
FASSI 2019

The Fifth International Conference on Fundamentals and Advances in Software

Systems Integration

ISBN: 978-1-61208-750-4

October 27 - 31, 2019

Nice, France

FASSI 2019 Editors

Mihaela Iridon, Candea LLC, USA

Chris Ireland, Open University, UK

 1 / 53

FASSI 2019

Forward

The Fifth International Conference on Fundamentals and Advances in Software Systems Integration
(FASSI 2019), held between October 27, 2019 and October 31, 2019 in Nice, France, continued a series
of events started in 2015 and covering research in the field of software system integration.

On the surface the question of how to integrate two software systems appears to be a technical
concern, one that involves addressing issues, such as how to exchange data (Hohpe 2012), and which
software systems are responsible for which part of a business process. Furthermore, because we can
build interfaces between software systems we might therefore believe that the problems of software
integration have been solved. But those responsible for the design of a software system face a number
of trade-offs. For example the decoupling of software components is one way to reduce assumptions,
such as those about where code is executed and when it is executed (Hohpe 2012). However,
decoupling introduces other problems because it leads to an increase in the number of connections and
introduces issues of availability, responsiveness and synchronicity of changes (Hohpe 2012).

The objective of this conference is to work toward on understanding of these issues, the trade-offs
and the problems of software integration and to explore strategies for dealing with them. We are
interested to receive paper from researchers working in the field of software system integration.

We take here the opportunity to warmly thank all the members of the FASSI 2019 technical program
committee, as well as all the reviewers. The creation of such a high quality conference program would
not have been possible without their involvement. We also kindly thank all the authors who dedicated
much of their time and effort to contribute to FASSI 2019. We truly believe that, thanks to all these
efforts, the final conference program consisted of top quality contributions.

We also thank the members of the FASSI 2019 organizing committee for their help in handling the
logistics and for their work that made this professional meeting a success.

We hope that FASSI 2019 was a successful international forum for the exchange of ideas and results
between academia and industry and to promote further progress in the area of software systems
integration. We also hope that Nice, France provided a pleasant environment during the conference and
everyone saved some time to enjoy the charm of the city.

FASSI 2019 Chairs

FASSI Steering Committee
Chris Ireland, The Open University, UK
Hironori Washizaki, Waseda University / National Institute of Informatics / System Information, Japan
Keijiro Araki, Kyushu University, Japan

FASSI Publicity Chair
Ayman Aljarbouh, University of Grenoble Alpes (UGA) in Grenoble, France

 2 / 53

FASSI 2019
Committee

FASSI Steering Committee

Chris Ireland, The Open University, UK
Hironori Washizaki, Waseda University / National Institute of Informatics / System Information, Japan
Keijiro Araki, Kyushu University, Japan

FASSI Publicity Chair

Ayman Aljarbouh, University of Grenoble Alpes (UGA) in Grenoble, France

FASSI 2019 Technical Program Committee

Frank J. Affonso, Universidade Estadual Paulista – UNESP, Brazil
Harvey Alférez, Montemorelos University, Mexico
Ayman Aljarbouh, University of Grenoble Alpes (UGA) in Grenoble, France
Keijiro Araki, Kyushu University, Japan
Doo-Hwan Bae, School of Computing - KAIST, South Korea
Imen Ben Mansour, University of Manouba, Tunisia
Dhouha Ben Noureddine, University of Carthage / University of El Manar, Tunisia
Silvia Bonfanti, University of Bergamo, Italy
Michael Franklin Bosu, Waikato Institute of Technology, New Zealand
Graeme Burnett, University of Glasgow/Enhyper Ltd., UK
Yudith Cardinale, Universidad Simón Bolívar, Caracas, Venezuela
Stephen Clyde, Utah State University, USA
Marcos Da Silveira, Luxembourg Institute of Science and Technology, Luxembourg
Marian Daun, University of Duisburg-Essen | paluno - The Ruhr Institute for Software Technology, Essen,
Germany
Nitish Devadiga, Datarista Inc. / Carnegie Mellon University, USA
Francisco José Domínguez Mayo, University of Seville, Spain
Jorge Edison Lascano, Universidad de las Fuerzas Armadas ESPE, Quito, Ecuador
Leire Etxeberria Elorza, Mondragon Unibertsitatea, Spain
Ip-Shing Fan, Cranfield University, UK
Marie Farrell, University of Liverpool, UK
Peter Forbrig, University of Rostock, Germany
Lina Garcés, University of Sao Paulo, Brazil
Kevin Gary, Arizona State University, USA
Svetlana Gerbel, Hannover Medical School (MHH) / Medical Data Integration Center (MeDIC) / Hannover
University of Applied Sciences and Arts, Germany
Atef Gharbi, LISI | INSAT, Tunisia
Hamza Gharsellaoui, ENI Carthage | Carthage University, Tunisia / Al Jouf College of Technology | TVTC,
KSA
Fotios Gioulekas, Aristotle University of Thessaloniki, Greece
Afef Gueidi, University Tunis El Manar / Carthage University, Tunisia
Mohammad Mahdi Hassan, Al Qassim University, Buraidah, Saudi Arabia

 3 / 53

Shinpei Hayashi, Tokyo Institute of Technology, Japan
Alan Hayes, University of Bath, UK
Samedi Heng, HEC Liège - Université de Liège, Belgium
Nikolas Herbst, University of Würzburg, Germany
Uwe Hohenstein, Siemens AG, Munich, Germany
LiGuo Huang, Southern Methodist University, USA
Anca Daniela Ionita, University Politehnica of Bucharest, Romania
Chris Ireland, The Open University, UK
Slinger Jansen, Utrecht University, Netherlands
Carlos Kavka, ESTECO SpA, Trieste, Italy
Jayden Khakurel, Lappeenranta University of Technology, Finland
John Klein, Carnegie Mellon University | Software Engineering Institute, Pittsburgh, USA
Bruno Lima, University of Porto & INESC TEC, Portugal
Francesca Lonetti, CNR-ISTI, Pisa, Italy
Damian M. Lyons, Fordham University, USA
Tomi Männistö, University of Helsinki, Finland
Dusica Marijan, Simula Research Laboratory, Norway
Gabriele Meoni, University of Pisa, Italy
Sanjay Misra, Covenant University, Ota, Nigeria
Osamu Mizuno, Kyoto Institute of Technology, Japan
Mariana Mocanu, University Politehnica of Bucharest, Romania
Andreas Morgenstern, Fraunhofer Institute for Software Engineering (IESE), Germany
Tsuyoshi Nakajima, Shibaura Institute of Technology, Japan
Vu Nguyen, Center in Management Information Systems - Université catholique de Louvain, Belgium
Yassine Ouhammou, LIAS/ISAE-ENSMA, France
Roberto Paiano, University of Salento, Lecce, Italy
Michail Papamichail, Aristotle University of Thessaloniki, Greece
Christian Percebois, University of Toulouse, France
Dessislava Petrova-Antonova, Sofia University "St. Kliment Ohridski", Bulgaria
Olivier H. Roux, Ecole Centrale de Nantes, France
Gunter Saake, Otto-von-Guericke-University of Magdeburg, Germany
Williamson Silva, Federal University of Amazonas, Brazil
Maria Spichkova, RMIT University, Australia
Tim Storer, University of Glasgow, UK
Csaba Szabó, Technical University of Košice, Slovakia
Hamed Taherdoost, Hamta Group, Kuala Lumpur, Malaysia
Bedir Tekinerdogan, Wageningen University, The Netherlands
Alexandre Vasconcelos, Center of Informatics - Federal University Pernambuco, Brazil
Laszlo Vidacs, University of Szeged | MTA-SZTE Research Group on Artificial Intelligence, Hungary
Shangwen Wang, National University of Defense Technology, Changsha, China
Hironori Washizaki, Waseda University / National Institute of Informatics / SYSTEM INFORMATION,
Japan
Tim Weilkiens, oose Innovative Informatik eG, Germany
Zhi Zhang, Synopsys Inc., USA

 4 / 53

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 5 / 53

Table of Contents

Design Model of a Training Simulator in Virtual Reality
Igor Petukhov, Liudmila Steshina, Andrey Glazyrin, and Dimiter Velev

1

Mixed-Paradigm Framework for Model-Based Systems Engineering
Philipp Helle, Stefan Richter, Gerrit Schramm, and Andreas Zindel

8

JeroMF: A Software Development Framework for Building Distributed Applications Based on Microservices and
JeroMQ
Aditi Jain and Stephen Clyde

14

Automata-Based Timed Event Program Comprehension for Real-Time Systems
Aziz Fellah and Ajay Bandi

21

Limitations of Using Digital BIM Models to Carry out Thermal Analysis
Anabelle Rahhal, Coralie Matthys, Samia Ben Rajeb, and Pierre Leclercq

29

Industry Case Study: Design Antipatterns in Actual Implementations. Understanding and Correcting Common
Integration Design Oversights.
Mihaela Iridon

36

Data Science as a Service - Prototyping for an Enterprise Self-Service Platform for Reproducible Research
Steve Guhr, Jan-Hendrik Martenson, Hans Laser, Jannes Gless, Detlef Amendt, Benjamin Schantze, and Svetlana
Gerbel

43

Powered by TCPDF (www.tcpdf.org)

 1 / 1 6 / 53

Design Model of a Training Simulator in Virtual Reality

Igor Petukhov
Department of Radio Technical

Volga State University of Technology
Yoshkar-Ola, Russia

email: Petuhoviv@volgatech.net

Liudmila Steshina
Department of Radio Technical

Volga State University of Technology
Yoshkar-Ola, Russia

email: Steshinala@volgatech.net

Andrey Glazyrin
Department of Radio Technical

Volga State University of Technology
Yoshkar-Ola, Russia

email: railot116@gmail.com

Dimiter Velev
Department of Information Technologies and

Communications
University of National and World Economy

Sofia, Bulgaria
email: dgvelev@unwe.bg

Abstract— This paper discusses problems that arise in the
process of designing training simulators based on virtual
reality. Virtual reality increases the performance of training
due to immersion and realistic spatial objects. Unfortunately,
there are problems associated with designing training
simulators based on virtual reality. These problems are related
to the performance of the environment in the context of
effective user training. The paper presents a new approach to
design a framework for a training simulator in virtual reality.
Its key idea is to introduce basic principles for building of a
two-level architecture using a user-centered design (on low-
level) and object-closed design (on high-level). The low-level
includes a modeling of the subject’s orientation and the
response of the environment to external influences. The high-
level focuses on the specific of training scripts such as
specificity of the operation or a detailed 3D model
(visualization of target’s operation through user interaction
with the virtual environment). The data obtained can provide
benefits to modeling training systems in virtual reality and for
improving learning performance. The material presented can
open new prospects for further research studies. It seems
interesting to those who work in the field of usability
engineering, training and human-computer interaction.

Keywords- virtual reality; virtual environment; human-
computer interaction; training simulator; virtual subjectivities;
user-centered design; design framework component.

I. INTRODUCTION

The applications of Virtual Reality (VR) are becoming
very popular in different fields of human activity. On one
hand, there is a continued optimism in the growth of the
immersive industry sector [1]. On the other hand, there are
many opportunities in the contexts of communication and
integration of human feelings and emotions in the Virtual
Environments (VE) [2].

The greatest interest is simulation based training on VR
(the system hardware and software are essential components

of the virtual reality system), which affects the sense organs
like in a realistic scenario of professional activity.

Despite the active progress of immersive and interactive
technologies, some difficulties are still associated with
certain restrictions. These problems include 3D interaction
design in VR [3], creation of realistic 3D content such as
physics and visual effects [4], unified techniques of
interaction in the VE [5], the difficulties of geo-positioning
and spatial relocation [6].

This paper covers actual issues linked with the analyses
and description model of VR for training simulation, which
takes into account the subject area and subjective user
experience.

One of the most common applications of VR is
simulation training in the different spheres such as medicine
[7], astronautic science [8], education [9], industry [10],
sports [11], military [12], games [13], building architecture
[14], etc. Therefore, VR should reproduce a user's practical
activity in the context of any task. At the same time, VR is
safe for humans in comparison with the physical
environment [15].

It was noted that the training of tasks that are performed
in a three-dimensional space are better performed in VE [16],
for example, memory training [17] or improving spatial
thinking [18]. Moreover, perceptions of learning programs
are becoming more effective in VE by increasing user
motivations [19], modeling collaborative learning or other
communication practices [20]. The greatest interest is
training of movements and memorizing motor skills [21],
such as simulations of accurate manipulations at atypical
conditions for humans [8] [22].

It was shown that VE has an influence on psycho-
emotional states and stress resistance [23]; thus, this one
could activate the corresponding behavior like in the real
world [24]. The analysis mentioned above shows the
potential of VR in the context of increasing the effectiveness
of learning and simulation training.

1Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 7 / 53

The rest of the paper is structured as follows. Section 2
describes the main problems of human-computer interaction
within VR. Section 3 covers some related works in this area,
summarizing the differences between characteristics and
features of training simulation in VR. Section 4 mentions the
mapping model, which is followed for the training simulator.
Section 5 concludes this paper.

II. PROBLEMS

At the moment, the design of human-computer
interaction within VR is centered on classical usability
methods [25] that have been used in the Windows Icon
Mouse Pointer (WIMP) - paradigm applications for a long
time. At the same time, VR crucially differs from
conventional desktop applications first of all by its deep
psychophysiological action, a wider set of interaction
techniques, and 3D contents [26].

Another key problem is related to the design of the
immersion functionality. On one hand, there is an empirical
correlation of immersion with hardware and software
parameters of VR such as a frame rate, tracking a head
rotation, audio, and interaction methods applied in the VE.
On the other hand, a deep level of interaction can be
explained by activation of similar structures in the brain, i.e.
sensory stimuli as in the real world. Therefore, we face a
problem of continuity between the subjective experience of
the presence in the environment and the functional
performance of the VR hardware [27].

It was noted that human performance is the basic element
in VR because performance-based simulator-design
guidelines include balancing perceived realism with
simulator limitations, such as latency resulting from graphic
and haptic renderings [28]. The problems of presence that
affected humans in VR, such as user movement control,
should be streamlined to enhance performance and reduce
sickness [29].

The main principles of the complex processing of input
information in VR were discussed [30]. This approach
considers the user through the perception of the psycho-
emotional model of the environment. On one hand, it is
important to find a balance between rational reasoning and
emotional reasoning because these factors integrate the
human psychological state with VE [31]. On the other hand,
there is the virtual subjectiveness [32], which affects
consistency (mapping) between the cognitive-psychological
level of the user’s perception and the VR system [33].

Due to the problems mentioned, various research works
and studies are focusing on finding out the components of
visual immersion, including field of view, field of regard,
and display size. Each element of visual immersion affects
measurable user performance, understanding, and preference
in a wide variety of VEs [34]. In this way, it is important to
define what components affect the performance of which
tasks [35].

However, there is a wide set of training simulator-based
VRs that gives a good account of itself. These are VR
simulators in medicine [36], education [37], communication
[38], military [39], etc. So, let us consider how these
problems are overcome. Based on these results, it is possible

to describe the attributes and architectures (approaches) for
designing the training systems in VE. It should be noted that
the selection of parameters for the model of training
simulators will be controlled by the specifics of the user-
environment relations.

III. RELATED WORK

The Structural-Functional Design (SFD) overcomes the
difficulties linked with the complex structure of the VR
system and defines separated components, such as visual,
behavioral and interaction characteristics. Each characteristic
refers to the object’s state inside the VR system and includes
a set of parameters. For example, the visual level includes
the rendering of the 3D content after the process of a user’s
interaction with the environment. The behavioral
characteristic defines the actions of objects in VE and the
interaction between 3D objects.

In the context of training, the design model finds out the
components that may have a strong impact on the modeling
of a realistic training simulation. The methodology
formalizes the process of VR interface into two phases,
which describe levels of abstraction, and breaks down the
phases into components [40]. The high-level phase defines
the conceptual feature of the environment (the target of
training, methods simulations); at the same time, the low-
level phase guides details of human interaction, rendering of
3D objects, behavior of the environment, etc.

Consequently, SFD helps to unify around the structure of
the VR system, defines the components of the systems, and
finds out the target and features of components. In practice,
this methodology uses the Virtual Reality Interface Design
(VRID) model [40], TRES-D [41] and other examples [42-
44].

Unfortunately, the mentioned model focuses to a greater
extent on technical details and ignores the specifics of
participants. This conceptual framework may help to plan a
design process or represents the operational behavior of the
system. Therefore, it is important to consider other examples
of the model of VR, which takes an active part in the
interaction and communication with the user.

The Communication-Information Design (CID) suggests
considering a training environment like an active subject of
communication with the user [45]. For that reason, the
mentioned environment contains a decision support system
based on Artificial Intelligence (AI) that concentrates around
avatars (virtual human being) and virtual surroundings.

The typical illustration of CID is the so-called Virtual
Human Project (VHP) [46]. The goal of VHP is to create
realistic virtual humans to increase the effectiveness of the
communication information procedure of interaction
between users and avatars. In this case, the user is a
concurrent part of the training environment and active object
in VE.

Conceptually, the virtual humans or avatars should
include three nested layers that make up the mind the agent
thinks with (cognitive layer), the body the agent acts with
(virtual layer), and the world of the agent (simulation layer)
[46]. Each layer is the set of components that extend features

2Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 8 / 53

of avatars and includes verbal speech, body gesture, and
actions the character performs, for example, walking.

For training simulation, the approach mentioned may
help to design the environment for cognition and emotion
modeling of the user’s condition. In practice, it is training in
VR such as tactical questions in military or cultural
immersive training [47], commutative capacity [48], and
crowd simulation [49]. The specific feature of the
communication–information approach is modeling virtual
humans for interaction with the user through speech and
gesture.

The Object-Closed Design (OCD) focuses on detailed
implementation (visualization of granule operation’s
component, pressure feedback, quality of movement) of the
complex manipulation in a variety of fields such as medical
[50], handling operations [51], engineering [52][53], system
of telepresence [54][55], etc. This approach includes
monitoring the system in real time. In this case, the
environment should be reacting on each event that appears
after the user’s manipulation, 3D object’s interaction, the end
of a fixed period, etc.

Therefore, VR should reproduce a user’s practical
activity in the context of any task. Indeed, the user is key to
the system’s component; at the same time, the reaction of the
environment is more important. The user is defined as a
secondary member and a concurrent element to perform any
task. The communication between the training environment
and the participant is executed through object-closed
manipulation. For example, in the medical field, there is
pressure on the special mannequin, imitation of elasticity and
feedback of rendering a 3D view of anatomical structures
[50].

The object-closed approach may help with detailed
modeling of task execution. Unfortunately, this model
disregards the significance of user’s attribute such as
motility, psychophysiological specificity, subjectivity, and
experiences.

The User-Centered Design (UCD) models a training
environment that consists of users (humans) as the most
important items in interaction with virtual content through
equipment. For that reason, the user is no longer “a black
box” because this one may be considered like an object with
previous experience or psychophysiological specificity. It
was noted that human performance is related to the quality of
the VE (level of immersion, self-explanatory navigation,
ease of interaction with 3D object, etc.). At the same time, it
has shown the positive and negative impact of VR on the
health of humans [56]. Therefore, it is important to extract a
human feature, which affects the performance of the
environment. For example, in the Conceptual VR Model
(CVRM), the user handles effectors (shell, fixture, appliance)
from VR, which reduce feedback in the form of sensory
stimuli. Consequently, for correct modeling, UCD finds out
the mapping of the virtual effectors and the perceptual
system of the participant. So, the visual perceptual system is
linked with visual display such as orientation in time and
space [57].

Conceptually, there are three independent main parts of
the system, such as the environment, a user and a mediator.

The mediator integrates the user with VE through Virtual
Subjectivities (VS) [53]. The VS includes reminiscence
about the surrounding medium and subjective experiences in
the context of the psychophysiological-cognitive patterns
that become active in the same situations as in physical
reality. The mediator appears in the form of scale perception,
orientation, action, etc. The UCD does user an active actor in
the scheme of training systems because the virtual model
combines human perception and dynamic spatial content.
Unfortunately, the border between the user and the VE
remains diffuse in this model. The mediator is a key
component needed in defining the factors that support the
performance of the training simulation in VR.

Table 1 summarizes the differences between the
characteristics and features of different model designs. As
the table indicates, each approach brings significant
challenges in modeling the training environment. For
example, CID fits collaborative training or face-to-face
communication, but it is unlikely to be used in an illustration
of surgical operation. UCD, for example, does not
completely reflect the specific quality of the operation, but it
probably allows to include the virtual subjunctives in the
process of simulation.

TABLE I. PREVIOUS RESEARCH AND DEFINITIONS OF THE DESIGN

MODEL OF TRAINING SIMULATION IN VR

Name Framework
and design

model

Type of
training

Central
elements

Key features

SFD

Tanriverdi
V., Jacob
R. J. K.
VRID 2001
[40],
Molina J. P.
et al.
TRES-D
2006 [41],
Cochrane
T. et al.
DBR 2017
[43].

none

The visual,
behavioral
and
interaction
characteristics

Defines
components
of the
systems;
finds out
target and
features of
components

CID

Kenny P. et
al. VHP
2007 [46],
Prange A.
et al. MDS
2017 [48],
Ulicny B.,
Thalmann
D. Crowd
simulation
2001 [49]

Collaborati
ve training,
communica
tion, crowd
training,
cultural
interchange
.

The cognitive
level and AI,
model of
avatar (verbal
speech, body
gesture, and
actions the
character
performs)

Creates a
realistically
virtual
human to
increase the
effectivenes
s of
communicat
ion–
information
procedure of
interaction
between
users and
avatars

OCD

Çakmak H.
K.,
Kühnapfel
U. KisMo
2000 [50],
Pürzel F. et
al. 2013
[51], Stoll

Modeling
of granule
operation’s
component,
pressure
feedback,
quality of
movement

The reaction
of VR on
actions of
user
(pressure,
feedback,
imitation of
elasticity and

The special
mannequin
or a detailed
3D model.
Visualizatio
n of target’s
operation
through user

3Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 9 / 53

Name Framework
and design

model

Type of
training

Central
elements

Key features

E., Wilde
M., Pong
C. 2009
[54]

and etc. etc.) interaction
with VR.

UCD

Stanney K.
M.,
Mourant R.
R.,
Kennedy R.
S. 1998
[56], Latta
J. N.,
Oberg D. J.
et al.
CVRM
1994 [57],
Parés N.,
Parés R.
2006 [32]

Modeling
of training
simulator
includes
user
experiences
,
characterist
ics, and
psychophys
iological-
cognitive
patterns.

The user
handles
effectors
(shell, fixture,
appliance)
from VR and
reproduces
feedback in
the form of
sensory
stimuli

Model of
mapping
virtual
element’s
and correct
user’s
perception.

It is necessary to emphasize that current models are
linked with targets of training simulation and use different
architectural components. The most interest brings UCD and
OCD approaches’ focus on the subjective perception of the
environment and VE’s reflection on input user’s action. In
the next section, the extended model of training systems
based on UCD and OCD will be discussed.

Immersion or presence is a critical attribute of VR [58].
Immersion is the state of mind of an individual where he or
she excludes the outside world and is totally focused on
experiencing another world [59]. It was shown that the
immersion appears in the form of cognitive and perception
components of user’s subjectivities [60]. On the one hand,
immersion influences the performance and quality of an
executed task [61][62] through correct selection and
specification of spatial elements. In this context, the 3D
content and property elements of VR are important attributes
of the presence. Especially, the important role of physical
laws [63], velocity [59][64], collision and occlusion [65]
were shown.

There is a set of properties of VR devices that affect
presence, for example head rotation [66], tracking system
[67], screen resolution [68], and rendering [69]. Moreover,
the empirical result found in [70] confirms the requirement
for the presence of the following parameters: frame rate,
tracking head rotation, sound, and technique of interaction.

The relation between the correct properties of spatial
objects and any parameters of devices remains an open
discussion. This problem has been considered through
different schemes, for example, human reaction and
subjectivities mapping.

Subjectivities mapping attracts the most interest because
this approach defines two additional and important cues for
the understanding of the psychological impact of VR. These
two cues are the physical interface (any manipulation of
devices based on the movement of the user) and the logical
interface (any rendering or view’s feedback after the
movement of the user). Then, the virtual subjectivities
impact on the environment itself seem to be a mapping or

correct association between the user movement and the view
rendering. Unfortunately, the approach mentioned is needed
in the definition of mapping elements. At the same time, the
elements are key to understanding the principles of modeling
the training environment in VR. In the next section, we will
discuss the mapping elements based on the training
requirements and the framework for designing a training
environment in VR.

IV. THE MAPPING ELEMENTS OF TRAINING SIMULATION

The sequence of human actions in a VE was shown [71].
Firstly, the person orients himself/herself in the VE and, after
that, he/she interacts with the VE. We believe mapping
elements might include a set of grouped human actions based
on the priority for human perception inside the VE.

For this reason, the Queuing Network-Model Human
Processor (QN-MHP) may help to describe the process of
human perception through the functioning of the sensory-
motor system based on three layers (sensory, cognitive and
motor) [72]. Therefore, human actions are associated with
ordered sensory-motor reactions. Indeed, the person
perceives visual information through the sensory layer
(sensory analysis). The visual information activates previous
experiences from the human knowledge (the database of
knowledge). Finally, the motor program is reproduced in the
form of actions and manipulation (motor program).

These assumptions about the process of human
perception and mapping elements may have a strong impact
on modeling training systems. On one hand, the mapping in
the VR system in context of human knowledge (the database
of knowledge) from QN-MHP may include human
perception of VE in form (distance = scaled, rotation =
viewing angle, lighting = visual effects, sound = audio
effects) and the simulation of behavior for the environment
based on previous user experiences from real situations such
as (physics laws = correct rendering 3D-content, tracing =
moving reaction, fitting = distance reacting).

On the other hand, for modeling of the specific process in
form of focused actions should be included components from
human perception of VE and the simulation of behavior for
VE. We believe this combination is a high-level model for
object-closed design. It is focused on specific training
simulation. The relation between mapping and design levels
for the training simulation is shown table 2.

The sensory-motor activation in training simulation with
mapping model may help to understand the relation between
VE and the functioning of the human perception. For this
reason, each perception layer may be linked to virtual
subjectivities, which include logical interfaces, physical
interfaces and mapping.

The logical interface is responsible for visual effects in
context of virtual subjectivities. In this way, human
perception in the form of sensory analysis is related to the
logical interface through visual feedback. The visual
feedback perceives from the database of knowledge
«Conceptual model» inside the cognitive layer. The
extracted situational model may be corrected according to
the current situation. Accordingly, the synchronization of
previous user experiences is triggered.

4Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 10 / 53

TABLE II. THE CONCEPTUAL SCHEME OF MAPPING ELEMENTS OF

TRAINING SIMULATION

High-
level

(OCD)

Object-closed modeling

Execution a task: The logic of application with modeling of
different scripts and important of components (the imitation
of workflow, operation’s quality, precedence, and time
delay).

