonomously by HiPAS or manually by the database

administrator. When overwriting its content with keywords

like “stop” or “continue”, individual jobs will be stopped

after finishing or continued, causing timestamps to be written

into the column “status_upd” and if necessary into “ended”.

By this means, HiPAS is able to reduce or increase the

number of parallel running transfer jobs transparently in

respect of the optimizer’s decision, which is described in

Section 7. For the migration time, all constraints will be

disabled temporary by HiPAS, enabling the table

“transfer_job_list” to be ordered by blocks instead of

considering key dependencies. Existing database triggers

will also be disabled avoiding any unintended execution

during the database migration.

C. Post-Transfer

After all source data has been transferred into the target

schemas, the data has to be validated. Documenting data

consistency and integrity is mission critical both for target

database operation and for legal reasons. Only after verifying

the equality of source and target data, the migration can be

declared as successful, requiring HiPAS to not only

compare source and target sizes, but also counting the rows

of all tables. Finally, the disabled constraints and triggers

will be enabled again.

45Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 54 / 66

VI. ENABLING PARALLELIZATION

In order to control the degree of HiPAS utilizing the
available hardware resources the migration data transferred
at the same time must be limitable. Restricting the number of
parallel processed tables would be inappropriate since it
required similar sized tables. Instead a defined number of
blocks form a pack of data and a certain number of packs can
be processed at the same time. That is, each pack has the
same size and will be transferred by a single transfer job.
Thus, adding or removing a transfer job burdens respectively
disburdens the source and target system. HiPAS adapts to the
underlying system resources by deciding autonomously how
many transfer jobs are possible at any time.

To enable the amount of data to be partitioned into equal
packs, a so called block split range defines their size. Since
the tables on the target system are filled by generated “insert
as select”-statements, its scope can be limited to a range
between two row IDs, which represent the beginning and the
end of each data pack. During the source schema analysis,
these row IDs are identified by an analytical function. In this
manner, large tables are partitioned into groups with row ID
boundaries as Figure 7 shows exemplary.

Figure 7. Assigning Row IDs as Group Boundaries.

The identified IDs will be used during the transfer phase
to limit the data of a single transfer job to the given block
split range by adding a “where rowid between”-clause when
selecting from the remote database:

insert into schema.table_name select * from
schema.table_name@db_link where rowid
between MIN_RID and MAX_RID;

Having partitioned the full amount of migration data into

parts of a maximum defined size (block split range), HiPAS

creates equally treatable transfer entities. These entities can

be parallelized up to a degree defined by an adaptive

transfer optimizer.

VII. ADAPTIVE CAPABILITIES

For parallelizing the data transfer during phase 2 of the
migration process (see Section 5-B) with an optimal
parallelization degree, we target an adaptive migration
software. Adaptivity in general describes the capability of
adjusting to an environment. In biology, the term is often
used to describe physiological and behavioral changes of
organisms in process of evolution. In informatics, the term is
transferred to systems or components, which adapt to their
available resources. However, here not to increase
reproduction chances but often in order to achieve an optimal
system performance. Adaption improves the resource
efficiency and flexibility of software-intensive systems and
means that a system adapts to changes of its environment, its
requirements and its resources [11]. According to Martíin

et.al. [12], adaption can also be seen as the first of three
stages of the currently conceivable system complexity extent.
Anticipation and rationality follow as further stages (see
Figure 8).

System Complexity

Adaption Anticipation Rationality

Figure 8. Levels of System Complexity (Adapted from [12]).

Thus, adaption describes the interaction of two elements:
A control system and its environment. The goal is, to reach a
defined state of the environment by means of actions
initiated by the control system [13]. The control system then
reacts on the self-precipitated changes of the environment
with initiating new changes. It has been defined that an
adaptive system is present, if the probability of a change of a
system S triggered by an event E is higher than the
probability of the system to change independently from the
event:

 [12] (4)

Furthermore, the condition has to apply, that the system
reaches the desired state after a non-defined duration. This
implies the convergence of the mentioned probabilities
towards infinite:

 [12] (5)

This law of adaption [12] requires the control system to
know for each modification of its environment a sufficiently
granulated attribute, which contributes to the desired state´s
achievement allowing the adaption to end. For the first stage
of complexity, the direction and the extent of modifications
are built upon each other, thus, enabling the system to reach
the desired state incrementally. If the modifications are not
steps of a targeted adjustment process, but based on
knowledge, predictions [14] or intuition, the process can be
defined, in terms of system complexity, as anticipation. The
third stage “rationality” implies intelligence; those systems
are able to react to unpredictable changes of their
environment and to balance contradictory objectives against
each other [12]. This stage exceeds the objective of this
paper and therefor was not scoped. Applying this
differentiation on the design of an adaptive migration
software, two approaches emerge for parallelizing the data
transfer:

 A solely adaptive system, based on an incremental
adjustment process, until changes do not evoke
further improvements, thus, reaching the state of an
optimal parallelization degree.

 An anticipatory system, which makes
continuously new modification decisions
independently of each other, based on knowledge
about used and monitored resources.

46Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 55 / 66

These two approaches have been designed and
implemented as described subsequently and evaluated as
described in Section 8. Due to HiPAS’ scalable architecture,
the respective procedures could be implemented as plugins
and additionally started for evaluation. Both plugins control
the data transfer via values inside the table “mig_control”
(see Section 5-B) serving as an interface.

A. Adaption

The solely adaptive approach will successively increase
the parallelization degree and therefor the source and target
systems utilization. After each enhancement its
consequences on the system environment meaning the
migration performance is measured in terms of inserted
megabytes per time unit. The adaption can be started by
running an additional procedure “calibrate”, which invokes
either the procedure “increase” or “decrease” for modifying
the parallelization degree, starting from one transfer job per
database link at the same time. The number of jobs to be
added or deducted will be reduced after each time a change
in direction was required, by this means the algorithm brings
the number of parallel jobs closer to the optimum. After
reaching a defined modification count (number of jobs to add
or deduct) the algorithm assumes having approximated the
optimal parallelization degree and the adaption ends,
representing the finiteness requirement of adaptive systems.

