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Foreword

The Thirteenth International Conference on Smart Grids, Green Communications and IT Energy-
aware Technologies (ENERGY 2023), held between March 13 – 17, 2023, continued the event
considering Green approaches for Smart Grids and IT-aware technologies. It addressed fundamentals,
technologies, hardware and software needed support, and applications and challenges.

There is a perceived need for a fundamental transformation in IP communications, energy-
aware technologies and the way all energy sources are integrated. This is accelerated by the complexity
of smart devices, the need for special interfaces for an easy and remote access, and the new
achievements in energy production. Smart Grid technologies promote ways to enhance efficiency and
reliability of the electric grid, while addressing increasing demand and incorporating more renewable
and distributed electricity generation. The adoption of data centers, penetration of new energy
resources, large dissemination of smart sensing and control devices, including smart home, and new
vehicular energy approaches demand a new position for distributed communications, energy storage,
and integration of various sources of energy.

We take here the opportunity to warmly thank all the members of the ENERGY 2023 Technical
Program Committee, as well as the numerous reviewers. The creation of such a high quality conference
program would not have been possible without their involvement. We also kindly thank all the authors
who dedicated much of their time and efforts to contribute to ENERGY 2023. We truly believe that,
thanks to all these efforts, the final conference program consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the ENERGY 2023 organizing committee
for their help in handling the logistics and for their work to make this professional meeting a success.

We hope that ENERGY 2023 was a successful international forum for the exchange of ideas and
results between academia and industry and for the promotion of progress in the fields of smart grids,
green communications and IT energy-aware technologies.

We are convinced that the participants found the event useful and communications very open.
We also hope that Barcelona provided a pleasant environment during the conference and everyone
saved some time for exploring this beautiful city.
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Programmable Logic Controllers - Insecure by
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Abstract—Any cyber-physical system, including critical infras-
tructure such as a smart grid, is very likely being controlled by an
Industrial Control System (ICS). However, ICSs have long been
neglected in terms of security mechanisms. This work presents
an overview of the current situation by conducting a literature
review, focusing on attack vectors against Programmable Logic
Controllers (PLC). Due to proprietary protocols and operating
systems, it will present attacks against four major vendors:
Siemens, Allen Bradley, Schneider, and Beckhoff.

Index Terms—OT, PLC, ICS, Modbus, Profinet

I. INTRODUCTION

Stuxnet [1], destroying almost 1000 centrifuges in the
Iranian uranium enrichment facility in Natanz, was the first
attack against an Industrial Control System (ICS) that gained
broad attention and raised security awareness in the area of
Operation Technology (OT). Another attack targeting ICSs
caused a power outage in Ukraine which affected 225.000
people [2]. More, often sophisticated, attacks have been carried
out since [3].

Predominantly these attacks target PLCs. These differ in
several important aspects from traditional computers: (i) They
do not interact with data, but with the physical world instead.
(ii) Thus, their main interest is not confidentiality, but reliably
running a continuous process. (iii) Their lifespan is commonly
between 15 and 20 years. (iv) Once installed, they hardly ever
get patched. (v) They use proprietary firmware or operating
systems (OS). (vi) They execute their programs in contin-
uous, real-time cycles. Thus, due to their different primary
objectives, design, and use they have to be treated differently
[4].

In this work, we present an overview of known attack
vectors against ICSs and show the underlying common se-
curity weaknesses (Section III). Secure coding practices and
guidelines exist, but they are not the focus of this work. We
touch on them only briefly in Section IV.

II. TAXONOMY

There are many ways to structure ICS security [5][6][7]. We
will use a target-based structure in our work for two reasons:
(i) most publications presenting attacks follow this approach
and (ii) due to proprietary protocols and operating systems
these attacks are most often vendor specific. However, this

approach can be seen as pars pro toto since many of the
principles presented can be transferred from one vendor to
another.

III. ATTACKS

In the past, an air gap (not connecting the OT and Infor-
mation Technology (IT) networks) was perceived as adequate
protection against attacks. However, with the advent of Manu-
facturing Execution Systems, remote access, and the Industrial
Internet of Things this no longer holds. Next, Security by
Obscurity (use of closed-source, vendor-specific protocols and
security mechanisms) has numerously been compromised as
we will show next.

All presented attacks assume that the adversary has already
gained access to the IT network and can move laterally to the
OT network, as has been the case in past attacks.

A. Siemens S7

After the Stuxnet attack in 2011, Beresford [8] was the
first to exploit vulnerabilities of Siemens S7-300 and S7-1200.
His work shows in detail how to gain access to a PLC by
first capturing session data and then replaying it to the PLC.
This can further be extended to altering the control logic or
disabling the authentication mechanisms altogether without
having access to the engineering workstation. These attacks
are possible due to the use of insecure protocols in ICSs.

Following up on the replay attack, [9] extend this proce-
dure by reverse-engineering the password encoding scheme.
They succeed, revealing the custom eight-byte XOR encoding
scheme. This allows not only to update the password of the
PLC but also to clear arbitrary PLC memory which effectively
renders the PLC useless.

As [10] remarks, the password can also be revealed by using
an exhaustive search due to the small key space of only eight
bits.

By implementing a PLC worm [11], PLCs can infect one
another, having the worm automatically propagate through the
whole OT network segment.

However, this worm can be detected since TIA Portal
engineering software can be used to retrieve the code from
the PLC. Building upon existing reverse engineering findings,
[12] show that it is possible to disguise the code change. The

1Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-054-4
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source code in the PLC exists in a source object, but when
communicating with the PLC a run object is sent. This can be
modified to a custom behavior, resulting in a different program
being run in the PLC than shown on the engineering station.

B. Allen Bradley

Attacks against PLCs require data transmission via the
network. This makes Network Intrusion Detection Systems
(NIDS), such as Anagram [13], a natural countermeasure.
However, it is possible to develop stealthy attacks by either
modifying the signature of the packet header (Data Execution
Attack) or by fragmentation of the data with added noise
padding (Fragmentation and Noise Padding). Both attacks are
successfully carried out in [14] without being detected by a
NIDS and attacked a Schneider Modicon M221, as well as an
Allen Bradley MicroLogix 1400.

Vendor-specific engineering software is used to send and
retrieve compiled logic to and from the PLC. Thus, it can
also be used for forensics in case of control logic injection
attacks. However, as [15] show, this is no longer the case
if a Denial of Engineering Operations attack is used. They
show three different versions: (i) Hiding infected ladder logic
from the engineering software, (ii) crashing the engineering
software upon retrieving code from the PLC, and (iii) injecting
a crafted ladder logic program to the PLC that crashes the
engineering software. While the former two are man-in-the-
middle-attacks, the latter is the stealthiest since it allows the
attacker to leave the network after the attack. To detect these
attacks, the authors also developed a decompiler for ladder
logic that can completely restore the ladder program from
network traffic and thus makes it possible to detect the injected
control logic.

C. Schneider

The Schneider Tricon PLC employs Triple Modular Re-
dundancy, using two-out-of-three voting. It is widely used in
nuclear power plants. The software is downloaded simultane-
ously to all three processors, making this PLC susceptible to
common mode failures induced by software, such as a cyber
attack. Two attacks are proposed by [16], namely latent attack
which downloads valid but incorrect control logic to the PLC,
and immediate failure attack which transfers invalid data to the
PLC, leading to a denial of engineering and an error on the
PLC. While the first causes an incorrect behavior of the PLC
and at the same time deceives the operator, the latter leads to
a major downtime of the whole system since a complete reset
and new program download becomes necessary.

A sophisticated attack against a Schneider Modicon M221 is
shown in [17]. The authors propose the fully automated attack
tool CLIK that consists of four stages: (i) stealing control logic
binary from the PLC, (ii) decompiling the stolen binary to
source code, (iii) infecting the control logic in the PLC, and
(iv) concealment of infection from engineering software using
a virtual PLC.

D. Beckhoff

With the use of common operating systems such as Win-
dows CE or Windows 10, Beckhoff differs from other ven-
dors who all use proprietary OS. However, this also makes
the PLC susceptible to attacks known from the IT world.
Bonney et al. [18] examine a CX5020 PLC and find several
possible attack vectors due to plaintext transmitted connection
setups (including user name and password), by default enabled
webserver, and insecure default user name and password for
Virtual Private Network.

E. Modbus

Modbus is a popular, vendor-agnostic protocol used in ICSs.
Attacks against SCADA systems can be carried out using
this protocol, as [19] show. The authors identify four attack
classes: reconnaissance, response and measurement injection,
command injection, and denial of service. For each class, they
present several concrete attacks.

F. Open Platform Communications Unified Architecture

Open Platform Communications Unified Architecture (OPC
UA) is a platform-independent service-oriented architecture
that is widely used in the industry and supported by all major
vendors. It is mainly used for non-real-time data exchange
between PLCs and a variety of clients but with OPC UA
over Time-Sensitive-Networking (TSN), it can also be used
for real-time communication. OPC UA libraries exist for all
major programming languages. OPC UA has been designed
with a strong focus on security by integrating the following
mechanisms: user security by using a user security token,
application security by using digitally signed X.509 certifi-
cates, and transport-level security by signing and encrypting
each message [20]. A report of the German Federal Office for
Information Security (BSI) attests adequate protection against
numerous threats, while denial of service and server profiling
can only be reduced by its protection mechanisms [21]. It also
notes that no systematic errors could be detected. However,
as [22] note, provisioning has not been examined. They
show that trust on first use (TOFU) is used for provisioning,
thus undermining the security guarantees of OPC UA if the
adversary gains access during this first phase. They also note
that provisioning is both overly complex and often vaguely
documented, leading to misconfiguration or disabling security
features.

OPC UA security can also be weakened by major security
flaws in its artifacts, as [23] show. The authors examine 48
OPC UA-enabled artifacts, both products from vendors and
open-source libraries. Their main findings include disabled
security(14.6%) and errors in trust list management (64.6%).

IV. GUIDELINES

To help secure ICSs, several guidelines have been published.
The National Institute of Standards and Technologies (NIST)
issued the comprehensive Guide to Industrial Control Systems
Security [24] that provides a global picture of ICS security

2Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-054-4
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both in technical and organizational terms. A similar guideline
is available from the German BSI [25].

In analogy to the IT world, the US Computer Emergency
Response Team (CERT) publishes alerts and advisories con-
cerning ICSs [26]. In line with this practice, manufacturers of
ICSs have started to publish advisories and security bulletins
[27][28][29].

From a technical perspective, secure coding practices for
ICSs are emerging and collected in an open-source effort [30].

V. CONCLUSION AND FUTURE WORK

The notion of PLCs being insecure by design is a recurrent
theme in all presented work, the weakest links being a lack of
authentication mechanisms and insecure protocols. OPC UA,
when properly implemented and set up is the exception to
the rule. Mechanisms like Intrusion Detection Systems [31]
can help harden industrial systems. However, this is only
reasonable after basic security mechanisms like authentication
and secure protocols are put in place. Forensics [32][33]
provides the cornerstone for not experiencing the same attack
several times and helps to build vulnerability databases. Secure
coding practices promote a defense-in-depth approach and help
to reduce attack surfaces once the adversary gained access.
However, they are only an additional layer of protection and
cannot compensate for the aforementioned weaknesses.

As of today, many of the PLCs in the field are not or
are insufficiently protected. Future work will thus be twofold:
Targeting existing devices that have many of the vulnerabilities
presented here and finding means to mitigate these in newer
devices. The latter will mainly need to find fast and at
the same time efficient cryptographic algorithms. While this
is achievable with hardware-based symmetric encryption as
[34] show, effective software-based solutions are still to be
researched. For the first, however, our recommendation is to
find and standardize ways of penetration testing in ICSs, such
as Metasploit [35] from the IT world. This can then also be
used to automatically check assets against newly discovered
vulnerabilities. However, due to the variety of vendor-specific
protocols and operating systems, this will be a demanding task.
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Abstract—Flow visualization including image processing and 

Particle Image Velocimetry (PIV) measurements is used to 

evaluate the flow velocity field of the acrylic solar sphere filled 

with oil. This generated convection flow is affected by the 

thickness of the sphere, the sphere size as well as the 

temperature. The function of the acrylic sphere which is a 

modern technology of concentrated photovoltaic is to gather 

the energy from the sun and then concentrate it in a compact 

area like a focal spot. This focal spot is placed and put directly 

above a multi-junction device that acts as a concentrator cell 

appliance. This appliance directly can generate an enormous 

rate of power that is utilized to generate more electricity 

rather than the power that normal photovoltaic panels (PV) 

can produce. The acrylic sphere is used also for a lot of 

industrial applications. This research paper aims to 

investigate the characteristics of the flow inside the sphere 

and explore the sphere thickness, the sphere size, and the 

sphere temperature effect on the flow velocity of the fluid 

motion. Moreover, the purpose of this study is to clarify the 

relationship between these parameters in order to achieve 

greater efficiency for power generation, therefore, improve its 

performance. The results showed that the sphere thickness, 

the sphere temperature, and the sphere size significantly 

change the flow structure value. It is found that the velocity 

increase as the sphere thickness decreases. Hence, the 

efficiency of the sphere increases when using lower acrylic 

sphere thickness, higher size, and lower liquid temperature. 

The output power and efficiency of the solar sphere increase 

with lower sphere thickness. The thinner the thickness of the 

acrylic layer, the higher the sunlight absorbed by the acrylic 

photons. Subsequently, the higher the output power, which 

results to get higher the efficiency.   

Keywords- PIV; Solar, Flow; Concentrate; Energy. 

 

I. INTRODUCTION 

Several threats to food security, water resources, and 
the environment have appeared and expanded, resulting in 
a strong demand for technological advancements in the 
energy sector. This is also reinforced by data demonstrating 
the exponential rise in power and energy research over the 
previous few decades. Parallel to this,  
energy demand is expected to rise to a high between 2016 
and 2040 [1]-[3]. 

Despite the global expansion of trends favoring energy 
conservation, green energy supply, and low environmental 
effect, producing enough energy to meet global demand 
remains a tough task. The most difficult task remains to 
deliver power from clean sources, such as renewable  
 

 
energy, which can lead to a reduction in the use of fossil 
fuels [4]-[6]. 

Renewable energy's capacity to meet the world's energy 
needs is promising, and it has the potential to reduce 
reliance on traditional energy sources, such as oil and 
uranium. Because traditional energy sources are both 
expensive and harmful to the environment, renewable 
energy sources provide a competitive option for power 
generation. Among the different renewable energy sources, 
solar energy is the most abundant and easily available to 
cover human electrical usage. As a result, numerous 
researchers have been looking for novel ways to gather 
solar energy and use it as a renewable energy source [7]-
[9].  

The efficiency of the solar sphere which is a new 
technology is significantly higher than normal solar panel 
collector components. Following the introduction of solar 
panels, many sun lights concentrated systems have arisen. 
One of these is the solar sphere collector, which is more 
efficient than traditional solar panels. Other benefits of the 
solar sphere include a) the ability to convert solar energy 
directly into electrical energy, b) solar radiations can be 
collected at any angle, unlike conventional solar panels, 
which must be integrated with a tracking system in order to 
capture the maximum amount of solar radiations, and c) 
their size is smaller compared to conventional solar panels, 
which occupy larger areas for relatively the same amount 
of solar radiations [10][11].  

The concentrated solar sphere system consists of an 
acrylic sphere filled with a fluid that absorbs sunlight and 
transforms it directly into electrical energy. This is 
accomplished by concentrating solar energy from all across 
the sphere and focusing it in a small focused area on a high-
efficiency solar cell. A pyranometer is used to measure sun 
irradiance, while a multimeter is used to measure the 
electrical power generated by the solar cell. 

The solar sphere collector technology was already 
investigated and tested in our past study. The trials included 
different spherical materials, sphere shapes, and sphere 
sizes, as well as different fluids. Numerous tests were 
conducted at various circumstances throughout the year in 
order to acquire and assess the power production and 
related efficiency corresponding to the various parameters 
compared to the traditional solar panel (PV). Based on prior 
studies, the solar sphere displayed superior power 
production and efficiency when compared to the standard 
solar panel for the various parameters that were tested. In 
addition to this finding, the following conclusions were 
reached: 
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1. When compared to other shapes using the same fluid, 
the entire spherical produced the most power. The power 
was nearly four times that of a regular solar panel. 

2. Increasing the size of the solar sphere increases 
power production and the associated efficiency. 

3. In terms of the fluid used to fill the solar sphere, oil 
had a maximum power output that was 1.5 times that of 
alcohol. Alcohol, on the other hand, produced double the 
power output of water, with air producing the least power 
production of the fluids, tested [12]-[15]. 

Convection flow is the flow of fluid within the solar 
sphere, and it is found in a variety of applications, such as 
oil and natural gas transport, column reactor, air-sea gas 
transfer, ship hydrodynamics, boiling heat transfer, and 
bubble column reactors [16]-[19]. Researchers are 
interested in such convection flows because they occur in 
many engineering applications and numerical research and 
experiments aid in visualizing and understanding the 
parameters involved in this movement. Understanding and 
clarifying the flow parameters assist in defining the flow 
behavior and investigating the efficacy of the flow to 
improve the flow behavior towards the region of interest of 
the application at hand [20]-[22]. 

The goal of this research is to examine and comprehend 
the properties of flow in the solar sphere through the 
analysis of the velocity of fluid flow within the solar sphere 
using PIV. Furthermore, to investigate the influence of 
sphere thickness, sphere size, and sphere temperature on 
fluid motion and velocity. Furthermore, in order to increase 
the performance of the system to generate power and then 
maximize its efficiency, the link between these factors must 
be well defined. 

In Section 2 of this paper the experimental apparatus 
and methods were illustrated. While in Section 3 the flow 
visualization and image processing results, including the 
PIV system and data analysis were explained.  The 
conclusion was added in Section 4. 

 

II. EXPERIMENTAL METHODS AND APPARATUS  

Figure 1 depicts the setup of the intended experiment. 
The acrylic (Plexiglas) solar sphere (No.1) material gives 
optical access, to the flow inside the sphere, to facilitate 
observation as well as image processing via PIV 
measurements and permits the collection of the solar 
radiation necessary to be focused. The sphere is full of 
frying oil (sunflower oil). The sphere is supported by a 
stainless-steel stand (No. 2). 

 

 
Figure 1. The setup for the solar sphere experiment. 

A multi-junction concentrator solar cell (No. 3) is 
mounted on a stand (No. 4) beneath the solar sphere and is 
directly linked to a multi-meter (No. 5) to measure power 
production by measuring voltage and current ampere.  

The solar sphere collects solar energy from the sun and 
focuses it on a single point. This focus point is located on 
top of a collector device, which is a multi-junction cell. The 
magnifying lenses in the multi-junction cell arrangement 
focus the solar radiations onto a focused region in the cell. 
This concentrated region is linked to a heat sink. The multi-
junction cell is further subdivided into sub-cells, each of 
which is in charge of converting distinct components of the 
light into electricity. Because this device can withstand 
high temperatures and can help in radiation resistance, it 
was chosen to be utilized in this experiment to capture the 
concentrated solar energy of the focus point. The multi-
junction device is connected to a multi-meter, which is used 
to read the output current and voltage. The experiment 
setup utilized to investigate flow characterization using 
flow visualization and image processing via PIV 
measurements consists of the apparatus shown in Figure 2 
which is listed below: 

1-       As a light source, a Mini Diode-pumped solid-
state laser (DPSS) Model #SM-SEMI-2W, which is a 
double pulse laser (also known as PIV laser), is employed. 
It employs two pulse lasers to emit laser beams via an 
optical beam combiner and a light path exit. The 
wavelength of the laser is 532 nm. 

2-       The CCD scientific class digital camera, Model 
#SM-CCDB2M25, records the visualized flows. This 
camera uses a double exposure mode that is coordinated 
with the double laser pulses and has a 50 mm f/1.4, F-
Mount Lens, Model #SM-LENS5014. An external trigger 
initiates the capture. The frame grabber then sends both 
collected pictures to computer memory in real-time. A 
synchronizer generates trigger signals that are properly 
synced with the double-pulsed laser. The camera has a 
resolution of 1620×1220 (2M) and can take 25 frames per 
second (or 12.5 image pairs). The minimum exposure time 
interval in PIV mode is 200ns. 

3-       The synchronizer with USB cable, Model 
#MicroPulse 825 (MicroPulse725), provides cycle pulse 
trigger signals via the internal time base while also creating 
numerous delayed trigger signals via internal time-delay 
channels. The synchronizer is used to regulate the laser, 
digital camera(s), and frame grabber, ensuring that all of 
these diverse pieces function in perfect synchronicity. 

4-       A computer that is used to store picture data that 
has been captured by the frame grabber. It is then used by 
the Particle Image Velocity measurement system software 
to compute, display, and save the velocity field in real time. 

5- The PIV system, which is 2D PIV software with 
particle image capture and velocity analysis, employs a 
laser as an independent illumination source that may be 
employed with or without the synchronizer. If the 
synchronizer is not accessible, the laser's internal 
synchronization can be used throughout the optical path 
and laser energy setup. Also employed is a high-resolution 
2D2C PIV with multi-pass, multi-grid, window 
deformation method, and boundary deformation 
parameters. The frame grabber occupies a regular PCI 
(PCI-E) slot on the computer. The acquisition board's 
interface is primarily a 26-pin CamLink standard digital 
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camera connection interface. Digital cameras with a 
standard CamLink interface are used in the Microvec PIV 
system. It connects to the frame grabber through three 10-
meter signal lines, retains trigger signals to synchronize the 
digital cameras with the pulse laser, and then links to the 
synchronizer's output interface via coaxial signal cables via 
TTL trigger, which interfaces with the camera. When the 
synchronizer is provided as part of the PIV system, the laser 
must be set to external synchronous mode (where the 
synchronizer's 4-way delay signals are output to controls of 
the corresponding two sets of the laser flashlamp and Q-
switch) while the digital camera is set to PIV work mode. 

6- Fluorescent spherical tracer particles Model #MV-
H1020 with a diameter of 7 μm (mean 10 μm) and a density 
of 1.04 - 1.06 g/cc are used as tracer particles to see the flow 
and determine velocity vectors. 

As previously stated, the PIV measurements are 
employed in this study to produce the findings, which 
collect and calculate the velocity/velocity vectors of the 
flow inside the solar sphere, including flow visualization 
and image processing. To perform the tests within the lab, a 
lighting arrangement of 500 W Halogen lights is employed 
as a simulator instead of the sun. The laser is utilized with a 
black back sheet background to improve visibility and take 
high-quality photographs of the experiments for flow 
visualization and velocity measurements. 

 

 
Figure 2. PIV Experimental Configuration 

 

III. FLOW VISUALIZATION AND IMAGE PROCESSING 

RESULTS, INCLUDING THE PIV SYSTEM AND DATA 

ANALYSIS 

Particle Image Velocimetry (PIV) is an optical flow 
imaging technique. It made use of the acquired 
instantaneous velocity measurements as well as the related 
fluid characteristics. Tracer particles must be introduced 
into the fluid to help in the capture of velocity vectors. The 
velocity vectors will be generated by lighting the region of 
interest with the laser and then monitoring the seeded 
particles. The tracer or seeded particles are supposed to 
follow the motion of the fluid, which is evenly dispersed 
throughout the flow field, and the interrogation window, 
which has a distinct speed. When the tracer particles are in 
motion, their flow is caught by sequential imaging, which 
is then processed for additional cross-correlation, allowing 
the observed flow's speed and direction (the velocity field) 
to be calculated. Furthermore, additional processing may 
be performed using the flow vortices, flow field parameter 
distribution, speed lines, and flow lines. The configuration 

of a typical PIV system typically consists of four basic 
physical components. The digital CCD or CMOS camera 
is the first. The laser and its optical arrangement, which 
restricts the physical lit region of interest, are the second 
component. The third component is the synchronizer, 
which functions as an external trigger for regulating and 
timing both laser and cameras. As previously stated, the 
seeding particles are the fourth component. Of course, all 
of these components must be employed in conjunction with 
the fluid under investigation. The laser can be linked to 
specific lenses to transform the laser beam into a sheet or 
line ray. Finally, the optical pictures collected will be 
processed using specialist PIV software. The tracer 
particles following the movement of the fluid are emitted 
by the pulsed laser within the known time interval t, and 
the sheet light illumination by the lens group records the 
particles' instantaneous position on the CCD chip. If we 
know the displacement change of the same particle micelle 
at two times t1 and t2 from the recorded particle picture, 
we can calculate the velocity of the particle group at t1 
using the definition of velocity, as indicated in the formula 
below [23]-[29]. 

𝑣 = lim
∆𝑡→0

∆𝑠

∆𝑡
 

 
To begin analyzing the obtained picture, the idea of 

interpretation area must be defined. It refers to a square 
picture of a specific size in a specific location in the image, 
and the speed is acquired by executing signal processing in 
the interpretation area. Assume the system captures images 
1 and 2 in Figure 3 at two different times, t0 and t0+t. 
Obtaining two interpretation regions of the same size, 
f(m,n), in the same spot in the picture. where (m, n) denotes 
the relative location of f and g in images 1 and 2, 
respectively. Processing f and g yields the appropriate 
displacement S of the interpretation area, as indicated in 
Figure 3. 

 

 
Figure 3. The system obtains images 1 and 2. 

 
Figure 4 depicts the link between the digital signal 

transfer function and the interpretation regions f, g, and the 
displacement vector (the uppercase letters in the figure 
correspond to the lowercase Fourier transform). TSI's 
INSIGHT 4G® software is also utilized for picture and 
correlation analysis. The technique begins by analyzing the 
pictures using 6464 Interrogation Areas (IAs) using a Fast 
Fourier Transform (FFT) correlator, resulting in a 50% 
overlap of the interrogation areas. The correlation peak is 
then examined to acquire the findings of the final 
questioning region of 1616 pixels in size. The Gaussian 
curve-fitting approach with subpixel precision is used to 
determine this. The median technique, one of the post-
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processing methods available in the TSI analysis program, 
is used to remove spurious vectors from velocity fields. The 
rejection rate of the vectors is roughly 3%. The Gaussian-
weighted technique replaces these rejected vectors with 
their neighbors [30]-[34]. 

In the applied image processing, an average duration of 
10 µs consecutive frames (between 2 consecutive frames) 
is utilized to discover the values of the velocity of the flow 
inside the spheres of 10 cm 15 cm, and 30 cm diameters, 
and for different thicknesses of 3, 4, 5, 6 and 8 mm. These 
experiments are conducted for 3 different temperature rates 
of 35, 40, and 45oC. The velocity is determined and then 
computed for all these spheres/cases. Image processing 
calculates the flow velocity estimate at roughly 10,000 
vectors of the flow pictures. The velocity experiments are 
carried out for the entire sphere. For each example, the 
temperature, voltage, and current ampere were measured, 
hence the output power was determined. 

Figure 5 depicts a sample of images of the sphere with 

a diameter of 15 cm and a thickness of 8 mm, whereas 

Figure 6 depicts a sample of flow images for the 

experimental acrylic sphere with a diameter of 10 cm and a 

thickness of 4 mm illuminated by laser for flow 

visualization and further image processing for velocity size 

computations. 