Output:
Logic interface (correct rendering of VE as feedback from
physics interface)

Low-
level

(UCD)

User-centered modeling
Orientation Imitation

The mapping elements

Distance Scaled Moving
Time

correlation

Rotation
Viewing

angle
Tracking

Moving
reaction

Lighting
Visual
effect

Fitting
Changed
distance

Sound
Audio
effect

Physics laws
Correct

rendering

Input:
Physics interface (manipulation with virtual devices: Head-
mounted display, virtual glove, tracking, joysticks and etc.)

At the same time, the corrected model influences to
choose motor action in the form of “motor reaction”. Finally,
this motor reaction converts to muscle efforts through the
physical interface. The mentioned steps are summarized in
Figure 1.

Figure 1. The user’s role in training simulator based on mapping model

The mentioned model is focused on human reactions,
which are related to virtual subjectivities through
synchronization of previous user experiences. Therefore, the
abstract database of knowledge «Conceptual model» needs
great numbers of training situations for effective training. It
reminds us of training a set of examples for Artificial Neural
Networks (ANN).

We do not know the deep principles of brain learning. At
the same time, there are different primitive models of the
human brain such as ANN. This models show better results
than human beings in some tasks such as classification or

image recognitions. For that reason, we should make an
analogy about ANN and «Conceptual model» from the
mapping model. The ANN gets many various pieces of data
for training, and then a training simulator based on
«Conceptual model» may be considered as the generator of
nonrecurring learning situations. Those situations may help
to overcome the problems that are linked with the satiation of
the database of knowledge «Conceptual model».

V. RESULTS AND CONCLUSION

In this paper, we identified the contemporary approaches
to the design model for the training simulator in VR. It was
noted that there is a relationship between the type of training
and the design model of training simulator in VR. The
greatest interest is in a design model based on OCD and
UCD. Both approaches are perspective in different fields of
training process. These approaches offer to focus on a
detailed process of task execution is the same as integrating
the user into the workflow. We believe in a central role of
human reactions in the training process based on the
mapping model.

The mentioned approach for training simulator based on
VE allows us to define a design framework, including two
design levels. The low-level UCD paradigm focuses on the
human reaction, simple actions and perception. This level
includes mapping logical and physical interfaces.

On one hand, the main target is a correct adjustment of
mapping using scaled setting, viewing angle, visual and
audio for correct orientation inside the VE. For example,
scaled and viewing angle may be selected by empirical value
based on experimental results (regression model and least
square method - LSM). The other attributes (lighting and
sound) are selected with expert’s requirements and
normative standards.

On the other hand, the environment should reproduce the
imitation of basic tasks through reacting to the user’s actions
(movement, changed distance, time and physics laws). In this
case, simple tasks (tracking and fitting) may be reduced in
simple special tests (reaction on moving an object or
changed object’s distance).

The other things such as the physics laws or the
movement may be corrected by developing tools (example
Unity3D: colliders or rigid body). The main purpose is to
create the immersion of a recipient in VE.

Then, after the process of immersion, there is a need to
fill the environment with dynamic content. The high-level
consists of building correct low-level and application logic
based on the OCD. Therefore, the main target of this layer is
to collect an unbound data in the complex training context
based on a specific training simulator. There are many
templates of OCD such as a complex 3D object or a
mannequin.

Further research work should be focused on the low level
of the design model. Especially, we will focus on scale and
viewing angle based on experiments. A person will evaluate
the distance between two points in the VE and real-world
such as viewing angle. The results will be shown in the form
of recommendation for the design of the training system, for
example, simulator of harvesting machine.

5Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 11 / 53

ACKNOWLEDGMENTS

The results of this study were obtained with the support
of Grant No. 25.1095.2017/4.6.

REFERENCES

[1] R. R. Burke, “Virtual Reality for Marketing Research,”
Innovative Research Methodologies in Management, Palgrave
Macmillan, Cham, 2018, pp. 63-82.

[2] J. L.Rubio-Tamayo, B. M. Gertrudix and G. F. García,
“Immersive Environments and Virtual Reality: Systematic
Review and Advances in Communication, Interaction and
Simulation,” Multimodal Technologies and Interaction, 2017,
vol. 1, № 4, 21.

[3] C. Boletsis, “The New Era of Virtual Reality Locomotion: A
Systematic Literature Review of Techniques and a Proposed
Typology,” Multimodal Technologies and Interaction, 2017,
vol. 1, № 4, 24.

[4] M. Cha et al., “A virtual reality based fire training simulator
integrated with fire dynamics data,” Fire Safety Journal, 2012,
vol. 50, pp. 12-24.

[5] D. A. Bowman, J. L. Gabbard and D. Hix, “A survey of
usability evaluation in virtual environments: classification and
comparison of methods,” Presence: Teleoperators & Virtual
Environments, 2002, vol. 11, № 4, pp. 404-424.

[6] C. Boletsis, J. E. Cedergren and S. Kongsvik, “HCI research
in Virtual Reality: A discussion of problem-solving,”
International Conference on Interfaces and Human Computer
Interaction, IHCI 2017, Portugal, 21–23 July 2017, pp. 263-
267.

[7] T. Gunn et al., “The use of virtual reality simulation to
improve technical skill in the undergraduate medical imaging
student,” Interactive Learning Environments, 2017, pp. 1-8.

[8] T. Everson et al., “Astronaut training using virtual reality in a
neutrally buoyant environment,” DesTech 2017: Proceedings
of the 2017 International Conference on Design and
Technology, Knowledge E, 2017, pp. 319-327.

[9] S. Greenwald et al., “Technology and applications for
collaborative learning in virtual reality,” 2017.

[10] L. P. Berg and J. M. Vance, “Industry use of virtual reality in
product design and manufacturing: a survey,” Virtual reality,
2017, vol. 21, № 1, pp. 1-17.

[11] D. L. Neumann et al., “A systematic review of the application
of interactive virtual reality to sport,” Virtual Reality, 2017,
pp. 1-16.

[12] E. Prasolova-Førland et al., Preparing for International
Operations and Developing Scenarios for Inter-cultural
Communication in a Cyberworld: A Norwegian Army
Example,” Transactions on Computational Science XXIII,
Springer, Berlin, Heidelberg, 2014, pp. 118-138.

[13] M. Zyda, “From visual simulation to virtual reality to games,”
Computer, 2005, vol. 38, № 9, pp. 25-32.

[14] C. H. Lin and P. H. Hsu, “Integrating Procedural Modelling
Process and Immersive VR Environment for Architectural
Design Education,” MATEC Web of Conferences, EDP
Sciences, 2017, vol. 104, 03007.

[15] T. Everson and C. McDermott, “Astronaut training using
Virtual Reality in a Neutrally Buoyant Environment,” School
of Engineering, Australia DesTech Conference Proceedings
The International Conference on Design and Technology,
2017, pp. 319-326.

[16] M. Gonzalez-Franco and P. Rodrigo, “Immersive Mixed
reality for Manufacturing Training: Frontiers in Robotics and
AI,” Frontiers in Robotics and AI, 2017, vol. 4, № 3.

[17] J. McComas, “CyberPsychology & Behavior,” Children’s
Transfer of Spatial Learning from Virtual Reality to Real
Environments, 1998, vol. 1, pp. 121-127.

[18] J. Broekens et al., “Virtual reality negotiation training
increases negotiation knowledge and skill,” International
Conference on Intelligent Virtual Agents, Springer, Berlin,
Heidelberg, 2012, pp. 218-230.

[19] J. Pirker, I. Lesjak and C. G. Maroon, “VR: A Room-Scale
Physics Laboratory Experience,” Advanced Learning
Technologies (ICALT), 2017 IEEE 17th International
Conference on IEEE, 2017, pp. 482-484.

[20] J. Rickel and W. L. Johnson, “Virtual humans for team
training in virtual reality,” Proceedings of the ninth
international conference on artificial intelligence in education,
1999, vol. 578, p. 585.

[21] L. Schmid, A. Glässel and C. Schuster-Amft, “Therapists’
Perspective on Virtual Reality Training in Patients after
Stroke: A Qualitative Study Reporting Focus Group Results
from Three Hospitals,” Stroke research and treatment, 2016,
vol. 2016, 12 p.

[22] I. Petukhov, L. Steshina and A. Glazyrin, “Application of
virtual reality technologies in training of man-machine system
operators,” 2017 International Conference on Information
Science and Communications Technologies, ICISCT 2017,
2017-December, pp. 1-7.

[23] G. Riva et al., “Affective interactions using virtual reality: the
link between presence and emotions,” CyberPsychology &
Behavior, 2007, vol. 10, № 1, pp. 45-56.

[24] M. Slater et al., “Immersion, presence, and performance in
virtual environments: An experiment with tri-dimensional
chess,” ACM virtual reality software and technology (VRST),
New York, NY: ACM Press, 1996, vol. 163, 72 p.

[25] D. Bachmann, F. Weichert and G. Rinkenauer, “Review of
three-dimensional human-computer interaction with focus on
the leap motion controller,” Sensors, 2018, vol. 18, № 7,.
2194.

[26] C. Repetto, P. Cipresso and G. Riva, “Virtual action and real
action have different impacts on comprehension of concrete
verbs,” Frontiers in psychology, 2015, vol. 6, 176.

[27] H. G. Kim et al., “Measurement of exceptional motion in VR
video contents for VR sickness assessment using deep
convolutional autoencoder,” Proceedings of the 23rd ACM
Symposium on Virtual Reality Software and Technology,
ACM, 2017, p. 36.

[28] D. B. Kaber et al., “Investigating human performance in a
virtual reality haptic simulator as influenced by fidelity and
system latency,” IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans, 2012, vol. 42,
№ 6, pp. 1562-1566.

[29] K. M. Stanney et al., “Human performance in immersive
virtual environments: Effects of exposure duration, user
control, and scene complexity,” Human performance, 2002,
vol. 15, № 4, pp. 339-366.

[30] J. Diemer et al., “The impact of perception and presence on
emotional reactions: a review of research in virtual reality,”
Frontiers in psychology, 2015, vol. 6, p. 26.

[31] B. Herbelin, F. Vexo and D. Thalmann, “Sense of presence in
virtual reality exposures therapy,” Proceedings of the 1st
International Workshop on Virtual Reality Rehabilitation,
Lausanne, Switzerland, Citeseer, 2002.

[32] N. Parés and R. Parés, “Towards a model for a virtual reality
experience: the virtual subjectiveness,” Presence:
Teleoperators and Virtual Environments, 2006, vol. 15, № 5,
pp. 524-538.

[33] J. N. Latta and D. J. Oberg, “A conceptual virtual reality
model,” IEEE Computer Graphics and Applications, 1994,
vol. 14, № 1, pp. 23-29.

6Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 12 / 53

[34] D. A. Bowman and R. P. McMahan, “Virtual reality: how
much immersion is enough? ,” Computer, 2007, vol. 40, № 7.

[35] R. Pausch, D. Proffitt and G. Williams, “Quantifying
immersion in virtual reality,” Proceedings of the 24th annual
conference on Computer graphics and interactive techniques,
ACM Press/Addison-Wesley Publishing Co., 1997, pp. 13-18.

[36] R. M. Satava and S. B. Jones, “Current and future applications
of virtual reality for medicine,” Proceedings of the IEEE,
1998, vol. 86, № 3, pp. 484-489.

[37] J. B. Cooper and V. R. Taqueti, “A brief history of the
development of mannequin simulators for clinical education
and training,” Postgraduate medical journal, 2008, vol. 84,
№ 997, pp. 563-570.

[38] F. Biocca and M. R. Levy, “Communication in the age of
virtual reality,” Routledge, 2013.

[39] A. Lele, “Virtual reality and its military utility //Journal of
Ambient Intelligence and Humanized Computing,” 2013, vol.
4, № 1, pp. 17-26.

[40] V. Tanriverdi and R. J. K. Jacob, “VRID: a design model and
methodology for developing virtual reality interfaces,”
Proceedings of the ACM symposium on Virtual reality
software and technology, ACM, 2001, pp. 175-182.

[41] J. P. Molina et al., “An interaction model for the TRES-D
framework,” Electrotechnical Conference, 2006, MELECON
2006, IEEE Mediterranean, IEEE, 2006, pp. 457-461.

[42] C. H. Lin and P. H. Hsu, “Integrating Procedural Modelling
Process and Immersive VR Environment for Architectural
Design Education,” MATEC Web of Conferences, EDP
Sciences, 2017, vol. 104, 03007.

[43] T. Cochrane et al., “A DBR framework for designing mobile
virtual reality learning environments,” Australasian Journal of
Educational Technology, 2017, vol. 33, № accepted for
Special Issue on Mobile Augmented and Virtual Reality.

[44] W. Li, A. Y. C. Nee and S. K. Ong, “A State-of-the-Art
Review of Augmented Reality in Engineering Analysis and
Simulation,” Multimodal Technologies and Interaction, 2017,
vol. 1, № 3, 17.

[45] A. M. Al-Ahmari et al., “Development of a virtual
manufacturing assembly simulation system,” Advances in
Mechanical Engineering, 2016, vol. 8, № 3,
1687814016639824.

[46] P. Kenny et al., “Building interactive virtual humans for
training environments,” Proceedings of i/itsec, 2007, vol. 174,
pp. 911-916.

[47] E. Prasolova-Førland et al., “Preparing for International
Operations and Developing Scenarios for Inter-cultural
Communication in a Cyberworld: A Norwegian Army
Example,” Transactions on Computational Science XXIII,
Springer, Berlin, Heidelberg, 2014, pp. 118-138.

[48] A. Prange et al., “A Multimodal Dialogue System for Medical
Decision Support inside Virtual Reality,” Proceedings of the
18th Annual SIGdial Meeting on Discourse and Dialogue,
2017, pp. 23-26.

[49] B. Ulicny and D. Thalmann, “Crowd simulation for
interactive virtual environments and VR training systems,”
Computer Animation and Simulation 2001, Springer, Vienna,
2001, pp. 163-170.

[50] H. K. Çakmak and U. Kühnapfel, “Animation and simulation
techniques for vr-training systems in endoscopic surgery,”
Computer Animation and Simulation, Springer, Vienna, 2000,
pp. 173-185.

[51] F. Pürzel et al., “Real NC Control Unit and Virtual Machine
to Improve Operator Training,” Procedia Computer Science,
2013, vol. 25, pp. 98-107.

[52] A. Nakai, Y. Kaihata and K. Suzuki, “The experience-based
safety training system using VR technology for chemical
plant,” Editorial Preface, 2014, vol. 5, № 11.

[53] T. Im et al., “A Virtual Reality based Engine Training
System-A Prototype Development & Evaluation,” CSEDU,
2017, vol. 1, pp. 262-267.

[54] E. Stoll, M. Wilde and C. Pong, “Using virtual reality for
human-assisted in-space robotic assembly,” Proc. World
Congress on Engineering and Computer Science, 2009.

[55] X. Wang, P. S. Dunston and M. Skiniewski, “Mixed Reality
technology applications in construction equipment operator
training,” Proceedings of the 21st International Symposium
on Automation and Robotics in Construction (ISARC 2004),
2004, pp. 21-25.

[56] K. M. Stanney, R. R. Mourant and R. S. Kennedy, Human
factors issues in virtual environments: A review of the
literature Presence, 1998, vol. 7, № 4, pp. 327-351.

[57] J. N. Latta and D. J. Oberg, “A conceptual virtual reality
model,” IEEE Computer Graphics and Applications, 1994,
vol. 14, № 1, pp. 23-29.

[58] M. J. Schuemie et al., “Research on presence in virtual
reality: A survey,” CyberPsychology & Behavior, 2001, vol.
4, № 2, pp. 183-201.

[59] P. Gander, “Two myths about immersion in new storytelling
media,” Lund University, 1999, Immersion and Emotion:
Their Impact on the Sense of Presence.

[60] R. M. Baños et al., “Immersion and emotion: their impact on
the sense of presence,” CyberPsychology & Behavior, 2004,
vol. 7, № 6, pp. 734-741.

[61] I. Petukhov, L. Steshina and A. Glazyrin, “Application of
virtual environments in training of ergatic system operators,”
Journal of Applied Engineering Science, 2018, 16(3), pp. 398-
403.

[62] S. Gupta et al., “Training in Virtual Environments: A Safe,
Cost Effective, and Engaging Approach to Training,” 2008.

[63] M. J. Schuemie et al., “Research on presence in virtual reality:
A survey,” CyberPsychology & Behavior, 2001, vol. 4, № 2,
pp. 183-201.

[64] L. Piron et al., “Virtual Reality as an assessment tool,”
Medicine Meets Virtual Reality 2001: Outer Space, Inner
Space, Virtual Space, 2001, vol. 81, 386.

[65] C.Hendrix and W. Barfield, “Presence within virtual
environments as a function of visual display parameters,”
//Presence: Teleoperators & Virtual Environments, 1996, vol.
5, № 3, pp. 274-289.

[66] S. Sharples et al., “Virtual reality induced symptoms and
effects (VRISE): Comparison of head mounted display
(HMD), desktop and projection display systems,” Displays,
2008, vol. 29, № 2, pp. 58-69.

[67] H. Sveistrup, “Motor rehabilitation using virtual reality,”
Journal of neuroengineering and rehabilitation, 2004, vol. 1,
№ 1, 10.

[68] F. P. Brooks, “What's real about virtual reality?,” IEEE
Computer graphics and applications, 1999, vol. 19, № 6, pp.
16-27.

[69] G. Robertson, M. Czerwinski and M.Van Dantzich,
“Immersion in desktop virtual reality,” Proceedings of the
10th annual ACM symposium on User interface software and
technology, ACM, 1997, pp. 11-19.

[70] M. V. Sanchez-Vives and M. Slater, “From presence to
consciousness through virtual reality,” Nature Reviews
Neuroscience, 2005, vol. 6, № 4, 332.

[71] J. Jerald, “The VR book: Human-centered design for virtual
reality,” Morgan & Claypool, 2015.

[72] Y. Liu, R. Feyen, and O. Tsimhoni, “Queuing Network-
Model Human Processor (QN-MHP): A Computational
Architecture for Multitask Performance in Human-Machine
Systems,” ACM Transactionson Computer-Human
Interaction, March 2006, vol. 13, № 1, pp. 37–70.

7Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 13 / 53

Mixed-Paradigm Framework for Model-Based Systems Engineering

Philipp Helle, Stefan Richter, Gerrit Schramm and Andreas Zindel
Airbus Central R&T
Hamburg, Germany

email: {philipp.helle, gerrit.schramm, stefan.richter, andreas.zindel}@airbus.com

Abstract—In a time when competition and market in aviation
industry drive the need to shorten development cycles especially
in early phases, both automation of processes and integration of
tools become important. While constraints, such as make or buy
decisions or corporate Information Technology (IT) governance
influence the overall tool infrastructure in different directions,
microservices are a fast-rising trend in software architecting. But
that does not mean that the more traditional monolithic soft-
ware architecture is dead. A resulting mixed-paradigm software
applications can also be seen as an opportunity to profit from
the best of both worlds. To support a newly developed complex
system development approach called Smart Component Model-
ing, a supporting application framework prototype is subject to
development with the objective to reduce both time and resources
required during product development cycles. This paper describes
the software architecture styles and deployment approaches that
were used in a research project at Airbus for building a prototype
and discusses challenges and opportunities that were encountered.

Keywords–model-based systems engineering; microservices;
REST.

I. INTRODUCTION

The MicroService Architecture (MSA) is a style that has
been increasingly gaining popularity in the last few years [1]
and has been called ”one of the fastest-rising trends in the de-
velopment of enterprise applications and enterprise application
landscapes” [2]. Many organizations, such as Amazon, Netflix,
and the Guardian, utilize MSA to develop their applications [2].

Pursuing the notion that ”Microservices aren’t, and never
will be, the right solution in all cases” [3], this paper de-
scribes the architecture and development approach that was
used in a research project at Airbus for building a prototype
application framework for Model-Based Systems Engineering
(MBSE). According to The International Council on Systems
Engineering (INCOSE), ”Model-Based Systems Engineering
(MBSE) is the formalized application of modeling to support
system requirements, design, analysis, verification and valida-
tion, beginning in the conceptual design phase and continuing
throughout development and later life cycle phases” [4]. This
framework does not rely on a single paradigm but instead
mixes different paradigms, viz. architecture patterns and de-
ployment approaches, to achieve the overall goals: agility,
flexibility and scalability during development and deployment
of a complex enterprise application landscape.

This paper is structured as follows: Section II describes the
modeling method that the built prototype MBSE framework is
supposed to support. Section III provides background informa-
tion regarding the different enterprise application architecture
paradigms. Section IV explains the IT infrastructure in which
the framework is deployed and Section V describes how
and what features have been implemented in the prototype.

Section VI discusses advantages and disadvantages of the
mixed-paradigm approach. Section VII talks about the ongoing
and future improvement effort before Section VIII wraps
everything up with a conclusion.

II. SCM MODELLING METHOD

In [5], we provide a detailed account of the newly de-
veloped MBSE paradigm, called smart component modeling
(SCM), that is rooted in a proposed change in the aircraft
development process to include an out of cycle component
development phase, in which components of an aircraft are
developed independently of the traditional linear development
process. These components are then adapted to the specific
needs of a program within the more linear cycle. Furthermore,
the paper describes a metamodel for modeling these so-called
smart components based on proven MBSE principles [6]. Since
the models are being defined outside of an aircraft program
when requirements are not yet fixed, the models have to be
parametric. An SCM is a self-contained model that can be
developed out of cycle and enables capturing of all information
relevant to the development of the component. SCMs are
foreseen to be stored in a repository, called the SCM Library.
This enables sharing and reuse. When the in-cycle phase of
an aircraft or aircraft system development starts, the assets
in the SCM Library are pulled and used as pre-defined and
pre-verified components for a new development. The SCM
metamodel defines all objects and their relations that are
required to capture information related to smart components in
models. The development of the SCM metamodel was driven
by internal use cases and inspired by existing modeling lan-
guages such as the Systems Modeling Language (SysML) [7].

The requirements for the methodology supporting this new
out of cycle process were as follows:

• The methodology shall be based on MBSE principles.
• The methodology shall be independent from any spe-

cific application domain.
• The methodology shall enable a product-line oriented

product development, i.e., the metamodel must allow
modeling of different variants of a product and ensure
a consistent configuration and parametrization.

• The methodology shall enable inclusion of already
existing domain models, i.e., models in a domain-
specific modeling language.

• The methodology shall enable automatic verification
of models, i.e., it shall be possible to check if the
built models adhere to the modeling paradigm and to
user-defined constraints.

• The methodology shall enable consistent modeling not
only of the product itself but also of the context,

8Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 14 / 53

such as the industrial system used to built the product
and allow the creation of relationships between the
modeled artifacts.

The requirements for the application framework supporting
this new modeling paradigm are as follows:

• The application framework shall be deployable in the
current corporate IT infrastructure

• The application framework shall allow a heteroge-
neous technology stack to deliver the best solution for
a designated purpose.

• The application framework shall be scalable with
increasing number of models and users.

• The application framework shall be scalable in terms
of model calculation performance.

• The application framework shall support continuous
deployment strategies and agile frameworks to enable
fast delivery and high flexibility.

• The application framework shall be efficient with
regards to computing resources and reduce the com-
panies ecological footprint.

III. ARCHITECTURE PARADIGMS

This section provides background information regarding
the two main architecture paradigms that are used today:
monolithic software and MSA. Service Oriented Architecture
(SOA) and serverless architecture [8] are not described in
detail as SOA, especially from a deployment perspective, still
resembles monolith software [9] and serverless can be seen as
taking MSA one step further [10].

A. Monolithic software

[11] defines a monolith as ”a software application whose
modules cannot be executed independently”. This architecture
is a traditional solution for building applications. A number
of problems associated with monolithic applications can be
identified:

• Due to their inherent complexity, they are hard to
maintain and evolve. Inner dependencies make it hard
to update parts of the application without disrupting
other parts.

• The components are not independently executable and
the application can only be deployed, started and
stopped as a whole [12].

• They enforce a technology lock-in, as the same lan-
guage and framework has to be used for the whole
application.

• They prevent efficient scaling as popular and non-
popular services of the application can only be scaled
together [13].

Nevertheless, monolithic software is still widely used and,
except for green-field new developments, there is hardly a
way around it. [14] notes that a monolithic architecture is
”often a more practical and faster way to start”. Furthermore,
if software from external parties is involved in a tool chain, it
is not possible to change its architecture style.

B. Microservices
There is no single definition of what a MSA actually is.

A commonly used definition by Lewis and Fowler says it is
”an approach for developing a single application as a suite of
small services, each running in its own process and communi-
cating with lightweight mechanisms, often an HTTP resource
API” [15]. Microservices typically consist of stateless, small,
loosely coupled and isolated processes in a ”share-as-little-as-
possible architecture pattern” [16] where data is ”decentralised
and distributed between the constituent microservices” [17].

The term ”microservices” was first introduced in 2011 [15]
and publications on architecting microservices are rapidly in-
creasing since 2015 [18]. In 2016, a systematic mapping study
found that ”no larger-scale empirical evaluations exist” [19]
and concluded that MSA is still an immature concept.

The following main benefits can be attributed to MSA:

• Relatively small components are easier for a devel-
oper to understand and enable designing, developing,
testing and releasing with great agility.

• Infrastructure automation allows to reduce the manual
effort involved in building, deploying and operating
microservices, thus enabling continuous delivery [18].

• It is less likely for an application to have a single point
of failure because functionality is dispersed across
multiple services [9].

• MSA does not require a long-term commitment to any
single technology or stack.

[3] notes the obvious drawback of the current popularity of
microservices that ”they’re more likely to be used in situations
in which the costs far outweigh the benefits” even when
monolithic architecture would be more appropriate.

In a study regarding the challenges of adopting microser-
vices, [2] lists the distributed nature of MSA, which leads to
debugging problems, the unavailability of skilled developers
with intimate knowledge of MSA and finding an appropriate
separation into services.

IV. DEPLOYMENT INFRASTRUCTURE

Corporate information technology (IT) environments imply
very strict regularities when it comes to hard- and software
architectures and deployments. Bringing in innovation in such
an environment requires following a heterogeneous approach.

While it is more challenging to adapt hardware in a
corporate context to cope with the latest innovations, service
and software developments, e.g., ARM (Advanced RISC Ma-
chine) CPU (Central Processing Unit) platform based servers,
GPU (Graphics Processing Unit) assisted computing or wide-
usage of FPGAs (Field Programmable Gate Arrays), the ap-
plication platform layer adaption is typically less demanding
because almost any state-of-the-art deployment form, like
bare-metal, Infrastructure-as-a-Service (IaaS), Platform-as-a-
Service (PaaS) or Function-as-a-Service (FaaS) can be rolled
out on standard server hardware.

The rationale for choosing a specific deployment form is
based on various constraints imposed by corporate policies and
long-term strategy decisions:

• Is the envisaged deployment form available in the
corporate infrastructure?

9Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 15 / 53

• Has the deployment form limitations due to corpo-
rate policies, e.g., restricted internet access, restricted
repository access?

• Are there any license limitations?
• Are there geolocation limitations for certain services,

e.g., in a multinational company with multinational
regulations according to law?

• Is the service available on premise or only on public
cloud?

• Does a deployment form for a particular service fit in
the long-term corporate IT strategy, e.g., make or buy
decisions?

For the Smart Component Modeling prototype, it was nec-
essary to make use of a heterogeneous software and hardware
infrastructure provided by the corporate IT. Therefore, the
deployment took place on IaaS, PaaS and FaaS platforms.
Also, end user devices are involved, for example for running
the SCM workbench (see Figure 2). That variety of platform
types was chosen to provide inside information on how a new
engineering concept could be supported by different software
architecture approaches to be efficient in terms of development
time, continuous integration (CI), resource efficiency and scal-
ability.

A. Infrastructure-as-a-Service
In the context described above, IaaS is used to describe a

hosting platform based on bare-metal and hosted hypervisors.
It provides a variety of virtualized operating systems that are
in compliance with corporate IT regulations.

For the prototype, the services hosted on classical vir-
tual machines are mainly databases used as persistent layers
for distributed Web applications. The main reason for not
hosting the Web applications together with their respective
persistence layer are resource restrictions. Current company
policies prevent external access to the databases if they are part
of the same microservice image as the hosting environment.
This would either limit database management to a Web-based
command line interface or require the implementation of a
Web service deployed in the same container. Also, other
external services could not be used to access the databases.
This limitation is purely based on a decision made by the
company’s IT governance, but reflects day to day reality in
corporate environments.

For any other Web application around the SCM prototype
development, IaaS was avoided as the resource overhead
cannot compete with PaaS or FaaS.

B. Platform-as-a-Service
In the following section, PaaS refers to an on-premise

deployment of the Red Hat Openshift[20] platform. It is a
platform built around Docker[21] containers orchestrated and
managed by Kubernetes on a foundation of Red Hat Enterprise
Linux.

In the prototype, PaaS plays a critical role for the con-
tinuous integration strategy. The image format used for the
deployments follows the Source-to-image (S2I) concept. S2I is
a toolkit and workflow for building reproducible container im-
ages from source code [22]. S2I produces ready-to-run images
by injecting source code into a container image and letting the

container prepare that source code for execution. The source
code itself is hosted on an on-premise Github Enterprise[23]
instance and the dependent resources are provided via an on-
premise Artifactory[24] deployment that reflects the official
sources of the required development environment such as
Maven[25], npm, Python or NuGet.

The whole continuous deployment chain is secured via an
exchange of keys and certificates to prevent disruptions for
example due to company introduced password cycles for the
developer and deployment accounts. The deployment speed is
improved by using system instances for the S2I chain in the
same geolocation of the company to prevent larger inter-site
data transfers and round-trip times.

The microservice concept, together with PaaS, allows a
massive reduction of resource allocations compared to an
IaaS deployment, especially if the services are single and
independent Web applications.

There are still limitations in the corporate environment
that currently prevent larger scale use of the technology.
The current setup allows a limited number pods per node,
which becomes an issue when a service uses the scaling
capability of the OpenShift platform. A second limitation is
linked to the allocated sub-network and the deployment of
the platform. All inter-service communication is routed via a
unique company internal network. The PaaS instance does not
re-use a network range that is already present in the company
for inter-service communications as it would impose other
challenges regarding communication from within the PaaS
instance towards other company services. The rationale for
the chosen PaaS implementation is primarily the reduction of
classical virtual machines for simple hosting jobs and only
secondary the creation of a massively scalable infrastructure
for new service applications.

To cope with these limitations the prototype furthermore
reduces the deployment footprint of single services for certain
applications as described below.

C. Function-as-a-Service
FaaS is used for tiny stateless jobs, e.g., rendering of

images. These services are monitored by an orchestrator that
decommissions containers after idling for a defined time. This
reduces resource usage further and has advantages in a scenario
with a larger number of services.

The deployment architecture of the FaaS instance allows
launching service containers within milliseconds. The applied
software stack is OpenFaaS based on Docker Swarm running
on a Debian[26] virtual machine.

One FaaS instance consumes resources similar to a pod on
the above mentioned PaaS environment and hosts numerous
services without performance limitations. While PaaS exposes
containers under their distinct IP (Internet Protocol) addresses,
FaaS comes with a reverse proxy that hides all containers and
requires less IP addresses. This reduces the effort for routing
name resolution and their documentation.

V. IMPLEMENTATION AND INTEGRATION

The implementation of the prototype framework is split into
different logical bricks as depicted by Figure 1. The Architect
Cockpit allows a system architect to use existing models, to
schedule the execution of simulations and to review results.

10Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 16 / 53

The SCM Workbench enables SCM developers to create and
version SCMs. The Back End provides different services such
as the orchestration of different processors to perform the
execution of simulations.

Figure 1. Prototype tool overview

A. Architect Cockpit
In order to reduce the workload and make the work for the

architects as convenient as possible the interface for the cockpit
is setup as an Angular single-site application. This allows using
this entity without installing custom software and without
bothering the user with update and migration procedures. The
site is built using a Jenkins pipeline and then deployed on
a specific git repository branch. A webhook on this branch
triggers an OpenShift instance to build an Express.js server
serving the previously build site on a PaaS cluster.

From a functional point of view the Architect Cockpit gives
a reduced view on SCMs. Only information, which is necessary
for the work of an architect is available and can be modified.
This results in a nearly full intuitive usage of the interface and
prevents faulty configurations. For example, some parameters
can only be changed within a certain range. Ranges are defined
by the model developer who knows the limitations best. The
architect does not need to have a deep understanding of these
limitations when using the predefined models.

B. SCM Workbench
The SCM Workbench is a full-fledged graphical editor

to work with SCMs implemented as a monolithic rich-client
application. It is implemented in an Eclipse Rich Client
Platform (RCP) and based on the Eclipse Modeling Framework
(EMF) [27]. It is a modeling framework and code generation
facility for building tools and other applications based on a
structured data model. EMF provides tools and run-time sup-
port to produce a set of Java classes from a model specification,
along with a set of adapter classes that enable viewing and
editing of the model, and a basic editor.

EMF is the basis for the Obeo Designer tool[28], which
builds on the Eclipse Sirius project [29] and allows definition
of graphic editors based on a defined EMF metamodel. This
enables rapid prototyping of modeling solutions, which is ideal

for a research/prototyping environment such as Airbus Central
R&T. Changes to the metamodel are almost instantly available
in the SCM Workbench, our prototype SCM modeling tool. On
the other hand, EMF and Obeo Designer are mature and have
been proven in industrial practice, e.g., Capella, the modeling
tool from Thales that implements the Arcadia method is built
with EMF and Obeo Designer as well [30].

Using such a rapid prototyping approach for the SCM
Workbench can be easily misunderstood as just a proof-of-
concept study. The final look and feel of the graphical editor
for the SCMs is only limited by the amount of development
time used for UX polishing. The workflow and information
accessibility as well as the connection to a versioning system
is comparable to other commercially available modeling tools,
which are well known by the developers. It is assumed that a
SCM developer has to take a short on-boarding training before
using the SCM Workbench.

C. Back End
The Back End is build from several different entities that

are based on different paradigms. These entities are described
in the following paragraphs.

1) SCM Library: The SCM Library stores the models that
have been created using the SCM Workbench. It is based on
Connected Data Objects (CDO) a Java model repository for
EMF models and metamodels. The specific implementation
in use is the Obeo Designer Team Server (ODTS) which
enables concurrent engineering of EMF models. A custom
plug-in allows other services and applications to access the
model repository through a REST interface. Due to its com-
plex deployment strategy the SCM Library is deployed in an
IaaS environment which allows more user interaction during
updates.

2) SCM Engine: The SCM Engine can interpret SCMs,
check constraints and run parametric calculations either as
a single simulation run or as a Design of Experiments setup
with multiple samples. It is a Java application executed in an
OpenJDK Virtual Machine. Access to the engine is established
through REST interfaces that are hosted on a Jetty server.
The endpoints are described and documented using the Jersey
framework. The SCM Engine is hosted on a PaaS instance and
allows rolling updates, automated builds and scaling.

3) Model Processors: The Performance Model API serves
as a glue between external domain-specific models with their
own solver or simulation engine and the SCM Engine. A
Model Processor is an application that implements this API
to execute a specific model type. The API enables the SCM
Engine to orchestrate simulations tools in a unified way and
guides developers through the process of integrating additional
simulation tools into this environment. In order to include
a new model type in the SCM application framework, a
model type specific Model Processor has to be implemented
that implements the Performance Model API and connects
to the model type specific solver or simulator. A reference
implementation shows how this works for Excel models. An
Excel model is processed by a Java application running in an
OpenJDK VM using the Apache POI framework. Depending
on the type of model and, e.g., the license and installation
requirements of the model solver or simulator, the Model
Processor can be deployed in any of the available deployment
options IaaS, PaaS and FaaS.

11Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 17 / 53

Figure 2 depicts how the components of the SCM tool
framework prototype are deployed in our infrastructure.

Figure 2. Prototype tool deployment

To make the polyglot approach of the MSA work and
integrate each service all participating entities need to agree
to a commonly understood interface. For the prototype Repre-
sentational State Transfer (REST) over HTTP was chosen as
the default interface combined with JavaScript Object Notation
(JSON) as serialization format. REST over HTTP is a de facto
standard since almost every technology stack provides at least
an HTTP API if not specialized REST frameworks and clients
such as JAX-RS. JSON as a serialization format is accepted
and provides solid tooling on all integrated technologies. In
addition many front-end frameworks natively support JSON
such as JavaScript or Ruby. This eases the integration work
needed to be done for the implementation of our demonstrators
mainly the Architect Cockpit. As an added bonus it is easily
digestible by human user, which helped tremendously with
debugging. To built up process chains utilizing the deployed
microservices we selected Node-RED. It provides all the
tools necessary to handle HTTP based REST APIs and JSON
based message bodies and is integrated well into the existing
environment.

VI. EVALUATION

Evaluating the mixed-paradigm approach, we experienced
that developers where able create a working deployment much
faster compared to the traditional approach using virtual ma-
chines. This also includes the amount of times that a new
version of the service was built from once a week to several
times a day using the automated CI pipeline. This increased the
general development velocity as well as the prototypes feature
set, which helped us to tailor the application to our stakeholder
needs.

The raised deployment speed increased the number of times
we experienced broken client applications. This was due to
a violated interface contract between the services if the new
features where not integrated properly. A well defined and
adhered to interface specification is paramount for the success
of introducing this mixed-paradigm approach.

In general, we noticed a greater sense of ownership of
single developers over their service/code, which lead to a hike

in the overall implementation quality. The mandatory usage
of the git version control system increased the maintainability
of the code base. The combination of git and the Openshift
framework made it easy to recover from failures and faulty
builds, which lead to a constant up-time of all services.
In the future the introduction of additional agile software
development principles like Test Driven Development could
further increase the code quality.

The mixed-paradigm approach that was used to develop
and deploy the prototype discussed in this paper led to reduced
complexity, lower coupling, higher cohesion and a simplified
integration. This in turn enabled agile collaboration for con-
tinuous delivery and integration of the solution.

VII. OUTLOOK AND FUTURE CHALLENGES

In the previous sections, we described how MSA can
support the chosen polyglot approach utilizing a variety of
different technology stacks and storage solutions. This enabled
us to select the most fitting technical solution for the required
functionality. Additionally the network based architecture pro-
vides an environment that is well suited for a multinational
company like Airbus with sites scattered throughout different
sites and IT domains. It also provided a commonly understood
deployment layer for our cross-functional project team.

MSA supports us with the agility and velocity needed to
convince our customers of our approach and implement a
prototype that can handle the complexity of our SCM mod-
eling approach. However, during the development we found
stumbling blocks that need awareness once the scale changes
from a research project prototype to a full scale industrial roll
out.

Corporate IT – The proposed environment builds and
hosts microservices in an agile and automated way. This
requires the setup and maintenance of a CI pipeline (in our
case Openshift/GitHub), which results in additional costs as
well as an IT department that is capable of dealing with
those investments. Additionally setting up certificate chains
and firewalls to allow for secure communication inside the
corporate network need to be accounted for. On the developer
side roadblocks like proxy server hindering communication
and enabling cross-origin resource sharing (CORS), which
allows for communication between different domains need to
be taken care of.

Service discovery – Once we reached a critical mass of
microservices environment we discovered that it is hard to keep
track of what services have already been implemented and
what functionality each service provides. Even in our research
project this point was reached rather quickly. Thus we intro-
duced Swagger[31] as a Web based documentation for all our
services and implemented a simple dashboard where services
could be registered against. This allowed for manual service
discovery across the team. In the future automated service
discovery through bots and processable service descriptions
will bring more value to the MSA approach by handling the
sprawling service environment.

Now that we optimized the CI pipeline in the first half
of the project we experience a rapid increase in deployed
services. This allowed us to swiftly introduce new functionality
as microservices, boosting the capabilities of our proof of
concept prototype. It shows that MSA can initially speed up the

12Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 18 / 53

implementation velocity of a new project. Once we continue
with the project more efforts will go towards managing the
volume of services as well as (network) performance and
reliability.

VIII. CONCLUSION

A direct, specific and measurable comparision between
the described mixed-paradigm and a classical approach is not
possible as it would have required the same infrastructure land-
scape to have been developed and deployed multiple times us-
ing different concepts. Nevertheless implementors were given
the freedom to decide for every distinct artifact to freely choose
the paradigm used for implementation. Furthermore developers
were allowed to spilt artifacts which enables to select the
right paradigm for each problem within. Later the interface
documentation allowed the developers to easily re-implement
an artifact using a different paradigm in case the initial decision
for a specific paradigm reveals to have been not an optimal
choice. Therefore the selection of the right paradigm appears
to be inherent and native. To support a newly developed
MBSE approach called Smart Component Modeling, a sup-
porting application framework prototype had to be developed.
Instead of a single architecture and deployment paradigm, a
mixed-paradigm approach was followed to take the advantages
of the different options and to consider external constraints
coming from the IT governance. The software bricks were
implemented in monolithic, SOA, microservice and serverless
architecture glued together by REST interfaces over HTTP.
The deployment took place on Desktop-PC, IaaS, PaaS and
FaaS platforms. It provided insight into how a new engineering
concept could be supported by different software architecture
approaches to be efficient in terms of development time,
continuous integration, resource efficiency and scalability.

REFERENCES

[1] N. Dragoni et al., “Microservices: yesterday, today, and tomorrow,” in
Present and ulterior software engineering. Springer, 2017, pp. 195–216.

[2] J. Ghofrani and D. Lübke, “Challenges of microservices architecture:
A survey on the state of the practice.” in ZEUS, 2018, pp. 1–8.

[3] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov, “Mi-
croservices: The journey so far and challenges ahead,” IEEE Software,
vol. 35, no. 3, 2018, pp. 24–35.

[4] D. D. Walden, G. J. Roedler, K. Forsberg, R. D. Hamelin, and T. M.
Shortell, Eds., Systems Engineering Handbook: A Guide for System
Life Cycle Processes and Activities, 4th ed. Hoboken, NJ: Wiley,
2015.

[5] P. Helle, S. Feo-Arenis, A. Mitschke, and G. Schramm, “Smart compo-
nent modeling for complex system development,” in Proceedings of the
10th Complex Systems Design & Management (CSD&M) conference,
forthcoming.

[6] A. Reichwein and C. Paredis, “Overview of architecture frameworks
and modeling languages for model-based systems engineering,” in Proc.
ASME, 2011, pp. 1–9.

[7] Object Management Group, OMG Systems Modeling Language (OMG
SysML), v1.2. OMG, Needham, MA, 2008.

[8] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “Serverless
programming (function as a service),” in 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS). IEEE, 2017,
pp. 2658–2659.

[9] A. Karmel, R. Chandramouli, and M. Iorga, “Nist definition of microser-
vices, application containers and system virtual machines,” National
Institute of Standards and Technology, Tech. Rep., 2016.

[10] I. Baldini et al., “Serverless computing: Current trends and open
problems,” in Research Advances in Cloud Computing. Springer, 2017,
pp. 1–20.

[11] N. Dragoni, S. Dustdar, S. T. Larsen, and M. Mazzara, “Mi-
croservices: Migration of a mission critical system,” arXiv preprint
arXiv:1704.04173, 2017.

[12] A. Bucchiarone, N. Dragoni, S. Dustdar, S. T. Larsen, and M. Mazzara,
“From monolithic to microservices: an experience report from the
banking domain,” Ieee Software, vol. 35, no. 3, 2018, pp. 50–55.

[13] M. Villamizar et al., “Evaluating the monolithic and the microservice
architecture pattern to deploy web applications in the cloud,” in 2015
10th Computing Colombian Conference (10CCC). IEEE, 2015, pp.
583–590.

[14] ——, “Cost comparison of running web applications in the cloud
using monolithic, microservice, and aws lambda architectures,” Service
Oriented Computing and Applications, vol. 11, no. 2, 2017, pp. 233–
247.

[15] M. Fowler and J. Lewis. Microservices a definition of this new architec-
tural term. [Online] http://martinfowler.com/articles/microservices.html
[Accessed: 11 September 2019].

[16] T. Cerny, M. J. Donahoo, and M. Trnka, “Contextual understanding of
microservice architecture: current and future directions,” ACM SIGAPP
Applied Computing Review, vol. 17, no. 4, 2018, pp. 29–45.

[17] D. Shadija, M. Rezai, and R. Hill, “Towards an understanding of
microservices,” in 2017 23rd International Conference on Automation
and Computing (ICAC). IEEE, 2017, pp. 1–6.

[18] P. Di Francesco, I. Malavolta, and P. Lago, “Research on architecting
microservices: trends, focus, and potential for industrial adoption,” in
2017 IEEE International Conference on Software Architecture (ICSA).
IEEE, 2017, pp. 21–30.

[19] C. Pahl and P. Jamshidi, “Microservices: A systematic mapping study.”
in CLOSER (1), 2016, pp. 137–146.

[20] RedHat, “Openshift,” https://www.openshift.com/, 2019, [Online; ac-
cessed 21-October-2019].

[21] Docker Inc., “Docker,” https://www.docker.com/, 2019, [Online; ac-
cessed 21-October-2019].

[22] A. Lossent, A. R. Peon, and A. Wagner, “PaaS for web applications with
OpenShift origin,” Journal of Physics: Conference Series, vol. 898, oct
2017, p. 082037.

[23] GitHub, Inc., “Github,” https://github.com/, 2019, [Online; accessed 21-
October-2019].

[24] JFrog Ltd, “Artifactory,” https://jfrog.com/artifactory/, 2019, [Online;
accessed 21-October-2019].

[25] The Apache Software Foundation, “Maven,” https://maven.apache.org/,
2019, [Online; accessed 21-October-2019].

[26] Software in the Public Interest, Inc., “Debian,” https://www.debian.org,
2019, [Online; accessed 21-October-2019].

[27] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: eclipse
modeling framework. Pearson Education, 2008.

[28] Obeo, “Obeo designer,” https://www.obeo.fr/en/, 2019, [Online; ac-
cessed 21-October-2019].

[29] V. Viyović, M. Maksimović, and B. Perisić, “Sirius: A rapid develop-
ment of dsm graphical editor,” in IEEE 18th International Conference
on Intelligent Engineering Systems INES 2014. IEEE, 2014, pp. 233–
238.

[30] P. Roques, “MBSE with the ARCADIA Method and the Capella Tool,”
in 8th European Congress on Embedded Real Time Software and
Systems (ERTS 2016), Toulouse, France, Jan. 2016.

[31] SmartBear Software, “Swagger,” https://swagger.io/, 2019, [Online;
accessed 21-October-2019].

13Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 19 / 53

JeroMF
A Software Development Framework for Building Distributed Applications Based on Microservices and

JeroMQ

Aditi Jain
Computer Science Department

Utah State University
Logan, Utah, U.S.A.

email: aditi.jain@aggiemail.usu.edu

Stephen Clyde
Computer Science Department

Utah State University
Logan, Utah, U.S.A.

email: Stephen.Clyde@usu.edu

Abstract— This paper describes the design, implementation, and
testing of a software development framework, called JeroMF,
that can help developers create scalable distributed applications
based on a microservice architecture and that uses JeroMQ (a
native Java implementation of ZeroMQ) for message passing.
JeroMF includes an execution framework and extensible
components for implementing processes, services,
communication channels, messages, communication statistics,
and encryption. Applications built with JeroMF do not require
a message broker or any other middleware processes. However,
they may include an optional Service Registry that can facilitate
service discovery and secure communications. The Service
Registry itself was implemented with JeroMF and is included as
part of the JeroMF distribution. Thorough unit, integration,
and system test cases exist for every component of JeroMF. For
validation, JeroMF was used to re-design and re-implement a
distributed health-care application with 13 separate types of
services and very strict security requirements.

Keywords-Microservices; Distributed Applications; Software
Development Frameworks.

I. INTRODUCTION
Microservices are an architectural style for structuring

applications around loosely coupled services and for making
those services as granular as possible without compromising
efficiency [1][2]. Microservices are highly maintainable,
testable, independently deployable, and scalable [3]. Also,
software engineers can organize them around business
capabilities, thereby creating systems with excellent
modularity and encapsulation, which can help with dynamic
service composition and improve overall reliability, security,
and fault tolerance. Microservices can also facilitate the
continuous deployment of large, complex applications.

However, without a development framework, an
application based on microservices can be hard to construct,
test, debug, deploy, and maintain [3][4]. Simply splitting an
application into multiple independent services generates
more artifacts to manage without necessarily obtaining the
desirable properties mentioned above. In fact, a haphazard
refactoring of a distributed application into lots of
independent services may create more complexity and
thereby making maintenance and deployment more difficult.

When building an application based on microservices,
developers need to modularize carefully, isolate relatively
independent subsets of data together with the functionality
for managing that data. Doing so will help reduce coupling
and increase cohesion [5][6], and thereby improve reuse,
maintainability, extensibility, and even scalability.

Also, when developers use microservices, they need to pay
attention to all the typical implementation details for
distributed applications, such as a) ensuring consistent
implementation of communication protocols, b) ensuring the
safety and consistency of transactions, c) achieving the
desired amount of reliability despite communication or
process failures, and d) guaranteeing the required level of
security. Because a microservice-based application may have
finer grain and diverse services and more communications
than a similar application based on a client-server or service-
oriented architectures, these challenges can be daunting and,
if poorly handled, can cause the ultimate failure of the
application.

This paper describes an open-source software
development framework, called JeroMF, for creating
distributed applications based on microservices efficiently
and effectively. Specifically, JeroMF’s goal is to make it
easier for developers to create secure and reliable distributed
applications by providing an execution framework and base
components for processes, services, communication
channels, messages, and communication statistics. JeroMF
uses JeroMQ [7], a native Java port of ZeroMQ [8], as its
communication library.

Section II provides some additional background on
distributed applications in general, microservices, and
JeroMQ. Then, Section III describes a sample application for
illustration purposes. This is followed by an overview of
JeroMF in Section IV. The full implementations for JeroMF
and the sample application are available in public Git
repositories. The URLs for these repositories are given later.

To verify JeroMF, we have created executable unit,
integration, and system test cases. These test cases provide
thorough test coverage using path and input domain
partitioning testing techniques (see Section V). To validate
JeroMF, we use it to re-design and re-implement a non-trivial

14Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 20 / 53

distributed application for the Utah Department of Health.
This application, called the Child Health Advanced Records
Management (CHARM) system. A brief summary of this
case study is also provided in Section V. Finally, Section VI
provides a summary and some thoughts about future work.

II. BACKGROUND AND RELATED WORK

A. Distributed Applications
A distributed application is a software system that

requires multiple processes to coordinate via network
messages to complete its tasks. As such, they have to deal
with both inter- and intra-process concurrency, as well as
delays dues to message transfer [9]. Also, except for certain
kinds of testing, the processes in a distributed application
typically run on multiple independent hardware devices and
therefore have to deal with the complexities of partial failure
due to device or network failure [10]. Many mobile, Web-
based, and enterprise applications today are actually
distributed applications.

B. Microservices
To date, there is no concrete or widely accepted definition

for microservices. Instead, microservices are general
understood to be an architectural design concept, where the
functionality of a distributed application is modularized into
relatively small cohesive services. Each microservice works
with its own data, can use other services, and can be
implemented, tested, and deployed independent of other
microservices [11].

Using microservices to build complex systems is not
entirely a new idea. It stems from ideas central to Object-
oriented Software Development [12] and that are found in
many different types of architectures and design patterns,
including Service-oriented Architecture [13], Domain-
Driven Design [14], and Bounded Context [15].
Furthermore, they are consistent with software engineering
principles, such as the Single Responsibility principle from
SOLID [16] and the unified definitions of Abstraction,
Modularization, and Encapsulation [17].

Some of the hoped-for benefits of microservices, include
independent development, deployment, and scalability [4], as
well as reusability, maintainability, and extensibility.
Unfortunately, these benefits do not come for free.
Developers must apply a wide range of expertise to address
challenge inherit to distributed applications and to achieve
designs with good modularity. Below is a summary list of
some of these challenges identified in [4]:

• Increased complexity due to application features
spanning multiple services;

• Increased complexity in setting up unit, integration,
and system tests;

• The components or subpart of a real-world system
often have poorly defined boundaries and, therefore,
mapping them to services is non-trivial;

• Developers need to be expert in analyzing and
balancing design decisions;

• Developers are responsible for the entire life cycle
of a component (service);

• The complexities of state, when stateless services
are not possible; and

• The complexities of communications, especially in
achieving certain degrees of reliability and security.

C. Software Development Frameworks
In general, software development frameworks are

collections of reusable components that provide execution
infrastructures [18] and “inversion of control” [19]. With
“inversion of control”, developers don’t have to write the
main control logic directly and can focus on the functionality
that is unique to an application [20], and can thus help
developers to be more productive. Currently, there are many
frameworks for developing distributed applications, such as
Grails [21], Angular [22], and Coco [23] to name just a few.
However, to our knowledge, none of them supports the
creation of distributed applications using microservices and
JeroMQ for communications.

D. ZeroMQ and Its Native Java Port, JeroMQ
In 2007, Pieter Hintjens along with Martin Sustrik

introduced ZeroMQ as a high-performance, asynchronous,
lightweight messaging library for scalable distributed
applications [8]. ZeroMQ is fast, simple, and provides easy
scalability. Also, it has been ported to over 40 programming
languages, including a native implementation for Java, called
JeroMQ [7]. Its application programming interface (API) for
in-process, inter-process, peer-to-peer, and multicast
communications is simple and consistent.

Developers working with ZeroMQ can create distributed
application more quickly than with lower-level socket
libraries because of its convenient abstractions and simple
API. However, ZeroMQ is just a class library and not a
development framework. As such, it does not directly
provide an execution infrastructure or “inversion of control”.
Furthermore, it does not directly help developers with the
challenges listed above.

III. SAMPLE APPLICATION
To illustrate the architecture and use of JeroMF, we use a

simple distributed application for managing used cars for
multiple dealers (see Figure 1). With this sample application,
every used-car dealer would run its own Used-car Server
(only one shown in Figure 1) and each Used-car Server would
contain a microservice, called Used-car Service. This service
would encapsulate the dealer’s own used-car data and
provide a network-accessible API that would allow remote
clients, e.g., the end user interface, to query what cars the
dealer currently has in inventory and their prices.

15Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 21 / 53

This sample application is minimal and only for
illustration purposes. It does not contain all of the
functionality one would expect in a real used-car application.

IV. OVERVIEW JEROMF
JeroMF is a framework that helps developers manage the

complexities identified in Section II.B, so they can build
quality distributed applications efficiently and effectively.
Specifically, JeroMF aims to make it easy for developers to

1. Setup containers (processes) of services;
2. Manage service configuration parameters;
3. Create custom services that can a) access their

own data stores, b) respond to incoming requests,
and c) discover and use other services;

4. Define and implement reliable application-level
communication protocols;

5. Use secure communications based on either
asymmetric or symmetric encryption;

6. Monitor the status of all services in a distributed
application;

7. Track service load and communication statistics;
8. Gracefully startup and shutdown services; and
9. Test services and inter-service communications.

A. Architectural Overview
The Unified Modeling Language (UML) Class Diagram

[12][24] in Figure 2 shows JeroMF’s primary packages with
their essential classes and relations. From left to right are the
base components for implementing custom processes,
application-specific services; and communications.
Developers create distributed applications in JeroMF by
implementing specializations of these components or by

reusing them directly. The following sections describe them
in more detail, beginning with the process-related
components.

B. Processes
A process in JeroMF, defined as a specialization of

BaseProcess, is an execution container that holds one or more
services. If a developer is following a strict microservice
architecture, then each JeroMF process will hold exactly one
service. However, JeroMF allows a process to hold more than
one service, at the developer’s discretion, to achieve better
execution and deployment efficiencies in certain situations.

A JeroMF process also contains a Session object, which in
turn contains a Settings object. The Session object keeps
track of the process’s name, status, Settings object, JeroMQ
context, and encryption keys. The Settings object holds all
the configurable settings for a process and its services. Each
setting has value that can be changed at runtime through
either property files, environment variables, or command-line
parameters. The Session object is shared with all the
process’s services so they can make use of that information.

Figure 3 contains a Class Diagram of used-car application,
with the components implemented by the developer in light

Figure 2. The primary packages in JeroMF with their key classes and

relationships.

Figure 1. Sample Distributed Application for Tracking Used Cars

Used-car Server

Used-car Service

Dealer
Inventory

List Cars

Get Car Price

Dealer Host Machine

User Interface

End User’s Device

Figure 3. Classes in the Used-car Application, with those
implemented by developer shown in light blue.

public class UsedCarServer extends BaseProcess {
 public static void main(String[] args){
 UsedCarServer process=new UsedCarServer();
 try {
 process.initialize(args,"server.config");
 UsedCarService service = new
 UsedCarService(instance.getSession(),
 "UsedCarsService");
 process.addService(service);
 process.run();
 }
 catch (Exception e) {e.printStackTrace(); }
 finally { process.cleanup(); }
 }

 @Override
 protected Settings createSettings() {
 return new UsedCarSettings();
 }
}

Figure 4. Implementation of the UsedCarServer class

16Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 22 / 53

blue. Figure 4 contains the code for UsedCarProcess from the
sample application and is typical of most JeroMF processes.
When a process starts, the main() routine calls the initialize()
method – a Template Method [25] that setups the Session and
Settings objects using virtual methods that the developer can
override in the specialization. For example, the
UsedCarProcess needs a custom Settings, so developer
simply implements a specialization of Settings (not shown)
and then overrides createSettings() method to return an
instance of that specialization. See Figure 3.

After the process is initialized, the main() method
instantiates the service that it will contain, adds it to the
process, and then calls a run() method to begin execution.
The run() method will only return once the process is stopped,
which typically occurs after a service receives a Shutdown
command or when it determines that the process needs to
enter a terminal state. Finally, once the run() method does
return, main() method will call cleanup().

C. Services
The BaseService class (see Figure 2) represents a basic

microservice with an optional database connection. It has
access to the process’s Session object, which is provided as a
parameter to the constructor. The ZmqService class is a
specialization of BaseService class that represents a
microservice with communication capabilities based on
JeroMQ. As such, it can have zero or more communicators,
i.e., instances of the Communicator class, for interacting with
clients or other services. Typically, and by default, a
ZmqService would include three communicators:

• a registration client that is responsible for listing the

service with the Registry (if application uses a
Registry), so other processes can find it and for
setting up secret keys for symmetric encryption,

• a command responder that listens for general control
messages from the Registry or some other control
process, and

• an API responder for handling requests from clients.

None of these communicators are required and are only
setup if their configuration settings have values in the
Settings object.

Although BaseService and ZmqService can be used as-is
for instantiating many types of services, they can be further
customized through specialization. Like JeroMF processes,
services have initialize() and run() methods that follow the
Template Method pattern, with the customizable parts
encapsulated in virtual methods.

Figure 5 contains a specialization of ZmqService, called
UsedCarService, for the used-car application. When a
UsedCarService is initialized, which happens when the
service is started, it calls its super’s (i.e., ZmqService’s)
initialize() method, which automatically sets up instances of
the three types of communicators listed above.

ZmqService’s initialize() method also calls its super’s
(i.e., BaseService’s) initialize() method, which sets up
everything that is needed for working with the database. The
actual opening the database connection is deferred until the
first time it is used, thereby minimizing initialization time

After calling its super’s initialize() method,
UsedCarService’s initialize() method customizes its API
Responder to handle two types of messages, namely ListCars
and GetCarPrice, by setting up message handlers for them. A
message handler for a type of message defines what kind of
encryption to expect for the incoming message and what type
of encryption to use for the reply, along with a lambda
function for processing incoming messages. In this example,
the both lambda function simply call private methods. The
private methods (implementations not shown) get a reference
to database connection using a protected method inherited
from BaseService and then use that connection to retrieve the
requested information. They return a reply message or a null,
if the desired information could not be retrieved.

D. Communicators
Communicator is an abstract base class for the objects that

handle all the communications in JeroMF. A communicator
uses JeroMQ, which in turn uses one of three transport-layer
communication mechanisms, namely: Transmission Control
Protocol (TCP), in-process (Inproc), or inter-process
communication (IPC) [26]. Each communicator has an end
point that defines both the transport-layer communication
mechanism and either the local address that the
communicator will bind to or the remote end point that it will
connect to. The details about a communicator’s end point are
encapsulated in an instance of CommInterface class.
Developers do not need to directly create or access these
objects.

JeroMF includes six reusable communicators:

public class UsedCarService
 extends ZmqService {

 UsedCarService(Session session, String srvName)
 throws ServiceException {
 super(session, srvName);
 }

 @Override
 protected void initialize()
 throws ServiceException {
 super.initialize();
 apiResponder.addMessageHandler(ListCars.class,
 EncryptionMode.None,
 EncryptionMode.None,
 msg -> listCars());
 apiResponder.addMessageHandler(GetCarPrice.class,
 EncryptionMode.None,
 EncryptionMode.None,
 msg -> getCarPrice(msg));
 }

 private Message listCars(){ … }

 private Message getCarPrice(Message request){ … }
}

Figure 5. Code snippet of UsedCarService

17Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 23 / 53

• The Requester and Responder communicators
handle reliable request-reply style communications
where the requester initiates all conversations

• The Active Responder and Passive Requester, which
also handle reliable request-reply style
communications, but the responder starts by
indicating its readiness to receive requests

• The Command Publisher and Command Responder,
which provide for simple but secure one-way
message broadcasts.

JeroMF also includes a special type for Requester, called
RegistrationClient, that registers services with the optional
Registry process. This was mentioned above as one of the
standard communicators for a ZmqService.

All communicators can send and receive encrypted or
unencrypted messages. For encrypted messages, a
communicator may use either asymmetric encryption based
on a public-private key pair or symmetric encryption based
on a shared secret key. For asymmetric encryption where a
communicator needs to encrypt or decrypt with a private key,
a ZmqService will give the communicator the name of the
key pair and the password for opening the private key. It
should get these values from the Settings object. For
asymmetric encryption where a communicator needs to
decrypt or encrypt a message with a public key, it can ask its
ZmqService to lookup the public key by name. If the
distributed application is using a Registry, then a ZmqService
can use the Registry to discover this public key, if it is not
already known.

Since communicators send and receive messages,
JeroMF provides a base class, called Message, for
implementing message structures quickly. Developers simply
have to create specializations of this base class and then
define appropriate data members with getters and setters.

V. TESTING AND EVALUATION

A. Verification
JeroMF was tested at the unit, integration, and system

level with executable test cases using JUnit [27]. For unit
testing, we used a combination of path testing [28] and input
domain partitioning testing [29] techniques and achieved
reasonably good coverage by striving to meet the following
criteria:

• Every statement is executed in at least one test case.
• Every possible outcome of each conditional clause

is tested in at least one test case.
• Representative examples of each boundary case for

every looping construct is executed in at least one
test case.

• Every possible exception is thrown in at least one
test case.

• Representative examples from each partition
element of each input domain for each method is
used in at least one test case.

During the unit testing, we discovered that some of the

declared exceptions from JeroMQ and other 3rd party libraries
are impossible to stimulate in automated test cases. So, our
coverage for unit testing is not 100%, but it is very close.

For integration and system testing, we also created
executable unit test cases using Junit. However, each of these
test cases have to ensure that other services are running and,
if not, start them up before executing and shut them down
afterwards. To this end, we created some utility components
for checking the status of another service, for launching a
process that contains that service, and for eventually shutting
that process down. These utilities components allow us to
create automated integration and system test cases, giving us
confidence that the individual components of JeroMF are
working together correctly and that the framework as a whole
is satisfying its requirements.

B. Validation
Validating JeroMF requires using it to develop real

distributed applications. Over the last 20 years, Utah State
University has developed a number of distributed
applications for the Utah Department of Health, including an
information broker, called the Child Health Advanced Record
Management (CHARM) system [30]. This system allows
health-care professionals to view a wide range of health-care
data for a given child from multiple data sources, securely
and in real-time. To do its job, CHARM must monitor and
interact with multiple data sources and data consumers,
matcher child records across the data sources, identify special
situations about which health-care professionals need to be
alerted, and monitor itself.

This distributed application, which has been operating
since 2006, seemed like a good candidate to re-design and re-
implement using JeroMF. It is complex, requires high levels
of security, maintainability, and extensibility. So, as an initial
case study, we selected a major portion of this system, called
the Sync Facility, and re-built this subsystem using JeroMF.

After refactoring into microservices, the Sync Facility
ended up with 16 different types of services, hosted in 13
processes. The refactoring simplified the architectural design
of the Sync Facility and improved its ability to be tested and
deployed. Though antidotal evidence, the developers also
believe that the new Sync Facility will be more maintainable
and extensible.

C. Continuous Integration and Deployment
All of JeroMF (i.e., its base components, Registry, and

utilities) and the used-car example are contained in the public
Git repositories on Bitbucket.org, under the
“usucssedevelopment” user [31]–[34]. Specifically, the base
repository [31] contains the JeroMF source code and test
cases. It compiles to a distribution package that distribution

18Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 24 / 53

application will import to use JeroMF. It is configured to use
CircleCI [35] for continuous integration and to automatically
deploy its distribution package to a Maven repository. The
second repository [32] contains the Registry and is itself a
program built with JeroMF. The third repository [33]
contains some utility components, such as a process launcher,
that are used for the integration and system testing of JeroMF
but can also help with the deployment and launching of
distributed applications, in general. The fourth repository
contains the a barebones but functional implementation of
used-car example [34].

VI. CONCLUSION
Our initial experience with JeroMF has provided

preliminary evidence that it is valuable framework for
implementing distributed applications based on
microservices and JeroMQ. Its BaseProcess class makes it
easy to define new service containers that can run on bare-
bones Java platforms, i.e., a platform with no Web servers or
application servers. Its BaseService and ZmqService classes
make it easy to create custom microservices that can
implement diverse and sophisticated functionality. The
predefined Communicator and Message classes allow
developers to implement common styles of communication
and provide excellent starting points for implementing
application-specific communication protocols. Also, the
Communicator class makes it easy for developers to use
either asymmetric or symmetric encryption. Furthermore,
the optional Registry process can act like a key store for the
public keys of registered services, simplifying key
management.

The JeroMF services also have built in monitoring logic
that can allow monitoring processes to either actively query
the service status or receive periodic updates from services.
Services can also track statistics about workloads and
message traffic, and then provide that information to
monitoring processes for analysis. Finally, the standard
Command Responder for a service provides a simple but
secure way to shut down or restart services.

Despite its rich set of features, JeroMF is still in its
infancy. We envision several important enhancements to
JeroMF in the near future. First, we aim to create other
specializations of BaseService, like ZmqService, that would
support different messaging libraries. For example, we plan
to create an HttpService that uses HTTP [36] instead of
JeroMQ and that has built-in support for RESTful [37]
operations. After that, we plan on implementing and testing
extensible services that will act as request proxies and load
balancers.

We also plan to conduct several empirical studies and
qualitative analyses that will aim to answer questions about
its utility, reusability, extensibility, scalability, security,
reliability, and maintainability. In preparation for some of
these studies, we will track detailed information about
software problem reports, time to resolution, induced errors
from bug fixes, and more.

Finally, we plan to create more public examples that can
help explain how to use JeroMF in build production-quality
distribution applications and to serve as testbeds for empirical
studies.

We welcome feedback and contributions from
developers who would like to use JeroMF to build distributed
applications.

REFERENCES
[1] “Microservices,” martinfowler.com. Available from: https://

martinfowler.com/articles/microservices.html. [retrieved:
Sept., 2019].

[2] D. Taibi, V. Lenarduzzi, and C. Pahl, “Architectural Patterns
for Microservices: A Systematic Mapping Study.,” presented
at the CLOSER, 2018, pp. 221–232.

[3] P. Hauer, “Microservices in a Nutshell. Pros and Cons.,”
Phillip Hauer’s Blog. Available from https://phauer.com/
2015/microservices-nutshell-pros-cons/. [retrieved: Sept.,
2019].

[4] D. Kerr, “The Death of Microservice Madness in 2018,” Dave
Kerr’s Blog, 12-Jan-2018. Available from: https:// dwmkerr.
com/the-death-of-microservice-madness-in-2018/. [retrieved:
Sept., 2019].

[5] G. Gui and P. D. Scott, “Coupling and Cohesion Measures for
Evaluation of Component Reusability,” in Proceedings of the
2006 International Workshop on Mining Software
Repositories, New York, NY, USA, 2006, pp. 18–21.

[6] I. Candela, G. Bavota, B. Russo, and R. Oliveto, “Using
Cohesion and Coupling for Software Remodularization: Is It
Enough?,” ACM Trans Softw Eng Methodol, vol. 25, no. 3, pp.
24:1–24:28, Jun. 2016.

[7] Pure Java ZeroMQ. Contribute to zeromq/jeromq development
by creating an account on GitHub. The ZeroMQ project, 2019.

[8] “ZeroMQ.” Available from: https://en.wikipedia.org/wiki/
ZeroMQ. [retrieved: Sept., 2019]

[9] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair,
Distributed Systems: Concepts and Design, 5 edition. Boston:
Pearson, 2011.

[10] J. Link, “Chapter 11 - Distributed Applications,” in Unit
Testing in Java, J. Link, Ed. San Francisco: Morgan
Kaufmann, 2003, pp. 225–240.

[11] E. Wolff, Microservices: Flexible Software Architecture, 1
edition. Addison-Wesley Professional, 2016.

[12] G. Booch et al., Object-Oriented Analysis and Design with
Applications, 3 edition. Upper Saddle River, NJ: Addison-
Wesley Professional, 2007.

[13] “What Is SOA?,” Available from: https://web.archive.org/
web/20160819141303/. [retrieved: Aug., 2019].

[14] E. Evans, Domain-Driven Design: Tackling Complexity in the
Heart of Software, 1 edition. Boston: Addison-Wesley
Professional, 2003.

[15] M. Fowler, “BoundedContext,” martinfowler.com, Available
from: https://martinfowler.com/bliki/BoundedContext.html.
[retrieved: Sept., 2019].

[16] S. Metz, “SOLID Object-Oriented Design - GORUCO 2009.”
Available from: http:// https://www.youtube.com/watch?v=v-
2yFMzxqwU. [retrieved: Sept., 2019].

[17] S. Clyde and J. E. Lascano, “Unifying Definitions for
Modularity, Abstraction, and Encapsulation as a Step Toward
Foundational Multi-Paradigm Software Engineering
Principles,” in Proceedings of the Twelfth International

19Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 25 / 53

Conference on Software Engineering Advances, Athens,
Greece, 2017.

[18] “Library vs. Framework?,” Program Creek, Available from:
https://www.programcreek.com/2011/09/what-is-the-
difference-between-a-java-library-and-a-framework/.
[retrieved: Sept., 2019].

[19] “Inversion of Control Containers and the Dependency
Injection pattern,” martinfowler.com. Available from: https://
martinfowler.com/articles/injection.html. [retrieved: Sept.,
2019].

[20] “The Difference Between a Framework and a Library,”
Developer News, 01-Feb-2019. Available from: https://
www.freecodecamp.org/news/the-difference-between-a-
framework-and-a-library-bd133054023f/. [retrieved: Sept.,
2019].

[21] “Grails Framework.” Available from: https://grails.org/.
[retrieved: Sept., 2019].

[22] “Angular.” Available from: https://angular.io/. [retrieved:
Sept., 2019].

[23] “Coco: A New Open-Source Blockchain Framework –
MontageJS.” MontageJS. Available from: http://montagejs.
org/coco-open-source-blockchain. [retrieved: Sept., 2019].

[24] A. S. Evans, “Reasoning with UML class diagrams,” in
Proceedings. 2nd IEEE Workshop on Industrial Strength
Formal Specification Techniques, 1998, pp. 102–113.

[25] E. Gamma, R. Helm, R. Johnson, J. Vlissides, and G. Booch,
Design Patterns: Elements of Reusable Object-Oriented
Software, 1 edition. Reading, Mass: Addison-Wesley
Professional, 1994.

[26] P. Hintjens, ZeroMQ: messaging for many applications.
O’Reilly Media, Inc., 2013.

[27] “JUnit – About.” Available from: https://junit.org/junit4/.
[retrieved: Sept., 2019].

[28] A. Watson and T. McCabe, “Structured Testing: A Testing
Methodology Using the Cyclomatic Complexity Metric,”
National Institute of Standards, NIST Special Publication 500-
235, Sep. 1996.

[29] J. Tian, “Input Domain Partitioning and Boundary Testing,” in
Software Quality Engineering: Testing, Quality Assurance,
and Quantifiable Improvement, IEEE, 2005, pp. 127–146.

[30] S. Clyde, Child-Health Advanced Record Management
Systems. Salt Lake City, Utah, USA: Utah Department of
Health, 2006.

[31] S. Clyde and A. Jain, JeroMF Base Components. Logan, Utah,
USA: Utah State University, 2019. Available from: https://
bitbucket.org/usucssedevelopment/base.git. [retrieved: Sept.,
2019].

[32] S. Clyde and A. Jain, JeroMF Registry. Logan, Utah, USA:
Utah State University, 2019. https://bitbucket.org/
usucssedevelopment/registry.git. [retrieved: Sept., 2019].

[33] S. Clyde and A. Jain, JeroMF Utilities. Logan, Utah, USA:
Utah State University, 2019. https://bitbucket.org/
usucssedevelopment/utils.git [retrieved: Sept., 2019].

[34] S. Clyde and A. Jain, JeroMF Used-car Example. Logan, Utah,
USA: Utah State University, 2019. https://bitbucket.org/
usucssedevelopment/jeromfexamples-usedcars.git [retrieved:
Sept., 2019].

[35] “Continuous Integration and Delivery,” CircleCI. Available
form: https://circleci.com/. [retrieved: Oct., 2019].

[36] J. F. Reschke and R. T. Fielding, “Hypertext Transfer Protocol
(HTTP/1.1): Authentication.” Available from: https://tools.
ietf.org/html/rfc7235. [retrieved: Sept., 2019].

[37] “What is RESTful API? - Definition from WhatIs.com,”
SearchMicroservices. Available from: https://
searchmicroservices.techtarget.com/definition/RESTful-API.
[retrieved: Sept., 2019].

20Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 26 / 53

Automata-Based Timed Event Program Comprehension

for Real-Time Systems

Aziz Fellah and Ajay Bandi

School of Computer Science and

Information Systems

Northwest Missouri State Univerity

Maryville, Missouri USA

Email:{afellah, ajay}@nwmissouri.edu

Abstract—In this paper, we extend the software space of program
comprehension to real-time systems and introduce two orthogonal
and hybrid paradigms that we refer to as timed event component
comprehension and timed event program comprehension. The
former, timed event component comprehension, with no role in
the coding aspect, is a set of autonomous timed event components
that provide a high-level system-specific functionality about the
overall real-time system including its structure, components
and their synchronized interrelationships at different level of
granularity, and static and dynamic behaviors. The later, timed
event program comprehension recovers high level of information
from timed event component comprehension and then builds an
automata-based model about the system. This process occurs
before carrying any program comprehension. We show that
both paradigms are intrinsically linked and neither of them can
be explored in isolation. Importantly, we map the component
comprehension paradigm into a distinguished component class
that we refer to as timed event components (TeCmp) which,
in turn, are formally modeled as timed event automata, a
powerful canonical model for modeling and verifying real-time
computations. Furthermore, to support this research towards an
effective program comprehension geared towards real-time and
embedded systems, we investigated and evaluated the effect of
our approach through a practical Internet of Things (IoT) case
study.

Keywords–Program comprehension; program understanding;
software modeling; real-time systems; embedded systems; IoT; timed
event automata.

I. INTRODUCTION

Because of its importance in software engineering, pro-
gram comprehension has emerged as a significant component
in software evolution and maintenance. It is a process of
understanding an existing software system before it can be
properly maintained, enhanced, reused, and extended. For
instance, a common situation that software developers may
find themselves in is reviewing and extending their own or
their teammate’s code. This situation is much easier than
understanding and maintaining the code of unfamiliar software
systems, or reading the code of an Application Program-
ming Interface (API)/utility library. We call these knowledge-
intensive activities program comprehension, which is con-
sidered as an important aspect of the software development
process. In general, new developers spend much of their time
analyzing code and searching for information to understand the
system under evolution. Other closely related terms are also
used to describe activities related to program comprehension,

such as code refactoring and reverse engineering. For years,
researchers have tried to understand how developers compre-
hend programs during software maintenance and evolution,
and assess the quality of program comprehension. To address
these challenges, numerous proposals and approaches have
been investigated by Storey [1], Siegmund [2], Yuan et al. [3],
Fowkes et al. [4], and Lucia et al. [5], just to name a few that
span a spectrum of activities, such as cognitive models and
software visualization, empirical evaluation, mental models
representation of the program, knowledge-base models, top-
down and bottom-up comprehension, code semantics, and
data context interaction [1], [6]–[8]. Some of these theoretical
models are grounded in experimental studies and validated by
experienced programmers.

In this paper and with no comprehensive overview, we
attempt to lay a foundation of program comprehension for real-
time systems, an area of research that has not received much
attention and could be investigated in various directions. In
this work, we are not claiming that we developed a general
and conclusive program comprehension framework for real-
time and embedded systems, but our work will add value to
the existing approaches. The paper describes strategies and
knowledge needed as well as the rational of this orthogonal
paradigm: component and program comprehension. We will
shed light on what developers should emphasize when faced
with the challenging time-dimension tasks of gaining an un-
derstanding of real-time source code. This should be aligned
with the original code of the designers.

Importantly, the focus of this contribution is on two or-
thogonal and hybrid paradigms that we introduce and refer
to as timed event component comprehension and timed event
program comprehension. Such a dual comprehension paradigm
would help programmers with comprehending systems‘ func-
tionality, understanding code, interweaving abstractions, and
building a mental model about a piece of software as well
as using effective tools to support program comprehension
activities.

Timed event component comprehension provides a high
level system-specific functionality about the overall real-time
system including its architectural structure, static and dynamic
behaviors, and synchronized interrelationships at different lev-
els of granularity. With no role in the coding aspect, timed
event component comprehension tasks are grounded on a set
of autonomous functional block units that we refer to as timed

21Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 27 / 53

event components (TeCmp). The abbreviation of TeCmp will
be used for both singular and plural terms in the concordant
context of the sentence in the rest of this paper.

Timed event program comprehension recovers high-level
of information from timed event component comprehension
and builds an automata-based model about the system before
carrying program (i.e., source code) comprehension. The co-
ordination and interaction between TeCmp is fully delegated
to a special class of components that we refer to as timed
component connector (TeCnn).

A major challenge in the proposed timed event component
comprehension development is the coordination of the ac-
tive components and entities that comprise real-time systems.
Thus, there is a need to complement TeCmp with formalisms
for coordinating, integrating, and synchronizing components
which have well-defined and fixed interfaces. In addition,
we collectively refer to the pair, timed event component and
timed event connector models, as (TeC&C) which are formally
modeled by timed event finite automata, a powerful canonical
model for modeling and verifying real-time computations.

The structure of the paper is as follows. In Section II, we
survey the related work and research challenges that appear in
software systems related to program comprehension. In Section
III, we describe timed event component-based framework
which is characterized in terms of two types of components
that we refer to as TeCmp and TeCnn. Both of these components
are intrinsically linked and neither of them can be explored in
isolation. Section IV discusses the challenges of component
comprehension in real-time systems. Furthermore, this section
states some definitions and concepts that can be used in subse-
quent sections. Section V focuses on timed event component
and connector models (TeC&C) to gain an understanding of
the overall system‘s inner workings in terms of the time
dimension. Section VI describes time event transitions which
are fundamentally important for real-time systems. It also maps
the main component, such as TeCmp into timed event automata.
The characteristics of the IoT irrigation case study system are
presented and summarized in Section VII. We conclude the
paper with some potential discussions in Section VIII.