The variable “diff_level” describes the current
modification extent, meaning the number of jobs to start
additionally or to stop after finishing. To reach a required
level of flexibility for changing the number of jobs shortly,
the size of a transfer job is limited to the introduced
block_split_range. The following code example shows how
the number of jobs is reduced by the value of the variable
“diff_level”:

update mig_control set command = 'STOP' where job =
'loop_while_jobs_todo' and command = 'continue' and
rownum <= diff_level; commit;

Since the tuples inside “mig_control” represent
background jobs and each tuple has a row number, jobs can
be stopped for each row number being smaller than
“diff_level”. The mentioned value “loop_while_jobs_todo”
is the name of the procedure every background job runs for
processing all defined transfer jobs listed inside the table
“transfer_job_list”. If a background job is marked with the
command “STOP”, it will be deleted after finishing the
current transfer job and afterwards marked with the keyword
“ended”.

B. Anticipation

If the adaption is based on predictions, we call it
anticipation as the next level of complexity [12]. In contrast
to the solely adaptive approach, HiPAS now optimizes the
parallelization degree continuously and based on a different
algorithm. For mapping the described theoretical insights to
our migration use case, we implemented an optimizer
package, which predicts the optimal amount of parallel
running jobs for the upcoming period. This decision is based
on a combination of the following relevant system

information, which is continuously monitored by the DBMS
across all involved database instances:

 Concurrency events on target system

 Concurrency events on source system

 Average write time on target system

 Average read time on source system

 Average read time on target system

 Average write time on source system

 Redo log buffer size

 Available memory size
An important concurrency event, for instance, occurs

when the high water mark of a segment needs to be
increased, since new blocks are inserted into the same table
by multiple and competing processes, this is known as high
water mark enqueue contention [15]. The optimizer analyzes
the above listed values and calculates a fail indicator as well
as the number of additionally possible jobs according to the
measured available resources like memory size and disk
utilization. In contrary the fail indicator indicates possible
bottlenecks and can prompt the optimizer to reduce the
amount of currently running jobs. The introduced
components form a feedback loop according to the MAPE-K
(Monitor-Analyze-Plan-Execute-Knowledge) loop reference
model developed by IBM [16] as shown in Figure 9.

DBMS

Monitor Analyse & Plan

optimizer()
loop_while_
jobs_todo()

Performance Views mig_control

Execute

 logging

Figure 9. MAPE-K [16] Based Adaptive Feedback Loop.

Typical indicators for possibly arising bottlenecks are
increasing concurrency events while the redo log buffer size
decreases. If such a situation has been monitored, the
optimizer will reduce the number of parallel jobs based on a
high failure indicator. Whenever the optimizer acts, a log
string is written to the logging table as in the following
example:

“Prev Jobs: 40/ Jobs: 40 Max Jobs: 400 # Read Avg:
3.32(20-40) # Write Avg: 105.9(100-200) # R_Read Avg:
.12(20-40) # R_Write Avg: .3(20-40) # R Fail Ind: 3
conc:3026(2607) redo:5720763732(5776886904)
r_conc:5157(5069) # numjobs > 0 # Jobs being stopped:
0 # (Resource Overload) and numjobs > minjobs and
jobs_being_stopped = 0 # Running: 20/Stopping: 5 on
inst:1 # Running: 20/Stopping: 5 on inst:2”

In the above extracted example, 40 jobs are running in
parallel. Due to increasing concurrency events, the optimizer
detects a possible overload of the target system and decides
to stop 5 running jobs on each instance. The jobs will
terminate after they completed transferring their current
objects. This is implemented by writing “stop” commands
into the table “mig_control”, which the procedure
“loop_while_jobs_to_do()” will carry out (see Figure 9). The
next log string will start with the information “Prev Jobs: 40/
Jobs: 30” accordingly. Additionally, not only the overall
amount of jobs is measured, but also the memory each server
process allocates. This value highly depends on the data

47Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 56 / 66

types of the currently transferred data. If too much memory
is allocated, the number of jobs will be reduced as well. In
order to avoid downward or upward spirals, e.g., due to the
reducing redo log buffer size when stopping jobs, bottom
lines and limits are defined. Hence the optimizer decides on
the basis of a branched search for indicating relations
between the monitored information. Surely, these are only
indicators not to be seen as evidence, so the algorithm
follows a heuristic approach. In contrary to the solely
adaptive approach and to a statically parallelized transfer, the
optimizer is able to dynamically react to unexpected events
and predict a possibly optimum level of system utilization
during the whole migration process. In the following
Sections and for the evaluation, when mentioning the
adaptive capabilities, we always refer to the anticipatory
approach as it was performing more efficient during
preliminary tests.

C. Time of Indexing

As previously termed as the “index problem”, the right
time for indexing the data depends on the combination of
storage system performance and network bandwidth. If not
manually parameterized inside the “param” table, HiPAS
therefore decides by means of test tables filled with random
data and having indexes on multiple columns, if it creates the
indexes before or after data loading. For the two possibilities
of index creation, the time for performing the respective
steps is measured and compared to each other. After
comparing the two measurements, HiPAS updates the
parameter “index_while_transfer” inside the “param” table
autonomously by inserting “true” or “false”. This test can be
performed during a common migration test run on the actual
system environment and excluded for the productive
migration reusing the “param” table.

D. Transfer Order and Instance Affinity

The table “transfer_job_list” contains all objects, which
need to be transferred to the target. When selecting the next
object for transfer, this table needs to be ordered by blocks
since large objects are preferred by HiPAS. Furthermore, an
instance prefers table partitions of tables, which already have
been started to be transferred by this instance. Accordingly
the next table or table range to be transferred is always
selected as follow:

select * from transfer_job_list where status =
'PENDING' and object_type = 'TABLE' and (instance = 0
OR instance = sys_context('USERENV', 'INSTANCE'))
order by instance desc, blocks desc, partition_name;

If an instance starts transferring a table range of a large
table, it marks all other table ranges of the same table by
inserting the instance number into all tuples related to this
table. By this means, instances reserve tables in order to
avoid loading the same table into data buffers of other
instances. For this reason, instances prefer tuples marked by
themselves and tuples not reserved by any other instance,
which has been implemented by means of the above
displayed “where clause”. In addition, the actual block split
range, defining the limit for the size of all table ranges, is
identified partly adaptively. For a given maximum block

split range, HiPAS calculates the optimal block split range
by counting tables and their sizes resulting in an optimal
ratio of a ranges size and its total count.

VIII. EVALUATION

The migration method has been tested in several
customer environments with differently powerful server,
storage systems and networks. Following the design science
approach, HiPAS has been improved in multiple iterations
based on test results.