 
Figure 4 The connection between the interpretation regions f and g 

  

  
Figure 5. Images of a sphere with a diameter of 15 cm and 8 mm 

thickness 

 

 
Figure 6. Images of an experimental laser-illuminated acrylic sphere 

with a diameter of 10 cm and a thickness of 4 mm 

 

Figure 7 shows a PIV vector plot with an instantaneous 
velocity field (vectors sample) of the flow within the sphere 
of 15 cm diameter and 3 mm thickness at a temperature of 

35C measured by PIV between the first frame and frame 
number 200 in order to easily distinguish the flow inside 
the sphere since the flow is quite sluggish. Figure 8 
illustrates a sample of the immediately dispersed velocity 
vector of the flow in a sphere of 15 cm diameter and 5 mm 
thickness measured by PIV between the first and 80th 

frames at a temperature of 35C. Figure 9 illustrates a 
sample of the immediately dispersed velocity vector of the 
flow in a sphere of 15 cm diameter and 8 mm thickness 
measured by PIV between the first and frame number 200 

at a temperature of 35C. Figure 10 demonstrates the result 
of the flow visualization and vorticity of the flow in the 
sphere of 10 cm diameter and 6 mm thickness measured by 
PIV between the first and the 40th frame at a temperature of 

45C.  
 

Figure 7. PIV recorded an instantaneous velocity vector sample of the 

flow in a sphere of 15 cm diameter and 3 mm thickness (1-200 frame) at 

a temperature of 35C. 

 

 
Figure 8. PIV recorded an instantaneous velocity vector sample of the 

flow in a sphere of 15 cm diameter and 5 mm thickness (1-80 frame) at a 

temperature of 35C. 

 
The velocity of the fluid (particles) at the top of the 

sphere is clearly higher than the velocity of the seeded 
particles in other regions of the fluid motion, as shown by 
these figures. Because there are many interaction types 
between the flow of the liquid and the upper part of the 
inside wall of the sphere, the flow generated on the top of 
the sphere is considered an appropriate technique that aids 
in the detailed investigation of the flow regime during the 
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flow motion from the bottom of the sphere to the top of the 
sphere. Furthermore, the liquid flow characteristic at the 
top region does not behave similarly to other flow regions. 
This is because the fluid flow on the top reaches the upper 
wall and reacts with it by mirroring the direction downward. 
As a result, the upper half of the spherical wall guides, 
directs, and reflects the fluid flow, whereas the flow in 
other places delays the fluid. Actually, the interaction 
between the fluid flow and the spherical wall is extremely 
evident. As a result, this inquiry and its accompanying data 
assist in determining the entrainment flow in the downward 
direction. This also encourages research into the relative 
velocity expression and its reaction and flow behavior to 
the encirclement liquid. 

 

 
  Figure 9. PIV recorded an instantaneous velocity vector sample of the 

flow in a sphere of 15 cm diameter and 8 mm thickness (1-200 frame) at 

a temperature of 35C. 

 

 
Figure 10 Result of the flow visualization and vorticity of the flow in the 

sphere of 10 cm diameter and 6 mm thickness (1-40 frame) 

 
The complete explanation of the flow process within 

the sphere may be presented and summarized using the 
resulting figures as follows. The produced convection flow 
pattern is equally harmonic around the sphere center, where 
the movements were primarily caused inside the fluid as a 
result of the tendency of the fluid with higher temperature 
and lower density to rise and the fluid with lower 
temperature and higher density to sink with the effect of 
gravity, resulting in heat transfer. Furthermore, the flow is 
observed to be steady and uniform around the center, with 
the exception of the region of the top surface where the 
fluid flow impinges and reflects. The rising flow around the 
center is steered by the sphere's wall, resulting in a 

significant fluid flow formation towards the upper region 
of the sphere. The flow evolves as follows: the maximum 
velocity for the upward flow momentum is obtained 
towards the upper top region of the sphere. When it is 
reflected downhill on the wall, the orientation of the 
upward flow changes quickly from an upwards direction to 
a downward direction flow. Following the formation of two 
circular liquid currents around the center, and after a 
specific amount of time has passed, those circular currents 
encourage the center of the sphere with a scale circulation 
throughout the complete fluid layers. 

Figures 11, 12, and 13 show the relationship between 
the sphere thickness of 10 and 14, and 30 cm diameter and 
the fluid velocity for different temperatures of 35, 40, and 
45oC and for a sphere thickness of 3, 4, 5, 6, and 8 mm. The 
fluid velocity is calculated to be the average velocity of the 
top region under the wall surface. Because this is the more 
complicated area where the fluid has many interactions 
with the upper surface.  
 

 
Figure 11 The relationship between the sphere thickness and the fluid 

velocity for different  temperatures and for a sphere diameter of 10 cm 

 

 
Figure 12 The relationship between the sphere thickness and the fluid 

velocity for different  temperatures and for a sphere diameter of 14 cm 

 

Figure 14 illustrates the relationship between the sphere 

thickness of 10 cm diameter with the output power and 

efficiency for a temperature of 35oC and for a sphere 

thickness of 3, 4, 5, 6, and 8 mm. The current-voltage 

characteristics were plotted for each sphere thickness of 3, 

4, 5, 6, and 8 mm separately. The optimum operating point 

is at the maximum power point. The values of these 

maximum power points were accumulated in Figure 14, It 

is clear from this figure that the output power and 

efficiency increase when using lower acrylic thickness. 

Hence, using a 3 mm sphere thickness is the best. 
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Figure 13 The relationship between the sphere thickness and the fluid 

velocity for different  temperatures and for a sphere diameter of 30 cm 

 

 
Figure 14 the relationship between the sphere thickness of 10 cm 

diameter and the output power and the efficiency for a temperature of 

35C 

 
According to the figures, the fluid flow approaches the 

top spherical surface as the velocity increases. 
Furthermore, when comparing the velocity vectors, it is 
discovered that when the spherical thickness lowers, the 
velocity increases. Whereas the average velocity of the 4 
mm thickness sphere is nearly double that of the 6 mm 
thickness sphere in the region of the top surface of the 
sphere, and the average velocity of the 6 mm thickness 
sphere is nearly double that of the 8 mm thickness sphere 
in the region of the top surface of the sphere. Also, as the 
temperature increases the fluid velocity increases. 
Moreover, when the size of the sphere increases the fluid 
velocity also increases. Furthermore, it is acknowledged 
that the output power and the efficiency of the 4 mm thick 
sphere are greater than that of the 6 mm thick sphere. In 
reality, as the thickness of this acrylic solar sphere rises, the 
amount of solar radiation received is influenced and 
limited, becoming less. As a result, the output power is 
decreased. Hence, the greater the thickness of the acrylic, 
the less electricity is produced by the sun. When the 
thickness is reduced, more power is produced, resulting in 
improved efficiency. As a result, the thinner the acrylic 
coating, the more solar light is absorbed by the PV photons. 
As a result, the larger the output power, the higher the 
efficiency. 

Finally, the behavior of flow motion within the solar 
sphere was explored in an attempt to improve power 
generation performance. The examination in this research 
effort was carried out to understand the influence of sphere 
thickness on fluid flow, which is elucidated in this 
document, in order to increase fluid flow performance and, 

hence, maximize the related efficiency. The results 
revealed that the thickness of the sphere considerably alters 
the flow structure and fluid velocity value. As a result, a 
thinner sphere should be employed to increase the 
efficiency of the solar sphere. Furthermore, the thinner the 
acrylic coating, the more sunlight is absorbed by the PV 
photons. As a result, the larger the output power, the higher 
the efficiency. 

 

IV. CONCLUSIONS 

The flow visualization and image analysis using PIV 
measurements on the fluid flow within a solar sphere and 
the velocity motion of the filled oil fluid were carried out 
in this study to optimize the flow behavior. The flow 
velocity and its influence on sphere thickness are calculated. 
The collected findings demonstrated a clear influence of 
spherical thickness and temperature on fluid flow. The 
following is an overview of the key conclusions: 

1. The output power and efficiency increase when using 
lower acrylic thickness. Hence, using a 3 mm sphere 
thickness is the best. 

2. When the temperature increases the fluid velocity 
increases and when the size of the sphere increases the fluid 
velocity also increases 

3. The fluid flow velocity was discovered to grow and 
climb in value to the upper surface wall of the sphere, the 
mean velocity magnitude was determined, and it was 
discovered to be greater in the region of the top surface than 
the starting velocity in the other regions.  

4. The fluid velocity data showed that the velocity 
increases as the thickness of the sphere decreases, and the 
mean velocity magnitude progressively increases as one 
rises within the sphere. 

5. The output power and the associated efficiency of the 
solar sphere increase with respect to the properties of lower 
sphere thickness. The thinner the thickness of the acrylic 
layer, the higher the sunlight absorbed by the PV photons. 
Subsequently, the higher the output power, which results to 
get higher the efficiency. 
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Abstract—Agent systems have become almost ubiquitous in
smart grid research. Research can be roughly divided into carefully
designed (multi-) agent systems that can perform known tasks with
guarantees, and learning agents based on technologies, such as
Deep Reinforcment Learning (DRL), that promise real resilience
by learning to counter the unknown unknowns. However, the
latter cannot give guarantees regarding their behavior, while the
former are limited to the set of problems known at design time.
This paper presents a hybrid architecture that enables a learning
agent to give guarantees about its behavior, making it suitable
for usage in Critical National Infrastructures (CNIs), such as the
power grid.

Keywords—agent systems; reinforcement learning; trustworthy
AI; resilience; power grid

I. INTRODUCTION

Over the last years, agent systems and especially Multi-
Agent Systems (MASs) [1]–[4] have emerged as one of the
important tools to facilitate management of complex energy
systems. As swarm logic, they can handle numerous tasks,
such as maintaining real power equilibria, voltage control, or
automated energy trading [5]. The fact that MASs implement
proactive and reactive distributed heuristics allows to analyze
their behavior and give certain guarantees, a property that has
helped in their deployment.

However, modern energy systems have also become valuable
targets. Cyber-attacks have become more common [6], [7], and
establishing local energy markets, although being an attractive
concept of self-organization, can also be to manipulation, e. g.,
through artificially created congestion [8]. Attacks on power
grids are no longer carefully planned and executed, but also
learned by agents, such as market manipulation or voltage
band violations [9]. Thus, carefully designing software systems
that provide protection against a widening field of adversarial
scenarios have become a challenge, especially considering that
complex, inter-connected Cyber-Physical Systems (CPSs) are
inherently exploitable due to their complexity itself [10].

Learning agents, particularly those based on DRL, have
gained traction as a potential solution: If a system faces
unknown unknowns, a learning agent can devise strategies
against it. In the past, researchers have published using
DRL-based agents for numerous tasks related to power grid
operations—e. g., voltage control [11]—, but the approach
to use DRL for general resilient operation is relatively new
[12], [13]. DRL—the notion of an agent with sensors and
actuators that learns by “trial and error”—is at the core of
many noteworthy successes, such as MuZero [14], with modern

algorithms such as Twin-Delayed DDPG (TD3) [15], Proximal
Policy Gradient (PPO) [16], and Soft Actor Critic (SAC) [17]
having proved to be able to tackle complex tasks.

All modern DRL use deep Artificial Neural Networks
(ANNs) at least for the policy (or multiple, e. g., for the critic).
Actual parameter optimization is commonly done with gradient
descent algorithms. However, these ANNs’ architectures still
need to be provided by the user, in addition the hyperparameters
of the algorithm. No DRL agent is, therefore, a “deploy and
forget” approach; careful tuning is usually required for a
specific use case. Evolving these networks, or using genetic or
evolutionary algorithms as an alternative entirely, has gained
interest among scientist during the last years [18], [19].

However, these model-free algorithms themselves cannot
give guarantees with regard to their behavior, which is important
for deployment with high autonomy in any CNI. Safe DRL
algorithms target this research gap, but currently, they learn
inefficiently or explore insufficiently [20]. Moreover, Safe DRL
does not (yet) tackle changes in tasks or environment, the
problem of Online Learning [21].

In a very similar vein, learning agents for CNIs not only
need to give guarantees, but they must also offer introspection.
I. e., their strategies must be inspectable by humans. In the
context of CNIs, this allows audition or certification, or testing
and validation even at runtime. Finally, it is an important factor
for acceptance. This introspection is provided by techniques
of eXplainable Reinforcement Learning (XRL) [22]. However,
the most common techniques, such as saliency maps, give only
indirect interpretation and are useful for experts in the DRL
domain, but not for practitioners in CNIs. Recent approaches
to convert a DRL agent’s policy network into a rule-based
representation, e. g., as decision tree [23], will satisfy the
outlined requirements, but are not part of an DRL agent
architecture yet.

Therefore, we identify the following research gap: Learning
agents are necessary for modern, complex CNIs, such as the
power grid. In order to cope with the complexity of the power
grid, changing actor behavior and, thus, changing marginal
distributions, online learning must be explicitly considered. In
addition, such a learning agent must be inspectable and provide
guarantees. To this end, we propose a hybrid architecture in
the Adversarial Resilience Learning (ARL) agent. It combines
a learning agent with a rule-based agent. The learning agent’s
policy is constantly converted into rule sets, represented in
the Boolean domain, in order to enable the benefits of XRL.
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Figure 1. ARL Agent Architecture

However, the agent is also able to absorb obsolete rules when
a better strategy is (reliably) devised, in order to maintain
the agent’s adaptability. Through this cycle of rule extraction
(XRL) and rule consumption (online learning), the agent stays
inspectable and validatable, providing the necessary security
for deployment in CNIs, while still being able to learn and
counter the unknown unknowns.

The remainder of this work-in-progress paper is structured
as follows: Section II outlines the planned architecture and
gives the rationale for each module, as well as their interfaces.
In Section III, we outline our testing scenarios, which serve as
overall validation of the architecture. Finally, we outline the
next steps in Section IV.

II. AGENT ARCHITECTURE AND MODULES

The key design goal of the ARL agent architecture is to fuse
a learning component based on DRL with the analyzability
of a rules-based architecture. Therefore, an Adaptive Policy
based on DRL, as well as a Rule-based Policy, are employed
alongside each other. The DRL-based architecture will resort
to off-policy algorithms, such as TD3 [15] and SAC [17]. This
will simplify the extended usage of replay buffers, e. g., for
rehearsal or offline learning.

This design iteration of the architecture does not consider
MASs, therefore, the design follows more the premises of DRL-
based agents and eschews the usual message inbox, journal,
etc. that would normally be present for agents of a MAS. The
resulting component design is depicted in Figure 1.

The agent receives data from the environment using Senors,
which constitutes the agent’s world state at time t: st. A
sensor is a simple software interface that transfers sensor
readings according to a simple mathematical space definition
that allows for Boolean values, intervals of discrete numbers,
n-dimensional real-valued spaces, and more complex types
created as combinations thereof. We loosely follow the example
of OpenAI Gym [24] and use the definition that we introduced
in prior works [25].

Sensor readings are fed into the Rules-Policy Discriminator.
This module is responsible for choosing the agent’s actions,
which stem either from the adaptive policy or the rule-based one.

The discriminator gives precedence to behavior emitted from
the rules-based policy, thus ensuring well-defined behavior
whenever possible. If the rule-based policy cannot emit an
action given the current sensor readings, the discriminator
uses the action proposed by the adaptive policy. However,
even if a matching rule can be emitted from the rule-based
policy, the adaptive policy is still queried for an action. This
way, (st, at, r̂t) triplets can be fed to the replay buffer. The
adaptive policy’s action is preferred if it, checked against a
world model, provides a higher reward. The triplet of state
st—i. e., the current sensor readings—, the planned action at
of the agent, as well as the reward r̂t the agent expects, is an
agent’s Decision. The discriminator also propagates the actual
reward from the last action, rt−1, to the policies in order to
update their replay buffer or rules assessment (adaptive and
rule-based policy, respectively).

The rule-based policy uses a Rules Repository for storage.
The repository uses Ternary Vector Lists (TVLs) [26] for
efficient storage. TVLs represent systems of boolean equations
as lists of disjoint vectors, where each vector represents the
assignment of variables. In contrast to binary vectors, ternary
vectors provide efficient storage by introducing a third symbol,
such that a ternary value is defined as tv ∈ {0, 1,−}. The
dash expands to both 0 and 1, so that the ternary vector
[1,−]⊤ expands to two binary vectors, [1, 0]⊤ and [1, 1]⊤.
Set operations on TVLs are well-defined and expand to the
appropriate operations on Boolean values. The ARL agent
will expand the notion of TVLs fuzzy logic in order to allow
rules-based inference of actions based on sensor readings when
those readings will seldom provide the exact values in Rn that
are given in the (Boolean) rule sets.

A Rules Monitor supervises the repository: The agent still
needs to be adaptive and learn, i. e., develop new strategies
to situations unknown at design time. Therefore, the monitor
will feed rules of known sensor readings back to the DRL
policy’s replay buffer. Should the adaptive policy have devised
better rules, then this is merely the same problem off-policy
DRL algorithms solve with their replay buffer, which contains
triplets of (s, a1, r1), (s, a2, r2) : r1 < r2 and is a simple
optimization problem. In the case of catastrophic forgetting
[21] during online learning, the rules repository serves as a
rehearsal device [21].

The combination of rules repository and rules monitor serves
the training aspect of the agent: The adaptive policy will
be trained using Neuroevolution, i. e., the ANNs are evolved
during training, their architecture not provided beforehand.
Usually, employing neuroevolutionary strategies reduces the
sample efficiency considerably. However, the rules repository-
monitor modules are able to serve as extended replay buffer,
allowing for extended iteration over samples to use them during
neuroevolution.

The rules repository is the central piece that allows intro-
spection of the agent’s policy, i. e., behavior, and thus aids
its interpretability. It interfaces to the XRL Rules Extractor,
which takes care of generating rules from the adaptive policy.
This happens in two ways: First, given any (st, at, r̂t) triplets
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1: procedure ACT(st: List[SensorReading], rt−1)
2: UPDATEREWARD(rulePolicy , rt−1)
3: UPDATEREWARD(adaptivePolicy , rt−1)
4: decision

(rule)
t ← DECIDE(rulePolicy , st)

5: decision
(adaptive)
t ← DECIDE(adaptivePolicy , st)

6: if ¬decision(rule)
t then

7: at ← decision
(adaptive)
t .a

8: end if
9: if decision(rule)

t then
10: at ← decision

(rule)
t .a

11: if decision
(rule)
t .r < decision

(adaptive)
t .r ∧

decision
(rule)
t .a ≈ decision

(adaptive)
t .a then

12: STORE(replayBuffer , decision(rule)
t )

13: end if
14: if decision

(rule)
t .r < decision

(adaptive)
t .r ∧

decision
(rule)
t .a ̸= decision

(adaptive)
t .a then

15: at ← decision
(adaptive)
t .a

16: end if
17: end if
18: ONLINETRAINANDEVOLVE(adaptivePolicy)
19: rule ← TORULE(adaptivePolicy , decision

(adaptive)
t )

20: STORE(rulesRepo, rule)
21: return at
22: end procedure

Figure 2. Agent Act Routine

from the adaptive policy, a corresponding rule is created by
treating the adaptive policy as a black box. Furthermore, the
policy ANN is converted into a decision tree [23] and this
decision tree is examined for yet-uncovered rules. Thus, the
rules extractor constantly feeds rules to the repository, which
are ranked according to (s, a1, r1) > (s, a2, r2) : r1 > r2.

This completes a two-way interface between the adaptive
and the rule-based policy. The rule-based policy yields most
of the agent behavior in learned situations, allowing to give
guarantees with regards to the agent’s actions and strategy. The
adaptive policy learns to cope with yet unknown situations.
At the same time, behavior learned by the adaptive policy is
immediately converted into rules, allowing for introspection
and extending the behavior governed by guarantees. The rule-
based policy is then also able to solve behavioral conflicts.
Additionally, rules can be obsoleted by better strategies found
by the adaptive policy, which is why sensor readings are always
fed to both policies. The rule monitor identifies these obsoleted
rules and removes them from the rules repository.

Figure 2 cover the description in this section.

III. DISCUSSION

Obviously, the proposition of the ARL agent architecture is
a bold one. Therefore, careful experimentation with benchmark
scenarios must be conducted in order to verify the hypothesis
underlying the architecture.

Scenario 1 considers voltage regulation as a basic use case.
The agent should be able to learn to keep the voltage close
to 1.0 p u in a medium voltage grid, such as the CIGRÉ MV

grid. The proposition should hold under time series (i. e., time
series data for Photovoltaic (PV) and wind power feed-in, as
well as time-series-based customer consumption), as well as
under grid constraints (i. e., grid codes). In order to master
scenario 1, the ARL agent should be able to cope with the given
situations at least as well as, or better, than simple Volt/VAr
controllers, as well as simple DRL agents. We expect the rules
repository to contain rules similar to that of simple reactive
power controllers.

In Scenario 2, the agent must cope successfully with
changing marginal distributions, such as the introduction of
Virtual Power Plants (VPPs) or changing customer behavior.
This tests the online learning capabilities of the design. The
task is still keeping the voltage close to 1.0 p u . Again, the
rules repository will serve as an indicator for the quality of
strategies learned, accompanied by the usual DRL metrics,
such as reward, objective value, and entropy.

In Scenario 3, the ARL agent must succeed against a simple
attacker, such as the oscillating attacker by Ju et al. [27] or
other documented forms of attack. If the ARL agent really
constitutes a better concept than the pure DRL approach, then
it will not just be able to counter the attack, it will also succeed
against different attack strategies. In practice, this is not only
another test for the agent’s online learning capabilities, but
also a way to extract real resilience strategies.

In Scenario 4, the ARL agents compete against each other
(“attacker” versus “defender”). This is more than just the logical
extension of scenario 3: As documented, this forces the agents
to sample the extreme areas of the action distribution [12],
given a plethora of extractable strategies and documentation
of weaknesses of a grid design.

The test scenarios are intended to test the overall behavior
of the system: Its ability to adapt through learning, stay
interpretable, and give guarantees. Since the research gap
addressed by the ARL agent architecture is the combination
of learning agent and guaranteed behavior, these scenarios can
test the agent by formulating invariants based on expected
guarantees.

If successful, we expect the ARL agent to be viable for
introduction in grid operator control centers. An initial use case
will that of a support and recommender system that helps grid
operators to keep situational awareness in complex situations.
Later on, the agent can manage parts of the grid (e. g., LV
branches with a high number of prosumers) in order to redtce
the complexity of grid management. Furthermore, we design
the agent to act as a defender against actual cyber attacks.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an agent architecture that
fuses rule-based behavior with the learning capabilities of DRL.
We did so in order to provide a learning agent that can still
give guarantees about its behavior.

In the future, we will develop the respective modules and
provide benchmarks and test results, with a special focus on
the applicability in CNIs.
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Abstract—For the target of energy demand estimation of 

residential buildings in urban scale, occupants’ behavior model 

has been paid much attention. In this paper, a new model for 

simulating occupants’ behavior schedules in urban scale has 

been proposed using only public stochastic data (national 

lifetime survey) combined with Dynamic Time Warping and 

Particle Swarm Optimization algorithms. We use this proposed 

model to simulate the working-male’s behavior schedules with 

5-mintues interval in resting day as an example. The simulated 

results - percentages of occupants adopt the given behavior at 

specific moments are calculated and compared with public 

stochastic data to verify the accuracy. Compared with existing 

models, the proposed model is more efficient and accurate. We 

believe this model could be useful for building energy demand 

estimation in urban scale combined with appliance operation 

possibility based on occupants’ behaviors. 

Keywords-occupants’ behavior model; energy demand of 

residential buildings; public stochastic data; particle swarm 

optimization; dynamic time warping. 

I.  INTRODUCTION  

A. Background 

To get the target of decarbonized society in 2050 [1], the 

Japanese government is promoting the introduction of 

decentralized renewable energy devices in urban area to 

reduce carbon emissions. But without a suitable introduction 

plan, the surplus electricity generated from excessive devices 

would disturb the balance between the supply and demand of 

power system or failing to get decarbonization target because 

of insufficient devices. Therefore, in building sector, it is 

essential to develop the decentralized energy introduction 

plan based on the energy demand of buildings in urban area.  

The renewable energy is limited to natural condition (e.g., 

solar energy) and outpower changes dramatically over time. 

Therefore, the energy demand of buildings should be 

estimated with high temporal resolution. Non-residential 

buildings (e.g., office) have temporal characteristics of 

energy demand because of fixed schedule of users. However, 

the energy demand of residential building is decided by 

appliances’ operation, which is influenced by the behavior of 

the occupants with significantly personal characteristics. In 

previous studies about energy demand estimation for 

residential buildings, the behavior schedules of occupants 

had been set to several cases. This assumption would 

significantly affect the accuracy of results. The reason is that 

even the same type occupants in urban scale would have 

numerous kind behaviors at the same time, but there are only 

a few cases in these few schedules that would overlay the 

peak or trough energy demand amount. Thereby, the demand 

results and the amount of renewable energy devices need to 

be introduced would be a departure from reality. Thus, a 

method to simulate the occupants’ behavior schedules in 

urban scale is very essential for the plan of introduction of 

decentralized renewable energy in urban scale.  

B. Related Work  

There is much previous research about the occupants’ 
behavior model in urban scale [2]. The models could be 
divided into two types based on whether to use dataset called 
Time Use Data (TUD), which describe occupants’ behavior 
by time.  

For the first type without TUD, in [3], a model was 
developed using only public stochastic data of TUD include 
mean and standard deviation of behaviors’ duration time in a 
day and percentages of occupants adopt the behavior at special 
moments by 15-mintues interval of a day. They firstly selected 
the behaviors according to probabilities and arranged their 
total duration time into 24 hours. Next, they placed the first 
behavior into the slot in timeline according to random number 
and placed the next behavior into the end of previous behavior 
one by one. As one merit, this method could generate the 
occupants’ behavior schedules with only public stochastic 
data. But the accuracy of the simulation results was greatly 
influenced by the first behavior’s inserted slot, which was 
decided randomly. Also, the results had not been validated.  

For the type of models using TUD, in [4], they developed 
a model using the Markov Chain, which is a stochastic model 
to determine the transition of behavior from another only 
depend on the condition at the previous time step. They 
collected the TUD from a great number of households and 
analysis the transition probability between behaviors. But the 
behavior items were limited in at room or not.  

