
ICSEA 2013

The Eighth International Conference on Software Engineering Advances

ISBN: 978-1-61208-304-9

October 27 - November 1, 2013

Venice, Italy

ICSEA 2013 Editors

Luigi Lavazza, Università dell'Insubria - Varese, Italy

Roy Oberhauser, Aalen University, Germany

Adriana Martin, National University of Austral Patagonia (UNPA), Argentina

Jameleddine Hassine, KFUPM, KSA

Michael Gebhart, Gebhart Quality Analysis (QA) 82, Germany

Marko Jäntti, University of Eastern Finland, Finland

 1 / 646

ICSEA 2013

Forward

The Eighth International Conference on Software Engineering Advances (ICSEA 2013), held on
October 27 - November 1, 2013 - Venice, Italy, continued a series of events covering a broad
spectrum of software-related topics.

The conference covered fundamentals on designing, implementing, testing, validating and
maintaining various kinds of software. The tracks treated the topics from theory to practice, in
terms of methodologies, design, implementation, testing, use cases, tools, and lessons learnt.
The conference topics covered classical and advanced methodologies, open source, agile
software, as well as software deployment and software economics and education.

The conference had the following tracks:

 Advances in fundamentals for software development

 Advanced mechanisms for software development

 Advanced design tools for developing software

 Advanced facilities for accessing software

 Software performance

 Software security, privacy, safeness

 Advances in software testing

 Specialized software advanced applications

 Web Accessibility

 Open source software

 Agile software techniques

 Software deployment and maintenance

 Software engineering techniques, metrics, and formalisms

 Software economics, adoption, and education

 Business technology

 Improving research productivity

Similar to the previous edition, this event continued to be very competitive in its selection
process and very well perceived by the international software engineering community. As such,
it is attracting excellent contributions and active participation from all over the world. We were
very pleased to receive a large amount of top quality contributions.

We take here the opportunity to warmly thank all the members of the ICSEA 2013 technical
program committee as well as the numerous reviewers. The creation of such a broad and high
quality conference program would not have been possible without their involvement. We also

 2 / 646

kindly thank all the authors that dedicated much of their time and efforts to contribute to the
ICSEA 2013. We truly believe that thanks to all these efforts, the final conference program
consists of top quality contributions.

This event could also not have been a reality without the support of many individuals,
organizations and sponsors. We also gratefully thank the members of the ICSEA 2013 organizing
committee for their help in handling the logistics and for their work that is making this
professional meeting a success.

We hope the ICSEA 2013 was a successful international forum for the exchange of ideas and
results between academia and industry and to promote further progress in software
engineering research. We also hope the attendees enjoyed the charm of Venice

ICSEA 2013 Chairs

ICSEA Advisory Chairs

Herwig Mannaert, University of Antwerp, Belgium

Jon G. Hall, The Open University - Milton Keynes, UK

Mira Kajko-Mattsson, Stockholm University & Royal Institute of Technology, Sweden

Luigi Lavazza, Università dell'Insubria - Varese, Italy

Roy Oberhauser, Aalen University, Germany

Elena Troubitsyna, Åbo Akademi University, Finland

Luis Fernandez-Sanz, Universidad de Alcala, Spain

Michael Gebhart, Gebhart Quality Analysis (QA) 82, Germany

ICSEA 2013 Research Institute Liaison Chairs

Oleksandr Panchenko, Hasso Plattner Institute for Software Systems Engineering - Potsdam,

Germany

Teemu Kanstrén, VTT Technical Research Centre of Finland - Oulu, Finland

Osamu Takaki, Japan Advanced Institute of Science and Technology (JAIST) – Ishikawa, Japan

Georg Buchgeher, Software Competence Center Hagenberg GmbH, Austria

ICSEA 2013 Industry/Research Chairs

Herman Hartmann, University of Groningen, The Netherlands

Hongyu Pei Breivold, ABB Corporate Research, Sweden

 3 / 646

ICSEA 2013 Special Area Chairs

Formal Methods

Paul J. Gibson, Telecom & Management SudParis, France

Business and process techniques

Maribel Yasmina Santos, University of Minho, Portugal

Testing and Validation

Florian Barth, University of Mannheim, Germany

Web Accessibility

Adriana Martin, National University of Austral Patagonia (UNPA), Argentina

 4 / 646

ICSEA 2013

Committee

ICSEA Advisory Chairs

Herwig Mannaert, University of Antwerp, Belgium
Jon G. Hall, The Open University - Milton Keynes, UK
Mira Kajko-Mattsson, Stockholm University & Royal Institute of Technology, Sweden
Luigi Lavazza, Università dell'Insubria - Varese, Italy
Roy Oberhauser, Aalen University, Germany
Elena Troubitsyna, Åbo Akademi University, Finland
Luis Fernandez-Sanz, Universidad de Alcala, Spain
Michael Gebhart, Gebhart Quality Analysis (QA) 82, Germany

ICSEA 2013 Research Institute Liaison Chairs

Oleksandr Panchenko, Hasso Plattner Institute for Software Systems Engineering - Potsdam,
Germany
Teemu Kanstrén, VTT Technical Research Centre of Finland - Oulu, Finland
Osamu Takaki, Japan Advanced Institute of Science and Technology (JAIST) – Ishikawa, Japan
Georg Buchgeher, Software Competence Center Hagenberg GmbH, Austria

ICSEA 2013 Industry/Research Chairs

Herman Hartmann, University of Groningen, The Netherlands
Hongyu Pei Breivold, ABB Corporate Research, Sweden

ICSEA 2013 Special Area Chairs

Formal Methods
Paul J. Gibson, Telecom & Management SudParis, France

Business and process techniques
Maribel Yasmina Santos, University of Minho, Portugal

Testing and Validation
Florian Barth, University of Mannheim, Germany

Web Accessibility
Adriana Martin, National University of Austral Patagonia (UNPA), Argentina

 5 / 646

ICSEA 2013 Technical Program Committee

Shahliza Abd Halim, Universiti of Technologi Malaysia (UTM) - Skudai, Malaysia
Adla Abdelkader, University of Oran, Algeria
Moataz A. Ahmed, King Fahd University of Petroleum & Minerals – Dhahran, Saudi Arabia
Syed Nadeem Ahsan, TU-Graz, Austria
Mehmet Aksit, University of Twente, The Netherlands
Ahmed Al-Moayed, Hochschule Furtwangen University, Germany
Basem Y. Alkazemi, Umm Al-Qura University, Saudi Arabia
Zakarya Alzamil, Riydh College of Technology, Saudi Arabia
Vincenzo Ambriola, Università di Pisa, Italy
Buzzi Andreas, Credit Suisse AG – Zürich, Switzerland
Andreas S. Andreou, Cyprus University of Technology - Limassol, Cyprus
Maria Anjum, Durham University, UK
Paulo Asterio de Castro Guerra, Tapijara Programação de Sistemas Ltda. - Lambari, Brazil
Colin Atkinson, University of Mannheim, Germany
Robert Azarbod, Oracle Corporation, USA
Thomas Baar, Hochschule für Technik und Wirtschaft (HTW) Berlin, Germany
Gilbert Babin, HEC Montréal, Canada
Muneera Bano, International Islamic University - Islamabad, Pakistan
Fernando Sérgio Barbosa, Escola Superior de Tecnologia do Instituto Politécnico de Castelo
Branco, Portugal
Jorge Barreiros, CITI/UNL: Center of Informatics and Information Technology - UNL || ISEC/IPC:
ISEC - Polytechnic Institute of Coimbra, Portugal
Florian Barth, University of Mannheim, Germany
Gabriele Bavota, University of Salerno, Italy
Assia Belbachir, IFSTTAR - Versailles, France
Noureddine Belkhatir, University of Grenoble, France
Simona Bernardi, Centro Universitario de la Defensa / Academia General Militar - Zaragoza,
Spain
Celestina Bianco, Systelab Technologies - Barcelona, Spain
Matthias Biehl, Royal Institute of Technology - KTH, Sweden
Christian Bird, University of California, USA
Kenneth Boness, Reading University, UK
Marko Boskovic, Forschungsgesellschaft mbH – Wien, Austria
Mina Boström Nakicenovic, Sungard Front Arena, Stockholm, Sweden
Hongyu Pei Breivold, ABB Corporate Research, Sweden
Georg Buchgeher, Software Competence Center Hagenberg GmbH, Austria
Luigi Buglione, ETS Montréal / Engineering.IT S.p.A., Canada
David W. Bustard, University of Ulster - Coleraine, UK
Fabio Calefato, University of Bari, Italy
Matteo Camilli, University of Milan, Italy
Vinicius Cardoso Garcia, Centro de Informática (CIn) - Universidade Federal de Pernambuco
(UFPE), Brazil

 6 / 646

José Carlos Metrôlho, Polytechnic Institute of Castelo Branco, Portugal
Bengt Carlsson, Blekinge Institute of Technology – Karlskrona, Sweden
Rocío Castaño Mayo, Universidad de Oviedo, Spain
Alexandros Chatzigeorgiou, University of Macedonia, Greece
Antonin Chazalet, IT&Labs, France
Yoonsik Cheon, The University of Texas at El Paso, USA
Vanea Chiprianov, University of Adelaide, Australia
Morakot Choetkiertikul, Mahidol University, Thailand
Antonio Cicchetti, Mälardalen University, Sweden
Methanias Colaço Júnior, Federal University of Sergipe, Brazil
Andrew Connor, Auckland University of Technology, New Zealand
Rebeca Cortázar, University of Deusto - Bilbao, Spain
Oliver Creighton, Siemens AG, Germany
Carlos E. Cuesta, Rey Juan Carlos University - Madrid, Spain
Beata Czarnacka-Chrobot, Warsaw School of Economics, Poland
Darren Dalcher, Middlesex University - London, UK
Claudio de la Riva, Universidad de Oviedo - Gijon, Spain
Peter De Bruyn, University of Antwerp, Belgium
Onur Demirors, Middle East Technical University, Turkey
Giovanni Denaro, Università degli Studi di Milano - Bicocca, Italy
Steven A. Demurjian, The University of Connecticut - Storrs, USA
Antinisca Di Marco, University of L'Aquila - Coppito (AQ), Italy
Tadashi Dohi, Hiroshima University, Japan
José André Dorigan, State University of Londrina, Brazil
Lydie du Bousquet, J. Fourier-Grenoble I University, LIG labs, France
Juan Carlos Dueñas López, Universidad Politécnica de Madrid, Spain
Lars Ebrecht, German Aerospace Centre (DLR), Germany
Holger Eichelberger, University of Hildesheim, Germany
Younès El Amrani, Université Mohammed V - Agdal, Morocco
Mohamed El-Attar, King Fahd University of Petroleum and Minerals - Al Dhahran, Kingdom of
Saudi Arabia
Vladimir Estivill-Castro, Griffith University - Nathan, Australia
Kleinner Farias, University of Vale do Rio dos Sinos (Unisinos), Brazil
Fausto Fasano, University of Molise - Pesche, Italy
Feipre Ferraz, CESAR / CIN-UFPE, Brazil
Martin Filipsky, Czech Technical University in Prague, Czech Republic
Derek Flood, Dundalk Institute of Technology (DkIT), Ireland
Jicheng Fu, University of Central Oklahoma, USA
Matthias Galster, University of Canterbury, New Zealand
G.R. Gangadharan, IDRBT, India
Stoyan Garbatov, Instituto de Engenharia de Sistemas e Computadores Investigação e
Desenvolvimento - Lisboa, Portugal
Kiev Gama, UFPE, Brazil
Antonio Javier García Sánchez, Technical University of Cartagena, Spain

 7 / 646

José García-Fanjul, University of Oviedo, Spain
Michael Gebhart, Gebhart Quality Analysis (QA) 82, Germany
Paul J. Gibson, Telecom & Management SudParis, France
Rainer Gimnich, IBM Deutschland – Frankfurt, Germany
Ignacio González Alonso, Infobótica RG University of Oviedo, Spain
Oleg Gorbik, Accenture - Riga Delivery Centre, Latvia
Mohamed Graiet, ISIMS, MIRACL, Monastir, Tunisia
Gregor Grambow, University of Ulm, Germany
Vic Grout, Glyndwr University - Wrexham, UK
Bidyut Gupta, Southern Illinois University, USA
Ensar Gul, Marmara University - Istanbul, Turkey
Zhensheng Guo, Siemens AG - Erlangen, Germany
Nahla Haddar, University of Sfax, Tunisia
Waqas Haider Khan Bangyal, IUI Islamabad, Pakistan
Imed Hammouda, Tampere University of Technology, Finland
Jameleddine Hassine, King Fahd University of Petroleum & Minerals (KFUPM), Saudi Arabia
Željko Hocenski, University Josip Juraj Strossmayer of Osijek, Croatia
Bernhard Hollunder, Furtwangen University of Applied Sciences, Germany
Siv Hilde Houmb, Secure-NOK AS / Gjøvik University College, Norway
LiGuo Huang, Southern Methodist University Huang, USA
Oliver Hummel, Karlsruhe Institute of Technology (KIT), Germany
Noraini Ibrahim, University of Technology Malaysia (UTM), Malaysia
Jun Iio, Mitsubishi Research Institute, Inc. - Tokyo, Japan
Naveed Ikram, Riphah International University – Islamabad, Pakistan
Emilio Insfran, Universitat Politècnica de València, Spain
Shareeful Islam, University of East London, U.K.
Werner Janjic, University of Mannheim, Germany
Slinger Jansen (Roijackers), Utrecht University, The Netherlands
Kashif Javed, Abo Akademi University, Finland
Hermann Kaindl, TU-Wien, Austria
Mira Kajko-Mattsson, Stockholm University and Royal Institute of Technology, Sweden
Yasutaka Kamei, Kyushu University, Japan
Ahmed Kamel, Concordia College - Moorhead, USA
Yasutaka Kamei, Kyushu University, Japan
Dariusz W. Kaminski, The Open University, UK
Teemu Kanstrén, VTT Technical Research Centre of Finland - Oulu, Finland
Lucia Kapova, Karlsruhe Institute of Technology, Germany
Tatjana Kapus, University of Maribor, Slovenia
Krishna M. Kavi, University of North Texas, USA
Carlos Kavka, ESTECO SpA, Italy
Thorsten Keuler, Fraunhofer Institute for Experimental Software Engineering - Kaiserslautern,
Germany
Foutse Khomh, Queen's University, Canada
Holger Kienle, Mälardalen University, Sweden

 8 / 646

Reinhard Klemm, Avaya Labs Research, USA
Mourad Kmimech, l’Institut Supérieur d’informatique de Mahdia (ISIMA), Tunisia
Jens Knodel, Fraunhofer IESE, Germany
William Knottenbelt, Imperial College London, UK
Radek Kocí, Brno University of Technology, Czech Republic
Christian Kop, Alpen-Adria-Universität Klagenfur, Austria
Georges Edouard Kouamou, National Advanced School of Engineering - Yaoundé, Cameroon
Anne Koziolek, Karlsruhe Institute of Technology, Germany
Sègla Kpodjedo, Ecole Polytechnique de Montréal, Canada
Natalia Kryvinska, University of Vienna, Austria
Tan Hee Beng Kuan, Nanyang Technological University, Singapore
Sukhamay Kundu, Louisiana State University - Baton Rouge, USA
Eugenijus Kurilovas, Vilnius University and Vilnius Gediminas Technical University, Lithuania
Rob Kusters, Open University/Eindhoven University of Technology, Netherlands
Alla Lake, LInfo Systems, LLC - Greenbelt, USA
Einar Landre, Statiol ASA, Norway
Kevin Lano, King's College London, UK
Jannik Laval, University Bordeaux 1, France
Luigi Lavazza, Università dell'Insubria - Varese, Italy
Luka Lednicki, University of Zagreb, Croatia
Plinio Sá Leitão-Junior, Federal University of Goias, Brazil
Jörg Liebig, University of Passau, Germany
Maria Teresa Llano Rodriguez, Heriot-Watt University, UK
Klaus Lochmann, Technische Universität München, Germany
Sérgio F. Lopes, University of Minho, Portugal
Juan Pablo López-Grao, University of Zaragoza, Spain
Ricardo J. Machado, University of Minho, Portugal
Sajjad Mahmood, King Fahd University of Petroleum and Minerals, Saudi Arabia
Charif Mahmoudi, LACL - Paris 12 University, France
Nicos Malevris, Athens University of Economics and Business, Greece
Herwig Mannaert, University of Antwerp, Belgium
Eda Marchetti, ISTI-CNR - Pisa Italy
Alexandre Marcos Lins de Vasconcelos, Federal University of Pernambuco, Brazil
Leonardo Mariani, University of Milano-Bicocca, Italy
Adriana Martin, National University of Austral Patagonia (UNPA), Argentina
Miriam Martínez Muñoz, Universidad de Alcalá de Henares, Spain
Jose Antonio Mateo, Aalborg University, Denmark
Karl Meinke, KTH Royal Institute of Technology, Sweden
Igor Melatti, Sapienza Università di Roma, Italy
Jose Merseguer, Universidad de Zaragoza, Spain
Markus Meyer, University of Applied Sciences Ingolstadt, Germany
João Miguel Fernandes, Universidade do Minho - Braga, Portugal
Amir H. Moin, German Research Center for Artificial Intelligence (DFKI), Germany
Hassan Mountassir, University of Besançon, France