A. Experiment Setup

For this paper, we set up a test environment consisting of
a source and target system installed on physically separated
virtual machines, each having 4 CPUs and 16 GB of main
memory. Both the source and target database are real
application cluster (RAC) environments running Oracle
Database 11g Enterprise Edition Release 11.2.0.3.0. On each
side two instances are available connected to the other side
through a 1 Gigabit Ethernet. The source system reads from
solid state drives and the target system writes on common
SATA disks. For evaluation, we performed multiple test runs
belonging to the following three different main tests:

(1) Function test with a 300 GB schema (Test A)
(2) Performance test with a 16 GB schema (Test B.1)
(3) Performance test with a 32 GB schema (Test B.2)

To create the different database schemata, we
implemented a software package, which generates database
schemata filled with random data and including all special
cases we could imagine HiPAS to encounter at productive
customer environments. By means of this software, we
created different sized test schemata inside the source
database for test migrations. For the function test (Test A),
the schema included characteristics like foreign key
constraints, a variety of character, numeric and binary data
types, reference partitioning, indexes, table clusters, views as
well as different rights and roles. In this manner we were
able to test the compatibility of HiPAS with different data
types, objects and complex data structures. The used schema
has an overall size of 300 GB, which was large enough to
analyze HiPAS adaptive behavior during the migration run.
To compare HiPAS migration performance with the current
Oracle standard migration tool for exports and imports “Data
Pump” [17], [10], we reduced the size for being able to
perform multiple test runs and to average out performance
values across all performed runs. These performance focused
migration runs are referred to as test B. After each migration,
we fully deleted the migrated schema and rebooted the whole
server in order to have the same initial cache situation for all
runs. The results of all tests are shown subsequently.

B. Results

In the following the results of the function test (A) and
the performance tests (B) are presented.

1) Function Test (Test A): As described in Section 6-A,

“Test A” aims at analyzing HiPAS adaptive behavior and

compatibility. We implemented a package, which compares

the created target schema with the original source schema by

48Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 57 / 66

counting rows and columns. We verified that all data objects

were created inside the target schema successfully. The

optimizer, providing the adaptive capabilities of HiPAS,

writes log information whenever an adaption is needed. An

example of such a single log string has been introduced in

Section 7-B. Analyzing all tuples, written into the logging

table during a migration run, leads to the migration process

shown in Figure 10. The transfer started at 12:08 pm and

ended at 12:47 pm. HiPAS transferred the created test

schema, filled with 300 GB of random data, starting with 20

background jobs running in parallel meaning 10 jobs per

instance, since HiPAS identified two available instances on

the target system for job distribution. After 39 minutes, the

transfer ended with a current total number of 116 parallel

running jobs. The “block split range” was 25120 blocks, so,

with a configured data block size of 8 KB, each job

transferred a maximum amount of approximately 200 MB.

Figure 10. Adaptive Migration Process with HiPAS.

Tables, smaller than the split range, were not partitioned
and transferred at the end of the migration, since large tables
are preferred by the data selection algorithm. If a job
transfers less data (small table), more parallel jobs are
possible, so HiPAS raised the number of running jobs as the
migration time goes by, which explains the slope of the
graph shown in Figure 10.

2) Performance Test (Test B.1): For the first

performance test, we created a schema of 16 GB including

the mentioned data types in Section 8-A. The different test

runs of test B.1 are described as follows:

(1) Migration by means of HiPAS adaptively and with

enabled partitioning of large tables

(2) Migration by means of HiPAS with a static

parallelization degree of 20 running jobs and enabled

partitioning of large tables

(3) Migration by means of HiPAS with a static

parallelization degree of 10 running jobs and enabled

partitioning of large tables

(4) Migration by means of HiPAS with a static

parallelization degree of 10 running jobs and disabled

partitioning of large tables

(5) Migration by means of HiPAS without parallelization

(sequential) and with disabled partitioning of large

tables

(6) Migration by means of Oracle Data Pump

We performed the described test runs three times in order

to compensate statistical outliers, possibly caused by

uninfluenceable events of the database management system

or the operating system. This was necessary because the test

runs had to be performed successively to provide the same

environment for all tested methods. Afterwards, we

calculated for each method the average total duration of the

three runs. The final result is shown in Figure 11. The small

test schema of 16 GB has been transferred by HiPAS

averagely within 11 minutes, enabling adaptive capabilities

(more precisely “anticipation”) and partitioning of large

tables. Transferring the same schema by means of the Oracle

tool Data Pump, using the number of available CPUs as the

“parallel” parameter [17], took averagely 53 minutes, which

means a deceleration of approximately 382% compared to

HiPAS. Comparing the different HiPAS migration runs with

each other, it can be stated that parallelizing in general

noticeably reduces the transfer duration, which is indicative

for our assumption of utilizing the available resources more

efficiently by parallelizing. Comparing test run 3 and 4

shows that partitioning large tables for the transfer barely

improves the overall performance, since the partitioning

feature was implemented to improve the flexibility of HiPAS

when its optimizer needs to adapt quickly to changing

resource availabilities. Thus, the adaptive migration run with

enabled partitioning of large tables performed best in terms

of downtime shortness.

Figure 11. Transfer Performance for a 16GB Schema (B.1).

3) Performance Test (Test B.2): In addition to the 16 GB

schema, we performed the same test runs with a schema size

of 32 GB to evaluate how the adaptive capabilities work for

a longer period of transfer time. The static parallelized runs

have been performed as well and showed results proportional

to test B.1, so we excluded them from Figure 12 on the next

page.

49Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 58 / 66

Figure 12. Transfer Performance for a 32GB Schema (B.2).

HiPAS, with enabled partitioning, adaptively transferred the

schema within 51 minutes, compared to 2.23 hours needed

by Data Pump, meaning this time HiPAS took 38% of Data

Pump’s transfer duration, whereas the single threaded

configured HiPAS took about 75%. As a consequence, we

assume, that non-adaptive sequential and Data Pump

migrations leave useful resources idle or need to be tuned

manually. In addition to the introduced test runs for

evaluation within the scope of this paper, we performed

several further tests in customer environments achieving

considerable results, especially for schemata storing large

objects. In terms of network bandwidth, we reached transfer

rates of 120 MB/s for each database link created on a 1

Gigabit Ethernet.

IX. CONCLUSION AND FUTURE WORK

The target conflict of flexibility and performance, when
choosing an offline database migration method, has been
addressed by designing HiPAS. Through implementing an
adaptive transfer algorithm, which continuously optimizes
the source and target system utilization, significant
performance gains have been achieved comparing the test
results to non-adaptive migration methods. The paradigm of
saving all migration metadata inside the database allows a
clear and highly reliable architecture and appeared to support
an efficient interaction of all HiPAS migration components
and the actual migration data. We state, that implementing
anticipatory capabilities into migration software significantly
improve the performance of migrations invoked on database
layer. Anticipation is more suitable than sole adaption, since
database systems provide varied performance indicators,
which need to be monitored during the whole progress.

Statically parallelized test runs did not adapt to changing
utilization requirements, thus, performed less efficiently. The
implementation as a stored object leads to the disadvantage
of having to develop separate implementations for different
database systems. As HiPAS currently has been
implemented only for Oracle, we plan to build and evaluate
further versions supporting different types of source and
target systems. We encourage interested researchers to get in
touch with us and share experiences in interconnecting
adaptive components and databases.

ACKNOWLEDGMENT

We strongly like to thank all members of the Pasolfora
Performance Research and Innovation Group (PPRG) for the
support and possibility of performing the countless number
of demo migrations during the development and evaluation
of HiPAS. Furthermore, we thank Prof. Dr. Michael Höding
of the Brandenburg University of Applied Sciences for
giving scientific relevant input when mapping adaptive
insights to the requirements of offline database migrations.

REFERENCES

[1] H.M. Sneed, E. Wolf, and H. Heilmann. Software Migration
in Praxis. Dpunkt, 2010.

[2] M. Brodie and M. Stonebraker, Migrating Legacy Systems
Gateways, Interfaces and the Incremental Approach. Morgan
Kaufmann, 1995.

[3] J. Bisbal, D. Lawless, B. Wu, and J. Grimson, “Legacy
Information Systems: Issues and Directions”.
http://csis.pace.edu/~marchese/CS775/Proj1/legacyinfosys_di
rections.pdf, IEEE, 1999, p. 107.

[4] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design
Science in Information Systems Research”. MIS Quarterly
Vol. 28 No.1., 2004, p. 80.

[5] M. Eastwood, J. Scaramella, K. Stolarski, and M. Shirer,
Worldwide Server Market Revenues Decline -6.2% in Second
Quarter as Market Demand Remains Weak, According to
IDC.
http://www.idc.com/getdoc.jsp?containerId=prUS24285213,
2013 .

[6] J. D. C. Little, “A Proof for the Queuing Formula: L= λ W,
In: Operations Research”, Cleveland, 1961.

[7] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik,
Fundamental Laws.
http://homes.cs.washington.edu/~lazowska/qsp/Images/Chap_
03.pdf, p. 42.

[8] G. Somasundarum and A. Shrivastava, Information Storage
and Management - Storing, Managing, and Protecting Digital
Information. EMC Education Services, Wiley Publishing Inc.
Inianapolis 2009, p. 35.

[9] R.M. Karp, Reducibility Among Combinatorial Problems. In:
Miller, R. E. and Thatcher, J. W. Complexity of Computer
Computations. Plenum Press, New York 1972, 93.

[10] Oracle. Oracle Database Utilities 11g Release 2. 2014, p. 1

[11] Fraunhofer. Adaptive Systems. Fraunhofer Institute for
Embedded Systems and Communication Technologies,
http://www.esk.fraunhofer.de/de/kompetenzen/adaptive_syste
me.html.

[12] J. A. Martin Hernandez, J. de Lope and D. Maravall,
“Adaptation, anticipation and rationality in natural and
artificial systems: computational paradigms mimicking
nature.”, Natural Computing, Volume 8, Issue 4, Springer
Netherlands, 2009, pp. 758-765.

[13] N. Wiener, Kybernetik. Econ-Verlag, Düsseldorf 1963.

[14] R. Rosen, Anticipatory systems. Pergamon Press, Oxford 1985.

[15] Oracle. Enqueue: HW, Segment High Water Mark -
contention.
http://docs.oracle.com/cd/B16240_01/doc/doc.102/e16282/or
acle_database_help/oracle_database_wait_bottlenecks_enque
ue_hw_pct.html, 2009.

[16] IBM. An architectural blueprint for autonomic computing.
Tech. rep., IBM. 2003.

[17] Oracle. Data Pump in Oracle Database 11g Release 2: Foun-
dation for Ultra High-Speed Data Movement Utilities, p.2-27.

50Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 59 / 66

Evaluation of Software-Based Fault-Tolerant

Techniques on Embedded OS’s Components

Hosein Mohammadi Makrani
1
, Amir Mahdi Hosseini Monazzah

2
, Hamed Farbeh

3
, and Seyed Ghassem Miremadi

4

Department of Computer Engineering

Sharif University of Technology

Tehran, Iran 1155-9517

Email: 1makrani@ce.sharif.ir, 2ahosseini@ce.sharif.edu, 3farbeh@mehr.sharif.edu, and 4miremadi@sharif.edu

Abstract—Software-based fault-tolerant techniques at the

operating system level are an effective way to enhance the

reliability of safety-critical embedded applications. This paper

provides an analysis and comparison of five well-known recovery

techniques, i.e., micro rebooting, recovery block, N-Version

Programming (NVP), micro extension, and transactional

extension for an embedded operating system’s components, from

performance point of view. These techniques are applied without

any modification on the main architecture of the operating

system. The techniques are implemented on a virtual ARM

Integrator board which is emulated by the QEMU software

(2.0.0) under the control of Embedded Linux operating system

(3.9.0). The totals of 5000 software errors are ignited using a

simulation environment. The results show that the recovery time

overhead varies between 0.17% and 0.67%, and the performance

overhead varies between 5.81% and 218.65% depending on the
techniques.

Keywords-embedded operating system; fault tolerant; recovery;
performance.

I. INTRODUCTION

Nowadays, the embedded systems are employed as crucial
control components in safety-critical and real-time areas such
as medical devices, automobile, and aviation. To maintain the
dependability of such applications, several fault tolerance
techniques have been proposed in the recent decades.

In the recent years, the improvements in the performance
of hardware devices have led to excessive attentions to
software fault tolerance techniques. The software fault
tolerance techniques can be implemented at the application
code or operating system of an embedded system. Applying
the fault tolerance techniques in an operating system allow the
designers to develop their application without worrying about
the dependability of the whole system. Hence, operating
system approaches are more frequently used in embedded
systems. However, the implementation of fault tolerance
techniques at the operating system level may have side effects
such as the impact on real-time behavior of the embedded
operating system or resource restriction. Therefore, many
constraints (especially form performance point of view)
should be considered in selecting a recovery technique.

An operating system may crash during several error
conditions including: software corruption, hardware
malfunction, memory access violation, and executing illegal
instructions. Most operating systems immediately stop their

operations as soon as they encounter crucial errors in their
hardware or software. Kernel panic in UNIX systems is a good
example for such behaviors in operating systems.

Among the vulnerable parts of operating systems,
extensions (which become widespread in commodity
operating systems such as Linux) play an important role in the
reliability of operating systems. Extensions are optional
components which are presented in the kernel address space
namely device drivers, network protocols, and file systems.
Kernel may include different extensions, and failure in each
extension may propagate to the other ones; hence, the
dependability of kernel extension is highly important.
Extensions cover up to 70% of the operating system source
codes, and their error rate is calculated as 3x to 7x more than
other source codes in operating systems [1].

Considering the above discussion, the goal of Fault
tolerance techniques which are presented in this study is to
recover from the transient errors which take place inside the
embedded operating system extensions. The common
characteristic of these methods is that they do not impose any
modification on the base architecture of operating systems.
Investigated recovery techniques are micro rebooting,
recovery block, N-Version Programming (NVP), micro
extension, and transactional extension.

The contribution of this study is the evaluation of
performance characteristics of well-known recovery methods
on the same platform and operating system. The experimental
results in this study will provide significant vision for the
embedded system designer in using these recovery techniques.
For each technique, the recovery time, the CPU utilization, the
response time, and the performance penalty are compared with
other techniques as well as the baseline operating system.

In this study, from the software point of view, Embedded
Linux is selected as a target embedded operating system. From
the hardware aspect, the modified operating system is
executed on an ARM Cortex A9 CPU, which emulated by
QEMU [2]. It is noteworthy that the investigated techniques
are generic and not architecture specific; thus the results can
be regenerated by any other configuration.

To investigate the characteristics of each technique, the
totals of 5000 software errors are ignited. The simulation
results reveal that the recovery time overhead varies between
0.17% and 0.67%, and the performance overhead varies
between 5.81% and 218.65% depending on the techniques.

The remainder of this paper is organized as follows:
Section II describes error signaling and the component

51Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 60 / 66

isolation support for error confinement. Section III provides
technical overview of the investigated techniques. The
experimental setup is presented in Section IV and the results
are presented in Section V. Finally, Section VI concludes the
paper.

II. ERROR DETECTION, CONTAINMENT AND SIGNALING

In this section, error detection, component isolation, and
error signaling support for error confinement will be
described.

A. Error Detection

An error can be detected by different mechanisms in an
embedded operating system. Virtual memory protection,
processor exceptions, code checksums, and watchdog timers
are some of the well-well known detection methods. To
improve the reliability of an embedded operating system,
besides the error detection methods, error containment
methods should be considered as well. Employing error
containment methods leads to the isolation of the erroneous
part(s) of an embedded system from the other parts. After
detection and containment of an error, as a final step, recovery
technique can be applied on the affected component if the
error is limited to its inside. The techniques which are under
evaluation in this study are placed in the final step.

B. Error Containment

In the following paragraphs, the various isolation
mechanisms are discussed in detail.

1) Isolating extensions by code:
A worthy project to isolate component in Linux is Nook

[3] [4]. The Nooks isolation mechanisms avoid errors that
occur in the extensions in order to affect the kernel. Each
kernel extension in Nooks runs in “light weight kernel
protection domain”, which is considered for each kernel
extension. Isolation mechanism can provide two main
features for a system. The first one is to protect the domain
from any manipulation. The other feature is “inter-domain”
control transfer.

2) Isolating extensions by virtual machines
“Virtual Machine” is another method which isolates the

extensions from the rest of a system [5]. In this method, when
an extension is called, the unmodified version of that
extension is run on its original operating system by a virtual
machine. This mechanism allows wide reuse of exiting
extensions, without considering the operating system. By
running each extension in a virtual machine environment, this
method isolates faults produced by faulty extensions. In
addition, [6] and [7] utilized virtualization to confine
extension in its virtual machine.

3) Isolating extensions by moving them to User-Space
 The method introduced in [8] proposes to run extensions

as unprivileged user mode. The results of this study reveal that
extensions can be isolated without considerable performance
degradation.

Besides the above methods, the Micro-Driver introduced
new architecture which maintains critical time consuming
codes in the Linux kernel and moves the reminder of the

extension code to user-mode process [9]. Furthermore, in [10],
user-level driver is implemented for Windows NT.

4) Compiler-level extension isolation
The Open Kernel Environment (OKE) project supports

fully optimized code to be loaded in the kernel [11]. The OKE
enables the restriction modification on the code executing in
the Linux kernel. The Decaf Driver is another approach to
develop drivers by modern languages such as Java [12]. In
Decaf Driver, Linux extensions are converted to Java language
and then executed in user mode.

5) Isolating extensions by changing architecture design
In a number of operating systems, a microkernel is

implemented instead of using a monolithic kernel.
Microkernel only provides simple kernel services. Other
operating system functionality is transferred to the user space
and does not execute at the privileged level. These
architectures intrinsically increase the reliability of the system
since each module can be individually controlled. MINIX3
[13], Mach 3.0 [14], Choices [15] and L4 [16] are some of the
operating systems that benefit from microkernel architecture.

C. Error Signaling

Exception handling is usually employed to signal errors in
user code. In the Linux kernel, the use of exception handling
has been explored in [17]. Hence, system designers can write
exception handlers to manage errors such as null pointers and
invalid op-codes execution in the operating system. This
allows designers to develop a flexible and robust technique to
handle errors. Generic handlers only print out an error
message and stop the operation of the system; however, local
exception handlers generate a desirable response and try to
recover from failures.

III. RECOVERY TECHNIQUES

The techniques which are introduced in this study can be
implemented simply through software approaches on the
operating system components. All these techniques are dealing
with transient failures. In the following subsection, the
architecture of these techniques and how they are
implemented in our evaluation will be explored.

A. Micro Rebooting

Considering the terminology of micro rebooting, re-
execution of the specific part(s) of an application (not the
whole application) is called micro-rebooting. As expected, this
technique uses time redundancy to recover errors. Micro
rebooting can be applied in both application programs and/or
operating system. For the first time, micro-rebooting was
employed to recover faulty application components in [18].
The evaluation presented in [18] shows that employing micro-
reboot increases the availability by reducing recovery time.
This technique also can be used at operating system to recover
faulty components [4]. In [15], it is shown that performing
micro rebooting on faulty extensions is a simple and effective
technique to enhance dependability of operating system.

In our implementation, micro-rebooting mechanism has
two parts. The goal of first part is to bring the system and its
extensions back into clean state. In this part, we insure that

52Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 61 / 66

resources are not taken after they released. In the second part,
recovery mechanism runs user-mode recovery agent, which
can set recovery policies for extensions before reloading them.
Those policies can be written by users in the configuration
files. The main task of recovery is to unload extension and
load it again. When an error is detected by the detection
mechanism, it signals to recovery agent and it runs recovery
routine. After reloading the faulty extension by the agent, it
signals the application to send its request again.

B. Transactional extension

Transactional extension is another approach to recover
systems by using time redundancy. In database expressions, a
transaction is a set of operations, which donate a unit of
consistency and recovery. Features provided by transactions
are isolation, failure atomicity and recoverability [19].
Transactional extension performs transactional operations with
four features “ACID”. These features are atomicity,
consistency, isolation and durability [20]. Durability can
frequently be ignored to simplify implementation.

In MARS project, a transactional model was exploited to
define the activities of a real-time system [21]. The VINO
kernel also used this technique to protect the kernel against
misbehaved kernel extensions [22]. In addition, transactional
component and micro rebooting are both used in the Choices.
The Quicksilver distributed system is another project which
exploits transactions [20].

In our transactional extension, before performing any
operation, the state of the extension has to be saved. If an error
occurs during the transactional operation, the state can be
rolled back and the transaction will be aborted. Subsequently,
the operation is re-executed. Applying transactional model on
extensions leads to performance and space overheads. The
need to save extension states before the operation commitment
causes space overhead. Moreover, the time overhead is due to
perform extra operations. Therefore, the overhead of this
technique depends on the granularity of the operations.

There is a main difference between micro rebooting and
transactional extension. The micro rebooting reloads extension
and re-initializes its internal state. However, the transactional
component only rolls back current transaction. Each of these
techniques can be used depending on the extension. In general,
if an extension has a large volume of data and many internal
states, it is more efficient to use transactional techniques since
occurring an error may harm the amount of data in micro
rebooting; moreover the recovery process impose noticeable
overhead. If data loss is not highly important, micro rebooting
is a suitable candidate for recovery technique in terms of
reducing overhead.

C. Recovery Block

The main recovery block structure is diverse software fault
tolerance technique, which is categorized as dynamic
techniques. The hardware fault tolerant technique related to
the recovery block is stand-by sparing. This technique uses
backward strategy to achieve fault tolerance.

In general, recovery block consists of two variants and one
acceptance test. The first variant is called primary alternate or
primary try block. Another variant called secondary alternates.
These blocks are located in the series. In addition, real-time

implementation of recovery block includes a software
watchdog timer.

In the implementation of recovery block in this paper, the
following extension and procedure are implemented:

 Primary extension, Secondary extension (it is
equal to the primary), Manager Procedure, Save
procedure, Restore procedure, Acceptance test
procedure, and Send result procedure.

Our acceptance test is implemented as an application-
dependent error detection mechanism such as reasonable
check. The acceptance test is unique for two extensions and it
includes no fault tolerance approach as it should be simple and
quick. Watchdog timer procedure is used to detect irregular
behavior such as infinite loop. The manager takes request
from application program and saves state and request. Then, it
sends request to primary extension. Simultaneously, it also
starts a timer. If the response is not returned from primary
extension, manager waits until timer trigs an exception. If the
deadline is missed, manager unloads the primary extension,
restores the state and issue a request. If the deadline is not
missed, the manager sends request to acceptance test.
According to the result of acceptance test, the manager
decides to send the result to application or sends it to
secondary extension (in the case of receiving error signals
from acceptance test unit). If none of the extensions give
correct response, the manager has to send error code to the
application program.

D. N-Version Programming

The NVP is one of the well-known design diverse software
fault tolerance techniques. The NVP is a static technique in
comparison of recovery block. Since a task is executed by
some programs, the result is selected among programs results
via a majority vote.

 In this paper, the NVP is implemented the same as Three
Modular Redundancy (TMR). It means that we use three
different versions of an extension. The difference of TMR
with NVP is that, TMR cannot cover programming mistakes
or bugs, because it uses three copies of a program, which are
equal, but it can mask other types of errors as well as NVP.
The benefit of NVP (with three version of a program) is that it
can transparently recover or mask one error. If an error occurs
and the detection mechanism detects it during execution of an
extension, it sends a signal to voter, and then the voter omits
the result of faulty extension. Like recovery block, NVP has a
manager procedure which reloads faulty extension. The
manager is responsible to take a request from applications and
send the result back to them. Thus the application only
interacts with one module.

E. Micro Extension

Micro extension is a combinational technique which
includes: micro rebooting, transactional extension and user-
level isolation mechanism.

The main goal of micro extension is to reduce kernel
extension size, and increase reliability of operating system.
This is done by moving some parts of extension to user space.
In addition, its objective is to recover faulty extensions with
the minimum overhead. To reach the goal, new approach is
proposed which recovers only some parts of extension. This

53Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 62 / 66

technique neither is as fast as micro rebooting nor as slow as a
technique which their whole extensions are fully in user space.

It was shown that 65% of extension operation can be
moved to the user space [9]. Moving some parts of extension
to user space is a kind of isolation mechanism. Micro
extension also saves internal state of extension, before doing
user space operations, just similar to transactions. At last, it
should be noted that recovery of user level application which
performs extension operations is similar to micro rebooting.

The difference between micro extensions recovery
mechanism and micro rebooting is that micro rebooting
unloads and reloads the whole extension without any restoring
information; however, micro extension recovery mechanism
only destroys and recreates the application which performs
user-level operations on behalf of the extension. It should be
noted that the extension is not changed any longer.
Furthermore, this recovery is transparent from applications
which have sent requests for extension. Additionally, this
mechanism can restore internal state of extension (which is
saved before invoking the extension operation from
application) after application failure.

IV. EXPERIMENTAL SETUP

In this section, the experimental setup used in our
implementations is presented.

A. Experimental Testbed

1) Operating system
Today, Linux is one of the most employed operating

systems in embedded applications which deliver its service
through GPL license. The ability to change the kernel in
Linux-based operating systems made it possible for developers
to customize the kernel by considering customer’s demands. A
noticeable portion of the introduced techniques is that they use
a feature of Linux kernel called Loadable Kernel Module
(LKM). According to the above discussion, Embedded Linux
is selected as a target embedded operating system in this
study. The source code of Embedded Linux is available at
[23].

2) Hardware configuration
QEMU as an open source machine emulator [2] is

considered in the evaluation. In this paper, Cortex-A9 CPU
(ARMv7) and Vexpress-a9 machine are chosen to emulate a
system with 128MB of memory. This configuration provides a
virtual ARM environment that runs Embedded Linux.

B. Error Activation

In this study, evaluation platform of recovery techniques
requires error activation and detection units in order to signal
error to error handler. Afterwards, the handler deploys
appropriate technique to recover from the errors.

For the evaluation of recovery techniques, 1000 Software
error activating experiments were performed for each of the
five techniques. Fault model considered in this study to active
errors are pointer dereferences, invalid arguments, and bad
parameters which randomly injected in the extension. Table 1,
depicts the faults model which were injected in the extension

and their detection latency. Moreover, the response of system
is reported when there is no fault tolerant technique.

C. Test Methodology

The goal of this study is to perform a fair comparison
among operating system-based fault tolerance techniques. To
achieve this goal, a common workload should be considered
for all the five techniques. Hence, an arbitrary extension with
full controllability is written to explore the techniques
considered in this study. Meanwhile, these five techniques can
be applied to the real extensions.

The main task considered for the extension is arithmetical
operation on matrixes. Three reasons can be enumerated in
order to choose such task for extension. The first reason is that
in several device drivers in order to increase computation
speed, most computations are performed in the driver which is
executed with high privilege and at the highest speed. For
example, if a driver needs to calculate a parameter, there is no
need to perform it at user level. Therefore, our extension can
model these behaviors in a proper manner. The second reason
is that the vulnerable part of the drivers is their computational
part. The last reason is that blocks of data usually are
transferred between an extension and an application as in
network drivers. In this case, our extension can exchange large
matrix with an application. Sorting algorithm is considered for
extension task. Because NVP and recovery block need three
and two different versions. The Bubble sort, the Insertion sort,
and the Selection sort were selected. The primary task for
micro rebooting, micro extension, and transactional extension
is bubble sort.

To use this extension, a workload is needed to perform
computation on matrix and work with them. Therefore, a data
intensive application which can work with the extension and
perform many computations on matrixes is constructed. This
application is considered as the workload to evaluate the
techniques. If the extension and the workload are changed, the
comparative results cannot be changed a great deal. Hence, we
try to report the comparative results (which expressed with
percentage).

For measuring time, two mechanisms are used. “Jiffies” is
used for measuring execution time, which is provided by
Linux operating system. In the experiment, one “jiffies” is

TABLE I. FAULT TYPE

Fault location Response of System Detection Latency

Command’s

parameter of System

Call

Error code 40960 clock cycle

Address’s pointer of

System Call
Error code 46336 clock cycle

Pointer of extension’s

internal function
Kernel panic 77632 clock cycle

Data structure of

extension

Application

termination and

exception

177280 clock cycle

Computation of

extension (to create

infinite loop)

Kernel hang 200 ms

 The application’s

data which is under

control of extension

No signal ---

54Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 63 / 66

equal to one millisecond. For precise measurement, the ARM
cycle counter register (CCNT) which is provided by the
processor is considered as well.

MR, TR, RB, NVP and ME are abbreviations which stand
for micro rebooting, transactional extension, recovery block,
N-version programming and micro extension, respectively. In
addition WFT shows the average execution time of the
application without considering any fault tolerant technique on
the operating system.

In this paper, the performance overhead, the recovery
overhead, the response time overhead, and the CPU utilization
is reported. These parameters allow conducting deeper
comparison from performance point of view.

V. EVALUATION RESULTS

In this section, the results of employing recovery
techniques on the operating system are explored.

Before applying any fault tolerant techniques, the
execution time of the application is measured. Moreover in
this situation, the response time of the application request is
measured. It should be note that these two values are the
baseline values and any other result taken from the modified
operating system will be compared with these values. It is
evident that the QEMU has an impact on the performance, but
it can be connived because its affect on all techniques is equal.
Table 2 shows the application’s execution time in different
scenarios.

As Figure 1 shows, the NVP has the maximum
performance overhead, but it is not a bad feature. Since one
request has to run on three extensions and after voting, the
result is returned. Except the NVP, the result of Micro
Extension seems incredible. This amount of overhead is
related to operating system changing mode for each operation
in one request. In fact, for each operation, the kernel extension
runs an application in user space by means of API. This result
reveals that it is inefficient to use Micro Extension technique
when the extension is very computational. Therefore if the
role of extension is changed, this can be expected that the
performance overhead of Micro Extension technique will be
changed as well. It means that the performance overhead is
depended on the amount of extension’s computational part in
this technique. The minimum performance overhead belongs

to Micro Rebooting. Transactional Extension has more
overhead in contrast to Micro Rebooting and Recovery Block,
because it has to save internal state before each transaction.

The response time overhead chart is similar to
performance overhead one. It is clear that performance
overhead of a workload which is created of several requests is
directly related to response time of each request. Figure 2
shows response time overhead.

MR TR RB NVP ME

Performance
overhead 5.8% 17.2% 6.4% 218.7% 169.5%

0.0%

50.0%

100.0%

150.0%

200.0%

250.0%

Figure 3 illustrates the recovery overhead of each

technique. It is expected when a technique forces extra
performance overhead, it provides better recovery overhead.
The NVP has the best recovery overhead because nothing
more is done by the technique when an error occurs. The NVP
always masks one error. Since Micro Extension performs an
operation in user mode, its recovery overhead is a little more
than Transaction Extension. Regarding the CPU utilization, all
techniques increase CPU utilization except Micro Extension,
which is shown by Figure 4. It also decreases the CPU
utilization. It happens because in the Micro Extension, some
portion of time is devoted to context switch and transferring
data between kernel and user-level part of extension.

MR TR RB NVP ME

Response time
overhead 7.5% 22.8% 3.0% 207.1% 168.6%

0.0%

50.0%

100.0%

150.0%

200.0%

250.0%

Fig. 1. Performance overhead

Fig. 2. Response time overhead

 Techniques

WFT MR TR RB NVP ME

Execution

Time(ms)
7423 7855 8702 7897 23654 20004

Standard

Deviation
17.0 21.4 41.9 22.1 18.8 21.9

(a) Average execution time without error activation

 Techniques

WFT MR TR RB NVP ME

Execution

Time(ms)
7423 7908 8734 7948 23695 20093

Standard

Deviation
17.0 62.3 88.1 35.1 13.8 20.6

(b) Average execution time with error activation

TABLE II. APPLICATION’S EXECUTION TIME

55Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 64 / 66

MR TR RB NVP ME

Recovery overhead 0.67% 0.37% 0.65% 0.17% 0.45%

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

0.80%

MR TR RB NVP ME WFT

CPU utilization 74.8% 77.2% 74.9% 74.3% 54.6% 73.6%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

At last, the NVP has the best recovery time and the worst
performance overhead. Furthermore, the Recovery block has
the best response time and the Micro extension has the
minimum CPU utilization.

VI. CONCLUSION

An analysis and comparison of five well-known recovery
techniques, i.e., micro rebooting, recovery block, N-Version
Programming (NVP), micro extension, and transactional
extension for an embedded operating system are provided in
this paper. These techniques are applied on the operating
system extensions without any modification on the
architecture of the operating system. This study investigates
and compares the characteristic of those techniques on the
same platform and operating system from performance point
of view. This characteristic leads to an accurate and fair
comparison among these methods.

The techniques are implemented on a virtual ARM
machine which is emulated by the QEMU under the control of
Embedded Linux operating system. The totals of 5000
experiments are made. The experiments results reveal that

micro rebooting has the best performance overhead;
otherwise, NVP has the worst performance overhead. In
addition, the NVP has the best recovery overhead but micro
rebooting has the worst one.

The simulation results are as follow: the recovery time
overhead varies between 0.17% and 0.67%, and the
performance penalty varies between 5.82% and 218.66%
depending on the techniques. Additionally, extensions
response time, in comparison with the base system, increases
between 2.98% and 207.088%. Depending on the techniques,
the CPU utilization is confined between 54.63% and 77.24%.

REFERENCES

[1] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An empirical

study of operating system errors,” Proc. ACM Symp. Operating
Systems, vol. 35, Dec. 2001, pp. 73- 88, doi:10.1145/502034.502042.

[2] F. Bellard, “QEMU, a fast and portable dynamic translator,” Proc.

USENIX Annual Technical Conference, April 2005, pp. 41-46.

[3] M. Swift, M. Annamalai, B. Bershad, and H. Levy, “Recovering device

drivers,” ACM Trans. on Computer Systems, vol. 24, Nov. 2006, pp.
333-360.

[4] M. Swift, B. Bershad, and H. Levy, “Improving the reliability of

commodity operating systems,” Proc. ACM Symp. on Operating
systems principles, vol. 35, no. 7, Dec. 2003, pp.207-222,

doi:10.1145/945445.945466.

[5] J. LeVasseur, V. Uhlig, J. Stoess and S. Gotz, “Unmodified device
driver reuse and improved system dependability via virtual machines,”

Proc. Symp. on Operating System Design and Implementation, Dec.
2004, pp. 17-30.

[6] L. Tan, et al., “iKernel: Isolating buggy and malicious device drivers

using hardware virtualization support,” Proc. IEEE Symp. on
Dependable Autonomic and Secure Computing, Sept. 2007, pp. 134-

144.

[7] T. Katori, L. Sun, D. K. Nilsson, and T. Nakajima, “Building a self-
healing embedded system in a multi-OS environment,” Proc. ACM

Symp. on Applied Computing, March 2009, pp. 293–298.

[8] B. Leslie, et al., “User-Level device drivers: achieved performance,”
Journal of Computer Science and technology, vol. 20, no. 5, Sept. 2005,

pp. 654-664.

[9] V. Ganapathy, M. J. Renzelmann, A. Balakrishnan, M. M. Swift, and

Somesh Jha, “The design and implementation of microdrivers,” Proc. of
the 13th International Conference on Architectural Support for

Programming Languages and Operating Systems, March 2008, pp. 168-
178.

[10] G. C. Hunt, “Creating user-mode device drivers with a proxy,” Proc. of

the 1st USENIX Windows NT WS, 1997.

[11] H. Bos and B. Samwel, “Safe kernel programming in the OKE,” Proc.
IEEE Conference on Open Architectures and Network Programming,

June 2002, pp. 141-152.

[12] M. J. Renzelmann and M. M. Swift, “Decaf: moving device drivers to a
modern language,” Proc. USENIX Annual Technical Conference, June

2009.

[13] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum,
“Construction of a highly dependable operating system,” Proc. IEEE

European Dependable Computing Conference, October 2006, pp. 3-12.

[14] F. M. David, and R. H. Campbell, “Building a self-healing operating
system”, in Proc. IEEE International Symp. on Dependable, Autonomic

and Secure Computing, Sept. 2007, pp. 3-10.

[15] H. H¨artig, M. Hohmuth, J. Liedtke, S. Schonberg, and J. Wolter, “The

performance of μ-kernel-based systems,” Proc. ACM Symp. on
Operating System Principle October 1997, pp. 66-77.

[16] A. Forin, D. Golub, and B. Bershad, “An I/O system for Mach 3.0,”

Proc. USENIX Mach Symp., 1991, pp. 163-176.

Fig. 3. Recovery overhead

Fig. 4. CPU utilization

56Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

 65 / 66

[17] H. I. Glyfason, and G. Hjalmtysson, “Exceptional kernel: using C++

Exceptions in the Linux Kernel,” October 2004. Available at:
http://netlab.ru.is/exception/KernelExceptions.pdf

[18] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox,
“Microreboot – a technique for cheap recovery,” Symp. on Operating

Systems Design and Implementation, vol. 4, Dec. 2004, pp. 31-44.

[19] J.N. Gray. “Notes on database operating systems,” In R. Bayer, R.M.
Graham, and G. Seegmueller, editors, Operating Systems: An Advanced

Course, Springer-Verlag, 1979, pp. 393-481.

[20] F. Schmuck, and J. Wylie, “Experience with transactions in
QuickSilver,” Proc. ACM Symp. on Operating Systems Principles,

October 1991, pp. 239-253.

[21] A. Damm, J. Reisinger, W. Schnakel, and H. Kopetz, “The real-time
operating system of Mars,” Operating System Rev. July 1989, pp 141-

157.

[22] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith, “Dealing with
disaster: surviving misbehaved kernel extensions,” Proc. USENIX

Symp. on Operating Systems Design and Implementation, October 1996,
pp. 213-227.

[23] Embedded Linux source code, Available at:

https://www.kernel.org/pub/linux/kernel/v3.x/linux-3.9.tar.xz

57Copyright (c) IARIA, 2014. ISBN: 978-1-61208-378-0

DEPEND 2014 : The Seventh International Conference on Dependability

Powered by TCPDF (www.tcpdf.org)

 66 / 66

http://www.tcpdf.org