In [5], they proposed a Markov Chain model and expanded 
analysis of the number of behavior items. They simulated the 
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household’s members independently. These Markov Chain 
models considered and simulated the transitions probability 
between the behaviors precisely, but the accuracy of behavior 
duration time was dependent on the timing and number of 
behavior transitions. This could be a weakness for simulating 
the occupants’ behavior schedules. In [6], they developed a 
occupants’ behavior model dealing with above problems. 
They divided behaviors into routine and non-routine and 
considered them separately. The behaviors’ duration time and 
transition probabilities between them were acquired by 
analyzing the TUD from the national time-use survey 
conducted by Statistics Japan in 2006 and been utilized for 
placing the behaviors into the timeline. They firstly placed the 
routine behaviors (including sleeping, commuting to work & 
school, dining and bathing) into timeline, then selected the 
non-routine behaviors according to the probabilities and 
placed them in the gap between the routine behaviors until all 
gaps had been filled. They improved the model in [7] 
considering the interaction among household members (e.g., 
household members always have dining together at one time 
and bathing one by one) and time-dependent characteristics of 
the specific behaviors (e.g., for a single person, the personal 
washing often happens immediately after waking up or 
breakfast, but it’s not shown in TUD because it was originated 
from a wide range of people.). In [8], they explored several 
machine learning methods to pre-process the TUD to improve 
the accuracy of behavior model. Although the duration time 
and transition probabilities of behaviors were detailed 
considered in their model, predetermining the number of 
behavior occurrences with a subjective assumption was made. 
(e.g., three meals over a day, one sleeping in the evening with 
long period), but according to the public stochastic data, there 
are also sleeping at the daytime for many type people), this 
might be a weakness of their model for ignoring this specifical 
cases. On the other hand, raw TUD are required to make this 
kind of model while only public stochastic data are available 
in many countries. 

As mentioned above, until now there are many developed 
occupants’ behavior models in urban scale with own strengths 
and weaknesses. But there is still no precise occupants’ 
behavior model that do not require prior analysis of large 
amount of raw TUD, pre-classification of behaviors according 
to routinely or not and predetermined number of occurrences 
with subjective assumption. 

C. Purpose of the paper 

In this paper, a new occupants’ behavior model using 

only public stochastic data without raw TUD has been 

proposed. Compared with existing models in previous 

research, this model could ensure the accuracy and efficiency.  

Section Ⅱ introduces the detailed procedures of the 

proposed model. Section Ⅲ corrects the simulation processes 

based on the simulation results. In Section Ⅳ, the final 

simulation result of working-male in resting day is shown. In 

Section Ⅴ, the conclusions about model’s features and 

weaknesses are introduced. Based on that, the directions of 

improving model in future are also introduced.  

II. PROPOSED BEHAVIOR MODEL  

A. Parameters of purposed occupants’ behavior model  

The proposed model simulates the occupants’ behavior 
schedules with 5-min interval based on the public stochastic 
data called National Lifetime Survey in 2020 from Japan 
Broadcast Institution (NHK) [9]. It should be noted that target 
of simulating behavior schedules is to estimate energy 
demand of residential building, so the behaviors that have no 
relationship with energy demand in residential building (e.g., 
working outside, commuting to work, school) have not been 
simulated in this paper. This assumption, which is one of the 
differences between the previous studies, can greatly simplify 
the model. Table Ⅰ shows the classification result of behaviors 
on public stochastic data. These behaviors have been 
simplified into 24 types and divided into interior and exterior. 
According to whether using appliances, the interior behaviors 
are further divided into two categories.  

To make the model, the public stochastic data would be 
utilized include: 

• PM: probabilities of adopting given behavior by 15-
minutes interval (the data has been processed into 5-
minutes interval by liner interpolation). 

• PA: probabilities of adopting given behavior over a 
day.  

• MTB: average duration time of adopting given 
behavior.  

• SDTB: standard deviation of duration time of given 
behavior.  

Some samples of public stochastic data are shown in Table 
Ⅱ. 

During the process of simulation,  a blank timeline with 
288 time slots (time of a day with 5-minutes interval) is 
generated firstly and prepares for filling up with behaviors 

TABLE I.  CLASSIFICATION OF BEHAVIORS 

TABLE II.  SAMPLE OF PUBILC STOCHASTIC DATA OF 

WORK-MALE IN  SUNDAY AND TARGET BEHAVIOR -SLEEPING 

Interior Behavior 
(lighting & HVAC used) 

 

Exterior Behavior Appliance used Non-appliance 
used 

eating children care shopping 
washing leisure conversation personal 

relationships 
sleeping reading newspaper work 

hobbies, entertainment 
and culture 

(with Internet) 

reading magazines 
comics 

leisure and exercise 

hobbies, entertainment 
and culture 

(without Internet) 

 class and lecture 

cooking, cleaning, 
laundry 

 commuting 

radio  sporting 
household chores   

Behavior PA MTB SDTB  Time PM 

sleeping 99.20% 8:25 2:07  0:00 70.20% 

eating 97.60% 1:38 0:52  0:05 71.27% 

washing 96.00% 1:04 0:34  0:10 72.33% 
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separately. The given behavior’s occurrences will span 
corresponding time slots in the timeline depend on its duration 
time length. The detail steps are explained as: 

1) Iterates over all given behaviors in order of the PA’s 

values and determines whether to adopt based on its 

PA. 

2) Once the given behavior has been adopted, the 

duration time (TB) is determined according to the 

Gaussian Distribution defined by MTB and SDTB. 

3) To insert these given behaviors into the timeline, it is 

critical to decide several parameters’ solution of the 

given behavior including: 

a) n: number of behavior occurrences.  

(n =1~4 randomly) 

b) sm: start moment of each behavior occurrence. 

SMN:  1 2, , nsm sm sm  

c) pn: probability of each number of behavior 

occurrences.  

(e.g.,
2pn :  probability of behavior occurring 

twice) 

PNN:  1 2, , npn pn pn  

d) pt: each occurrence’s duration time as 

percentage of TB in a large number of 

schedules. 

PTN:  1 2, , , npt pt pt   

(e.g., Figure 1 shows the difference between 

PTN1: [1/3,1/3,1/3] and PTN2: [1/6,1/3,1/2]  

B. Start moments of behavior occurances 

  It is necessary to decide SMN ’s solution to determine the 
positions of timeline where the behavior occurrences are 
going to be inserted. 
Figure 2 shows the process of deciding the start moment of 
each behavior occurrence by the cumulative distribution of 
PM. In detail, one day is divided into n time regions, which 
have the same sum of PM.  The start moment of splitting time 
region is generated randomly (e.g., 6:30).  It is assumed that 
object behavior occurs once in each time region. Based on that 
assumption, the cumulative distribution function of PM in 
each time region has been calculated to determine the start 
moment of each occurrence.  

C. Dynamic Time Warping 

Different from SMN, it is impossible to get PNN&PTN 

solution based on the existing public stochastic data merely. 

It is necessary to introduce parameter optimization method to 

obtain the optimal PNN&PTN solution. 

To verify the fitness of PNN&PTN candidate solution, 

we introduce the objective function to compare PM and 

probability of adopting given behavior at 5-min interval, 

which is calculated by schedules generated using PNN&PTN 

candidate solution (PM’). For PM and PM’ are both time 

series data, Dynamic Time Warping (DTW) introduced in [10] 

is used as objective function to measure their similarity.  

DTW of PM and PM’ is calculated by (1):   

      DTW(PM, PM’) = min 2( ) ( , )i jx y i j L−        (1) 

PM =  1 2 287, , ,x x x , PM’ = 
1 2 287[ , , , ]y y y  

The list of index pairs L =  0 1 287, , ,l l l  shows the 

matching pairs of the elements of PM and PM’ (e.g.,  

( , )k k kl i j=  shows the 
ki

x  and 
kj

y would be matched) that 

satisfies the following properties are shown in (2) (3) (4): 

                           0 , 287k ki j                                    (2) 

 
0 287(0,0), (287,287)l l= =  (3) 

          ( 1, ) ( , 1) ( 1, 1)k k k k k kl i j or i j or i j= − − − −         (4) 

Different from the traditional matching method, which 

would match PM and PM’ at the same index pairs ((x1, y1), 

(x2, y2), …, (x287, y287)). In DTW, based on the above 

properties, there is a large number (T) of possible matching 

solutions as candidates, which is shown in (5): 

 
0 0 1 0 1 1 287 287

0 1 287

0 0 0 1 0 2 287 287

( , ) ( , ) ( , ) ( , )

, , ,

( , ) ( , ) ( , ) ( , )

x y x y x y x y

T l l l

x y x y x y x y

 
 

=
 
  

 (5) 

all matching solutions’ distances between PM and PM’ 

would be compared and the smallest one would be called 

DTW. By calculating the DTW obtained from different 

PNN&PTN candidate solutions, the most suitable 

Figure 2. Processes of determining start moment of  

each occurrence of eating 
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PNN&PTN solution would be decided with the minimal 

DTW.  

D. Patricle Swarm Optimization 

As mentioned above, the best PNN&PTN solution can be 
found by finding the minimal DTW. In this paper, we use 
Particle Swarm Optimization (PSO) algorithm to find the 
minimal DTW. PSO is an evolutionary algorithm introduced 
in [11] that could optimize a problem by iteratively trying to 
improve a candidate parameters’ solution to get the better 
position in a D-dimensional space (D is the number of 
parameters).  

In the process of the PSO algorithm, firstly, a large 
number of particles have been generated and each particle is a 
candidate solution of PNN&PTN with different DTW result. 
At 1st iteration, particle’ initial position (p1) and velocity (v1) 
are randomly generated.  p1

 means PNN&PTN solution and v1 
means the distance between p1

 and p2 (position at 2nd iteration) 
as showed in (6). These particles make up a cloud that covers 
the entire space, then the DTW of all particles are calculated 
to decide their fitness. Based on fitness values, the globally 
best particle position（pg1）and  locally best particle position 

(pl1) are determined. As showed in (7), according to pg1, pl1 

and p1, v1 would be updated to v2, which would continue to 
update p2 to p3. With the iteration advancing, the cloud 
contracts gradually and performs the exploration for best 
PNN&PTN solution with minimal DTW. 

1k k kp p v+ = +                                 (6) 

1 1 2( ) ( )k k k k k kv wv pg p pl p + = + − + +   (7) 

 E. Process of proposed model  

     Figure 3 shows the proposed model’s all processes for 

simulating the behavior schedules. Using this model, 1000 

behavior schedules have been generated and evaluated.  

III. CORRECTION OF SIMULATION PROCESS 

According to the schedule results, there are two significant 

errors include: 

1) Figure 4 shows the results of sleeping are 

inaccurate thoroughly. 

2) Figure 5 shows the delaying of start moments of 

PM’ compared with PM.  

The above errors would be dealt with as follows: 

A. Correction of sleep simulation process 

The error 1) can be attributed to the inaccurate 
determination of start moments of sleeping. Different from 
other behaviors, people always have a long period sleeping in 
the evening and add a short period sleeping during the daytime. 
For this type of behavior with a clear temporal characteristic, 

:k  kth iteration :kpl  locally best particle’s 
position at kth iteration 

:w  inertia weight 
1 2, :   

1 1 1c r = , 
2 2 2c r =  

:kv     particle’s velocity at kth 
iteration 

1 2, :r r  random numbers in the 
range [0,1] 

:kp  particle’s position at kth 

iteration 
1 2, :c c  

1 2 2c c= =  

:kpg  globally best particle’s 
position at kth

 iteration 
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the method deciding behavior start moments based on sum of 
PM is not suitable any longer. To solve this problem, we 
revise the model to simulate sleeping behavior in the 
following process: 

a) The number of sleeping occurrence (n) is set to 

1~2. If sleeping occurs once, it occurs at night; if 

sleep occurs twice, the first and longer sleeping 

occurs in the evening and second one occurs at 

daytime.  

b) For sleeping in the evening, people wake up at a 

more concentrated time than when they fall asleep. 

Therefore, we use the moments of waking up 

(ending of sleeping) to decide the position of 

sleeping in timeline where being inserted into.  

c) The range of end moments of first sleeping in the 

evening is set as 0:00-12:00, the range of start 

moments of second sleep is set as 12:00-18:00. 

The specific moments in the range are searched by 

PSO method too.  

To sum up, the parameters of sleeping for PSO method 

are reset showed as (8): 

SMN = 
1 2[ , ]sm sm  PNN =

1 2[ , ]pn pn  PTN =
1 2[ , ]pt pt (8) 

     After the calculation by PSO, Figure 6 shows the results of 
sleeping’s PM and PM’ by this revised process, which is 
better than original one.  

B. Correction of start moment  

For the error 2), the reason being considered is that the 
decision of start moment based on cumulative distribution 
function of PM always drop behind actual situation. To solve 
this issue, the new parameter ad is introduced to adjust the 

SMN: 1 2[ , , , ]nsm ad sm ad sm ad+ + + . The decision of ad 

is also calculated by PSO method. Therefore, the solution of 

PNN&PTN, ad would be decided together by minimal DTW. 
Figure 7 shows the simulation results of PM and PM’ after the 
adjustment of behavior start moments and it demonstrates 
higher accuracy than before.   

IV. SIMULATION RESULTS  

Table Ⅲ shows the calculation results of behavior 
washing’s parameter solutions by PSO algorithm of working-
male in resting day. In Figure 8, the probability distribution of 
all target behaviors is shown.  The result shows that PM’ 
agreed well with PM and it confirms our model’s accuracy. 

TABLE III.  PARAMETER SOLUTIONS OF  BEHAVIOR WASHING 

CALCULATED BY PSO ALGORITHM 

Behavior Parameter Solutions – PNN, PTN, ad 

 1 2 3 4, , ,pn pn pn pn  1 2 3 4, , ,pt pt pt pt  [ad] 

washing PNN = [0.9%, 18.7%, 31.8%, 48.6%]  
PTN = [21.7%, 20.6%, 18.2%, 39.5%] ad = [3] 
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Figure 7. Comparation of simulated stochastic data, PM’ after revising 

and public stochastic data, PM (eating) 
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V. CONCLUSION AND FUTURE WORK 

This paper proposes a model based on public stochastic 

data to generate occupants’ behavior schedules at home. It 

could be used in energy demand estimation of residential 

buildings in urban scale. More than just simulation for 

behavior schedules based on past public stochastic data, it 

might be useful for assuming the future people behavior 

change by altering the inputting public stochastic data (e.g., 

the working time at home increased because of covid-19).  

Compared with existing behavior model’s research, the 

proposed model has the following features: 

• Generating occupants’ behavior schedules based on 
public stochastic data only. Without statistical 
analysis of large amounts of raw TUD, which is not 
available in many countries, making the behavior 
model simpler and more efficient.  

• No classifying the behaviors or setting the specific 
number and duration time of behavior occurrences. 
This feature could exclude the errors from subjective 
assumptions.   

• Utilizing the PSO and DTW algorithm to search the 
suitable number of behavior occurrences and 
percentages of occurrences’ duration time. It would 
make the simulation results match the public 
stochastic data as closely as possible.  

• Deciding the start moments of behavior based on 
cumulative distribution of public stochastic data. As 
the simulation results do not agree with the public 
stochastic data, the start moments calculated by the 
above method have been corrected using PSO 
algorithm.  

It should be noted that by PSO algorithm merely, the SMN 
could be determined without using cumulative distribution of 
PM. But with the assistance of cumulative distribution, the 
PSO algorithm could narrow the search range and get solution 
quickly. Using this revised model, the working-male’s 
behavior schedules in resting day have been generated. The 
result shows that our model has a good accuracy. But there are 
also several drawbacks: 

a) During some time interval s (e.g., at 12:00~12:30 and 
22:00~22:30, the public stochastic data - PM of eating, 
sleeping increase rapidly, but the simulation results - 
PM’ fail to reflect such phenomenon. 

b) No consideration of interaction between behaviors 
(e.g., people are likely to wash themselves when they 
wake up, but behavior transition between sleeping and 
washing can’t be simulated in a single schedule). 

c) Fail to consider the interaction between the family 
members (e.g., having a meal together). This 
interaction is import for residential building energy 
demand estimation.  

In future, we are going to deal with these drawbacks to 
improve the behavior model. About drawback a), more in 
depth analysis of public stochastic data especially in specific 
time interval will be done so that different weights will be 
given during these time intervals in simulation process. For b), 
which had been raised in much previous research, analysis the 
raw TUD to get the results of behavior transition probabilities 

is a feasible option. And about last c) as mentioned in [7], 
when several kinds of schedules from different people in a 
family are required for residential building’s electricity 
demand estimation, it could be a solution to choose schedules 
from generated schedule database, which have meals at the 
same time and bathing in sequence. Also, it should be noted 
that the behavior schedules could not be used directly in the 
energy demand estimation model without appliance operation 
possibility based on behaviors. More work about the 
relationship between behavior and appliance operation is also 
necessary in future.  
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Abstract— The world is moving towards a conservative 
approach to fulfilling its energy needs due to inevitable 
uncertainty and disruptions in the supply chain. In addition, 
climate change, the availability of materials, and making them 
sustainable through recycling are other topics of high interest. 
Energy is a common item among all the industries, and 
demand for it keeps increasing due to developmental activities. 
In this work, we aim to improve the efficiency of utilising the 
available energy in the material processing industries. Mining 
the ore, extracting the material of interest, melting the 
material, and manufacturing the required components are 
typical processes in these industries. The manufacturing of the 
components also includes a heat treatment process. For 
example, the heat treatment process demands 20% of the total 
energy in a non-ferrous foundry. Pre-heating and heat 
treatment operations consume a significant amount of energy 
in the ferrous-based industry. We intend to investigate the 
processes in these industries and create a machine-learning 
model of the processes involved. Later, we use the machine 
learning models to build an optimization framework that 
provides the optimal process operating parameters to achieve 
the best output while using the least amount of energy. 

Keywords- machine-learning; Optimisation; heat-treatment; 
energy-efficiency. 

I. INTRODUCTION

Heat treatment processes are an important stage in 
materials processing in which component properties are 
modified to suit a particular application. In this process, 
mechanical and physical properties, such as ductility, 
hardness, toughness, wear resistance, and strength are 
changed without changing the designed shape and size of the 

component [1]. In general, heat treatment processes are 
carried out to improve strength in the case of loaded 
members and wear resistance in the case of moving parts, 
however, it can also be used to improve the machinability, 
formability of materials. The changes in the properties of the 
material are made possible thanks to the changes which 
occur at molecular structure/microstructure level. The 
structure of the material is a function of two factors; (1) 
Grain size (2) Grain structure. These two components of 
microstructure of a material define its mechanical and 
physical properties. Also, heat treatment process is often 
coupled with pre and post heating process which enable us to 
utilize energy effectively besides improving the product 
performance. 

In total, it can be observed that there are several 
parameters involved in heat treatment process such as, 
chemical composition of alloy, dimensions and shape of the 
component to be heat treated, micro structural, physical and 
mechanical properties, energy required for the heat treatment 
process, etc. Depending on specific objective, some of the 
parameters will be input before/during heat treatment and 
others will be output parameters. Irrespective of our 
objectives if we end up with more than 4 parameters, which 
vary then a complex problem needs to be solved to realize 
the effect of each parameter on the set out put parameters. To 
address this issue regression models are used. A brief 
literature review of the regression models used to map input 
to output parameters in heat treatment process is presented in 
the following section.  

The rest of the paper is organized as, details of regression 
model and its results are presented in Section III, details of 
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optimization framework and its results are presented in 
Section IV and the conclusions are presented in Section V. 

II. LITERATURE

In the case of metals, Johnson [2], Avrami [3] proposed 
analytical models. Using their work, numerical simulations 
were developed to study heat treatment process. The 
simulation results reduced the effort of extensive 
experimentations (hence reduction in energy consumption) 
however they lack accuracy [4]. For example, Maisuradze 
[5] proved that the simulations predict strength parameter in-
accurately in a heat treatment process.  To address this issue 
computer aided simulations are developed which give a 
better accuracy than the simulations [6] – [9].  

In general, an important task in a heat treatment model 
development is to predict the micro-structural properties 
accurately as they predominantly influence output quality 
parameters. In this way it is easy to suggest the initial/input 
parameters of a heat treatment. In this regard, data driven 
solutions are proven to accelerate the problem solving [10] 
[11]. Related works in this field include, Homer et al. [12] 
and Zhu et al. [13] investigated grain boundaries in 
polycrystalline material using machine learning tools, 
Raccuglia et al. [14] created a classification model to predict 
successful and failed experiments using vast amount of 
experimental data on materials. Agrawal et al. [15] [16] 
created a machine learning model which predicts fatigue 
strength of steel using composition and processing 
parameters. In [17] regression models are used to predict 
four mechanical properties after heat treatment process. The 
authors have used five different regression models of which 
random forests performed well in predicting the mechanical 
properties and they developed mathematical expressions out 
of it. 

Heat treatment and other processes of glass also results in 
change in microstructure and hence mechanical properties. 
Structural and physical properties of strontium borate glass 
are evaluated against chemical composition using regression 
analysis by Masai H et al. [18]. Samuel B. O. et al. [19] have 
developed an optimization technique using which they 
modelled glass material for composites of particular flexural 
strength using Taguchi and general regression. In case of 
glass, a lot of attention is given to the manufacturing 
processes such as cutting, grinding, etc. In [20] [21], the 
authors have created a Neural Network (NN) model to 
predict material removal rate and surface roughness 
parameters in a laser machining process. Shimaa et al. [22] 
created a machine learning model of abrasive jet machining 
of glass in which material removal rate is correlated with 
process variables of machining process. Bezzera et al. [23] 
developed a machine learning model using NN to predict 
shear stress-strain behavior of CFRP material. 

There is a lot of research literature in which 
investigations are carried out on implementing optimization 
methods with regression models as basis for prediction. 
Although regression models developed on machine learning 
techniques perform as per the expectations, the developed 
models suffer from a dis-advantage. The solution space of 

the machine learning models may refer to a local maxima or 
minima, over/under fitting and slow convergence. These dis-
advantages can be identified and overcome by implementing 
an optimization technique to rigorously search the solution 
space for a specific solution that fits our application [24] [25] 
[26]. In recent research works, deep learning models such as 
Deep Neural Networks (DNN), Convolutional Neural 
Networks (CNN), and Recurrent Neural Networks (RNN) 
are used for forecasting energy demand forecasting. Works 
of [27] [28] [29] have shown that using more than one type 
of deep neural networks for forecasting energy demand gives 
accurate result. Khan A. et al. [30] used machine learning 
algorithm along with cuckoo search method for forecasting 
energy requirement. Almalaq, A. et al. [31] used Long short-
term memory networks with Genetic Algorithm (GA) to 
create prediction and optimisation models of energy 
consumption of buildings. Wen L. et al. [32] used LSTM 
with particle swarm algorithm (PSO) to correlate load 
dispatch in a community micro grid with solar power 
assistance. Similar work is done by Ceylan H. et al. [33] by 
using GA to estimate energy demand of Turkey using 
economic indicators.  

Some other related works include [34] [35] in which 
researchers have used PSO to optimally configure the 
weights of NN to create an accurate model of energy 
consumption.  

Although the reported literature includes the use of GA 
and PSO, there are several such heuristic algorithms namely, 
Tabu Search, Simulated Annealing, Travelling Salesman, 
etc. A review of the algorithms is presented in [36]. Of all 
these algorithms, GA and PSO are predominantly used 
because of their exceptional performance when applied to 
engineering problems. These two methods are broadly 
similar however they differ in their basic nature of search 
technique. GA is based on evolution whereas PSO is based 
on swarm intelligence. A detailed comparison study of these 
two techniques is presented in [37]. Also, R. Kshirsagar et al. 
[38] proved that PSO can be derived as special case of GA 
for a class of engineering problems. GA is a suitable 
algorithms for non-linear problems.  

In this work we used simulation model results of a case 
study in glass industry to create regression model and an 
optimization frame work is created using the regression 
model. The frame work is a multi-objective and multi-
constraint based prediction model which is capable of 
generating input parameter values for a particular output 
required. 

III. REGRESSION MODEL OF HEAT TREATMENT 

The case study we considered to analyse is a heat 
treatment process of glass bottles made of soda-lime 
material. Cooling part of the heat treatment process is 
selected for simulation. In the cooling part of the heat 
treatment we aim to study the changes in material quality and 
energy consumption in relation to the parameters annealing 
temperature (0C), Cooling rate (0C/min) and Exit temperature 
(0C). All the other possible parameters are kept constant for 
this study. These three parameters are the independent 
parameters of the process. 

24Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-054-4

ENERGY 2023 : The Thirteenth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

                            31 / 74



For the purpose of creating data related to heat treatment 
of glass, we have setup maximum and minimum values of 
independent variables of heat treatment process of glass 
bottles. The details of the independent parameter values are 
presented in Table I.  

TABLE I. LIST OF INDEPENDENT PARAMETERS AND THEIR VALUES 

OF HEAT TREATMENT OF GLASS

S.No Parameters Level 1 Level 2 Level 3 

1 
Annealing/Initial 
Temperature (0C) 

545 565 605 

2 
Cooling rate above S.T 

(0C/min) 
3 6 9 

3 Exit Temperature (0C) 
70 110 150 

Using the values of each independent/input parameters, 
we have created a full factorial design of experiment which 
results in 27 experiments. These experiments are carried out 
in a computer simulation using ANSYS. The simulation is a 
cooling simulation where the work piece is at annealing 
temperature and cools down to exit temperature at the given 
cooling rate.  In each simulation, the value of maximum 
stress and energy required are evaluated. Results of 
simulation along with input parameters of each simulation 
are presented in Table II. 

TABLE II. SIMULATIONS RESULTS. VALUES OF INPUT AND OUT 

PARAMETERS 

Input parameters 

Output 
parameters 
(Simulation 

results) 

Initial 
temperature 

(0C) 

Cooling 
rate(0C/min) 

Exit 
temperature(0C) 

Max 
Stress 
(von-

Mises) 
Pa 

Energy (J) 

605 
6 150 476420 73309 

545 

6 70 476350 76573 
545 

9 150 714670 63029 
545 

3 110 238230 70496 
605 

6 70 476350 86364 
545 

3 70 238200 77017 
545 

3 150 238270 63975 
545 

6 110 476390 70045 
545 

6 150 476420 63516 
545 

9 70 714440 76090 
545 

9 110 714540 69560 
565 

3 70 238200 80276 
565 

3 110 238230 73756 
565 

3 150 238270 67236 
565 

6 70 476350 79837 

565 

6 110 476390 73309 
565 

6 150 476420 66780 
565 

9 70 714510 79355 
565 

9 110 714620 72825 
565 

9 150 714490 66295 
605 

3 70 238200 86795 
605 

3 110 238230 80276 
605 

3 150 238270 73756 
605 

6 110 476390 79837 
605 

9 70 714440 85886 
605 

9 110 714540 79355 
605 

9 150 714660 72824 

Using these results (listed in Table II), a data set is 
created with three input parameters namely Initial 
temperature, Cooling rate and Exit temperature, two output 
parameters namely maximum stress value and energy. NN is 
used to create a regression model. Details of the NN is 
presented in Figure 1. 

Figure 1. Flow chart of optimisation algorithm. 

It can be noted that a specific architecture (as shown in 
Figure 1) is used in this work to create NN. As explained in 
[25], there is no logical way to decide the number of neurons 
and number of hidden layers in NN architecture for a 
particular type of problem or data set. In this report the 
architecture shown in Figure 1 is realised after several 
attempts made, by changing the number of hidden layer, 
number of neurons in the hidden layers and examining the 
results after several training iterations. The NN code is set to 
iterate till the loss function evaluated on training set is same 
as testing set and percentage error evaluated between 
predicted values and the actual values is less than 1%. This 
exercise confirms that the created model is accurate and does 
not over fit the data.  

Data is normalised before feeding it to NN. It is 
normalised using the formula given by (1).  
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Here, Xnorm – normalised value, Xmin – minimum value of 
a particular variable , Xmax – maximum value of a particular 
variable , X – actual value of the variable (from Table II).  It 
can be noted that the data in normalised form is unit less. 

TABLE III. ACTUAL OUTPUT PARAMETERS, ESTIMATED OUTPUT 

PARAMETERS AND PERCENTAGE ERROR

Output 
parameters 
(Simulation 

results) 

Output parameters 
(Neural network 

Model 
predictions) 

Percentage error 

Max 
Stress 
(von-

Mises) 
Pa 

Energy 
(J) 

Max 
Stress 
(von-

Mises) 
Pa 

Energy 
(J) 

Max 
Stress 
(von-

Mises) 

Energy 

476420 73309 474945 73260.8 0.31% 0.07% 

476350 76573 473229 76579.8 0.66% 0.01% 

714670 63029 716380 62957.3 0.24% 0.11% 

238230 70496 239977 70599.4 0.73% 0.15% 

476350 86364 473776 86353.2 0.54% 0.01% 

The NN is trained by dividing the data into training and 
testing set. The division is carried out randomly. 80% of the 
data is used to create the NN model. Rest of the 20% of the 
data is used to validate the model created by training data. 
Mean squared error is measured on both testing and training 
data set. Training of the NN is carried out till mean squared 
error measured on both testing and training are equal so that 
the prediction model does not over fit the data. Percentage 
error between the predicted values and the actual values is 
within 1%. Percentage error evaluated over five data points 
is presented in Table III. 

IV. OPTIMISATION MODEL USING HEAT TREATMENT 

MODEL

Regression model created (in Section III) to predict Von-
Mises stresses and energy is used in GA to create 
optimization frame work. It enables us to find out the values 
of input parameter values for the required output. In the 
frame work, objective function is created using regression 
models created using NN. The objective function is given by 
(2). 

Objective function = Minimize {abs(Stress evaluated by 
regression model-Required stress value)+abs(Energy 
evaluated by regression model-Required energy value}) 

(2) 

Note that the parameters used in (2) are in normalized 
form, hence the issue of incomparable engineering units in a 
single equation does not arise. Also the parameters used in 
(2) namely “Required stress” value and “Required energy” 
value are set by the user. The range of parameters is 0 to 1. 

The regression model and the optimization process works 
well for interpolation. 

The objective function is created as a minimization 
problem in which GA tries to find out a stress and energy 
value which is equal to required stress and energy values. 
The iterative steps in GA are as follows  

• Step 1: Create an initial population. Here the initial 
population is nx3 matrix where n is the population length 
and 3 is the number of input variables in GTS data. Each 
value in the matrix is chosen randomly that lies between 0 
and 1. This is because, regression model created is based on 
normalized data. 

• Step 2: Evaluate stress, energy values for each 
population set (each row of nx3 matrix) using regression 
model and then evaluate objective function given by (2). 

• Step 3: As the objective is to minimize (2), the rows 
of population set is sorted in ascending order with respect to 
objective function. 

• Step 4: Top half of the population is selected as fit 
population. Cross over is carried out on the fit population by 
selecting two random chromosomes. Another half of the 
population is replaced with newly formed chromosomes.  

• Step 5: Mutation is carried out by replacing 
randomly selected gene in a randomly selected chromosome.  

• Step 6: repeat from step 1 to 5 with new set of 
population formed in Step 5 until the percentage error 
between the actual vs predicted values is within the set value. 

Flow chart of the Algorithm explained in the above 6 
steps is presented in Figure 2. 

Figure 2. Flow chart of optimisation algorithm. 

To start the algorithm, we have set required stress value 
and energy value as presented on Table IV. 

TABLE IV. RESULTS OF OPTIMISATION FRAMEWORK 

S. 
No. 

Max 
Stress 
(von-

Mises) 
Pa 

Energy 
(J) 

(Set 
value) 

Temp 
(GA 

result) 

Exit 
temp 
(GA 

result) 

Cooling 
rate(0C/min) 
(GA result)  

Max 
Stress 
(von-

Mises) 
Pa 

Energy 
(J) 

(NN 
result) 
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(Set 
value) 

(NN 
result) 

1 333494 74912 593.216 130.294 4.31758 332858 74903.1 

2 285847 74912 573.789 112.013 3.74986 286081 74812.2 

3 285847 65405.6 548.204 143.704 3.80564 285242 65338.5 

4 476435 65405.6 553.14 147.554 6.00404 476384 65379.8 

5 667023 84418.4 601.384 75.5933 8.3983 666715 84426.1 

6 667023 79665.2 598.011 101.057 8.36115 662141 79657.9 

Using trial and error, we identified that a population size 
of 50 results on definite convergence. So the population size 
is set to 50 and the algorithm is iterated till the required 
accuracy is achieved. At the end of the iterations, top 
chromosome set after sorting is identified to be the best 
solution. This exercise is carried out for all the 6 set of stress 
and energy values and corresponding input values obtained 
using GA are presented in Table IV with label “GA result”. 

To validate the obtained values using GA, “GA result” 
set are input to neural network model and stress and energy 
values are calculated. The values are presented in Table IV 
with label “NN result”.  

TABLE V. PERCENTAGE ERROR OF ACTUAL VALUES AND THE VALUES 

OBTAINED BY OPTIMISATION FRAMEWORK 

Optimization 
frameworks 

results 

Set values  Percentage error 

Max 
Stress 
(von-
Mises) 

Pa 

Energy 
(J) 

Max 
Stress 
(von-
Mises) 

Pa 

Energy 
(J) 

Max 
Stress 
(von-
Mises) 

Energy  

332858 74903.1 333494 74912

0.19% 0.01%

286081 74812.2 285847 74912
0.08% 0.13%

285242 65338.5 285847 65405.6
0.21% 0.10%

476384 65379.8 476435 65405.6
0.01% 0.04%

666715 84426.1 667023 84418.4

0.05% 0.01%

662141 79657.9 667023 79665.2
0.73% 0.01%

Percentage error of between “GA result” and “NN result” 
is evaluated and tabulated in Table V. Maximum value of 
percentage error falls below 1% in this case also. 

V. CONCLUSIONS

Heat treatment process of glass is studied in this work. A 
specific pattern of heat treatment and cooling is required to 
achieve desired properties in the glass material. For the 
purpose of study, independent/input parameters list is created 
with their maximum and minimum values. A full factorial 
design of experiments set is listed for computer simulations. 
Output parameters namely stress, energy are evaluated using 
the simulations. A multi-objective and multi-criteria 
optimization framework is created using regression model 
and genetic algorithm. Results obtained using both 
regression model and optimization model are well within 1% 

error. Although only one case study is used to carry out the 
analysis, the optimization framework we proposed can be 
used for any industry problem. 

The framework proposed in this manuscript allows to set 
the output parameters and evaluate input parameters. GA is 
used for the evaluation. The framework also allows to 
constrain the range/value of few input parameters and 
evaluate others. In this way it is possible to obtain a range of 
input parameters which fit the operating conditions. So for a 
particular value of energy consumption and stress value and 
exit temperature, it is possible to obtain various values of 
cooling rate and initial temperature. An example is presented 
in Table VI. In this way, an optimal input parameter-set can 
be evaluated for a particular operating conditions. Several 
such input parameter-set can be evaluated using the proposed 
framework. 

TABLE VI. MULTIPLE INPUR PARAMETER-SET FOR A PARTICULAR 

VALUES OF OUTPUT PARAMETERSSS 

Initial 
temperature 

(0C)

Cooling 
rate(0C/min)

Exit 
temperature(0C)

Max Stress 
(von-

Mises) Pa 

Energy 
(J) 

545.971 4.80058 112.333 381141 70158.8 

547.31 4.79042 113.755 

552.531 4.86698 119.288 

566.68 4.76859 132.511 

574.075 4.88605 139.3 
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Abstract— A design for a non-grid-connected (islanded) smart 
community microgrid is developed and elaborated. This focuses 
on a real community, and the design is developed in such a way 
as to take into account current energy demands, and future 
expansion (given that currently there is no formal electricity 
supply to the community), but also, since the community is 
located on an island with a number of neighbouring 
communities and industries, the design is developed to enable 
future fractal growth of the micro-grid. To meet these 
requirements, the development covers needs analysis, the micro-
grid configuration, and the initial sizing of the various 
components. Configuration and sizing are then optimised for 
the initial microgrid, taking into account the particular 
community social infrastructure characteristics and dynamics. 

Keywords-community microgrid; fractal microgrid design. 

I.  INTRODUCTION  
This paper describes the development of a design for a 

smart electricity microgrid in Aotearoa New Zealand, for the 
community of Motairehe on Aotea/Great Barrier Island, a 
remote island approximately 100km northeast of Auckland. 
There is no reticulated power system on Aotea. The entire 
population of the island (~1000) live off-the-grid, running 
their own solar/battery power systems, which are 
supplemented by petrol or diesel powered generators, natural 
gas and wood fires, and in almost all cases, the solar/battery 
systems do not provide nearly enough of the households’ 
energy needs, so there is a heavy reliance on the fossil-fuel 
powered back-up generators. 

This absence of existing infrastructure provides an 
opportunity to improve the lives of the island’s population, 
and contribute to New Zealand’s efforts to reduce carbon 
emissions and expand clean energy use [1]. The community 
on which this design focuses contains the majority of the 
indigenous Māori population of Aotea, approximately forty 
households and 90-100 people. The initial design is for the 
central part of the community, ten households together with a 
marae, but it is intended that through a phased approach, the 
microgrid would be extended over time to include the 
remainder of the households, and then on into neighbouring 
communities. A marae is a place where traditional Māori 
ceremonies and meetings are held. It normally comprises a 
meeting space, marae ātea, a meeting house, wharenui, and a 
kitchen/dining room, wharekai. The marae can accommodate 

hui, either short, smaller meetings, or larger iwi (tribal) events 
that may run for several days, with accommodation being 
provided in the wharenui. 

To accommodate this anticipated expansion, focussing on 
the use of non-dispatchable and distributed renewable energy 
generation (solar panels), and to some extent exploiting the 
absence of any existing legacy grid, the design described is 
based on a fractal grid model [2]. Considerations in this design 
include distributing both generation and storage across the 
community, in such a way as to ensure maximum local 
consumption of locally produced energy, to enable and 
support community utilisation of all energy produced, yet to 
minimise the required inter-node transmission capacity. A 
further aspect is to ensure community engagement, and 
essentially “ownership” of the microgrid [3]. 

While there is a growing body of literature on the design 
of community microgrids e.g., [4][5][6], the work described 
here essentially begins from first principles in order (i) to 
recognise the islanded environment, (ii) to base the design 
principally on solar power and batteries, and (iii) to 
acknowledge the social context of the development. 

The paper is structured in the following way. Section II 
develops appropriate household and marae load profiles, 
necessary because there is no existing reticulated power 
system. These load profiles are then used in Section III to 
establish what would be an adequate or appropriately sized 
solar/battery configuration for a household, and for the marae. 
This configuration is then adjusted in the context of a fractal 
microgrid design in Section IV, which clearly demonstrates 
the advantages of this concept. Section V provides a 
discussion of the optimal configuration and distribution of 
resources in the microgrid. The overall design, and the current 
state of the development, is then discussed in the concluding 
Section VI. 

II. LOAD PROFILE ESTIMATION 
Annual load profiles were established for ten individual 

households. As there is currently no grid supply to the 
community, then these profiles were derived from real 
households with appropriate occupancy and appliance 
utilisation characteristics, located at a similar latitude on the 
New Zealand mainland. Those adopted were selected on the 
basis that the houses did not have electric hot-water systems, 
nor did they use electricity as their primary form of heating. 
These were also households comprising a range of occupant 
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numbers, both adults and children. The consumption profiles 
for these houses varied considerably, in terms of average daily 
use, hourly use over the day, and seasonal differences. The 
data used was hourly data over a whole year – 8760 data points 
for each house [7]. 

While the variation between households was retained, the 
profiles were scaled to give an average daily base load (across 
the ten houses) of 7.5 kWh. This data is summarised in 
Table 1. 

TABLE I.  SUMMARY OF HOUSEHOLD BASE LOAD DATA 

 
A load profile for the marae was also established using 

similar techniques, based on the occupancy level. One of the 
household profiles (A4, Table 1) was used as the starting 
point, but the scaled data was doubled to represent 4 adults 
(estimated permanent marae occupancy), meaning the base 
load daily average is 19.171 kWh.  To this base profile was 
then added a randomly generated hui load. Fourteen hui were 
added over the year, with their start dates randomly generated, 
and with randomly allocated durations of 1 to 3 days. This was 
based on suggestions from the community of typical hui 
frequency and size. An estimated supplementary load profile 
was created for a hui, which included additional cooking, 
lighting, and heating during the event. This added load runs 
from 2.00pm to 2.00pm, so assumes that even a 1-day hui 
involves an overnight stay for the non-local participants. 

For the marae, the addition of these hui increases the 
annual average daily consumption to 24.275 kWh, and the 
maximum consumption in any one hour over the year from 
6.051 to 9.465 kW. 

III. INDIVIDUAL HOUSEHOLD DESIGN 
Based on these load profiles, and standard design 

guidelines for solar installations in New Zealand: 
• solar panel capacity ~ average daily load / 4 
• battery capacity ~ average daily base load x 3 

an initial analysis was carried out for the ten households and 
the marae. 

For this initial analysis, with each household, and the 
marae, operating as an independent unit, the standard 
configuration used was solar panels of 4 kW capacity, plus a 
battery of 22.5 kWh capacity, for each site. Annual solar data 
for Aotea was used to calculate the solar panel output for each 

hour of the year [8], and key points from this analysis of the 
non-networked configuration are shown in Table 2. 

A discretionary or divertible load was added in for this 
analysis. In reality, this might, for example, represent hot-
water heating or EV charging, electricity usage carried out 
when there is a surplus, over and above the base load. This 
discretionary load was set to a daily maximum (per 
household) of 5 kWh, and was invoked only when the battery 
was at 95% charge level or more, and there was surplus solar 
generation. This produced an overall total average 
discretionary load across the community of 30.4 kWh per day, 
and there were just 9 days in which no discretionary load was 
possible at all. 

TABLE II.  SUMMARY OF INITIAL NON-NETWORKED SIMULATION 

 
It is interesting to note (Table 2) that under this 

autonomous mode of operation, and with this configuration, 
for four of the households there were no base load supply 
failures at all over the entire year. For the other six households, 
there were times when their systems were unable to meet the 
basic household needs, with House 10 showing the most 
extreme case of 317 hours of failed base load supply. The 
marae, because of its very high peak demands during hui, 
showed 2184 hours in which the system was unable to meet 
its demands, and with this shortfall averaged  over the whole 
year, that  amounts to nearly 9kWh per day. By contrast, all 
sites, including the marae, showed a significant number of 
hours in which there was an unused surplus of solar energy. 

Of course the failure occurrences for the individual houses 
do not all occur together, although after a day of low sunshine, 
it is more likely that such events may coincide. For all of those 
failed hours across the ten households shown in Table 2, these 
were spread across 355 hours of the year. 

To give an idea of the energy balance situation, in Figures 
1 and 2 the annual hourly balance is shown for two extreme 
houses, House 5 (zero failed hours) and House 10 (317 failed 
hours). For these energy balance plots, the consumed energy 
includes battery charging as well as the actual domestic loads, 
and the produced energy  comprises both solar generation and 
anything delivered from the batteries [9]. Perfect balance is 
shown by points on the diagonal. For House 5 (Figure 1), 
perfect balance is achieved 75% of the time. The very evident 
stack of points close to the vertical axis represent hours of 
sunlight (high generation) at times of low load, when the 
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batteries are fully charged. The other vertical cluster of points 
at a load of 2.2kW represent those daylight hours when the 
discretionary load has been activated, but there is still some 
surplus. House 10 (Figure 2) actually achieves perfect balance 
83% of the time, but of course, as can be seen from the graph, 
there are 317 hours (3.6%) when the full demand is not met. 

 

 
Figure 1.  Hourly energy balance over the full year for House 5 in the non-

networked mode. 

 
Figure 2.  Hourly energy balance over the full year for House 10 in the 

non-networked mode. 

These two houses represent the extremes of 
generation/load balance using this basic design; all of the 
others lie between these in their energy balance 
characteristics [9]. 

IV. FRACTAL MICROGRID DESIGN 
Clearly with demands and surpluses varying between 

households, and the occasional peak demand from the Marae 
during hui, community sharing has potential to achieve a 
greater degree of balance between generation and demand. A 
fractal microgrid design [2] as represented in Figure 3 will 
now be considered. 

In this model, any terminal node (A to F, and I in Figure 
3) can comprise any combination of load, generation, and/or 
storage. Typically, these would represent individual 
households such as those being considered here, but they 
could also represent a community solar panel array 
(generation only), a community service, such as street 
lighting or EV charging (load only), or a community battery 
(storage only). Some of the households might not include 
solar panels and/or storage. The non-terminal nodes (G, H, 
and J in Figure 3) will always present themselves as 
intelligent and active to the higher level grid they are 
connected to, and will comprise a combination of load, 
generation and storage, but from the perspective of the higher 
level grid, will appear as a single entity with these properties, 
hence the term, fractal microgrid [10]. 

 
Figure 3.  The fractal microgrid concept. 

The fractal microgrid proposed here initially comprises 
just a single level 0 grid (Figure 3) and no higher levels. The 
marae forms the level 1 node (node G in Figure 3), and the 
community households the level 0 nodes (nodes A, B, C in 
Figure 3). A more specific representation of this Motairehe 
fractal microgrid is shown in Figure 4. 

 

 
Figure 4.  The proposed Motairehe fractal microgrid comprising ten 

houses and the marae. 
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In this model, it can seen that each household retains local 
solar generation and battery storage, but is also connected to 
the microgrid. This means that at times of surplus, the 
household can contribute to the microgrid, potentially 
supporting neighbours, and/or the marae, and at times of 
shortfall, it may be able to draw from neighbours or the marae 
surplus. The marae similarly is connected to the microgrid, 
and retains its local solar generation and storage. Also shown 
in the marae set up is the notion of community services – in 
this case, street lighting and EV charging. Such services could 
also be simply connected to the microgrid itself (rather than 
be part of the marae node), as could, for example, additional 
community solar panels. 

Although shown here as a single community system, and 
not explicitly demonstrating a fractal structure itself, it has 
been developed in this way consistent with the fractal 
microgrid concept, in order that it could in the future be 
readily extended to: 

• multiple community grids within the same general 
area, each connected to the marae as the upper-level 
node; or 

• the marae itself could be connected to a higher level 
node, potentially bringing together more distant 
groupings. 

Possible future extensions to the microgrid of this nature 
would follow the general fractal model of Figure 3. 

The approach taken with the initial design of the microgrid 
is to consider overall the same  total solar generation and the 
same total battery storage as was used for the non-networked 
analysis of Sections II and III. At this stage, it is assumed: 

• All houses will have the same sized system of solar 
panels and batteries; 

• The marae may have a different configuration, and 
the design will attempt achieve a distribution which 
minimizes the overall energy transfer between the 
marae and the community, in either direction; 

• It is anticipated that the fractal microgrid should 
achieve an overall better utilisation of the generated 
electricity, reducing over the entire site both the 
wasted excess production and the failed supply. 

Initially, it is a simple matter of considering the total 
generation capacity, the total load, and the total storage, across 
the whole community and marae, and carrying out an hourly 
energy balance analysis for the whole year [9]. However, once 
that analysis has been carried out, then the distribution of 
generation and storage between the houses and the marae 
needs to be explored to minimize the overall grid flow, since 
a higher grid flow will require a more substantial cable, and/or 
imply greater transmission losses. 

The results of the initial analysis are shown in the energy 
balance plot of Figure 5. The impact of hui, which overall 
present a significant load, can be readily seen, as the hours 
which correspond to hui at the marae are highlighted in this 
plot. What is remarkable, is that by considering the total 
generation, the total load, and the total battery capacity, the 
overall number of shortfall hours over the year for the whole 
community have been reduced to 64, significantly less than 
the 2184 previously experienced by the marae, and the 355 by 

all of the houses together. In fact, only 16 of the shortfall hours 
actually coincide with hui. 

Of course, this plot (Figure 5) does represent just the base 
load; any discretionary load would need to be taken during 
those hours of surplus, above the diagonal. Referring back to 
Table 2, it can be seen that these 1870 hours of overall surplus 
are more than those experienced by some of the houses in the 
non-networked mode. The impact of the fractal network on 
discretionary load is discussed later, in relation to Figure 8. 
However, each site (both Level 0 and Level 1) would need 
“smart” control to prioritise demand in the following 
sequence: 

(i) Local base load; 
(ii) Local battery charging; 

(iii) Microgrid (community) needs; 
(iv) Household discretionary load. 

To determine (iii) and (iv) will require more sophisticated 
software at each site, and communication between sites, than 
is conventionally seen in isolated off-grid solar sites, which do 
not have to concern themselves with (iii). 

 

 
Figure 5.  The overall energy balance for the fractal microgrid model. 

It is clear from this initial analysis of the fractal 
community microgrid model, that overall a much better 
utilisation of the generated electricity has been achieved, 
reducing, across the entire site, both the excess production and 
the failed supply. This has utilised the same overall total solar 
panels, and the same overall total battery storage, as with the 
original non-networked model of Section III. These numbers 
are: 

• Solar panels: For the non-networked model, each 
house, and the marae, was fitted with ten 400W 
panels, giving a total of 110 x 400W. 

• Batteries: For the non-networked model, each site 
was provided with 22.5 kWh of battery, leading to a 
total battery capacity of 247.5 kWh. 
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Before proceeding to optimise the configuration by 
attempting to minimise grid flow, it is worth considering other 
aspects of this fractal microgrid model. Figure 6, for example, 
shows the daily variation in total base load for the community, 
and highlights those days which correspond to hui. While it 
can be seen that there are daily peaks corresponding to hui, 
there are also peaks which are not associated with hui. 

In Figure 7, the nine days over the year in which supply 
shortfall occurs are shown, again with correspondence to hui 
highlighted. Three of these days do coincide with hui, but 
there are three quite significant shortfall days which do not. 
Those days are in the middle of winter, and in this data set 
represent days of very low solar radiation. 

 

 
Figure 6.  Overall daily base load variation for the whole community, with 

hui days highlighted. 

 
Figure 7.  Days of overall shortfall for the community over the year, 

showing some coincidence with winter hui. 

Figure 8 shows the daily baseload surplus, which is, of 
course, highly relevant in relation to discretionary loads. 
Here, it is evident that the surplus is quite variable, and also 
that there are periods during the winter where there is no 
surplus for several days in sequence. For comparison, hui are 
also identified on this plot. For the earlier non-networked 
configuration, there were just nine days when no 
discretionary load was available; under the fractal model, 

there are 60 days. However, the average daily availability of 
discretionary power is 91 kWh; the allocated average daily 
load for the non-networked model was 30 kWh. Not 
surprisingly then, the fractal model offers this option to the 
whole community on fewer days of the year, because it is 
making more effective use of surplus generation in providing 
base load for the whole community, but in total, over the year, 
there is more than adequate discretionary capability. 

It should also be noted that many of the houses, and the 
marae, already have back-up generation resources, and are 
likely to retain those when the fractal solar microgrid comes 
into existence. While the household back-up systems are 
likely to be used only for the individual households, the marae 
back-up would potentially benefit all when needed, covering 
those days of community shortfall shown in Figure 8. 

 
Figure 8.  Daily baseload surplus for the community. 

This analysis has shown the real adbvantage of the 
community microgrid approach, in that each houshold is 
fitted with the same configuration of panels and batteries, and 
in all cases has a more stable supply of electricity. 

V. RESOURCE DISTRIBUTION FOR OPTIMAL MICROGRID 
OPERATION 

Now that the positive aspects of the fractal microgrid 
approach have been established, it is necessary to consider the 
optimal configuration of solar panels and batteries. As 
suggested earlier, it is assumed that all houses have the same 
configuration, and that the distinction will be between the 
houses and the marae. It is the electricity flow in the microgrid 
connection which will be the determining aspect of the 
distribution of resources. For this analysis, it is necessary to 
explore both: 

• the peak flow, since this will dictate the size of cable 
required, and 

• the average flow, since this will determine the overall 
energy losses in the cable. 

The overall resources on which the results shown in 
Section IV were established, comprise a total of: 

• 110 x 400 W solar panels, and 
• 247.5 kWh of battery storage. 
As an example of the nature of the energy flows between 

the marae and the houses, Figure 9 shows the hourly flow over 
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a year with 20% of the panels and 20% of the battery capacity 
held at the marae. It is evident from this graph that at different 
times, energy flow can be in either direction, and that the peak 
flows (largest is ~9.5 kW) occur to the marae, although 
overall, more energy appears to flow from the marae. Almost 
all of the flows to the marae do coincide with hui, as can be 
seen from the graph. 

In order to determine the optimum allocation of resources 
to the marae, an analysis was carried out with various 
proportions of those resources, ranging from 18% to 30%. The 
results of this analysis, shown in the parallel coordinate plot 
of Figure 10, reveal clearly that a 20% allocation produces a 
minimum of both peak grid flow, and daily average grid flow. 

 

 
Figure 9.  Hourly grid flow from the marae to the houses with 20% of 

generation and storage allocated to the marae. 

 

 
Figure 10.  Parallel coordinate plot showing the relationship between the 
proportion of the resources located at the marae and the peak and daily 

average grid flows. 

Finally, to give a better picture of these grid flows, Figure 
11 shows (for this 20% marae allocation) the distribution of 
the hourly grid flows over a year. 

It can be noted that the grid flows to the marae (negative 
in Figures 9 and 11) occur on far fewer hours than the marae 
showed a shortfall in the non-networked model (see Table 2). 
But of course, under this optimised fractal microgrid model, 
the marae does have a larger allocation of solar generation and 
batteries. It should also be noted that this analysis has 
examined the flow between the marae and the houses as a 
group (refer to Figure 3), not the flow between the houses 

themselves. These latter flows are likely to be less, and it is 
reasonable to use the marae flow as the basis for cable sizing. 

 

 
Figure 11.  Duration plot of grid flow from the marae over a year. 

This proposed configuration is elaborated in more detail in 
the following concluding section. 

VI. CONCLUSION AND FUTURE WORK 
The analysis of the preceding sections has clearly shown 

that the suggested fractal solar microgrid model for the 
Motairehe marae and community provides a superior 
outcome to isolated individual systems, for exactly the same 
overall solar panel and battery resources. A more resilient and 
reliable electricity supply for the community ensues, with far 
fewer hours overall of electricity shortfall. 