 9 / 646

Henry Muccini, University of L'Aquila, Italy
Mahmood Niazi, King Fahd University of Petroleum and Minerals, Saudi Arabia
Oksana Nikiforova, Riga Technical University, Latvia
Natalja Nikitina, KTH Royal Institute of Technology - Stockholm, Sweden
Mara Nikolaidou, Harokopio University of Athens, Greece
Marcellin Julius Nkenlifack, Univeristé de Dschang - Bandjoun, Cameroun
Tetsuo Noda, Shimane University, Japan
Marc Novakouski, Software Engineering Institute/Carnegie Mellon University, USA
Roy Oberhauser, Aalen University, Germany
Pablo Oliveira Antonino de Assis, Fraunhofer Institute for Experimental Software Engineering -
IESE, Germany
Flavio Oquendo, IRISA - University of South Brittany, France
Baris Ozkan, Middle East Technical University, Turkey
Claus Pahl, Dublin City University, Ireland
Marcos Palacios, University of Oviedo, Spain
Kai Pan, Microsoft Corporation, U.S.A.
Päivi Parviainen, VTT, Software Technologies Center, Finland
Aljosa Pasic, ATOS Research, Spain
Fabrizio Pastore, University of Milano - Bicocca, Italy
Asier Perallos, University of Deusto, Spain
Óscar Pereira, University of Aveiro, Portugal
David Pheanis, Arizona State University, USA
Pasqualina Potena, Università degli Studi di Bergamo, Italy
Christian Prehofer, Kompetenzfeldleiter Adaptive Kommunikationssysteme / Fraunhofer-
Einrichtung für Systeme der Kommunikationstechnik ESK – München, Germnay
Abdallah Qusef, University of Salerno, Italy
Claudia Raibulet, Università degli Studi di Milano-Bicocca, Italy
Muthu Ramachandran, Leeds Metropolitan University, UK
Amar Ramdane-Cherif, University of Versailles, France
Gianna Reggio, DIBRIS - University of Genova, Italy
Zhilei Ren, Dalian University of Technology, China
Hassan Reza, University of North Dakota - School of Aerospace, USA
Samir Ribic, University of Sarajevo, Bosnia and Herzegovina
Elvinia Riccobene, University of Milan, Italy
Daniel Riesco, National University of San Luis, Argentina
Gabriela Robiolo, Universidad Austral, Argentina
Oliveto Rocco, University of Molise, Italy
Daniel Rodríguez, University of Alcalá, Madrid, Spain
María Luisa Rodríguez Almendros, Universidad de Granada, Spain
Siegfried Rouvrais, TELECOM Bretagne, France
Mercedes Ruiz Carreira, Universidad de Cádiz, Spain
Krzysztof Sacha, Warsaw University of Technology, Poland
Sébastien Salva, LIMOS-CNRS / Auvergne University / IUT d'Aubière, France
Luca Santillo, Agile Metrics, Italy

 10 / 646

Maribel Yasmina Santos, University of Minho, Portugal
Gaetana Sapienza, ABB Corporate Research, Sweden
Patrizia Scandurra, University of Bergamo - Dalmine, Italy
Giuseppe Scanniello, Università degli Studi della Basilicata - Potenza, Italy
Klaus Schmid, University of Hildesheim, Germany
Rainer Schmidt, HTW-Aalen, Germany
Christelle Scharff, Pace University, USA
István Siket, University of Szeged, Hungary
Thomas Stocker, University of Freiburg, Germany
Mahbubur R. Syed, Minnesota State University – Mankato, USA
Osamu Takaki, Japan Advanced Institute of Science and Technology (JAIST), Japan
Giordano Tamburrelli, Università della Svizzera Italiana (USI), Swizterland
Wasif Tanveer, University of Engineering and Technology - Lahore, Pakistan
Pierre Tiako, Langston University, USA
Maarit Tihinen, VTT Technical Research Centre of Finland - Oulu, Finland
Giovanni Toffetti, IBM Research - Haifa, Israel
Maria Tortorella, University of Sannnio - Benevento Italy
Davide Tosi, Università degli studi dell'Insubria - Varese, Italy
Peter Trapp, Ingolstadt, Germany
Elena Troubitsyna, Åbo Akademi University, Finland
Mariusz Trzaska, Polish Japanese Institute of Information Technology - Warsaw, Poland
George A. Tsihrintzis, University of Piraeus, Greece
Masateru Tsunoda, Kinki University, Japan
Javier Tuya, Universidad de Oviedo - Gijón, Spain
Christelle Urtado, LGI2P / Ecole des Mines d'Alès - Nîmes, France
Dieter Van Nuffel, University of Antwerp, Belgium
Sergiy Vilkomir, East Carolina University - Greenville, USA
Auri Vincenzi, Instituto de Informática, Brazil
Hironori Washizaki, Waseda University, Japan
Rainer Weinreich, Johannes Kepler University Linz, Austria
Marc-Florian Wendland, Fraunhofer FOKUS, Germany
Stefan Wendler, Ilmenau University of Technology, Germany
Victor Winter, University of Nebraska-Omaha, USA
Martin Wojtczyk, Technische Universität München, Germany & Bayer HealthCare, USA
Haibo Yu, Shanghai Jiao Tong University, China
Saad Zafar, Riphah International University - Islamabad, Pakistan
Amir Zeid, American University of Kuwait, Kuwait
Michal Zemlicka, Charles University – Prague, Czech Republic
Qiang Zhu, The University of Michigan - Dearborn, USA

 11 / 646

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 12 / 646

Table of Contents

Kongdroid: A Proposal for a Cloud Service for Stress Testing on Android Applications
Leonardo Sodre, Felipe Ferraz, Gustavo Alexandre, and Ana Caravalho

1

Functional Software Testing: A Systematic Mapping Study
Gilmar Ferreira Arantes, Plinio de Sa Leitao-Junior, Auri Marcelo Rizzo Vincenzi, and Fabio Nogueira de
Lucena

11

A Multi-Objective Technique for Test Suite Reduction
Alessandro Marchetto, Md. Mahfuzul Islam, Angelo Susi, and Giuseppe Scanniello

18

Applying Mutation Testing to ATL Specifications: An Experimental Case Study
Yasser Khan and Jameleddine Hassine

25

The Use of Experimentation Packages for Evaluating the Quality of Mobile Software Products
Auri Marcelo Rizzo Vincenzi, Gilcimar Divino de Deus, Joao Carlos da Silva, Plinio de Sa Leitao-Junior, Jose
Carlos Maldonado, and Marcio Eduardo Delamaro

31

How Exception Handling Constructions are Tested: An Initial Investigation with Open Source Software
Auri Marcelo Rizzo Vincennzi, Joao Carlos da Silva, Plinio de Sa Leitao-Junior, Jose Carlos Maldonado, Marcio
Eduardo Delamaro, and Marcos Lordello Chaim

38

Towards Scalable Bug Localization using the Edit Distance of Call Traces
Themistoklis Diamantopoulos and Andreas Symeonidis

45

Finding Common Subsequences in Recorded Test Cases
Martin Filipsky, Miroslav Bures, and Ivan Jelinek

51

Architecture-Based Conformance Testing
Elena Leroux, Flavio Oquendo, and Qin Xiong

55

Combining Model-based Testing and Continuous Integration
Martin Koskinen, Dragos Truscan, Tanwir Ahmad, and Niklas Gronblom

65

Static Analysis Techniques and Tools: A Systematic Mapping Study
Vinicius Rafael Lobo de Mendonca, Cassio Leonardo Rodrigues, Fabrizzio Alphonsus A. de M. N. Soares, and
Auri Marcelo Rizzo Vincenzi

72

An Approach for Validation, Verification, and Model-based Testing of UML-based Real-time Systems
Mehdi Nobakht and Dragos Truscan

79

Toward a Definition of ?-DSL for Modelling Business Agents 86

 1 / 8 13 / 646

Charif Mahmoudi and Fabrice Mourlin

Relationships Between Risks in an IT Project Development Portfolio
Rob Kusters, Jort Postema, and Jos Trienekens

94

A Proposal of Requirements Specification Process for Adaptive Systems Based on Fuzzy Logic and NFR-
Framework
Joao Dionisio Paraiba and Luiz Eduardo Galvao Martins

100

Requirements Elicitation Guide for Embedded Systems: An Industry Challenge
Luiz Eduardo Galvao Martins, Jaime Cazuhiro Ossada, Anderson Belgamo, and Barbara Stefani Ranieri

106

Separation of Concerns and Code Enhancement: Aspect-oriented Programming Versus Customization Approach
Followed in Open Source Softwarep
Sidra Sultana and Fahim Arif

112

Design and Innovation in Game Development: Observations in 7 Small Organizations
Erno Vanhala, Jussi Kasurinen, and Kari Smolander

118

An Automatic Petri-net generator for Modeling Multi-agent Systems
Meriem Taibi, Malika Ioualalen, and Riad Abdmeziem

128

Data From Configuration Management Tools As Sources
Jana Samalikova, Rob Kusters, Jos Trienekens, and Ton Weijters

134

Refactoring of Simulink Diagrams via Composition of Transformation Steps
Quang Minh Tran, Benjamin Wilmes, and Christian Dziobek

140

Experiences on Mobile Cross-Platform Application Development Using PhoneGap
Jussi Ronkainen, Juho Eskeli, Timo Urhemaa, and Kaisa Koskela-Huotari

146

A Real-Time Design Pattern for Actuators in Advanced Driver Assistance Systems
Hela Marouane, Achraf Makni, Claude Duvallet, Bruno Sadeg, and Rafik Bouaziz

152

Metrics for Measuring Quality of Real-time Design Patterns
Saoussen Rekhis, Hela Marouane, Rafik Bouaziz, Claude Duvallet, and Bruno Sadeg

162

Using a New UML Profile for Modeling Software Tests
Andrew Costa, Carlos Lucena, Ricardo Venieris, and Gustavo Carvalho

169

An Ontology-based System to Support Distributed Software Development
Rodrigo G. C. Rocha, Ryan Azevedo, Catarina Costa, Marcos Duarte, Joao Paulo Fechine, Fred Freitas, Silvio
Meira, Eduardo Tavares, and Daniel Figueredo

178

 2 / 8 14 / 646

Comparative Influence Evaluation of Middleware Features on Choreography DSL
Nebojsa Tausan, Jari Lehto, Pasi Kuvaja, Jouni Markkula, and Markku Oivo

184

Data Lifecycle Verification Method for Requirements Specifications Using a Model Checking Technique
Yoshitaka Aoki and Saeko Matsuura

194

Service Relationships Management for Maintenance and Evolution of Service Networks
Aneta Kabzeva, Joachim Gotze, Thomas Lottermann, and Paul Muller

201

Architectural Elements of Ubiquitous Systems: A Systematic Review
Carlos Machado, Eduardo Silva, Thais Batista, Jair Leite, and Elisa Yumi Nakagawa

208

Architectural Decisions in the Development of Multi-Layer Applications
Jose Garcia-Alonso, Javier Berrocal Olmeda, and Juan Manuel Murillo

214

CREATE: A Co-Modeling Approach for Scenario-based Requirements and Component-based Architectures
Marcel Ibe, Martin Vogel, Bjorn Schindler, and Andreas Rausch

220

Reasoning about UML/OCL Models using Constraint Logic Programming and MDA
Beatriz Perez and Ivan Porres

228

Weaving Crosscutting Concerns into Inter-process Communications (IPC) in AspectJ
Ali Raza and Stephen W. Clyde

234

Systematic Modeling of Workflows in Trace-Based Software Debugging and Optimization
Salman Rafiq and Adriaan Schmidt

241

A Pattern-based Approach towards Expressive Specifications for Property Concepts
Geert Delanote, Jeroen Boydens, and Eric Steegmans

249

Applying Questionnaire to Assess the Lessons Learned Process in Software Project Management: a Case Study at
GAIA
Marco Ikuro Hisatomi, Anderson de Souza Goes, and Rodolfo Miranda de Barros

258

Refactoring to Static Roles
Fernando Barbosa and Ademar Aguiar

265

Linking E-Mails and Source Code Using BM25F
Raffaele Branda, Anna Tolve, Licio Mazzeo, and Giuseppe Scanniello

271

IR based Traceability Link Recovery Method Mining
Takeyuki Ueda, Shinpei Ogata, Haruhiko Kaiya, and Kenji Kaijiri

278

 3 / 8 15 / 646

Towards Identifying the Factors for Project Management Success in Global Software Development: Initial Results
Mahmood Niazi, Sajjad Mahmood, Mohammad Alshayeb, Abdul Majid Qureshi, Kanaan Faisal, and Narciso
Cerpa

285

A DSL for Multi-Scale and Autonomic Software Deployment
Raja Boujbel, Sebastien Leriche, and Jean-Paul Arcangeli

291

Characterization of Techniques and Tools of Visualization Applied to Software Comprehension: A Systematic
Mapping
Marllos Paiva Prado, Auri Marcelo Rizzo Vincenzi, Fabrizzio Alphonsus A. de M. N. Soares, Felipe Cesar,
Guilherme Pereira de Paula, Hugo Alexandre Dantas do Nascimento, Joao Carlos Silva, Juliano Lopes de
Oliveira, Lucas Carvalho Lima, and Thiago Fernandes

297

Managing IT Service Releases in a Systematic Way: A Case Study Approach
Marko Jantti, Antti Suhonen, and Mika Kurenniemi

304

Pivots and Architectural Decisions: Two Sides of the Same Medal?
Jan Salvador van der Ven and Jan Bosch

310

Moonlighting Scrum: An Agile Method for Distributed Teams with Part-Time Developers Working during Non-
Overlapping Hours
Davide Taibi, Philipp Diebold, and Constanza Lampasona

318

An Agile Maturity Model for Software Development Organizations
Felipe Soares and Silvio Meira

324

Using the Analytical Hierarchy Process as a Ranking Tool for User Story Prioritization Techniques
Sultan Alshehri and Luigi Benedicenti

329

Expert Estimation and Historical Data: An Empirical Study
Gabriela Robiolo, Silvana Santos, and Bibiana Rossi

336

Agile-User Experience Design: an Agile and User-Centered Process?
Lou Schwartz

346

Distributed Agile Software Development Challenges and Mitigation Techniques: A Case Study
Abdullah Saad Alqahtani, John David Moore, David Harrison, and Bruce Wood

352

Agile-User Experience Design: With or Without a Usability Expert in the Team?
Lou Schwartz

359

Do Agile Principles and Practices Support the Well-being at Work of Agile Team Members?
Marja Kansala and Seppo Ilmari Tuomivaara

364

 4 / 8 16 / 646

The Scrum Product Owner – Customer Collaboration & Prioritizing Requirements
Trish O'Connell

368

Benefits and Limitations of Using the MPS.BR Model with Agile Methodologies: A Survey Based on a
Systematic Literature Review
Robson Amorim de Souza, Fernando Selleri Silva, Felipe Santana Furtado Soares, and Silvio Romero de Lemos
Meira

373

Low-Overhead Profiling based on Stationary and Ergodic Assumptions
Stoyan Garbatov and Joao Cachopo

380

A Tracking and Visualizing System of Memory Usage along to C Source Programs
Kyoko Iwasawa and Takuhiro Okamura

387

Run-Time Monitoring of Timing Constraints: A Survey of Methods and Tools
Nima Asadi, Mehrdad Saadatmand, and Mikael Sjodin

391

The Impact of Intra-core and Inter-core Task Communication on Architectural Analysis of Multicore Embedded
Systems
Juraj Feljan and Jan Carlson

402

Cooperative Optimal Route Planning of Accumulator-bank Servicing Robots
Agnes Werner-Stark, Tibor Dulai, and Katalin M. Hangos