II. RELATED WORK

Over decades program comprehension has been character-
ized by several classical theories and strategies in conjunction
with other complementary techniques such as software inspec-
tion, visualization [9], static and dynamic source code analysis.
For instance, the knowledge-base model of [10] which is
based on the problem domain, developer’s experience and
background knowledge. A number of mental representations at
various levels of abstraction have been investigated in literature
[1]–[6] [11]. The top-down model [1] which reflects the devel-
oper’s mental and conceptual representations integrate domain
knowledge as a starting point. On the contrary, with no prior
knowledge and little experience with the domain, program
comprehension starts at the source code level and builds a
higher-level abstraction (bottom-up model) [11]. Knowledge-
based, mental and top-down models support the timed event
component comprehension paradigm. However, the bottom-up
model supports timed event program comprehension paradigm.
Based on the nature of events, time-driven and event-driven of
[12] and [13], real-time UML (Unified Modeling Languages)
has emerged as the choice of the development of real-time and

embedded systems. Data context interaction architecture [8] is
a software paradigm whose main goal is to bring the end user’s
mental models and computer program models closer. Data con-
text interaction [8] focuses on objects and their relationships
to mental models by which users and programmers add new
functionalities and modify the existing ones.

Furthermore, the software system development has shifted
its emphasis from traditional building and programming soft-
ware systems to a component-based approach. Component-
Based Development (CBD) [14]–[18] has emerged among
the most feasible approaches to overcome and address the
software complexity in different domain areas, and advocates
the reuse of independently developed software components
as a promising technique for the development of complex
software systems. Importantly, individual component-based
functionalities incorporate potential future reusability, hence
served to increase the program comprehension.

Our approach is different from other existing conceptual
and theoretical models because we are primarily focusing on
the timing characteristics of the application, which is the most
predominant factor in real-time and embedded systems. In
general, our work partially borrows the concept of time stamps
of Leslie Lamport [19], but in particular it is grounded on the
foundation of timed automata of Alur [12].

III. TIMED EVENT COMPONENT-BASED DEVELOPMENT

The component-based model [14]–[16] is used to develop
software at higher abstraction levels and promotes the reuse
and evolution of existing artifacts and entities developing new
software systems. It is composed of a collection of func-
tional building blocks or services that have become a system
blueprint in modern software engineering development life
cycle. In timed event component-based development (TeCBD),
we refer to the smallest functional block unit as TeCmp. It is
defined in much the same way as a standard component in
CBD.

This work is based on component-based software develop-
ment. In this research, (TeCBD) an emerging software devel-
opment approach is based on building new software systems
from the existing and reusable components. TeCBD involves
three stakeholders, TeCmp, TeCnn, and interfaces, which in turn
provide, get, or synchronize services. Testing these TeCBD is
done first at the component level and then at the assembled
unit level.

In this paper, we only focus on the key characteristics of
such TeCmp. Individual TeCmp are designed and developed
from a hybrid of custom and off-the-shelf (potentially reusable)
components. They can be used independently or composed
with other TeCmp. In real-time and embedded systems, TeCmp

often perform dedicated functionalities under computing and
timing constraints as they become more complex and dis-
tributed in various environments. Each TeCmp hides its im-
plementation and complexity behind an interface and provides
only its functionality to the outside environment, but their
interaction and coordination are realized throughout TeCnn.

TeCmp are developed for real-time systems where the
logical correctness depends on both the functionality and
temporal correctness in a specific environment where the
portability should be held to a minimum. Overall, TeCmp

describe a syntactically constructive representation where all

22Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 28 / 53

tasks are grounded in a set of autonomous functional block
units, capturing a common understanding of the application
domain at a higher level and according to its semantics.

TeCnn, defined by the protocols, describe the intercon-
nection between TeCmp. That is, they represent a path of
interactions between TeCmp and allow transferring data from
one TComp′s interface to another without compromising the
integrity of the data. TeCmp and TeCnn together depict the
functionality of the system at runtime.

The overall behavior of TeCnn is to control in a timely
fashion the way TeCmp communicate with each other and
provide detailed control over the data- and control-flow. Refer
to the example of the IoT irrigation application where the
system is composed of several TeCmp and TeCnn in Section
VII.

IV. COMPONENT COMPREHENSION’S CHALLENGES IN

REAL-TIME SYSTEMS

We focus our attention on the role of time and modeling
which are the most predominant factors when comprehend-
ing a real-time system through its source code. In general,
real-time systems may involve different disciplines (i.e., IoT,
robotic automation), function typically under different real-
time computing constraints, and are distributed in various
environments. These underlying constraints include, but not
limited to timing, liveness, safety, dependability requirements,
and evolution of each discipline. Real-time systems are also
composed of components that communicate with each other,
and each component performs a set of dedicated functions
under real-time computing constraints. In a component-based
system, components interact with each other in their environ-
ment through well-defined interfaces and coordinate protocols
by combining each individual component’s functionality. Thus,
the component-based paradigm entangles both components’
computations and services with components’ coordination,
which turns collectively these autonomous components into
a coherent software working application.

First, we focus our attention on the interaction that de-
scribes how TeCmp interact rather than focusing on the indi-
vidual functionalities and services. Furthermore, in this work
and in essence of implementing and automating our results,
we are aiming at mapping the theory and properties of timed
event transitions systems. In particular, timed event automata
to TeCmp, an insight in supporting program comprehension
for real-time systems. In addition, abstraction, modularity,
and modeling are key factors that enable the development
of reusable software. We propose a multitude number of
layered abstraction views and models which mimic not only
common modeling architectural designs, but also improving
maintainability and promoting reusability. In the context of
this paper, this high layer of abstraction consists of several
constructs such as timed event components, ports, timed event
connectors, configurations, and interfaces. Importantly, our
focus is still on TeCmp and TeCnn. That is, we explicitly express
TeCmp and TeCnn, two distinguished component classes, at the
implementation level by formally modeling the functionality
of TeCmp units and the interaction protocols of TeCnn as timed
event finite automata.

The correctness of real-time and embedded systems de-
pends not only on the logical correctness of the computation,

but also on the time at which these computations occurred.
Furthermore, the structural decomposition of such systems is
embodied in their various components and relationship to each
other. Thus, there is a need to promote a software space of
design alternatives by putting these pieces together, namely a
collection of application-specific interfaces, ports, timed event
components, port-connectors, and a set of defined real-time
constraints. More explicitly, interfaces describe services that
TeCmp provide and services they require from other TeCmp,
including their compliance with executions. Ports are the
access points in TeCmp through interfaces and services. TeCmp

can be atomic or composed of layered interactions between
a collection of TeCmp that interact with each other providing
new functionalities. TeCnn play a primary role in mediating
interactions among TeCmp by providing architectural interac-
tion using different techniques such as queries. Furthermore,
they provide different type of services such as data transfer,
communication protocols, and control transfer. Configurations
are a set of associations between TeCmp and TeCnn.

We assume TeCnn can have at least one TeCmp coupled at
each of its ports performing operation requests (i.e., data and
control). We define three types of interaction interfaces, get-

interface, put-interface, and syn-interface where get-interfaces
are required and put-interfaces are provided interfaces by
TeCmp. However, there may be complicated synchronization
constraints between two or more interfaces of a single TeCmp,
then we complement TeCmp with a third type of interface
that we refer to as syn-interface. Two TeCmp, C1 and C2, may
interact synchronously through syn-interface. Figure 1 shows
a timed component-based system with three timed event
components, C1, C2, and C3 which communicate through
their respective ports, interfaces, and TConn.

C1C1

C3C3

C2C2

C1C3

syn-interface
C1C2

get-interface

put-interface

Figure 1. A component-based system with three composed TeCmp, C1, C2,
and C3 communicating via encapsulated ports/TeCnn, and interfaces.

Now, we can define the following relations between TeCmp.
Let C1 and C2 be two TeCmp, we define the following TeCmp

relationships:

1) TeCmp Inheritance

We say two TeCmp, C2 and C1, have an inheritance relation, in
terms of object-oriented classes, if C2 inherits all the properties
of C1. In addition, C1 may have more interaction interfaces and
all the inherited interaction interfaces of C2 work exactly the
same way as those of C1.

23Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 29 / 53

2) TeCmp Association

We say two TeCmp, C1 and C2, have an association relation if
they have at least one interaction interface.

3) TeCmp Aggregation

We say two TeCmp, C1 and C2, have an aggregation relation
if C1 is a subset of C2. In addition, a single TeCmp can be
aggregated by several TeCmp. The aggregated TeCmp has all
the interaction interfaces of its TeCmp.

4) TeCmp Composition

A composition is the combination of two or more TeCmp

at different levels of abstraction to achieve modularity and
decomposition of TeCmp using various programming languages
or composition tools as defined by the TeCmp infrastructure.
Let C1, C′

1, C2, C′
2 be four TeCmp. Let the operators ≡ and ×

be the equivalence and composition operators in the semantic
context, respectively. Then, if C1 ≡ C′

1 and C2 ≡ C′
2 implies

C1 × C2 ≡ C′
1 × C′

2.

5) TeCmp Encapsulation

We say that TeCmp C1 exhibits functional encapsulation if
C1 hides its details while exposing a well-defined interface
through its ports. Furthermore, embedded TeCmp may occur
at different levels of abstraction and could potentially foresee
what we call recursive encapsulation, a fundamental scheme
in comprehending programs. We say two TeCmp, C1 and C2,
have an association relation if they have at least on interaction
interface.

The terms association, aggregation, and composition are
extended versions of the common terms used in conceptual
modeling. In general, the definition of inheritance in this
paper is defined in the context of object-oriented programming
languages (including C#, C++ and Java). For instance, the
inheritance could be considered as covariant, invariant and
contravariant in C#.

Abstraction and modularity are key factors in timed
component-based framework that enable the development of
re-usable software. We start with various and rigorous levels
of abstractions and structures that are refined at each stage of
the development before mapping them to programming. For
instance in timed event components and connectors (TeC&C)
model, TeCmp architectural abstractions expose a high-level
of the structure of the system, including TeCmp’s logical
abstractions. On the other hand, TeCnn data- and control-flow
abstractions propose categorization spaces of data types and
control the flow of imposed conditions. TeCnn communication
and synchronization abstraction styles support protocols, and
enforce synchronous and asynchronous requests. TeCmp and
TeCnn timing abstractions and properties address several issues
of real-time systems throughout modeling formalisms.

Component Comprehension’s Abstraction

Abstraction can take many forms and dimensions to serve
various purposes in software development. In the context of
this work, we propose two different levels of abstraction. A
horizontal abstraction that studies component comprehension
at a very high level of abstraction, such as TeCmp’s func-
tionality, ports, interfaces, and TeCnn. However, details and
refinements regarding low-level abstractions such as time struc-
tures, timed automata, data types, configuration protocols, data

structures, and algorithms are performed on a vertical level. In
fact, the integration of both horizontal and vertical abstractions
reflect an orthogonality at the system and process models,
respectively. Partitioning for the purpose of comprehension
through various dimensions and abstractions can be found in
literature [20] and [21]. Figure 2 views a prism rectangle box
with special components, TeCmp, ports, TeCnn, interfaces and
a “time event clock”.

A prism rectangle box as shown in Figure 2 views special
components, TeCmp, ports, TeCnn, interfaces and a “time event
clock”. Similarly, Figure 3 shows explicitly a series of com-
prehension views through a high-level horizontal and low-level
vertical layers of abstraction. The former layer is composed of
constructs such as TeCmp, interfaces, and ports. The latter is
composed of constructs such as timed event automata, timed
event signature, and source code.

T
eC

m
p

Ports

Ports

In
te

rf
ac

es

TeCmp

T
eC

m
p

TeCnn

Timed
event

Timed
event

Timed
event

Timed
event

Timed
event

Timed
event

Comprehensiveness

Abstraction

Figure 2. Comprehension dimensions through TeCmp, TeCnn, ports and
interfaces.

T
eC

m
p

Ports

Ports

In
te

rf
ac

es

TeCmp

T
eC

m
p

TeCnn

Timed
event

Timed
event

Timed
event

Timed
event

Timed
event

Timed
event

Component
comprehension

TeCmp Ports TeCnn Interfaces

TeCmp
Interfaces

TeCmp TeCnn

Ports

Timed event
automata

Port
automata

Timed event
siganture

Configuration

Specification

Functionality

Source
code

Program
comprehension

Figure 3. Comprehension dimensions through timed event program.

24Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 30 / 53

V. TIMED EVENT COMPONENT AND CONNECTOR

MODELS

The coordination and interaction between TeCmp is fully
delegated to a special class of component connector that
we refer to as TeCnn. An expressive and intuitive way of
visualizing TeCnn is to view such a special type of component
as a “black box” with some “special code” and a “clock”
that allows real-time coordination between the active software
timed component entities. Clocks are used to justify timed
transitions and sequences of events in such a model. Connec-
tors are modeled as a relation between timed event component
streams.

We leverage the time logic and dimension structures of
[6] and [22] to describe real-time interactive or concurrent
systems in this work. Importantly, we consider the time-
dependent behavior of any TeCmp is an important aspect of the
system’s requirements, enforced by the component itself and
coordinated by TeCnn. To develop a uniform timing framework,
we consider the absolute time which could be modeled using
a global clock.

Let C= {C1, C2, . . . , Cn} ⊆ TeCmp be a finite set of timed
event component instances where |C| = n. Let Ω = (T , E),
where T = {t1, t2, . . . , tk} is a set of points in the time
domain and E = {e1, e2, . . . , ek} is a set of events in the
event domain. For convenient, we assume |T | = |E| = k.
Let ≺ be a strict partial order precedence relation over T . Let
C1(e1, t1), C2(e2, t2), and C3(e3, t3) indicate that C1, C2, and
C3 are being active on the occurrence of the event ei at time
ti, respectively where i = 1 . . . , n. We define the timed event
dimension structure over TeCmp as a tuple in the form C(E , T)
that satisfies the following properties:

(i) For all e ∈ E , if C1(e, t1) ≺ C2(e, t2) and
C2(e, t2) ≺ C3(e, t3) then C1(e, t1) ≺ C3(e, t3).

(ii) For all e ∈ E and t ∈ T , Ci(ei, ti) 6≺ Ci(e1, ti),
i = 1, . . . , n.

(iii) For all e ∈ E and t ∈ T , if C1(e1, t1) ≺ C2(e2, t2)
then C2(e2, t2) ⊀ C1(e1, t1).

(vi) For all Ci(e, t) and Cj(e, t), if Ci(e, t) ⊀ Cj(e, t)
then Ci and Cj are interpreted as being concurrent,
for all e ∈ E and t ∈, and where i, j = 1, . . . , n.

The external view of the port model is based on the pipe-
and-filter architectural style with consists of a set of data and
control port groups. In addition and for various purpose, we
assume there is one extra internal group ports that we refer to
as special ports. The data port group is explicitly divided into
input and output data ports. Similarly, the control port group
is explicitly divided into input and output control ports. Both
the data and control ports are provided by default for each
port. However, other types of variables such as monitoring
and controlling ports can be an intrinsic part of the internal
port depending on the application domain. In the context of
this paper, we define a port signature S as follows:

Definition 5.1: A timed event port signature is a quintuple
S = (Event, Type, Data, Control, T ime), where Event =
{In,Out, Spec} and In, Out, Spec are the set of input,
output, and special ports respectively; Type is a finite set of
type names, Data and Control are sets of data and control
values, respectively. T ime is a set of point structure of time,
modeled by a global clock. Moreover, (In∩Out∩Spec) = ∅,
and the set of data and control values is disjoint.

In the rest of the paper and for clarity, the terms timed event
port signature and port signature are interchangeable. Now,
borrowing from the syntax and semantics of components and
connectors views, [23] and [24], we formalize the structure
of the timed event component and connector model (TeC&C)
model by not focusing on the interfaces defined for the ports,
but rather on the relation between the different pieces of the
TeC&C model.

Definition 5.2: A timed event component and connector

TeC&C model is a sextuple structure CC = (C, Ĉ, P , S, δp, δt)
where

(i) C = {C1, C2, . . . , Cn} ⊆ TeCmp is a finite set of
timed event component instances where |C| = n.

(ii) P = {p1, p2, . . . , pm} is a finite set port instances
where |P| = m

(iii) S = {s1, s2, . . . , sm} ⊆ port signatures is a finite
set of port signature instances where |S| = |P| =
m.

(iv) Ĉ = {Ĉ1, Ĉ2, . . . , Ĉq} ⊆ TeCnn is a finite set
of connector instances which are used to capture
pathways of events (data transfer flow and control

flow) between Ci, i = 1 . . . n. (|Ĉ| << |C|).
(v) δp: C × P → C × P . That is, δp(Ci, pj) ⊆ P ,

for all i = 1 . . . n and j = 1 . . .m.
(vi) δt: P × S → P × S. That is, δt(pj , sj) ∈ (P

× S), for all j = 1 . . .m.

The requirements of real-time systems must be able to accom-
modate real-time timing constraints and discrete/continuous
behaviors, such as safety, resources limitations, predictability,
and reliability. Thus, the designer must be equipped with
modeling formalisms, formal analysis, techniques, and support
tools throughout the development process of TeC&C. A well-
established modeling formalism to support real-time systems
is timed automata [12] that extend finite state automata where
transitions are guarded with conditions based on clock vari-
ables. Each TeCmp consists of the component requirement
specifications, implementations, and interfaces. Consequently,
the development of the TeC&C model typically starts with
requirements specification which should be written in some
formal notations (i.e., formal methods). Thus, it is important
to develop a formal description of TeCmp, TeCnn, and TeC&C

models for real-time systems. In the following sections, we fo-
cus on a series of methodology and automata-based formalisms
that capture this collection of timed event interconnected
components and connectors. Refer to the example of the IoT
irrigation application where the system is composed of several
TeCmp and TeCnn in Section VII.

VI. AUTOMATA-BASED COMPONENT AND PROGRAM

COMPREHENSION

In the program source comprehension, developers pursue
their familiarization effort with TeCmp at various level of
granularity, and try to gain an understanding of the program
through preliminary evaluations, its structure, and through
static and dynamic analysis (or by a combination of both).
A drawback is that dynamic analysis can only provide a
partial picture of the system based on the developers explo-
rations of the program’s behavior through the execution of
the system. Static analysis focuses on the source code and
extract important information from the program source. The

25Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 31 / 53

correctness of a real-time system depends not only on the
correctness of the sequence of the events, but also on their
time of occurrence. In the following section, we establish
approaches and models to understand visualize, and navigate
through the source code. First, developers focus on understand-
ing the software as a whole (i.e., component comprehension)
avoiding program comprehension whenever possible. Second,
developers focus on mental models and visualization during
program comprehension inspection activities using timed event
automata formalism for comprehending real-time source code
and acquire run-time information.

In general, timed transition systems and in particular event
transition systems have been extensively studied in the lit-
erature [13] [25] [26]. Moreover, both systems have been
combined and used practically in the verification, testing, and
development of real-time platforms where reliability, safety,
and correctness depend to a large extent on the time fea-
tures. Both time-driven and event-driven computing models
are fundamentally important for real-time and embedded sys-
tems, given that such systems are reactive by nature. In a
time-driven model, computations and actions are triggered
by time, either periodically or in terms of deadlines by
which computational activities must be completed. In a time-
driven model, the state continuously keeps changing as time
changes. Thus, the synchronous nature of time guarantees the
deterministic behavior of the model. In contrast, in an event-
driven model, computational activities or actions are triggered
upon occurrences of asynchronous events. We combine time-
driven and event-driven models into one unified hybrid system
architecture, and propose a real-time model that we refer
to as a Timed Event Automaton (TeAut). The state of the
TeAut continuously changes as time changes and the occur-
rences of asynchronously generated events forces instantiated
state transitions. In consequence, the correctness of real-time
system’s TeCmp depends not only on the correctness of the
computational tasks in the system, but also on the time at
which these computations are performed. Let E and T denote
the event set and time base, respectively, The time domain T
can be modeled as discrete, continuous, or over an interval
[tl, tu] ⊆ T , tl ≤ tu. In this work, we consider continuous
time systems, that is all the variables (i.e., input, output, states)
are defined over all possible values of time. In particular, we
consider the time domain, T , as the non-negative reals R≥0.
A timed event ω = (e, t) over a finite set of events E and the
time t ∈ [0,∞) denotes an event e ∈ E occurs at time t.

Let X be a set of finite clock variables (or clocks for short),
the set Φ(X) of clock constraints φ over X is defined by the
following grammar:

φ := x ⊲⊳ c | φ1 ∧ φ2 | true | false

where c ∈ X , c ∈ N such that c ≥ 0, ⊲⊳ ∈ {<,≤,=, >,≥},
and ∧ stands for the and logical operator. The precondition
clock constraint φ ∈ Φ specifies when the transition is enabled,
and the postcondition set X0 ∈ 2X gives the set of clocks to
be reset to zero while all other clocks remain unchanged. A
clock valuation represents the values of all clocks in X at a
given snapshot in time.

Definition 6.1: Let X be the set of clock variables. A clock
valuation over X is a function ν from X to R≥0 that maps
every clock x ∈ X to a non-negative real number.

For t ∈ R≥0, the valuation ν + t is defined as (ν + t)(x) =
ν(x) + t. For X ′ ⊆ X the valuation is defined as (ν[X ′ :=
0])(x) = 0 if x ∈ X ′ and (ν[X ′ := 0])(x) = ν(x) otherwise.
We denote by V = (ν1, . . . , νn) a characteristic vector of clock
valuations of the timed automata A. In general, our work
partially borrows the concept of time stamps of Leslie Lamport
[19], but in particular it is grounded on the foundation of timed
automata of Alur [12]. Without loss of generality, a state is
defined as a pair (q, V), where q ∈ Q and V is a clock valuation
at state q.
A time sequence t is a non-empty finite (or infinite) sequence
of time values denoted by t = t1t2 . . . tn such that ti ∈ R≥0

and all ti
′s satisfies the monotonicity and progressiveness

conditions. That is, for all 1 ≤ i ≤ |t|, ti ≤ ti+1, and for
each t ∈ R≥0 there exists ti, i ∈ N such that ti < ti+1. If t
is infinite then ti is not bounded for all i ≥ 1.

We define a finite set of timed events Ω =
(e1, t1)(e2, t2) . . . (en, tn) over E and T , formally denoted as

Ω = {(e, t)∗ | e ∈ E ∪ {ωλ}, t ∈ T }

Define ωλ = (λ, 0), where λ /∈ E is the null time event to
indicate no event has occurred.

Now, we abstract and simulate TeCmp and TeCnn in terms
of timed event automata and timed event port-automata, re-
spectively. A timed event automaton induces a timed event
transition system. A timed event automaton (TeAut) is a
structure defined as follows:

Definition 6.2: A timed event automaton (TeAut) is a sex-
tuple A = (Ω, X , Q, q0,Γ, F), where (i) Ω is the finite set of
timed events over E × T , (ii) X is the set of clock variables;
(iii) Q is the set of states; (iv) q0 ∈ Q is the initial state; (v)
Γ ⊆ Ω×Q×Φ(X)× 2X ×Q is a finite set of transitions; (vi)
F ⊆ Q is the set of accepting states.

The values of the clock variables increase monotonically with
the passage of time. The next state of a timed event automaton
depends on both the event symbol and the values of the clock
constraints. In addition, each transition may reset some of the
clocks. A transition can only be taken if the current clock
values satisfy the time constraints and the event symbol.

Let A be a TeAut and t ∈ R≥0. Define a timed event
requirement specification A as

R(A) = {ω ∈ Ω : Γ(q0, ω) ∈ F}

Now, we define timed event port-automata over a single and
global clock.

Definition 6.3: A timed event port-automaton (TePA) is
a sextuple A = (Ω,S, Q,P , X , δ) where (i) Ω is the set
of timed events set; (ii) S is a port signature; (iii) Q is
the set states; (iv) Q0 ⊆ Q is the set of starting states;
(v) P is the set of all ports; the transition function (vi)
δ ⊆ Ω×Q × S × 2P × Φ(X)×Q.

We extend each timed event port-automaton A with the
powerful primitives of Reo [27] and [28] connectors, a
paradigm for communication protocols and composition of
software components. Each timed event connector TeCnn via
its ports imposes a specific coordination on the active TeCmp,
which in turn offer a set of services. The sync(a, b, e, t) time
event port-automaton models the Reo primitive that allows

26Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 32 / 53

synchronous activities on two ports a and b. Moreover, the
synchronous nature of time guarantees the deterministic behav-
ior of the port-automaton. In contrast, computational activities
or actions are triggered upon occurrences of asynchronous
events. The lossy(a, b, e, t) is similar to the sync primitive,
in addition it can have activities through its end, a. The xor
(a, b, c, e, t) primitive synchronizes a with either b or c. The
fifo (a, b, e, t) models a buffer with a source port-automaton
a and a sink port-automaton b, which are synchronously
timed coordinated and asynchronously event triggered. Other
operations can be performed on timed event port-automata,
such as the product and composition. The desired coordination
between two exclusive ports is given as timed event port-
automaton. However, the coordination among all TeCmp, as
shown in Figure 4, is modeled through individual ports.

q0 q0

q0 q0 q1

sync (a, b, e, t)

a, e, t

lossy (a, b, e, t)

a, b, e, t

b, e, t
xor (a, b, c, e, t) fifo (a, b, e, t)

a, c, e, t

a, e, t

a, b, e, ta, b, e, t

Figure 4. Examples of timed event port automata using Reo’s primitives.

VII. IOT CASE STUDY

We describe a case study that has been conducted and
implemented on an IoT irrigation embedded system. Overall,
the system regulates a water solenoid valve for controlling
a drip irrigation system using Arduino and Raspberry Pi
infrastructure. For the experiment, we selected and expand the
recent IoT project of three graduate students as the basis of
our case study by running a variety of experiments to test
the proposed theoretical work. The experiment was tested on
several events, such as moisture, temperature, and humidity.
The system is able to deliver water to the plants based on
the moisture of the soil, temperature, and humidity of the day
which are obtained through DHT sensors. Importantly, we use
a real-time clock that allows the system to set the start of
the irrigation system based on the moisture and temperature
levels. Furthermore, the system can also start and stop at the
specified time intervals to control the water management. In
the experiment, the IoT system is controlled by the real-time
status of the soil moisture, atmospheric conditions, and on
the real time clock to adjust the irrigation scheduling through
time intervals. In this IoT-based system, a strong emphasis is
put on timed event components of the system and empirical
evaluations. The comprehensiveness at both component and
program must be sufficiently understood by its developers on
performing a broad spectrum of maintenance tasks.

In analogical mapping, our abstract model of study, timed
event automata-based components, chas been mapped into
the real-time target irrigation domain. That is, soil moisture,
temperature, and humidity sensors send real data to the
microcontroller, which is considered as the central TeC&C

comprehension information gateway. The microcontroller can
be monitored and operated via WiFi using a Web browser,

or managed by the user through a mobile application. The
TeCmp sprinkler controller ensures uniform distribution of
water to all part of the plant and it is monitored by the
microcontroller. In addition, the TeCmp sprinkler may be
switched off and on once the soil moisture sensor has reached
the appropriate threshold value. We may consider that DHT
moisture, temperature, and humidity sensors are equipped
with some ports communicating with various TeCmp. The
coordination and interaction between various TeCmp is fully
delegated to a special class of component that we referred
to as TeCnn. These connectors have no relevant role in
the irrigation aspect, but mediate, coordinate, and control
interactions among various TeCmp photons. In addition, the
data of sensors is displayed in a graphical format, analyzed
and visualized by the end-user. This is considered as part
of the multi-view learning approaches to perform program
comprehension activities. The event domain E is a set
of events in the irrigation domain. That is, E could be
{moisture, temperature, wind, humidity, precipitation}.
When the sensors report that the moisture, temperature, or
humidity levels have fallen below the threshold level, the
LED light glows, indicating that a timed irrigation event has
to be initiate. In addition, the LED lights are also used for
other purposes in the context of this irrigation project as
summarized below in Figure 5.

Cloud Platform

TeCmp Selonoid ValveTeCmp Selonoid Valve

Arduino Raspberry PiArduino Raspberry Pi

TeCmp Photon1TeCmp Photon1 TeCmp Photon2TeCmp Photon2 TeCmp Photon3TeCmp Photon3

DHT MoistureDHT Moisture DHT TemperatureDHT Temperature DHT HumidityDHT Humidity

TeCmp/TeConn MicrocontrollerTeCmp/TeConn Microcontroller LED LightLED Light

Device1Device1 Device2Device2 Device3Device3 Device4Device4

Figure 5. Cloud Control and flow of information in the IoT irrigation
System: Soil moisture, temperature, humidity sensors send real-time data to

the timed event microcontroller.

27Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 33 / 53

VIII. CONCLUSION

Our work revealed an apparent lack of foundations in the
literature that relates to program comprehension for real-time
and embedded systems. This is an area of research that has not
received much attention and could be investigated in various
directions. We investigated two timed orthogonal program
comprehension paradigms, timed event component and pro-
gram comprehension, which led to comprehending programs
with a greater degree of structure, abstraction techniques, and
architecture reconstruction, hence offered a series of potential
effectiveness and enhancement in gaining a deeper understand-
ing of program comprehension in real-time systems. First, we
mainly rely on architectural levels and time dimensions which
have been explicitly targeted in our work and how they are
clearly manifested in a real-time systems’s implementation.
Second, we have examined the relationships between timed
event component comprehension and timed event automata-
based program comprehension. Such refinement and analysis
from component levels to program levels comprehension is
significantly represented in the source code. Furthermore, we
have performed an empirical IoT irrigation case study in order
to complement and provide a qualitative base and characteriza-
tion of our approach to program comprehension and software
evolution. In this work, we validated our theoretical framework
on the IoT irrigation application. As a future work, we will
investigate this program comprehension paradigm by applying
it in various real-time and embedded systems of different
domains.

REFERENCES

[1] M. A. Storey, “Theories, Methods and Tools in Program Comprehen-
sion: Past, Present and Future,” in Proceedings of the 13th International
Workshop on Program Comprehension (IWPC ’05). Washington DC,
DC, USA: IEEE Computer Society, 2005, pp. 181–191.

[2] J. Siegmund, “Program Comprehension: Past, Present, and future,” in
Proceedings of the 23th Internationa Conference on Software Analysis,
Evolution, and Engineering (SANER ’16). IEEE SANER, 2016, pp.
13–20.

[3] B. Yuan, V. Murali, and C. Jermaine, “Abridging source code,” in
Proceedings of the ACM on Programning Languages (OOPSLA 58:1).
ACM New York, NY, USA: ACM, 2017, pp. 13–20.

[4] J. Fowkes, P. Chanthirasegaran, R. Ranca, M. Allamanis, M. Lapata,
and C. Sutton, “Tassal: Autofolding for Source Code Summarization,”
in Proceedings of the 38th International Conference on Software Engi-
neering Companion, (ICSE 16). ACM New York, NY, USA: ACM,
2016, pp. 649–652.

[5] D. e. a. Lucia, “Labeling Source Code with Information Retrieval
Methods: An Empirical Study,” Empirical Software Engineering, vol.
19, No. 5, 2004, pp. 1383–1420.

[6] T. Ben-Nun, A. S. Jakobovit, and T. Hoefler, “Neural Code Comprehen-
sion: A Learnable Representation of Code Semantics,” in Proceddings
of the 32nd Conference on Neural Information Processing Systems
(NeurIPS ’18, Montreal, Canada, 2018, pp. 3589–3601.

[7] S. Xu, “A Cognitive Model for Program Comprehension,” in Pro-
ceedings of the 3rd International Conference on Software Engineering
Research, Management and Applications (ACIS ’05), Montréal, Canada,
2005, pp. 392–398.

[8] T. Reenskaug and J. O. Coplien, “DCI as a new Foundation for
Computer Programming,” Software Engineering in Intelligent Systems,
Springer, vol. 3, no. 5, 2009, pp. 1383–1420.

[9] J. Riling and S. P. S.P. Mudur, “3D Visualization Techniques to Support
Slicing-based Program Comprehension,” Computer & Graphics, vol. 29,
No. 3, 2005, pp. 311–329.

[10] S. Letovsky, “Cognitive Process in Program Comprehension,” Journal
of Systems and Software, Elsevier, vol. 7, no. 4, 1998, pp. 325–339.

[11] T. LaToza, G. Venolia, and R. DeLine, “Maintaining Mental Models:
a Study of Developer Work Habits,” in Proceedings of the 28th
international conference on Software engineering. ACM, 2006, pp.
492–501.

[12] R. Alur and A. A. Dill, “Theory of Timed Automata,” Theoretical
Computer Science, vol. 126, no. 2, 1994, pp. 183–235.

[13] A. Fellah, “Timed Event Systems and Automata,” in Proceedings of the
13th IASTED International Conference on Control and Applications.
Acta Press, 2011, pp. 730–739.

[14] A. Ahmad, P. Jamshidi, and K. Fawad Pahl Claus, “A pattern Lan-
guage for the Evolution of Component-based Software Architectures,”
Electronic Communications of the EASST, vol. 59, 2014, pp. 1–31.

[15] O. Le Goaer, D. Tamzalit, M. Oussalah, and A.-D. Seriai, “Evolution
Shelf: Reusing Evolution Expertise within Component-based Software
Architectures,” in Proceedings of the 32nd Annual IEEE International
Computer Software and Applications. IEEE, 2008, pp. 311–318.

[16] H. Yin and H. Hansson, “Fighting CPS Complexity by Component-
based Software Development of Multi-mode Systems,” in Proceedings
of the 32nd Annual IEEE International Computer Software and Appli-
cations, vol. 2, no. 4. Designs, 2018, pp. 1677–1718.

[17] I. Crnkovic, S. Sentilles, A. Vulgarakis, and M. Chaudron, “A classifica-
tion Framework for Software Component Models,” IEEE Transactions
on Software Engienering, vol. 37, 2011, pp. 593–615.

[18] J. Criado, D. Rodriguez-Gracia, L. Iribarne, and N. Padilla, “Toward
the Adaptation of Component-based Architectures by Model Transfor-
mation: Behind Smart User Interfaces,” Software Practice Exp., vol. 45,
2015, pp. 1677–1718.

[19] M. Plakal, D. J. Sorin, A. E. Condon, and M. D. Hill, “Lamport clocks:
Verifying a Directory Cache-coherence Protocol,” in Proceedings of the
10th Annual ACM symposium on Parallel Algorithms and Architec-
tures. ACM, 1998, pp. 67–76.

[20] R. T. Mittermeir, A. Bollin, H. Pozewauning, and D. Rauner-
Reithmayer, “Fighting CPS Complexity by Component-based Software
Development of Multi-mode Systems,” ACM SIGSOFT Software En-
gineering Notes, vol. 26, no. 3, 2001, pp. 95–102.

[21] M. Tomgren, D.-J. Chen, and I. Crnkovic, “Component-based vs Model-
based Development: a Comparison in the Context of Vehicular Embed-
ded Systems,” in Proceedings of the 31st EUROMICRO Conference on
Software Engineering, 2001, pp. 95–102.

[22] S. Yu, “The Time Dimension of Computation Models,” Where Math-
ematics, Computer Science, Linguistics and Biology Meet, Springer,
Dordrecht, 2001, pp. 161–172.

[23] S. Maoz, N. Pomerantz, and B. Rumpe, “Synthesis of Component and
Connector Models from Crosscutting Views,” ACM ESEC/SIGSOFT
FSE, 2013, pp. 444–454.

[24] S. Maoz, N. Pomerantz, J. O. Ringert, and R. Shalom, “Why is
my Component and Connector Views Specification Unsatisfiable?”
in Proceedings ACM/IEEE 20th International Conference on Model
Driven Engineering Languages and Systems. ACM/IEEE, 2017, pp.
134–144.

[25] T. Brengos, “Behvioural Equivalences for Timed Systems,” Logical
Methods in Computer Science, vol. 15, no, 1, 2019, pp. 17:1–17:41.

[26] T. Henzinger, Z. Manna, and A. Pnueli, “Timed Transition Systems,” in
Proceedings of the Real-Time: Theory in Practice, 1991, pp. 226–251.

[27] A. Arbab Reo, “A Channel-Based Coordination Model for Component
Fomposition,” Mathematical Structures in Computer Science, vol. 14,
2004, pp. 329–366.

[28] F. Arbab, C. Baier, F. de Boer, and J. Rutte, “Models and temporal
logical specifications for timed component connectors,” Software and
Systems Modeling, vol. 6, no. 3, 2007, pp. 59–82.

28Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 34 / 53

Limitations of Using Digital BIM Models to Carry out Thermal Analysis

Anabelle Rahhal, Coralie Matthys, Samia Ben Rajeb, Pierre Leclercq
LUCID - Lab for User Cognition & Innovative Design
Quartier Polytech 1, Allée de la Découverte 9, Bât. B52

4000 Liège - Belgium
emails: a.rahhal@uliege.be, cmt@assar.com,

samia.ben.rajeb@ulb.ac.be, pierre.leclercq@uliege.be

Abstract— To meet ever more demanding thermal regulations,
Building Information Modeling (BIM) and its geometrically
semantically enriched building models are presented as a
powerful means. In this article, we focus more specifically on
the thermal performance of the envelope of existing buildings.
Based on the modelling of an existing case, we discuss the
potential of extraction and use of the information contained in
the digital models to carry out two types of studies: a
regulatory certification in the Energy Performance of
Buildings (EPB) software and a simulation of energy needs in
the Green Building Studio (GBS) software. Through them, we
present a panel of the possibilities and the limits of using
digital models for this type of study by considering, on the one
hand, the quality of the models and on the other hand, the
hypotheses governing the methods of the analysis tools.

Keywords-digital Building Information Modeling (BIM);
energy analysis; building data modeling and understanding;
reverse engineering.

I. INTRODUCTION
This article is part of a context where digital technology

takes a prominent place in the architect’s profession. Project
design is evolving towards a computerized design thanks to
technological advances including BIM tools.

The sector is today subject to ever more numerous
requirements in terms of costs, performance and construction
techniques. The sophistication of equipment (security, air
treatment, home automation, etc.) and the addition of
legislative and regulatory constraints increasingly complicate
projects and involve dealing with an increasing amount of
data [1][2].

Furthermore, another major transformation is underway:
the energy transition that results from an international
awareness of environmental problems [3]. The building
sector has a major role to play in the latter since it is
responsible at a European level for 50 % of primary energy
consumption and 30 % of greenhouse gas emissions [4].
However, the focus on the energy performance of new
buildings is not sufficient and the objectives will not be
achieved without an energy improvement of the existing
building stock. Thus, energy renovation is one of the main
levers for energy saving [5]. In this context, it is essential to
have tools that enable to evaluate the environmental impact
of a building and to analyze the improvement measures of its
energy efficiency in an accelerated manner. It is on the basis
of these considerations that states are increasingly

encouraging the use of BIM to support the energy transition
of buildings.

Regarding the scientific literature, this acronym can refer
to several distinct notions. In this article, we focus on BIM as
« Building Information Model », i.e., « … a digital
representation of physical and functional characteristics of a
facility, which serves as a shared knowledge resource for
information about a facility forming a reliable basis for
decisions during its life-cycle. » [6].

The purpose of this article is to identify the possibilities
and limits of using digital models to evaluate the thermal
performance of an existing building shell. In that respect, we
will first study the exploitation potential of the data
contained in the BIM models for a regulatory encoding in the
EPB software, and we will then analyze these models to
perform dynamic thermal simulations in GBS software.
These tools are chosen among those available on the market
and we have a certain maturity in their use.

This article is structured in four parts. Section II presents
a state of the art of the current use of digital models in the
building sector. Section III details the methodology
established to answer the exploitation issue of these models.
Section IV is dedicated to the presentation of results of the
implementations that will serve as a support for the
discussions developed in Section V.

II. STATE OF THE ART

A. BIM applications
A global survey conducted by the American company

McGraw Hill Construction in 2014 revealed that among the
25 applications of BIM, the 3D coordination between
construction disciplines and the visualization of design
models are the most common cases of uses in the pre-
construction phase [7].

The use of BIM is relatively limited for analysis and
simulations.

In the energy sector, which is the case of this article, the
frequency of use of BIM and digital model barely reaches
25% [8]. However, this study highlights a paradox between
the frequency of implementation and the perceived benefit of
certain BIM uses, like shown in Figure 1. Indeed, the
majority of these are perceived as positive by the
respondents, whereas they are not frequently implemented.
The main reasons given for their low application rate are the
interoperability problems that result from using different file

29Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 35 / 53

formats, as well as the resistance of the construction industry
towards innovation [9].

Figure 1. Relation between the frequency and the perceived benefit for

implementing each BIM use, adapted from [8].

B. Interviews
In parallel with reviewing scientific literature concerning

BIM practice in the construction industry, we realized semi-
structured interviews at ASSAR Workshop Architects, a
BIM precursor architecture office in Belgium. The purposes
of these interviews are, on the one hand, to understand how
this office implements BIM for renovation projects and, on
the other hand, to have an overview of the workflows
characterizing projects requiring thermal or energy studies.

These interviews revealed that the digital model is very
little exploited for thermal and energy studies while ASSAR
is between the most advanced Belgian offices in the
implementation of BIM. The interview’s answers also
indicate that workflows are still very fragmented between
architects and energy consultants. In order to evaluate the
building's performance, a considerable time is spent on
recapturing the project data or adapting the digital model
transmitted by the architects.

III. METHODOLOGY
The issues, arising from the review of scientific literature

and interviews, guide the work towards studying and
modelling a concrete case, in order to evaluate potentialities
and limits of using a numerical model to realize thermal
analyzes. Figure 2 illustrates the research methodology
adopted in this work. First, starting from a modelling
protocol and using Revit and Sketchup software tools to
produce different models of the case study: “Monolayer
Model”, “EPB Model” and “Multilayer Model”.

Then, quantitative tables were exported from each of
these models. The EPB software needed manual encoding to
generate its report. Sorting the data collected from the
quantitative tables was also necessary to be able to compare
the data in Excel software.

Exports in Green Building XML (gbXML) were also
accomplished and compared to verify the integrity of the
data transfer.

Figure 2. Overall methodological scheme.

A. Case study
Our case study is an existing residential building with

two parts built respectively in 1900 and 2007 and
characterized by:

• a poor thermal performance ;
• a degree of complexity related to the form and

constructive hypotheses that involve establishing
certain assumptions and simplifications to carry out
the modelling;

• a subdivision into five apartments corresponding to
six separate thermal zones, identified in Figure 3.

30Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 36 / 53

Figure 3. 3D representation of the energetical sectors composing the

building.

B. Method
Modeling : The first step of our process is dedicated to

building modelling. Autodesk Revit is the chosen modelling
tool because it is an object-oriented software, widely used in
BIM processes. In addition, it integrates energy analysis and
simulation tools useful for our study. Two building models
are created based on the available documentation of the
existing building by using two different modelling
techniques. Figure 4a shows the first technique is the
"monolayer" model, which consists of isolating the load-
bearing, inner and outer layers of the walls, as distinct
elements. Figure 4b illustrates the second technique is the
"multilayer" modelling technique, using composite walls,
containing several layers of materials.

Figure 4. (a) Monolayer modelling. (b) Multilayer modelling.

1) Exploitation of digital models : The created models
are then analyzed and exploited according to two distinct
approaches.

a) First approach : certificative approach.
The first approach seeks to evaluate the potential of a

digital model in a regulatory thermal study in the EPB
software. To evaluate this potential, we extract useful data
from Revit models. Figure 5 shows that raw data is then
sorted and compared with the values calculated and entered
previously and manually in the EPB software.

Figure 5. Generation of a comparative table based on the extraction of
Revit quantitative tables from “Monolayer” and “Multilayer” models and

EPB report.

The studied parameters are :
• heat loss wall surfaces separating the different

energy sectors ;
• heat transfer coefficients U and thermal resistances

R of the walls, roofs, floors and openings ;
• the heated or conditioned floor surfaces of each

energy sector ;
• the volumes of each energy sector.

Most of parameters are extracted from physical models, but
analytical energy models are also used to obtain the heat loss
surfaces and the volumes of energy sectors (see Table I).

TABLE I. DATA EXTRACTED FROM PHYSICAL AND ANALYTICAL
MODELS.

 Heat loss
surfaces

U and R
coefficients

Heated floor
surfaces

Volumes
of energy

sectors

Physical
models V V V -

Analytical
models V - - V

Figure 6 illustrates the analytical model obtained directly

from the physical model and composed of simple surfaces
with no thickness. It is interpreted by the and relying on the
detailed composition of the construction elements.

The processed data from Revit models are then compared
with the data previously encoded in the EPB software, by
calculating a variation percentage for each element.
To evaluate how much this variation is detrimental to the
EPB study, it is indeed necessary to set thresholds of
variation.

31Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 37 / 53

Figure 6. Analytical model.

These are defined in relation to the values of two EPB
indicators: Figure 7 shows the specific primary energy
consumption and Figure 8 illustrates the net heating energy
requirements, which are represented using two scales of
values. These values will be used for the analysis of the
results.

Figure 7. Specific consumption of primary energy.

Figure 8. Net heating energy requirements.

To determine the thresholds of variation, we make it
possible to fluctuate iteratively and independently the values
of the parameters encoded in the initial EPB file. The
threshold is then set to the percentage change for which the
results indicate that the limit of energy class or performance
category of the EPB unit is reached.

b) Second approach : evaluative approach.
The second approach aims to estimate the exploitation

potential of the models for an energy simulation. It is
performed by GBS software, an Autodesk product, which
minimizes the risk of interoperability problems. Figure 9
illustrates the approach that consists of evaluating the
integrity of the data transfer upstream and downstream of the

simulation, by comparing the exported gbXML Revit files
and issued from GBS simulation to the original Revit
models.

Figure 9. Comparison of the gbXML files and Revit models.

The analyzed data are :
• the surfaces of the walls and their environment

(exterior, floor, interior) ;
• the thermal properties of the materials;
• geolocation and meteorological data from the

project used to determine heating and cooling
design temperatures ;

• internal inputs, which are determined by the energy
provided by occupants, equipment and lighting ;

• occupancy and operating scenarios, which include
building occupancy times and defining the set point
for heating or cooling ; they also include lighting
and equipment usage schedules during which heat
gains occur.

IV. RESULTS

A. Regulatory study in the EPB software
The results obtained for the first implementation are

synthetized in Table II.

TABLE II. SUMMARY OF THE RESULTS FOR THE FIRST APPROACH.

Parameter Physical
models

Analytical
models

Heat loss
surfaces

Walls X and - X

Floors V X

Roofs V and - X

Openings V V

Protected volumes / X

Heat floor surfaces V /

U and R coefficients X /

- = Some values are not defined
/ = Values that cannot be extracted from physical or analytical models
V = Most values are in the variation boundaries
X = Most values are beyond the variation boundaries

32Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 38 / 53

The results obtained for the geometric parameters
(surfaces and volumes) indicate that the wall loss surfaces
extracted from Revit physical models are far from the values
calculated for the EPB encoding. Some of them could not
even be determined. This difference is explained by the fact
that the physical models correspond to the constructive
reality of the project. This means that Revit calculates the
wall surfaces as they are or will be constructed based on a
physical model of the building. However, the regulatory EPB
defines the wall surfaces in relation to a conceptual model
which simplifies this reality. On the contrary, the floor
surfaces coincide because there have not been determined
from the floor instances but from surfaces cropped manually
in specific plans.

Table II also indicates that most of the geometric data
extracted from the analytical models are beyond the
thresholds of variation. This difference is explained by the
fact that these surfaces are based on an approximative
interpretation of the building elements by the calculation
algorithm and are not defined the way the EPB method
advocates.

In addition, Revit calculates the thermal properties of the
walls in a simplified way: it does not take into account the
surface exchange heat resistances to determine the U
coefficient and it does not distinguish the walls according to
their environment whereas these parameters are essential in a
regulatory energy calculation.

B. Thermal simulation in Green Building Studio
The results obtained for the second implementation are

synthetized in Table III. The results indicate that
inconsistencies occurred during data transfer. These have not
all been preserved or interpreted during the simulation.

Additional surfaces were superimposed on the openings
(doors and windows) and were assigned the same
constructive type as the host wall. This results in erroneous
geometric data for both gbXML files.

TABLE III. SUMMARY OF THE RESULTS FOR THE SECOND APPROACH.

Parameter

 gbXML
file

exported
from
Revit

 gbXML
file

exported
from
GBS

Geometric data X X

Walls environment X X

Materials and walls thermal properties V X

Location V V

Weather data - X

Internal gains V X

Operating scenarios V X

- = Non-exported data
V = Successfully exported data
X = Non successfully exported data

Furthermore, the belowground surfaces are defined in
Revit based on a horizontal reference plan. The elements
under this plane are thus considered buried. However, the
land on which the building is located is inclined.

On the contrary, all the thermal properties were exported
correctly from Revit to gbXML format. Moreover, the
gbXML file analysis of the monolayer model shows that the
different layers have been assembled logically. The U values
calculated for each layer of material are consistent between
the files. However, the thermal transmittance coefficients U
of the gbXML file exported from Revit do not take into
account the surface exchange heat resistances since this
property is not available initially in Revit. After the
simulation, the gbXML code analysis of the single layer and
multilayer models indicates that all types of doors have been
substituted. Green Building Studio has also assigned default
thermal properties to additional surfaces that have been
created at openings and stairwells when exporting in
gbXML.

Location data were successfully retrieved during the
gbXML export.

The gbXML file exported from Revit does not contain
meteorological data. These ones are normally set
automatically by GBS after defining the project location.
After the simulation, the analysis of the meteorological data
indicates that the heating and cooling design temperatures of
the file resulting from the simulation are slightly different
from those calculated by Revit. One of the explanations that
can justify this difference is the choice of the weather station
used to calculate the temperatures for each of the two
softwares.

The analysis of the gbXML code exported from Revit
indicates that the data on the internal loads are consistent
with those encoded in Revit. However, a surface contribution
generated by the interior equipment was automatically added
during the simulation in Green Building Studio.

The analysis of the gbXML code exported from Revit
indicates that operating and occupancy schedules defined in
Revit have been exported correctly.

Green Building Studio has, for its part, taken into account
four additional scenarios for the simulation: a cooling
scenario, a heating scenario, a scenario of domestic hot water
use and a ventilation scenario. The equipment operating
schedule was replaced by two scenarios: one for the
equipment that had previously been defined in Revit, the
other one for additional equipment considered by Green
Building Studio.

V. LIMITS AND OUTLOOKS OF DIGITAL MODELS FOR
THERMAL STUDIES

Our first implementation shows that most quantities
extracted from the Revit models cannot be used as they are,
but must be sorted in order to compare their values with
those of the EPB encoding. The determination of the heat
loss surfaces especially requires the use of time-consuming
processing methods and involves juggling constantly
between the digital models and the extracted tables of
quantities to select only the useful elements for EPB
calculation.

33Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 39 / 53

In the walls quantitative tables for example, it is
necessary to keep only those that separate distinct energy
sectors. This implies having to remove a large part of the
elements contained in the extracted quantities (see Table IV).

TABLE IV. COMPARISON OF THE NUMBERS OF EXCEL LINES FOR THE
HEAT LOSS WALLS SURFACES IN THE MONOLAYER AND MULTILAYER

MODELS.

Models Gross
statement

Intermediate
statement Final statement

Monolayer 306 lines 84 lines (27%) 42 lines (14%)

Multilayer 284 lines 84 lines (29%) 42 lines (15%)

The data sorting of the single-layer model especially

requires the most investment because of the large number of
object instances generated. Furthermore, some areas could
not be determined on the basis of the constructive model,
such as roof areas. Therefore, the wall surfaces of the Revit
models obtained on the basis of a material survey are
difficult to use for an EPB encoding since they cannot be
calculated on the basis of a detailed physical model.

Although analytical energy models have some potential
and provide much simpler geometry, their walls areas cannot
be encoded in the EPB software. Indeed, the latter are based
on an approximative interpretation of the construction
elements by the calculation algorithm and are not defined the
way the EPB method advocates.

In addition, the first approach highlights the constraints
faced by energy consulting firms when working with
architects that use digital models. Their work relies on the
use of regulatory calculation engines based on historical
methods that require manual data inputs. On the one hand,
they do not make it possible to directly import the
information of a digital model, which prevents the consulting
firms from working on the basis of integrated flows. On the
other hand, these calculation engines are based on
simplifying assumptions whose objective is to facilitate
manual encoding. This results in models that are generally
far removed from the physical reality of the building.

The second approach highlights a series of
inconsistencies upstream and downstream of the simulation
in Green Building Studio. Therefore, while it appears to be
an interesting tool to perform and analyze various
alternatives at the beginning of design, this software is
however not very suitable for obtaining an accurate diagnosis
of the energy performance of an existing building. There is
no doubt that the use of such tools requires analysis,
technical know-how and the ability to interpret the results.
However, architects and engineering offices need consistent
information to guide the design and facilitate the
optimization process. Any simulation tool should therefore
inform the architect more precisely of the assumptions
underlying the results.

VI. CONCLUSION

A. Contributions to research
Our study explores two distinct building modelling

methods in order to perform two types of energy studies: a
regulatory study and an energy simulation. It allows to define
a non exhaustive list of possibilities and limits of using such
models, related on the one hand, to the modelling tools
(Revit) and to the characteristics of the models themselves
(mono and multilayer) and of the other hand to energy
analysis tools (EPB and GBS). Finally, exploitation of Green
Building Studio allows us to point out the limits of a
simulation software and the erroneous conclusions that a user
could draw from it.

B. Limits of the research
This work is based on a deep analysis of the digital

model and its possibilities and limits for conducting energy
studies. The case study was modeled to meet specific energy
needs and does not integrate all needed information for all
other disciplines in a project. The collaborative aspect of
BIM has not been investigated. Nevertheless, this aspect
remains one of the intrinsic characteristics of BIM.
Exploring BIM as a method of collaboration is not relevant
in this work.

A similar finding can be made for the first
implementation. Indeed, the exploitation potential of the
digital model is not evaluated on the basis of its direct import
but on the possibility of using the data that it contains and to
be able to encode them manually in the EPB regulatory
software, which does not allow currently importing a digital
model. However, the objective of BIM is to avoid re-
entrying information between the different pieces of software
used.

Finally, the method for setting the variation thresholds
developed in the first validation process could still be
improved. In addition, the setting of these thresholds remains
subjective because it is specific to the studied project type
and to the initial values of the indicators.

C. Future work
One of the avenues for reflection concerns the computer

development of regulatory tools. Indeed, these tools are
currently designed to be used at the end of the design as a
guarantee of final certification and rely on manual data entry.
However, any new or renovation project must comply with
the regulations and must therefore be analyzed at its earliest
stage, in order to evaluate various possible solutions. It
would therefore be interesting to develop interoperability
between the BIM digital model and certification softwares
such as EPB from exchange formats such as Industry
Foundation Classes (IFC) or the gbXML. In addition, the
work focused on using Revit software as a modelling tool
and Green Building Studio as an energy analysis software.
Future work could focus on using other modelling softwares.

34Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 40 / 53

ACKNOWLEDGMENT
We would like to give our special thanks to ASSAR

l’Atelier Architects, for the time they gave us during the
interviews and for enlightening us on the practice of BIM in
business.

REFERENCES

[1] N. Bradley and E. Krygiel, Green Building Information
Modeling (BIM): Successful Sustainable Design with
Building Information Modeling, Hoboken, New Jersey: John
Wiley & Sons, 2008.

[2] O. Celnik and E. Lebègue, Building Information Modeling
(BIM) & digital model for architecture, building and
construction, 2nd ed., Paris: Eyrolles, 2014.

[3] Commission Européenne, 2020 climate & energy package.
[Online] Available from
https://ec.europa.eu/clima/policies/strategies/2020_en

[4] S. Trachte and F. Salvesen, “Sustainable renovation of non
residential buildings, a response to lowering the
environmental impact of the building sector in Europe,” in
Energy Procedia, vol. 48, pp. 1512–1518, December 2014.

[5] E. Mlecnik et al. Low energy housing retrofit (LEHR), final
report. Belgian Science Policy, 2010.

[6] National Building Information Modeling Standard (NBS),
Electronic publication: National Building Information
Modeling Standard Part-1: Overview, Principles and
Methodologies. US National Institute of Building Sciences
Facilities Information Council, Building Information
Modeling (BIM) Committee, 2007.

[7] McGraw Hill Construction, Smart Market Report : Added
Value of Building Information Modeling (BIM) for
Construction in Major Global Markets : How architects
around the world innovate with building data modelling
(Building Information Modeling (BIM)), 2014.

[8] R. Kreider, J. Messner, and C. Dubler, “Determining the
frequency and impact of applying Building Information
Modeling (BIM) for different purposes on projects,” The
Sixth International Conference on Innovation in Architecture,
Engineering & Construction (AEC), pp. 1-10, University
Park, 2010.

[9] S. Beazley, E. Heffernan, and T.J. McCarthy, “Enhancing
energy efficiency in residential buildings through the use of
Building Information Modeling (BIM): The case for
embedding parameters during design,” in Energy Procedia,
vol. 121, pp. 57-64, 2017.

35Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 41 / 53

Industry Case Study: Design Antipatterns in Actual Implementations

Understanding and Correcting Common Integration Design Oversights

Mihaela Iridon

Cândea LLC

Dallas, TX, USA

e-mail: iridon.mihaela@gmail.com

Abstract— The design of any extensible integration solution

involving systems intended to communicate efficiently with one

another and/or with data repositories usually begins as a proof

of concept or prototype, especially if new technologies and

platforms are involved. In some instances, the focus on

functional features and tight deadlines lead to inadequate

attention placed on non-functional system attributes, such as

scalability, extensibility, performance, etc. Many design

guidelines, best practices, and principles have been established,

and antipatterns were identified and explained at length. Yet,

it is not uncommon to encounter actual implementations

suffering from deficiencies prescribed by these antipatterns.

This paper discusses Leaky Abstractions Mixing Concerns,

and Vendor Lock-in, as some of the more frequent offenders in

case of system integration. Ensuing problems such as the lack

of proper structural and behavioral abstractions are described,

along with solutions aiming to avoid costly consequences due to

integration instability, constrained system evolution, and poor

testability. Moreover, unsuitable technology and tooling

choices for database design and release management are shown

to lead to a systemic incoherence of the data layer models and

artifacts, and implicitly to painful database management and

deployment strategies.

Keywords- integration models; design antipatterns; leaky

abstractions; database management.

I. INTRODUCTION

Translating business needs into technical design artifacts
and choosing the right technologies and tools, demands a
thorough understanding of the business domain as well as
solid technical skills. Proper analysis, design, and modeling
of functional and non-functional system requirements is only
the first step. A deep understanding of design principles and
patterns, experience with a variety of technologies, and
excellent skills in quick prototyping are vital. Although
conceptual or high-level design is in principle technology-
agnostic, ultimately specific frameworks, tools, Application
Programming Interfaces (APIs), and platforms must be
chosen. Together they enable the translation of the design
artifacts into a well-functioning, efficient, extensible, and
maintainable software system [1].

Designing a solution that targets multi-system integration
increases the difficulty and complexity of the design and
prototyping tasks considerably, bringing additional concerns
into focus. Identifying integration boundaries and how data

and behavior should flow between different components and
sub-systems, maintaining stable yet extensible integration
boundaries, and ensuring system testability, are just a few of
such concerns. This paper intends to outline a few design
challenges that are not always properly addressed during the
early stages of a project. and which can quickly lead to brittle
integration implementations and substantial technical debt.

A few recognized design antipatterns and variations
thereof are explained here, including concrete examples from
actual integration implementations as encountered on various
industry projects. Solutions to refactor and resolve these
design deficiencies and issues are recommended as well.

Section II will address architectural and integration
modeling concerns. The structural aspects discussed in this
section range from low granularity models (i.e., data types
which support the exchange of data between systems) to
large-grained architectural models (i.e., system layers and
components). The consequences of designing improper
layers and levels of abstractions are outlined, followed by
recommendations on how to avoid such pitfalls by
refactoring the design accordingly.

In Section III, some antipatterns covered in Section II are
extended to the design of the data models and relational
databases, discussing also the ability to customize external
open-sourced systems that participate in the integration. The
focus is later shifted to the management and delivery of the
data layer components and artifacts, as databases are an
integration concern that goes beyond the data exchanged
between the application tier and the data tier. This section
intends to explain how the choice of tools and frameworks
can have a significant impact on the overall realization,
management, and delivery of the integration solution.

Finally, Section IV summarizes the integration design
concerns and issues and the recommendations presented in
this paper.

II. TIGHT INTEGRATION: LEAKY ABSTRACTIONS AND

VENDOR LOCK-IN

A. The Problem Definition

Let’s assume the specification of some business needs for
building a software system to integrate with - and consume -
a third-party service. The exposed data transport models,
e.g., Representational State Transfer (REST) models or
Simple Object Access Protocol (SOAP) data contracts, are
already defined, maintained, and versioned by some external

36Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 42 / 53

vendor or entity (the service provider). Note that this
scenario can easily be extended further, to integrations with
an arbitrary system by means of some third-party APIs that
expose specific behavior and data structures as containers for
some meaningful payload/data.

Focusing on the data structures rather than behavior, once
service model proxies have been generated via some
automation, they tend to become part of the design artifacts
for the rest of the system. Their use extends beyond the point
where they are needed to exchange data with the external
application. These models will percolate throughout the
various layers and components of the integrating system. It is
not unusual to see development efforts proceed around them,
with application and business logic rapidly building on top of
these data types. Development costs and tight deadlines, and
sometimes the lack of design time and/or expertise, are the
main reasons leading to this undesirable outcome.

Models exposed by external vendors were not designed
with the actual needs of other/integrating systems in mind.
External models are characterized by potentially complex
shapes (width: number of exposed attributes or properties;
depth: composition hierarchy). They cater to most integration
needs (“one size fits all”), so they tend to be composed of an
exhaustive set of elements to be utilized as needed.

Moreover, allowing these structural characteristics to
seep into the application logic layer, beyond the component
that constitutes the integration boundary, introduces adverse
and unnecessary dependencies to external concerns.
Therefore, the system is now exposed to structural instability
and will require a constant need to adapt whenever these
externally derived models will change. The integration
boundary is no longer a crisp and well-defined layer that can
isolate and absorb all changes to the external systems –
speaking from a data integration perspective.

B. The Antipatterns

The lack of proper structural abstractions and allowing
integration concerns to infiltrate into the integrating system
is a costly design pitfall and is in fact a variation of the
“Leaky Abstractions” problem – as originally defined by
Joel Spolsky in 2002 [2]. Such deficient abstractions can be
identified not only relative to structural models, but also to
behavioral models, which could expose the underlying
functional details of the software components to integrate
with. This will inevitably lead to increased complexity of the
current system, jeopardizing its extensibility and its ability to
evolve and to be tested independently. Ultimately this results
in a tightly coupled integration between the two systems
(with strong dependencies on the target of the integration).

Another perspective or consequence of the problem
described is an imposing reliance on vendor-specific
technologies, their libraries, and even implementations. This
problem is also known as the “Vendor Lock-In” antipattern
[3]. External system upgrades will necessitate system-wide
changes and constant adjustments on the integration side and
will impact the overall stability of the system and the
integration solution itself.

Examples range from adopting specialized libraries
catering to cross-cutting concerns (logging, caching, etc.) to

domain-specific technologies (telecom, finance, insurance,
etc.). Vendors will encourage integrators to infuse their
specialized technology everywhere, leading to entire
(sub)systems taking on pervasive dependencies on their
technologies, thus making it impossible to separate. Such
vendor-dependent architectures must and can be avoided
with added effort during the design phase, as described next.

C. The Solution

To avoid such scenarios, the design must unambiguously
identify the integration boundary and define custom
integration models that abstract away any and all structural
and behavioral details related to the system targeted for
integration. This architectural approach is exemplified in the
component diagram in Figure 1. The integration layer should
also hide the underlying technology (REST vs. SOAP,
message bus vs sockets, etc.) to avoid tight and unnecessary
dependencies. An example of defining canonical models
based on the “ubiquitous” integration language in case of
multi-system integration is presented in “Enterprise
Integration Modeling” [4].

Based on the author’s experience, designing proper
model abstractions proved extremely useful in the case of
building custom integrations with real-time systems. For
example, Session Initiation Protocol (SIP) soft switches
used in telecommunications networks, such as those from
Genesys, the leader in customer experience, pertaining to
contact center technology (call routing and handling,
predictive dialing, multimedia interactions, etc.). In this case,
an extensive array of data types, requests, events, etc., are
made available to integrators as part of the Genesys Platform
SDKs [5]. These facilitate communication with the Genesys
application suite – which in turn enables integration with
telephony systems, switches, IVR systems, etc. Most of these
data types are very complex and heavy, and introduce acute
dependencies on the underlying platform, exposing many
implementation details as well. Employing code generation

Figure 1. Integration components and the Integration Layer (Adapter)

isolating the integrating system from the external system.

37Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 43 / 53

and metadata inspection via reflection, for example, simpler
connection-less models were designed to mimic and expose
only the needed structural details and are currently used in
several production systems. Furthermore, defining and
realizing the proper architectural isolation layers will
ultimately provide independence from vendor-specific
platforms for the rest of the system.

For example, considering the integration scenario
mentioned above using Genesys’ Platform SDK, recently the
company (Genesys) has been pushing for a new approach to
integrate with their systems, specifically using the Genesys
Web Services (GWS) [6], a RESTful API. From an
integration viewpoint, this substitution is practically
equivalent to switching to a different vendor, as the two
integration facilities are based on different technologies (web
calls versus direct socket connections) and using completely
different models, from both a structural model perspective as
well as behavioral and consumption views.

Building an explicit and clean integration layer as shown
in Figure 1, when dealing with such a significant change
(vendor or technology replacement) changes will be isolated
to this adapter layer without any impact on the business
domain layer of the integrating system (assuming similar
data and functionality). This includes the specifics of the
technology used to communicate between the two systems.

Finally, it is noteworthy that four out of the five SOLID
design principles [7] substantiate and drive towards the
proposed solution:

• Single Responsibility (SRP), from the component
and layering perspective,

• Open-Closed, to avoid changing the underlying
implementation every time the integration endpoints
change,

• Interface Segregation, exposing only the necessary
data types for consumption by the business logic
layer,

• Dependency Inversion, where the Domain does not
directly depend on the external system, its data and
behavior, but rather on abstractions – the repository
contracts realized by the integration layer.

D. Added Architectural Benefit

Proper design and isolation of the integration components
and the use of interfaces and model adapters will enable
adequate testing of the custom system without demanding
the availability of the external system for integration testing
until most defects within the custom system are resolved.

Furthermore, this design approach supports building
synthetics that simulate or mock the data and behavior of the
external system, providing the means to prototype and test
the integration points and functional use cases. Even if only a
reduced set of features is synthesized, deferring the needs for
actual integration testing can be cost-effective, especially in
situations where the external system is a shared resource,
perhaps expensive to manage and to access in general.

Employing Dependency Injection (DI) [8], either the real
or the mock implementation of the integration contracts can
be injected into the Domain layer, making it easy to swap
between the two implementations.

III. DATA TIER DESIGN, ACCESS, AND MANAGEMENT

CONCERNS

One of the most common system integration use cases for
many enterprise applications is related to data persistence
and access. Integration with (relational) databases that are
either part of the custom system or accessible (co-located)
components of a third-party system is a pervasive
requirement, whether the data tier is needed for storing
configuration data, audit/logging, security-related aspects, or
to support concrete operational or reporting needs.

This section focuses on several issues related to database
design and management, as well as accessing the data itself.

A. ‘Inverted’ Leaky Abstractions in Data Integrations

1) The Problem
The previous section discussed Leaky Abstractions that

result from allowing third-party concerns infiltrate custom
systems when designing and implementing an integration
solution. The directionality of the “leak”, as described
earlier, is from the external system into the current one.
However, it is also possible to encounter the reverse
scenario, when the integration target is open or transparent to
the integrators who then take advantage of this fact to
develop and apply their own customizations.

Here are two examples:
(a) An Original Equipment Manufacturer (OEM) and/or

White Label license of the external system is available to
integrators, including access to source code for additional
customization and integration options.

(b) The external system contains database(s) accessible to
the integrators, on-premise or in a cloud environment, and is
open/accessible to change.

In the first example, the same issues and solutions apply,
as already discussed in the previous section, only this time
from the perspective of the external system. If customization
design is not executed properly, software upgrades of the
open-sourced third-party system will result in continuous
maintenance, or worse, breaking the custom code. Both
scenarios will incur high development and system integration
testing costs, among other problems.

The rest of this sub-section will focus on the second
example, involving third-party databases that are accessible
(i.e., open to modification) from an integration and
customization perspective.

When expecting and relying on continuous upgrades and
patches supplied by the vendor of the external system, it is
possible that custom database artifacts (added by the
integration provider) will have to be discarded and reapplied,
or worse, no longer compatible with the updated system.
Moreover, management of database source code targeting
the customizations is more difficult if tightly dependent on
the elements defined by the external entity/vendor. For
example, the custom integration requirements demand two
new columns on one of the third-party database tables.

Evidently, with respect to customizations of third-party
components (database or otherwise), “Vendor Lock-in” is
the status quo as a business-driven need and not a concern
here.

38Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 44 / 53

2) The Solution
There are several options available and their applicability

depends on concrete scenarios and business needs. Ideally, a
separate, custom database could be considered, where data
collected by the third party system (stored in their databases)
would be extracted, transformed as needed, and loaded
(ETL) [9]. Detached custom data models are easy to
maintain, modify, and version-control by the integration
provider. Aligning with the arguments stated in Section II,
this approach enforces a well-defined data integration
boundary, as shown in Figure 2 below.

Allowing for independent provisioning and evolution of
both data models (one provided by the external system and
one specifically designed for - and consumed by- the
integrating system) will lead to improved extensibility,
scalability, performance, testability, and maintainability.
With this approach, upgrading the external system will
potentially require updating the ETL artifacts and, if needed,
some enhancements to the custom database – but both
activities can be done in a detached, self-contained fashion.

Further details regarding the management of database
artifacts will be discussed later, but one noteworthy benefit
here is the freedom from having to maintain (a) partial
custom database artifacts (divorced from their context)
and/or (b) complete external database artifacts (since the
database is a self-contained software system, and should not
be divided further into sub-components). The reason why
maintaining select/partial database artifacts is undesirable is
that from a specification perspective, a database (meaning all
its defining artifacts) must be valid, consistent, and complete
(as it must also be from a deployment perspective).

If database customizations must live in the same database
as the one that is part of the external system, a less optimal
solution to the Inverted Leaky Abstractions (i.e., the data
model), is to expend proper design effort to minimize tight
dependencies and attempt to follow - as best as possible - the
Open-Closed design principle at the data tier, in the context
of system integration and customization.

For example, if the custom integration components
require the persistence of new attributes (fields) in addition
to the data captured by the external system, rather than
modifying the existing third-party tables by adding new
columns, association or edge tables should be considered
instead, with custom data residing in new, custom tables.
Custom views, parameterized or otherwise, should be
designed to transform data into a ready-to-consume format
(for operational, reporting, or analytical needs).

In this case, the system quality attributes mentioned
earlier must however be carefully monitored, especially
query performance and scalability. On the downside,
database code management will become either (a)
fragmented/isolated, by extracting the custom database
artifacts from the rest of the database into independent
scripts, or (b) more complex, by importing the entire third-
party database under source control along with the custom
artifacts, in order to preserve its integrity. Subsection D
discusses tools that help validate the full database, warning
about invalid or broken object references, binding and syntax
errors, thus increasing the probability that database
deployments will succeed.

B. Mixing Data Modeling Concerns

1) The Problem
Regardless of the targeted Database Management

Systems (DBMS) technology, designing the conceptual and
logical data models is a prerequisite to the implementation of
the physical data models [10]. Beside ensuring that all data
elements outlined by the business requirements are
accurately represented, non-functional requirements, such as
performance, scalability, multi-tenancy support, security
(access to data), etc., will also shape the data architecture.

From an application perspective, the database is used to
persist the state of the business processes supported by the
application, i.e., operational needs, and to support analysis
and reporting needs around the stored business data. The
concept of Separation of Concerns (SoC) applies here as well
but is often ignored. Operational versus reporting concerns
are often mixed and data models designed specifically for
operational needs are used as such for reporting or analytics
purposes, although these models are usually quite different,
in terms of how the data is stored and how it is accessed.
Yet, it is not uncommon to find a given database used both
as the operational as well as the reporting database. As a
direct consequence of violating SoC with respect to data
modeling (both logically and physically), stability,
scalability, extensibility, and performance are the main
quality attributes of the system that will be impacted.

An alternate description of this problem is known as the
“One Bunch of Everything” antipattern [11], qualifying it as
a performance antipattern in database-driven applications,
the author aptly pointing out that “treating different types of
data and queries differently can significantly improve
application performance and scalability.”

2) The Solution
Following general data architecture guidelines, the

solution is straightforward. In [12], Martin Fowler suggest
the separation of operational and reporting databases and

Figure 2. The integration database added to support data integration

customizations and to remove direct dependencies on the third-party

database.

39Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 45 / 53

outlines the benefits of having domain logic access the
operational database while also massaging (pre-computing)
data in preparation for reporting needs. Extract-Transform-
Load (ETL) pipelines/workflows can and should be created
to move operational data into the reporting database;
specifically, into custom-tailored models that cater to
requirements around reporting and efficient data reads.

Existing tooling and frameworks can be employed to
transform and move data efficiently, on premise or in the
cloud (Azure Data Factory, Amazon AWS Glue, Matillion
ETL, etc.), for data mining and analytics, for historical as
well as real-time reporting needs.

C. Data Access and Leaky Abstractions

1) The Problem
It has been noted [13] that Object Relational Mapping

(ORM) technologies, such as Entity Framework (EF) or
Hibernate, are in fact a significant cause of data architecture
bleed into the application logic, representing yet another
example of the Leaky Abstractions antipattern.

Although intended to ease the access to the data tier and
the data it hosts, such technologies expose underlying
models and behavior to the application tier. In more acute
cases – depending on its usage – it also introduces strong
dependencies from the domain logic to the data shapes
defined in tables, views, and table-valued functions. Entity
Framework, for example, while providing the ability to
create custom mappings between these data models and the
entity models, as designed, these object models are intended
to be used as the main domain entities to build the actual
domain logic around them. This forces a strong, intertwined
yet inadequate dependency between two very different
models, targeting different technologies, employed by very
different programming paradigms (OO/functional such as
C#.NET versus set-based such as SQL). This not only
restricts the shape of the domain models, forcing constrained
behavioral models to be implemented around them, but also
causes data architecture changes to affect the domain and the
application logic itself.

Not surprising, Microsoft’s EF Core framework in fact
discourages against using a repository layer [14] (as
prescribed by Evans’s DDD [15]) on account that EF itself
implements the repository pattern/unit of work enterprise
pattern [16] – alas, leading towards a rigid and potentially
brittle integration. The reason is that ORM technologies push
design and development towards data access logic tangled
with the domain logic by encouraging multi-purpose models
(domain and data access or data proxies).

2) The Solution
Just as with the integration solution presented in Figure

1, the impact of changes to database models should be
constrained to one or two components – those that make up
the data access layer, and prohibited from affecting the other
application layers, specifically the domain and service layers.
Sharing a single model across all layers of the application
places unnecessary limitations on the overall design and
ultimately on the extensibility and stability of the system.

Although it is uncommon to replace the database
technology altogether, sometimes it may be required to

replace the data access technology due to performance and
scalability concerns. Without a proper separation of data
access from domain logic and models, such design changes
targeting the lower layers of the system architecture are
impractical without extensive refactoring of the application.

In a layered component-based architecture – as shown in
Figure 3 above, it is easy and natural to allow each layer to
define its own models (darker boxes) and provide adapters to
translate from one model to another as data flows through the
layers of the application. Although this would seem wasteful
at first sight, especially if some models hardly vary from one
layer to the next, this approach offers two core benefits. It
allows for independent evolution of the models, customizing
them to serve very specific needs of the layer they belong to,
and keeps the propagation of model changes confined to the
corresponding adapter (translation) components.

In case of ORM technologies, the data access layer
overlaps with the domain layer, while entity models (shown
as data proxies in Figure 3) represent the actual domain
models. Interestingly enough, even as ORM is recognized as
a Leaky Abstraction, its use is nevertheless encouraged [17],
most likely because in unsophisticated implementations, it
may be able to deliver acceptable results.

However, as [13] points out, ORM tools can be
successfully used “if there is proper separation of concerns,
proper data access layer, and competent developers who
know what they are doing and really, really understand how
relational databases work.” Sooner or later, the inherent
deficiencies of such technologies, compounded by
inadequate implementations due to the lack of understanding
of how the underlying technology works, will surface, in
most cases under system load and/or when new features are
added.

D. Improper Management of Database Artifacts

1) The Problem
Source code, regardless of the language it is written in, is

“a precious asset whose value must be protected”, as
Atlassian’s Bitbucket web site states om their “What is
version control” online tutorial [18]. All software-producing
companies will employ one tool or another for version
control. This allows software developers to collaborate, store
(or restore/rollback) versions of the software components
they build and perform code reviews, and providing a single

Figure 3. Layered architecture with layer-specific models and model

transformations.

40Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 46 / 53

stable “source of truth” of the software artifacts they create
and release/deploy. As advocated in [19], “source files that
make up the software system aren't on shared servers, hidden
in folders on a laptop, or embedded in a non-versioned
database.” Yet, it is rather commonplace to find database
implementations that are improperly managed, leading to
frustration, bad deployments, making the data tier integration
and overall solution delivery unreliable and difficult. There
are many online articles and blogs describing such cases.

As encountered by the author, while being engaged as a
solution architect and consultant on several projects at
various clients, the actual data models and database artifacts
were often created and delivered as ad-hoc implementations
in some arbitrary database, hosted under some arbitrary
Microsoft SQL Server instance. Several teams needed these
database artifacts: Development for implementation and
integration, Quality Assurance for testing, DevOps for
deployment. The most common process for deploying this
database (fresh install or incremental) to some other
environment was to generate and pass around SQL scripts
when needed. In somewhat more fortunate situations, these
scripts were maintained in some form of source control as
SQL/text files, but lacking the ability to validate them or
trace the source back to the developer responsible for the
actual implementation (in the original database).

So then, where does the “source of truth” for the database
definition reside? How can multiple developers work on the
database code without overwriting each other’s changes and
without being aware of the latest updates? How does the
organization deliver incremental deployments to any number
of target environments? When onboarding new team
members, what database code should they be pointed to?

The problems derived from not having a stable, accurate,
up-to-date, and complete definition of the database source
code, one that is under version control and that can be
validated before a deployment, are numerous, acute, and
rather obvious. Just as one maintains all other application
code under source control, entire solutions composed of
many components, why should database implementations not
follow the same standards and take advantage of the same
acclaimed benefits of code well-managed?

Furthermore, when the database (source) code resides in
some database, invalid object references (because someone
dropped a column on a table or deleted a stored procedure)
will surface only at runtime. Often, changes are made to the
database post deployment, even in Production environments,
changes that could potentially break the code, or which are at
best confined to that environment alone, but without being
retrofitted/updated back into the “source code database”.

A particularly curious approach to database code
management and deployment was encountered on a project
that used the Fluent Migrations Framework for .NET [20],
self-proclaimed as a “structured way to alter your database
schema […] and an alternative to creating lots of sql scripts
that have to be run manually by every developer involved.”
In a nutshell, the tool calls for creating a C#.NET class every
time the database schema would change (one class per
“migration”). These code files (admittedly, version-
controlled) attributed with metadata to identify a specific

database update, encapsulate two operations that describe the
schema changes: one for a forward deployment (“Up”) and
one for rollback (“Down”). With a large database, one that
evolved considerably over time, with hundreds of artifacts,
the number of C# migration files was astounding
(thousands). Database changes were published to the target
database as part of the application deployment process.
Installing the database from scratch would incrementally
apply every single “Up” migration specification it finds in
these files, following the prescribed update. To maintain
sanity, these source code files needed to be named such that
the chronological order would be preserved when browsing
in the development tool.

However, other more serious problems arise from using
this framework, two of them being briefly discussed next.

a) SQL code as C#.NET strings??

Say a new stored procedure must be added; the code is
developed and tested from SQL Server Management Studio
(SSMS) in some local deployment of the database (assuming
the objects the stored procedure is referencing do not change
in the interim). Next, a migration file is created, with the
“Up” method containing the full (CREATE) stored
procedure script, as a C# string passed as input argument to
the “Execute.Sql” method call.

The major and obvious problem here is the inability to
validate SQL syntax and semantics and SQL object
references when represented as indiscriminate plain strings,
subject to typing errors.

b) No database source code??

Unless deployed on some SQL Server instance, it is
impossible to even begin to understand the structure of the
database, even the structure of individual objects. The data
models and data logic are scattered, fragmented (across
many C# files), impossible to validate (syntactically or
otherwise) from where the database “source code” is stored.

Moreover, a given database object, say a table for
example, can change any number of times, each change
being captured in a different source file, with no unified,
single view of what that table looks like, what the shape of
the data is, with all its columns and corresponding types,
with its keys and indexes, constraints and triggers, if any.
This problem extends to all database objects, not just tables.

The data models (the source code artifacts) are practically
non-existent, difficult to comprehend, and cannot be
validated until they are deployed. The result is a total and
indefensible representational incoherence afflicting the most
important component of a data-dependent enterprise system.

2) The Solution
There are various software tools available to address this

problem. Both Microsoft and Redgate, for example, provide
excellent tooling for developing relational databases,
managing database artifacts under source control, facilitating
change management and incremental deployment, generating
manual update scripts (when automated deployment is
constrained), and more.

Microsoft’s SQL Server Data Tools (SSDT) [21] is a
development tool, available since 2013, using the Data-Tier
Application Framework (DacFx). It facilitates the design and

41Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 47 / 53

implementation of SQL Server and Azure SQL databases, as
well as database source control and incremental deployment,
all integrated under the Microsoft Visual Studio development
environment.

A version-controlled database project contains all distinct
database objects as individual files, and it must compile –
targeting a specific SQL Server (or Azure) database version
– before it can be deployed anywhere. Developers can check
out individual objects (files) to change as needed or can add
new objects using the provided templates. Just as one can see
the entire schema of a database in SSMS, similarly, anyone
can see and browse these objects in Visual Studio.

Tools like SSDT are also capable of identifying the
changes (delta) between the source and the destination
database in order to create the appropriate deployment
scripts, and ultimately allowing rapid and valid delivery of
database changes to any environment.

It is questionable to store Java or C# code in SQL scripts,
with artifacts/classes shredded and reduced to SQL
NVARCHARs, scattered in an arbitrary number of stored
procedures (equal to the number of updates effected upon
that class), and passed around to call other stored procedures
(via EXEC statements). The reverse scenarios should be
equally unacceptable. Treating the database as a proper
software implementation artifact is imperative.

IV. CONCLUSION

This paper aimed to raise awareness about certain design
challenges that, when not addressed early and properly, will
lead to deficient architectures and rigid solutions concerning
various aspects of system integration, as often encountered in
practice.

When the design of software systems follows some basic
guidelines and principles (SOLID), the resulting architecture
will allow the system to be easily built, modified, and
extended. In case of system integrations and customizations,
violating these principles and particularly the multi-faceted
Separation of Concerns design rule, leads to unmanageable
and highly complex systems that do not scale well, cannot be
extended or modified easily, with tight dependencies on
external components and overall brittle integration solutions.

Many design antipatterns have been catalogued and well
documented; yet deficient architectures are encountered quite
frequently, leading to high technical debt and unhappy
stakeholders. This paper discussed “Leaky Abstractions”,
“Mixing Concerns”, and “Vendor Lock-in” antipatterns –
from the perspective of concrete industry examples, as
encountered and worked on by the author.

Concrete approaches that address these problems to help
refactor and realign the design according to best practices
and principles were elaborated, explaining how they lead to
scalable, extensible, testable, efficient and robust integration
solutions.

Relational database design and management concerns
were also presented, with focus on data model design, data
access practices, and management of database artifacts. The
consequences of improper tooling and frameworks were
briefly covered, and a solution discussed.

ACKNOWLEDGEMENT

I would like to thank my husband and long-time mentor,
Chris Moore, for his indefatigable guidance and for sharing
the extensive technical knowledge and experience he
possesses and masters so adeptly.

REFERENCES

[1] R. Martin, “Clean Architecture,” Prentice Hall, 2018, ISBN-
13: 978-0-13-449416-6.

[2] J. Spolsky, “The Law of Leaky Abstractions,” [Online]
Available from https://www.joelonsoftware.com/2002/11/11/
the-law-of-leaky-abstractions/ [retrieved: June, 2019].

[3] SourceMaking, Software Architecture AntiPatterns, [Online].
Available from https://sourcemaking.com/antipatterns
[retrieved: June 2019].

[4] M. Iridon, “Enterprise Integration Modeling,” International
Journal of Advances in Software, vol 9 no 1 & 2, 2016, pp.
116-127.

[5] Genesys, “Platform SDK,” [Online]. Available from https://
docs.genesys.com/Documentation/PSDK [retrieved: June, 2019].

[6] Genesys, “Web Services and Applications,” [Online].
Available from https://docs.genesys.com/Documentation/HTCC
[retrieved: June, 2019].

[7] G. M. Hall, “Adaptive Code via C#: Agile coding with design
patterns and SOLID principles (Developer Reference),”
Microsoft Press, 1st Edition, 2014, ISBN-13: 978- 0735683204.

[8] M. Seemann, “Dependency Injection in .NET,” Manning
Publications, 1st Edition., 2011, ISBN-13: 978-1935182504.

[9] Microsoft, “Extract, Transform, and Load (ETL), ” [Online].
Available from https://docs.microsoft.com/en-us/azure/archite
cture/data-guide/relational-data/etl [retrieved: June, 2019].

[10] G. Simsion and G. Witt, “Data Modeling Essentials,” Morgan
Kaufmann; 3rd edition, 2004, ISBN-13: 978-0126445510.

[11] A. Reitbauer, “Performance Anti-Patterns in Database-Driven
Applications,” [Online] Available from
https://www.infoq.com/articles/Anti-Patterns-Alois-Reitbauer/
[retrieved: September, 2019].

[12] M. Fowler, “Reporting Database, ” [Online]. Available from
https://martinfowler.com/bliki/ReportingDatabase.html
[retrieved: September, 2019].

[13] V. Bilopavlovic, “Can we talk about ORM Crisis?”. [Online]
Available from https://www.linkedin.com/pulse/can-we-talk-
orm-crisis-vedran-bilopavlovi%C4%87 [retrieved: June, 2019].

[14] Jon P. Smith, “Entity Framework Core in Action,” manning
Publications, 2018, ISBN-13: 978-1617294563.

[15] E. Evans, “Domain-Driven Design: Tackling Complexity in
the Heart of Software,” 1st Edition, Prentice Hall, 2003,
ISBN-13: 978-0321125217.

[16] M. Fowler, “Patterns of Enterprise Application Architecture,”
Addison-Wesley Professional, 2002.

[17] M. Fowler, “OrmHate,” [Online]. Available from https://
martinfowler.com/bliki/OrmHate.html [retrieved: June, 2019].

[18] Atlassian, “What is version control, ” [Online]. Available from
https://www.atlassian.com/git/tutorials/what-is-version-control
[retrieved: September, 2019].

[19] P. Duvall, “Version everything,” [Online]. Available from
https://www.ibm.com/developerworks/library/a-devops6/
[retrieved: September, 2019].

[20] “Fluent Migrations Framework for .NET,” [Online].
Available from https://fluentmigrator.github.io/ [retrieved:
September, 2019].

[21] Microsoft, “SQL Server Data Tools,” [Online]. Available
from https://docs.microsoft.com/en-us/sql/ssdt/sql-server-
data-tools [retrieved: September, 2019].

42Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 48 / 53

Data Science as a Service
Prototyping for an Enterprise Self-Service Platform for Reproducible Research

Steve Guhr

NetApp Deutschland GmbH
Berlin, Germany

e-mail: steve.guhr@netapp.com

Jan-Hendrik Martenson
NetApp Deutschland GmbH

Hamburg, Germany
e-mail: jan-hendrik.martenson@netapp.com

Hans Laser
Center for Information Management

Hannover Medical School
Hannover, Germany

e-mail: laser.hans@mh-hannover.de

Jannes Gless
Center for Information Management

Hannover Medical School
Hannover, Germany

e-mail: gless.jannes@mh-hannover.de

Detlef Amendt
Center for Information Management

Hannover Medical School
Hannover, Germany

e-mail: amendt.detlef@mh-hannover.de

Benjamin Schantze
NetApp Deutschland GmbH

Hamburg, Germany
e-mail: benjamin.schantze@netapp.com

Svetlana Gerbel
Center for Information Management

Hannover Medical School
Hannover, Germany

e-mail: gerbel.svetlana@mh-hannover.de

Abstract—A data scientific process (e.g., Obtain, Scrub,
Explore, Model, and iNterpret (OSEMN)) usually consists of
different steps and can be understood as an umbrella for the
combination of different most modern techniques and tools for
the extraction of information and knowledge. In this paper, we
show a prototypical implementation for the efficient use of
available compute center resources as a self-service platform
on enterprise technology to support data-driven research.
Scientific requirements for reproducibility and
comprehensibility are to be taken into account.

Keywords—Data Science as a Service; reproducible research;
enterprise information technology; self-services; cloud
infrastructure; data science platform.

I. INTRODUCTION

Technology should be available to everyone. That is one
of the reasons why companies build services. One of the key
aspects to consider when building service portfolios should
be to make it as easy and consumable for the end-user as
possible. The main challenge is to “carry” those known
tools and solutions into a scalable and powerful platform
that can be provided with enterprise technology to warrant
Service-Level-Agreements (SLA) from a central enterprise
Information Technology (IT).

A. The Data Science Process

To obtain information (e.g., based on patterns) for
relevant business decisions from data of heterogeneous data
sources, a classical multi-stage process for data preparation
and analysis is used, the so-called data mining process [1].
Data science, on the other hand, can be understood as an
umbrella for the combination of various state-of-the-art
techniques for the extraction of information and knowledge
(so-called insights) to develop data-based applications and,
thus, automating processes. One approach to describe the
individual steps for the data science process is Obtain,
Scrub, Explore, Model and INterprenting (OSEMN) [2]. In
the Obtain step, for example, query languages are required
for databases that can be extracted in various formats.
Python [3] and R [4] encapsulate the otherwise
heterogeneous data query tools (e.g. Structured Query
Language (SQL), eXtensible Markup Language (XML),
Application Programming Languages (API), Comma
Separated Value (CSV) and Hybrid File System (HFS)).
Classic database techniques such as Extract Transform Load
(ETL) process can be used in the cleanup step (Scrub).
Computer languages like Python and R or application suits
like SAS Enterprise Miner [5] or OpenRefine [6] can also
be used to transform data. To examine the data (Explore)
languages like Python or R specialize in particular
appropriate libraries (e.g. Pandas [7] or Scipy [8]). In this
step, however, familiar players from the business

43Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 49 / 53

intelligence world (e.g. Rapid Miner [9] or KNIME [10])
can also be found for data-wrangling. To build a model,
there are again specialized Python libraries like “Sci-kit
learn” [11] or CARET [12] for R. Other tools like KNIME
or Rapid Miner find reuse in this step as well. Finally, for
interpreting the model and the data, as well as evaluating the
generalization of the algorithm, tools for data visualization
are reused (e.g. matplotlib [13], Tableau [14] or MS Power
BI [15]). In summary, it means that, for the many single
steps in OSEMN, many different tools can be necessary.

B. Reproducible Research

In the domain of computer-aided data-driven science,
researchers today use common libraries and tools.
Researchers often choose free and open source tools [16].

The reproducibility and repeatability of the research
results and the description of the specific runtime
environment in which the results were created are described
in the respective publications either not at all or only
textually [16][17]. An important factor in the publication of
the scientific work is the reproducibility of the research
results [17][18].

The data principles published in 2016 define
fundamentals that research data and research data
infrastructures should meet in order to ensure sustainability
and reusability [19]. The scientific data should therefore be
findable, accessible, interoperable and reusable (FAIR data
principles). In a highly simplified way, data and services
should be stored in central data repositories using suitable
metadata (F), taking into account aspects of long-term
archiving (A), and should be able to be exchanged and
interpreted (semi-)automatically (I) and thus be comparable
and reusable (R).

Results of systems research show that open source tools
in particular are suitable for reproducibility requirements.
Although Docker was introduced primarily for enterprise
needs and Web application delivery, it provides solutions
for virtualization, platform portability, reuse, sharing,
archiving, and versioning [17] for the scientific community.

The use of tools such as Jupyter Notebooks (jupyter.org)
enables semantically interoperable publication of program
code, including through the use of the IPYNB format [16].
Jupyter Notebooks supports workflows in the fields of
scientific computing, astrophysics, geology, genetics and
computer science [16]. Various applications and
programming languages (e.g. Python, R) offer interfaces to
Jupyter Notebooks [17][20]. Jupyter gathers many valuable
tools that are needed in the steps of the OSEMN process
model.

C. Aims of the project

NetApp is one of the leading independent data
management providers [21] and has been helping
organizations store, manage, secure, and leverage their most
mission-critical data assets for more than 25 years.

The Center for Information Management (ZIMt) of the
Hannover Medical School (MHH) centralizes operative
systems and is a service provider especially for the areas of

research and teaching, clinic and administration. The ZIMt
operates a class tier 3 [22] computing center at the MHH
and is ISO 9001:2015 certified. The centralization of
applications to support the scientific field is a strategic goal
of the MHH.

The goal of this project is to establish an easy to
maintain and cost-efficient infrastructure to support the
data-driven research and the implementation in the existing
data center infrastructure. Thereby, the requirements
according to FAIR and the operation of enterprise-level
applications will be considered.

The rest of the paper is structured as follows. In Section
II, we describe the methods used to address the above
mentioned challenges. In Section III, we describe the results
achieved referring to the main issues. Section IV concludes
this work addressing open issues and next steps.

II. METHODS / APPROACH

For the operation of Jupyter Notebooks in the data
center, the open-source environment JupyterHub Notebook
Server is used. It enables users to access computing
environments and resources without bothering users with
installation and maintenance tasks.

Docker is a technology that abstracts applications from
the underlying operating system to gain portability for
software solutions wrapped in so called “Containers”. With
a standardized environment (the Docker software/binaries
running on many different operating systems today) built for
containers one can use individual application manifests on
different sites (e.g. on-premises as well as in a public cloud
infrastructure provided by Google, Amazon Web Services
(AWS) or Microsoft Azure) without the need to change any
code.

JupyterHub uses Docker as the foundation for deploying
Jupyter Notebooks. The Jupyter Docker Stacks project [23]
will provide standardized Jupyter Notebooks environments
for various applications using Docker images, including pre-
configured environments for data science use. For special
requirements of the development environment, it is possible
to offer further images that can be individually modified to
the needs of the user.

Docker containers are more convenient to deploy, easier
to manage, minimize overhead in resource usage, and are
therefore more efficient than traditional virtual
infrastructures [24]. The provisioning of environments (e.g.,
through containers) in the academic field can be very
extensive, thus increasing the burden on the operators and
maintainers of the environment. Automating the
provisioning and orchestration of the environment is highly
recommended.

Running applications in containers also does not
automatically solve the challenge of protecting those
applications against failures (e.g. hardware outages or
resource bottlenecks on this one server we are working on).
Even though containers are encapsulated on top of an
operating system, there might be issues with the underlying
host running the container - therefore, an additional software
layer taking care of resource scheduling and availability of
our Jupyter Notebooks is needed.

44Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 50 / 53

Kubernetes has been used as an open-source solution to
orchestrate, automate and meet those high availability
requirements for container-based infrastructure [25]-[27]. It
is a widely used and proven technology for delivering
services like Jupyter. Because Kubernetes is designed to
host an enormous number of applications with minimal
overhead, it is perfect for many Jupyter Notebooks and
other potential applications within the science ecosystem
[24][28].

For more flexibility in design, a hypervisor (VMware)
was used to deploy the hosts for container orchestration
based on Docker and Kubernetes. Terraform and Ansible
are fully automated - Terraform creates the virtual machines
within the hypervisor, Ansible handles the installation of the
packages and configuration of the hosts (configuration
management). To avoid inconsistencies in the configuration,
the DevOps (software Development and information
technology Operations) paradigm applies to be an
"immutable" infrastructure, where every change in the
ecosystem leads to a completely new deployment of the
entire stack [29].

Docker containers are ephemeral, which means that they
do not persist data after termination of their life cycle. Data
storage must be ensured and is therefore required to secure
the data beyond the life cycle of the container.

In terms of the reproducibility of the results, the
collected data becomes the most important asset in the
process chain - since a robust and highly available
architecture is to serve as the basis, a NetApp storage
system is used to store the data. The central storage system
consolidates data in the data center. This prevents, on the
one hand, the storage of data on terminals and on the other
hand, enables a more effective backup.

The Network File System (NFS) was chosen as a
protocol for the connection to the storage. This decision is
based on being able to make the stored data available
outside of the data science platform. NFS can be used by
several clients at the same time with write access. This
integration into conventional infrastructures simultaneously
allows the usual access via Explorer or Shell.

Within Kubernetes, so-called storage classes can be used
to provide storage from an external source - in this case, a
container gets persistent storage space to store data beyond
its own life cycle, thereby making the data reusable. Trident
[30] is an open-source storage orchestrator for Kubernetes
provided by NetApp and can be used to add persistence to
the Jupyter Notebooks. Since each notebook is to be
provisioned individually for a particular user, each user also
receives an exclusive area for data storage. This is made
possible by the use of authentication within the ecosystem,
so each user must provide credentials to be accepted.

Even though we are in a “proof of concept” phase of the
project, we wanted to integrate authentication methods from
the very beginning to control access to the platform while
obtaining compliance in terms of security. At the MHH, a
local security area for managing objects (e.g. usernames,

computers, printers, etc.) is implemented as a domain via
Microsoft Windows Active Directory. For the centralization
of user IDs administration using Role-Based Access Control
(RBAC), the authentication to the Active Directory using
Lightweight Directory Access Protocol (LDAP)
implementation of JupyterHub was accessed.

III. RESULTS

This prototypical implemented infrastructure allows the
end-user (students, scientists) to easily use Jupyter
Notebooks. Using the Docker-based approach, the
description of the runtime environment required for the
research approach can be fixed using the Docker-specific
tagging option and stored in a manifest in a comprehensible
and interoperable manner for publication [17].

If the researcher chooses a work environment based on
Jupyter Notebooks, necessary work steps and results can be
saved together with the notebook [16][20]. The basic
condition to support requirements as described in FAIR
could be taken care of.

By default, configurations of Jupyter Notebooks are
offered and further evaluated via the JupyterHub Spawner
(Basic and Data Science). Additional libraries or tools,
which may not be included in the standardized environment,
can be installed flexibly to the current runtime environment
in their own separate area. Jupyter Notebooks, therefore,
offer the possibility to use multiple tools without having to
change the environment. Requirements for various tools,
such as those required in processes such as OSEMN, can be
supported by Jupyter Notebooks.

The isolation of the specific workspace of a researcher
can be solved by using Docker. Regardless, central compute
resources can be shared and used efficiently across multiple
environments.

The operator of the infrastructure (ZIMt) achieves a
work facilitation through the selected reference architecture
(see Figure 1) by automating the provision of resources for
the users (researchers). Because JupyterHub is deployed
through Docker, the branding requirements for maintaining
the Corporate Identity can be easily met. By using the
existing Active Directory, user access can be controlled
centrally. Authentication via LDAP simplifies logging on to
the system, since no separate access data needs to be
maintained.

By provisioning the required storage area at runtime,
resources can be provided centrally and efficiently. The
persistence of research data outside the Docker container
runtime on the existing enterprise storage system could be
efficiently solved by using Trident (see Figure 1).

Each time a user logs on to the home page, the system
checks to see if the user already has a Jupyter notebook
created in the past. In this case, he or she will be redirected
to this existing environment. Otherwise, a new notebook is
created (in the form of a new container) and new storage
space is provided (because that user did not exist before).

45Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 51 / 53

Figure 1. Prototyped Architecture to provision Jupyter Notebooks on
Enterprise Technology

IV. CONCLUSION

In this paper, we showed a prototypical implementation
for the efficient use of available compute center resources as
a self-service platform on enterprise technology to support
data-driven research.

The use of the predefined configurations of the Jupyter
Notebooks is initially limited by the images. It will show
with prolonged use of the service if the provision of
additional images would be useful.

For the prototype implementation of this infrastructure,
one Kubernetes master with two Kubernetes workers was
deployed. For productive operation, at least two Kubernetes
masters should be used to meet the requirements for failure
safety. In the event of a disaster recovery scenario and the
loss of the complete Kubernetes cluster, the storage volumes
that are deployed through Trident must be manually
reconnected. An automatism for restore procedures would
still have to be created. In an emergency, the administrator
can migrate the contents of the corresponding volume
through NFS.

Existing and established methodologies like OAuth [31]
or OpenID [32] would have required additional components
to be available. However, those security concepts will be
considered in later phases of the project after the initial
thesis is validated (if this software stack is suitable for the
use case at all).

If the JupyterHub internal database is lost, the link to the
pod and, thus, to the individual runtime environment is lost
and needs to be restored. To use Jupyter notebooks on
existing HPC infrastructures, the use of the Jupyter
Enterprise Gateway [33] needs to be evaluated.

As already mentioned before, this project implemented
only a proof of concept to demonstrate the feasibility of IT
operations by combining common data science tools with
enterprise architecture. Beyond Jupyter Notebooks related to
machine learning, tools such as Airflow [34] or Pachyderm
[35] (as a platform solution) could be used for pipelining
and automation in the next development stages. These tools
could support process models such as OSEMN, as well as
aspects of reproducibility and re-usability.

REFERENCES

[1] C. Li, “Preprocessing Methods and Pipelines of Data Mining:
An Overview”, CoRR, 2019, arXiv:1906.08510

[2] H. Mason and C. Wiggins, “A Taxonomy of Data Science”,
dataists.com, 2010, http://www.dataists.com/2010/09/a-
taxonomy-of-data-science/, last accessed 2019/07/22

[3] Python Programming Language, 2019,
https://www.python.org, last accessed 2019/10/23

[4] The R Project for Statistical Computing,

https://www.r-project.org, last accessed 2019/10/23

[5] SAS® Enterprise Miner™, 2019,
https://www.sas.com/en_us/software/enterprise-miner.html,
last accessed 2019/10/23

[6] Open Refine, http://openrefine.org/, last accessed 2019/10/23

[7] Pandas Python Data Analysis Library,
https://pandas.pydata.org/, last accessed 2019/10/23

[8] Scipy, 2019, https://www.scipy.org/, last accessed 2019/10/23

[9] Rapid Miner, 2019, https://rapidminer.com/, last accessed
2019/10/23

[10] KNIME End to End Data Science, 2019,
https://www.knime.com/, last accessed 2019/10/23

[11] scikit-learn: machine learning in Python, https://scikit-
learn.org/stable/, last accessed 2019/10/23

[12] A Short Introduction to the caret Package, https://cran.r-
project.org/web/packages/caret/vignettes/caret.html, last
accessed 2019/10/23

[13] matplotlib, 2019, https://matplotlib.org/, last accessed
2019/10/23

[14] Tableau, 2019, https://www.tableau.com, last accessed
2019/10/23

[15] Microsoft Power BI, 2019, https://powerbi.microsoft.com, last
accessed 2019/10/23

[16] T. Kluyver et al., Jupyter Development Team, “Jupyter
Notebooks – a publishing format for reproducible
computational workflows”, IOS Press. pp. 87-90, 2016, DOI:
10.3233/978-1-61499-649-1-87

[17] C. Boettiger, “An introduction to Docker for reproducible
research, with examples from the R environment”, ACM
SIGOPS Oper. Syst. Rev.. 49. 10.1145/2723872.2723882.
https://arxiv.org/pdf/1410.0846.pdf

[18] Nature Editors 2012. “Must try harder”. Nature. 483,7391
Mar. 2012, 509–509.

[19] M. D. Wilkinson et al., “The FAIR Guiding Principles for
scientific data management and stewardship”, Scientific Data
3, doi : 10.1038/sdata.2016.18, 2016.

[20] E. Cirillo, “TranSMART data exploration and analysis using
Python Client and Jupyter Notebook”, 2018,
http://blog.thehyve.nl/blog/transmart-data-exploration-and-
analysis-using-python-client-and-jupyter-notebook,last
accessed 2019/07/22

[21] K. Kerr, “Gartner Named NetApp a Leader in Magic
Quadrant for 2019 Primary Storage”, 2019,
https://blog.netapp.com/netapp-gartner-magic-quadrant-2019-
primary-storage/, last accessed 2019/10/23

[22] OVH SAS. 2018 “Understanding Tier 3 and Tier 4”.
https://www.ovh.com/world/dedicated-servers/understanding-
t3-t4.xml, last accessed 2018/09/15.

[23] Jupyter Docker Stacks, 2018, https://jupyter-docker-
stacks.readthedocs.io/en/latest/, last accessed 2019/10/23

[24] Q. Zhang, L. Liu, C. Pu, Q. Dou, L. Wu and W. Zhou, “A
comparative study of Containers and Virtual Machines in Big
Data environment”, arXiv:1807.01842v1

46Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

 52 / 53

[25] L. Hecht, “What the data says about Kubernetes deployment
patterns”, 2018, https://thenewstack.io/data-says-kubernetes-
deployment-patterns/, last accessed 2019/07/22

[26] Project Jupyter Contributors, “Zero to JupyterHub with
Kubernetes”, 2019, https://zero-to-
jupyterhub.readthedocs.io/en/latest/, last accessed 2019/07/22

[27] S. Conway, “Survey shows Kubernetes leading as
orchestration Platform”, 2018,
https://www.cncf.io/blog/2017/06/28/survey-shows-
kubernetes-leading-orchestration-platform/, last accessed
2019/07/22

[28] S. Talari, “Why Kubernetes is a great choice for Data
Scientists”, https://towardsdatascience.com/why-kubernetes-
is-a-great-choice-for-data-scientists-e130603b9b2d, last
accessed 2019/07/22

[29] P. Debois and J. Humble, “The DevOps Handbook: how to
create World-Class agility, Reliability, and Security in

Technology Organizations”, IT Revolution Press, 2016,
ISBN: 978-1942788003

[30] NetApp Trident, 2019, https://netapp-
trident.readthedocs.io/en/latest/introduction.html, last
accessed 2019/10/23

[31] OAuth community site, https://oauth.net/, last accessed
2019/10/23

[32] OpenID Foundation, 2019, https://openid.net, last accessed
2019/10/23

[33] Project Jupyter Team, “Jupyter Enterprise Gateway”, 2016,
https://jupyter-enterprise-gateway.readthedocs.io/en/latest/,
last accessed 2019/07/22

[34] Apache Airflow Documentation, https://airflow.apache.org/,
last accessed 2019/10/23

[35] Pachyderm - Reproducible Data Science that Scales!, 2019,
https://www.pachyderm.io/, last accessed 2019/10/23

47Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

Powered by TCPDF (www.tcpdf.org)

 53 / 53

http://www.tcpdf.org