Based on the numbers from this analysis, the suggested 
configurations are: 

Marae:  8800 W solar panels 
  49.5 kWh battery 
Houses:  3520 W solar panels 
  19.8 kWh battery 
These numbers, of course, need to be rounded up for 

sensible use of currently available technology. 
In addition to this basic technology, the  houses and the 

marae need to be connected by an appropriate cable capable 
of carrying at least the calculated 10kW load with minimal 
losses. A preliminary calculation, taking into account the 
relatively close proximity of the households and marae at 
Motairehe, suggests that the cost of the interconnecting 
microgrid cables to handle this 10kW load  could have 
provided ~15% increased solar panel capacity across the site, 
if no microgrid was included. However the advantages of the 
microgrid interconnection shown in this analysis, far 
outweigh the benefits of increased, but isolated, generation. 
Additional control logic will need to be incorporated within 
each node of the microgrid, to manage the interaction, 
particularly in relation to grid needs and offers, and local 
discretionary demands. 

It should also be re-iterated that the adoption of a fractal 
microgrid model readily enables future expansion, without 
significant reconfiguration, for example: 
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• Addition of further community facilities, such as 
community lighting, shared solar arrays, community 
EV charging, and community storage, on the level 0 
grid. 

• Addition of other close-by communities or groups of 
houses into the system, either as an extension of this 
level 0 microgrid, or as another level 0 microgrid 
(refer to Figure 3). 

• Expansion of the fractal structure to Level 2 or higher 
(Figure 3) potentially linking it with more distant 
communities. 

The system as described is currently under development, 
with support from the MBIE Mãori Housing Renewable 
Energy Fund [11]. 
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The Implementation of the Automatic Dispatching System (ADS) to Support the 

Smart Grid Pilot Project for Distribution Grid Improvement in Sumba Island 

 

 

Abstract — In order to minimize the oil fuel consumption, 

in its power generation, PLN (Perusahaan Listrik Negara) as 

an electric state company has promoting a de-dieselization 

program which either integrated PV and existing diesel into 

Hybrid or install PV in the isolated system, to get optimum 

performance and reliability. However, the intermittent 

characteristic of PV should be considered since this would 

impact the frequency instability of the network system itself. 

To maintain the stability of the system, new system 

operations should be adopted. Thus, ADS (Automatic 

Dispatching System) is introduced to compensate the 

fluctuation sources from PV. Before ADS was implemented, 

dispatch combination between Diesel Generator (DG), and 

Photovoltaic (PV) has triggered unreliable supply since there 

is no load control center as well as the insufficient 

communication channel available.  Implementing ADS, this 

allows PLN to minimize fuel consumption, and develop the 

first operational Smart Grid system. Subsequently, ADS has 

proven capable of maintaining frequency stability in the 

system that contains intermittent power generation. Based 

on the simulation study, and actual measurement testing, it 

can maintain the stability frequency within in its normal 

range (49,5 < Hz < 50,5). 

Keywords — Automatic Dispatching System, Diesel 

Generations, Photovoltaic, Smart Grid system  

I. INTRODUCTION  

In recent years, PV based generating systems have 
been widely implemented into distribution systems due to 
environmental concerns. VRE (Variable Renewable 
Energy), such as PV and wind energy may bring additional 
reliability benefits to the system, as they can be operated 
along with the DG units, thereby minimizing customer 
interruptions, in case of system emergencies [9]. However, 
PV power output is not constant and tends to fluctuate 
depending on weather conditions. This fluctuating power 
causes frequency deviations and reduction in reliability of 
the isolated power utility or microgrid when large output 
power from several PV systems is penetrated in the utility 
[8]. On the other hand, the rising energy needs could not 
be fulfilled by the current weak grid supplied by the 
majority generation based on DG [7]. However, the 
intermittent characteristic of PV has major concern to be 
solved especially in isolated grid. Meanwhile, there are 
hundreds of units of DG that need either to get them 
hybridized with VRE or interconnect existing DG and 
VRE altogether in the system.  

To prepare for the reliable system operation in the 
mentioned program above, pilot project in Sumba Island 
can be discussed since it has VRE penetration among most 

of the diesel generation. Thus, on grid PV system is 
currently being considered as an attractive, and clean 
option for isolated grid operations. This application is a 
means to reduce diesel fuel consumption. VRE that 
integrated with DG systems are currently being considered 
as an economic, and clean option for isolated microgrids, 
to offset oil fuel consumption by shifting generation from 
existing units; However, the security and stability of the 
system are a challenge from the increasing penetration 
VRE [6]. Meanwhile, Indonesia adopted European 
countries use electric frequency 50 Hz. If this electric 
frequency in the power network is not constant, the 
electrical equipment connected to it would have potential 
to get damage. So, the frequency needs to be maintained in 
a tolerable range. To keep this frequency stable and 
constant, it needs an automatic control scheme that can 
identify changes in frequency, then mitigate those changes 
by choosing which dispatch from DG has the lowest 
economical losses, which is known as the Automatic 
Dispatching System (ADS) [10].   

The ADS was installed at the several DG units in 
eastern grid of Sumba Island since it is interconnected to 
the 1 MWp installed capacity of solar PV. Consequently, 
an isolated grid such as Sumba system has a potential risk 
of frequency instability. It is because the electricity sources 
are supplied by PV with intermittent characteristics. Under 
such conditions, implementing an efficient secondary 
controller through load frequency control (LFC) plays an 
important role in restoring power system stability [3].  

 

 

Figure 1. Sumba distribution grid and its planning expansion 

 Sumba island is in the southern part of Indonesia, 
which has population more than 250 thousand with the 
electricity demand less than 7 MW. Meanwhile, installed 
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capacity of the total generation close to 16 MW, which 
majority 70 % supplied by diesel generation, and the 
others sourced from renewable energy, such as hydro, 
biomass and PV as indicated in Figure 1. 

The load profile in Sumba has typical load profile 
characteristic which has low load in the daytime and 
increasing load demand in the evening. The Majority of 
typical load on the PLN East Sumba network is of a 
residential type with the characteristics of time in Figure 2. 
The peak-load 6.8 MW, and during, the daytime load, has 
parallel operation with the maximum PV generation 
week’s cycle, which fluctuates between 3,7 MW – 4,8 
MW. 

 
Figure 2. Typical daily load profile in Sumba Island 

 

 

 

Figure 3. PV Output Power 

 

Currently, Sumba Island has two main grids, eastern and 

western grid which the majority supply based on diesel 

fuel generation. East grid has PV generation with the 

installed capacity 1 MWp, which now represent 10 % of 

the capacity. Meanwhile, most of the diesel generations 

are operating in load following mode with manual 

dispatching. In addition to diesel, the Sumba electricity 

network is supplied with a Hambapraing PV with a 

capacity of 1 MWp which the output is varies with time 

movement as shown in Figure 3. 
 
 

 

 
 

 

 
 

 

TABLE 1. POWER GENERATION COMPOSITION IN SUMBA 

 

 

   

  In TABLE 1 above, it can be seen that the PLN’s DGs 
available on the isolated grid will be given the ability to 
respond to changes in load. In most cases, PLN’s DG will 
be used to provide peak loads. PLN’s generators can work 
with droop governor or with the isochronous governor. 
Thus, the isochronous governor regulates the valve/gate of 
the turbine to carry the frequency return to its nominal 
value [12]. So, the system with isochronous governor has 
the capability to restore the system frequency to 50 Hz 
after instability occurs. Then, the DG that works 
isochronous will be connected to ADS [3].  

The objective of this paper is to evaluate the system 
performance of distribution grid using ADS and its impact 
in managing power quality and maintaining the penetration 
level of PV operation.  

This paper is organized as follows, Section II presents 
ADS algorithm and control basic design of ADS which 
include simulation study of frequency path with 
combination of Droop and Isochronous governor. Section 
III describes ADS configuration that applied in the 
distribution grid. It also presents the development phase 
for smart grid and advantages using ADS in an isolated 
grid. Then, the output results of ADS installation are 
reported in Section IV, including the differences before 
and after ADS implementation based on the stability 
system performances. 
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II. METHOD  

  In this paper, ADS Algorithm is proposed as 
modeling to represent conceptual design of ADS used in 
the system. Hence, the model is implementing in the actual 
condition to justify whether the design is applicable and 
contribute benefit to the power quality in the system. In 
this study, ADS can be modeled by making an isochronous 
governor model that is connected to the PLN’s generator in 
the system as showed in Figure 4. Then, the dynamic 
model of the governor is simulated using a simulation tool 
[3]. 

 

Figure 4. Control Basic Architecture Design of the ADS System 

 

ADS is provided with an algorithm to turn the 
isochronous generator off and on when the load is either 
too low or too high. Hence, the generator needs to be 
switched off when the load is low because low loading will 
impact in inefficient energy conversion processes in its. 
So, the generator needs to be switched on when the load is 
getting high since the load will not get sufficient sources. 
This would lead to the collapse of the system frequency 
[3]. 

The proposed algorithm can be seen in the flow chart 
in Figure 5. Referring to table 1, the PLN has largest 
generator, DTG Cummins 1.2 MW, will be the generator 
with the most priority to continue running. Its priority to be 
switched on is ordered by the magnitude of its rating. 
Subsequently, the generator that has the lowest capacity, 
DTG Deutz BA 3 250 kW, will be the generator option 
with the most priority to be switched off. Hence, the lower 
the DG rating, the more frequently it will be either 
switched on or off. The DG with the largest installed 
capacity is prioritized to be switched off because if it is 
changed prioritized to turn it on and off, there would be a 
greater frequency swing than if the PLN DTG with the 
smallest rating is often turned on and off [3]. 

In general, ADS has automatically decided which 
generations have to be switched on, synchronized, loaded 
or stopped. Consequently, this solution can handle any 
type of power generation technology, as well as can be 
applied to any grid in any size.  Meanwhile, solar PV and 
the diesel plant are developed at Kambajawa Distribution 
Station. 

 

Figure 5. Algorithm of ADS  

 

 Current ADS reflects Multiple Generator status 
(on/off, synchronized or disconnect) and  Multiple 
generator dispatch. Hence, ADS send power 
instruction,  not just control signal. Thus, it reads the 
status of the grid and the generations in real-time 
instantaneously, and automatically instructs the diesel 
generations to dispatch certain actual power to stabilize 
the frequency, while at the same time, it maintain 
generations in operation within its optimal power 
settings. 

Based on the simulation carried out by [3], the use 
case of 9 unit PLN’s DG with primary controller, or 
Droop Governor, and 3 units with Isochronous 
governor is simulated to verify the output frequency 
within its in normal range (49,5 s.d 50,5 Hz). As shown 
in Figure 6 below, the simulation study indicated that 
frequency trajectory from the interconnection of Unit 
PLN’s DG with Droop Governor and Unit PLN’s DG 
with Isochronous Governor. The blue chart indicated 
Droop 5% with delay governor 20 s, while orange one 
showed Droop1,6% with delay 60 seconds. 

 

 
Figure 6. Frequency path with combination of Droop and  

Isochronous governor 

 
Using ADS is expected that the isolated grid 

frequency can be adjusted in the tolerable range, 
without the need to implement an energy storage 
system [3].      
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III. ADS CONFIGURATION AND ITS PROPOSED DESIGN IN 

THE DISTRIBUTION GRID 

Automated dispatching control system (ADS) is a 
control system tool which has function to monitor the 
system of the load flow in power network from various 
power generation types whether conventional and variable 
renewable energy, thus it capable to enter the electricity 
and energy market, as well as to accommodate the energy 
mixed. ADS is used to manage the various power supply 
characteristics capable of meeting the fluctuation of their 
load demands. On the other hand, ADS will be the flexible 
solution as the demand response in this distribution grid. 

ADS have been widely implemented in any system 
voltage level system whether in medium voltages or high 
voltages. Meanwhile, the important role in the 
configuration of ADS, as the main direction of control 
system development, was the formation and 
implementation of SCADA, which collaborates 
information about the processes and centralize control. 
Thus, ADS is a type of automated process control which 
can control any type of power generation roles in the grid 
[2].  

There are several methods that can be applied to 
improve Grid quality in Sumba system : implement ADS 
over East grid gensets, interconnect both grids (east and 
west grid) through high voltages lines, implement ADS 
over west grid power generation once upgraded, and 
develop the first operational smart grid power management 
[1]. 

 

 

Figure 7. Conceptual Layout of Proposed System Components 

 

Figure 7 describes the conceptual layout of the system. 
Depending on model, grid analyzer can read the grid 
from the LV bus (option 1) or from a consumer type 
step down transformer on the main HV outcome 
(option 2). Thus, the PLC can be replaced by a full size 
computer or a laptop computer, while GSM modems or 
more complex telecoms can be implemented for 
remote management and/or integrate with an active 
solar SCADA. Meanwhile, there are basic 
requirements to be implemented for preliminary phase 
in smart grid, which consists of [1] : 

1. All flexible generators to be operated exclusively 
in full range load following mode, with minimum 
operation setting defined at 30% or lower and 
maximum operation setting defined at 80% 

2. All flexible generators to have ECU’s, electronic 
governors and Modbus and, optionally, TCP/IP 
protocols. Removal or redefinition of the now 
obsolete grid KPI of SFC; to be substituted by the 
actual international standard of liters per kWh 
delivered 

3. Integrate them in the ADS/AGC system for 
automatic and sequential dispatching of the 
generators according to grid load behavior. 

 Implementation Phase for Diesel Reduction 
strategy and smart grid Introduction in Sumba Island as 
illustrated in Figure 8 was the upcoming flexibility 
solution for distribution grid improvement in Sumba 
Island since high grid losses and fuel consumption 
dominated the operational system, which disrupt the 
power quality and reliability of electricity sources to 
the customers [1].   

 

Figure 8. Pilot project outline for Diesel Reduction and PV integration 

 

The development for smart grid can be executed by 
implementing the following systematic method as 
mentioned [1] : 

1. Grid impact study, by doing the simulation study and 
modeling of the power system in existing Sumba grid 
that combined with the proposed generations, would 
be obtained the load flow analysis and the other 
electric output parameters.    

2. Sizing and design of diesel buffering engine/engines, 
would be required to estimate the appropriate diesel 
capacity that are feasible to integrate with VRE. 
Hence, diesel sizing also compulsory to determine the 
ramping rate in the system 

3. All diesel should be equipped with ECU/Modbus 
controls, and operated in stepped dispatching 
procedure 

4. Sizing Solar PV up to 60% of diesel, one way to 
implement the high level penetration by integrating 
the PV share which is higher than diesel generation. 
This can be combined by applying ADS, as the hybrid 
controller unit that has function to control the flexible 
operation mode between PV and diesel. Subsequently, 
the ADS would match the synchronization between 
generation sources and the load demand.  

5. Data acquisition units in all grid key nodes, data 
acquisition as the controlling and monitoring unit can 
be applied to assist the communication and remote 
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surveillance to ensure the smooth operation in the 
system.  

  Consequently, there are some advantages of using 
ADS in the isolated grids. During the test, the ADS has 
capable to control the grid frequency at stable rate by 
managing the operation of Kambajawa diesel power 
plant to meet the variability of power load/demand as 
well as the variability of 1 MWp solar PV power plant 
output. Thus, PLN will continue to observe the 
situation, especially during critical hours (peak hours 
or high ramping rate hours) to ensure whether the 
controllers and the generation power system balance 
power supply and power load if a nearby 1 MWp solar 
PV power plant supplies electricity intermittently due 
to weather condition [2].  

In addition, ADS operation mode and its dispatch 
would not only guarantee the power quality and grid 
stability, but also it will support the induced load 
reduction from the Solar PV and other VRE that would 
be installed in the future. By allowing PLN to 
capitalize on the fuel usage savings and the cost spin-
down effect of the incorporation of continuously lower 
cost VRE generation, which subsequently would lower 
PLN’s operational cost as well as increase corporate 
profits. 

 

IV. OUTPUT RESULTS 

 The main issue in the distribution grid before 
ADS installation was the difficulty to maintain 
frequency stability in East Grid when the intermittency 
condition occurred as the result of fluctuation of output 
operation from the PV due to the PV soothing and solar 
irradiance changing. 

 

 Figure 9. Typical electricity production of the Solar PV 1 MWp in 
East Sumba during cloud events. 

 

The High Ramping Rate triggered the sudden changing 
of power frequency, which can impact the power 
quality and stability in distribution grids which is 
implied in Figure 9 where the PV output varied during 
cloud events. 

 There are preexisting condition before ADS 
integrated in the system, such as manual dispatching 
and wider range of grid frequency operation, constant 
power spillage by overpowering the grid, high thermal 
losses, and high-power leaking to neutral, high 
instability of the grid during operation hours of PV, 

and Black out/feeder disconnection due to under 
frequency. 

 

Figure 10 The proposed of ADS configuration in distribution grid 

 

ADS system can control the complex mini grid operation 
that consist of PV and diesel generation as implied in 
Figure10, which is possible to integrate between many 
renewable energy sources with diesel generation by 
maintaining stable power quality with high efficiency and 
security level [1]. 

 

 

Figure 11. Typical electricity production as the impact of the Solar PV’s 
operation 

 

Figure 12. Typical electricity production in the system, before and after 
ADS installation 

 

Before ADS 

After ADS Implementation 
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   The graph displayed in figure 11 and 12 above 
described that ADS has primary roles to maintain the 
frequency stability in its nominal ranges by adjusting 
mechanical power in the power generations. The fig 
implied that before ADS installation, the frequency 
fluctuated above the tolerable limit. After ADS installation 
is applied, the frequency can be maintained within normal 
range (49,5<Hz<50,5). Yet, ADS utilization offers flexible 
operation since main devices can be modified as needed, 
as well as modifying its control algorithms in a good 
manner.  Subsequently, the outcome emerges after ADS 
Installation which referring to the data diagram obtained 
that frequency system fluctuation is better adjusted within 
the nominal required range compared with the previous 
condition. In this use case, ADS can support distribution 
grid improvement by maintaining the stability of frequency 
in the system.  

 

V. CONCLUSION AND FUTURE WORKS  

 

1. The ADS implementation is possible to raise smart 

grid’s operational performance, and provide reliability 

as well as quality power to their consumers, while 

minimizing the operation cost, which can be achieved 

by embracing the ADS installation as the first step to 

improve the power quality, thus minimizing losses in 

the distribution grid.  

2. The development urgency of ADS in Sumba considers    

high generation cost, flexibility of system operation, 

and the potency of power factor correction. On other 

hand, ADS has proven capable of maintaining 

frequency stability in the system that contains 

intermittent power generation. Both the simulation, 

and actual measurement testing, it can maintain the 

stability frequency within normal range 

(49,5<Hz<50,5) 

3. ADS implementation and grid monitoring system can 

be considered as the main part in integrating variable 

renewable energy into small power network, not only 

to compensate the fluctuations characteristics of VRE, 

but also to maintain grid stability and prevent the grid 

operations from abnormalities, such as over 

frequency, phase imbalance and frequency hunting.    

4. The success of ADS installation, testing and operation 

boosted PLN’s understanding and confidence to 

replicate the innovation to increase VRE integration in 

the upcoming de-dieselization program. 
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Abstract—The Internet of Things (IoT) is revolutionizing
almost every aspect of our lives. Smart grids are one example
of this. Integrating IoT into various fields is a challenging task.
In this paper, we present a detailed implementation of a fog-
computing-based IoT system for monitoring and controlling a
photovoltaic (PV) power network. As a case study, the imple-
mented system is used to facilitate automatic energy routing
within two PV systems feeding different loads. Our results
demonstrate the ability of our IoT system to efficiently and
automatically monitor and control a network of PV systems.

Keywords- Photovoltaic (PV) systems; IoT; fog computing;
automation.

I. INTRODUCTION

The Internet of Things (IoT) is a collection of technologies
that grant us the ability of interfacing almost any physical
object in the world, that is of interest in terms of its data
and actions, to the digital world of computing, making it
possible to monitor, analyze, and control mechanical and
electrical systems everywhere, as well as driving insights about
those connected things. The research and implementations in
fields such as energy, healthcare, retail, transportation, and
agriculture are continuously emerging and coming into reality
in the form of smart gadgets, smart homes, smart factories,
smart grids, self-driven cars, and smart cities [1][2].
In essence, the availability of real-time sensory data and

sufficient computing resources constitutes the real power of
IoT. However, the huge amount of data that will be generated
in the process of digitizing the world requires deliberate
design of the underlying infrastructures and technologies that
are responsible for data delivery, processing, and storage.
Here comes the concepts of cloud, fog, and edge computing
into play [3]. Cloud computing can provide the necessary
hardware and software for hosting, managing, and operating
IoT solutions in the form of Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), and Software as a Service

(SaaS). Nevertheless, edge and fog computing concepts are
believed to be supplemental technologies that become neces-
sary when the latency of delivering the solution is crucial or
local (i.e., near the source of data) awareness of the solution
is required.
Wireless Sensor Networks (WSNs) can be integrated into

the Internet to move the currently connected networks from
the local to the global domain [4][5], which essentially extends
the landscape of IoT. Also, due to the fact that IoT applications
are meant to be data-centric, there is a need for IoT and
WSN communication protocols that are well-designed for
this purpose. Existing application-layer IoT protocols in the
literature are AMQP, CoAP, XMPP, MQTT, and HTTP. Other
protocols that cover different layers of the OSI model are BLE,
WiFi, Sigfox, NB-IoT, Zigbee, Zwave, and 6LoPWAN [6].
One of the most important applications of IoT is the Smart

Grid (SG). SG is an electrical power network characterized
by an infrastructure that makes it capable of sensing, commu-
nicating, monitoring, and controlling all parts of the network
and addressing problems when occurring, unlike traditional
networks [7]. In other words, a conventional grid can be
transformed into a smart one with the help of IoT [8]. Re-
newable Energy (REs) sources such as wind and photovoltaic
are considered the main and the most important generation
sources relied upon in the smart microgrid. The stochasticity
and unpredictability of the REs power generation make the
smart grid nature potentially unstable. This brings the need
for the IoT network to monitor the time-varying behavior of
the generation and the load demand. All those challenges in the
power system can be solved by integrating IoT. On top of that,
comes the optimization layer that aims at minimizing the total
cost of the microgrids by finding the optimal configuration
between sources and loads based on real-time data provided
by the smart sensors and reported by the IoT network.

Our Contributions—Our main contributions are:
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• We present a detailed implementation of an IoT solution
to monitor and control a PV system starting from the
lowest level of physical components (i.e., the sensor
node), going through the communication, all the way to
the fog node setup.

• We evaluate the setup by running a simple optimization
algorithm on top of the collected data.

Paper Organization—The rest of the paper is organized as
follows. In Section II, we review the previous works in the lit-
erature on IoT implementations for smart grids. In Section III,
we explain in detail the steps involved in implementing each
component of our setup. Preliminary results are presented
in Section IV. Finally, our conclusions are summarized in
Section V.

II. LITERATURE REVIEW

The potential gains and challenges of leveraging technolo-
gies like AI, IoT, and 5G in smart grids were discussed in [9].
The potential improvements in the system’s robustness, relia-
bility, resiliency, and security are faced with challenges such
as the unreliable wireless channels used in IoT. In this section,
we highlight a few papers that considered implementing IoT
networks for smart grids.
In [10], the authors focused on the WSN part of the

IoT stack, designed and implemented a new WSN platform
that consists of power-independent nodes. The nodes employ
rechargeable batteries using embedded photovoltaic batteries
harvesting the ambient light starting from 100 lux. The authors
in [11] presented an implementation for monitoring regular
domestic conditions, such as temperature and light intensity.
They used a ZigBee-based WSN, where the gateway of the
network is responsible for translating the ZigBee format of
data into an Internet IPV6 format before reporting it to a
MySQL database on a Windows-based server and displaying
the results using PHP and JavaScript on a browser. A WiFi-
based WSN is implemented in [12] for monitoring and con-
trolling environmental, safety, and electrical parameters of a
home. The authors supplemented their stack with an Android
application instead of a web-based approach. An end-to-end,
dynamic, and scalable solution was implemented in [13]. The
authors in [13] assume that all IoT devices are WiFi-capable
and can communicate using MQTT. They used an ESP8266
microcontroller and a cloud-hosted server with a MongoDB
database to store the data.
Optimizing the energy production, consumption, and storage

in smart grids over time helps save costs and reduce energy
wastage. IoT systems play a key role in automating and
interconnecting equipment. As discussed in [14], the authors
used an energy management algorithm to match the required
load with the generated energy from PV and wind energy
systems.
To the best of our knowledge, this paper presents the

first solution that (i) combines the locality and reliability
of RF-based WSNs with the powerful edge of a gateway
and MQTT communications and (ii) leverages the structured
nature of SQL database to store non-sensory data along with

the dynamic properties of a time-series database (that are
suitable for IoT data) and harness this to create a base for
developing smart grid solutions. Our paper provides an end-
to-end solution that illustrates the whole cycle of IoT, from
data generation to response and actuation, without missing the
middle parts of provisioning WSN, channeling and storing
data, and algorithm deployment.

III. IMPLEMENTATION SETUP

We consider a multi-microgrid system that is managed
locally (adopting a fog computing paradigm) by an IoT-based
control system. Our system consists of three main components:
A power system, a control system, and a communication
system.
The implemented setup is designed to represent the con-

sidered IoT-controlled smart grid on a small scale, to test the
feasibility of applying control algorithms to the power system.
A stand-alone multi-microgrid system is built, consisting of
two PV arrays with their inverters and batteries. We integrated
IoT capabilities into the system by using sensor nodes, an
edge node, and a fog node. The complete system with its
three main components, power, control, and communication,
is illustrated in Figure 1. Our implementation aims to have the
best assignment of connections between microgrids to achieve
reliable and available systems with the minimum cost. The
components of the setup are as follows:

A. Power System

Two stand-alone PV systems, each with an AC capacity of
5.5 kWp were constructed at Al Hussein Technical University
(HTU), Amman, Jordan. Each system consists of:

• Three stings with two polycrystalline Jinko panels, with
a rated power 315 W (model type JKM315P) connected
in series, south oriented with a slope of 24 degrees.

• Four 12 V-DC NPP batteries connected in series.
• A 5.5 kWp rated power MUST stand-alone inverter with
a charge controller (model type PV18-5548VHM).

• AC cables 2C ×2.5 mm2 (CU/PVC/PVC) connected
from the inverters to the loads.

• As a control device, a solid-state relay (model SSR-
40DA).

B. Sensor Nodes (IoT Devices)

A sensor node is a combination of a Microcontroller Unit
(MCU), a group of sensors, and a means to communicate its
data with other nodes in the network or with a gateway. It
can be also called an IoT device or a thing in the scope
of IoT. IoT devices are generally designed to be resource-
constrained in terms of energy and computational power. Thus,
the integration between the sensor nodes and the fog layer is
preferred to be through an edge node, which is not resource-
constrained, can perform complicated tasks, and is equipped
with advanced interfaces. In this case, the complexity needed
for the fog layer communication is moved from each sensor
node to the edge node. In our setup, multiple Arduino UNO
microcontrollers serve as the mind of the IoT devices used to
interface various deployed sensors. In addition, the UNO is
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Figure 1. Implementation setup.

responsible for triggering the actuation process as a result of
receiving commands in the IoT network. The microcontroller
is based on an ATmega328 processor. It can support analog
and digital sensors, as well as I2C and SPI sensor communi-
cation protocols. Usually, a node that performs only sensing
tasks is called a sensor node or S node, whereas a node that
performs both sensing and actuating tasks is called an SA
node. We deploy a total of four nodes: three S nodes and one
SA node. Two of the S nodes are used to read data from each
inverter and one is connected to the load lines to measure their
drawn currents. The SA node is used to control the assignment
of sources to loads when needed.

C. Sensors and Actuators

Figure 2. Voltage divider-based DC voltage sensor.

Multiple off-the-shelf sensors are used to comprise differ-
ent sensor nodes in our system. They are used to measure
quantities of interest for our use case. Those sensors are for
measuring the electrical current and voltage of the DC output
of the PV cells, the DC voltage of the batteries, and the AC
output of the inverters.

For the current, we used ACS712 to measure the DC current
output of the PV cells, the DC charging and discharging
currents of the batteries, and the AC current output of the
inverters. To measure the DC voltages of the PV output
and the batteries, we designed a simple voltage divider-based
sensor, shown in Figure 2. The sensor takes a DC input
up to 50 V, converts it linearly into the 5 V range that
the microcontroller can understand, and computes the voltage
back. It uses the LM7805 linear voltage regulator to generate
the needed reference voltage. For measuring the AC voltage,
we used a transformer-based sensor, ZMPT101B. All the
sensors have an analog output with a certain linear transfer
function for a given range, which should be matched with the
expected values to be measured. For actuating, we used solid-
state relays (SSR-40DA) to control the contribution of each
source (inverter) to each load.

D. Wireless Sensor Network

The communication inside the WSN is established using a
wireless communication transceiver module nRF24L01+. The
transceiver module is designed to operate in the worldwide
ISM frequency band, and it uses GFSK modulation for data
transmission. The center operating frequency is 2.4 GHz with
1 MHz channel bandwidth. With its reconfigurable transfer
data rates (i.e., 250 Kbps, 1 Mbps, and 2 Mbps), it can serve
the purpose of local wireless communication in the WSN.
For an IoT application, 250 Kbps is sufficient to achieve the
required performance. Moreover, the module comes with an
implemented tree-topology network, in which using a single
frequency channel out of the 125 available, can theoretically
produce a network of up to 3, 125 nodes. In Figure 3, we
show the organization of the sensor nodes utilizing the tree
topology, where each node is associated with a hexadecimal
address to define its existence in the WSN. At the top of
the network resides the gateway with an address of 00. Other
sensor nodes are then assigned different addresses according
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to the tree topology. There are five depth levels, each can
support up to five nodes. For example, the first level contains
the nodes 01, 02, 03, 04, and 05. Under node 01, other five
nodes can exist with the addresses 011, 021, 031, 041, and
051. Message Queuing Telemetry Transfer (MQTT) is an IoT
protocol for transferring data in the application layer and was
originally developed by IBM. MQTT is a lightweight and
flexible asynchronous protocol, which means that it can be
implemented on heavily-constrained hardware and limited-
bandwidth networks. In MQTT, a subscriber is a client
that needs to communicate with other clients. The broker
in the protocol serves as the central entity that manages
all connections and pipelines between clients based on the
publish/subscribe model. Compared to other IoT protocols,
such as CoAP, XMPP, and AMQP, MQTT is more suitable
for resource-constrained environments. Also, in MQTT, the
broker hides the complexity of communication rather than
being on the side of the clients [15][16]. We use MQTT for
communication between the edge node and the fog node.
The deployed nodes, shown in Figure 3, can be explained

in details as follows:
• Node 01 (PV1) and Node 02 (PV2): Each contains a
UNO MCU, an LM7805, three ACS712, a DC voltage-
divider sensor, a ZMPT101, and an nRF24L01+.

• Node 03 (Loads): Contains a UNO MCU, four ACS712,
and an nRF24L01+.

• Node 04 (Actuator): Contains a UNO MCU, eight SSR-
40DA, and an nRF24L01+.

Note that we have four electrical paths, one from each
source to each load. Two relays need to be deployed for each
path, one for the line and the other for the neutral. Hence, we
have a total of 4 × 2 = 8 relays in Node 04. When a path
is opened or closed, the two relays should be actuated at the
same time to ensure proper flow of power and avoid problems.

Figure 3. WSN tree topology.

E. Edge Node (Gateway)

Raspberry Pi (RPi) 4 is used to implement an MQTT client
that bridges the local network of IoT devices with the MQTT
broker running on the fog node. RPi 4 comes with a Quad-core
Cortex-A72 (ARM v8) 64-bit CPU, 2GB of SDRAM, support
of IEEE 802.11ac WiFi, Bluetooth 5.0 (BLE), and a Gigabit
Ethernet interface. With these specifications, the RPi can easily

function as a gateway in the IoT network, where multiple IoT
devices constituting the WSN are able to deliver their data to
the fog layer of the network using the aforementioned wireless
transceivers. In addition, the RPi can be used, if needed, to
process the data before delivering it to the fog layer, utilizing
the edge computing concept.

F. Fog Node

The setup of this node can be divided into two parts:
hardware and software.

1) Hardware
A High-Performance Computer (HPC) in our lab at HTU

is used as the IoT fog node with an Intel(R) Xeon(R) Gold
6130 CPU running at 2.1 GHz and 64 GB of RAM. It is
the infrastructure over which the application side of the IoT
solution resides.

2) Software
The software setup depends on the desired functionality of

the IoT solution. Basically, on top of an operating system,
multiple software components are used to create an IoT
platform. The heart of every IoT platform is the communi-
cation channel or broker and the database. Eclipse Mosquitto
MQTT Broker is an open-source implementation broker for
the MQTT protocol versions 5.0, 3.1.1, and 3.1. It is the
broker we implement on our fog node for the purpose of
application-layer communication. Also, we use Node-RED
as the middleware that facilitates the broker-backend and
broker-frontend connections to other parts of the solution.
It is an event-driven programming tool for creating backend
applications built on top of the Node.js framework. It is a
very powerful tool for the development of IoT solutions as it
needs an extremely small amount of code writing to achieve a
lot of IoT-related tasks in the software stack with its user-
friendly interface. An example depicting this simplicity is
shown in Figure 4, where we set up the necessary nodes for
debugging incoming and outgoing MQTT payloads as well
as inserting the results into InfluxDB, which is the time-series
database we deployed for storing the real-time data. Compared
to conventional structured databases such as SQL, InfluxDB
is schemaless and more suitable for real-time query to achieve
data visualization or additional processing, data analytics, and
machine learning tasks. A powerful aspect of using influxDB
is the lightweight scripting language, which is Flux, that is
used not only to query, but also aggregate, and manipulate
the data with a very rich set of mathematical tools available
with it. Moreover, Flux can be used to do this in real-time by
utilizing the Tasks feature that can be deployed to schedule
repeated and necessary patterns of computation on raw data
to enrich it or prepare it for another phase of computing.
We also set up a MySQL database, but it is used only to
store information about the application in order to build the
user interface (i.e., device ID, device name, etc.). InfluxDB
comes with an interface that allows the user to define and
configure data sources, explore the content of the buckets
(i.e., databases), build dashboards with rich types of widgets,
create scheduled tasks to be run on the streams of data, and set
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threshold alert endpoints to monitor the connected IoT data.
Figure 5 shows a dashboard we built to display various sensed
parameters of one of our connected inverters. In the dashboard,
we include two widgets per displayed value, one for graphing
it and the other is a single-status widget that displays its latest
state. Starting at the top from left to right are the RMS value
of the AC output voltage, the DC voltage of the battery, and
the DC voltage of the PV panel. Similarly, at the bottom
are the output current, battery current, and the PV current.
The previously mentioned components are all installed and
configured on the HPC to build the IoT platform. Using the
MQTT protocol, clients can either publish messages into a
topic name or subscribe to a topic name to receive messages
published by other clients or do both. To implement that
concept, we used multiple topic names in the hierarchy form of
$typeofData/Location/Gateway/Sensor. The topic names are:
$state/HTU/WiNS/Sensor-Node-Name
$command/HTU/WiNS/Sensor-Node-Name
$connected/HTU/WiNS
Topic names can be anything and can be organized into

multiple levels by using the forward slash separator. The first
topic is used to publish sensory data collected from each sensor
node to the fog node. The second one is used to publish
commands from the fog node to control the sensor nodes in
the control system part of the setup. The third command is
used to publish data about the connection and disconnection
of the edge node to be able to track the connectivity state of
the edge node.

Figure 4. Node-RED interface.

IV. PERFORMANCE EVALUATION

The experimental setup, load swapping algorithm, and ex-
perimental results are presented in the following subsections.
The codes used to program the WSN and implement the
control algorithm in this section can be found at [17].

A. Experimental Setup

To validate the IoT system that we implemented, we used
a simple algorithm for load swapping. A single source is

Figure 5. InfluxDB dashboard.

1: Input: Ib, Io, Ith,b, Ith,o, τdelay, and N .
2: Output: xl, ∀l ∈ L.
3: for i = 1 : N do
4: Set x0 = 1 and unset x1 = 0.
5: Wait for τdelay.
6: Query latest Ib and Io from database.
7: while Ib ≤ Ith,b or Io ≤ Ith,o do
8: Wait for τdelay.
9: Query latest Ib and Io from database.
10: end while
11: Unset x0 = 0 and set x1 = 1.
12: end for

Figure 6. Load swapping algorithm.

expected to cover two different adjustable loads. The algorithm
takes the sensed battery current and load current as inputs
and gives the states of two switches controlling the state of
each load as output. It compares the input values to predefined
thresholds to determine if the connected load can be served
during the targeted period. If not, it sends a command to
actuate load swapping. In other words, the first load is turned
off and the second is turned on. The process repeats every T
seconds. We emulate the change of a load by adjusting the
value of each load manually and waiting for the system to
respond to the changes.

B. Load Swapping Algorithm

Let Ib and Io be the battery current and the output current
of the system, respectively. We define Ith,b and Ith,o as the
battery current and the output current thresholds, respectively.
Let L = {1, 2, . . . , L} be the set of considered loads and let
xl be a binary decision variable. xl equals one if load l is
driven by the inverter, and it equals zero otherwise. In our
case, L = 2 (i.e., we have two loads). Let τdelay be the time
difference between subsequent checks of conditions. Using the
introduced notation, our load swapping algorithm for N time
slots can be summarized in Algorithm 1 in Figure 6.

C. Experimental Results

We prepared our loads and ran the Python-based code that
implement the algorithm and collected the following data in
Figure 7 and 8. Figure 7 shows the changes in the states of
load one and load two switches actuated from the fog node
whereas Figure 8 captures the corresponding variations to the
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(a) Switch one.

(b) Switch two.
Figure 7. The state of the switches during the testing period.

sensed battery and load currents. The scenarios start where
both switch 1 and switch 2 are zero. Then, the fog node sends
a S2S1 = 01 command to drive load 1 on. This action occurred
at time t0, as shown in the figures. After t0, an increase in the
load current is captured by the sensor. At the same moment,
the battery current is negative which indicates that the battery
is in the charging state. To push the system into using the
battery we adjusted load 1 at t1 where spikes in both the
load current and the battery current are captured. This action
pushed the currents beyond the threshold that we configured
(5 A for each) which accordingly triggered the command that
swapped the loads (i.e., S2S1 = 10). The figures confirm this
and show that following this moment the switches flipped and
the currents went back below the threshold. At t2, we adjusted
load 2 to be above the threshold. However, this time the battery
contribution did not exceed the threshold which in turn kept
everything as is in terms of the switches’ states, as expected
from the algorithm. Another increase of load 2 was triggered

(a) Battery current (Ampere DC).

(b) Load current (Ampere RMS).
Figure 8. Current values during the testing period.

at t3, which this time made the condition to be true again and
the algorithm responded by swapping the loads as illustrated in
Figure 7. t4 shows another swap triggered by the same event.
After this moment, specifically between t5 and t6, we fixed
both loads at a heavy consumption state (the one that exceeds
the thresholds). This action can be confirmed by the readings
of currents during this period. The algorithm responded as
expected by sending swapping commands repeatedly until the
end of this period (at t6) when we lowered load 1 to stabilize
the switches eventually at S2S1 = 01.

V. CONCLUSIONS AND FUTURE WORK

We showed how each component of the IoT stack is
implemented and how they are integrated with each other
to collectively serve the expected purpose of the IoT, that
is data collection, drawing insights, and operational improve-
ments into the connected systems. Solving the challenge of
integrating IoT into current systems will open the door for
exploiting the collected data to create various algorithms and
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optimizations in IoT-based systems. We demonstrated that
by implementing a load swapping algorithm on a fog-based
IoT system to control PV systems. Despite being a simple
threshold-based algorithm, it served the purpose of validating
the challenging IoT setup that is composed of a multitude of
parts and technologies.
Other major and crucial problems in similar systems can

be solved using the same setup we implemented. Examples
of such problems include resource allocation, load scheduling,
energy cost optimization, and energy routing. Our future work
will utilize the system built during this work to perform more
complicated tasks, such as energy routing based on different
objectives and constraints, utilizing the true power of IoT, fog
computing, and time-series databases.
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Abstract—Los Angeles County’s electric-vehicle (EV) 

charging-station infrastructure is growing rapidly due to 

increased environmental awareness. Implementing city-wide 

infrastructure is costly, and funding is limited. Spatial analysis 

can offer useful insights by visualizing existing EV charging-

station infrastructure along with several other factors to 

determine where and how many EV charging stations are 

needed. Uneven EV charging-station availability complicates 

consumers’ decisions to switch to driving EV. This analysis 

examines the uneven distribution of EV charging stations, the 

demand for more charging stations, and the EV-to-charger 

ratio to fill in the spatial discrepancies with charging stations 

in Los Angeles County. 

Keywords—Electric vehicles; charging stations; Spatial 
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I. INTRODUCTION 

For most EV drivers, switching to driving EVs has not 
been simple. However, the difficulties drivers face are not 
uniform, primarily due to affluence, population, and unequally 
distributed charging stations throughout Los Angeles County. 
To help spread EV driving, our analysis report suggests 
distributing more charging stations, preferably quick and 
vehicle-brand-neutral charging stations, in areas with spatial 
disparities, particularly in lower-income communities and 
areas where EV ownership is high in comparison to EV-
charging-station availability. This would help smooth the 
transition for new EV drivers and reduce range anxiety. The 
same goal should also be applied to other communities. This is 
an important study because Los Angeles is among the top 
cities in California making the switch to EVs. 

California has rapidly increased the number of zero-
emission vehicles in the state, 1,300% in six years and from 
25,000 in 2012 to more than 350,000 today. California 
continues to lead this trend as it has the highest EV 
penetration in the country, 40% of all EVs in the United 
States. To promote EV use and combat the lack of EV 
charger availability, California enacted Executive Order B-
48-18. The order calls for “all State entities [to] work with 
the private sector and all appropriate levels of government to 
put at least 5 million zero-emission vehicles on California 
roads by 2030” and “all appropriate levels of government to 
spur the construction and installation of 200 hydrogen 
fueling stations and 250,000 zero-emission vehicle chargers, 
including 10,000 direct current fast chargers, by 2025” [1]. 

The Biden-Harris Electric Vehicle Charging Action Plan 
was created to push American leadership on using such clean 

cars as EVs. President Biden set an EV market share goal of 
50% in the United States by 2030 and further explained the 
issue with the current EV charging network of over 100,000 
public chargers as they operate “with different plug types, 
payment options, data availability, and hardware hookups.” 
The Bipartisan Infrastructure Law “includes $5 billion in 
formula funding for states with a goal to build a national 
charging network” and “provides $2.5 billion for 
communities and corridors through a competitive grant 
program that will support innovative approaches and ensure 
that charger deployment meets Administration priorities such 
as supporting rural charging, improving local air quality and 
increasing EV charging access in disadvantaged 
communities.” Moving forward, using the EV Charging 
Action Plan will establish a more uniform approach to EV 
charger accessibility while providing greater convenience for 
customers and offering increased confidence for the industry, 
which should promote the use of EVs in return [2]. 

In Los Angeles, the EV-to-charger ratio is currently 5.6. 
By 2030, this ratio is expected to grow to 37.4 as the EV 
industry is projected to grow immensely. Under the Biden 
administrations Plan for EV Infrastructure, the ratio goal is 
18.7. Our research provides a means to reach this goal. 

The paper is structured as follows. Section II reviews the 
literature on this topic. Section III presents the problem. 
Section IV presents the data. Section V presents the system 
used and the methodology. Section VI discusses the results 
and Section VII discusses the project’s limitations. Section 
VIII concludes. 

II. LITERATURE REVIEW 

One factor we analyzed is charger locations in lower 
income communities. Identifying and prioritizing EV 
planning and extending the economic and environmental 
benefits to those who need them most is vital, with the focus 
on places with lower incomes and high environmental 
pollutants. Bui et al. [3] presents a figure showing the west 
side of Los Angeles with more cumulative EV registrations 
than the northeast and south. After adding our EV-ownership 
data, the gaps clearly represented EV ownership disparities. 
Peer-to-Peer Car Charging (P2C2) offers a scalable method 
for charging EVs that reduces the requirement for complex 
charging infrastructure. The idea is to work with a cloud-
based control system to coordinate EVs so that they can 
share chargers while enroute. This would reduce the barriers 
and limitations consumers face in transitioning to EVs 
without having more local EV charging stations [4]. 
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In contrast, our proposal is to carefully place more fast-
charging stations. We start by outlining the three tiers of 
equipment used to recharge battery EVs. To help in the 
deployment of the variety of vehicles being offered, all three 
levels of charging infrastructure, from basic, low-cost Level 
1 to DC fast chargers, should be built. “DC fast chargers will 
be important to drivers who need to quickly recharge their 
depleted batteries. Using fast chargers, most vehicles will 
recharge up to 80 percent of capacity in a ½ hour or less” [5]. 
This will help reduce range anxiety. A study in Ireland 
conducted a sensitivity analysis and discovered that the 
overall EV cost is highly sensitive to the daily availability of 
EV charging and the number of charging stations [6]. As an 
alternative to using big data, [7] used a forecasting model to 
calculate the demand for charging electric vehicles. The 
report used a decision tree for classification, a relational 
analysis to find influential elements, and cluster analysis to 
categorize traffic patterns [7]. This proposal would enable 
system engineers to foresee the need for EV charging based 
on historical traffic and weather data. Abo-Khalil et al. [8] 
evaluated the impact of random factors connected to 
vehicles’ prior driving distances and the time at which they 
connected to the electrical grid to adjust the capacity of 
charging stations. Another issue is that neighborhoods in 
different counties of California with a large Black or 
Hispanic populations have less access to public EV chargers. 
The results from [8] show that the distance off the highway 
or freeway is negatively correlated with charging-station 
density. Los Angeles County was not included in Chih-Wei 
and Fingerman’s analysis [9]. In Orange County, [10] 
created a machine-learning framework to investigate spatial 
discrepancies in EV-charging-station deployments using a 
predictive methodology. “The first was to pinpoint the 
crucial socioeconomic variables, and the second was to use 
these elements plus ground truth information from current 
charging station placements to estimate future EV charging 
station density using machine learning techniques at various 
spatial scales and compare their predictive performance to 
determine the best spatial resolution.” Optimally sited 
charging stations are required for long-distance demand in 
heavily traveled areas like Los Angeles and New York. He et 
al. [11] analyzed long-distance travel data using spatial 
analysis and an algorithm demonstrating that a 100-mile 
range is required to prevent problems. Our study will 
determine the quantity and placement of fast charging 
stations for various scenarios, better planning, and more 
environmentally friendly transportation. 

In the past, analyses have assessed the economic benefits 
of newly built public charging stations. These analyses have 
considered charging revenues and costs, land-rental costs, and 
investment costs. Charging revenues and costs are calculated 
based on electricity price, the cost of the selected electric 
vehicle supply equipment, and charging demand covered by 
the public charging station [12]. A common question in these 
studies is how much charging infrastructure is needed in each 
area and where charging infrastructure should be built. These 
question is crucial because these decisions are associated with 
large investments and have a long-term influence on adapting 
electric mobility [13]. We set out to answer them in our 

research. Careful studies have also been undertaken to 
identify the communities that EV charging station 
implementation tends to overlook. However, the 
measurement of “underserved” communities shifts according 
to the type of research and, therefore, could have many 
definitions. Zhou et al. [14], for example, looked at 
communities that experience high transportation energy costs, 
and high exposure to pollutants, which lead to public health 
issues and limited access to clean and reliable transportation. 
These factors were used to categorize underserved 
community needs. One point is certain: Lower-income EV 
drivers are more likely to rely on public charging [15], in 
large part because private EV charging stations are limited to 
homeowners. However, it is critical to implement a steady 
plan for EV infrastructure that not only supports current EV 
owners’ needs, but is able to accommodate future EV owners. 
EV ownership requires access to both public- and home-
charging infrastructure so that they can feel confident in 
transitioning to EV ownership without fear that their driving 
behavior will be curtailed due to refueling limitations [16]. 

As society moves towards using EVs, suppliers must 
work to meet consumer needs and demands. To sustain EV 
commuting, a well-running and coordinated electric-charger 
infrastructure must meet the charging demand. Aside from 
an influx of EV owners, we should also expect more EV 
owners to use public charging stations because charging a 
single EV can increase household electricity consumption by 
50% [7]. As public-charger demand grows, these stations 
will become essential and must have availability to build 
consumer confidence in their greater adoption [17]. An 
additional 10–20% EV market penetration would increase 
the daily peak electricity demand by 17.9–35.8% [18]. Such 
high electricity peaks may cause outages and other issues. 
High EV penetration and the resulting losses in the network 
would consequently impose more complexity on the solution 
of the EV-charger application problem [19]. To solve these 
issues, calculated maps are needed indicating the optimal 
city areas where charging stations could be placed according 
to specific scoring levels (which, of course, depend on the 
weighting factors). Space limitations and the maximum 
acceptable distance from the electricity network must also be 
considered before choosing new EV charger locations [20]. 

Zhou et al. [6] investigated the relationships between 
income and affluence levels and the tendency to acquire an 
EV in Ireland and examined the private EV-household-
charger population’s characteristics using a regression model 
and spatial analysis. The Ireland study used information on 
EV household chargers rather than EV ownership due to data 
limitations. “The results indicate that 1) urban areas are more 
likely to see higher concentrations of EV ownership, 2) an 
income and equity gap exists …. This finding is very 
important because it suggests that lower-income categories 
may have a financial barrier to shifting to EVs” [21]. 

It is very common to use ArcGIS tools to identify 
suitable locations to install EV charging stations. For 
example, [22] suggested installing DC fast-charging stations 
at public libraries and parks within 0.5 miles of major 
freeways based on the GIS data [23], and Chen suggested 
setting EV charging stations close to McDonald’s and 

50Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-054-4

ENERGY 2023 : The Thirteenth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

                            57 / 74



Starbucks using geospatial datasets [24]. While the 
development of EV charging stations is in progress, several 
studies have noted that the accessibility of charging stations 
is one of the barriers to the adoption of EVs, especially for 
people with low incomes and those who live in multifamily 
housing [25]. The distribution of EV charging stations was 
uneven [26]. In some cities, the location of EV charging 
stations was not determined by population density, but by 
people’s income [27], and it has caused the issue of 
inequitable access to EV charging stations. When the 
government is involved in developing EV charging stations, 
it becomes essential to “distribute the benefits of facilities to 
all stakeholders” [28]. 

Our underlying theory is that EV charging stations are 
unevenly distributed throughout the city of Los Angeles. It is 
commonly seen throughout past research that affluent areas 
tend to be better equipped with EV infrastructure. Although 
previous analysis assessed EV-charging-station placement, 
we took a distinct approach because our research analyzes 
several factors, including current EV stations, area median 
income, EVs per Zip Code, and population. Previous 
research only analyzes one or two of these factors. We 
decided to combine these factors in addition to calculating a 
current need based on the EV-to-charger ratio, allowing us a 
better understanding of where and how many EV chargers 
need to be placed moving forward. 

Our fundamental approach is to analyze the correlation 
between EV-charger distribution, area income, and EV 
ownership in each area. This will help determine where and 
how many EV charging stations are needed to meet the 
current administration’s goal. 

III. PROBLEM DEFINITION 

California has the most EVs in the country, 40% of all 
EVs in the United States. The problem is our current EV 
infrastructure is unevenly distributed and will fail to meet the 
needs and demands of future EV drivers. Since the recent 
legislature, [1] and [2] have been enacted, we expect an 
influx of EV drivers, and therefore, more EV chargers must 
be readily available to meet the public’s demand. 

Currently, Los Angeles County still has areas with minimal 
to no EV-charging availability, although the area has EV 
owners. To promote EV use and combat limited EV-charger 
availability, we must determine what areas need EV chargers 
based on income, population, and demand. The goal is to 
identify areas where the population owns EVs and has 
insufficient or no EV chargers. With our analysis, we set out to 
learn how many and where additional EV charging stations are 
needed based on the ratio of EV ownership to EV charging 
station. We investigate how and if EV charger placement is 
disproportionately affected by income, population, or current 
EV ownership. Finally, we calculate an EV-to-charger ratio for 
each Los Angeles Zip Code to identify specific needs, aiming 
for a goal of 18.7 EVs per charging station. 

IV. DATA SELECTION AND ACQUISITION 

For our analysis, we used data from the National 
Renewable Energy Laboratory’s developer network to 
identify alternative fuel stations in the city of Los Angeles. 

We also used data from the California Department of Motor 
Vehicles that identifies vehicle ownership by Zip Code and 
fuel type [29]. Two datasets: City Boundaries and Zip Codes, 
came from Los Angeles GeoHub [30] [31]. Lastly, we used 
area median-income shapefile data from Los Angeles Mayor 
Eric Garcetti’s GeoHub site and total estimates from the Los 
Angeles Almanac. 

Alternative fuel-station data, vehicle ownership data, and 
Los Angeles Almanac data were downloaded as csv files. 
City Boundaries and Zip Codes were imported to ArcGIS as 
shapefiles. A shapefile was initially used for area median 
income. A second source of median-income data was located 
and manually converted to a csv file. 

To begin our analysis, we had to solve problems with our 
data sets. First, our vehicle-ownership file did not contain 
unique identifiers, so we added these manually before 
importing the data into ArcGIS. Second, the same data set 
only contained a Zip Code as a location identifier rather than 
latitude and longitude; therefore, to map the vehicle 
ownership detail within each Zip Code on the map, we ran 
the ArcGIS geocode function to assign coordinates to each 
Zip Code. In order to perform our OLS analysis, we needed a 
summary of EV data, a summary of EV-charger data, and 
area median-income data in one file. Since our initial area 
median-income data was only a shapefile, we located another 
source of detailed income data by Zip Code and manually 
created a csv table containing all three elements. 

V. SYSTEM AND METHODOLOGY 

We chose ArcGIS Pro, version 3.0, to perform our 
analysis because it provides intuitive tools that would aid in 
visualizing and manipulating our data to reveal patterns or 
correlations with EV-charger placement and other factors. 

To evaluate the current distribution of EV charging 
stations in Los Angeles County, we created a map with three 
layers: EV charging stations, city boundaries, and Zip Codes. 
Density analysis shows the concentration or clustering of 
points or lines on a map. To get a whole picture of the 
distribution of EV charging stations in Los Angeles County, 
we used Kernel Density. This tool “calculates a magnitude-
per-unit area from point or polyline features using a kernel 
function to fit a smoothly tapered surface to each point or 
polyline” [23]. We performed kernel density analysis on the 
data of EV charging stations in Los Angeles County and 
evaluated how these charging stations were distributed in the 
whole county area. 

In addition to kernel density analysis, mean center, 
median center, and directional distribution (standard 
deviational ellipse) are common useful spatial statistics 
methods to measure geographic distributions. “Standard 
deviational ellipse has long served as a versatile GIS tool for 
delineating the geographic distribution of concerned 
features” [32]. Kemtec and Knez used standard deviational 
ellipse with other spatial statistics tools, such as mean and 
median center, to evaluate the location of EV charging 
stations in Slovenia [26]. We used mean center to identify 
the geographic center of EV charging stations in Los 
Angeles County. Median center helped us locate “the point 
that minimizes Euclidean distance” to all EV charging 
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stations in Los Angeles County [33]. Directional distribution 
(standard deviational ellipse) helped us find the central 
tendency, dispersion, and directional trends of EV charging 
stations in Los Angeles County. 

Summarize Within, a statistics tool in ArcGIS, very 
effectively allows users to “overlay a polygon layer with 
another layer to summarize [and] calculate attribute field 
statistics about the features within the polygons” [23]. We 
used this tool to investigate the locations of EV charging 
stations in each city and each area by Zip Code. For insight 
into the number of EV charging stations in each city, we set 
the city boundaries as Input Polygons and set EV charging 
stations as Input Summary Features, and then calculated the  
total EV charging stations in each city. Similarly, we 
calculated the total EV charging stations in each area based 
on Zip Codes. 

We then calculated EV-to-charger ratios within each Zip 
Code using Summarize Within within Zip Code boundary 
polygons. We partially joined the summarized tables 
containing the EV-ownership detail and EV-charger detail 
and added a field that divided the sum of EV ownership by 
the sum of EV charging stations. For the purpose of 
identifying critical null values in Zip Codes where EV 
ownership is high and there are no EV charging stations, we 
manually assigned a −1 value to distinguish these areas in 
our visualization. We added another field to calculate the 
number of EV stations needed to bring the currently 
calculated ratio up or down to 18.7. With this newly created 
table, we performed a Hot Spot analysis to identify 
concentrations of high and low EV charger placement. 
Additionally, we used Optimized Outlier Analysis to identify 
areas of high and low EV charger placement, as well as to 
identify areas of high and low EV charger concentration. 
Finally, we created a manual table containing summarized 
data per Zip Code for EV ownership, EV-charger placement, 
and area median income. With this, we use OLS to find 
correlations between EV-charger placement and area median 
income or EV ownership. 

VI. RESULTS/DISCUSSION 

Figure 1 presents a map of Los Angeles County that 
displays EV charging stations and population density. The 
map was created to show disparities between areas with high 
and low population access to EV chargers. 

Figure 2 presents a close-up group showing high-
population to high-EV-charger density in Los Angeles 
County based on Figure 1. Areas with “high population 
density” are areas with a population of 22,000 or more and 
are shown as orange to yellow shades on the map. 

Figure 3 is a close-up group that displays low-population 
to low-EV-charger density in Los Angeles County based on 
Figure 1. Areas with “low population density” are areas with 
a population of 22,000 or less and are shown as purple to 
black shades on the map. 

These two figures show disparities between areas with 
high population access to EV chargers and low population 
access to EV chargers. The average distance from EV 
charger to EV charger in an area with high population 
density is 0.341 miles. The same average distance in areas 

with low population density is 0.913 miles. This shows an 
accessibility disparity, proving that areas with higher 
populations have more access to EV chargers. This is an 
issue because high population density does not necessarily 
point to EV-charger use. 

 

 

 
The kernel density of EV charging stations in Los 

Angeles County (Figure 4) shows the highest densities of EV 
charging stations are in Downtown Los Angeles; others are 
in Pasadena, Hollywood, Beverly Hills, Santa Monica, Los 
Angeles International Airport, and Long Beach. The western 
regions of Los Angeles County have more charging stations 
than the eastern regions. 

Figure 5 shows that the mean and median centers of EV 
charging stations are located near Downtown Los Angeles, 

 
Figure 1. Los Angeles County EV-to-charger ratios and populations. 

 
Figure 2. High-population to high-EV-charger density in Los Angeles. 

 
Figure 3. Low-population to low-EV-charger density in Los Angeles. 
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and the standard deviational ellipse shows the first standard 
deviation area: Around 68% of EV charging stations are in 
this ellipse. 

 

 
As the distribution of EV charging stations in each city 

shows (Figure 6), most EV charging stations are in the city 
of Los Angeles, the red area. The bar chart (Figure 7) shows 
a total of 3,028 chargers there, which accounts for 34% of 
the county’s total EV charging stations. 

The distribution of EV charging stations in the area by 
Zip Code (Figure 8) shows how they are located in each Zip 
Code. The area in red (light yellow) indicates more (fewer) 
charging stations. Table I lists the top 10 areas by the number 
of charging stations, and it clearly shows that most of these 
areas are from the top four cities in which most EV charging 

stations are located, Los Angeles, Santa Monica, Long 
Beach, and Pasadena. 

 

 
TABLE I. TOP 10 ZIP CODE AREAS BY THE NUMBER OF EV CHARGERS 

 Zip Code City 

Number of EV 

Charging Stations 

1 90012 Los Angeles 351 

2 90045 Los Angeles 200 

3 90802 Long Beach 193 

4 90404 Santa Monica 191 

5 91355 Santa Clarita 185 

6 90028 Los Angeles 175 

7 90007 Los Angeles 162 

8 90401 Santa Monica 143 

9 90245 El Segundo 143 

10 91125 Pasadena 139 

 

Our analysis found an uneven distribution of EV 
charging stations in Los Angeles County. Most charging 
stations are located in the western region of the county, 
concentrated in Downtown Los Angeles. This finding 

 
Figure 4. Kernel density of EV charging stations in Los Angeles County. 

 
Figure 5. Mean center, median center, and directional distribution of EV 

charging stations in Los Angeles County. 

 
Figure 6. Distribution of EV charging stations in each city. 

 
Figure 7. Top 10 cities by the number of total EV charging stations. 
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suggests that the accessibility of EV charging stations varies 
by area. People living around Downtown Los Angeles have 
more convenient access to charging stations. 

 
OLS of the manually created table contains the sum of 

EV charging stations as a dependent variable and the sum of 
EV ownership and area median income as explanatory 
variables. Results R2 multiple of 8% explained no correlation 
among these variables in Los Angeles County (Figure 9). 

To complete the following analysis, we calculated the 
EV-to-charger ratio by dividing the sum of EV ownership 
within each Zip Code by the sum of EV charging stations to 
determine a ratio within each Zip Code (Table II). By doing 
so, we will identify specific Zip Codes where the ratio is 
null, indicating EVs but no charging stations, or Zip Codes 
where the EV-to-charger ratio is high and in need of 
additional stations to bring the ratio down to the current 
administrations’ goal of 18.7. 

TABLE II. SAMPLE DATA OF LOS ANGELES COUNTY EV OWNERSHIP TO 

EV CHARGING STATION RATIO CALCULATIONS 

Zip 

Code 

Sum of Electric 

Vehicles 

Sum of EV 

charging stations 

EV to charging 

station Ratio 

90059 36 5 7.2 

91301 180 5 36.0 

91775 335 0 −1* 

91801 345 9 38.3 

90007 68 65 1.0 

*Indicates placeholder number not actual calculation 

A hot/cold spot analysis of EV charger locations that 
only includes areas where the ratio is greater than 18.7 as 

proposed by the current administration (Figure 10) shows a 
higher concentration of EV chargers in northwest Zip Codes 
from Los Angeles city center and low concentrations in Zip 
Code South East of the Los Angeles city center. 

 

 
An optimized-outlier analysis of EV charger locations 

that only includes areas where the EV-to-charger ratio is 
greater than 18.7 as proposed by the current presidential 
administration (Figure 11) highlights areas of urgent need for 
EV charging stations in light blue and red. Light blue 
highlights output features with clusters of low sums of EV 
chargers, and red highlights output features with high 
outliers within a cluster of low sums of EV-charger values. 

A visualization of the EV-to-charger ratio in all areas 
broken out by Zip Code (Figure 12) indicates that the 
majority of Los Angeles Zip Codes falls significantly far 
above the proposed ratio of 18.7. This means there are more 
than 18.7 EVs per charger in these Zip Code, which could 
lead to availability issues. 

Upon identifying areas in need of more EV chargers, we 
identified how many EV charges are needed within each Zip 
Code in areas where the EV-to-charger ratio is greater than 
18.7 (Figure 13). 

 Figure 14 presents an identified area in need of more EV 
chargers to display the specific locations of existing EV 
chargers. Our calculation shows that these sample areas in 

 
Figure 8. Distribution of EV Charging Stations in the Area by Zip Code. 

 
Figure 9. OLS analysis of Los Angeles EV charging station placement 

using AMI and vehicle ownership as explanatory variables. 

 
Figure 10. Hot/cold spot analysis of EV chargers within areas of Los 

Angeles with calculated EV-to-charger ratio greater than 18.7. 
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Los Angeles require between 19 to 24 new EV chargers to 
bring the current EV-to-charger ratio down to 18.7 and 
ensure availability. 

 

 

 

 

VII. PROJECT LIMITATIONS 

With access to more detailed spatial data, our analysis 
could be more in depth. For example, access to privately 
owned EV charger providers, such as Tesla, EVgo, and 
ChargePoint, would allow us to analyze their trend, peak 
time, charge frequency, and public reviews to correlate 
public preferences and determine the need for higher quality 
and more reliable charger placements. Using a dataset within 
ArcGIS pro that does not contain latitude and longitude 
limits the analysis. Since vehicle ownership data is personal 
and private, our dataset was limited to quantities per Zip 
Code and therefore the rest of our analysis was modeled 
around Zip Code analysis. Exact location data would have 
provided exact walking distances and charger accessibility. 

VIII. CONCLUSION 

Our analysis was able to determine by visual observation 
that areas in Los Angeles with high populations tend to have 
more EV chargers. Kernel-density, spatial, hot-spot, and 
outlier analysis confirmed that the distribution of EV 
chargers in Los Angeles County is uneven: Areas north and 
west of Los Angeles city center have higher concentrations 
of EV chargers, while areas east and south of the city center 
have significantly lower concentrations. Most EV chargers 
are located in the city of Los Angeles, especially in 
Downtown Los Angeles. Such an uneven distribution of EV 
chargers would cause inequitable access issues for people 
living and working in other areas. 

Upon categorizing each Zip Code by EV-to-charger ratio, 
we specifically identified areas where additional EV chargers 
are needed and, more importantly, determined how many EV 
chargers would be required within each Zip Code. For Los 
Angeles to become fully electric by 2035, investment in EV 
infrastructure will require the implementation of many new 
EV chargers to support current and future EV drivers. 
Ensuring that the EV-to-charger ratio is lowered and remains 
low will ensure that drivers are able to access EV chargers 
when they need them. 

 
Figure 11. Optimized outlier analysis of EV chargers in areas of Los 

Angeles with calculated EV-to-charger ratios greater than 18.7. 

 
Figure 12. Los Angeles County EV-to-charger ratio all areas. 

 
Figure 13. Quantity of new EV charging stations needed within areas of 

calculated ratio greater than 18.7 in Los Angeles County. 

 
Figure 14. Sample area in Los Angeles County with identified quantity of 

new EV charging stations needed to meet goal ratio of 18.7. 
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Some possible extensions of this work are modeling EV 
penetration in different population areas and examining the 
distribution of vehicle-brand-neutral charging stations. Also, 
studies could examine the effects of encouraging low-income 
drivers to use EVs: Upfront costs for the drivers, the ecological 
impact of recycling batteries and mining the resources to 
make more batteries. Finally, more private data should be 
available at all granularities to improve on studies like this. 

REFERENCES 

[1] State of California. Governor Brown takes action to increase 
zero-emission vehicles, fund New Climate Investments. 
Governor Edmund G Brown Jr. [Online]. Available from: 
https://www.ca.gov/archive/gov39/2018/01/26/governor-brown 
-takes-action-to-increase-zero-emission-vehicles-fund-new 
-climate-investments/index.html 

[2] The White House. Fact sheet: The Biden–Harris electric 
vehicle charging action plan. [Online]. Available from: https 
://www.whitehouse.gov/briefing-room/statements-releases 
/2021/12/13/fact-sheet-the-biden-harris-electric-vehicle 
-charging-action-plan/ 

[3] A. Bui, P. Slowik, and N. Lutsey. Los Angeles electric vehicle 
charging infrastructure needs and implications for zero-emission 
area planning. [Online]. Available from: https://theicct.org 
/publication/los-angeles-electric-vehicle-charging-infrastructure 
-needs-and-implications-for-zero-emission-area-planning/ 

[4] P. Chakraborty et al., “Addressing the range anxiety of battery 
electric vehicles with charging en route,” Sci. Rep., vol. 12, 
no. 1, pp. 1–15, 2022. 

[5] D. Mayfield. Siting electric vehicle charging stations. Ed. 
Carlotta Collette. Sustainable Transportation Strategies. 
[Online]. Available from: https://vacleancities.org/wp-content 
/uploads/Siting-EV-Charging-Stations-FINAL-12.pdf 

[6] G. Zhou, Z. Zhu, and S. Luo, “Location optimization of 
electric vehicle charging stations: Based on cost model and 
genetic algorithm,” Energy, vol. 247, art. 123437, 2022. 

[7] M. B. Arias and S. Bae, “Electric vehicle charging demand 
forecasting model based on big data technologies,” Appl. 
Energy, vol. 183, pp. 327–339, 2016. 

[8] A. G. Abo-Khalil et al., “Electric vehicle impact on energy 
industry, policy, technical barriers, and power systems,” Int. J. 
Thermofluids, vol. 13, art. 100134, 2022. 

[9] H. Chih-Wei and K. Fingerman, “Public electric vehicle charger 
access disparities across race and income,” Transp. Policy, vol. 
100, pp. 59–67, 2021, doi:10.1016/j.tranpol.2020.10.003 

[10] A. Roy and M. Law, “Examining spatial disparities in electric 
vehicle charging station placements using machine learning,” 
Sustain. Cities Soc., vol. 83, art. 103978, 2022. 

[11] Y. He, K. M. Kockelman, and K. A. Perrine, “Optimal 
locations of US fast charging stations for long-distance trip 
completion by battery electric vehicles,” J. Clean. Prod., vol. 
214, pp. 452–461, 2019. 

[12] H. Lin, et al., “Optimal planning of intra-city public charging 
stations,” Energy, vol. 238, art. 121948, 2022. 

[13] M. Gellrich, A. Block, and N. Leikert-Böhm, “Spatial and 
temporal patterns of electric vehicle charging station 
utilization: A nationwide case study of Switzerland,” ERIS, 
vol. 2, no. 2, art. 021003, 2022. doi:10.1088/2634-4505/ac6a09 

[14] Y. Zhou, D. Gohlke, M. Sansone, J. Kuiper, and M. P. Smith. 
Using mapping tools to prioritize electric vehicle charger 
benefits to underserved communities. No. ANL/ESD-22/10. 
Argonne National Lab. Argonne, IL (United States). 

[15] M. Nazari-Heris, A. Loni, S. Asadi, and B. Mohammadi-
Ivatloo, “Toward social equity access and mobile charging 

stations for electric vehicles: A case study in Los Angeles,” 
Appl. Energy, vol. 311, art. 118704, 2022. 

[16] S. LaMonaca and L. Ryan, “The state of play in electric 
vehicle charging services—A review of infrastructure 
provision, players, and policies,” Renewable Sustainable 
Energy Rev., vol. 154, art. 111733, 2022. 

[17] F. Avalos Jr, “An evaluation of electric vehicle charging 
stations with respect to functional consumer demand,” 
Doctoral dissertation, University of California, Los Angeles. 

[18] M. A. Quddus, O. Shahvari, M. Marufuzzaman, and S. D. 
Eksioglu, “Designing a reliable electric vehicle charging 
station expansion under uncertainty,” Int. J. Prod. Econ., vol. 
236, art. 108132, 2021. doi:10.1016/j.ijpe.2021.108132 

[19] H. Simorgh, H. Doagou‐Mojarrad, H. Razmi, and G. B. 
Gharehpetian, “Cost‐based optimal siting and sizing of 
electric vehicle charging stations considering demand 
response programmes,” IET Gener. Transm. Distrib., vol. 12, 
no. 8, pp. 1712–1720, 2018. 

[20] D. Gkatzoflias et al., Optimal allocation of electric vehicle charging 
infrastructure in cities and regions. The new technical research 
report of the Joint Research Centre of the European Commission, 
the European Commission’s in-house science service. 2016. 

[21] B. Caulfield, D. Furszyfer, A. Stefaniec, and A. Foley, 
“Measuring the equity impacts of government subsidies for 
electric vehicles,” Energy, vol. 248, art. 123588, 2022. 

[22] J. S. Jin, “Installing public electric vehicle charging stations: 
A site suitability analysis in Los Angeles County, California,” 
Doctoral dissertation, University of Southern California. 

[23] ArcMap. An overview of the Density toolset. [Online]. Available 
from: https://desktop.arcgis.com/en/arcmap/latest/tools/spatial 
-analyst-toolbox/an-overview-of-the-density-tools.htm 

[24] J. Y. L. Chen, “California public electric vehicle charging 
stations’ accessibility to amenities: A GIS network analysis 
approach.” Master's Projects and Capstones. [Online]. 
Available from: https://repository.usfca.edu/capstone/565 

[25] S. Hardman, K. Fleming, E. Khare, and M. M. Ramadan, “A 
perspective on equity in the transition to electric vehicles,” MIT Sci. 
Pol. Rev., vol. 2, pp. 46–54, 2021. doi:10.1088/2634-4505/ac6a09 

[26] M. Kmetec and M. Knez, “Electric vehicle charging stations 
coverage: A study of Slovenia,” Tehnički Vjesnik, vol. 29, no. 
1, pp. 285–292, 2022. 

[27] H. A. Khan, S. Price, C. Avraam, and Y. Dvorkin, “Inequitable 
access to EV charging infrastructure,” Electricity Journal, vol. 
35, no. 3, art. 107096, 2022. doi:10.1016/j.tej.2022.107096 

[28] B. D. Chung, S. Park, and C. Kwon, “Equitable distribution of 
re-charging stations for electric vehicles,” Socio-Econ. Plan. 
Sci., vol. 63, pp. 1–11, 2018, doi:10.1016/j.seps.2017.06.002 

[29] State of California. Vehicle fuel type count by ZIP code 
1/1/2021. [Online]. Available from: https://data.ca.gov/dataset 
/vehicle-fuel-type-count-by-zip-code/resource/888bbb6c-09b4 
-469c-82e6-1b2a47439736 

[30] Los Angeles GeoHub. City boundaries. City of Los Angeles 
Hub. [Online]. Available from: https://geohub.lacity.org 
/datasets/lacounty::city-boundaries-3/explore?location=33 
.886095%2C-118.390855%2C8.28 

[31] Los Angeles GeoHub. ZIP codes (La County). [Online]. 
Available from: https://geohub.lacity.org/datasets/lahub::zip 
-codes-la-county/explore?location=33.795647%2C-118 
.302795%2C9.00 

[32] B. Wang, W. Shi, and Z. Miao, “Confidence analysis of 
standard deviational ellipse and its extension into higher 
dimensional Euclidean space,” PloS One, vol. 10, no. 3, pp. 
e0118537–e0118537, 2015. doi:10.1371/journal.pone.0118537 

[33] Los Angeles GeoHub. Median income and AMI (census 
tract). [Online]. Available from: https://geohub.lacity.org 
/datasets/lacounty::median-income-and-ami-census-tract 
/explore?location=33.769264%2C-118.302668%2C9.00 

56Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-054-4

ENERGY 2023 : The Thirteenth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

                            63 / 74



Business Model Considerations for a Solution to Optimize  
and Diagnose Solar Panel Installations 

 

Lasse Berntzen Saeed Teimourzadeh Paula Anghelita 
University of South-Eastern Norway EPRA Electric Energy Co. ICPE SA 

Horten, Norway Ankara, Turkey Bucharest, Romania 
email: lasse.berntzen@usn.no email: saeed@epra.com.tr email: p.anghelita@icpe.ro 

Qian Meng Viorel Ursu 
University of South-Eastern Norway ICPE SA 

Horten, Norway Bucharest, Romania 
email: qian.meng@usn.no email: vio.ursu@icpe.ro 

 
 

Abstract — This paper describes the business model 
considerations for an Internet of Things (IoT) solution to 
diagnose and optimize solar panel installations. The solution 
consists of a sensor platform and a cloud-based service. The 
sensor platform collects information about the position and 
orientation of the solar panels, the solar radiation, the ambient 
temperature and humidity, and the temperature of the solar 
panels. The cloud-based service receives the collected data 
together with data from the inverter. An algorithm analyzes the 
data and makes recommendations about possible adjustments 
and malfunctions. Users are offered recommendations through 
a web-based interface. The focus of this paper is the business 
model considerations. How can the solution create value for the 
manufacturer and stakeholders in the solar panel business? The 
solar panel value chain is examined to see where the solution can 
be bundled with other business activities. 

Keywords-solar panels; photovoltaic energy; testing; business 
model; IoT; cloud-based service. 

I.  INTRODUCTION 
Prosumers are energy consumers that also produce energy. 

The produced energy can be used, stored for later 
consumption, or sold to the grid. A smart meter keeps track of 
the energy flow between the prosumer and the grid. Fig. 1 
shows a prosumer connected to the grid through a smart meter. 
The prosumers have solar panels on their rooftops to produce 
their own energy. 

The most popular technology for small-scale renewable 
production is solar panels. However, solar panels are only 
effective during the daytime, with a peak output when the 
solar radiation is the highest. A solar panel needs to capture as 
much radiation as possible. Therefore, the characteristics and 
the orientation/positioning of the solar panel are critical 
factors for the efficiency of energy production. The output of 
the solar panels also depends upon the surface temperature of 
the solar panel. High temperature dramatically decreases 
photovoltaic output. 

To face this challenge, a collaborative effort of teams from 
three countries with different climatic conditions, ICPE SA 

from Romania, EPRA Electric Co. from Turkey, and the 
University of South-Eastern Norway joined their efforts in the 
project Cloud-based analysis and diagnosis platform for 
photovoltaic (PV) prosumers to develop a solution to optimize 
and diagnose solar panel installations. The solution was 
named Dr. Solar since it diagnoses the solar panel installation. 
The solution, including the algorithms used for optimization, 
is described in detail in [1]. Section 3 provides an overview of 
the solution and the sensor platform used.  

 

 
Figure 1.  The prosumer 

This paper aims to discuss possible business models for 
the Dr. Solar solution. Section 2 briefly introduces the Internet 
of Things. Section 3 describes the Dr. Solar solution. Section 
3 discusses business models in general, while Section 4 
considers business models for the Dr. Solar solution. Section 
6 presents the results, while Section 7 provides a conclusion 
and ideas for future work. 

II. INTERNET OF THINGS 
The Internet of Things (IoT) refers to devices connected to 

the Internet. The connection to the Internet opens new 
opportunities. IoT devices can collect information from 
sensors and control the environment through actuators. The 
network makes it possible to process information at a remote 
location. Fig. 2 shows a couple of IoT devices connected to an 
IoT service through the Internet. 
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A cloud-based service processing data reduces the need 
for local processing capacity in the IoT device. The cloud-
based service also makes it easier to replace or tune the 
algorithms used. 

. 
 

 
Figure 2.  Internet of Things 

One of the typical IoT applications in the energy sector is 
monitoring power output and related parameters, such as 
voltage, current, and consumption. Such monitoring can 
support short- and long-term planning of operations as well as 
the future development of the power grid. Monitoring may 
require real-time or close to real-time data transmissions. 
Real-time requirements may influence the design of the IoT 
architecture. The value of IoT lies in the data the sensors 
provide and how the data is interpreted. A cloud-based service 
can analyze sensor data and provide decision-making 
information 

III. THE DR. SOLAR SOLUTION 
This section describes the solution and the sensor 

platform. 

A. The Solution 
Dr. Solar is an IoT solution developed to assess the 

performance and operation of photovoltaic systems. The 
solution consists of three main subsystems, shown in Fig. 3. 

The first subsystem is the Dr. Solar sensor platform 
containing sensors and data loggers. The Dr. Solar sensor 
platform acts as the data acquisition system for the Dr. Solar 
solution. The sensor platform collects and uploads data to the 
cloud-based service using a GSM-based mobile router. A 
router is necessary since the solar panels are usually not placed 
within the range of an existing Wi-Fi network. The sensor 
platform is configured to collect data every 5 minutes for three 
consecutive days, ideally when solar radiation exceeds 600 
W/m2. The sensor platform and the inverter provide data at 
five-minute intervals polled by the cloud-based analytics 
service for the time interval between 10:00 am to 2:00 pm. 
More details on the sensor platform will be discussed later. 

The second subsystem is the inverter which converts the 
generated DC power by the solar panels into AC power. 
Within this process, the inverter collects and provides data 
concerning energy production. The prototype of the Dr. Solar 
solution uses a Huawei inverter SUN2000L-3KTL model to 
demonstrate the functionality.  

The third subsystem is a cloud-based analytic service that 
contains assessment algorithms and engines. The engines 
within the cloud-based service acquire inputs from the Dr. 
Solar sensor platform and the inverter to perform two main 
tasks: 

 
1. Performance evaluation which is called asset 

management service in Dr. Solar solution. The main 
objective of the asset management service is to evaluate 
the performance of the solar panels and perform a health 
check. The solution provides information about the 
problem and possible reasons to the customer if any 
malfunction is observed. 

2. Performance enhancement which is called optimum 
decision support in the Dr. Solar solution. The optimum 
decision support service's main objective is to evaluate 
the solar system's operating conditions and develop an 
optimal operation schedule to reduce the customer's 
electricity bill. The optimum decision support considers 
user preferences and uses these together with the data 
from the inverter. The optimum decision support does 
not rely on the Dr. Solar sensor platform and can be done 
after the unit is removed from the installation. 

 
Figure 3.  The Dr. Solar solution 

The Dr. Solar solution provides a user-friendly web 
interface to investigate monitoring results for asset 
management and optimum decision support. 

B. The Sensor Platform 
The Dr. Solar sensor platform is the hardware component 

of the solution, including sensors for data acquisition and 
submission to a dedicated cloud-based analysis and diagnosis 
platform. The sensor platform is compact, autonomous, and 
collects data regarding: 

• Direct solar radiation level in the plane of the 
photovoltaic generator (solar panel). 
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• Ambient temperature and humidity, as well as solar 
panel temperature. 

• Geographical location and specific installation angles 
(the inclination and the azimuthal deviation of the 
solar panel from the southern direction). 

The sensor platform is easy to mount onto the solar panel 
installation, and a prosumer can install the unit without expert 
help. 

The architecture of the IoT sensor platform is shown in 
Fig. 4. The different parts communicate through signals and 
protocols to collect sensor information.  

 
Figure 4.  The architecture of the sensor platform 

From the sensor platform, the data is transferred through 
web get-type procedures to the remote subsystem residing in 
the cloud. 

 

 
Figure 5.  The physical construction of the sensor platform 

Fig. 5 shows the physical construction of the sensor 
platform, while Fig. 6 shows how the sensor platform is 
mounted on a solar panel. 

IV. IOT BUSINESS MODELS 
A business model is the underlying knowledge of a 

venture or the core logic for generating value in a venture 
[2][3]. Research has tried to establish a more unified business 
model by using it as a new analytical unit with a system-level, 
holistic approach to explain how a company creates value 
through its activities [4]. A holistic approach includes the role 
of the market, the customer, and the systematic and integrated 

approach to business model innovation processes [5]. 
Considering the relationship between explicit needs and 
extended value chain, a business model is defined as a 
mechanism to comprise the framework/mode/logic of profit-
seeking and business structure to make a profit [6]. 

 

 
Figure 6.  The sensor platform mounted on a solar panel 

A business can expand its value creation by increasing its 
activities upstream, downstream, or both. In our case, the 
industrial partner, ICPE, delivers solar panel installations. 
Upstream activities would be producing solar panels, while 
downstream activities may be operating and maintaining the 
solar panel installations. The Dr. Solar box represents 
downstream value creation. 

IoT opens new opportunities for business models. 
Gassmann, Frankenberger, and Csik [7] conceptualized the 
business model by four central dimensions: the who, the what, 
the how, and the value. Who is the target customer or 
segment? What do we offer to the customer (value 
proposition)? How do we deliver our goods and services 
(value chain)? And finally, how do we generate value 
(revenue model)? The conceptualization is shown in Fig. 7. 

 

 
Figure 7.  Central dimensions of a business model [7] 
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Sinclair [8] presents five classes of business models and 

shows the evolution over time, called the business model 
continuum. The first class is called the product business 
model, where a product is sold to the customer. IoT can 
provide added value through new features, better 
performance, reduced cost, and increased accuracy. The 
second class is the product-service business model. Here, the 
relationship between the producer and the customer creates 
added value. The relationship can incorporate training, 
predictive maintenance, and smart services.  

TABLE I.  REVENUE MODELS 

Business 
Model Class 

Description Revenue Model 

Product The customer buys the 
hardware unit and gets 
access to the service for 
free.  

Revenues come from the 
sale of the hardware unit. 

Product/ 
service 

The customer buys the 
hardware unit and 
subscribes to a service. 

Revenues come from the 
sale of the hardware unit 
and the subscription fee. 

Service The customer rents the 
hardware unit or 
subscribes to a service, 
and the service provider 
owns the hardware. The 
model facilitates long-
term relationships with 
the customer. 

Revenues come from the 
rent or subscription fee 
only. 

Loan The customer loans the 
hardware unit and uses 
the service for free. It is 
used to add value to 
other sales 

Revenues come from 
other sources, e.g., 
increased sales of solar 
panels and associated 
hardware or 
advertisements on the 
web platform. 

Freemium The product is installed 
for free. Functionality is 
unlocked by 
subscription.  

Revenues come from 
subscriptions. However, 
the freemium model has 
become popular in many 
segments, but in our case, 
the unit cost may be too 
high to gamble on 
whether customers are 
subscribing or not.  

Service/ 
outcome 

A partnership is created 
between the 
manufacturer and a 
stakeholder in the solar 
panel value chain 

Revenues come from 
profit sharing, where the 
manufacturer receives its 
part from the profits 
generated by the 
partnership. 

Outcome The product is installed 
as part of a total system 
of solar panels and the 
inverter 

Revenues come from a 
close partnership with 
stakeholders responsible 
for the whole power 
generation process. 

 
The third class is the service business model, where the 

customer pays per hour of use, per time used, or volume 
collected. The producer owns the product. The customer 
subscribes to a service. The last two classes focus on the 
outcome. The outcome is about solving the customer's 
problem. The fourth class is the service-outcome business 
model. In this case, the producer installs the necessary 
products to solve a problem. The monetization can be a share 
of the value generated by the producer's systems. The outcome 
business model is when the producer and customer establish a 
close partnership that solves the problem for the customer. 

In addition to the five classes proposed by Sinclar [8], we 
added loan and freemium. Lending out the hardware unit 
makes it possible for customers to increase the value of their 
installations and incentivizes them to choose the manufacturer 
offering such a service. Freemium [9] implies that essential 
services are free, while more advanced functionality requires 
the customer to pay.  

A review of business model literature by Osterwalder, 
Pigneur, and Tucci [10] showed broad diversity of 
understandings, usages, and places in the firm. Creating value 
is an important factor. However, Chesbrough [11] and 
Spencer [12] discuss open business models where many 
partners participate in the innovation process. Additionally, 
some marketing researchers are studying co-creation and co-
production, in which the client participates in developing the 
primary offering. 

The approach used by Gassmann, Frankenberger, and 
Csik [7] will now be combined with the classes of business 
models offered by Sinclar [8] to discuss viable business 
models for the Dr. Solar solution. 

V. DR. SOLAR BUSINESS MODEL CONSIDERATIONS 
The value proposition for the Dr. Solar solution is 

optimizing and diagnosing the solar panel installation. By 
using Dr. Solar, the user can improve energy production and 
be alerted about possible malfunctions in the installation. 

The revenue model is about creating value for the different 
stakeholders. Building on the classes proposed by Sinclar [7], 
we present seven alternatives for creating revenues. The 
revenue models are shown in Table I. 

As to the selling behavior, there are two options. The Dr. 
Solar solution can be sold separately or bundled with other 
products, as shown in Table II. 

TABLE II.  STAND-ALONE OR BUNDLING 

Stand-
alone 

Dr. Solar is offered to customers with existing solar panels 

Bundle Dr. Solar is bundled with other products, e.g., inverter 
and/or solar panels. 

 
The installation of solar panels involves different 

stakeholders, as shown in Fig. 8. These stakeholders may 
bundle the Dr. Solar solution with their own products or 
activities.  
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Figure 8.  Stakeholders 

 

TABLE III.  STAKEHOLDERS 

End customer The end customer would typically use Dr. Solar to 
diagnose and optimize its photovoltaic 
installation.  The end customer would typically 
loan the Dr. Solar. 

Installer The installer can use the Dr. Solar unit to improve 
the installation and achieve a competitive 
advantage. The installer typically buys and uses 
the hardware unit for all installation products. 

Retailer The retailer of solar panels and other photovoltaic 
equipment can offer Dr. Solar on loan or as a 
service.  The retailer could get a competitive 
advantage from bundling with other products. 

Distributor The distributor could offer Dr. Solar as a product 
or service to downstream retailers and installers. 

Manufacturer The manufacturer of solar panels and other 
photovoltaic equipment could offer Dr. Solar as 
an added value to distributors, retailers, and 
installers. 

Aggregator The aggregator organizes a group of prosumers. 
The aggregator could buy Dr. Solar and lend it 
out to its prosumers. 

 
The stakeholders' use of the solutions is described in Table 

III, and the bundling opportunities are shown in Fig. 9. 

VI. RESULTS 
After considering different potential business models, the 

chosen alternative was to regard Dr. Solar as an added value 
to photovoltaic installations. The sensors unit, equipped with 
high performances sensors, is too expensive to be 
permanently installed on the photovoltaic systems on-site. It 
is enough to stay installed for only a few days to collect 
relevant data in one site and then send it to a new installation 
where the photovoltaic system needs to be assessed. 
Therefore, the intention is to lend the sensor platform to 
customers installing photovoltaic systems to diagnose and 
optimize their installation.  Providing this technical solution 
as a service will obtain a competitive advantage in the market. 
Bundling with other services may be viable to help create 

business relationships with other solar panel value chain 
actors. 

The data collected may also be used for value creation. 
Collecting data from many solar panel installations may be 
used for analysis on a larger scale. The results can be used to 
gain further insight into optimizing photovoltaic energy 
production.  

 

 
Figure 9.  Bundling 

VII. CONCLUSION AND FUTURE WORK 
The Internet of Things creates new opportunities for 

innovative business solutions. Dr. Solar is a solution 
consisting of an IoT sensor platform and a cloud-based service 
that analyzes sensor data and data from the inverter to 
optimize and diagnose photovoltaic energy production. This 
paper focuses on presenting possible business models for 
deploying the solution in the marketplace. The cost of the 
sensor platform prohibits permanent mounting to smaller solar 
panel installations. Therefore, moving the sensor platform 
from one installation to another is necessary. The solution 
creates value for the customers by optimizing and diagnosing 
the installation. However, it is also essential to generate 
revenues. Several revenue models have been considered. The 
solar panel installation ecosystem consists of many actors. 
Bundling is one way of generating revenues. 

Dr. Solar is not the final solution; further developments 
can be done. The application of the solution developed within 
the PVADIP-C project can be customized to answer further 
different needs of photovoltaic systems users. 
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The project did not try to minimize the costs. The 
components used are all considered high quality. The sensor 
platform price can be reduced by selecting cheaper 
components. Selecting other materials for the casing could 
also bring down the cost. 

With lower sensor platform costs, a permanent Dr. Solar 
unit may be considered for larger photovoltaic installations. 

The project has only considered solar panels with a fixed 
position. The solution provides recommendations on optimal 
positioning and orientation of the solar panels. However, 
dynamic positioning can increase energy production. 
Dynamic positioning is relatively expensive, but enhancing 
the solution to support the solar panels' real-time positioning 
would be straightforward. The sensor platform must then be a 
permanent part of the solar panel installation. 

Some of the ideas from Dr. Solar could be used for other 
types of renewable energy. The sensors would differ, but the 
overall architecture with a sensor platform and a cloud-based 
service for diagnosis and optimization could also be used for 
wind or geothermal energy. 
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Abstract—Load forecasting is one of the most critical factors
in modern power systems since it is the cornerstone for effi-
cient monitoring, resource management and decision making.
Therefore, there is an accrescent need for accurate and fast
electrical load predictions. Many scientific approaches have been
carried out in the field of load forecasting. In particular, the field
of Machine Learning has attracted great research interest, due
to the ability to adapt to time-series through forecasting tasks
on multiple prediction horizons, a research area that presents
challenges to several traditional methods. For this purpose,
this research offers a thorough comparative study of several
structural morphologies of Multi-Layer Perceptrons, in order
to investigate electrical load forecasting accuracy for one, twelve
and twenty-four time-steps ahead. Based on data from the Greek
Power System for the years 2017 to 2019, the three proposed
neural networks’ structural morphologies are assessed in terms
of precision through the Mean Absolute Error, Mean Squared
Error, and Mean Absolute Percent Error of the predicted
outcomes.

Index Terms—multi-layer perceptron, univariate prediction,
multivariate prediction, short-term load forecasting

I. INTRODUCTION

Nowadays accurate load forecasting is crucial for power
companies in order to sufficiently and reliably generate, trans-
mit and distribute electric power. Non accurate load prediction
could lead to limited facilities capacity, power supply shortage
or even power interruption, and causes annoyance to stake-
holders and consumers. Additionally, an accurate forecasting
of electrical load supports proper infrastructures’ maintenance
and reduction of power companies’ operational costs [1].
Load forecasting is commonly categorized as very short-term
(VSLTF), short-term (SLTF), mid-term (MLTF) and long-term
(LTLF) forecasting [2]. In this work, STLF is used to predict
future demand.

In terms of electrical load forecasting several methodologies
have been introduced and can be divided into two main
categories the traditional and the modern methods. In tra-
ditional techniques, statistical methods are mainly utilized.
These include models like Autoregression (AR), Moving
Average (MA), Autoregressive Moving Average (ARMA),
Autoregressive Integrated Moving Average (ARIMA), ARMA
and ARIMA with exogenous inputs (ARMAX and ARIMAX
respectively), Grey (GM) and Exponential Smoothing (ES) [3],
[4].

On the other hand, modern load forecasting methods are
considered machine learning, artificial intelligence-based and
hybrid technics. Machine learning approaches include Support
Vector Machine (SVM) models, which seems to be used
extensively in forecasting issues. Additionally Artificial Neural
Network (ANN) algorithms are very popular in recent years in
time series prediction. The commonly used ANN algorithms
for electrical load forecasting are Recurrent Neural Networks
(RNN), such as Long-Short Term Memory (LSTM), Convo-
lutional Neural Networks (CNN) and Feed-Forward Neural
Networks, like Multi-Layer Perceptron (MLP) [5], [6].

Several recent studies propose the use of MLP models
in future electrical demand prediction [7]. Although MLPs
are the simplest type of ANN, they are used to complex
non-linear problems. They not only perform well with large
number of input data but also provide fast predictions after
training [8], such as Kontogiannis et al. were observed at
experiments with residential real world data compared with
LSTM and CNN models [9]. Arvanitidis et al. used MLP
models to propose novel train data pre-processing strategies
[10] and clustering techniques [11] for SLTF. Furthermore,
MLP architecture is extended to conduct a day-ahead elec-
tricity price forecasting [12]. MLP is impactful in short term
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forecasting tasks involving not only load related time series but
also wind power forecasting. In [13], the Simulated Annealing
optimization algorithm is used to specify the hyperparameters
of the under investigation regressor models. The MLP model
seems to predict wind power accurately compared to the other
forecasting methods examined.

Electric load forecasting is a vital step in the planning of
the power system industry. It is crucial to the management
of the power system and the scheduling of electricity in
order to ensure the system’s cost-effective and uninterrupted
performance. As a result, it offers multiple significant benefits
for controlling generating capacity, scheduling, management,
peak reduction, market assessment, and demand response. As
a result, forecasting on diverse time horizons has shown to be
incredibly effective in meeting the various criteria of their ap-
plication. The literature provides a plethora of publications that
investigate the subject of load forecasting in various prediction
horizons, but without indicating which is the optimum and
most efficient. Hence, the extensive comparison of univariate
and multivariate short-term load forecasting methods is the
novelty of this work. In this paper, three different optimized
structural morphologies of MLPs are applied to anticipate
load values for one, twelve, and twenty-four hours ahead,
respectively. In order to determine which of the suggested
morphologies of the neural networks delivers more accuracy,
the results are compared based on the various prediction
metrics.

The paper is organized as follows. Section II analyzes the
necessary actions related to the preprocessing of the data
used for forecasting, while Section III analyzes the forecasting
model. Section IV describes the hyperparameters’ optimisation
algorithm, proposes three different MLP prediction models and
presents the simulation results of short-term load forecasting,
while Section V concludes the results of the paper.

II. DATASET OVERVIEW

The datasets utilized in this research project for the per-
formance evaluation of the multilayer perceptron structure on
total electricity load predictions for the Greek power system
consist of hourly measurements of total load in MW, tempera-
ture in °C and relative humidity expressed as a percentage. The
samples in this dataset cover a three year time period spanning
from 2017-01-01 to 2019-12-31. The samples of total load
were made publicly available by the transparency platform
Entso-E [14] and the environmental variables of temperature
and relative humidity were accessed through the MERRA-2
research and analysis platform [15].

Since this project considers the short-term forecasting tasks
of 1, 12 and 24 hour-ahead total load prediction, the features
utilized in this analysis include the temporal variables for the
hour and day of the week encoded in the value intervals 0-23
and 1-7 respectively, the temperature and humidity variables
for the target time interval and the historical load features
corresponding to the same time intervals for the previous 7
days. The resulting datasets did not have any missing values
and the values were scaled through min-max normalization

[16]. The dataset was split into a training set containing 80%
of samples and a test set containing 20% of samples based
on common practices with regards to the splitting ratio [17].
Figure 1 presents the target variable of load.

Fig. 1. Graphical representation of the dataset load values.

III. MULTI-LAYER PERCEPTRON

The MLP is a neural network structure that belongs to the
class of feed forward artificial neural network architectures
as it expresses a fully connected acyclic computation graph
that focuses on the task of function approximation in order
to derive a model that efficiently predicts the target variables
given the input features x through the target function that
describes the relationship between the inputs and the output,
defined as f . This neural network consists of neurons that
perform the computations following the perceptron supervised
learning algorithm [18]. These neurons are organized in layers
that express different roles in the computation path. The input
layer receives the features from the initial input dataset, the
hidden layers express the transition from the input to the output
through a series of computations involving the adjustment
of a weight matrix W that quantifies the importance of the
input features towards the prediction of the target output and
a bias vector b that is used to offset the computed results of
the neurons. The output of each hidden layer is determined
based on activation functions that evaluate the importance of
computations and select the data that will proceed deeper in the
network. The output layer derives the estimated values from
the output of the last hidden layer. Consequently, the estimated
values f(x) derived from a multi-layer perceptron with one
hidden layer could be expressed by formula (1) denoting the
subsequent adjustments to weight matrix W 1 and bias vector
b1 for the transition from the input to the first hidden layer
through the activation function as well as the application of the
activation function and the adjustments to the weight matrix
W 2 and bias vector b2 for the transition from the hidden layer
to the output layer.

f(x) = G(b2 +W 2(s(b1 +W 1x))) (1)

Since this study examines univariate and multivariate load
forecasting tasks, it is worth noting that the MLP is modified
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accordingly in order to derive the appropriate estimated values.
Therefore, the number of neurons in the output layer needs to
match the number of predicted output variables, corresponding
to the target time series. The neural networks with a single
output neuron are known as univariate MLPs and are used for
hourly load forecasting, while the MLPs with several neurons
in the output layer are known as multivariate and are employed
in day ahead load prediction, as Figure 2 depicts. The MLP
structure is typically trained through back propagation with
gradient descent. Impactful structural parameters that could
affect the training process and the performance of the model
include the number of neurons at each layer, the number of
hidden layers and the number of training epochs. Additionally,
learning parameters, such as learning rate, the types of acti-
vation functions and the optimizer could be equally important
to the generalization capabilities of the model [19].

Fig. 2. Structural difference between univariate and multiariate MLPs.

IV. EVALUATION METRICS

In this section, the metrics used for the performance evalu-
ation of the single and multi-step forecasting models are out-
lined in order to further explain their role in our experiments.
Firstly, Mean Absolute Error (MAE) is utilized as a simple and
interpretable metric in order to naturally describe the average
error of the MLP. Secondly, Mean Squared Error (MSE) is
included in the examination of model performance since it is
a scale dependent error metric that considers the direction of
the predicted values. Lastly, Mean Absolute Percentage Error

(MAPE) was utilized in order to denote the generalized relative
error of the models. Given the forecasted data points yi and
the actual values xi in a set of n observations, MAE, MSE
and MAPE are given by (2), (3) and (4) respectively [20].

MAE =

∑n
i=1 |yi − xi|

n
(2)

MSE =
1

n

n∑
i=1

(yi − xi)
2 (3)

MAPE =
100

n

n∑
i=1

|yi − xi

xi
| (4)

V. RESULTS

This study investigates the implications of MLPs’ univariate
and multivariate prediction procedures on the precision of
short-term load forecasting. Also, the variations in the exe-
cution time of a brute force optimization algorithm, which
is employed for the optimal hyperparameter selection on
the various morphologies of the proposed MLPs, are thor-
oughly addressed. The suggested MLPs were developed using
Python’s scikit-learn framework [21], while the computer
system utilized has an Intel Core i7-4510U CPU running at
2.00 GHz and 8 GB of installed memory.

Initially, the suggested brute force optimization approach
is used to determine the ideal values for two major neural
network hyperparameters: the number of neurons in the hid-
den layer and the number of epochs throughout the training
process. For the sake of simplicity, each suggested MLP
comprises of a hidden layer, as it is adequate for the load fore-
casting issue. Most neural networks used for load forecasting
include only one hidden layer in order to reduce computational
complexity while yet providing fast online results.

In this paper, we examine the structural morphology of
three neural networks in order to estimate hourly load values
for one hour, twelve hours, and twenty-four hours ahead,
respectively. Thus, in pursuance of a direct comparison on
the hyperparameter selection, we suggest that the number of
neurons in the hidden layer is determined as a function of
the number of neurons in the input layer for each possible
structural morphology. In each case examined, the minimum
acceptable number of hidden neurons is half of the number
of neurons in the input layer, while the maximum number of
hidden neurons can reach up to three times the number of input
neurons. The ideal number of epochs, on the other hand, is
derived by sequential scanning within the closed interval [200,
2000], where 200 is the least permitted limit of iterations and
2000 is the maximum limit of epochs.

In the following subsections, the calculation of the hyper-
parameters of the three different proposed MLPs, as well as
the execution time of the brute force optimization approach
for each case and their performance evaluation, in terms
of accuracy, for short-term load forecasting are thoroughly
examined.
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A. One hour ahead load forecasting - Univariate Neural
Network

The case of a univariate MLP, i.e., a neural network with
a single neuron in the output layer, is first investigated.
This network generates the hourly value of the load for the
following hour. The input data to this MLP, which consists of
11 neurons in the input layer, is as follows:

• A label for the time for which the forecast is being
performed, represented as an integer within [0, 23].

• An integer that belongs to the range [1, 7], serving as
a label to identify the day being predicted. Sunday is
represented by the value 1, Monday by the value 2, etc.

• The hourly temperature value for the precise time of day
for which the prediction is conducted.

• The hourly humidity estimation for that particular hour
of day in which the prediction is made.

• Seven hourly load values for the period from the current
time up to one week in beforehand of the prediction.

B. Twelve hours ahead load forecasting - Multivariate Neural
Network

The case of an MLP used for 12 hours ahead load forecast-
ing is then considered, i.e. a neural network with 12 neurons
in the output layer. In this scenario, the number of neurons
in the input layer is 109 and results from the following input
data:

• An integer within the range [1, 7], serving as a label to
identify the day being predicted. Sunday is represented
by the value 1, Monday by the value 2, etc.

• A vector consisting of 12-hourly temperature values for
specific hours of the day for which the prediction is con-
ducted. A day is divided into two instances in the dataset.
Thus, the first vector of the day concerns the hours from
midnight to 11 am and contains the corresponding hourly
temperature data.

• A vector consisted of 12-hourly humidity estimations,
similar to the case of temperature, for that particular hour
of day in which the prediction is made.

• A vector of 84-hourly load values concerning the period
from the current time up to one week in beforehand of
the prediction, respectively.

C. Twenty-four hours ahead load forecasting - Multivariate
Neural Network

The last case study focuses at a multivariate MLP that is
used to estimate day-ahead load and has 24 neurons in the
output layer, one for each hour of the day. Similar to the other
examples, the number of input data determines the quantity of
neurons in the input layer. Thus, in this case, the 217 input
neurons result from the following data:

• An integer in the range [1, 7], acting, as in the earlier
cases, as a label to designate the day being forecast.

• A vector consisting of 24-hourly temperature values for
the day of which the prediction is conducted.

• A vector consisted of 24-hourly humidity values for the
day of which the prediction is conducted.

• A vector of 168-hourly load values concerning the period
from the current time up to one week in beforehand of
the prediction, respectively.

The boundaries of the hyperparameters for each MLP uti-
lized in each case study are reported in Table I. The results
of the optimization process used to identify the ideal hyper-
parameters for the MLPs of each case study are summarized
in Table II. Subsequently, the optimized neural networks are
used for load prediction and their results are compared, in
terms of accuracy, in order to decide whether the univariate or
the multivariate structural morphology responds better to the
STLF issue. Furthermore, Table III compiles the findings of
the MAE, MSE, and MAPE metrics yielded from each case
study. Lastly, Figure 3 and Figure 4 graphically represent the
STLF outcomes for each prediction method considered.

TABLE I
RESULTS OF THE OPTIMIZATION APPROACH FOR EACH CASE STUDY.

Boundaries Step
MLP Neurons Iterations Neurons Iterations

1h Ahead [6, 33] [200, 2000] 6 10
12h Ahead [55, 327] [200, 2000] 55 10
24h Ahead [109, 651] [200, 2000] 109 10

TABLE II
RESULTS OF THE OPTIMIZATION APPROACH FOR EACH CASE STUDY.

MLP Neurons Iterations Time (H:MM:SS)
1h Ahead 33 2000 2:20:11
12h Ahead 275 1800 0:56:59
24h Ahead 436 1800 1:19:43

TABLE III
ACCURACY METRICS DERIVED FROM EACH MLP FOR STLF.

MLP MAE MSE MAPE (%)
1h Ahead 182.076 67603.22 2.774
12h Ahead 162.845 54383.46 2.435
24h Ahead 187.315 66564.93 2.742

VI. CONCLUSION

In this paper, a detailed comparative analysis was conducted
with the purpose of providing accurate load forecasting results
for the Greek Power System for the period 2017-2019. The
implementation of three different structural morphologies of
MLP models were developed and assessed.

Based on the results, it is concluded that load forecasting
with the implementation of MLPs plays a critical role in the
safety, stability, and sustainability of modern energy systems.
More specifically, it is observed that for all three cases, the
results are quite satisfactory. The error values for the one
hour ahead, and twenty four hours ahead forecast are very
similar in terms of error metrics. The twelve hour ahead
model exhibited improved performance compared to the other
forecasting horizons. This might be because the number of
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Fig. 3. Graphical comparison of the load prediction results of each considered
method for a whole day in August.

Fig. 4. Graphical comparison of the load forecasting results of each consid-
ered method, for a week in September.

input layer neurons, and hence the quantity of data utilized as
input data, more closely approximates the case study under
discussion. Given the data quality and data seasonality of
the dataset, all models yielded relatively low error metrics.
This observation proves the correct use of the algorithm in a
time-series with multiple seasonalities, like the one studied.
Since, the most accurate forecast was found for the case of
twelve hours ahead, the ability of the algorithm to adapt to
multi-step ahead forecasting is highlighted. Finally, it is worth
noting that these models could assist the uninterrupted and
reliable operation of Smart Grids using real-time data, where
day ahead load forecasting delivers significant value.

In future work, this model could be evaluated on more
complex load forecasting issues and compared with other
deep learning models, used as benchmarks. Also, the proposed
techniques could be applied to Demand Side Management
and Demand Response programs [22], which have developed
rapidly in recent years due to the global increase of energy
consumption.
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