408

Business Architecture for a SME: A Case Study of a Manufacturing Firm in Mexico
Alicia Valdez, Carlos Vega, Elias Olivares, and Juan Perez

414

Confirming Design Guidelines for Evolvable Business Processes Based on the Concept of Entropy
Peter De Bruyn, Dieter Van Nuffel, Philip Huysmans, and Herwig Mannaert

420

Towards Ontology-Driven Approach for Data Warehouse Analysis. Case study : Healthcare domain
Lama El Sarraj, Bernard Espinasse, Therese Libourel, and Sophie Rodier

426

Light-PubSubHubbub: A Lightweight Adaptation of the PubSubHubbub Protocol
Porfirio Dantas, Jorge Pereira, Everton Cavalcante, Gustavo Alves, and Thais Batista

432

Semantic Symbols Extraction Model for Emergency Hazard Map
Lijian Sun, Jie Zhao, Lihong Shi, Zheng Gong, Yi Zhu, and Agen Qiu

439

Interactive Hyperbolic Tree for Industrial size Software Product line Architecture
Abeer Khalid and Salma Imtiaz

445

Creating a ITIL-based Software Incident Categorization Model for Measurement: A Case Study 450

 5 / 8 17 / 646

Sanna Heikkinen, Antti Suhonen, Mika Kurenniemi, and Marko Jantti

Implementation of the ITIL-Based Service Level Management Process to Improve an Organization’s Efficiency:
A Case Study
Antti Suhonen, Sanna Heikkinen, Mika Kurenniemi, and Marko Jantti

457

Measuring the Functional Size of Real-Time and Embedded Software: a Comparison of Function Point Analysis
and COSMIC
Luigi Lavazza and Sandro Morasca

465

MCReF: A Metric to Evaluate Complexity of Functional Requirements
Carlos Roberto Paviotti and Luiz Eduardo Galvao Martins

471

Hierarchical Multi-Views Software Architecture
Ahmad Kheir, Mourad Oussalah, and Hala Naja

478

Object Oriented Petri Nets in Software Development and Deployment
Radek Koci and Vladimir Janousek

485

A Measurement-based Approach to Software Development Process Tailoring in R&D Organization
Apinporn Methawachananont and Pawarat Nontasil

491

Towards Probabilistic Models to Predict Availability, Accessibility and Successability of Web Services
Abbas Tahir, Sandro Morasca, and Davide Tosi

498

Measuring Design Quality of Service-Oriented Architectures Based on Web Services
Michael Gebhart

504

Towards Automatic Performance Modelling Using the GENERICA Component Model
Nabila Salmi, Malika Ioualalen, and Mehdi Sliem

510

Ensuring Consistency of Dynamic Reconfiguration of Component Based Systems
Hamza Zerguine, Nabila Salmi, and Malika Ioualalen

517

An Investigation on Quality Models and Quality Attributes for Embedded Systems
Lucas Bueno Ruas Oliveira, Milena Guessi, Daniel Feitosa, Christian Manteuffel, Matthias Galster, Flavio
Oquendo, and Elisa Yumi Nakagawa

523

Counter Rocket, Artillery and Mortar System with Laser Simulation Software
Maria Epp and Hendrik Rothe

529

Towards Cloud-based Collaborative Software Development: A Developer-Centric Concept for Managing Privacy,
Security, and Trust

533

 6 / 8 18 / 646

Roy Oberhauser

Two-Dimensional Models’ Processing Using Principles of Knowledge-Based Architecture
Andrejs Bajovs and Oksana Nikiforova

539

Towards a Smart City Security Model Exploring Smart Cities Elements Based on Nowadays Solutions
Felipe Ferraz, Carlos Sampaio, Carlos Ferraz, Gustavo Alexandre, and Ana Carvalho

546

Camera Trajectory Evaluation in Computer Graphics Based on Logarithmic Interpolation
Mikael Fridenfalk

551

Metaphors Applied to Interaction Design in Group Learning
Anderson Cavalcante Goncalves and Deller James Ferreira

558

ProDec: a Serious Game for Software Project Management Training
Alejandro Calderon and Mercedes Ruiz

565

Open Source Legality Compliance of Software Architecture
Alexander Lokhman, Antti Luoto, Imed Hammouda, and Tommi Mikkonen

571

Can Business Process Management Benefit from Service Journey Modelling Language?
Eunji Lee and Amela Karahasanovic

579

A Method of Generation of Scenarios using Differential Scenario
Eiji Shiota and Atsushi Ohnishi

583

Towards a UML Meta Model Extension for Aspect-Oriented Modeling
Meriem Chibani, Brahim Belattar, and Abdelhabib Bourouis

591

A Case Study of Requirements Management: Toward Transparency in Requirements Management Tools
Markus Kelanti, Jarkko Hyysalo, Antti Valimaki, Pasi Kuvaja, and Markku Oivo

597

Two-Hemisphere Model Based Approach to Modelling of Object Interaction
Oksana Nikiforova, Ludmila Kozacenko, and Dace Ahilcenoka

605

A Device For Electromechanical Braille Reading Digital Texts
Cicilia Leite, Davi Magalhaes, Pedro Neto, Suellem Queiroz, and Yaskara Fernandes

612

Australia's National Transition Strategy: first stage implementation report
Justin Brown, Scott Hollier, and Vivienne Conway

616

Web Accessibility for Older Users: A Southern Argentinean View
Viviana Ester Saldano, Adriana Elba Martin, Gabriela Gaetan, and Diego Sebastian Vilte

621

 7 / 8 19 / 646

Powered by TCPDF (www.tcpdf.org)

 8 / 8 20 / 646

Kongdroid: A proposal for a Cloud Service for Stress Testing on Android

Applications

Leonardo M. A. Sodré, Felipe Silva Ferraz, Gustavo Henrique da Silva Alexandre, Ana C. L. De Carvalho

CESAR

Centro de Estudos e Sistemas Avançados do Recife

Recife, Brazil

{lmas, fsf, ghsa, alcl}@cesar.org.br

Informatics Center

Federal University of Pernambuco

Recife, Brazil

{fsf3, ghsa}@cin.ufpe.br

Abstract – This work proposes a new and scalable service for

stress testing on Android applications. This tool is available

through cloud computing resources to support developers in

their applications validation, aiming robustness, stability and

compatibility, in different devices before commercial

deployment. The solution focuses on the generation of a certain

number of pseudo-random user interface events in the installed

application in an emulator. This emulator is created from real

images, of customized versions of the Android platform,

running in well known devices. This execution results in a

report containing the events that were successfully and those

that failed due to any specific reason.

Keywords-cloud computing; stress testing; remote testing;

mobile applications; Android

I. INTRODUCTION

The software development, for mobile devices, and the

conduction of large-scale experimental developing studies

using real person, have become easier through the creation

of app stores, and by using those stores as a mechanism for

a significant number of users, to publish applications they

have authored. An example of this was the emergence of the

Apple store, which popularized this type of service. Unlike

Apple's iOS platform, Google's Android open platform does

not impose restrictions on its operating system; thereby,

creating favorable conditions for various hardware

manufacturers to adopt these devices. However, this benefit

comes at a price: the challenge has become to develop

interactive applications that need to run on a variety of these

manufacturers’ items of hardware equipment, each with its

own customized version of the operating system, different

hardware resource capabilities and screen resolutions and

functionalities. Another relevant factor is the evolution of

the Android version, where the application needs to track

changes on the platform to keep operating properly.

Taking advantage of this benefit of the open platform

and manufacturers’ mass launch of more affordable Android

devices, according to a recent survey, last year, the Google

Store tripled in size, with its stock in 2013 amounting to

about 800 (eight hundred) thousand applications [1], and

recorded more than 25 (twenty five) billion downloads in

2012 [2].

Even though this demand has created the benefit of a

proliferation of applications, it has also presented the need

to address a growing issue: they have difficulty in

generating various user events to stress the application and

check if any exception occurs; in testing the capacities and

resolutions of Android devices on different models; and

there are few physical models available for testing. This

difficulty of having an insufficient number of devices is also

a reality faced by organizations.

Among the techniques used in this study was that of

using an Android emulator instead of the physical model.

This is because unlike the iOS simulator [3] and its resource

constraints, the emulator reproduces a real device

efficiently. This decision to use an emulator was further

strengthened when it became feasible to configure the

emulator, released by the manufacturer, with real versions

of the Android platform. Given the support of cloud

computing resources, it was possible to pre-configure these

emulators in a scalable environment, thus enabling it to be

used in parallel, so as to meet users’ requirements as to

running their application on several mobile devices. By

means of an Application Programming Interface (API)

accessed through an Internet browser, the user accesses this

cloud environment to subject his/her application to testing,

for which a script will be generated automatically to install

the app in the emulator and apply the stress command using

the Android Monkey tool, native to the platform. If the

processing of the test demands a high consumption of

infrastructure resources so as not to compromise the run

quality, a new instance may be used to balance these

resources in order to ensure the delivery of the results.

The program put forward in this paper to tackle these

difficulties is called a Kongdroid. This enables the

developer to use a prepared and configured environment in

which to conduct stress testing [4]. It is hoped that, by

having this facility, the knowledge of test development that

a developer needs will be reduced and that time will be

gained as there is no need to prepare an infrastructure since

this is provided by this service. As a result of using the

Kongdroid, it is estimated and it will permit the publication

of more robust applications that are compatible with various

Android device models, i.e., that it will indicate possible

areas for improvement, so as to anticipate corrections, while

1Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 21 / 646

the model is still in the development phase. Problems of the

type in which the application is unexpectedly closed are

among the situations that are not so easy to spot, unless

features such as the Android Monkey [5] are used.

This was a structured study, which began with the

authors deepening their knowledge of the technologies used

and a review of the literature so as to be able to cite related

studies. This introductory section draws attention to the

state of the art with the issues related to Kongdroid. Then

the proposed solution is detailed by describing the

techniques used to create the service and matters to be

careful about and points to consider. These strongly guided

the study while it was being developed. After recording the

approach to finding a solution, an account is given of the

planning, implementation and the comparison of two

experiments undertaken in which the solution was applied

so as to give evidence of how important it is to use it. To

summarize all the work done, the concluding section

indicates the improvements achieved in the state of the art,

the advantages and limitations of Kongdroid, its possible

applications and ideas on how it may evolve.

This paper is divided as follows: The first section

presents a short introduction, section II presents the state of

art about topics used in this paper, section III presents the

proposed solution and how it was developed, the

experiments and results used to validate the tool are

depicted in section IV, finally section V presents some

conclusions about this work.

II. STATE OF THE ART

A. Cloud Computing

Cloud Computing [6] is the representation of the
applications made available as a service on the Internet and
by software and hardware in the data centers that make these
services feasible [7]. There are many definitions of Cloud
Computing, but some features are held in common by most
of them, for example, virtualized environments and
providing computing resources on demand. This type of
service is commonly called a public cloud. A private cloud is
a center with data restricted to a specific company or of
limited access [8].

Cloud Computing is divided into three main types to
offer services, as shown in Figure 1: Software as a Service
(SaaS) [9], Platform as a Service (PaaS) [10], and
Infrastructure as a Service (IaaS) [11].

Figure 1. Cloud computing at different levels

Related to this work, there is a type of cloud computing
called Testing as a service (TaaS), which offers users testing
services, such as the automatic generation of test cases,
automated conduct of tests and evaluation of test results [12].
Testing tasks can be modeled using ontology techniques, and
they can be combined based on a shared ontology model,
along side with TaaS, there are, other subtypes:
Development as a Service (DaaS) [13], Communications as a
Service (CaaS) [14] and Everything as a Service (EaaS),
which are not part of this scope.

B. Android Platform

Android [15,16] is a platform for mobile devices that
runs on the nucleus of the Linux operating system but
developed into a structure external to this nucleus [17]. The
Android operating system was initially developed by Google
and later by the Open Handset Alliance (OHA), which is a
group of large companies in the telephone mobile market
such as HTC, LG, Motorola, Samsung, Sony Ericsson,
Toshiba, Nextel, China Mobile, T-Mobile, ASUS, Intel,
Garmin and others. OHA is led by Google and the group’s
goal is to define a single open platform for mobile phones;
thus, making consumers more satisfied with the final
product. Another goal of the group is to create a flexible
platform on which to develop applications. The birth of
Android came about based on these objectives for which
OHA is responsible for maintaining a standard platform
where all the new market trends are present in a single
solution [17, 18].

Android applications in [19] are built using Java
language; but, there is no Java virtual machine in the
operating system, only a virtual machine optimized for
mobile devices called Dalvik [20, 21].

C. Monkey Test

 Android Software Development Kit (SDK) [22] makes

a Monkey test tool available to generate pseudo-random

user events such as clicks, touches, or gestures and other

events at the system level. As the guide to the Android

platform itself says, "You can use the Monkey to stress-test

applications that you are developing, in a random yet

repeatable manner "[5].
The Monkey is a tool accessed via the command line that

can be run on an instance of the emulator or mobile device.
There are four main categories of options: basic
configuration, such as the definition of the number of
attempts for random events; operational restrictions, such as

2Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 22 / 646

restricting the test to a single package; event types and
frequencies; and debugging options [5]. During these events
the tool observes three conditions, which deal specifically
with the following: if it is restricted to execution in one or
more specific packages, it watches for attempts to browse for
other packages, and blocks them; if the application crashes or
receives any type of not-dealt-with exception, the Monkey
will stop and report the error, and if the application generates
an application not responding error, the Monkey will stop
and report the error [5]. Other types of behaviors of defects
that the Monkey does not detect can be mapped by other
types of smart Monkey tools [23]. Other related studies use
stress testing: AASanbox [24, 25] and model-based GUI for
Android applications [26].

D. Testdroid

The Testdroid is a useful tool for Android application
developers who can validate if their application is compatible
with several other types of devices [27, 28]. It is proposed to
perform a specific set of user actions on one or more real
device and collect and report test results. It is a service that is
available on the Internet, for which the steps: Record your
test, Run test on real devices and check reports.

III. PROPOSED SOLUTION

The proposed service is committed to providing a check
on the user’s application, using stress testing [4], based on
the native Monkey Test tool of the Android platform, to
validate the robustness and compatibility in various
telephone options and other mobile devices. After it has been
run, reports of the results are generated for data analysis and
emailed to the client. With such data, the client will obtain
valuable information to support improving the application
and ensuring quality, as shown in the proposed high-level
architecture in Figure 2. It will also lead to a better
understanding of the flow of the run and the entities
involved. In the following sections, this paper will describe
this solution in greater detail so as to understand its
methodology, structure and development decisions. Real
devices are dispensed with because the tests are run
exclusively on emulators.

Figure 2. High-level definition of the architecture proposed

A. Definition of the architecture based on the cloud

After a detailed study of the necessary functionalities of

the solution, it became very clear that to meet the user

demand, the architecture should have the following quality

attributes:

 Availability: The system will be available 7 days a

week and 24 hours a day;

 Integrity/security [29, 30]: Only users with access

privileges may configure and run tests. Every

application transferred to the service and tested will

be discarded at the end;

 Interoperability: The solution should be able to

operationalize its being implemented in different

modules, management and others, to conduct testing

processes, running on different operating systems,

Windows and Linux, respectively;

 Usability: A new user should be able to conduct a

test of an application without the need for guidance,

only with the support of tips on the filter options of

the commands;

 Scalability [31]: The service should scale computing

resources whenever there is a need to ensure the

correct balancing of the processing of users’

requests.

 Use of standards [32, 33]: The solution should

support pre-established script models for running

tests, so that they are dynamically created from the

selection of the options of mobile devices.

To meet these requirements, an infrastructure benchmark
on the market was adopted and widely used by several
companies, Amazon Web Services (AWS) [34]. AWS offers
a variety of cloud services, of which the one that stands out
is Amazon Elastic Computer Cloud (EC2) [35], which
permits the rental of instances of virtual servers that can be
scalable to the extent that the solution needs both processing
and to place limitations on software.

B. Definition of the standards used

In order to structure a better service, it was very
important to define models and nomenclature standards and
the target of the resources. In the presentation of the solution
to the user, there is the possibility of selecting more than one
type of mobile device. This feature led to a considerable
complexity, since the architecture should be flexible enough
to allow the addition of new devices without causing the
work developed to be reworked. In meeting this
functionality, for each model made available, a base script
model to carry out the commands of the test is defined. After
the executive action of the user, this standard model is used,
based on the filters selected by the user, to generate
dynamically the final script for conducting the test.

3Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 23 / 646

1) Nomenclature of commands and resources

First of all, the target folder for each authenticated user

was identified, named by his/her identification in the

system. In this folder, what are stored are all the resources to

be used such as: application to be tested; test script

commands for mobile and log files of the relevant events,

commonly called a log.

A unique identifier is assigned to each mobile device

option. Thus, the identifier is used for all command scripts

generated. For the identifier "001", the script will have to be

generated with the following format:

Script_Monkey_001.bat. It is also used to generate the

logcat (relevant phone events) with the following format:

LogCat_001.log and generation of the Monkey test log

(relevant events of the stress test command) with the

following format: LogMonkey_001.txt.

One of the commands carried out by the command script

is the startup of an Android Virtual Device (AVD) to start

the emulator. For each type of mobile device, an AVD was

created with the following format: avd [identifier], ie, for

the device with the ID "001", the nomenclature is avd001.

C. Preparation of the environment

As cited in the definition of the architecture, the AWS
infrastructure was chosen to make the service available in the
cloud. For this setting to work properly, an extensive level of
knowledge of managing servers or operating system
processes was not required, but some settings are essential so
it works correctly.

1) EC2 Structure
 For this study, a new account was created on the AWS

and the EC2 service used to create the instance of the
"t1.micro" type on the platform of the Windows operating
system, Server 2008 R2. This type of instance has limited
resources (CPU and RAM memory) and its use is free for
one year, i.e., payment for its use is not required unless use
exceeds some preset limits. When the instance is available,
access can be gained through a Domain Name System (DNS)
with a dynamic IP (internet protocol) address. This is not the
best option because at every reboot of the instance, this
address is modified. To overcome this drawback, the EC2
service has an elastic IP resource, i.e., for the public DNS, it
is assigned a static IP address, thus ensuring there is always
access to the same address.

2) Configuration of the Android platform

To use the Android emulator platform and to carry out

the Monkey commands, the Android Software Development

Kit (SDK), version 21, and the Java Runtime Environment

(JRE), version 1.7 have to be installed in the AWS.

Environment variables were created:

"ANDROID_SDK_HOME" containing the path of the

Android SDK and "JAVA_HOME", containing the path to

the JRE.

After properly installing the Android, the Android SDK

Manager had to be run to complete the upgrades of

associated tools. Among these updates, one requires special

attention, namely, the Google APIs Add-On. The add-on

provides system images compatible with Android that runs

on the Android emulator, thus enabling the application to be

debugged, run and tested before publishing it to users.

Several mobile phone manufacturers have these images on

their web pages targeted on application developers. For this

study, the images used were from the Motorola

manufacturers: Atrix 2 and Razr and LG 3D Optimus model

[36,37].

3) Configuration of the Microsoft platform
To implement the solution developed in ASP.NET MVC

4 [38], it was necessary to install the Internet Information
Service (IIS) version 7.5 and the Microsoft. NET Framework
4.5 in the AWS. For IIS, it was necessary to create an
application called "monkey", where the implementation of
the solution was stored and the right of full access to the
folder called "Content" of the application was assigned to
the user of the IIS (DefaultAppPool), so that “Content”
allows the resources used to be stored and altered.

D. Model of Monkey script

 As previously mentioned, to make the service flexible

as to replacing and/or adding new options for mobile

devices, a script model was created to run the commands

needed to perform the stress test. This stage of the project

required close attention and simulations to determine the

optimal sequence of actions to ensure better efficiency in the

results hoped for. The use of Android emulators involves a

series of difficulties when they are in an automation process,

since the ability to foresee the time needed to trigger each

command is not precise, and, therefore, auxiliary actions

were used to minimize this uncertainty. Other resources

were also taken advantage of to have the emulator perform

better, since there was not the need for a graphical display.

The automated commands in this script can be run manually

in the user’s environment, but they involve complexity in

configuring the necessary tools and environment variables.

The identifier of each mobile device option was

parameterized in this model so that all resources accessed

and generated are easily referenced, based on the data

selected by the user, the script is easily generated and

applied in the environment of the solution.

1) Selection of port

For this automation would function properly, the

environment was totally controlled, i.e., for each script

generated a known number of the network port is generated

and later will be attributed to the Android emulator. This

strategy is of fundamental importance to free the memory of

the emulator at the end of the test. The generation of the port

number is made at random between 5554 and 5584, this

range being reserved for this type of program. By default, if

the port does not specify it, it is associated with the

generating the numbers 5554 and 5555 (this second port is

4Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 24 / 646

reserved for the android debug bridge (ADB)) and should

another emulator be run in parallel, the next port is that of

the number 5556, and so on, successively.

The following is an example of a command linking port

5558 to the emulator:

In the example below, there is a sample command for a

specific emulator, for the installation of the user’s APK on

the emulator:

2) Estimate of time for each step

When using the mobile device or emulator, the focus of

this study, in a process of stress test automation [39], the

time it is estimated time for each command to be executed

should be taken into account. If there is not enough time left

over for the next command to be applied under favorable

conditions, the procedure, as a whole, will be compromised

and aborted. To ensure the efficiency of the script actions,

possible points of delay were identified and auxiliary

commands were defined in order to be used following these

main ones, i.e., promoting a longer time so that the

environment is in a fit state for the next step. One difficulty

found was that the operating system does not provide a

specific command for this situation, where, to solve this

limitation, another command was used to obtain the same

result. The following is an example:

For an operating system with a TCP/IP client, the PING

command can be used to delay the run by a number of

seconds. If specified (-w), the PING will wait for a number

of milliseconds between two pings before giving a time

limit. The environment variable, represented by (% timer%),

contains the time that the action will imply.

This feature was used to overcome three points of

slowness:

 Running the Emulator: Estimated time of 240,000

(two hundred forty thousands) milliseconds;

 Installing the Android Application Package (APK):

Estimated time of 20,000 (twenty thousand)

milliseconds;

Conduct of the Monkey test: Estimated time of 120,000

(one hundred and twenty thousand) milliseconds. A fixed
value was used due to the project being limited to 500 (five
hundred) random events. In an environment with a high
processing infrastructure, without limitation on events, this
estimate would need to use a formula such that the time
might vary proportionally.

3) Tool for recovering the APK package

In order for the command for the stress test to be able to

restrict the target application, it is fundamental to know the

name of the package that will be used as a parameter. For

the purposes of promoting a better experience for the user,

when using the service to enter and select data to perform

the test, there is no need to register this package in order to

avoid errors when typing manually.

To meet this situation, a tool called android-apktool was

used. This is a tool available in the repository of Google

projects under the Apache License 2.0, which undertakes

reverse engineering on Android APK files. It can decode

resources to nearly their original form and rebuild them after

some modifications have been made. Thus it was possible,

starting with the APK user, to decode the information of the

package and use it as a parameter in the command of the

stress test.

4) Definition of variables

When defining the script model definition, some

temporary environment variables were created to make it

possible when the script was generated to have a specific

one for the mobile device model and for the dynamic use of

information in the commands to be executed.

The example below better illustrates the need to use

these variables:

The same command used in session 3.5.1 to install the

user’s APK, but this time the variable %_adbPath% was
used, which identifies the path of the Android ADB program
to carry out the commands, %_serialEmulator%, which
identifies the serial or port in which the emulator is running,
and %_apkPath%, which identifies the path of the user’s
APK stored on the server.

5) Command to optimize the emulator

To avoid overloading the server, should more than one

instance of the emulator be run, unnecessary features in an

environment may be discarded without interacting with the

user. Thus, the options of initial animation, graphical and

audio interface were disregarded. The following is an

example of the command:

6) Command to instal the Apk

After the above command to run the emulator, the next

to be auctioned is to install the user’s APK. The ADB

provides an option so that this action occurs only when the

emulator is "ready", thus avoiding error and the script being

interrupted. The following is an example of the command

used:

emulator -ports 5558,5559 -avd avd001

adb -s emulator-5558 install helloWorld.apk

ping 1.1.1.1 -n 1 -w %_timer% >NUL

%_adbPath% -s %_serialEmulator% install

%_apkPath%

emulator -ports 5554,5555 -no-boot-anim -no-window -

noaudio -avd avd001

adb -s emulator-5558 -e wait-for-device install -r

helloWorld.apk

5Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 25 / 646

7) Command to unblock the screen

During the period of testing the solution it was realized

that the emulator on being started, by default, is left with its

screen blocked. Thus the command of the stress test was

discarded. To resolve this issue, a command was included in

the script to send a screen unblock event. Below is an

example of the command used:

8) Command to conduct the Monkey

For the main action of the script, the following

command to run the stress test was specified:

The arguments-v-v promote greater information in the

tests run. The %_apkPackage% variable stores the name of

the package, extracted as described in section 3.5.3. The

monkeyParameters development variable stores the set of

options for user-selected parameters. The

%_monkeyEvents% environment variable stores the number

of interface pseudo events reported by the user. The

%_logMonkeyPath% variable stores the service path to

record the results of the stress test.

E. Conduct of the test

To run the tests it was defined that the service should

possess a modularized and simplified flow. Using few steps,

the application meets a demand and then has the capacity to

quickly return to the initial state for a new request from the

user.

As shown in Figure 3, after the user obtains his/her

authentication, he/she is directed to the starting point of the

service. The first piece of information requested is the

submission of the application package to be tested, the Apk

Android. This transfer is performed securely and at the end

of the process it should be discarded. Still on the main

screen the user will need to provide other important pieces

of information, such as the email to, which results should be

sent, to select which application of the device models should

be validated, the number of pseudo events and other

optional choices regarding the stress test, these being

Monkey event options and Monkey debugging options.

After completing the data and confirming the start of the

operation, the system will validate them and if there is no

criticism, the service will be started.

Figure 3. Main flow of the conduct of the test

From this point on, the system has already allocated the

user´s physical space and the Apk Android is available for

use in the emulator, such that the script should be generated

and executed by the device model chosen. After each run of

this script has been concluded, an email will be sent to the

user and the result attached.

Figure 4 below shows each step of the test run by the

model of the device selected. This process is performed in

parallel so that the service does not take up the hardware

resources of the AWS infrastructure for a lengthy period of

time. Each run of an emulator requires a high level of

processing and memory, in which the orchestration of these

elements monitors the need to allocate more resources, i.e.,

whether another server will need to be initialized to balance

and ensure the quality of the system.

Figure 4. Secondary flow of the test per device

 In the flow of Figure 4, the first step is to check and

select the port number of the server where the emulator will

be allocated. This port is one of the parameters used for the

next step, the creation of the script. At this point, what are

defined are the times between each execution of a command

are defined, the parameters entered by the user to compose

the command Android Monkey command, the physical path

in the server of the user’s location to generate the results and

the path for the Apk of the target application of the tests.

During this run, a log file of the events generated from the

emulator and another log file of the events of the stress test

are generated with the test result. The flow is finalized with

the validation of these files.

Figure 5 below shows the sequence of the commands

that make up the test script. The run starts by using

environment variables used during actions in the emulator.

Via the android-apktool tool, the name of the Apk package

is recovered and stored in an environmental variable to be

used later in the command of the stress test. The next step is

to run the emulator, in which, to ensure optimum

performance, parameters are used to bypass the startup

animation, the audio and screen. At this point, the

adb -s emulator-5558 shell input keyevent 82

%_adbPath% -s %_serialEmulator% shell monkey -v -v

-p %_apkPackage% " + monkeyParameters + "

%_monkeyEvents% > %_logMonkeyPath%

6Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 26 / 646

generation of events of the emulator is also triggered. The

next action is to install the Apk of the application which, via

the wait-for-device parameter, is only run after the emulator

is found in the device state, i.e., its instance is prepared to

respond to the user’s actions. After the Apk has been

installed, but before running the stress test command, the

screen must be unblocked, since without this step the

pseudo events of the Monkey android are prevented from

interacting with the application. From this point on, the

emulator has the necessary condition for the stress test to

start and to record on file the events in order to compose the

result, whether there was a failure or success.

Figure 5. Secondary flow of the execution of the test script

After all the commands have been carried out, the Apk

application is uninstalled and deleted and the instance of the

emulator is closed.

F. Summary of the solution

Figure 6 illustrates the architecture of the solution at a

more detailed level, where the user, via a web browser,

submits his/her application and informs the proposed cloud

service of the parameters desired, which are loaded to run

and scale in an orchestrated way all the resources required,

such as to ensure the expected results.

Figure 6. Low-level definition of the architecture proposed

As Figure 6 shows, the first instance used of a virtual

server is that of a Windows Server, which is responsible for

starting the service and using the data selected by the user, it

dynamically generates scripts, per device, to be run. In the

second moment, another instance of a virtual server is

initialized, but this time is used for the option of a Linux

Ubuntu machine. The scripts of the stress test are run in

parallel in this new instance; should it be necessary, another

instance with the same settings can be used without

compromising the total flow of the solution. After finalizing

the conduct of the stress test, a report is stored and sent to

the user so he/she can analyze it.

IV. EXPERIMENTS AND RESULTS

To prove the correct functioning of the entire solution,

two examples run on Kongdroid will be described. The

input parameters and the expected result will be specified,

as well as a comparative analysis to prove why using the

tool as a support tool for developers of applications is

important before publication to future users.

A. Experiment undertaken

In the selection of the applications, the following

strategy was used: both should appear as published in the

Google Store (Google Play), an example of a simpler

application with a satisfactory result, and another example

of an application of more moderate complexity with a fault

in the test of the application not responding (ANR) type.

For the simple application, one was selected from the

calculator type, categorized as a utility, called Shake Calc. It

is proposed to be a scientific calculator with the following

features: accelerometer to finalize the calculation, basic

vision for access to the more frequently used functions and

more complex calculations; it can switch to an advanced

mode of exhibition with a touch from the user, as shown in

Figure 8. For the application of moderate complexity, one

was selected of the type with tables, categorized as

children's games, called Smart Bubbles. Figure 7 shows the

mentioned game that is proposed to be a math table with the

following features: a game to learn the tables in a fun way,

during the game, equations and bubbles with numbers are

presented; for each equation, a bubble appears with the

correct result and some others with wrong results.

Figure 7. The first two figures represent Shake Calc and the last two Smart

Bubbles

The Kongdroid was started after being informed of the

following input parameters: Choice of the APK of the

application to send to the service, the email to receive the

results, the target device of the stress test selected (for the

Shake Calc, the Motorola Atrix 2 model was used and for

7Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 27 / 646

the Smart Bubbles,the Motorola Razr was used). It was also

informed of 500 (five hundred) pseudo random events, 300

millisecond gaps between each event, to ignore crashes, to

ignore timeouts and to ignore security exceptions. These

latter three parameters are generally used to provide for the

test being run completely, unless it is finalized by the

operating system.

B. Metrics used

To better measure and condition the comparison of the

results for a more realistic analysis, the metrics were defined

of the total number of events per the number of events run

and the number of application runs by the number of

applications successfully tested.

C. Results

After submitting the APK application to Kongdroid and

informing it of the input parameters for each application of

the experiment, the cloud service will process the stress test.

This step takes less than ten (10) minutes, since every action

has a maximum time configured to be run on the application

installed on the Android emulator for greater efficiency in

allocating and releasing resources, as well as in the response

time of the results to the user. Upon completion of the due

tests, an email is created with the log files of the

environment and the Monkey with a text attached, whether

the test was successful or not, and sent to the user´s email

address so he /she may investigate and analyze the results.

In the most significant part of the Monkey log file of the

stress test done on the Shake Calc application, it is observed

that the test was successfully completed by the text "//

Monkey finished", where all five hundred pseudo random

events were run without an exception having occurred.

In the most significant part of the Monkey log file of the

stress test done on the Smart Bubbles application, as cited

when planning the experiment, the log highlights the failure

of the test by the ANR type of error that occurred, where the

application on receiving a given pseudo random user event,

a certain time without a response which leads the operating

system to cause the error in the application and to close it

immediately so as not to compromise other functionalities

of the device. If another type of error occurred in the

application, it would also be recorded on the Monkey log.

D. Comparison of the results

Metrics were applied with the following evidence:

 Number of events per total number of events run:

For the Shake Calc application of the five hundred

pseudo random events programmed all were

successfully run. For the Smart Bubbles application

of the five hundred scheduled events only twenty-

five were run successfully. As shown in the graph

in Figure 8:

Figure 8. Number of random pseudo events

Number of applications per number of applications

successfully tested: Two applications selected for the

experiment, where one had a successful test (Shake Calc),

and one had a failure in the test (Smart Bubbles).

By using the results of the metrics, very different

scenarios and conclusions can be obtained. While it was

attested that the experiment conducted with the Shake Calc

application, after subjecting it to a significant load of user

events, its stability responded effectively, thus ensuring that

its publication and other devices running on Android had

greater reliability, in the experiment conducted with the

Smart Bubbles application, it was proven that it does not

have the efficiency to withstand a greater number of User

Interface events, in which when a severe ANR error occurs,

the application needed to be finalized by the operating

system.

This type of error could be avoided in the development

phase by using a tool like Kongdroid, so that the credibility

of the application is not threatened. This is a real threat

given that the application is published and the user on

downloading it could come across the kind of situation

where he/she may suddenly be impeded from continuing to

use it and which may easily cause that the application can

no longer be used.

To better attest the efficiency of this work, another ten

(10) applications from the Google Play store were selected,

all of which were downloaded by a significant number of

users. The tests were performed on three device models

offered by Kongdroid, LG Optimos 3D, Motorola Atrix 2

and Motorola Razr. The following Figure 9 shows the

results of the stress tests:

8Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 28 / 646

Figure 9. Results in another 10 applications

Among the related studies presented in this paper and other

test automation tools surveyed, characteristics similar to

those in Kongdroid were not found. Due to this, it was

difficult making it possible to compile a valid comparison

test to attest to its efficiency. This is why the focus of the

experiments and results was on validating the quality of

existing applications in the Google Play store when

subjected to stress tests in different mobile device models.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented the Kongdroid, a cloud

computing service to automate stress testing so as to analyze

Android applications. It is shown how the Android emulator

can be used to run applications in an isolated and pre-

configured environment with real images of versions of

operating systems released by device manufacturers. The

main purpose of this solution is to enable developers to

subject their application to a high number of pseudo random

user events in various Android devices to assure their

effectiveness as to the correct conduct of the functionalities.

Its importance is due to the fact that of its offering a

thorough knowledge of stress testing techniques, where the

developer will be able to use a pre-prepared environment to

validate his/her application in various device models with

different capacities and resolutions.

The advantages of using this service are obtained

because of the detailed results of the environment and

events performed being sent more speedily to the user for

his/her analysis. This makes it an important tool in

supporting development in order to pinpoint quickly areas to

be improved before publication in the Apps store. The

previous limitation that the developer had due to restricted

use for testing on devices no longer exists.

Among the limitations of the service, there is the

difficulty of repeating the test effectively, restricting the

stress test to one application screen, the difficult of closing a

specific instance of the Android emulator in the Windows

environment, the absence of images of the Android platform

for a given mobile device model and the high consumption

of memory and the limit of instances of the emulator.

The results obtained from the experiments undertaken

show there is no effective control by the Google Store as to

effective compatibility of their applications in the different

models found in the market. In this case, the assurance

needs to come from the very author of the application using

a tool such as Kongdroid.

One of the main contributions of this paper was that of

permitting the developer the facility of lessening his/her

need to acquire extensive knowledge of test development.

Without requiring complexity when preparing a test

environment, the service offers simplicity when generating a

considerable number of the user´s interface events in the

target application. This initiative enables the publication of

the application to be more robust and compatible with

various models of Android devices. Another important point

is to anticipate improvements and corrections during the

development phase, because what are avoided are problems

of the type in which the application is ended unexpectedly

during use. Besides costing less to correct before

publication, this does not adversely affect the credibility of

the author of the application.

For future research studies, we plan: adding new options

for device models; a new mechanism for freeing the

emulator at the end of the test for the Windows

environment; a real-time listing of events being run; a test

result in a more professional format; comparative results

between devices tested; improving the performance of the

emulator and; creating an orchestrator to manage cloud

computing resources more efficiently

REFERENCES

[1] I. Paul. http://www.rssphone.com/google-play-store-800000-

apps-and-overtake-apple-appstore/. Accessed in February

2013.

[2] Z. Lutz. http://www.engadget.com/2012/09/26/google-play-

hits-25-billion-app-downloads/. Accessed in November 2012.

[3] M. Goadrich and M. Rogers. Smart smartphone development:

iOS versus Android. In SIGCSE, volume 42, 2011.

[4] Ham K.H., Park, Y.B. 2011. Mobile Application Compatibility

Test System Design for Android Fragmentation. CCIS 257, pp.

314-320.

[5] UI/Application Exerciser Monkey,

http://developer.android.com/guide/developing/tools/monkey.h

tml. Accessed in February 2013.

[6] Parkhill, D. The Challenge of the Computer Utility.

9Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 29 / 646

[7] A. Bechtolsheim. Cloud Computing and Cloud Networking.

talk at UC Berkeley, December 2008.

[8] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A.

Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M.

Zaharia. Above the Clouds: A Berkeley View of Cloud

Computing. UC Berkeley, February, 2009.

[9] Candan, K. S., Li, W.-S., Phan, T., and Zhou, M. Frontiers in

Information and Software as Services. In Proceedings of the

25th IEEE International Conference on Data Engineering

(ICDE2009), pp. 1761-1768, 2009.

[10] D. Cheng. PaaS-onomics: A CIO’s Guide to using Platform-

as-a-Service to Lower Costs of Application Initiatives while

improving the Business Value of IT. Technical Report,

LongJump, 2008.

[11] S. Bhardwaj, L. Jain, and S. Jain, “Cloud computing: A study

of infrastructure as a service (IAAS)”, International Journal of

engineering and information Technology, vol. 2, no. 1, 2010,

pp.60-63.

[12] L. Yu, S. Su, J. Zhao, et al, “Performing Unit Testing Based

on Testing as a Service (TaaS) Approach”, Proceedings of

International Conference on Service Science (ICSS) 2008, pp.

127-131.

[13] K. Matsumoto, S. Kibe, , M. Uehara, and H. Mori. “Design of

Development as a Service in the Cloud” Network-Based

Information Systems (NBiS), 15th International Conference

on, (2012). Kawagoe, Japan 2012.

[14] L. Youseff, M. Butrico, and D. Da Silva. Toward a unified

ontology of cloud computing. In Grid Computing

Environments Workshop, 2008. GCE’08.

[15] S. Brahler, Analysis of Android architecture. Karlsruher

Institut für Technologie,

http://os.ibds.kit.edu/downloads/sa_2010_braehler-

stefan_android architecture.pdf, accessed Nov 14, 2010,

Outubro 2010.

[16] Android, www.android.com. Accessed in February, 2013.

[17] Google Android, Ricardo R. Lecheta, 2a Edição, Novatec,

Junho/2010.

[18] Professional Android Application Development, Reto Meier,

Wiley Publishing, Inc., 2009.

[19] How many lines of code does it take to create the Android

OS? http://www.gubatron.com/blog/2010/05/23/how-many-

lines-of-code-does-it-take-to-create-the-android-os/. Accessed

in February 2013.

[20] Dalvik, code.google.com/p/dalvik. Accessed in February 2013

[21] David Ehringer. The dalvik virtual machine architecture.

Technical report, Google, March 2010.

[22] Android Application Development, Rick Rogers et al,

O'Reilly, 2009.

[23] N. Nyman, “Using monkey test tools,” Software Testing and

Quality Engineering magazine, vol. 29, no. 2, pp. 18–21, 2000.

[24] A.-D. Schmidt, H.-G. Schmidt, L. Batyuk, J. H. Clausen, S. A.

Camtepe, S. Albayrak, and C. Yildizli. Smartphone malware

evolution revisited: Android next target? In Proceedings of the

4th IEEE International Conference on Malicious and

Unwanted Software (Malware 2009), pp. 1–7. IEEE, 2009.

[25] T. Bläsing, L. Batyuk, and A. Schmidt. An Android

Application Sandbox System for Suspicious Software

Detection. In 5th International Conference on Malicious and

Unwanted Software, Berlin, Germany, 2010.

[26] T. Takala, and M. Katara. Experiences of System-Level

Model-Based GUI Testing of an Android Application. In

Fourth IEEE International Conference on Software Testing,

Verification and Validation, Finland, 2011.

[27] Kaasila, J. Ferreira, D. Kostakos, V & Ojala, T (2012).

Testdroid: automated remote UI testing on Android.

Proceedings of the 11th International Conference on Mobile

and Ubiquitous Multimedia – MUM ’12: Art. 28.

[28] Robotium, 2010. It’s like Selenium, but for Android.

Retrieved on 19th January, 2012 from

http://code.google.com/p/robotium/.

[29] T. Mendhe, P. Kamble and A. Thakre, “Survey on Security,

Storage, and Networking of Cloud Computing”, International

Journal on Computer Science and Engineering (IJCSE), vol. 4,

no. 11, (2012) November, ISSN : 0975-3397.

[30] R. Byyya, C. Yeo, S. Venugopal, J. Broberg, and I. Brandic.

Cloud Computing and Emerging IT Platforms: Vision, Hype,

and Reality for Delivering Computing as the 5th Utility. Future

Generation of Computer Systems. vol. 25. no. 6. pp. 599- 616.

2009.

[31] L. Jain and S. Bhardwaj, “Enterprise Cloud Computing: Key

Considerations for Adoption” International Journal of

Engineering and Information Technology Vol 2 , (2010). IJEIT

2010, 2(2), 113-117 ISSN 0976-0253 (Online).

[32] M. Fowler, UML Distilled. Addison-Wesley, 1997.

[33] A. Leff, and J. Rayfield. “Web-Application Development

Using the Model-View-Controller Design Pattern,”

Proceedings of the 5th IEEE Enterprise Distributed Object

Computing Conference, 2001, pp. 118-124.

[34] K. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, et al.

Performance Analysis of High Performance Computing

Applications on the Amazon Web Services Cloud. In

CloudCom, pp. 159–168. IEEE, 2010.

[35] W. Vogels. A Head in the Clouds—The Power of

Infrastructure as a Service. In First workshop on Cloud

Computing and in Applications (CCA ’08), October 2008.

[36] Motorola Solutions Developer,

developer.motorolasolutions.com. Accessed in October 2013.

[37] LG Developer, developer.lge.com. Accessed in October 2013.

[38] ASP.NET MVC 4, http://www.asp.net/mvc/mvc4. Accessed

in February 2013.

[39] M. Grechanik, Q. Xie, and C. Fu, “Creating GUI testing tools

using accessibility technologies,” in Proc. IEEE International

Conference on Software Testing, Verification, and Validation

Workshops. Washington, DC, USA: IEEE Computer Society,

2009, pp. 243–250.

10Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 30 / 646

Functional Software Testing: A Systematic Mapping Study

Gilmar Ferreira Arantes
Instituto de Informática

Universidade Federal de Goiás, UFG
Goiânia-GO, Brazil

e-mail: gilmar@inf.ufg.br

Pĺınio de Sá Leitão-Júnior
Instituto de Informática

Universidade Federal de Goiás, UFG
Goiânia-GO, Brazil

e-mail: plinio@inf.ufg.br

Auri Marcelo Rizzo Vincenzi
Instituto de Informática

Universidade Federal de Goiás, UFG
Goiânia-GO, Brazil

e-mail: auri@inf.ufg.br

Fábio Nogueira de Lucena
Instituto de Informática

Universidade Federal de Goiás, UFG
Goiânia-GO, Brazil

e-mail: fabio@inf.ufg.br

Abstract—Software testing is part of a set of activ-
ities that ensure high quality software. It primarily
aims at revealing defects that have been inserted
into a software at various stages of its development.
In functional testing, test requirements are derived
from software specifications. This paper proposes a
systematic map (SM). Its planning and execution
were based on questions formulated to investigate
functional criteria/techniques related to: i) assess-
ment methods, which have an effect on cost and
efficacy; and ii) application scenarios, which define the
type of software in which they are used. Furthermore,
we assess the strength of evidence and threats to SM
validity.

Keywords-software testing; testing techniques and
criteria; functional testing; systematic mapping.

I. Introduction

Software testing is a knowledge area within the field
of software engineering, which strives for quality and
continually contributes to process and product improve-
ment. The test’s main objective is to reveal defects in the
software so these may be solved prior to any damage.
Ideally, the testing activity must be systematic, and
the techniques used must balance cost reduction and
increase the levels of defect detection, should any exist.
Each technique has a set of test criteria, which may be
used during the conception, selection, and evaluation of
a test set.
Among the different types of testing techniques, func-

tional testing has an important role for software quality
improvement as it complements other methods. Thus, it
is relevant to: (i) know how functional testing criteria
are employed; (ii) identify weak and strong points; and
(iii) describe scenarios in which they are used.
This paper’s contributions are obtained through a sys-

tematic mapping study. According to Wohlin et al. [1],
it follows the same processes and principles used in

systematic literature reviews, although it has different
criteria for quality assessment and inclusion/exclusion
of studies. Due to its wider and more varied range,
both the collected data and the literature review are
mainly qualitative. The research questions avoid any
tendencies; instead, they are more specific and often
relate to empirical studies.

The systematic map aims at answering the following
questions pertaining to functional software testing:

• Primary research question: Which comparisons
have been made between test criteria?

• Secondary research question: What is the appli-
cation scenario for each functional testing criterion?

The purpose of the primary research question is to
find weak and strong points of functional testing criteria
through comparisons made between them. Many aspects
are observed, i.e., application costs and ability to detect
defects. This question is considered primary because it:
(i) provides information on the type of application and
limitations; (ii) determines factors influencing efficiency
and efficacy; and (ii) contributes to the proposal of other
approaches to functional testing.

The secondary research question aims to identify the
type of software in which functional criteria are used. It
establishes criteria range and determines its application
and restricted use in some areas.

The rest of our paper is thus organized: Section II
presents the systematic mapping protocol and how it
was conducted. Section III shows the results as they
relate to our research questions. Section IV discusses
the strength of evidence and threats to validity of the
primary studies selected. Finally, Section V is made up
of final considerations and research implications.

11Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 31 / 646

II. Mapping Planning

The systematic mapping protocol was planned accord-
ing to the model presented by Biolchini et al. [2]. This
section explores the main points of the elaborated plan.

A. Scope of studies

The protocol identified the scope of the studies by
considering:

1) Population – Scientific publications on software
testing;

2) Intervention: Functional testing criteria.
3) Results:

a) Properties, characteristics and comparisons
between functional testing criteria;

b) Application context of each functional testing
criterion.

4) Application – association among functional test-
ing criteria to help detect defects; support for an
effective use of each criterion, in isolation or as a
set; assistance for the proposal of new functional
criteria.

B. Search strategy for selecting primary studies

The strategy for searching and selecting primary stud-
ies was defined according to the research sources, key-
words, language, and types of primary studies selected
for mapping:

1) Criteria for source selection – Electronic in-
dexing databases and internet search engines.

2) Search methods – Manually and web search
engine.

3) Source listing – Conferences, journals and tech-
nical reports indexed by IEEExplore, ACM Digital
Library and Google Scholar.

4) Language of primary studies – English, due to
its widespread use in scientific writing.

C. Pilot search execution

A search string was defined for each indexed database
considering the research questions, their respective qual-
ity and amplitude traits, as well as the search strategy
for selecting primary studies.

D. Criteria and procedure for selecting studies

1) Inclusion criteria:

a) IC1 – Papers mentioning any features of a
functional testing criterion;

b) IC2 – Papers comparing functional proper-
ties;

c) IC3 – Papers comparing properties of func-
tional and structural testing criteria, as well
as those of the random testing technique.

2) Exclusion criteria:

a) EC1 – Papers in which software testing is
only mentioned and is not the main topic;

b) EC2 – Papers discussing software testing, but
whose focus is not on functional or random
testing techniques;

c) EC3 – Papers discussing functional testing
criteria, which are not in any of the criteria
groups previously defined for analysis;

d) EC4 – Papers discussing functional testing
criteria, although its focus is not mentioned
in any of the categories previously defined for
analysis;

e) EC5 – Papers describing systematic proce-
dures for test criteria assessment, frameworks,
benchmarks for the comparison of testing
methods, but which do not actually make any
comparisons;

f) EC6 – Papers comparing test methods, which
do not include functional testing;

g) EC7 – Papers discussing functional testing
related to formal specifications;

h) EC8 – Papers focusing on theoretical analysis
with no practical examples of the approach.

E. Selection process of primary studies

1) Preliminary selection process – Retrieved papers
were analysed by reviewers, who were responsible
for reading titles and abstracts. Once a paper was
considered relevant by the reviewers, it would be
fully read.

2) Final selection process – All papers selected were
fully read by at least one reviewer, who then elabo-
rated a document including abstracts, methodolo-
gies and testing methods mentioned in each paper,
as well as other related concepts.

3) Quality assessment of primary studies – Re-
searchers assessed the selected papers according to
the quality criteria defined by Ali et al. [3].

F. Final selection

The final selection was carried out through four
phases. Phase 1 refers to the primary studies retrieved
from the electronic databases after the application of
search strings. Phase 2 corresponds to the studies result-
ing from the preliminary selection process. Some studies
were excluded because their titles and abstracts did not
pertain to our research questions. Phase 3 refers to the
studies obtained from the final selection process. Some
studies were also excluded once they were fully read
for the same reason stated above. In Phase 4, some
studies were excluded for their low quality according to
the quality criteria defined during the planning stage of
the systematic map. In summary, a total of 27 primary
studies were selected, of which:

12Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 32 / 646

• 14 are from the IEEE database;
• 7 are from the ACM database;
• 4 are from Google Scholar;
• and 2 are directly from Universidade Federal de

Goiás (UFG).

Figure 1 shows a distribution of studies spanning from
1978 to 2011. This time span corresponds to the pub-
lishing year of the oldest study retrieved from the search
string and the year the mapping ended, respectively. The
graph shows that the highest number of publications on
this subject occurred in 2006 (a total of 6). Furthermore,
between 2008 and 2011 there were fewer studies, but a
continued interest for research in this area.

G. Digraph of internal citations

To illustrate primary studies that refer to one or more
studies from the selected set, we constructed a directed
graph (digraph) to identify entry and exit points. Fig-
ure 1 shows a representation of the digraph.

1 9 7 8

1 9 8 7

1 9 9 5

1 9 9 7

2 0 0 3

2 0 0 5

2 0 0 6

2 0 0 8

2 0 0 9

2 0 1 0

2 0 1 1

[4]

[5]

[6][7]

[8][9]

[10] [11] [12] [13]

[14] [15] [16]

[17] [18][19][20] [21][22]

[23] [24] [25]

[26][27]

[28]

[29][30]

Figure 1. Citations among studies classified by year
.

Figure 1 reveals some areas of concentrated citations
among primary studies. For instance, we identified an
area of citations in which study [4] has the highest
number of entries. This is due to the fact that it was
one of the first published studies that approached the
comparison of testing techniques. Another identified re-
gion includes study [29] with the highest number of exits.
It is a survey, therefore it refers to many other primary
studies. Finally, another region contains studies [6], [26]
and [28], all of which use the same criteria for functional
testing: Decision Table and Cause and Effect Graph.

III. Results

Table I presents testing criteria and techniques that
were identified in the primary studies. The inspection ap-

proach is also used in these studies. The first column lists
the criteria/techniques; in some cases, test approaches
are not necessarily identified as a criterion, as stated in
the literature. The second column shows the number of
primary studies that use such criterion/technique. The
third column lists the references used in the primary
studies, and the last column indicates whether the cri-
terion/technique is relevant to mapping. Thus, Table I
shows that: (i) studies in general use more than one test
criterion/technique; (ii) in many cases, functional, struc-
tural and other testing or code inspection techniques are
compared in the same study; (iii) the following criteria
are most used: Boundary Value Analysis, Equivalence
Class Partitioning, and Decision Table.

Table I. Test criteria, techniques and ap-
proaches discussed in the studies analysed

Test Criteria/Techniques and
Approaches

#
Refs

References

Boundary Value Analysis 12 [5], [7], [8], [9], [10], [11],
[13], [16], [18], [25], [27],
[28]

Path Coverage 1 [27]
Statement Coverage 1 [5]
Condition Coverage 4 [7], [9], [10], [27]
Inspection/Code Review 6 [4], [5], [7], [9], [10], [27]
Cause-Effect Graph 3 [6], [26], [28]
Random Partitioning 1 [14]
Dynamic Partitioning 1 [14]
Equivalence Class Partitioning 11 [5], [7], [8], [9], [10], [11],

[15], [16], [18], [27], [28]
Decision Table 6 [6], [15], [24], [26], [27],

[28]
Test using Collaboration Dia-
gram

1 [21]

Test using Object-Z 1 [21]
Test using OCL 1 [21]
Random Testing 2 [8], [14]
Use Case Test 6 [12], [19], [20], [21], [22],

[23]
Extended Use Case Test 1 [21]
Structural Testing (without a
specific criterion)

1 [4]

Functional Testing (without a
specific criterion)

3 [4], [17], [29]

Systematic Functional Testing 2 [11], [30]
Extended Systematic
Functional Testing

1 [30]

A. Results of the primary question: Which comparisons

have been made between test criteria?

This question aimed at identifying primary studies
that carried out comparisons between functional test
criteria from any perspective. Results revealed few stud-
ies with such an objective. Among the studies anal-
ysed, only [21] and [27] make comparisons. The former
compares criteria applied to object-oriented systems,
whereas the latter uses both Boundary Value Analy-
sis and Equivalence Class Partitioning (also known as
Equivalence Partitioning) and compares them to other
test criteria, i.e., Decision Table.

13Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 33 / 646

In our third inclusion criterion, which includes studies
comparing structural and random testing techniques,
nine studies were added to the previous two. Therefore, a
total of 11 studies were selected for the primary question.
Among the criteria considered of interest to our system-
atic mapping, Vallespir and Herbert [27] concluded that
Equivalence Partitioning obtained better results than
Decision Table regarding three comparative features: (i)
number of defects, (ii) detection time and (iii) efficiency
(quantity/time). Seo and Choi [21] concluded that Ex-
tended Use Case Test and Test Derived from Formal
OCL Specifications are the most effective and suggested
the combined use of them.
All studies presented in [4], [5], [7], [9], and [10]

stated that, in general, Boundary Value Analysis and
Equivalence Class Partitioning showed the best results
regarding the number of defects detected in a short
period of time. However, almost all of them agree that
results depended on program type, tester experience and
type of defect detected.
Similarly to studies [5] and [7], study [9] noted that

up until 1997: (i) there was no consistent evidence to
support that one technique for defect detection was
better than another; on the contrary, current evidence
suggests that every technique has its own merits; (ii)
current evidence shows that functional, structural and
code review testing techniques complement one another,
and should be used in combination.
In summary, comparative features relevant to the

research question were applied to the selected studies.
However, the results obtained from the application of
these features are not definitive for two main reasons:
(a) tested programs are very small and simple, and
(b) defects are inserted by the tester. We consider our
results as contributions to knowledge pertaining to test
criteria/techniques. Thus, results may be analysed as
tendencies and not as conclusions, because they cannot
be generalized.

B. Results of the secondary question: What is the appli-

cation scenario for each functional testing criterion?

Table II shows the studies selected to answer this re-
search question. They were classified according to study
type (experiment, theoretical analysis, simulation, case
study, survey) and scope. Such perspective is relevant to
assess the strength of evidence, which will be discussed
in Subsection IV-A.
Table III presents application scenarios for each test

criterion. It lists criteria according to the number of
scenarios in which they are applied. Results revealed re-
curring scenarios in various criteria, which shows multi-
plicity of scenarios and criteria (n:n – “many for many”).
In other words, the studies do not identify exclusiveness
between Scenario A and Criterion B. This may be

Table II. Identified test scenarios in primary
studies selected

Reference Study Type Scope of Study

[19] Case study Industry
[24] Simulation Industry
[25] Simulation Laboratory
[4] Experiment Academy
[6] Theoretical analysis Laboratory
[7] Experiment Academy
[8] Experiment Industry
[9] Experiment Academy
[10] Experiment Academy
[11] Case study Laboratory
[12] Case study Laboratory
[13] Theoretical analysis Industry
[14] Experiment Industry
[15] Simulation Laboratory
[17] Survey Laboratory
[18] Theoretical analysis Laboratory
[20] Case study Industry
[21] Experiment Laboratory
[22] Simulation Industry
[23] Case study Industry
[26] Theoretical analysis Laboratory
[27] Experiment Academy
[28] Simulation Laboratory
[30] Case study Academy

regarded as positive because criteria application scope
is non-restricted within the scenarios identified.

Table III. Test criteria/technique and scenarios

Test Criterion/Technique Test Scenario
Boundary Value Analysis Academic/didactic system, Non

safety-critical commercial infor-
mation system, Aircraft oper-
ational system, Operating sys-
tem utility and Embedded com-
mercial systems

Equivalence Class Partitioning Academic/didactic system, Non
safety-critical commercial infor-
mation system, Aircraft oper-
ational system and Operating
system utility

Decision Table Academic/didactic system, Non
safety-critical commercial infor-
mation systems and web service

Use Case Test Video conference, Safety-
critical embedded aviation
system, Safety-critical
commercial information system,
Safety-critical financial system,
Safety-critical web system and
Academic/didactic system

Cause and Effect Graph Academic/didactic system
Extended systematic functional
testing

Strategic management system
and Critical commercial infor-
mation system

Dynamic Partitioning Air traffic control
Extended Use Case Test Critical financial system
Systematic Functional Testing Operating system utility

Results regarding scenarios showed that systems were
mainly tested in academic/didactic environments, to
which a total of six test criteria were applied. Next, four
test criteria were used in non safety-critical commercial
information systems. This is due to the fact that most
studies analysed (70.38%) were developed in academic
environments or laboratories. However, criteria were also

14Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 34 / 646

applied to real life settings, i.e., safety-critical scenarios,
response time, robustness, as shown in studies [19],
[20], [24]. Such scenarios involve embedded systems for
military aircrafts, web service testing, ticket manage-
ment systems (for integrated transport systems in large
metropolitan areas) and electronic component testing
(mobile devices, cell phones, remote controls, television).

Among test criteria, Use Case Test was most frequent
in scenarios involving critical systems (five out of three
scenarios). In Extended Systematic Information Systems
and Random Testing, scenarios were only applied to
strategic or critical systems. Cause and Effect Graph was
used only in academic/didactic scenarios. The remaining
criteria were mainly applied in academic/didactic sce-
narios or in ones involving non safety-critical systems.

Furthermore, the first five lines in Table III show that
the criteria most used in the studies were applied in a
variety of scenarios.

IV. Discussion

A. Strength of evidence

Assessment of the strength of evidence is a key factor
for assessing the reliability of conclusions and consequent
recommendations [3], [7].

There are many systems for assessing strength of
evidence. For our research, we used the GRADE system
(Grading of Recommendations Assessment, Develop-
ment and Evaluation) for two reasons: (i) its definitions
involve the main weak points of systems that classify
evidence based on hierarchy, and (ii) it may be used by
other software engineering researchers [3].

The GRADE system identifies four levels of strength
of evidence: high, moderate, low and very low. It is
determined by a combination of four elements: study
characteristics, quality, consistency and directness.
In terms of study characteristics, two thirds of the

studies are observational, and one third of them are
experimental. Thus, the strength of evidence of the
systematic mapping is low according to GRADE defi-
nitions [3].
On the topic of study quality, data analysis approaches

were moderately explained in terms of study implica-
tions, credibility and limitations. In only six out of
27 studies researchers made critical analyses of their
role during research. Result credibility was discussed in
85.19% of studies. A total of 88.89% of studies pondered
over their limitations. Based on these results, we may
conclude that studies showed moderate evidence regard-
ing quality.

The consistency criterion was similar across studies,
given that all of them applied functional testing by use of
one criterion or more, individually or in a set, in a certain
scenario or in comparative experiments using criteria

from other testing techniques. Therefore, the strength
of evidence related to consistency was high.
Next, the aim was to test objectiveness (direct-

ness). Most studies (70.38%) were carried out in
academic/laboratory contexts. Regarding intervention,
most studies investigated functional testing criteria and
techniques, as defined during planning. Results also
showed that most studies requires empirical validation
through real applications. Thus, the strength of evidence
ranges between moderate and low in relation to direct-
ness.
The strength of evidence of our proposed systematic

map reaches a moderate level when all four aspects
are combined. Therefore, future research may alter its
reliability estimate.

B. Threats to Validity

According to [31], our proposed systematic map may
face two threats to its validity: (i) limitations of research
sources; (ii) elaboration of research questions in accor-
dance with works in the scientific community on the
same knowledge area under investigation.
Associated with the first threat is the fact that IEEEx-

plore and ACM Digital Library indexed databases were
highly used, which may have prevented the identification
of relevant primary studies that were not published in
any of the two sources. Related to the second threat is
the fact that the scope of the primary question includes
comparisons among functional criteria as well as com-
parisons with criteria used in non-functional techniques.
A third threat was identified: there was no evidence

of objective comparisons between test criteria. Despite
this, criteria were compared in relation to efficacy, cost
and efficiency. However, we noted that these factors are
dependent on other ones, i.e., tester experience, the type
and size of the program being tested, etc.

V. Final Considerations

The present work focused on software functional test-
ing to contribute with its assessment and evolution. A
detailed study of various functional criteria was carried
out through a systematic map.
The systematic map was planned based on the model

elaborated by Biolchini et al. [2] and was carried out
following these research questions:

• Primary research question: Which comparisons have
been made between test criteria?

• Secondary research question: What is the applica-
tion scenario for each functional testing criterion?

A set of 27 primary studies were investigated. Each
of them provided relevant information to support con-
clusions which were the basis for answering our research
questions.

15Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 35 / 646

Regarding the primary question, only two studies
compared functional testing among them, which little
contributed to consolidate functional criteria knowledge
and practice. A total of nine studies made comparisons
between functional criteria and criteria applied to other
testing techniques, i.e., Structural Testing and Random
Testing. These studies showed that a certain criterion
is more effective in given contexts and scenarios. We
may thus conclude that testing techniques and criteria
complement each other and should be applied as a set to
obtain more effective results during the test process. The
results of such comparisons were influenced by factors
such as tester experience, type and size of the program
under testing and defect types in the program.
Regarding the secondary question, as a contribution to

industry and practitioners in the application of testing
techniques, Boundary Value Analysis was the most used
test criterion because it was analysed in a larger number
of scenarios. Many application scenarios of functional
test criteria were identified. The academic/learning sce-
nario was present in most of the studies analysed. The
Use Case Test was the most used in safety-critical sce-
narios. No scenario was exclusive to any test criterion.
Tester experience and creativity were essential for crite-
ria application, even when they were not recommended
in a certain scenario.
After considerations related to the research questions

had been made, the primary studies were assessed ac-
cording to the quality criteria defined by Ali et al. [3]
to verify strength of evidence and establish the reliabil-
ity level of results. We concluded that the strength of
evidence of our systematic map was moderate.
Threats to validity were also identified and assessed

to verify what effects they would have in our research.
Furthermore, we found that there are no similar system-
atic reviews. However, we identified some reviews with a
specific focus, i.e., Model-based testing and concurrent
software testing. This study seeks to encourage further
research on systematic mapping, which is able to provide
more answers to our research questions and help develop
their strength of evidence.
As a future work, we intend to perform a deeper analy-

sis of data related to the second research question, trying
to provide more evidences to industry and practitioners.

Acknowledgment

The authors would like to thank the Instituto de Infor-
mática (INF/UFG), and the Brazilian Funding Agencies
– FAPEG, and CAPES – which support this work.

References

[1] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Reg-
nell, and A. Wesslén, Experimentation in software engi-
neering. New York, NY, USA: Springer Heidelberg,
2012.

[2] J. C. de Almeida Biolchini, P. G. Mian, A. C. C. Natali,
T. U. Conte, and G. H. Travassos, “Scientific research
ontology to support systematic review in software
engineering,” Adv. Eng. Inform., vol. 21, no. 2, pp.
133–151, Apr. 2007, [retrieved: Jan., 2012]. [Online].
Available: http://goo.gl/sWxntK

[3] M. S. Ali, M. Ali Babar, L. Chen, and K.-J. Stol, “A
systematic review of comparative evidence of aspect-
oriented programming,” Inf. Softw. Technol., vol. 52,
no. 9, pp. 871–887, Sep. 2010, [retrieved: Jan., 2012].
[Online]. Available: http://goo.gl/BWkt4O

[4] G. J. Myers, “A controlled experiment in program
testing and code walkthroughs/inspections,” Commun.
ACM, vol. 21, no. 9, pp. 760–768, Sep. 1978, [retrieved:
Jan., 2012]. [Online]. Available: http://goo.gl/xuMFHS

[5] V. Basili and R. Selby, “Comparing the effectiveness of
software testing strategies,” Software Engineering, IEEE
Transactions on, vol. SE-13, no. 12, pp. 1278–1296, 1987.

[6] K. Nursimulu and R. L. Probert, “Cause-effect graphing
analysis and validation of requirements,” in Proceedings
of the 1995 conference of the Centre for Advanced
Studies on Collaborative research, ser. CASCON ’95.
IBM Press, 1995, pp. 46–46, [retrieved: Jan., 2012].
[Online]. Available: http://goo.gl/OqMw8U

[7] E. Kamsties and C. M. Lott, “An empirical evaluation
of three defect-detection techniques,” in Proceedings
of the 5th European Software Engineering Conference.
London, UK, UK: Springer-Verlag, 1995, pp. 362–
383, [retrieved: Jan., 2012]. [Online]. Available:
http://goo.gl/VaraHr

[8] S. C. Reid, “An empirical analysis of equivalence
partitioning, boundary value analysis and random
testing,” in Proceedings of the 4th International
Symposium on Software Metrics, ser. METRICS ’97.
Washington, DC, USA: IEEE Computer Society, 1997,
pp. 64–73, [retrieved: Jan., 2012]. [Online]. Available:
http://goo.gl/DhMfls

[9] M. Wood, M. Roper, A. Brooks, and J. Miller,
“Comparing and combining software defect detection
techniques: a replicated empirical study,” in Proceedings
of the 6th European SOFTWARE ENGINEERING
conference held jointly with the 5th ACM SIGSOFT
international symposium on Foundations of software
engineering, ser. ESEC ’97/FSE-5. New York, NY,
USA: Springer-Verlag New York, Inc., 1997, pp.
262–277, [retrieved: Jan., 2012]. [Online]. Available:
http://goo.gl/rGW3aU

[10] N. Juristo and S. Vegas, “Functional testing, structural
testing and code reading: What fault type do they each
detect?” in Empirical Methods and Studies in Software
Engineering, ser. Lecture Notes in Computer Science,
R. Conradi and A. Wang, Eds. Springer Berlin /
Heidelberg, 2003, vol. 2765, pp. 208–232.

[11] S. Linkman, A. M. R. Vincenzi, and J. C. Maldonado,
“An evaluation of systematic functional testing using

16Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 36 / 646

mutation testing,” 7th International Conference on Em-
pirical Assessment in Software Engineering [EASE. [S.l.:
s.n.]], 2003.

[12] C. Nebut, F. Fleurey, Y. L. Traon, and J.-M. Jézéquel,
“Requirements by contracts allow automated system
testing,” in Proceedings of the 14th International
Symposium on Software Reliability Engineering, ser.
ISSRE ’03. Washington, DC, USA: IEEE Computer
Society, 2003, pp. 85–96, [retrieved: Jan., 2012]. [Online].
Available: http://goo.gl/r2D0BW

[13] M. Ramachandran, “Testing software components using
boundary value analysis,” in Proceedings of the 29th
Conference on EUROMICRO, ser. EUROMICRO ’03.
Washington, DC, USA: IEEE Computer Society, 2003,
pp. 94–98, [retrieved: Jan., 2012]. [Online]. Available:
http://goo.gl/2gi7sT

[14] K.-Y. Cai, T. Jing, and C.-G. Bai, “Partition testing
with dynamic partitioning,” in Proceedings of the 29th
annual international conference on Computer software
and applications conference, ser. COMPSAC-W’05.
Washington, DC, USA: IEEE Computer Society, 2005,
pp. 113–116, [retrieved: Jan., 2012]. [Online]. Available:
http://goo.gl/z82pJ6

[15] E. L. Jones, “Automated support for test-driven specifi-
cation,” Phoenix, Arizona, pp. 218–223, nov. 2005.

[16] T. Murnane, R. Hall, and K. Reed, “Towards
describing black-box testing methods as atomic rules,” in
Proceedings of the 29th Annual International Computer
Software and Applications Conference - Volume 01,
ser. COMPSAC ’05. Washington, DC, USA: IEEE
Computer Society, 2005, pp. 437–442, [retrieved: Jan.,
2012]. [Online]. Available: http://goo.gl/qhltH0

[17] J. J. Gutierrez, M. J. Escalona, M. Mej́ıas, and J. Torres,
“Generation of test cases from functional requirements.
a survey,” in 4th Workshop on System Testing and
Validation, Potsdam, Germany, 2006, [retrieved: Jan.,
2012]. [Online]. Available: http://goo.gl/Cqn1B0

[18] R. M. Hierons, “Avoiding coincidental correctness
in boundary value analysis,” ACM Trans. Softw.
Eng. Methodol., vol. 15, no. 3, pp. 227–241, Jul.
2006, [retrieved: Jan., 2012]. [Online]. Available:
http://goo.gl/dl0JxS

[19] C. Nebut, F. Fleurey, Y. Le-Traon, and J.-M. Jezequel,
“Automatic test generation: a use case driven approach,”
Software Engineering, IEEE Transactions on, vol. 32,
no. 3, pp. 140–155, 2006.

[20] S. Roubtsov and P. Heck, “Use case-based acceptance
testing of a large industrial system: Approach and
experience report,” in Proceedings of the Testing:
Academic & Industrial Conference on Practice
And Research Techniques, ser. TAIC-PART ’06.
Washington, DC, USA: IEEE Computer Society, 2006,
pp. 211–220, [retrieved: Jan., 2012]. [Online]. Available:
http://goo.gl/1M1F5F

[21] K. I. Seo and E. M. Choi, “Comparison of five
black-box testing methods for object-oriented software,”
in Proceedings of the Fourth International Conference
on Software Engineering Research, Management and
Applications, ser. SERA ’06. Washington, DC, USA:
IEEE Computer Society, 2006, pp. 213–220, [retrieved:
Jan., 2012]. [Online]. Available: http://goo.gl/1eju7r

[22] P. Zielczynski, “Traceability from use cases to test
cases,” On-line article, 2006, [retrieved: Jan., 2012].
[Online]. Available: http://goo.gl/RqoGJ3

[23] J. Gutierrez, M. Escalona, M. Mejias, J. Torres, and
A. Centeno, “A case study for generating test cases from
use cases,” in Research Challenges in Information Sci-
ence, 2008. RCIS 2008. Second International Conference
on, 2008, pp. 209–214.

[24] S. Noikajana and T. Suwannasart,“Web service test case
generation based on decision table (short paper),” in
Quality Software, 2008. QSIC ’08. The Eighth Interna-
tional Conference on, 2008, pp. 321–326.

[25] K. Vij and W. Feng, “Boundary value analysis using
divide-and-rule approach,” in Information Technology:
New Generations, 2008. ITNG 2008. Fifth International
Conference on, 2008, pp. 70–75.

[26] P. R. Srivastava, P. Patel, and S. Chatrola, “Cause effect
graph to decision table generation,” SIGSOFT Softw.
Eng. Notes, vol. 34, no. 2, pp. 1–4, Feb. 2009, [retrieved:
Jan., 2012]. [Online]. Available: http://goo.gl/qhYxB0

[27] D. Vallespir and J. Herbert, “Effectiveness and cost of
verification techniques: Preliminary conclusions on five
techniques,” in Computer Science (ENC), 2009 Mexican
International Conference on, 2009, pp. 264–271.

[28] M. Sharma and B. Chandra, “Automatic generation of
test suites from decision table - theory and implementa-
tion,” in Software Engineering Advances (ICSEA), 2010
Fifth International Conference on, 2010, pp. 459–464.

[29] M. J. Escalona, J. J. Gutierrez, M. Mej́ıas, G. Aragón,
I. Ramos, J. Torres, and F. J. Domı́nguez, “An overview
on test generation from functional requirements,”
J. Syst. Softw., vol. 84, no. 8, pp. 1379–1393,
Aug. 2011, [retrieved: Jan., 2012]. [Online]. Available:
http://goo.gl/Jq63fE

[30] A. R. Vidal, “Extended systematic funcional test: A con-
tribution in the application of black-box testing criteria,”
Master’s thesis, Universidade Federal de Goiás, Goiânia,
2011, (in Portuguese).

[31] D. Budgen, A. J. Burn, O. P. Brereton, B. A.
Kitchenham, and R. Pretorius, “Empirical evidence
about the uml: a systematic literature review,”
Softw. Pract. Exper., vol. 41, no. 4, pp. 363–392,
Apr. 2011, [retrieved: Jan., 2012]. [Online]. Available:
http://goo.gl/qEc82C

17Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 37 / 646

A Multi-Objective Technique for Test Suite Reduction

Alessandro Marchetto, Md. Mahfuzul Islam, Angelo Susi
Fondazione Bruno Kessler

Trento, Italy
{marchetto,mahfuzul,susi}@fbk.eu

Giuseppe Scanniello
Università della Basilicata

Potenza, Italy
giuseppe.scanniello@unibas.it

Abstract—Entire test suites are often used to conduct regres-
sion testing on subject applications even after limited andprecise
changes performed during maintenance operations. Often, this
practice makes regression testing difficult and costly. To deal with
these issues, techniques to reduce test suites have been proposed
and adopted. In this paper, we present a multi-objective technique
for test suite reduction. It uses information related to thecode and
requirements coverage, the past execution cost of each testcase
in the test suite, and traceability link among software artifacts.
We evaluated our proposal by testing three Java applications
and comparing the achieved results with those of some baseline
techniques. The results indicate that our proposal outperforms
the baselines and that improvements are still possible.

Keywords—Regression Testing; Requirements; Testing; Test
Suite Reduction; Traceability Link Recovery.

I. I NTRODUCTION

Regression testing is usually conducted after software
maintenance operations to guarantee that the effect of these
operations does not compromise the expected behavior of
a software application. Relevant activities often conducted
during regression testing [1] are:(i) test selection;(ii) test re-
duction (also named minimization); and(iii) test prioritization.
These activities are technical and business relevant because
they might affect the success of a software project [2]. Among
the activities above, test reduction reduces the number of test
cases to be executed and should preserve the capability of a
test suite in discovering faults.

To reduce test suites, existing techniques are mostly based
on a single dimension (e.g., code or requirements coverage).
Few attempts exist to reduce test suites and apply multiple
dimensions only consideringstructural information (e.g., code
coverage and execution cost), thus ignoring thefunctional
dimension [3][4]. Conversely, it could be relevant to reduce
test suites by explicitly taking into account structural and
functional information, and the time (e.g., seconds) required
to execute them.

In this paper, we propose a novel reduction technique
named MORE (Multi-Objective test cases REduction). It is
multi-objective and selects a subset of a test suite (i.e., reduced
test suite), so decreasing the testing time while preserving
the capability of the suite in exercising the application and
detecting faults. The technique is based on a three-dimension
analysis of test cases. Thestructural dimension concerns
information regarding test cases under analysis (i.e., howthey
exercise the application under test), whilefunctionaldimension
regards the coverage of users’ and system requirements. The
last dimension iscost and concerns the time to execute test
cases. To deal with these dimensions traceability links among

software artifacts (i.e., application code, test cases, and require-
ments specifications) are needed. Traceability links are often
not available or not up-to-date in the project documentation.
Then, we exploit Latent Semantic Indexing (LSI) [5] to infer
traceability links among software artifacts and to measuretheir
strength. To assess the validity of MORE, we have conducted
an experimental evaluation on three Java applications. In this
evaluation, we were mainly interested in assessing whetherthe
test suite reduced by applying our proposal may be effective
and efficient as the entire test suite.

Structure of the paper. In Section II, we discuss related
work, while the used traceability recovery approach is de-
scribed in Section III. In Section IV, we highlight the approach
for test suite reduction, while the experiment is presentedin
Section V. Final remarks and future work conclude.

II. RELATED WORK

The greater part of the approaches for test suite reduction
is single-objective, [1][3]. However, multi-objective techniques
have been also proposed. They largely adopt evolutionary
algorithms by reformulating the test suite reduction problem
as an optimization problem [15][16][17]. These approaches
consider either code or requirement coverage information and
try balancing that information with the execution cost of test
cases as follows:(i) explicitly optimize them as two objectives
(e.g., code coverage and execution cost);(ii) redefine the
multi-objective to a single-objective by using an optimization
function that conflates more objectives into only one. For
instance, Yooet al. [15] showed the benefits of the Pareto-
front optimality respectively for test case selection and test
minimization. They, in fact, present a two-objective approach
in which code coverage and execution cost are explicitly
considered when conducting test selection or minimization. To
reduce test suites, MAet al. [17] adopted an objective function
that conflates code coverage and execution cost information.
Furthermore, de Souzaet al. [16] proposed the use of the
Particle Swarm Optimization (PSO) algorithm that considers
two objectives for test case selection: coverage of functional
requirements and execution cost.

Differently from the paper discussed above, we propose a
technique to reduce test suites by explicitly considering both
low- (e.g., code coverage) and high-level (e.g., requirements
coverage) information about the test cases, as well as their
execution cost. We fill the gap between these kinds of infor-
mation by using LSI [5] to automatically recover traceability
links among software artifacts. Moreover, conversely to our
previous work [18], we investigated the problem of reducing
large test suites and, to this aim, we formulated the problemas

18Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 38 / 646

a multi-objective optimization problem and adopted a specific
implementation of the NSGA-II algorithm [9].

III. T RACEABILITY RECOVERY

In this paper, we applied an IR-based technique to recover
traceability links:(i) among high-level software artifacts (i.e.,
application requirements and test case specifications) andlow-
level software artifacts (i.e., source code of the application and
test case implementations); and(ii) between pairs of high-level
software artifacts (i.e., application requirements). We use here
textual representationsof these artifacts. In the case of the test
cases (implemented using special conceived frameworks, e.g.,
Junit), a preliminary analysis was performed to identify the
application code identifiers (e.g., method and attribute names)
executed by test cases. The identifiers will constitute the textual
representation of the test cases. We used here LSI [5] as the
IR technique. The motivation for using LSI is that it has been
successfully used in the traceability recovery field [6].

A. LSI and IR-Based Traceability Recovery

LSI assumes that there is some underlying or “latent struc-
ture” in word usage that is partially obscured by variability in
the word choices. To this end, a Singular Value Decomposition
(SVD) is applied to am × n matrix (also named term-by-
document matrix), wherem is the number of terms, andn
is the number of documents in the collection. SVD can be
geometrically interpreted: each term and artifact could berep-
resented by a vector in thek space of the underlying concepts.
In traceability recovery field, the similarities between two
documents or between a term and a document are computed
using the cosine between the vectors in the latent structure.
In this work, we applied this similarity measure. The larger
the value, more similar the vectors are. A value fork should
be large enough to fit all the real structure in the data, but
small enough so that we do not also fit the sampling error or
unimportant details [5]. As default value, we usedk=300.

Differently from typical text retrieval problems (a user
writes a textual query and documents that are similar to the
query are shown), in IR-based traceability recovery a set of
source code artifacts (used as the query) are compared with a
set of target artifacts (even overlapping). Candidate traceability
links (i.e., all the possible pairs of software artifacts) are
reported in a ranked list. Irrelevant links are removed using
a threshold that selects only retrieved links (a subset of top
links). In this work, we use theConstant Thresholdmethod:
0.1 is the default value used. We used this value to limit the
possibility of loosing links by considering a larger number
of possible traceability links. There are also methods thatdo
not take into account the similarity values between source and
target software artifacts. For example, the methodVariable Cut
Point requires the specification of the percentage of links of
the ranked list to be considered as correctly retrieved. Either
relevant traceability links could be lost or irrelevant traceability
links could be introduced by using methods not based on
similarity values.

As in traditional IR-based traceability recovery approaches,
our solution retrieves links that are either correct or incorrect
so needing the human intervention to remove erroneously
recovered links. To avoid that human factors may affect the

experimental results, we did not perform here any analysis on
the recovered links.

IV. T EST SUITE REDUCTION

We introduce our technique and the metrics used.

- Code. The fault detection capability of a test case and then of
a test suite represents the capability to detect faults in source
code. This cannot be known before executing test cases. Then,
we have to resort to the “potential” fault detection capability
of a test suite. It can be estimated considering the amount of
code covered by test cases. A test case that covers a larger
set of code statements at run-time has a higher potential fault
detection capability (i.e., more faults should be revealed) than
one test case that covers a smaller set of statements.

Assuming to have test case implementations (e.g., Junit
test cases), we defineCCov(t) as the amount of statements
exercised during the implementationt:

CCov (t) =
∑

s∈Statements

{

1 s ∈ CodeCovered
0 otherwise

(1)

whereStatementsis the set of source code statements.Code-
Covered is the set of statements covered by the execution
of the test caset, s is a code statement of the application.
Given a test suiteScomposed of ordered test cases, we defined
cumCCov(ti) as follows:

cumCCov (ti) =
i−1
∑

j=0

CCov (tj) (2)

where ti is a test case of the suite. The cumulative code
coverage forti is computed by summing the single code
coverage (i.e., the code covered only by the test case) of all
those test cases fromt0 to ti−1.

- Requirements. The capability of a test case to exercise
users’ and/or system requirements depends on:(i) the amount
of the requirements covered by the test case;(ii) the rel-
evance of the covered requirements; and(iii) the existing
dependency/relationship among requirements. We defined and
used RCov(t) and a weighted variantWRCov(t). RCov(t) is
the measure of the requirements coverage for the test caset.
This measure estimates the application requirements exercised
during the execution oft and it is computed by counting
the number of requirements exercised by the test caset.
WRCov(t)measures the coverage for a test case according to
predefined weights assigned to each application requirement.
This coverage measure is computed as follows:

WRCov(t) =
∑

r∈Reqs

{

wr r ∈ ReqsCovered
0 otherwise

(3)

Reqs is the set of requirements of the application under
test. ReqsCoveredis the set of requirements covered by the
execution of the test caset, while r is one of the application
requirement andwr (0 ≤ wr ≤ 1) is the predefined weight
associated to each requirement. Notice that if we consider all
requirements equally (i.e.,wr=1), we resort toRCov(t). The
requirements weightwr depends on the testing needs. In this

19Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 39 / 646

work, we use as default values three weights associated to the
labelshigh, medium, low [2]:

wr =

{

1 r ∈ TesterRelevantr

0.5 TesterPartialRelevant r

0 TesterNonRelevantr

(4)

where TesterRelevantr and TesterPartialRelevantr are those
requirementsr selected by the tester as relevant or par-
tially relevant, instead the remaining requirements are
TesterNonRelevantr. However, alternative definition of the
weight wr can be considered. In fact, as in the code coverage
case, the use of this weightwr is expected to be useful
to customize the measurement of the requirements coverage
according to the tester’s need. Hence, requirements prioritiza-
tion techniques [7] could be applied to automatically identify
requirements that are relevant for the tester’s purposes and then
to be highly weighted when measuring the coverage.

RCov(t)andWRCov(t)do not consider the existing relation-
ship among requirements: all the requirements are considered
equally. This issue can lead to situations in which groups
of slightly connected requirements (i.e., those requirements
having a limited number of related requirements) are privileged
than the more connected ones. To deal with this issue, we
defineWRCovD(t). It takes into account existing relationships
among requirements. For sake of simplicity, in the following,
we applied the variant only toWRCov(t)but the same could be
done withRCov(t). To computeWRCovD(t), we need to mea-
sure the strength of each requirements relationship/dependency
(rD). This strength is computed as follows:

wrD(rl, rm) =
wreq(rl, rm) + wcode(rl, rm)

2
(5)

wherewrD(rl, rm) is the weight of the relationship inrDs
between requirements:rl and rm; wrD(rl, rm) tends to 1
if a strong relationship exists betweenrl and rm, i.e., both
textual description and implementation strongly overlap,while
wrD(rl, rm) tends to0 if no relationship exists betweenrl

andrm. wreq(rl, rm) andwcode(rl, rm) are the weights of the
relationship with respect to requirementsrl andrm and their
implementation code, and are computed as follows:

wreq(rl, rm) = IRSimilarity(rl, rm) (6)

wcode(rl, rm) =
overlapClasses (rl, rm)

totalClasses(rl, rm)
(7)

wreq(rl, rm), inferred by LSI, provides an indication about the
possible link between the application requirementsrl andrm,
while wcode(rl, rm) computes the portion of code that is in
common between the implementation of the requirementsrl

andrm.

The final requirement coverage oft is computed as:

WRCovD(t) =
∑

r∈Reqs

wr ∗ (
∑

rl 6=r∈Reqs

wreqs(r, rl)) (8)

wherewr is the predefined weight associate to each require-
ment. The weight of the dependencies between the current
requirementr and the other requirements of the applica-
tion are computed by the formula:

∑

rl 6=r∈Reqs wrD(r, rl).
WRCovD(ti) is expected to give more relevance thanWR-
Cov(t) to the test cases covering requirements having strong

relationships with a high number of other requirements, that
is to the test cases exercising “key” requirements.

Given a test case ti ∈ S, we define:

cumRCov (ti) =

i−1
∑

j=0

WRCovD(tj) (9)

The cumulative requirements coverage for the test caseti is
computed by summing the single requirements coverage (i.e.,
the requirements covered only by the test case) of all those
test cases fromt0 to ti−1.

- Execution cost. The execution cost of a test case can be
approximated by the time required to its execution. If the
implementation of the test cases is available, their execution
can be profiled to collect the information about the running
time. Alternatively, we can approximate the execution timeby
counting the number of software elements (e.g., code classes,
methods) expected to be exercised by the test case. In this
work, we assume to have the test implementation (e.g., Junit
test cases), thus we definedCost(t) as the estimated time
required to execute the test case.

Therefore, given a test suiteS, whose test cases are ordered,
we computedcumCost(ti) as the sum of the execution costs of
the test cases preceding the test caseti ∈ S. The overall cost
of the test cases of a suiteS (namedCost(S)) is the sum of the
executions of all the test cases. We then defineInverseCost(ti)
as follows:

InverseCost(ti, S) = Cost(S) −

i
∑

j=1

Cost(tj) (10)

A. Measure for test reduction

For each test caseti in the test suiteS, the measures
cumCCov(ti), cumRCov(ti), and InverseCost(ti) are computed
considering the position ofti in S. Then, for each measure
above, we computed the area of the curves obtained by plotting
in a Cartesianplan the values of the metric (onX axes) with
respect to the test cases insuiteS (Y axes). To get a numerical
approximation of that area, we used theTrapezoidalrule [8].
It computes the area of a curve as the area of a linear function
that approximates that curve.

For a test suiteS and each defined cumulative mea-
sure, the area (AUC in the following) estimates: the
code coverageAUCcumCCov(S), the requirements coverage
AUCcumRCov(S), and the execution costAUCInverseCost(S).
The area indicates how fast the test suiteS converges. The
largerAUC, the better is.

B. Multi-Objective Reduction

The evaluation of all the possible test case subsets on
the three dimensions could be expensive even if in case of
non-large test suites. Hence, we propose the use of a multi-
objective optimization to prioritize test cases accordingto
the three identified measures. Specifically, we rely on the
Non-dominated Sorting Genetic Algorithm II (NSGA-II [9]).
Even if different evolutionary algorithm could be used, we
resort to NSGA-II since it lets us optimize several, potentially

20Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 40 / 646

conflicting, objectives. It has been also widely and successfully
used in research work goals similar to ours [10][11].

NSGA-II uses a set of genetic operators (i.e., crossover,
mutation, selection) to iteratively evolve an initial population
of candidate solutions (i.e., reduced test suites). The evolution
is guided by an objective function (called fitness function)
that evaluates the quality of each candidate solution alongthe
considered dimensions. In each iteration, thePareto front of
the best alternative solutions is generated from the evolved
population. The front contains the set of non-dominated so-
lutions, i.e., those solutions that are not inferior to any other
solution inall considered dimensions. Population evolution is
iterated until the maximum number of iterations is reached.

The Pareto front represents the optimal trade-off between
the structural, functional, and cost dimensions. The tester can
inspect the Pareto front to find the best compromise between
having a test case ordering that balance code coverage, require-
ments coverage, and execution cost or alternatively havinga
test case ordering that maximizes one/two dimension/s penal-
izing the remaining one/s. This depends on the testing needs.

Specifically, the technique is set-up as follows:
1. Solution Encoding: A solution is a possible reduced test
suite redS of the application under test. ThisredS represents
an execution order for a subset of the test cases of the whole
test suiteS. The solution space for the test reduction problem
is given by all the permutations of all the possible subsets of
the test suite. A reduced test suite is represented as a sequence
of integers, where each integer represents a test case identifier
and the size of the reduced suite can be set-up by the tester.
The maximum number of test cases per suite is a parameter of
the algorithm that the tester can customize (e.g., 30% of the
whole test suite).
2. Initialization: We randomly initialize the starting popula-
tion by selecting subsets of test cases among all the possible
of test case subsets.
3. Genetic Operators:NSGA-II resorts to three genetic oper-
ators for the evolution of the population: mutation, crossover,
and selection. The standard operators typically applied for
subset of (permutation-based) encoding of solutions are used.
As mutation operator, we used the bit-flip mutation: one
randomly chosen element of the solution is changed. The
adopted crossover operator is the one-point crossover, in
which a pair of solutions is recombined by cutting the two
solution representations randomly chosen (intermediate)point
and swapping the tails of the two cut solutions. We used
binary tournament as the selection operator: two solutionsare
randomly chosen and the fitter of the two is the one that
survives in the next population.
4. Fitness Functions: The objective is to maximize the
three considered dimensions. Then, each candidate solution
in the population (each reduced test suite) is evaluated
by our objective function based on:AUCcumCCov(redS),
AUCcumRCov(redS), and AUCInverseCost(redS). The larger
these values, the faster a reduced test suite converges.

V. EXPERIMENT

To assess the validity of both the technique and the
prototype, we conducted an experiment in which we compared
test suites reduced with MORE against:(i) whole test suites

(Full); (ii) test suites reduced according to their capability of
covering the code (CC) of the target application: CC reduces
a test suiteS by prioritizing its test cases applying additional
code coverage (additional code coverage evaluates each test
case of a suite according the code portion that is uniquely
covered by it [3]) and then selecting the top-ranked test cases
to be part of the reduced suite [3]; and(iii) test suites reduced
randomly (RA) [12].

A. Experimental Objects

In the study, we used three Java applications AveCalc,
LaTazza and iTrust. All applications are distributed online
and have been already used in the literature for different pur-
poses [13]. AveCalc manages electronic record books for stu-
dents: it has 8 classes for 1827 LOCs (excluding comments); it
is distributed with 10 textual users’ requirements, and 47 JUnit
test cases. Latazza is a coffee maker management application:
it has 18 classes for 1121 LOCs (excluding comments); it is
distributed with 10 textual users’ requirements, and 33 JUnit
test cases. iTrust Medical Care is a medical application: it
has 232 classes for 15495 LOCs (excluding comments); it is
distributed with 15 textual users’ requirements and with 919
JUnit test cases.

B. Procedure

For each experimental object, we applied the following
experimental procedure:
1. Collecting the artifacts: requirements specifications, source
code, and test cases.
2. Recovering the traceability links among such software
artifacts. As mentioned before, we used the following set-up
for LSI: k=300; constant threshold=0.1.
3. Applying the test reduction techniques (i.e., RA, CC and
MORE) to get subsets of the whole test suite, i.e., Full. To
balance the number of test cases in the reduced suites, we
fixed the size of the reduced test suites (e.g., 30% of Full).
Note that we ran MORE with the following set-up:population
size=2*“test suite size”;crossover probability=0.9; mutation
probability=1/“test suite size”. We executed different runs of
MORE considering different iterations, that is frommax itera-
tions=1k tomax iterations=100k. We, moreover, executed both
MORE and RA several times (4 and 20 times, respectively)
and evaluated all solutions generated by them. This lets us
analyze the average behavior of the techniques (reporting
descriptive statistics about the obtained values). MORE has
been also executed by weighting the requirements coverage
(i.e., using WRCovD as the measure for the requirements
coverage) according to a requirements prioritization defined
by one tester not involved in the rest of the study.
4. Injecting faults in the source code of the application. We
injected 15, 15 and 21 faults in AveCalc, LaTazza, and iTrust,
respectively. This task was accomplished by an author not
involved in the rest of the study. Further details are not
provided for space reason (see also [18]).
5. Executing all the test suites in the faulty applications and
collecting information about the different evaluation criteria.
6. Repeating the experiment considering several size of the
reduced suites: 10%, 20%, 30% and 40% of Full and also after
having perturbed the traceability links recovered by MORE
(i.e., robustness evaluation).

21Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 41 / 646

C. Measures Used for the Comparison

The comparison has been performed with respect to the
following evaluation criteria and metrics:

- Size (Size(S)): What is the size of the reduced suites?
Size(S) estimates the test effort required to execute the suite
S. It is computed as the number of test cases ofS.

- Effectiveness (Effect(S)): What is the capability of the
reduced suites in discovering (injected) faults?Effect(S)
measures the capability ofS to reveal (injected) faults. It is
evaluated by considering two metrics:Fault(S), the number
of revealed faults; andrFDC (S), the fault detection capability
rate ofS. rFDC (S) is computed as follows:

rFDC (S) =

∑

f∈F
FRf (S)

|S|

|F |
(11)

FRf (S) is the set of test cases inS that reveals the faultf .
F is the set of all known faults.rFDC (S) gives us an idea
about the capability in revealing faults of the test cases ofthe
suiteS. The higher the value of bothFault(S) andrFDC (S),
the greater the capability to find faults of the suiteS is, that
indicates a highly effective suite.

- Sensitivity (Sens(S)): What is the capability of the reduced
suites of discovering faults affecting top-relevant application
requirements?Sens(S) provides an indication of the capa-
bility of S in revealing faults having a high severity and
relevance with respect to the application requirements, aswell
as the application business.Sens(S) is evaluated by means
of Fault′(S) applied to the subset of the injected faults that
affect relevant application requirements.

- Efficiency (Effic(S)): What is the efficiency of the reduced
suites in discovering faults?Effic(S) estimates the capability
of S in early detecting the faults and it is measured as:

Effic(S) =
Fault(S)

ECost(S)
(12)

Effic(S) is the efficiency computes as the number of detected
faultsFault(S) divided the time spent to do itECost(S) (i.e.,
the time to run the test cases of the suiteS). The larger the
value, the more efficient the approach is.

- Artifact coverage: What is the capability of the reduced
suites of covering the applications artifacts?It gives an idea
about how the test suite covers both the application code
(Code Cov(S)) and requirements (Reqs Cov(S)). In detail,
we measure two metrics:Code Cov(S) is measured in terms
of executed code statements exercised at least once by the test
cases of the suite whileReqs Cov(S) is measured in terms
of number of requirement exercised at least once by the test
cases of the suite.

- Diversity (Div(S1, S2)): How differ the reduced suites
are? Div(S1, S2) estimates the difference of the test cases
composing the reduced suitesS1 and S2. It is measured by
the Levenshtein edit distance [14] (Ld). This distance indicates
the minimum number of operations (insert, delete, and replace)
to transform a source string into a target string both built using
the same alphabet (i.e., representing test cases of suitesS1 and
S2 reduced fromS). The values of Ld range from 0 (the two
strings are the same) to the maximum length of the two strings

(the strings are completely different). Given two testing subsets
(Red1S and Red2S) for a suiteS with a fixed numbern of
test cases,Div is computed as:

Div(Red1S , Red2S) = (
Ld(Red1S, Red1S)

n
) ∗ 100 (13)

- Robustness(Robu(S)): How “noise” in the recovered trace-
ability links impacts on the capability of the suites reduced by
MORE in revealing faults?Robu(S) measures the capability of
the test reduction technique to adequately work in presenceof
incomplete or spurious/wrong traceability links (i.e., “noise”).
It is evaluated by randomly perturbing the traceability links
identified by MORE and re-computing the evaluation criteria
for the obtained suites (e.g., effectiveness, efficiency).

- Settings: How the MORE parameter settings can influence
the obtained suites in revealing faults?It gives an indication
about how to set-up MORE to make it effective and efficient in
revealing faults. With the aim of studying how MORE works in
different settings we considered, in particular, different number
of iterations of the evolutionary algorithm implemented by
MORE and different size of the test suites reduced.

D. Results

Table I summarizes the achieved results in terms of:
minimal, median, and maximal values for some of the col-
lected measures (e.g., effectiveness, sensitivity) for the three
applications. On the other hand, Figure 1 plots the number of
faults revealed by each technique for the three applications.
Notice that these results are for the reduced suites containing
30% of Full suites. However, similar results and plots have
been collected also for reduced suites having different size,
i.e., 10%, 20%, 40% of Full suites. Figure 2 shows the
distribution of code coverage and discovered faults for AveCalc
at increasing size of the reduced suite (i.e., from 10% to
40% of the Full suite); similar plots have been obtained
for all considered metrics and applications. Finally, Figure 3
shows the distributions of discovered faults and efficiencyfor
AveCalc by considering: (i) the reduced suite that is constituted
by 30% of the Full size; and (ii) different iterations of our test
reduction algorithm: 1k, 4k, 10k and 100k. Similar plots have
been obtained for all metrics and applications.

- Effectiveness. