
FASSI 2016

The Second International Conference on Fundamentals and Advances in Software

Systems Integration

ISBN: 978-1-61208-497-8

July 24 - 28, 2016

Nice, France

FASSI 2016 Editors

Chris Ireland, Open University, UK

Mihaela Iridon, Candea LLC, USA

Fergal Mc Caffery, Dundalk Institute of Technology, Ireland

 1 / 39

FASSI 2016

Forward

The Second International Conference on Fundamentals and Advances in Software Systems
Integration (FASSI 2016), held between July 24-28, 2016 in Nice, France, continued a series of
events started in 2015 and covering research in the field of software system integration.

On the surface, the question of how to integrate two software systems appears to be a
technical concern, one that involves addressing issues, such as how to exchange data (Hohpe
2012), and which software systems are responsible for which part of a business process.
Furthermore, because we can build interfaces between software systems we might therefore
believe that the problems of software integration have been solved. But those responsible for
the design of a software system face a number of trade-offs. For example the decoupling of
software components is one way to reduce assumptions, such as those about where code is
executed and when it is executed (Hohpe 2012). However, decoupling introduces other
problems because it leads to an increase in the number of connections and introduces issues of
availability, responsiveness and synchronicity of changes (Hohpe 2012).

The objective of this conference is to work toward on understanding of these issues, the
trade-offs and the problems of software integration and to explore strategies for dealing with
them. We are interested to receive paper from researchers working in the field of software
system integration.

We take here the opportunity to warmly thank all the members of the FASSI 2016 technical
program committee, as well as the reviewers. We also kindly thank all the authors that
dedicated much of their time and effort to contribute to FASSI 2016.

We also gratefully thank the members of the FASSI 2016 organizing committee for their
help in handling the logistics and for their work that made this professional meeting a success.

We hope FASSI 2016 was a successful international forum for the exchange of ideas and
results between academia and industry and to promote further progress in the area of software
systems integration. We also hope that Nice, France provided a pleasant environment during
the conference and everyone saved some time enjoy the beautiful French Riviera.

FASSI 2016 Advisory Committee

Chris Ireland, Open University, UK
Mihaela Iridon, Candea LLC, USA
Fergal Mc Caffery, Dundalk Institute of Technology, Ireland
Chris John Lokan, UNSW Canberra, Australia
Christian Percebois, IRIT, Université de Toulouse, France

 2 / 39

FASSI 2016

Committee

FASSI 2016 Advisory Committee

Chris Ireland, Open University, UK
Mihaela Iridon, Candea LLC, USA
Fergal Mc Caffery, Dundalk Institute of Technology, Ireland
Chris John Lokan, UNSW Canberra, Australia
Christian Percebois, IRIT, Université de Toulouse, France

FASSI 2016 Technical Program Committee

Hany Ammar, West Virginia University, USA
Marco Autili, University of L’Aquila, Italy
Christian Bird, Microsoft Research, USA
Bara Buhnova, Masaryk University, Czech Republic
Graeme Burnett, Xcordis Fintech, UK
Haipeng Cai, Virginia Tech, USA
Danilo Caivano, University of Bari, Italy
Paul Clarke, Dublin City University / Lero, The Irish Software Research Centre, Ireland
Ip-Shing Fan, Cranfield University, UK
Fabio Fioravanti, University of Chieti-Pescara, Italy
Matthias Galster, University of Canterbury, New Zealand
Anup Gupta, Cognizant Technology Solutions (CTS), UK
Ibrahim Habli, University of York, UK
Alan Hayes, University of Bath, UK
LiGuo Huang, Southern Methodist University, USA
Chris Ireland, Open University, UK
Mihaela Iridon, Candea LLC, USA
Vladimir Itsykson, St. Petersburg State Polytechnic University, Russia
Slinger Jansen, Utrecht University, Netherlands
Foutse Khomh, Ecole Polytechnique de Montréal, Canada
Chris Lokan, UNSW Canberra, Australia
Massimo Marchiori, University of Padua / European Institute for Science, Media and Democracy, Italy
Fergal Mc Caffery, Dundalk Institute of Technology, Ireland
Richard Mordinyi, Vienna University of Technology, Austria
Henry Muccini, University of L'Aquila, Italy
Anh Nguyen Duc, Norwegian University of Science and Technology, Norway
Marc Novakouski, Software Engineering Institute, USA
Tosin Oyetoyan, SINTEF ICT, Trondheim, Norway
Ipek Ozkaya, Carnegie Mellon SEI, USA
Christian Percebois, IRIT, Université de Toulouse, France
Tarmo Ploom, Credit Suisse - Zurich, Switzerland

 3 / 39

Dewayne E. Perry, University of Texas at Austin, USA
Patricia Roberts, University of Brighton, UK
Philip Ross, Endava Ltd, London, UK
Massimo Tivoli, Università di L'Aquila, Italy
Gunter Saake, Otto-von-Guericke University Magdeburg, Germany
Mauro Santoro, Università della Svizzera Italiana, Switzerland
Corrado Aaron Visaggio, University of Sannio, Italy
Xiaofei Zhu, L3S Research Center - Leibniz Universität Hannover, Germany

 4 / 39

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 5 / 39

Table of Contents

(Inter)facing the Business
Alexander Hagemann and Gerrit Krepinsky

1

Automated Infrastructure Management Systems - A Resource Model and RESTful Service Design Proposal to
Support and Augment the Specifications of the ISO/IEC 18598/DIS Draft
Mihaela Iridon

8

A Research Roadmap for Test Design in Automated Integration Testing of Vehicular Systems
Daniel Flemstrom, Thomas Gustafsson, Avenir Kobetski, and Daniel Sundmark

18

Case Study: Becoming a Medical Device Software Supplier
Kitija Trektere, Fergal McCaffery, Garret Coady, and Matteo Gubellini

24

A Specific Method for Software Reliability of Digital Controller in NPP
Young Jun Lee, Jong Yong Keum, Jang Soo Lee, and Young Kuk Kim

30

Powered by TCPDF (www.tcpdf.org)

 1 / 1 6 / 39

(Inter)facing the Business

(Industry Paper)

Alexander Hagemann

Hamburger Hafen und Logistik AG
Bei St. Annen 1

20457 Hamburg, Germany
Email: hagemann@hhla.de

Gerrit Krepinsky

Hamburger Hafen und Logistik AG
Bei St. Annen 1

20457 Hamburg, Germany
Email: krepinsky@hhla.de

Abstract—Over the past decades, a change from singular main-
frame applications into complex distributed application land-
scapes has occured. Consequently, the execution of business
processes takes place in a distributed manner, requiring an ex-
tensive amount of communication between different applications.
It becomes apparent that application interfaces are of overall
significance within distributed application landscapes. But in our
experience, interfaces usually do not get the required attention
during construction, which is in contrast to their importance.
Instead, only technical descriptions, e.g., syntactical descriptions,
are given and important functional as well as operational aspects
have been omitted leading to unstable and unneccesary complex
interfaces. To address the aforementioned problems, this paper
contributes a comprehensive overview on interface construction.
Therefore, all necessary interface specification components, an
interface design process and operational migration patterns are
given.

Keywords–interface; business process; interface design; inter-
face migration; distributed systems.

I. INTRODUCTION

In recent years, growing business demands enforced an in-
creasing information technology (IT) support of many business
processes. To rule the resulting functional complexity within
the IT, several applications are usually necessary. A direct con-
sequence of this fragmentation is the distribution of business
processes over applications which have to communicate with
each other in order to fulfill the requirements of the business
processes. This communication requires well defined interfaces
between these applications.

Generally, the design of application interfaces is a difficult
and critical task [1], [2], since the behavior of applications
belonging to the class of reactive systems, i.e., applications
responding continuously to the environment, is determined
by their interfaces only [3]. Consequently, badly designed
interfaces may lead to functional misbehavior and may prop-
agate internal application problems directly to communication
partners [4], [5]. Furthermore, interfaces have relatively long
life-cycles and are usually costly to modify. A change of
an interface specification always requires either its backward
compatibility, or a change of all implementing applications,
leading to further problems while launching the new interface
into an already running application landscape [6].

Within the literature, a lot of information exists regarding
different aspects of interfaces like performance, reliability,

routing etc. Typically, these documents either deal with tech-
nical protocols only and omit functional interface properties,
e.g., the internet protocol [7] or the Blink Protocol [8], or
are bound to specific functional domains like the Financial
Information eXchange [9] or the FIX Adapted for Streaming
[10] protocols. But none of them gives explicit guidelines for
an interface design. Other common approaches like service
oriented architectures (SOA) [11] or the representational state
transfer (REST) [12] represent rather general architectural
styles. Both are more suitable giving architectural guidelines
for application design, than for the construction of concrete
interfaces.

To overcome the above mentioned problems, an approach
to construct a consistent interface specification, allowing a
regulated communication using stable, understandable and
performing interfaces, and its transition into operation will
be presented in this paper. Beginning with an overview of
all required components to fully specify an interface in Sec-
tion II, Section III introduces and compares different design
approaches for the construction of interface specifications.
Finally, Section IV deals with the interface launch into an
already running application landscape.

II. INTERFACE BASICS

In order to design an appropriate interface, the general
structure of an interface must be considered. Once this has
been done, it will become obvious which information must be
provided to define an interface.

Drilling down into an interface, which is located in the
application layer in the Open Systems Interconnection model
(OSI model) [13], typically, a three layered structure, as
shown in Figure 1, becomes visible. Each of these layers
has a dedicated important purpose that can be summarized
as follows:

• functional layer: this topmost layer is responsible for
the functional semantics of the information exchanged.
Using the analog of natural speech, the functional
layer defines the meaning of words spoken.

• protocol layer: Within this layer the technical protocol
used to exchange the information is defined. Similar
to natural speech, the protocol layer represents the
language spoken, e.g., English.

• transport layer: Here, the necessary physical trans-
portation of the information is carried out. This layer

1Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

 7 / 39

Figure 1. The different layers of an interface. Dotted arrows denote virtual
connections within each layer. The communication takes part using the

connections denoted by solid arrows.

correlates to the signal transfer using sound waves in
a manner similar to natural speech.

Each of these layers communicates logically directly with
its counterpart located at the other application. Therefore, a
layer physically passes the information to its underlying layers
until the information is physically transported to the other
application. At this point, the information is passed upwards
up to the corresponding layer. Only if both sides within one
layer use identical functional models or transmission protocols,
respectively, communication will take place. Otherwise, the
communication is broken.

Given the layered structure of an interface, different aspects
arise which must be considered during the design, imple-
mentation, integration and operational phases of an interface
lifecycle. These aspects focus on different issues and enable the
development of robust interfaces. All aspects are independent
with respect to each other, focusing on a specific property an
interface must satisfy.

A. Functional aspect
While two or more applications are communicating with

each other over an interface, the applications assume different
functional roles, called server and client, respectively.

An application is called server with respect to an interface
if it is responsible for the business objects, business events and
related business functions that are exposed to other applications
through this interface. If business objects and business func-
tions of different business processes are affected, the necessary
access messages may be combined into a single interface.

Providing an interface is equivalent to defining an interface
contract [6] that must be signed by an application in order
to communicate with the server. The interface may support
synchronous and asynchronous communication as well as
message flows in both directions, i.e., sending and receiving
messages.

Note that this definition deviates slightly from the com-
monly used client-server definition where the server offers a
service which can be accessed by clients via a synchronous
request-reply communication protocol only [14]. Because syn-
chronous communications couples server and client tightly
at runtime, asynchronously based communication should be
preferred, avoiding these disadvantages [15].

A client is an application consuming an interface provided
by a server. Despite the fact that the interface contract is
initially defined by the server, a common agreement on the
contract is made when the client connects to the server.

Thereafter, none of the participating applications may change
the interface contract without agreement of the other party.

Often an application assumes multiple roles with respect
to different interfaces concurrently, i.e., the application can be
server and client simultaneously. It is important to emphasize
that this behavior is valid with respect to different interfaces
only while for a single interface, the roles of the participating
applications are always unambiguous.

B. Semantical aspect

The semantical aspect focuses on the kind of information
that may be exposed by the server via an interface. Generally,
any internal implementation detail of the server, i.e., the server
model, must never be exposed on an interface. Instead, the
information exposed must always be tied to the underlying
business processes, thus binding the interface implementation
to the domain model [6], [16].

Integration within an IT application landscape requires the
decoupling of business and software design due to different
responsibilities. In other words the business model and the
software model usually have different life cycles which must
be decoupled to reduce the dependencies between business and
software developers. Therefore, an integration model, linked to
the domain model, should be used on interfaces thus binding
their implementation to the domain model [16]. The integration
model finally conceals all internal application models and
details.

An interface itself consists of a set of messages, containing
business objects or business events only [17]. This set of
exposed information is naturally restricted due to the respon-
sibility of the server, i.e., only the business objects or business
events the server is responsible for may be communicated via
the interface.

C. Dynamical aspect

An important aspect of an interface is its dynamical behav-
ior describing all valid message sequences on the interface.
Since all messages received are processed within a specific
context inside the application, there exist important constraints
with respect to the message sequence. Thus, a message re-
ceived out of sequence will not be processed by the application,
instead this will result in an error.

Figure 2. Example of a simplified state machine describing the dynamical
behavior of an interface.

2Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

 8 / 39

Consequently, the dynamical behavior must be described
using an appropriate description. Using sequence diagrams of
the Unified Modelling Language (UML) is not sufficient for
this case, since they describe specific communication examples
only. Especially runtime problems, e.g., race conditions, can
not be described holistically using sequence diagrams. Instead,
it is strongly recommended to use finite state machines which
allow a complete description of the dynamical behavior, see
Figure 2 for an example.

D. Operational aspect

Usually, each interface requires the usage of specific infras-
tructure depending on the used transmission protocol, e.g., a
web server in case of REST over Hypertext Transfer Protocol
(HTTP) or a Java Messaging Service (JMS) server. To ensure
the correct usage of an interface the required infrastructure,
its deployment and the message channel topology must be
defined. The latter one defines the communication structure,
i.e., broadcast or point-to-point communication [15].

E. Interface components

Given the different aspects presented so far, each of them
describing a different important issue with respect to interfaces,
the necessary components for a complete interface specifica-
tion can be derived:

• message description: Syntactical descriptions of all
messages exchanged over the interface.

• dynamic description: The dynamic behavior of the
interface must be fully specified. This specification
includes all possible message sequences and the be-
havior of the applications in case of errors.

• semantic description: The meaning of messages on
the interface must be specified, i.e., their functional
behavior within the comprehensive business process.
This description must include the meaning of all
individual message fields.

• infrastructure description: A description of the neces-
sary infrastructure must be provided.

• quantity description: The non-functional performance
requirements for the interface must be described.

It is important to notice that an interface specification is a
signed bilateral contract, which may be changed by mutual
agreement of all participating parties only. This contract is
represented by the set of artifacts as described above, so none
of the artifacts given there may be missed.

III. INTERFACE DESIGN STYLES

The main problem to be solved in interface design concerns
the intended functional semantic on the interface. It directly
influences the kind of service offered by the server and
therefore the necessary number and style of all messages.

Looking at existing interfaces, they can be categorized to
our experience by their semantic design styles: CRUD based
interfaces, use case based interfaces and business process based
interfaces, each of them described in detail in the following
sections.

A. CRUD based design
The Create, Read, Update, Delete (CRUD) based design

directly uses the business objects described within the require-
ments and ignores any given business context. This results in
interfaces consisting of a minimal set of messages, representing
a set of CRUD messages for every business object the server
is functionally responsible for. Besides the advantages of
requiring very little design efforts and being very stable, this
interface design style has some important disadvantages.

First, the interface bears absolutely no business context,
leading to severe difficulties in understanding the underlying
business processes [1]. Second, the read operation demands
synchronous communication which represents an explicit con-
trol flow leading to a tight coupling of applications [4], [17]
and third, missing business context either leads to a distribution
of business functions over the clients or to business objects
incorporating the results of applied business functions.

B. Use case based design
An interface design based on use cases rests upon require-

ments formulated from the perspective of the primary actors
for individual systems only [18], i.e., the underlying business
process is not directly present. Due to the characteristics of use
cases, describing non-interrupted interactions with the system
[19] that represent the view of the primary actor [18], these
requirements are limited to the context of single activities
which are typically independent with respect to each other.
A representation of the underlying business process triggering
the desired activities is missing and therefore difficult to
reconstruct.

These preconditions usually lead to rather fine granular and
use case oriented interfaces comprising of a large number of
messages, carrying specific use case based information only.
Some important consequences arise from this design style.
First, all business functions that are identical from the business
process point of view, are hard to identify based on a use case
analysis only. The absence of a business context leads to an
interface design supporting individual use cases, which bear
no evident business process semantics. Consequently, these
interfaces usually offer a broad range of identical function-
alities named differently. Second, the missing business context
significantly increases the difficulty to understand the func-
tional behavior of the interface over time [1], leading to serious
problems in its usage. As a consequence, further unnecessary
messages are often introduced in order to provide some use
case specific information. Third, the lower level of abstraction
of a use case - compared to the business process - leads to
a rather fine granular interface structure. Performance issues
may arise with this interface style due to the enforced frequent
interface access [15]. And fourth, synchronous communication
often arises in order to collect all necessary information to
execute the use case, so a control flow arises [17] leading,
again, to a tight coupling of applications [4].

Note, that using a use case based design must not lead
compulsorily to a bad interface design. But given the size
of current applications with their numerous use cases and
the typical usage of distributed programming teams within
industrial projects, the necessary refactoring to introduce an
appropriate abstraction on the interface is usually omitted in
our experience.

3Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

 9 / 39

C. Business process based design
This design uses business process descriptions and further

requirements formulated with respect to those descriptions,
to align between individual business process activities and
applications. Using the Business Process Model and Notation
(BPMN) and representing applications via pools, interfaces can
be directly derived from the exchanged information between
individual business activities within the pools.

The resulting interfaces focus on business semantics and
directly support objects, events and functions of the business
processes, thus leading to a business model directly bound to
the interfaces [16] with following consequences.

Business processes support a high level of abstraction, thus
leading to rather coarse granular interfaces with respect to the
number of messages. The communication is driven by business
events, so asynchronous communication is naturally supported,
leading to data flows [17]. Finally, the functionality provided
by the server within the business processes becomes rather
clear, i.e., the business context is represented on the interface.

D. Design example
To explain and clarify the differences between these design

styles, the simplified process of loading a truck at a container
terminal will serve as an example throughout this section. This
process consists of the following steps, executed in the given
order:

• order clearance: the customer gives an order to the
container terminal to load a container on a truck.

• load clearance: in order to deliver the container,
several clearances must be given, e.g., by customs and
the container owner.

• transport planning: the container terminal plans the
necessary equipment to execute the order.

• load container: the container is loaded on the truck
using the planned equipment.

Two applications shall be constructed in order to implement
the process: the Administration, dealing with the administrative
parts of the process, and Operating, handling the physical
transport of the container. An interface between both applica-
tions will be designed according to the design style considered,
thus showing the differences between the design approaches.

1) CRUD based design: All relevant business objects of
the truck loading process are represented as classes which have
methods to create, read, update and delete the object. These
methods represent the interface of the owning application, i.e.,
the server, and are called by the clients, in order to execute
the business process.

For example, after creating an order using
createOrder(), the Administration calls
createInstruction() to start the loading
of the container on a truck. Subsequently, Op-
erating calls readCustomsClearance() and
readReleaseOrder() to check if the container is
released to be loaded on a truck. The corresponding return
objects must be interpreted within Operating to make this
decision. If the container has been loaded, Operating finally
calls deleteOrder(), deleteCustomsClearing()
and deleteReleaseOrder() to clear the Administration.

Figure 3. Constructed interface (right) resulting from applying the use case
based design approach.

It becomes clear that both applications, i.e., Administration
and Operating must implement some part of the underlying
business logic to deal with these type of interfaces. Since
the interface style bears no business semantics, the underlying
business process cannot be reconstructed easily. Note that the
size of the interface directly depends on the number of business
objects the server is responsible for.

2) Use case based design: Based on the requirements of
the truck loading process, corresponding use cases like order
clearance or create instruction can be derived, as shown in
Figure 3. Each of these use cases handles a specific functional
aspect with respect to its primary actor. The underlying busi-
ness process is executed through a set of use cases interacting
with each other.

For example, if an order has been given, Administration
calls createTruckLoadInstruction() to initiate the
container transport. Prior to loading, Operating checks the
container release status, using isCustomsCleared() and
isContainerReleased(). If the container has been re-
leased, it is loaded on truck and Operating informs Administra-
tion via containerLoadedOnTruck() that the order has
been executed. Administration may then clean up its internal
data structures.

As depicted on the right side of Figure 3, the resulting
interface contains a lot of methods for specific actions, i.e., the
level of abstraction is rather low. Consequently the interface is
valid for truck operations only and would require a couple
of additional methods to incorporate e.g., vessel and train
operations.

Furthermore the interface introduces syn-
chronous communication, as indicated by, e.g.,
the method pairs isCustomsCleared() and
customsClearanceResult(), leading to a blocking of
Operating while accessing the information.

3) Business process based design: In this case, the business
process itself serves as basis for interface design. Using
BPMN, the process of truck loading can be mapped onto the
applications as shown on the left side of Figure 4. Due to the
given high level of abstraction within the business process, it
is valid for all types of carriers, i.e., no further messages are
necessary to include vessel and train operations.

Once an order has been given, Administration informs
Operating via orderPlaced() that a new order has been

4Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

 10 / 39

Figure 4. Constructed interface (right) resulting from applying the business
process based design approach.

accepted. Within Operating, all necessary instructions for con-
tainer loading will be created. Once the truck has arrived and
Administration has published via containerReleased()
that the container is released to be loaded on a truck, the phys-
ical moves are executed. Afterwards, orderExecuted()
informs Administration, to clean up its internal data structures.

The dynamical behavior of the interface can be derived
directly from the BPMN description, see left side of Figure 4.
The resulting interface is quite small, meaningful and abstract,
so other carriers can easily be included. Additionally, the com-
munication between both applications is asynchronous. Note
that both applications, Administration and Operating, do not
technically depend on each other, instead they simply publish
their information without knowing the receiver, resulting in a
data flow [17].

E. Comparison
To give a recommendation for a specific interface design

style all design approaches described above have been com-
pared to each other using typical interface design goals like
robustness, performance and understandability [1].

1) Robustness: Interfaces are crucial with respect to the
stability of the overall application landscape. Poorly designed
interfaces may propagate internal application errors during
runtime, thus causing damage within other applications [4],
[1]. Robustness is achieved by avoiding functional distribution,
distributed transactions [5] and semantical ambiguity.

In case of a CRUD interface, the information provided by
the interface must be functionally interpreted by the client
since the server informs about changes on business objects
only without any functional context. This leads to multiple and
distributed implementations of business functions according to
the usage of the interface. In contrast, the use case and business
process based design styles can both concentrate the business
functions within the server, so no functional distribution will
arise.

In general, distributed technical transactions can be avoided
in all three design approaches. But modelling a control flow
instead of a data flow bears a higher risk of introducing
distributed transactions within the application landscape, due
to the usage of synchronous communication.

None of the design approaches specifically supports the

construction of an efficient message field structure nor pro-
hibits the introduction of content based constraints.

2) Performance: Obviously, interfaces must satisfy the
required performance, i.e., they must be able to deal with the
given quantity description. Otherwise, the business process will
not work correctly since required business functions may not
be executed in time. Performance is supported by designing
minimal interfaces with respect to the number of messages
and avoiding synchronous communication [3], [15].

The more abstract the interface is, the less messages are
needed due to the restriction of transmitting core concepts only.
With a CRUD based design, the most abstract design is chosen
while a use case based design includes relatively less functional
abstraction.

Asynchronous communication is usually directly supported
in the business process based design, while the other two
approaches support a rather synchronous communication style.
This holds especially for the CRUD based design, where the
read() operation always enforces synchronous communica-
tion.

3) Understandability: Well designed interfaces must have
a strong and documented relation to the underlying business
context [1] thus ensuring a good usability of the interface.
This will enhance the cost efficiency of the interface over
time since a much better acceptance of the interface within
the development teams will arise because the interface will be
easier to learn, remember and use correctly [1].

Understandability is given by a strong functional binding
between the business model and the implementation [16], the
usage of business objects and business events as message
content [3], [15] and a meaningful message naming schema.

Naturally, a business process based design leads to a direct
mapping between interface and business process description
thus enriching the interface with a comprehensive business
context. On the contrary, a CRUD based design bears no
business context at all due to its high level of abstraction.

Although all three approaches directly support the ex-
change of business objects, differences occur considering the
publication of business events. A CRUD based design supports
none of them per se, i.e., this approach forces a mapping
of business events onto business objects. This will lead to
serious problems in understanding the dynamical behavior
of the application landscape. Using a business process based
design instead, the published business events can be directly
derived from the underlying business process. In contrast, a use
case based design does not primarily focus on business events
but on individual user operations thus obscuring the business
context.

While the business process and the use case based designs
both support message naming schemas providing a rich func-
tional context, a CRUD based design uses only the given names
for create, read, update and delete messages.

4) Recommendation: Considering the above mentioned
desgin goals and the important advantage of supporting a
direct binding between business model and interface design,
the business process based design is the recommendated design
style for interfaces, leading to the best design compromise.

5Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

 11 / 39

IV. INTERFACE OPERATIONS

Complex application landscapes require the rollout of
interface changes without shutting down all applications. To
achieve this goal interfaces must be versioned and deployed
during runtime, using the migration patterns described below.

A. Interface versioning
Every interface specification evolves over time due to

syntactic, semantic or dynamic changes on the interface. These
changes lead to different versions of the interface specification
which are not compatible to each other. Therefore, the imple-
menting applications must implement the correct version of the
interface specification. In a complex application landscape, this
is a common situation [6].

In order to guarantee a unique identification of a specific
interface occurrence over time, each individual interface oc-
currence must have a version number [6]. Any change on an
interface leads to a new interface version [6]. This includes
syntactical changes in any message, changes within the mes-
sage sequence flow, i.e., all changes of the dynamic behavior,
and changes of the semantic behavior. Even the obviously
simple cases of adding either a field to an existing message
or introducing a new message to an interface represents a
semantical change of the interface. This requires compatibility
of the receiving application with the new interface specification
version. Otherwise, severe problems may arise, if, e.g., a
client executes syntactical message checks based on a specific
interface version.

B. Big bang migration pattern
The simplest approach of an interface migration is big

bang, where all applications are shutdown, redeployed and
restarted at the same time, resulting in

1 + c (1)

migration steps, where c denotes the number of participating
clients. In case of a fallback, the server and all clients must
be redeployed again.

C. Client first migration pattern
Within this pattern, the migration path is dominated by

the clients. Each client will be successively migrated onto a
new version that can handle both interface versions in parallel,
as shown in Figure 5. In steps 1 and 2, the clients are
changed to support additionally the new interface specification
version. In step 3, the server is merged to the new interface
implementation. Steps 4 and 5 are necessary to remove the
support of the previous interface specification version from
the clients.

After finishing all client migrations, the server will be
upgraded to support the new interface version. Afterwards, all
clients will be updated a second time in order to remove the
support of the old interface version. During steps one to four
of this migration path, the server will receive messages with a
wrong interface version that must be ignored by the server.

The client first migration pattern will result in

1 + 2 ∗ c (2)

deployments, where c denotes the number of clients connected
to the server. An advantage of this migration path is that

Figure 5. Steps of the client first migration pattern. The new interface
version is denoted red.

clients can be upgraded independently from each other, i.e.,
no temporal coupling of the individual client migrations exist.

The price for this migration behavior is the necessary
number of deployments : each client must be deployed two
times, while the server is deployed only once. Furthermore, in
case of a failure, the operational safe position of step 2 must
be reached again. This is done by falling back with the server
supporting the old interface version only and all clients whose
support of the old interface version has been removed so far,
requiring

1 + c+ (3)

steps, where c+ denotes the number of clients migrated after
the server migration.

D. Server first migration pattern
In contrast to the client first migration approach, the

migration path can be reversed resulting in a server migration
first followed by client migrations, see Figure 6. At step 1,
the server provides support for two interface specification
versions. In steps 2 and 3, both clients are merged successively.
Finally, support of the previous interface specification version
is removed from the server implementation, resulting in

2 + c (4)

deployments. Again c denotes the number of participating
clients. The advantage of this pattern is, that the number of
deployments is

(1 + 2 ∗ c)− (2 + c) = c− 1 (5)

less than with the client first migration pattern. Note that during
steps one to three of the migration path both clients A and B
will receive invalid messages, which must be ignored, due to
the concurrent interface version support of the server.

If a failure on the interface occurs within the migration
path, all clients upgraded so far must fall back onto the
previous interface version using c+ rollout steps, where, again,
c+ denotes the number of clients migrated after the server
migration. Thus, the operational safe position of step 1 is
reached again.

6Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

 12 / 39

Figure 6. Steps of the server first migration pattern.

E. Comparison
The main differences between the migration patterns are

the number of rollout and fallback steps and the required
support of multiple interface versions within the applications.
Beside the advantages of a lacking necessity to support multi-
ple interface versions and a minimal number of rollout steps,
the big bang pattern bears a high risk during fallback situations
where multiple applications must fallback in parallel. There-
fore, this pattern is only recommended if the number of clients
is very small and a simultaneous fallback is organizational
manageable.

Considering the other strategies, both migration patterns
reduce the risk involved with a possible fallback compared to
big bang at the cost of some additional rollout steps. Since
the server first migration pattern requieres less rollout and
fallback steps than the client first migration pattern, it is the
recommended rollout strategy.

V. SUMMARY

Due to the growing distribution of business functionality,
interfaces have became very important for the behavior of
an application landscape. Badly designed interfaces have a
critical impact on the functional and operational behavior. To
overcome these problems, this paper presented a structured and
holistic approach of handling interfaces during design, build
and runtime as follows.

Interfaces serve as contracts between applications. Thus
it is inevitable to define the artifacts message description,
dynamic description, semantic description, infrastructure de-
scription and quantity description to properly describe an
interface with respect to the different aspects. In order to
construct an interface, different design approaches have been
presented and compared to each other. It turns out that the
business process based design approach is most likely leading
to the best result with respect to robustness, performance and
understandability. Finally, different migration patterns have
been presented introducing a new interface version into pro-
duction environment. Due to the minimal number of required
fallback steps in case of a severe error and one additional
rollout step compared to the big bang pattern the server
first migration pattern is recommended, at least for larger
application landscapes.

ACKNOWLEDGMENT

The authors would like to thank their colleague Christian
Wolf for valuable comments.

REFERENCES
[1] M. Henning, “API Design Matters,” ACM Queue Magazine, vol. 5,

2007.
[2] J. Bloch, “How to Design a Good API and Why it Matters,” 2006, URL:

http://landawn.com/How to Design a Good API and Why it Matters.pdf
[accessed: 2016-06-08].

[3] R. J. Wieringa, Design Methods for Reactive Systems. Morgan
Kaufmann Publishers, 2003, ISBN: 1-55860-755-2.

[4] M. Nygard, Release It!: Design and Deploy Production-Ready Software.
O’Reilly, Apr. 2007, ISBN: 978-0978739218.

[5] U. Friedrichsen, “Patterns of Resilience,” 2016, URL:
http://de.slideshare.net/ufried/patterns-of-resilience [accessed: 2016-06-
06].

[6] B. Bonati, F. Furrer, and S. Murer, Managed Evolution. Springer
Verlag, 2011, ISBN: 978-3-642-01632-5.

[7] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6) Speci-
fication,” The Internet Society, Specification, 1998.

[8] “Blink Protocol,” 2012, URL: http://blinkprotocol.org/ [accessed: 2016-
06-06].

[9] “Financial Information eXchange,” 2016, URL:
https://en.wikipedia.org/wiki/Financial Information eXchange
[accessed: 2016-06-06].

[10] “FAST protocol,” 2016, URL: https://en.wikipedia.org/wiki/FAST protocol
[accessed: 2016-06-06].

[11] “Service-oriented architecture,” 2016, URL:
https://en.wikipedia.org/wiki/Service-oriented architecture [accessed:
2016-06-08].

[12] R. Fielding, “Architectural Styles and the Design of Network-based
Software Architectures,” dissertation, University of California, Irvine,
2000.

[13] H. Kerner, Rechnernetze nach ISO-OSI, CCITT. H. Kerner, 1989,
ISBN: 3-900934-10-X.

[14] “Client-server model,” 2016, URL: https://en.wikipedia.org/wiki/Client-
server model [accessed: 2016-03-03].

[15] G. Hohpe and B. Woolf, Enterprise Integration Patterns. Addison-
Wesley, 2012, ISBN: 978-0-133-06510-7.

[16] E. Evans, Domain Driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley, 2004, ISBN: 0-321-12521-5.

[17] R. Westphal, “Radikale Objektorientierung - Teil 1: Messaging als
Programmiermodell,” OBJEKTspektrum, vol. 1/2015, 2015, pp. 63–69.

[18] A. Cockburn, Writing Effective Use Cases. Addison-Wesley, 2001,
ISBN: 978-0-201-70225-5.

[19] B. Oestereich, Objektorientierte Softwareentwicklung: Analyse und
Design mit der UML 2.0. Oldenbourg, 2004, ISBN: 978-3486272666.

7Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

 13 / 39

Automated Infrastructure Management Systems

A Resource Model and RESTful Service Design Proposal
to Support and Augment the Specifications of the ISO/IEC 18598/DIS Draft

Mihaela Iridon
Cândea LLC for CommScope, Inc.

Dallas, TX, USA
e-mail: iridon.mihaela@gmail.com

Abstract— Automated Infrastructure Management (AIM)
systems are enterprise systems that provision a large number
and variety of network infrastructure resources, including
premises, organizational entities, and most importantly, all the
telecommunication and connectivity assets that enable network
infrastructure to operate locally and across vast geographical
areas. The representation of infrastructure elements managed
by such systems has never been normalized before, making
integration – a challenging undertaking on its own – an even
more difficult task, requiring specialized knowledge about the
systems and the infrastructure data they provision. Such
details are most relevant given the complexity and variety of
telecommunication infrastructure systems and the widespread
need for external or custom applications to gain access to the
data and features built in to these AIM systems. This year
however, the international standards organization is scheduled
to release new standard ISO/IEC 18598 that will provide
standardization and sensible guidelines for exposing data and
features of AIM systems and thus to facilitate the integration
with custom clients for these systems. CommScope, an active
contributor in defining these standards, has implemented to a
large extent these specifications for their imVision system and
in doing so, decided to capture some relevant details that
would bring more clarity, add context, and provide further
guidelines to the information described by the standards
document. In order to achieve these goals and in an attempt to
lead the way towards a robust AIM system design that aligns
with these standards, this paper elaborates on the
recommended models. It also intends to share architectural
and technology-specific considerations, challenges, and
solutions adopted for the CommScope’s imVision standards-
based API, so that they may be translated and implemented by
other organizations that intend to build - or integrate with - an
AIM system in general.

Keywords-automated infrastructure management (AIM);
system modeling; ISO/IEC 18598.

I. INTRODUCTION

ISO/IEC have recently put forth a set of requirements and
guidelines for modeling and provisioning Automated
Infrastructure Management (AIM) systems [1] that will help
consolidate how such systems represent the assets and
entities they provision, as well as enable custom integration
solutions with these systems. Identifying and organizing
AIM system’s assets in a logical and structured fashion

allows for an efficient access and management of all the
resources administered by the system.

As with every software system and more so with
enterprise-level applications, domain modeling is of crucial
importance as it helps define, refine, and understand the
business domain, facilitating the translation of requirements
into a suitable design [5]. However, special-purpose models
can and should be designed for various layers of a system’s
architecture [11]. When a system exposes integration points
to outside agents or clients, it is imperative to define clean
boundaries between the system’s domain and the integration
models [6] [4]. Stability of integration models is just as
important as versioning for extensible systems, while
allowing the domain models, structural or behavioral, to
evolve independently of all other models that the system
relies on [2] [3].

The first half of this paper (Section II) will present the
relevant resource models from the perspective of a RESTful
services design [2] [10] [13], with focus on the underpinning
structures and the telecommunication assets, as proposed and
used by CommScope’s imVision API. This section also
presents a solution for handling a large variety of hardware
devices while avoiding a large number of URIs for accessing
these resources. Section III discusses system architecture,
patterns and design-specific details. Section IV presents
some of the challenges encountered during the realization of
the system design, solutions employed, and finally joining all
the discussion points to a conclusion in Section V.

II. AIM SYSTEM DOMAIN ANALYSIS AND RESOURCE

MODELING

The resource model presented in this paper employs
various design and implementation paradigms. However, the
only types exposed by the system, i.e., all concrete resource
types, can be viewed and modeled as simple POCOs (Plain
Old CLR Objects for the .NET platform) or POJOs (Plain
Old Java Objects for the Java EE platform). These models
represent merely data containers that do not include any
behavior whatsoever. Such features are specific to the
physical entities being modeled and are highly customized
for a given system. The model proposed here serves the
purpose of defining a common understanding of the data that
can be exchanged with an AIM system while any specific

8Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

 14 / 39

behavior around these data elements is left to the
implementation details of the particular AIM system itself.

As opposed to stateful services design principles (such as
SOAP and XM -RPC-based web services) - where functional
features and processes take center stage while data contracts
are just means to help model those processes [4] [11], in
RESTful services the spotlight is distinctly set on the
transport protocol and entities that characterize the business
domain. These two elements follow the specifications of
Level 0 and 1, respectively, of the RESTful maturity model
[7] [13]. The resources modeled by a given system also
define the service endpoints (or URIs), while the operations
exposed by these services are simple, few, and standardized
(i.e. the HTTP verbs required by Level 2: GET, POST, PUT,
DELETE, etc.) [10] [13]. Nonetheless, in both cases, a sound
design principle (as with any software design activity in
general) is to remain technology-agnostic [5] [6] [11].

A. Resource Categories Overview and Classification

The entities proposed in the Standards document [1] are
categorized by the sub-domain that they are describing as
well as their composability features. At the high-granularity
end of the spectrum we will find entities that deal with the
location of networking centers (sites, cities, buildings,
rooms, etc.) while at the other end of the spectrum we have
the smallest assets that the system manages (modules and
ports, outlets and cables). This classification helps define a
model that aligns well with the concept of separation of
concerns (SoC), allowing common features among similar
entities to be shared effectively, with increased testability
and reliability.

The Standards document proposes the following
categories of resources to be provisioned by an AIM System,
as shown in Table 1.

TABLE I. RESOURCE CATEGORIES AND EXAMPLES OF CONCRETE

TYPES

PREMISES Geographic Area, Zone, Campus, Building,
Floor, Room

CONTAINERS Cabinets, Racks, Frames
TELECOM ASSETS Closures, Network Devices, Patch Panels,

Modules, Ports, Cables, Cords
CONNECTIVITY ASSETS Circuits, Connections
ORGANIZATIONAL Organization, Cost Center, Department, Team,

Person
NOTIFICATIONS Event, Alarm
ACTIVITIES Work Order, Work Order Task

Some elements listed above may not be relevant to all

AIM systems. The Standards document intends to capture
and categorize all elements that could be modeled by such a
system. It also suggests a common terminology for these
categories so that from an integration perspective there is no
ambiguity in terms of what these assets or entities represent
and what their purpose is. Otherwise stated, it defines at
high-level the ubiquitous integration language by providing a
clear description and classification of the main elements of
an AIM system. This paper takes these recommendations,
materializes them into actual design artifacts, and proposes a
general-purpose layered architecture for the RESTful AIM
API system.

B. Common Abstraction Models

Since all resources share some basic properties, such as
name, identifier, description, category, actual type (that
identifies the physical hardware components associated with
this resource instance), and parent ID, it is a natural choice to
model these common details via basic inheritance, as shown
in Figure 1. In order to support a variety of resource
identifiers (i.e., Globally Unique Identifier, integer, string,
etc.) the ResourceBase class is modeled as a generic type,
with the resource and parent identifier values of generic TId .

Of particular interest are telecommunication assets – the
core entities in AIM systems – a class of resource types,
which all realize the IAsset interface, an abstraction used as
a marker on the type. These entities will be presented in the
next sub-section.

Figure 1. Resource Base Models

9Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

 15 / 39

C. Resource Model Design

1) Premise Elements
Company’s network infrastructure can be geographically

distributed across multiple cities, campuses, and/or
buildings, while being grouped under one or more sites –
logical containers for everything that could host any type of
infrastructure element. At the top of the infrastructure-
modeling hierarchy, there are the premises, which model
location at various degrees of detail: from geographic areas
and campuses to floors and rooms. Composition rules or
restrictions for these elements may be modeled via generic
type constraints, unless these rules are not enforced by a
given system. Figure 2 shows the standards-defined premise
entities, their primary properties, and the relationships
between them.

2) Telecom Connectivity Elements
The main assets of a network infrastructure are its

telecommunication resources, from container elements, such
as racks and cabinets, to switches and servers, network
devices (e.g. computers, phones, printers, cameras, etc.),
patch panels, modules, ports, and circuits that connect ports
via cables and cords. The diagram included in Figure 3
shows these asset categories modeled via inheritance, with
all assets realizing the IAsset marker interface. As is the
case for CommScope’s imVision system, the type of the
unique identifier for all resources is an integer; hence, all
resource data types will be closing the generic type TId of
the base class to int : ResourceBase<int> . This way, the
RESTful API will expose these AIM Standards-compliant
data types in a technology- and implementation-agnostic way
that reflects the actual structure of the elements, while

generics and inheritance remain transparent to integrators,
regardless of the serialization format used (JSON, XML,
SOAP). This fact is illustrated in Figure 5, which shows a
sample rack object serialized using JSON.

In addition to the elements shown in Figure 3 that
support a persistent representation of the data center’s
telecom assets, there are those that enable circuits to be
specified: cables, connectors, and cords. They play a role in
defining the connectivity dynamics of the system. Figure 4
shows the primary resources for modeling this aspect of an
AIM system.

3) Organizational Elements
Some AIM systems may desire to provision entities that

describe the organization responsible for maintaining and
administering the networking infrastructure. For example,
tasks around the management of connectivity between panels
and modules is usually represented by work orders that
comprise one or more work order tasks. Such tasks are then
assigned to technicians, which report to a manager, which in
turn belongs to a department, and so on. The model for these
elements is not included here as it is straightforward but is
available upon request.

4) System Notifications and Human Activity Elements
Hardware components of AIM systems, e.g., controllers,

discoverable/intelligent patch panels and in some instances
intelligent cords (e.g. CommScope’s Quareo system) allow
continuous synchronization of the hardware state with the
logical representation of the hardware components.

This synchronization is facilitated by the concept of
events and alarms that are first generated by controllers
(alarms) and then sent for processing by the management

GeographicArea

Building

Campus

Floor

Location

«property»

+ PostalCode(): string

+ LineAddress1(): string

+ LineAddress2(): string

+ City(): string

+ State(): string

+ County(): string

+ Country(): string

NamedResourceBase

TParentPremise > PremiseBase

PremiseBase

«property»

+ Parent(): TParentPremise

NamedResourceBase

PremiseBase

«property»

+ Location(): Location

Room

Zone

«bind»

< TParentPremise->GeographicArea >

< TParentPremise->Building >

< TParentPremise->Floor >

«bind»

< TParentPremise->Campus >

«bind»

«bind»

«bind»

< TParentPremise->PremiseBase >

Figure 2. Premise Resource Models

10Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

 16 / 39

software (events). These notification resource types are
supported by the AIM Standards and are modeled as shown
in Figure 6. The figure also includes activities that
technicians must carry out, such as establishing connections

between assets, activities that in turn trigger alarms and
events, or are created as a reaction to system-generated
events.

Asset

TResourceId

ConnectivityAsset

«property»

+ Template(): string

+ UHeight(): int

+ Elements(): List<IAsset>

+ Container(): IAsset

Closure

NetworkDev ice

«property»

+ MacAddress(): string

+ NetworkAddress(): string

PatchPanel

«property»

+ PortType(): PortType

+ TotalPorts(): int

Asset

TResourceId

ContainerAsset

«property»

+ UCapacity(): int

+ Zone(): int

Cabinet

«property»

+ RackUnitNumbering(): NumberingScheme

Rack

«property»

+ RackUnitNumbering(): NumberingScheme

Frame

IAsset

«interface»

IEquipmentAsset

Module

«property»

+ PortType(): PortType

Asset

Port

«property»

+ PortType(): PortType

+ PerformanceLevel(): int

+ PortStatus(): PortStatus

+ IsPending(): bool

+ Service(): string

+ ParentEquipmentId(): int

TResourceId

TwoSidedConnectivityAsset

«property»

+ FrontPorts(): List<Port>

+ BackPorts(): List<Port>

+ PortMapping(): List<OrderedPair<Port, Port>>

Container

0..*

FrontPorts / BackPorts

< TResourceId->int >
< TResourceId->int >

< TResourceId->int >

< TResourceId->int >

< TResourceId->TResourceId >

< TResourceId->int >

< TResourceId->int >

< TResourceId->int >

Figure 3. Telecommunication Assets Resource Models

ResourceBase

Circuit

«property»

+ Segments(): List<CircuitSegment>

NamedResourceBase

CircuitSegment

«property»

+ Connection(): Connection

+ CommonElement(): IAsset

ResourceBase

Connection

«property»

+ ElementA(): IAsset

+ ElementB(): IAsset

«interface»

Common::IAsset
e.g., cable or module

e.g., port or connector

Connection

1..*

Segments

ElementA/BCommonElement

Figure 4. Connectivity Models Figure 5. A JSON Representation of a Rack Resource

11Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

 17 / 39

D. Modeling Large Varieties of Hardware Devices

The telecom asset model presented in Figure 3 depicted
the categories that define all or most physical devices seen in
network infrastructure. However, actual hardware
components have specialized features that are vendor-
specific or that describe some essential functionality that the
components provide. Such specialized attributes must be
incorporated in the model for supporting the Add (POST)
and Update (PUT) functionality of the RESTful services that
expose these objects to the integrators. The main challenge is
how to support such a large variety of hardware devices
without having to expose too many different service
endpoints for each of these specialized types.

According to the Richardson Maturity Model for REST
APIs [7], which breaks down the principal ingredients of a
REST approach into three steps, Level 1 requires that the
API be able to distinguish between different resources via
URIs; i.e., for a given resource type there exists a distinct
service endpoint to where HTTP requests are directed. For
querying data using HTTP GET, we can easily envision a
service endpoint for a given resource category – as per the
models described above. For example, there will be one URI
for modules, one for closures, one for patch panels, etc.
However, when creating new assets, we have to be very clear
about which concrete entity or device type we want to create,
and for this, we must provide the device-specific data. Since
these features are not inherent to all objects that belong to
that category, specialized models must be created – e.g., as
derived types from the category models that encapsulate all
relevant device-specific features.

For example, one of CommScope connectivity products
that falls under the category of Closures is the SYSTIMAX
360™ Ultra High Density Port Replication Fiber Shelf, 1U,
with three InstaPATCH® 360 Ultra High Density Port
Replication Modules [15] – a connectivity solution for high-

density data centers that provides greater capacity in a
smaller, more compact footprint. These closures come in a
variety of configurations and aside from the common closure
attributes (position, elements, capacity, etc.) other properties
are relevant from a provisioning, connectivity, and circuit
tracing perspective. Such properties include Orientation of
the sub-modules, Location in Rack, Maximum Ports, and
Port Type, as shown in the class diagram in Figure 7.

An alternative to using an inheritance model would be to
create distinct types for each individual physical component
that could be provisioned by the AIM system, but given the
significant overlap of common features they can be
consolidated and encapsulated in such a way that derived
specialized models can be employed in order to increase
code reusability, testability, and maintainability. The
differentiation between the various hardware components
that map to the same specialized type can be managed, for
example, via metadata associated with that data type (e.g.,
the Al lowedObjectTypeAttr ibute in Figure 7).

This approach saves us from having to define one data
type per physical device type and furthermore, allows
accessing a variety of devices that fall under the same
category, using the same URI – as described in the next sub-
section.

E. Benefits of the Proposed Model

The models proposed in this paper are closely following
the categories and entities outlined by the ISO/IEC
standards. However, given the structural models presented
here and taking advantage of available technology-specific
constructs and frameworks, select design features exist that
confer certain advantages to these models, to their usage, and
the integration capabilities for the services that expose them,
with direct impact on performance, maintainability,
testability, and extensibility.

NamedResourceBase

Alarm

«property»

+ EventId(): int

+ AlarmType(): AlarmType

+ Noti ficationDetails(): List<string>

NamedResourceBase

Event

«property»

+ EventType(): EventType

+ RelatedElements(): List<IAsset>

+ Timestamp(): DateTime

NamedResourceBase

WorkOrder

«property»

+ WorkOrderState(): WorkOrderState

+ WorkOrderType(): WorkOrderType

+ StartDate(): DateTime

+ EndDate(): DateTime

+ Technician(): Person

+ Tasks(): List<WorkOrderTask>

NamedResourceBase

WorkOrderTask

«property»

+ WorkOrderTaskStatus(): WorkOrderTaskStatus

+ WorkOrderTaskType(): WorkOrderTaskType

+ ModifiedAssets(): List<IAsset>

«interface»

Common::IAsset
EventId

1..*

Tasks

ModifiedAssets

RelatedElements

Figure 6. Notification and Activity Models

12Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

 18 / 39

 Simplified URI scheme based on resource
categories rather than specialized resource types.
This allows clients to access classes or categories
of resources rather than having to be aware of - and
invoke - a large number of URIs dictated by the
large variety of hardware devices modeled. This
also confers the API a high degree of stability and
consistency even when the system is enhanced to
provision new hardware devices.

 Reduced chattiness between client application and
services when querying resources (GET). This
benefit is directly related to the URI scheme
mentioned above, since a single HTTP request can
retrieve all resources of that type (applying the
Liskov substitution principle [8]), even when
multiple sub-types exist.

 Reduced chattiness between client application and
services when creating complex entities (POST) by
supporting composite resources. In some cases, the
hardware device construction itself requires the
API to support creating a resource along with its
children in a single step (see Section IV.B for
details). Child elements can be specified as part of

the main resource to be created, or they can be
omitted altogether, while – in the case of the
imVision API - the Validation and Composition
frameworks would take care of filling in the
missing sub-resources based on predefined
composition and default initialization rules.
Table 2 captures just a few but noteworthy metrics
regarding the request counts and sizes for creating
a complete resource of a specialized PatchPanel
type.

 Opportunity for automation when creating and
validating composite resources. Aside from
considerably reducing the size of the request body
given the option to omit child elements when
adding new entities - as is the case for the imVision
API – by employing frameworks that support
metadata-driven automation, the API will ensure
that the generated resource object reflects a valid
hardware entity – with all required sub-elements.
For the API consumers, this reduces the burden of
knowing all the fine details about how these
entities are composed and constructed. In some
cases, the number of child elements to be created in

TABLE II. POST REQUEST METRICS FOR QUATTRO PANEL (A PATCHPANEL RESOURCE)

Metric Scenario Value

Number of
POST
Requests

Without Support for Composite Resources 31: 1 for the Panel, 6 for the child Modules, and 6x4 for the
ports

With Support for Composite Resources 1: a single request for the Panel with its Modules (under
Eleme nt s), with each Module being itself a composite
resource containing 4 ports each, specified under the
Fro ntPo r ts property of each Module

POST Request
Body Size

With Explicit Children Included 21,449 bytes
With No Children Specified (i.e. relying on the
Framework to populate default elements)

572 bytes

Metadata used for filtering concrete asset types
that can be modeled using the specialized data
type which this attribute decorates.
ObjectType is an enumeration specifying over
120 concrete entities.

The main resource type
category used to model
closure devices. The model is
used as a data container for
the common features across
all closure-type resources.

A specialized/derived resource type that encapsulates
additional features that only some closure devices share.
These closure devices are identified via the metadata
that decorates the specialized type.

A Marker interface for
derived asset types.

ConnectivityAsset

TelecomEquipment::

Closure

«interface»

Common::

ISpecializedAsset

SpecializedResources::

ClosureInstaPATCHPlusFiberShelf

«property»

+ LocationInRack(): LocationInRack

+ Orientation(): AssetOrientation

+ PortType(): PortType

+ MaximumPorts(): int

Attribute

Ext::AllowedObjectTypeAttribute

+ AllowedObjectTypeAttribute()

+ AllowedObjectTypeAttribute(ObjectType)

«property»

+ ObjectType(): ObjectType

decorates

Figure 7. A Sample Specialized Closure with Additional Properties

13Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

 19 / 39

the process depends on properties that the main
resource may expose (e.g. Tota lPorts) – which
client applications will have to specify if the
property is marked as [Required], but the
composing port sub-elements may be omitted from
the request body, as they will be automatically
created and added.

 Extensible model as new hardware devices are
introduced. New models can easily be added to the
existing specialized resources or as a new subtype.
The interface for querying the data (GET) will not
change. The design for adding and updating
resources follows the Open/Closed principle [8], so
that new types, properties, and rules will be added
or extended but existing ones will not change,
ensuring contract stability.

III. A PROPOSED LAYERED ARCHITECTURE FOR AIM API

INTEGRATION SERVICES

A. Adding Integration Capabilities to an AIM System

As per the Standards document guidelines, the AIM
Systems should follow either an HTTP SOAP or a RESTful
service design. Regardless of the service interface choice,
there are several options for designing the overall AIM
system. A common yet robust architectural style for software
systems is the layered architecture [6] [11], which advocates
a logical grouping of components into layers and ensuring
that the communication between components is allowed only
between adjacent or neighboring layers. Moreover, following
SOLID design principles [8], this interaction takes place via
interfaces, allowing for a loosely coupled system [9], easy to
maintain, test, and extend. This will also enable the use of
dependency injection technologies such as Unity, MEF,
AutoFac, etc., to create a modular, testable, and coherent
design [12].

CommScope’s imVision system was built as a standalone
web-based application, to be deployed at the customer’s site,
along with its own database and various middleware services
that enable the communication between the hardware and the
application. Relying on the current system’s database, the
RESTful Services were added as an integration point to the
existing system. The layered design of this new service
component is shown in Figure 8 with the core component –
the resource model discussed earlier, shown as part of the
domain layer. The system also utilizes - to a very limited
extent - a few components from the existing imVision
system that encapsulate reusable logic.

Several framework components were used, most notably
the Validation component, which contains the domain rules
that specify the logic for creating and composing the various
entities exposed by the API. These rules constitute the core
component upon which the POST functionality relies. Along
with the resource composition and validation engine, they
constitute in fact a highly specialized rule-based system that
makes extensive use of several design and enterprise
integration patterns that will be discussed next.

B. Patterns and Design Principles

The various patterns and principles [6] [8] [9] employed
throughout the design and implementation of the imVision
API system are summarized in Table 3. The automation
capabilities baked into the imVision API mentioned earlier,
that support creating composite resources, are a direct
realization of the Content Enricher integration pattern used in
conjunction with the Builder, Composite, and Specification
software design patterns. From a messaging perspective, all
requests are synchronous and only authorized users (Claim
Check pattern) are allowed to access the API.

Data

Frameworks
Data Access

Business Logic

Domain

Web Services

«Model»

AIM Resource

Model

Repositories

«service»

RESTful API

«abstraction»

IRepositories

Validation

«service»

Identity/

Authorization

«translation»

Model Adapters

«framework»

Data Access

Adapter

System

Manager

«Model»

Data Model

«abstraction»

IDataAccess

imVision

Business Logic

AIM

Database

Objects

«use»

«abstraction»

«use»

«abstraction»

«deploy»

Figure 8. The Layered Architecture of the imVision AIM API

14Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

 20 / 39

TABLE III. DESIGN PATTERNS AND PRINCIPLES EMPLOYED

Des ig n Pa t ter ns

Type Category Pattern Name
Design
Patterns

Creational Abstract Factory,
Builder, Singleton,
Lazy Initialization

Structural Front Controller,
Composite, Adapter

Behavioral Template Method,
Specification

Enterprise
Application
Patterns

Domain Logic Domain Model, Service
Layer

Data Source
Architectural

Data Mapper

Object-Relational
Behavioral

Unit of Work

Object-Relational
Metadata Mapping

Repository

Web Presentation Front Controller
Distribution Patterns Data Transfer Object

(DTO)
Base Patterns Layer Supertype,

Separated Interface
Enterprise
Integration
Patterns

Messaging Channels Point-to-Point
Channel Adapter

Message Construction Request-Reply
Message
Transformation

Content Enricher
Content Filter
Claim Check
Canonical Data Model

Composed Messaging Synchronous (Web
Services)

Des ig n Pr inc ip l e s

SOLID
Design
Principles

Single Responsibility Principle (SRP)
Open/Closed
Interface Segregation
Liskov Substitution (in conjunction with co- and
contra-variance of generic types in .NET)
Dependency Inversion (Data Access and
Repositories are injected using MEF and Unity)

IV. A FEW CHALLENGES AND SOLUTIONS

A. Handling POST Requests for Large Numbers of
Specialized Resource Types with Few URIs

Simplified URI schemes have the benefit of providing a
clean interface to consumers, without having to introduce a
myriad of URIs, one per actual hardware device supported
by the AIM system.

As shown in Section II, the different representation of
these resources are grouped by category, while specific
details are handled using custom JSON deserialization
behavior injected in the HTTP transport pipeline [2] [13].
Since all resources must specify the concrete entity type they
represent (under the ConcreteAssetTypeId property), the
custom deserialization framework can easily create instances
of the specialized resource types based on this property, and
pass them to the appropriate controller (one per URI/resource
category).

The impact on performance is negligible given the use of
a lookup dictionary of asset type ID to resource type, which
is created only once (per app pool lifecycle) based on
metadata defined on the model. Even if new specialized
resource types are added, the lookup table will automatically
be updated at the time the application pool is instantiated
(restarted), ensuring the inherent extensibility of the custom
deserialization framework.

This way, whether a user would like to create a “360
iPatch Ultra High Density Fiber Shelf (2U)” or a “360 iPatch
Modular Evolve Angled (24-Port)” [15], even though these
two hardware devices map to two different specialized types
in the imVision API resource model, they are both resources
of type PatchPanel . Therefore, a POST request to create
either of these will be sent to the same URI:
http: //[host :port /app/]Pa tchPanels

This means that the same service components (controller
and repository) will be able to handle either request but the
API would also be aware of the distinction between these
two different object instances, as created by the custom
deserialization component.

B. Adding Support for Composite Resources

Hardware components are built as composite devices,
containing child elements, which in turn contain sub-child
entities. For example, the Quattro Panel contains six Copper
Modules with each module containing exactly four Quattro
Panel Ports. To realize these hardware-driven requirements
and avoiding multiple POST requests, while preserving the
integrity of the device representation, a rule-based
composition representation model was used in conjunction
with the Builder design pattern applied recursively.

The composition rules for the Quattro Panel and its
module sub-elements are shown in Figure 9 (The strings
represent optional name prefixes for the child elements.).

Figure 9. Composition Rules for Quattro Panel and Its Child Elements of Type Copper Module

//…
{ ObjectType.QuattroPanel24Port, new CompositionDetail<ModuleCopperModule, int, ModuleValidator>(ObjectType.CopperModule, "Module", 6) },

//…
{ ObjectType.CopperModule, new CompositionDetail<PortBasicPort, int, PortValidator>(ObjectType.QuattroPanelPort, "Port", 4) },
//…

15Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

 21 / 39

C. A Functional, Rule-Based Approach for Default
Initializations and Validations of Resources

Given the large number of specialized resources to be
supported by CommScope’s imVision API and the even
larger number of business rules regarding the initialization
and validation of these entities, a functional approach was
adopted. This rendered the validation engine into a rule-
based system: there are composition rules (above), default
initialization rules, and validation rules (below) – which
refer to both simple as well as complex properties that define
a resource. Following the same example of Quattro Panel
used earlier, an important requirement for creating such
resources is the labeling of ports and their positions, which
must be continuous across all six modules that the panel
contains.

Figure 10 shows a snapshot of the rules defined for this
type of asset: Figure 10 (a) shows the initialization rules
whereas Figure 10 (b) shows some of the validation rules. In
both cases, the programming constructs like the ones shown
make heavy use of lambda expressions as supported by the
functional capabilities built into the C#.NET programming
language [14], demonstrating the functional implementation
approach adopted for the imVision API.

Among some of the reasons worth mentioning for taking
the functional route are a more robust, concise, reusable, and
testable code, and minimizing side effects from object state
management and concurrency. Explicit goal specification,
central to the functional programming paradigm, confers
clarity and brevity to the rule definitions, both evident in the
code samples provided hereby.

Figure 10. (a) Default Initialization Rules Sample

Figure 10. (b) Validation Rules Sample

16Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

 22 / 39

V. CONCLUSION

Modeling large varieties of telecommunication assets can
be a challenging task, even more so if other applications
intend to integrate with one or more systems that automate
the management of such complex telecommunication
enterprise infrastructure. The benefits entailed by the
standardization of modeling entities managed by such
systems are significant, as they facilitate a common
understanding of the AIM system in general and the
elements it exposes, their functional features, and their
internal makeup. ISO/IEC proposed such standardization for
a more systematic and unified modeling of AIM systems.
This paper took further steps to present detailed models and
the relationships between them using design artifacts
modeled via UML (Unified Modeling Language). Using
inheritance, composition/aggregation, and generic typing, a
hierarchical resource model was designed and shown to be
extensible and fit for representing telecom assets,
connectivity, premises, organizational elements, and system
notifications – as they relate to any AIM-centric domain.

Although the focus of the 18598/DIS draft ISO/IEC
Standards document is to unify the representation of network
connectivity assets, the motivation behind this specification
is to facilitate custom integration solutions with AIM
systems. Given the challenging nature of integration in
general, building AIM systems with integration in mind is
essential. Extensibility, scalability, rigorous and stable
interface and model design, and performance through
adequate technology adoption are important goals to
consider. For this reason, the present paper also introduced
the layered architecture adopted by CommScope’s imVision
API, targeting the management of telecommunications
infrastructure.

Emphasis was placed on the Standards-recommended
RESTful architectural style, while technology specifics were
succinctly described to show how they helped align the
system’s design and functionality with the AIM standards
requirements. Various design and implementation aspects
were elaborated along with a selection of key benefits, such
as dynamic resource composition, custom serialization to
support consistent handling of similar resources, efficient
POST request construction and network traffic, and a simple
URI scheme despite large varieties of specialized resources.

Finally, a very brief overview of a rule-based engine for
resource initialization and validation was described, along
with some implementation details that highlight aspects of
the functional programming paradigm employed by key
components of CommScope’s imVision API.

VI. REFERENCES

[1] Automated Infrastructure Management(AIM) Systems–
Requirements, Data Exchange and Applications, 18598/DIS
draft @ ISO/IEC.

[2] G. Block, et. al., “Designing Evolvable Web APIs with
ASP.NET”, ISBN-13: 978-1449337711.

[3] R. Daigneau, “Service Design Patterns: Fundamental Design
Solutions for SOAP/WSDL and RESTful Web Services”,
Addison-Wesley, 1st Edition, 2011, ISBN-13: 078-
5342544206.

[4] T. Erl, “Service-Oriented Architecture (SOA): Concepts,
Technology, and Design,” Prentice Hall, 2005, ISBN-13: 978-
0131858589.

[5] E. Evans, “Domain-Driven Design: Tackling Complexity in
the Heart of Software,”, 1st Edition, Prentice Hall, 2003,
ISBN-13: 978-0321125217.

[6] M. Fowler, “Patterns of Enterprise Application Architecture,”
Addison-Wesley Professional, 2002.

[7] M. Fowler, “The Richardson Maturity Model”. [Online].
Available from http://martinfowler.com/articles/
richardsonMaturityModel.html [retrieved: March 2016].

[8] G. M. Hall, “Adaptive Code via C#: Agile coding with design
patterns and SOLID principles (Developer Reference),”,
Microsoft Press, 1st Edition, 2014, ISBN-13: 978-
0735683204.

[9] G. Hohpe, B. Woolf, “Enterprise Integration Patterns;
Designing, Building, and Deploying Messaging Solutions,”
Addison-Wesley, 2012, ISBN-13: 978-0321200686.

[10] J. Kurtz, B. Wortman, “ASP.NET Web API 2: Building a
REST Service from Start to Finish,” 2nd Edition., 2014,
ISBN-13: 978-1484201107.

[11] Microsoft, “Microsoft Application Architecture Guide
(Patterns and Practices),” Second Edition, Microsoft. ISBN-
13: 978-0735627109. [Online] Available from:
https://msdn.microsoft.com/en-us/library/ff650706.aspx
[retrieved: March 2016].

[12] M. Seemann, “Dependency Injection in .NET,” Manning
Publications, 1st Edition., 2011, ISBN-13: 978-1935182504.

[13] J. Webber, “REST in Practice: Hypermedia and Systems
Architecture,” 1st Edition, 2010, ISBN-13: 978-0596805821.

[14] T. Petricek, J. Skeet, “Real-World Functional Programming:
With Examples in F# and C#”, Manning Publications; 1st
edition, 2010, ISBN-13: 978-1933988924.

[15] CommScope Enterprise Product Catalog. [Online] Available
from: http://www.commscope.com/Product-Catalog/
Enterprise/ [retrieved March 2016].

17Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

 23 / 39

A Research Roadmap for Test Design in Automated Integration
Testing of Vehicular Systems

Daniel Flemström

SICS Swedish ICT AB
Västerås, Sweden

danielf@sics.se

Thomas Gustafsson

Scania CV AB
Södertälje, Sweden

thomas.gustafsson@scania.com

Avenir Kobetski

SICS Swedish ICT AB
Kista, Sweden

avenir@sics.se

Daniel Sundmark

Mälardalen University
Västerås, Sweden

daniel.sundmark@mdh.se

Abstract—An increasing share of the innovations emerging
in the vehicular industry are implemented in software. Conse-
quently, vehicular electrical systems are becoming more and more
complex with an increasing number of functions, computational
nodes and complex sensors, e.g., cameras and radars. The intro-
duction of autonomous functional components, such as advanced
driver assistance systems, highlight the foreseeable complexity of
different parts of the system interacting with each other and with
the human driver. It is of utmost importance that the testing effort
can scale with this increasing complexity. In this paper, we review
the challenges that we are facing in integration testing of complex
embedded vehicular systems. Further, based on these challenges
we outline a set of research directions for semi-automated or
automated test design and execution in integration testing of
vehicular systems. While the discussion is exemplified with our
hands-on experience of the automotive industry, much of the
concepts can be generalised to a broader setting of complex
embedded systems.

Index Terms—Software Testing; Automotive Systems; Embedded
Systems; Integration Testing

I. INTRODUCTION

Electrical systems in modern vehicles grow increasingly
complex and software intensive. With additional concerns, like
increasing requirements on autonomy and safety, integration-
and system-level testing becomes more and more challenging.
At full-vehicle integration level, in addition to the testing
performed in actual vehicles, different types of electrical
system lab testing is undertaken. Typically, in lab testing, use-
case based functional (and to some extent non-functional) test
cases are executed by means of hardware-in-the-loop (HIL) or
software-in-the-loop (SIL) based integration testing platforms.

This current practice of test design and execution comes
with a number of drawbacks. Test execution is costly and time-
consuming, particularly if done manually. However, when test
cases are scripted and automatically executed, testing tends
to be repetitive and static. Moreover, the fact that test cases
typically focus on one functional part at a time (without
considering the potential interactions or interference between
functions) may not account for realistic operating conditions.

In this paper, we address the question of whether it is
possible to use automated test design, execution and analysis to
test complex systems in general, and automotive and vehicular
systems in particular, more effectively without exhausting the

test resources. First, based on our experience with integration-
level testing at a number of different vehicular Original Equip-
ment Manufacturers (OEMs), we list a number of challenges
that need to be addressed. Next, partially based on recent
results in software and system testing, we outline a research
roadmap for integration- and system-level testing of vehicular
systems. In particular, we identify and describe five research
directions for test design, automated test sequence generation
and verdict analysis, that directly address the listed challenges.

II. BACKGROUND

Over the last decades, embedded systems have been sub-
jected to a rapid increase in complex functionality, and there
are no indications suggesting that this trend will change in
a foreseeable future. This is especially true for automotive
systems, where emission regulations and advanced driver
assistance systems (ADAS) energize the development. The
functionality of ADAS depend on an increasing amount of
sensor data. This leads to an increasing number of situations
where human operators will no longer be in control. Based
on input from various sensory sources, different functional
components will interact and sometimes compete with each
other and the operator. This adds flavour to the already non-
trivial challenge of testing a product in its entirety.

The remainder of this section discusses state of the practice
based on the collective experience from complex system
integration testing in general, and integration-level testing of
a number of vehicular OEMs (Volvo Construction Equipment
(VCE), Bombardier Transportation (BT) and Scania) in par-
ticular. Although there are differences in particular details, the
principles and challenges remain common.

A. State of the Practice

Today, testing is the primary means of assessing the quality
of embedded systems. Testing is typically done at several
stages throughout system development, ranging from unit-
level testing of functions in isolation, to integration testing
of fully interconnected systems. Ordered by the rising level of
integration, testing is normally conducted in model-in-the-loop
(MIL), SIL, HIL test environments, and full scale product tests.
Typically, this is done through use-case based test sequences,
partly derived from system requirements and partly reflecting

18Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

 24 / 39

the test engineers’ domain knowledge. This type of testing is
commonly referred to as scenario-based testing [1].

In scenario-based testing, test cases are designed using a
divide-and-conquer-based approach following the breakdown
of system requirements into smaller functional entities (which
is in accordance with recent textbook guidelines for functional
test design [2], [3]). Test cases are typically constructed by
means of sequences of (a) input or stimuli to the system
under test (SUT), (b) delays allowing the SUT to reach
some desired state, and (c) assertions that compare expected
behavior with the actual SUT behavior. Based on the outcome
of its assertions, a test case, when exercised, can render three
different verdicts: a passed test case is a test case with no
violated assertions, a failed test case is a test case where the
expected behavior does not match the behavior of the system
under test (ideally indicating a fault in the target system),
and an aborted test case is a test case where some test case
action cannot be performed (ideally indicating a fault in the
test case or the test environment). Once having been designed,
implemented, and incorporated in the test suite, test cases are
typically repetitively executed without much variation.

While manual testing is invaluable for quality assurance,
especially when new functionality is introduced, it is expensive
and not suitable for regression testing (i.e., following up on
how software progresses over time whenever a new part of the
system has been added to the SUT or an existing system has
changed due to a bug fix or requirement update). For the latter
purpose, test cases are—to an increasing extent—scripted to
allow for automated batched execution. Analyzing which of
the existing test cases should be executed in each regression
test session is often a manual and time consuming process.

III. CURRENT PRACTICE: LIMITATIONS AND CHALLENGES

Although scripted scenario-based testing does ensure that
requirements are exercised and covered during testing, it
comes with a number of limitations. Below, we identify a set
of challenges not addressed satisfactorily by current practice. It
should be noted here that some manual testing practices (e.g.,
exploratory testing [4]) do address some of these challenges.
However, the focus of this paper is on systematic automated
techniques, primarily due to the fact that such techniques are
more likely to scale with increasing complexity.

A. Ch1 - Lack of functional interference

The procedure of decomposing requirements into smaller
functional units, and using these units in isolation as the basis
for test case design is fundamental in managing an other-
wise overwhelming complexity. However, this procedure for
requirement decomposition, and subsequent test design also
prevents the assessment of undesirable interference between
functional entities. Such assessment is particularly important
as the functions grow increasingly complex and dependent
on several interacting subsystems. Small disturbances in one
system component may propagate into fault conditions in
another, not to mention the case when different functional
entities are in conflict or competing over the same resource.

B. Ch2 - Inefficient resource usage

In order to make sure that each test has the right precon-
ditions for making a correct verdict, test scripts are generally
executed one by one, while the SUT’s state is reset between the
test scripts. In addition to the time overhead that is needed to
set up and shut down each test case, delays are often encoded
explicitly in test scripts to represent correct timing behavior
(e.g., response times) of the SUT. Sequential test execution
means that delay times can never run in parallel. Not only
does this poorly represent real operating conditions, where
several independent functions (e.g., cruise control, radio, and
turn indicator lights) can be active at the same time, but it also
leads to inefficient use of testing resources.

C. Ch3 - Inflexible and tedious test case encoding

Integration level test cases are often coded manually into a
scripting language. One reason for this is the wish to keep a
tight control over the order and timing of stimuli to the SUT
to avoid incorrect test verdicts, i.e., verdicts (typically pass
or abort) caused by incorrect test case implementation rather
than the actual behavior of the SUT. In practice, this means
that a test engineer needs to consider in detail not only what
is the expected behavior for a certain function, but also how
to put the SUT in a state where such behavior is supposed
to be manifested. This mixes up two different views of the
system, namely the design (and subsequent implementation)
of test stimuli sequences and test oracles, making the task of
a test engineer even more challenging. As a consequence, the
development of integration test cases is a rather complex and
time-consuming process, which severely limits the number of
test cases that can be implemented and maintained.

D. Ch4 - Unnecessarily limited coverage

Any given functional requirement could in theory be tested
by a large (if not infinite) set of concrete test cases. However,
the current practice of hard-coding of scenarios into scripted
test cases limits the potentials of variability in testing to only
the hard-coded cases. Once designed and scripted, a scenario-
based test case is typically kept and repetitively executed
without much or any variation. While this has the advantage
of detecting differences between software versions (e.g., for
regression testing), it limits the testing to a very small portion
of the vast set of imaginable real-life situations that the
system could be subjected to, while the rest is left entirely
unexplored. For example, the functionality of a hazard light
could potentially benefit from being tested not only when
cruising at low speed, but also in situations like: i) when the
vehicle is idling, ii) while driving on a highway in winter
conditions, iii) while applying brakes, etc. In practice though,
most situations fall outside of the chosen set of test scenarios
being considered important enough to encode and maintain.

E. Ch5 - Inadequate requirements

Previous work suggests that test cases are often based on
positively stated requirements defining how the system should

19Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

 25 / 39

behave during normal operation [5]. While this provides valu-
able confirmation with respect to the system’s fitness for use
in the normal case, there are results indicating that focusing
on normal requirement-based cases might not be the best
strategy when trying to maximize fault-detection [6], [7]. In
fact, there exist many examples of accidents caused not by a
software bug in the classical sense, but rather by incorrect
or missing requirements, caused by a failure to consider
important operational states or environmental conditions [8].

Also, a common problem in testing in general is that
although some non-functional robustness testing is done, a
disproportionally large part of testing is concerned mainly with
functional requirements [9]. Related, there is a gap between
requirements engineering (RE) and testing activities. In some
cases, requirement documents are followed, but more often
such documents must be complemented with the domain
knowledge and understanding of what needs to be tested
that the test engineer possesses. This is quite common in
the industrial practice, also noted in, e.g., [9]. Another issue,
which also depends on the above mentioned gap between RE
and testing, is the practice of developing test cases for the same
functionality independently, on different integration levels. As
the development rate of new functionality is steadily increas-
ing, such approach to system level testing seems insufficient.

F. Ch6 - The ”smart product” challenge

In general, embedded products become increasingly in-
telligent, while testing methods are lagging behind. In the
vehicular world, this is best highlighted by ADAS function-
ality, which introduces additional challenges to the software
development process and to testing in particular. Advanced al-
gorithms are to an increasing extent replacing human decision
making. While human drivers might and do make mistakes,
there is close to zero-tolerance when it comes to autonomous
functions doing so. Thus, ADAS-type functions must be tested
even more extensively. Also, their interactions with other
functionality in the vehicle, as well as with the driver, must be
taken into consideration. Most ADAS functionality is triggered
by the surrounding environment and the different situations
that a vehicle may be subjected to. This is a challenge in a
laboratory setting (e.g., HIL), where the environment must be
represented in some way.

IV. RESEARCH DIRECTIONS

Considering the above stated challenges, we believe that
much can be gained from moving beyond the prevailing script-
based integration test design and execution practice, which is
primarily focused on one single function or even a part of
a function (use case) in isolation. In general, we envision a
situation where automatically executable test sequences are
generated or derived in a semi-automated or fully automated
fashion. These test sequences are derived based on high-level
test design rationales that address the above challenges. The
sequences can be automatically executed and their verdict
can be automatically analysed and reported. Below, we list a

number of research directions that serve to push the integration
testing of vehicular systems towards this vision.

First, considering the inflexible and tedious test case en-
coding challenge (Ch3), we suggest to draw a clear line
between generation of test stimuli sequences (i.e., timed and
ordered sequences of input data to be fed to the SUT),
and encoding of expected test responses (i.e., how the SUT
should respond given a certain sequence of events or stimuli).
This research direction is elaborated in the subsection on
Separation of Concerns. Second, concerning test sequence
generation (TSG), we identify three distinct rationales that
directly address challenges Ch1, Ch2, Ch4, and Ch6. These
rationales are Functional Interference, focusing on the extent
to which the interaction between features is covered during
testing, Environmental Coverage, focusing on the extent to
which aspects of the intended environment of the vehicle are
covered during testing, and Diversity, focusing on the extent to
which test cases and test suites are different from one another.
Each of the above listed research directions are discussed in
detail below. Third, modeling of expected responses has as its
goal to robustly assess whether the response of the SUT to a
variety of (automatically generated) test sequences is adequate
(i.e., should yield a pass verdict) or not (i.e., should yield a
fail verdict). In software testing, this problem is known as
the Oracle Problem [10], and we address it in a separate
subsection below. Referring to Ch5, note that any requirements
that should be testable need to be reflected in test oracle
models in an adequate way.

A. Separation of Concerns

As mentioned in challenge Ch3, the traditional way of
encoding stimuli and verdicts into one executable unit makes
the resulting test cases both less flexible and more difficult to
analyze. Consequently, we believe that it is important to clearly
separate: a) the question of how to combine test stimuli into
effective and feasible test sequences, and b) the question of
which test assertions to make in order to produce a test verdict,
and when to evaluate these assertions.

With such separation in place, test stimuli modeling can be
seen as a special case of model-based testing (MBT), where the
modeling scope, according to Utting et al.’s taxonomy [11], is
limited to input-only. In other words, when reasoning about
TSG, there is no explicit need to consider the test output, i.e.,
the actual verdict analysis. Instead, one can focus on questions
such as what kind of input should be considered for guiding
SUT through its possible states, and how this input should be
modeled and selected into the actual test sequences to achieve
effective and efficient testing.

Considering the other side of the problem, i.e., how to reach
a test verdict given an automatically generated test sequence,
with this approach test engineers can focus more explicitly
on exactly which preconditions are needed to trigger a test
oracle function, and which results it should produce under
different conditions. While appropriate models need to include
both input and output aspects, the input part does not actually
drive the state progression. Rather, it describes the state(s) in

20Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

 26 / 39

which the SUT needs to be in order to perform meaningful
test evaluations. Ideally, such models should clearly reflect the
requirements on functionality.

While separation of concerns contains relatively few re-
search questions in itself, it is central not only for reducing
test case generation complexity, but also for research on each
of the separated parts. An important research direction here
is to find appropriate interfaces between the separated parts,
which in turn influences the choice of modeling formalisms in
the two distinct cases. Some preliminary results have already
been pointed to in this direction [12], but much work remains.

B. Functional interference

In real operating conditions, functional interference is the
norm rather than an exception [13]. Different parts of a
complex product’s functionality are typically being engaged
simultaneously and independently from each other. Taking
an automotive application as an example, a lane shift may
involve both turn indicator and acceleration functions. At
the same time, the climate control system may be trying to
keep temperature at some set point. Including ADAS into
consideration, e.g. blind spot assist or adaptive cruise control
functionality may also be active during the lane shift.

One goal of integration testing is to test how different func-
tions work together. However, use-case based testing typically
focuses on one function at a time, and the concurrent activation
of other functions is only a side-effect of reaching a testable
system state. Clearly, if interactions between functions are not
systematically tested, there is a risk of missing important er-
rors. In fact, function or subsystem interactions are responsible
for a growing portion of accidents in complex systems [8].
Also, it is important to carefully consider possible interactions
between autonomous functionality and human actions. In fact,
in fields where automation was adopted early, such as aviation,
such interactions are known to contain a certain risk [14].

Consequently, it is desirable to allow for testing of several
functions run in parallel. In the ideal case that any combination
of functions that in some way affect one another or a common
functional or non-functional resource was tested together, Ch1
could be removed from the above list of challenges. Con-
versely, the usage of testing resources (Ch2) would be much
more efficient if all fully independent function combinations
could be batched together into a single run. However, there are
a number of questions to solve before reaching that situation.
For example, what is an adequate runtime environment for par-
allel testing of potentially dependent functions? Possibly, ideas
could be drawn from the field of parallel computing. However,
they should be adapted to the specifics of integration testing
of embedded systems, e.g. complex functional dependencies,
hard real-time constraints, wide range of different users and
operational contexts, safety criticality, etc., see also [13].

Since testing resources are normally limited, the right mix
between interacting and independent functionality will likely
be an important design trade-off that should be considered by
TSG algorithms. Also, infeasible combinations of functions,
i.e., those leading to test abortion, must somehow be avoided.

Different types of functionality need to be modeled in a suit-
able way, such as actuator-triggered (driver controls), sensor-
triggered (autonomous responses), and failure-triggered.

C. Environmental coverage

An important factor that affects the operation of embed-
ded systems, often neglected in scenario-based testing, is
the impact of the surrounding environment on a system’s
performance and operation. This aspect is important not only
by extending the notion of test coverage with a new dimension
(thus addressing Ch4), but it increases in significance with
the growing ”smartness” of embedded products (Ch6). The
more autonomous functionality a system contains, the more
important it is to anticipate and test possible situations that
the system can be subjected to. This need has recently been
formulated by Alexander et al. [15], as a situation coverage
metric for autonomous systems.

The idea is to describe real-life situations by partitioning
them into a number of constituent components, or environ-
mental aspects, each of which consists of a number of discrete
(and typically mutually exclusive) elements, or possible values.
Returning to the automotive world for an example, such
components could be the topography of the road (uphill,
downhill, or negligible inclination), road surface conditions
(snow, ice, rain, dry), surrounding traffic (pedestrians, queues,
highway, platooning, etc.), intersection types (3-road, right-
turn, left-turn, straight driving, etc.), driver condition (alert,
tired, using phone, etc.), and so on.

Once the environmental components have been identified,
they can be combined into more or less complex situations
and tested together with several active functional elements.
For example, a vehicle can be driving uphill on a snowy
highway, conducted by a sleepy driver that makes a lane shift
and presses down the acceleration pedal, while blind spot assist
and adaptive cruise control functionalities are activated.

Evidently, situation coverage poses similar research ques-
tions as the ones discussed in the previous subsection, perhaps
the most obvious being the choice of appropriate environmen-
tal models, with respect to, e.g., abstraction level, modeling
formalism, TSG tools, etc. Further, since the number of
possible combinations of situational components and functions
seems to suffer from combinatorial explosion, it is not realistic
to believe that every possible aspect will be tested in each
test run. Thus, combinatorial strategies on selecting relevant
situations with respect to the testing objectives are needed [16].

D. Diversity

A recent research direction in software testing investigates
the effects on fault detection and coverage of the extent to
which test cases are different from each other. In particular,
diversity metrics based on information theory have been used
for this purpose [17]. Diversity is typically defined as a metric
between 0 and 1 indicating the distance between two test cases,
or sets of test cases. Several studies indicate that increased test
case diversity has a positive effect on the ability to discover
faults. For instance, Mondal et al. [18] used diversity as a

21Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

 27 / 39

complement to traditional test adequacy criteria and found
that combining diversity with other criteria yields better fault
detection rates. Feldt et al. [17] define a diversity metric for
sets of test cases, which allows for search-based selection
methods to work on entire sets of test cases. There are however
several different definitions of diversity, and thus, ways of
measuring it. Examples of such metrics are based on the
normalised compression distance (NCD) between the textual
representation of a variability model of the test cases [17],
[19], the euclidian distance between input/output vectors [20]
or features thereof [21], and weighted combinations of metrics
for different properties of the measured items [22].

Extending the concepts of e.g test input/output diversity,
we may address the first challenge, Ch1, by using diversity
as a criterion to ensure that a generated set of test cases
involves as different functions as possible. Further, using
diversity measures to guide the selection of test cases between
regression testing sessions would also address Ch4 to avoid
that the same, or too similar, tests are being executed from
time to time, thus yielding a better coverage over time.

Given the promising results in the mentioned studies (al-
though largely focused on unit testing), diversity stands out as
an attractive optimization criteria for a test stimuli generator
as discussed in Section IV-A. There are however numerous
challenges with this approach, including the level of detail of
the available information and to what extent such information
can be efficiently retrieved. Further challenges include how
to apply diversity in an event-based testing environment (e.g.,
considering timing and parallelism), and how to best combine
diversity with other metrics (e.g. requirements, environmen-
tal coverage, or functional interference). Research applicable
definitions of diversity that are effective on integration level
with respect to the different challenges listed in Section III
is therefore needed. Finally, the computational effort when
calculating the diversity measures needs to be addressed in
order to be suitable for a test sequence generator.

E. Test oracle modeling

A test oracle is a mechanism that, given a certain input and
the SUT’s response to that input, can state whether this actual
response is in accordance with the expected response (i.e., if
the test passes or not). In software testing, the construction
of such a mechanism is known as the oracle problem. The
oracle problem is relatively unexplored and inherently difficult
to address [10]. In practice, since complete oracles would re-
quire an exhaustive and correct representation of the expected
behaviour of the SUT, only partial oracles are possible to
construct, typically encoded as assertions in test cases.

As mentioned above, we believe that test oracles should
be modeled as passive analysis mechanisms, expressing how
a SUT should behave given a certain sequence of stimuli.
Condition models [23] and guarded assertions [24] are two
examples of initial attempts to address this problem. However,
further development is needed to reach practical applicability.

Ideally, oracle models should be formal enough to allow for
automatic translation into test code. Further, they should have

clear and human-readable links to the functional requirements
they represent. This would promote requirement traceability
and ability to reason about logical relations between tests
and requirements, reducing the gap between these disciplines
(Ch5). Also, automation of the logic behind oracles should
then be possible, supporting oracle analysis either online,
e.g., by testing in a HIL environment, or offline, e.g., by a
verification algorithm. Balancing between informal and formal
requirement models is thus an intriguing research topic.

Also, human-readable models should be developed early
on, allowing their reuse through different stages of the testing
process. Modeling patterns on different abstraction levels, and
unambiguous conversion between the different models and
the test code will likely be needed for any such approach to
be applicable. Related, structured English grammars, together
with patterns to facilitate writing requirements, suitable for
automated checking of system and requirements conformance,
have been proposed in several papers [25], [26], [27].

Finally, addressing the remaining parts of Ch5, oracle
models reflecting non-positive or non-functional requirements
will be needed. The challenge is further complicated by the
immaturity of the RE field in this respect. There is a clear
need for research both on basic RE in this direction, and next
on enriching the results of such basic research into the more
applied question of oracle modeling.

F. Summary

Above, five research directions are outlined for test design in
integration testing of vehicular systems. Considering all these
research directions combined, one could envision the following
integration test design, execution and analysis process: First,
requirements are (manually) encoded as abstract and passive
test oracles using human readable and intuitive patterns. Sec-
ond, based on these oracles, but also considering other test
design rationales like functional interference, diversity and/or
environmental coverage, test stimuli sequences are automati-
cally generated. Third, the test sequences are executed on the
system under test, and the oracles automatically analyze the
system response in order to produce an aggregated test verdict.

Naturally, the outlined process is only one possible way of
moving forward and should be revised as testing research and
practice progress. Further, it is important to relate the industrial
experience, to recent academic advances, drawing inspiration
from the broader test research field, e.g. [28], [29].

V. CONCLUSIONS

In this paper, a number of challenges facing the discipline
of integration testing is outlined, based on the authors’ ex-
periences from industrial vehicular systems. The increasing
autonomy and complexity of modern vehicles, which leads to
a high level of functionality interaction, and in consequence
complex emergent behavior, need to be accounted for in
integration testing. This poses an additional burden on the
already restrained testing resources. In addition, it becomes
more difficult to reason about system behavior, which makes
coverage an even more important aspect to consider.

22Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

 28 / 39

The challenges are considered in a discussion on interesting
research directions. Firstly, as in other areas of software
engineering, concerns should be separated where possible. It
is our claim that generation of test stimuli sequences can
and should be separated from the actual oracle function. This
will allow a focus on the different parts separately, generating
appropriate models for each. On the oracle side, it is important
to capture requirements at the right level of abstraction, ideally
transforming them into more formal models that can be
verified by a test run. When it comes to test stimuli, there
is a need for appropriate models that capture actual situations
to which a vehicle can be subjected, with several interacting
functions being active simultaneously.

An important topic for research is how to increase the vari-
ability of what is tested. One answer to this question is to make
the test input space as diverse as possible. However, vehicles
are complex creatures operating in complex environments, and
so the modelling of possible inputs becomes challenging, not
to mention the question of what is meant by diversity and
how to select appropriate test stimuli in order to produce a
diverse test suite. Taking functional interaction and coverage
of environmental conditions into consideration may provide
some answers to the above questions.

ACKNOWLEDGMENT

This work was supported by The Swedish Innovation
Agency (Vinnova) through grant 2015-04816, and the Swedish
Knowledge Foundation through grant 20130258.

REFERENCES

[1] A. Bertolino, E. Marchetti, and H. Muccini, “Introducing a reasonably
complete and coherent approach for model-based testing,” Electr. Notes
Theor. Comput. Sci., vol. 116, pp. 85–97, 2005.

[2] M. Young and M. Pezze, Software Testing and Analysis: Process,
Principles and Techniques. John Wiley & Sons, 2005.

[3] P. Ammann and J. Offutt, Introduction to Software Testing, 1st ed. New
York, NY, USA: Cambridge University Press, 2008.

[4] J. Itkonen, M. V. Mäntylä, and C. Lassenius, “The role of the tester’s
knowledge in exploratory software testing,” IEEE Transactions on
Software Engineering, vol. 39, no. 5, pp. 707–724, May 2013.

[5] L. M. Leventhal, B. Teasley, D. S. Rohlman, and K. Instone,
“Positive test bias in software testing among professionals: A review,”
in Selected papers from the Third International Conference on
Human-Computer Interaction, ser. EWHCI ’93. London, UK,
UK: Springer-Verlag, 1993, pp. 210–218. [Online]. Available:
http://dl.acm.org/citation.cfm?id=646181.682601

[6] L. M. Leventhal, B. E. Teasley, and D. S. Rohlman, “Analyses
of factors related to positive test bias in software testing,” Int. J.
Hum.-Comput. Stud., vol. 41, no. 5, pp. 717–749, Nov. 1994. [Online].
Available: http://dx.doi.org/10.1006/ijhc.1994.1079

[7] A. Causevic, R. Shukla, S. Punnekkat, and D. Sundmark, “Effects of
negative testing on tdd: An industrial experiment,” in International
Conference on Agile Software Development, XP2013, H.Baumeister
and B. Weber, Eds. Springer, June 2013, Date accessed: 2016-06-09.
[Online]. Available: http://www.es.mdh.se/publications/2771-

[8] N. G. Leveson, “System safety in computer-controlled automotive sys-
tems,” SAE transactions, vol. 109, no. 7, pp. 287–294, 2000.

[9] Z. A. Barmi, A. H. Ebrahimi, and R. Feldt, “Alignment of requirements
specification and testing: A systematic mapping study,” in Software
Testing, Verification and Validation Workshops (ICSTW), 2011 IEEE
Fourth International Conference on. IEEE, 2011, pp. 476–485.

[10] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The
oracle problem in software testing: A survey,” IEEE Transactions on
Software Engineering, vol. 41, no. 5, pp. 507–525, May 2015.

[11] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-
based testing approaches,” Software Testing, Verification and Reliability,
vol. 22, no. 5, pp. 297–312, 2012.

[12] T. Gustafsson, M. Skoglund, A. Kobetski, and D. Sundmark, “Auto-
motive system testing by independent guarded assertions,” in Software
Testing, Verification and Validation Workshops (ICSTW), 2015 IEEE
Eighth International Conference on, April 2015, pp. 1–7.

[13] M. Broy, “Challenges in automotive software engineering,” in Pro-
ceedings of the 28th international conference on Software engineering.
ACM, 2006, pp. 33–42.

[14] T. B. Sheridan and R. Parasuraman, “Human-automation interaction,”
Reviews of human factors and ergonomics, vol. 1, no. 1, pp. 89–129,
2005.

[15] R. Alexander, H. Hawkins, and A. Rae, Situation coverage – a coverage
criterion for testing autonomous robots. Department of Computer
Science, University of York, 2 2015, vol. Report number YCS-2015-
496.

[16] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Comput. Surv., vol. 43, no. 2, pp. 11:1–11:29, Feb. 2011. [Online].
Available: http://doi.acm.org/10.1145/1883612.1883618

[17] R. Feldt, S. Poulding, D. Clark, and S. Yoo, “Test set diameter: Quantify-
ing the diversity of sets of test cases,” arXiv preprint arXiv:1506.03482,
2015.

[18] D. Mondal, H. Hemmati, and S. Durocher, “Exploring test suite di-
versification and code coverage in multi-objective test case selection,”
in Software Testing, Verification and Validation (ICST), 2015 IEEE 8th
International Conference on. IEEE, 2015, pp. 1–10.

[19] R. Feldt, R. Torkar, T. Gorschek, and W. Afzal, “Searching for cogni-
tively diverse tests: Towards universal test diversity metrics,” in Software
Testing Verification and Validation Workshop, 2008. ICSTW’08. IEEE
International Conference on. IEEE, 2008, pp. 178–186.

[20] P. Bueno, W. E. Wong, and M. Jino, “Improving random test sets
using the diversity oriented test data generation,” in Proceedings of
the 2nd international workshop on Random testing: co-located with
the 22nd IEEE/ACM International Conference on Automated Software
Engineering (ASE 2007). ACM, 2007, pp. 10–17.

[21] R. Matinnejad, S. Nejati, L. C. Briand, and T. Bruckmann, “Simcotest:
a test suite generation tool for simulink/stateflow controllers,” in
Proceedings of the 38th International Conference on Software
Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016 -
Companion Volume, 2016, pp. 585–588, Date accessed: 2016-06-09.
[Online]. Available: http://doi.acm.org/10.1145/2889160.2889162

[22] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer, “Object distance and
its application to adaptive random testing of object-oriented programs,”
in Proceedings of the 1st international workshop on Random testing.
ACM, 2006, pp. 55–63.

[23] A. Ray, I. Morschhaeuser, C. Ackermann, R. Cleaveland, C. Shel-
ton, and C. Martin, “Validating automotive control software using
instrumentation-based verification,” in Automated Software Engineering,
2009. ASE’09. 24th IEEE/ACM International Conference on. IEEE,
2009, pp. 15–25.

[24] G. Rodriguez-Navas, A. Kobetski, D. Sundmark, and T. Gustafsson,
“Offline analysis of independent guarded assertions in automotive inte-
gration testing,” in High Performance Computing and Communications
(HPCC), 2015 IEEE 7th International Symposium on Cyberspace Safety
and Security (CSS), 2015 IEEE 12th International Conferen on Em-
bedded Software and Systems (ICESS), 2015 IEEE 17th International
Conference on, Aug 2015, pp. 1066–1073.

[25] A. Mavin, P. Wilkinson, A. Harwood, and M. Novak, “Easy approach to
requirements syntax (ears),” in Requirements Engineering Conference,
2009. RE’09. 17th IEEE International. IEEE, 2009, pp. 317–322.

[26] M. Autili, L. Grunske, M. Lumpe, P. Pelliccione, and A. Tang, “Aligning
qualitative, real-time, and probabilistic property specification patterns
using a structured english grammar,” Software Engineering, IEEE Trans-
actions on, vol. 41, no. 7, pp. 620–638, July 2015.

[27] P. Filipovikj, M. Nyberg, and G. Rodriguez-Navas, “Reassessing the
pattern-based approach for formalizing requirements in the automotive
domain,” in Requirements Engineering Conference (RE), 2014 IEEE
22nd International. IEEE, 2014, pp. 444–450.

[28] M. J. Harrold, “Testing: a roadmap,” in Proceedings of the conference
on the future of software engineering. ACM, 2000, pp. 61–72.

[29] A. Orso and G. Rothermel, “Software testing: a research travelogue
(2000–2014),” in Proceedings of the on Future of Software Engineering.
ACM, 2014, pp. 117–132.

23Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

 29 / 39

Case Study: Becoming a Medical Device Software Supplier

Kitija Trektere, Fergal McCaffery

Regulated Software Research Centre & Lero,

Dundalk Institute of Technology

Dundalk, Co.Louth, Ireland

e-mail: {kitija.trektere, fergal.mccaffery}@dkit.ie

Garret Coady, Matteo Gubellini

BlueBridge Technologies

3015 Lake Drive, Citywest, Dublin 24, Ireland

e-mail: {garretcoady,

matteogubellini}@bluebridgetech.com

Abstract—Today many software development companies are

restructuring their business model to enter the medical device

domain. The reason for this change is that significant

opportunities exist within the healthcare industry and

particularly in relation to the usage of software within this

domain. However, in order to become either a medical device

software supplier or manufacturer there are challenges to

overcome. This paper describes a case study of an Irish

software development company that in 2014 decided to change

their business model to enable them to become a medical

device software supplier. The paper provides an account of

their journey from being an plan-driven automotive software

supplier to securing software development contracts from

leading medical device manufacturers. This involved them

having to re-design and re-structure their software

development approach to meet both the demands of medical

device standards and medical device multinational third party

software selection criteria.

Keywords-MDevSPICE
®

 framework; software development

process; medical device software; medical device software

development; agile practices; agile software development

practices.

I. INTRODUCTION

In 2015, the medical device (MD) global market was
“valued at $228 billion, up from $164 in 2010 and projected
to reach $440 billion by 2018” “at approximately 4.4%
compound annual growth rate per year” [1]. The leaders in
the MD market are the US having 38% of the global value of
this market followed by China with a market valued at $48
billion with western Europe having almost 25% of the global
market [1]. However, to become a MD supplier for the
industry takes significant time and resources as there are
many obstacles that need to be overcome.

This paper presents a case study of an Irish software
development company BlueBridge Technologies (BBT).
Their journey started in 2014 when BBT decided to embark
upon becoming a MD software supplier and at that moment
they had no regulatory requirements in place, in fact a key
question they asked at that stage was “what are the
standards we need to implement and in what order?”. This
paper presents how with the help of academic MD
researchers’ regulations were put in place through

undergoing an MDevSPICE
®

 assessment and outlining the

challenges that might arise in the near future.
The rest of this paper is organized as follows. Section II,

describes the background of BBT and the current situation in
the MD industry. Section III, outlines the challenges BBT
faced in order to become a MD software supplier. Section
IV, describes the approaches followed to become a MD
software supplier. Section V, outlines given that BBT have
satisfied the regulations they wish to further refine and
improve their software development processes to make them
more efficient. Section VI, describes first steps taken in order
to improve their current lifecycle process. Finally, Section
VII provides a conclusion and future work.

II. BACKGROUND OF THE COMPANY

BTT was founded in 2006 – initially formed upon the
closure of the Irish based development operations of Magna
Automotive, and today employs 19 people with 8 of them
working as software developers. BBT are currently working
on 7 different projects with 5 of them involving developing
the software component for another organization’s product.
Their current customers include pharmaceutical and
multinational MD companies.

The main reason why software development companies
wish to enter the MD domain is because of the expansion of
the MD industry in the past few years therefore providing
many opportunities for others to enter into this industry. The
MD industry is largely research and development driven.

Software increasingly performs an essential role in the

provision of healthcare services [2]. This is particularly

reflected in the importance that software now plays in

medical diagnoses and treatment [3]. The level of software

functionality in MDs and the complexity of that software

has substantially increased [4]. The MD regulatory

environment has been extended to include more focus on

software. For example, the latest amendment to the Medical

Device Directive [5] recognizes that standalone software

can be classified as a MD in its own right. Consequently, a

significantly increased proportion of software applications

will now be classified as MDs and must be developed in a

regulatory compliant manner [6]. Medical records are

increasingly being stored in electronic form. The use of

Electronic Medical Record (EMR) systems in the USA by

physicians increased from 18.2% in 2001 to 48.3% in 2010

24Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

 30 / 39

[7]. The adoption of EMR systems could produce efficiency

and safety savings of $81 billion annually and improve

prevention of medical diseases [8]. Use of Mobile devices in

health care is increasing. “By 2017, mobile technology will

be a key enabler of healthcare delivery reaching every

corner of the globe” [9].

III. CHALLENGES BBT NEEDED TO OVERCOME TO

BECOME A MD SOFTWARE SUPPLIER

To become a MD software supplier there were

regulations and standards that needed to be adhered to. This

required processes to be defined in accordance with these

standards and regulations and then for objective evidence to

be obtained demonstrating the implementation of the

defined processes. For BBT, the starting point was to gain

an understanding of three main standards. The paragraph

below briefly outlines the standards that BBT familiarized

themselves with before starting to define their MD software

development processes.

A. ISO 13485:2006

 “This International Standard specifies requirements for

a quality management system that can be used by an

organization for the design and development, production,

installation and servicing of medical devices, and the

design, development, and provision of related services”

[11].

ISO 13485 is in practice necessary for any MD

company. It details the requirements for the Quality

Management System (QMS) for MDs.

B. IEC 62304

“This standard defines the life cycle requirements for

Medical Device Software. The set of processes, activities,

and tasks described in this standard establishes a common

framework for medical device software life cycle processes”

[10].

IEC 62304 covers the development process for medical

device software. This standard is harmonised with the

requirements of ISO 13485 and therefore complements it by

adding the specifics required for MD software.

However, IEC 62304 interfaces with ISO 13485 in two

areas: software inputs and system integration. The software

inputs are generated from the system (or subsystem) level

requirements, while IEC 62304 explicitly does not cover

system level activities, in particular design validation.

C. ISO 14971:2009

“This International Standard was developed specifically

for medical device/system manufacturers using established

principles of risk management. For other manufacturers,

e.g., in other healthcare industries, this International

Standard could be used as informative guidance in

developing and maintaining a risk management system and

process”[12]. “This International Standard deals with

processes for managing risks, primarily to the patient, but

also to the operator, other persons, other equipment and the

environment” [12].

The area of regulatory standards and the recording of

documentation associated with their implementation was

new to BBT. Therefore, BBT engaged with both standards

consultants and an academic research group (the RSRC, our

research centre) specializing in MD software development

research. This assisted BBT to fast-track the initial steps to

becoming a MD software supplier.

IV. APPROACH TO BECOME A MD SOFTWARE COMPANY

When BBT reached out to the RSRC, we knew that this
was an ideal company to become involved with in regards to
performing research into how software companies could
make the transition to becoming MD software suppliers.

A. Embark on MDevSpice
®

 assessment

First of all, it was essential to understand BBT’s current
position in regards to their software development processes.

We decided to perform an MDevSPICE
®

 [13] assessment.

MDevSPICE
®

 is a framework assessment model where all

MD software standards and processes are brought together
into one place with software engineering best practices.

MDevSPICE
®

 was developed in the RSRC. Then, this

framework assessment model was utilized in BBT to assess
the current situation.

Below we describe what happened next in regards to both
the assessment and BBT’s subsequent journey to becoming a
MD software supplier. As BBT were used to developing in a
plan-driven manner and this would enable them to develop
medical device software in compliance with the V-model we
did not investigate agile practices at this stage.

A) Assessment conducted: Given that MDevSPICE
®

consists of 23 processes we selected the most appropriate 10

processes from the MDevSPICE
®

 model to assess BBT

against (see Table I).

It was agreed upon discussion with BBT that only the

most foundational processes would be assessed. Therefore,

the following 10 out of the 23 MDevSPICE
®

 processes

were chosen to be assessed over two onsite days at BBT.

The 10 processes chosen for the assessment were selected

because they provided coverage of IEC 62304 and also

provided an important system level input into the software

development process. The system level process was

important as BBT’s software formed part of an overall

medical device system comprising hardware and software

and electronics. The processes were agreed upon during a

meeting with senior management at BBT and the

assessment team prior to the assessment. The order of the

processes assessed was important as it is important to follow

the medical device software development lifecycle.

Therefore, systems requirements were a very natural place

to start.

25Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

 31 / 39

TABLE I. PROCESSES OF MDEVSPICE®

MD System Lifecycle

Processes

MD Software

Lifecycle Processes

MD Support

Processes

Project Planning

Project Assessment
and Control

Risk Management

Stakeholder
Requirements

Definition

System Requirement

Analysis

System Architectural
Design

System Integration

System Qualification

Testing

Software Installation

Software Acceptance

Support

Software Development
Planning

Software

Requirements

Analysis

Software Architectural
Design

Software Detailed

Design

Software Unit

Implementation. and
Verification

Software Integration

and Integration

Testing

Software System
Testing

Software Risk

Management

Configuration

Management

Software
Release

Software

Problem

Resolution

Software
Change

Request

Management

Software
Maintenance

Below is outlined the process assessment schedule: we

assessed 5 processes on each day (See Table II).

TABLE II. DAY 1 AND DAY 2 OF ASSESSMENT PROCESS

Onsite Assessment Day 1

System Requirements Analysis

Software Development Planning

Software Requirements Analysis
Software Architectural Design

Software Detailed Design
Onsite Assessment Day 2

Software Unit Implementation & Verification

Software Integration & Integration Testing

Software System Testing
Software Risk Management

Software Configuration Management

Each process was assessed by two MDevSPICE
®

assessors in an interview with at least two members of BBT

being present in each interview. Prior to the interviews both

the schedule and the names of the BBT staff members that

would be involved in each process interview was agreed. It

was very important to ensure that access was provided to the

most relevant staff for each interview session as otherwise

the assessment would not have been as accurate as possible.

Each of the 10 interviews lasted approximately one hour

and involved one assessor asking BBT staff a set of scripted

questions related to that process area. The second assessor

used a tool to record detailed responses from the

interviewees with both assessors using the tool to enable

each question to be scored as “Fully Achieved”, “Partially

Achieved” or “Not Achieved”. In addition to the usage of

predefined scripted questions, additional questions were also

asked that were specific to BBT.

B) Findings produced: The MDevSPICE
®

assessors at

the end of Day two returned back to the RSRC and went

through each process together, discusssing the observations

and notes from the assessment. As a result of performing the

assessment we provided BBT with a set of strengths, issues

and recommendations to address those issues across each of

the assessed processes.

The MDevSPICE
®

 assessment provided coverage over a

number of different MD software related standards. Figure 1

shows a breakdown of the coverage provided for each of the

different standards from assessing 10 of the 23

MDevSPICE
®

 processes. One of the key objectives of BBT

Management was to gain an understanding in relation to the

state of their current development processes against IEC

62304, as this is the main MD software process standard,

processes were selected from MDevSPICE
®

 that featured

heavily in IEC 62304. The exception to this was System

Requirements Analysis but this was deemed to be a critical

process to examine as BBT would be performing software

development for an overall MD system. Therefore, it is

essential that they have an efficient process in place for

System Requirements Analysis as otherwise everything that

occurs afterwards within the development lifecycle will be

impacted.

From looking at Figure 1 it can be seen that the 10

processes assessed provided: 59% coverage of IEC 62304;

2% of ISO 80002-1 [14] (this technical report relates to how

ISO 14971 may be applied within software); 16% of the

FDA’s Guidance for off the shelf software [15]; 1% of the

FDA’s Guidance for premarket submissions [16]; 20% of

the FDA’s Guidance for validation of software [17]; 1% of

ISO 13485 and 1% of software engineering best practice

standards.

Figure 1. Scope of the BBT Assessment.

C) Implementing the recommendations: In order to assist

BBT to implement the recommendations in a timely manner

BBT took the following steps:

26Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

 32 / 39

a) Brought in consultants to assist with the

implementation of QMS 13485.

b) Recruited an engineer from a leading MD

manufacturer who possessed considerable experience in

developing MD software development and in particular MD

risk management expertise to put in place a risk

management strategy in line with ISO 14971.

c) Engaged with a notified body organisation to

prepare them for an official audit in IEC 62304 and

subsequently perform the audit. This enabled a successful

IEC 62304 audit to be achieved in a timely manner.

D) Actions taken by BBT:

a) Gained Certification in IEC 62304.

b) The IEC 62304 audit was performed against one

project using a plan driven approach.

c) BBT implemented the required MD standards for

medical device software suppliers.

The main criteria MD manufacturers use for selecting a

MD software supplier is that organizations should have IEC

62304 in place. At this stage BBT now have not only

satisfied this criteria but surpassed it in that they not only

adopted IEC 62304 but were certified against it and also

have adopted IEC 13485, ISO 14971 and the FDA Guidance

documentation for: Off the shelf software, Premarket

Submissions and Validation of MD software. Therefore, at

this stage BBT were ready to obtain contracts as a MD

software supplier company.

V. WHAT HAPPENED NEXT?

Once BBT became a MD software supplier they noticed

the significant attention within the MD field. MD software

manufacturers started to get in contact and invite tenders for

various projects. In fact, to date they have worked on a

number of MD software development projects for different

types and sizes of manufacturers. Therefore, the overhead

required to implement the necessary standards was starting

to pay dividends. However, now that the opportunities

clearly are out there it is noticeable that BBT now want to

move to the next phase of their MD software development

journey and not only develop software in line with the MD

standards but their ambition is now to increase the

efficiency of their MD software development. Therefore,

they wish to improve their software development processes

even further and implement more regulatory standards in

relation to security etc. The key driver to take a step further

is that BBT now are undertaking challenging projects and

are developing MD software for multinational MD

companies they have much more to achieve in their journey.

BBT have agreed to work with researchers from the RSRC

to introduce MD software development best practices that

will increase the efficiency of their MD software

development.

A. Challenges for such large projects

However, as with every new project there are associated

challenges and this is increased when embarking upon a

fixed price project, therefore if the project is delayed or runs

into some other difficulties, BTT is liable in relation to the

budget. Another challenge is the tight timeframe where

strict milestones have to be achieved in addition to the

achievement of appropriate documentation to satisfy

regulatory deliverables. Additionally, BBT would also like

to excel in being able to facilitate change during the

lifecycle of the project as this is something that is

challenging in traditional MD software development. A very

positive aspect of BBT’s current approach is that they

engage in regular interaction with their customers.

Therefore, receiving feedback and making sure that the right

MD software is developed from the very start of the

development.

B. What is the current status of BBT development process

lifecycle?

Currently BBT is developing software in a plan driven

way through using the V-model [18]. When following a V-

model the testing is planned in parallel with the

corresponding development phase and the planning for

verification and validation of the product is emphasized

from the very beginning. To date, V-model has been proven

to be the best fit when developing MD software in

compliance with the regulations [19]. However, in order to

improve the efficiency of their software development new

software practices should be explored that have proven

successful in the development of safety-critical software in

association with researchers from the RSRC.

Before introducing a new lifecycle it is crucial to

perform an assessment in order to establish how the current

software development process should be improved/changed.

VI. ASSESSMENT PROCESS AND RESULTS

The following subsections will describe the high-level

assessment process completed in BBT in 2016.

A) Assessment Process

The Software development process assessment was

performed at BBT before deciding what new practices

would be most suitable for BBT. We met up with the CEO

of the company, project manager/developer (who had has

experience of agile software development), and a developer

who specialized in Android software development. The

meeting was also attended by the R&D manager/Systems

Risk engineer and the QMS manager. The assessment was

based on previously scripted open-ended questions that

related to many different areas of the company as well as the

software development process.

B) Results

a) Currently BBT have several standards in place, such

as IEC 62304, ISO 13485, ISO 9001 and ISO 14971. In

their software development process they make use of

27Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

 33 / 39

various tools in areas such as project management, testing

and integration. One of their main drivers for adopting new

best practice software development methods is to streamline

even further their already succcessful practices for

interacting with customers. BBT view this as being key to

delivering safe regulatory compliant software that fully

meets the customer requirements and works within the

intended environment, thereby decreasing the chances of

expensive rework, particularly on fixed price projects.

b) Additionally, they wish to develop metrics such as

problem tracking, code coverage, defects found, defects

closed etc.

c) In the past, BBT was open to changes and customers

were able to introduce them whenever they wanted without

consequences to the overall budget, time. However, today

the process has become more structured. BBT now ensures

that a formal change request document is in place specifying

what happens if a change occurs within a previously signed

project.

d) BBT at the moment is not making use of any

principle software design techniques however, they plan to

introduce architecture diagrams and design patterns.

e) BBT previously have developed software in a plan

driven manner and lately they have decided to integrate

some agile practices into their development process..

f) Currently almost 80% of testing is automated and

20% is done manually. If the percentage of manual testing

could be decreased further – the overall development

process could become faster.

g) One of the team members mentioned that due to the

new lifecycle approach where agile practices are introduced,

there could be a challenges regarding integrating the QMS

with the development process and achieving the necessary

regulatory documentations.

h) At present their current process incorporates only

two agile practices, they are: short iterations (every two

weeks) and continuous integration.

i) BBT is also planning to provide their team with the

training needed in order to work in an environment where

MD software is developed in an agile way. The team will be

provided with training in regards to MD software, agile

practices and mobile app development.

j) Some team members will be provided with support

to change towards adopting a more agile software

development process.

C) Recommendations

Our advice to BBT is to integrate more agile practices

into their current MD software development so that the

software is developed efficiently in regular iterations and

can be presented to the customer on a regular basis and

facilitate change. Based upon a mini-literature review

performed, the following agile practices have been cited as

being used to develop software successfully for safety

critical/medical domains:

a) Acceptance test-driven development (ATDD) [20].

b) Automated Tests/Automated unit testing [21].

c) Code Reviews / Peer Reviews [22].

d) Coding Standards [20][23].

e) Continuous integration (CI) [20][23][24].

f) Open Workspace [20][25].

g) Scrum [26].

h) Test-driven development (TDD) [20][27].

VII. CONCLUSION AND FUTURE WORK

This paper described a case study of a journey taken by

an Irish software development company, moving from

developing automotive software to developing MD

software. We described how through adopting and

implementing MD standards they now have become a MD

software supplier. The key contribution of this research

work was to enable an organization such as BBT to

overcome the challenging and resource intensive learning

process of understanding what standards should be put in

place in order to become a medical device software supplier.

Secondly, it was important to be able to provide guidance as

to the order in which practices should be put in place so that

previously implemented practices will not need to be

overwritten later. Since becoming a MD software supplier

many new opportunities have become available. However,

BBT now wish to further improve their software

development processes in order to become more efficient

and to be able to satisfy new challenges that could rise from

undertaking new multinational MD manufacturer’s projects.

The authors of the paper have provided a list of agile

practices that have been cited to be well suitable for safety

critical/medical domain.

In the future, we plan to investigate agile practices that

are applicable for the MD software industry in greater detail

by performing an extensive literature review and industry

survey. Further, we will work with BBT to integrate the

most applicable agile practices into their current software

development lifecycle.

ACKNOWLEDGMENT

This research is supported by the Science Foundation
Ireland Research Centres Programme, through Lero - the
Irish Software Research Centre (http://www.lero.ie) grant
10/CE/I1855 & 13/RC/20194.

REFERENCES

[1] J. Cunningham, B. Dolan, D. Kelly, and C. Young, “Medical

Device Sectoral Overview,” Galway City and County

Economic and Industrial Baseline Study, 2015.

[2] C. Abraham, E. Nishihara, and M. Akiyama, “Transforming

healthcare with information technology in Japan: A review of

28Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

 34 / 39

policy, people, and progress,” Int. J. Med. Inform., vol. 80,

no. 3, pp. 157–170, 2011.

[3] S. Hanna, R. Rolf, A. Molina-Markham, P. Poosankam, K.

Fu, and D. Song, “Take two software updates and see me in

the morning: The Case for Software Security Evaluations of

Medical Devices,” in The 2nd USENIX conference on Health

security and privacy, pp.6, 2011.

[4] S. R. Rakitin, “Coping with Defective Software in Medical

Devices,” pp. 40–45, 2006.

[5] EC, “Directive 2007/47/EC of the European Parliament and

of the Council concerning medical devices,” Official Journal

of the European Union. Official Journal of the European

Union, Brussels, Belgium, p. 35, 2007.

[6] F. McCaffery, J. Burton, A. Dorling, and V. Casey, “Software

Process Improvement in the Medical Device Industry,” in

Software Engineering Encyclopaedia, P. Laplante, Ed. New

York: Francis Taylor Group, 2010, pp. 528 – 540.

[7] C.-J. Hsiao, E. Hing, T. C. Socey, and B. Cai, “NCHS Health

E-Stat Electronic Medical Record/Electronic Health Record

Systems of Office-based Physicians: United States, 2009 and

Preliminary 2010 State Estimates,” Natl. Cent. Heal. Stat.,

vol. 2009, no. December, p. 6, 2010.

[8] G. Hillestad, R., Bigelow, J., Bower, A. and F. Girosi, “Can

Electronic Medical Record Systems Transform Health Care?

Potential Health Benefits, Savings, And Costs,” Health Aff.,

vol. 24, no. January, pp. 1103–17, 2016.

[9] “Mobile to Play a Significant Role in Healthcare as GSMA

Research Predicts mHealth Market to be Worth US$23 billion

by 2017,” 2012. [Online]. Available:

http://www.gsma.com/newsroom/press-release/mobile-to-

play-a-significant-role-in-healthcare-as-gsma-research-

predicts-mhealth-market-to-be-worth-us23-billion-by-2017/.

[Accessed: 26-Mar-2016].

[10] BSI, “Medical device software- Software life-cycle processes,

62304:2006,” Bs En 62304:2006, vol. 3. 2006.

[11] ISO, “ISO 13485: Medical Devices - Quality Management

Systems - Requirements for Regulatory Purposes.” Geneva,

Switzerland, pp. 57, 2003.

[12] ISO, “ISO 14971 - Medical Devices - Application of Risk

Management to Medical Devices.” Geneva, Switzerland, pp.

82, 2009.

[13] F. McCaffery, M. Lepmets, and P. Clarke, “Medical Device

Software as a Subsystem of an Overall Medical Device,” in

Proceedings of The First International Conference on

Fundamentals and Advances in Software Systems Integration

Medical, 2015, pp. 17–22.

[14] IEC, “IEC TR 80002-1 - Medical Device Software - Part 1:

Guidance on the Application of ISO 14971 to Medical Device

Software.” Geneva, Switzerland, pp. 58, 2009.

[15] FDA, “Guidance for Industry - FDA Reviewers and

Compliance on Off-The-Shelf Software Use in Medical

Devices.” USA, p. 26, 1999.

[16] FDA, “Guidance for the Content of Premarket Submissions

for Software Contained in Medical Devices.” USA, pp. 23,

2005.

[17] FDA, “General Principles of Software Validation ; Final

Guidance for Industry and FDA Staff.” USA, pp. 47, 2002.

[18] K. Forsberg and H. Mooz, “The Relationship of System

Engineering to the Project Cycle,” 12th INTERNET World

Congr. Proj. Manag., pp. 12, June 1994.

[19] F. McCaffery, D. McFall, P. Donnelly, F. G. Wilkie, and R.

Sterritt, “A Software Process Improvement Lifecycle

Framework for the Medical Device Industry,” in IEEE

International Conference and Workshops on the Engineering

of Computer-Based Systems (ECBS’05) Proceedings, pp. 8,

2005,

[20] S. Datta, P. Sarkar, S. Das, S. Sreshtha, P. Lade, and S.

Majumder, “How many eyeballs does a bug need? An

empirical validation of linus’ law,” in Lecture Notes in

Business Information Processing, vol. 179 LNBIP, pp. 242–

250, 2014,

[21] J. Grenning, “Launching extreme programming at a process-

intensive company,” IEEE Softw., vol. 18, no. 6, pp. 27–33,

2001.

[22] M. Bernhart, A. Mauczka, and T. Grechenig, “Adopting code

reviews for agile software development,” in Proceedings -

2010 Agile Conference, vol. 179 LNBIP, pp. 242–250,

AGILE 2010.

[23] K. Beck, Extreme programming explained: embrace change.

addison-wesley professional, 2000.

[24] P. Dahlem, Marc and Diebold, “Agile Practices in Practice -

A Mapping Study Agile Practices in Practice - A Mapping

Study -,” in 18th International Conference on Evaluation and

Assessment in Software Engineering, pp.30, MAY 2014.

[25] K. Beck, “Embracing change with extreme programming,”

Computer (Long. Beach. Calif)., vol. 32, no. 10, pp. 70–77,

1999.

[26] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, Agile

software development methods Review and analysis. ESPOO:

VTT Publications 478, 2002.

[27] J. Rasmusson, The Agile Samurai, How Agile Masers Deliver

Great Software. Texas, 2010.

29Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

 35 / 39

A Specific Method for Software Reliability of Digital Controller in NPP

Young Jun Lee, Jong Yong Keum, Jang Soo Lee
I&C/HF Division

Korea Atomic Energy Research Institute
Daejeon, Korea

e-mail: yjlee426@kaeri.re.kr, jykeum@kaeri.re.kr,
jslee@kaeri.re.kr

Young Kuk Kim
Department of Computer Science & Engineering

Chungnam National University
Daejeon, Korea

e-mail: ykim@cnu.ac.kr

Abstract— Most new controllers used in the safety systems of
nuclear power plants have been developed using digital systems,
and conventional analog controllers are also increasingly being
replaced with digital controllers. Therefore, the importance of
software that operates within the digital controller of a nuclear
power plant is further increased. This paper describes a
reliability evaluation method for the software to be used for a
specific operation of a digital nuclear power controller. It is
possible to calculate the software reliability when obtaining the
failure rate and utilizing the existing calculation method. We
attempt to achieve differentiation by creating a new definition
of the fault, imitating the software fault using the hardware, and
giving the consideration and weights for injection faults.

Keywords- software reliability; digital controller in NPP;
software life cycle; fault injection.

I. INTRODUCTION

To ensure the safety of software used in a Nuclear Power
Plant (NPP), the Nuclear Regulatory Commission (NRC), the
nuclear regulatory agency of the United States, has published
its Software Review Plan (SRP) [1] and has required safety
software to be developed according to the IEEE Standard 7-
4.3.2 [2]. To meet these regulatory requirements, the software
used in the nuclear safety field has been ensured through the
development, validation, safety analysis, and quality
assurance activities throughout the entire process life cycle
from the planning phase to the installation phase [3]. However,
this evaluation through the development and validation
process needs a lot of time and money. In addition, a variety
of activities, such as the quality assurance activities are also
required to improve the quality of a software. However, there
are limitations to ensure that the quality is improved enough.
Therefore, the effort to calculate the reliability of the software
continues for a quantitative evaluation instead of a qualitative
evaluation.

In this paper, we propose a reliability evaluation method
for the software to be used for a specific operation of the
digital controller in an NPP. After injecting random faults in
the internal space of a developed controller and calculating the
ability to detect the injected faults using diagnostic software,
we can evaluate the software reliability of a digital controller
in an NPP. In Section 2, we introduce the reliability
evaluation research for a nuclear software. A specific method
for software reliability evaluation of a digital controller in an
NPP is explained in Section 3. In Section 4, an experiment
plan is suggested. Finally, we conclude the paper in Section 5.

II. RELIABILITY EVALUATION RESEARCH FOR A NUCLEAR

SOFTWARE

Active research to assess the reliability of software in the
field of a nuclear power plant has only recently progressed. It
has been claimed that a quantitative calculation regarding the
reliability of the software is impossible owing to the
assumption that the software failure rate does not increase
over time unlike in electronic components. Thus, focus on the
amount of testing needs to be made to ensure the reliability of
the predetermined target level rather than directly calculating
the software reliability. Research methods that have been
tailored for this purpose thus far include the Software
Reliability Growth Model (SRGM) [4] and Bayesian Belief
Net [5]. However, it is premature for these research methods
to be applied directly to a site because of the specificity of an
NPP. The applicability of such a method may be considered
only after the result is stabilized and objectively proven.
Software reliability assessment methods that have been
researched regarding the current status of a nuclear power
plant are as follows.

A. Software Reliability Growth Model

The SRGM is used to establish an assumption regarding
whether the software reliability will be improved when a
software failure by such a defect does not occur again by
removing the defects that are inherent in the event of a
software failure. There are two criteria: the Root Mean Square
Error (RMSE) [4] and Average Error (AE) [4].

The RMSE is a measure commonly used when dealing
with the difference between one of the model predictions
based on observations in the real world. It is suitable to
represent the precision. Each of the difference values is also
referred to as a residual, and the mean square deviation is used
to synthesize the residual as a measure. These criteria may be
used to measure the difference between the actual value and
the predicted value. Two formulas can be expressed as follows
(1)(2):

RMSE = ∑ ̂ (1)

AE = ∑ ̂

100 (2)

where n is the group number of the failure data, c(k) is the
number of actual failures in each group of failure data, and ĉ(k)
is the number of predicted failures. The smaller the RMSE and
AE models, the more their predictive power increases.

30Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

 36 / 39

B. Bayesian Belief Net

Bayesian Belief Net (BBN) [15] is a methodology that
leads to quantitative results by calculating and applying the
laws of probability including Bayes probability. It models the
relevant variables in the target system through a causal
relationship, expresses the dependency degree of variables as
a conditional probability, and inputs several observed
evidences into the BBN model generated. The BBN consists
of nodes indicated as circles on the graph, arcs between nodes,
and a node probability table (or conditional probability table)
of each node. Nodes represent variables included in the model,
the arcs indicate a causal relationship between nodes. Each
node has a number of states as random variables (for example,
a state of "Yes" or "No"). The sum of the probability of the
state value is 1. The node probability table associated with
each node determines the connection strength between nodes,
and is expressed as a conditional probability for each state of
the parent node.

III. SPECIFIC METHOD FOR SOFTWARE RELIABILITY

EVALUATION OF A DIGITAL CONTROLLER IN AN NPP

The software reliability methods we have seen thus far
have been studied to apply to the software in an NPP, but there
is actually no applied practice. SRGM can demonstrate that
the reliability grows when failure data and the resolution case
of a compete software exist. However, the adaptation data are
not sufficiently secured and the BBN methodology has
occupied much of the qualitative determination elements, and
thus BBN methodology has a limitation in that it calculates
the quantitative data. In order to overcome these
disadvantages, we propose a specific method to obtain a
quantitative value of the reliability of a software used in an
NPP. Considerations in the proposed method are as follows.

First, the reliability evaluation formula uses the general
reliability calculation method commonly used. This is the
reliability calculation method for the electronic component.
Applying this method to software that is not worn out may
start a debate. However, we assumed that the software can also
be continually exposed to potential bugs over time and that the
software is also aging.

Second, random faults should be injected inside the
software, and the definition for injected faults should be
interpreted differently. The injected fault defined as a fault
may not be recognized as a fault inside the software, and the
failure weight may also be different because the injected fault
has different effects on a software action.

Third, the failure rate to be used for the reliability
evaluation formula should be defined. If any fault is injected
in the location of the software and the fault detection coverage
through the diagnostics software is calculated, the failure rate
of the target software can be determined.

These issues are explained in detail as follows.

A. Reliability calculation method

A reliability is a way to express the probability that
electronic components are continuously operated for a certain
time. This is expressed as follows (3)(4):

1 1 1 (3)

1 (4)

F(t) is the failure cumulative distribution function and

means the probability of malfunction within time t. It is
expressed as follows (5)(6):

, 0 (5)

1 (6)

In addition, the (t) factor used in the failure cumulative

distribution function of the system refers to the number of
faults per unit of time. The most important factor is the failure
rate (t) in the basic method for calculating the reliability. This
is because the reliability calculation value is changed
according to the number of faults in the system per unit of time.
The failure rate calculation is as follows (7)(8)(9):

1 (7)

	 	 	|	 	 ∑
∑ (8)

1 ∑
∑ (9)

There are various ways to calculate the failure rate

expressed as a constant value. Among them, it is a general
method that estimates the failure rate value using a probability
analysis method using the test data and analysis data and
calculates the reliability using the estimated values. The test
data and the analysis data should be sufficient for the accuracy
of the probability. However, there is a limitation in extracting
the test data from the situation in which the controller is
applied to the safety system and is operated. The samples also
are very small, and thus it is inappropriate for use in statistics.
In addition, determining the test result as a representative
value of the failure rate is not rational because tests performed
in the development process is not guaranteed. Random faults
are injected in the software of the developed completed
controller to escape the weakness, and it can then be possible
to obtain the reliability of the software after calculating a
failure rate using the diagnostic functions of the system.

B. Definition of SW failure in Controller

Because software within the controller in an NPP conducts
the same program repeatedly, the area for the software has
been limited. Thus, the definition for the fault within the
controller is necessary. Because the fault occurs in the
previous step of importing the system failure, even if a fault
occurs, the system is not unconditionally experiencing a
failure. By affecting the program or system task performing
this safety function, the faults may or may not generate a
system failure. For example, if even a specific area of the
memory has been adhered to the value of bit 0, if the
application using the memory uses the specific area as space
for a constant, the integer value for the software does not
change because the most upper bits remain as the value of bit
0. When the decimal value 15 is saved in the 10 bit space of

31Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

 37 / 39

integer type memory, the binary value stored in that space will
be "0000001111". At this time, the upper 4 bits will always
be stored as a value of zero. Although the value of the upper
4 bits fixed to a value of zero by external shock, it does not
affect the safety operation of the software. These faults in the
controller in an NPP should not be treated as faults. It is
necessary to distinguish whether the application in the
controller uses the location or not when calculating the failure
of the controller in the NPP. The fault in the position where
the application program is not utilized is excluded from the
faults. If this fault does not affect the safety program, it is
realistically difficult to detect the fault and it is also not easy
to develop a diagnostic program that can detect the faults in
the unused portion. In the case of implementation with a
complex diagnostic algorithm, the real-time detection of the
fault is not guaranteed, and the detection function may not be
properly conducted because much time and a high cost are
needed for its operation. The effectiveness of the fault is given
depending on whether the fault can affect the operation of the
software in an NPP.

C. Fault effect factors

There are some factors to be considered in order to
determine the fault using a fault detection function. The fault
coverage may be computed differently since the location, the
type, and the nature of the faults are different individually. The
fault factors for the software in an NPP are as follows.

Fault ∈ {type, duration, location, weight, recovery}

The type, duration, location, weight, and recovery ability

are the factors for the faults. In particular, the weighting factor
may have the greatest impact on the calculation of the fault
detection coverage of the controller in an NPP. The recovery
ability is not important in the controller in an NPP since a
diversity protection system will be operated when the fault is
detected. We focus on the fault detection coverage capability.

 Fault Type = stuck-0 fault，stuck-1 fault
The fault type is stuck-0 or stuck-1. A software program is
operated in hardware memory and the input and output of
the data are also utilized in the memory space. An action
for injecting a fault occurs in the memory and the memory
bit can then be stuck-0 or stuck-1. A memory fault injected
in the hardware has one of the two corresponding fault
types, and thus, the fault type of the target bit is determined
according to a probability of 1/2.
 Fault Duration
The duration degree of a fault is one of the attributes for
defining the fault. An injection fault may be lasting as a
permanent fault. Another fault may be recovered to a
normal state over time, although it occurs intermittently.
In this study, we only consider a permanent fault and not
an intermittent fault.
 Fault Location
The location of the fault is one of the attributes for
quantifying it. It is important to determine whether a
random fault is injected in any position. A random
injection fault affects the quantification of the failure

depending on whether it is located on the most significant
bit or the least significant bit. The location of the fault can
be defined as the weighting factor．
 Fault Weighting
Operating system software running on the safety controller
in an NPP repeats the same operation, performs a
calculation using the data received from the
communication in repeated operations, and performs
diagnostic operations. The code and data area of the
accessed memory are fixed during one cycle of the
application program. However, the number of accesses are
different from each other. It is reasonable to assign a
weight in accordance with the number of accesses because
a fault in the memory space where can access frequently
increases the probability, which can affect the safety
operation.

IV. EXPERIMENT

An experiment for calculating the failure rate of the
software in consideration of the proposed method is
progressing. Until now, the memory space that a software
application can access was classified according to the access
count. This is shown in Figure 1.

Figure 1. SW execution path and categorization.

To gain the first weighting factor related to the Fault
Location, we addressed the random memory spaces that are
utilized by a software program.

 Fault Injection Memory Address: 0x00C00E64 ~
0x00C01139

 Fault Location: 0~31 bit
 Fault Type: stuck-0

Figure 2 shows the error effect statistics according to bit

position in physical address.

0

100

200

300

400

500

600

700

Category 1

Category 2

Category 3

Category 4

0

100

200

300

400

500

600

700

C
0
0
E
3
D

C
0
1
1
5
3

C
0
1
3
B
B

C
0
1
6
2
3

C
0
1
8
8
B

C
0
1
B
0
5

C
0
1
D
7
C

C
0
1
F
E
7

C
0
2
2
4
F

C
0
2
4
B
7

C
0
2
7
2
5

C
0
2
9
9
0

C
0
2
B
F
E

C
0
2
E
7
2

C
0
3
0
F
B

C
0
3
3
6
3

C
0
3
5
C
B

C
0
3
8
3
3

C
0
3
A
9
B

C
0
3
D
0
3

C
0
3
F
6
B

C
0
4
1
D
3

C
0
4
4
3
B

C
0
4
6
A
3

C
0
4
9
0
E

C
0
4
B
7
6

C
0
4
D
D
E

C
0
5
0
4
6

C
0
5
2
A
E

C
0
5
5
1
6

C
0
5
7
7
E

C
0
5
9
E
6

C
0
5
C
5
7

C
0
5
E
C
6

C
0
6
1
6
2

C
0
6
4
6
8

C
0
6
7
3
4

C
0
6
A
0
2

C
0
6
C
F
F

C
0
6
F
D
5

C
0
7
2
8
A

C
0
7
5
7
3

C
0
7
8
4
5

C
0
7
D
8
3

0

100

200

300

400

500

600

700

C
0
0
E
6
4

C
0
0
E
6
F

C
0
0
E
B
5

C
0
0
E
C
0

C
0
0
E
C

C
0
0
E
D
6

C
0
0
E
E
1

C
0
0
E
E
C

C
0
0
E
F
7

C
0
0
F
0
2

C
0
0
F
0
D

C
0
0
F
1
8

C
0
0
F
2
3

C
0
0
F
3
1

C
0
1
0
C
E

C
0
1
0
F
4

C
0
1
0
F
F

C
0
1
1
0
A

C
0
1
1
1
5

C
0
1
1
2
3

C
0
1
1
2
E

C
0
1
1
3
C

C
0
1
1
4
7

C
0
1
A
C
C

C
0
1
A
D
7

C
0
1
A
F
6

C
0
2
6
F
A

C
0
2
7
0
8

C
0
2
F
D
7

C
0
2
F
E
5

C
0
6
7
D
4

C
0
6
7
E
9

C
0
6
8
0
0

C
0
6
8
0
B

C
0
6
8
1
6

C
0
6
8
2
1

C
0
6
8
2
F

0

100

200

300

400

500

600

700

C
00
E6
4

C
00
E6
6

C
00
E6
8

C
00
E7
1

C
00
E7
3

C
00
E7
5

C
00
E7
7

C
00
E7
9

C
01
0F
5

C
01
0F
7

C
01
10
0

C
01
10
2

C
01
10
4

C
01
10
6

C
01
10
8

C
01
12
2

C
01
12
4

C
01
12
6

C
01
12
8

C
01
12
A

C
01
12
C

C
01
12
E

C
01
13
3

C
01
13
5

C
01
13
7

C
01
13
9

32Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

 38 / 39

Figure 2. Error effect according to bit position of address.

Then, we can acquire the normalized weighting value using
experimental sample data. Table 1 shows the normalized
value depending on each bit position in address.

TABLE I. NORMALIZED VALUE OF BIT POSITION

Bit
positi

on

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

Norm
alized
value

-0.146 -0.013 0.389 -0.682 -0.682 -1.084 -1.084 -1.084

0.791 0.791 -1.084 0.657 -1.084 -1.084 -0.950 -0.146

0.121 0.255 -0.414 1.193 -0.682 0.523 2.532 -0.816

-0.146 -0.013 0.121 0.791 1.996 -0.280 2.264 -0.950

We will estimate the software reliability using fault

weighting value and the failure rate by the diagnostics
software. The experimental results will be released in a future
work, after the tests are completed.

V. CONCLUSION

We tried to calculate the software reliability of the
controller in an NPP using a new method that differs from a
traditional method. It calculates the fault detection coverage
after injecting the faults into the software memory space rather
than the activity through the life-cycle process. It is possible
to calculate the software reliability when obtaining the failure
rate and utilizing the existing calculation method. We attempt
differentiation by creating a new definition of the fault,
imitating the software fault using the hardware, and giving a
consideration and weights for injection faults.

ACKNOWLEDGMENT

This paper was supported by the Ministry of Science, ICT
(Information and Communication Technology) & Future
Planning, Korea.

REFERENCES
[1] BTP-7-14, Guidance on software reviews for digital computer-

based instrumentation and control system. NUREG-0800,
Standard Review Plan: branch technical position 7-14,
Revision 5, Nuclear Regulatory Commission.

[2] The Institute of Electrical and Electronics Engineers, Inc.,
“Standard Criteria for Digital Computers in Safety Systems of
Nuclear Power Generating Stations,” IEEE 7-4.3.2.

[3] K. C. Kwon and M. S. Lee, “Technical Review on the
Localized Digital Instrumentation and Control Systems,”
Nuclear Engineering and Technology, vol. 41, no. 4, 2009, pp.
447-454.

[4] Gaurav Aggarwal and V. K Gupta, “Software Reliability
Growth Model,” International Journal of Advanced Research
in Computer Science and Software Engineering, vol. 4, 2014,
pp. 475-479.

[5] H. S. Eom, G. Y. Park, H. G. Kang, and S. C. Jang, “Reliability
assessment of a safety–critical software by using generalized
Bayesian nets,” 6th International Topical Meeting on Nuclear
Plant Instrumentation, Control and Human Machine Interface
Technology, Knoxville, Tennessee 2009.

[6] H. G. Kang, “An Overview of Risk quantification Issues of
Digitalized Nuclear Power Plants Using Static Fault Trees,”
Nuclear Engineering and Technology, vol. 41, 2009, pp. 849-
858.

[7] J. Duraes and H. Madeira, “Emulation of software faults, a field
data study and a practical approach,” IEEE Trans. Softw. Eng,.
vol. 32, no. 11, 2006, pp. 849-867.

[8] M. C. Hsueh, T. K. Tsai, and R. KIyer, “Fault Injection
Techniques and Tools,” IEEE Computer, vol. 30, no.4, April
1997, pp. 75-82.

[9] Jean arlat et al., “Fault Injection for Dependability Validation:
A Methodology and Some Applications,” IEEE Trans. On Soft.
Eng., vol 16, no.2, Feb 1990, pp. 166-182.

[10] G. Choi and R. Iyer, “Focus, An Experimental Environment for
Fault Sensitivity Analysis,” IEEE Trans. On Computers, vol.41,
no.12, December 1992, pp. 1515-1526.

[11] Y. Yu, “A perspective on the state of Research on Fault
injection techniques,” Research Report, University of Virginia,
May 2001.

[12] PATENT, “Fault mode apparatus and method using software,”
10-1222349, The Korean Intellectual Property Office, 2013.

[13] H. Madeira, D. Costa, and M. Vieira, “On the emulation of
software faults by software faults by software fault injection,”
Proceedings of International Conference on Dependable
Systems and Networks, 2000, pp. 417-426.

[14] S. Richter and J. Wittig, “Verification and Validation Process
for Safety I&C Systems,” Nuclear Plant Journal, May-June,
2003, pp. 36-40.

[15] B.A. Gran and A. Helminen, “The BBN methodology: progress
report and future work. OECD Halden Reactor Project,” HWR-
693, 2002.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Effect 7 8 11 3 3 0 0 0 14 14 0 13 0 0 1 7 9 10 5 17 3 12 27 2 7 8 9 14 23 6 25 1

No Effect 51 50 47 55 55 58 58 58 44 44 58 45 58 58 57 51 49 48 53 41 55 46 31 56 51 50 49 44 35 52 33 57

0

10

20

30

40

50

60

70

33Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

Powered by TCPDF (www.tcpdf.org)

 39 / 39

http://www.tcpdf.org

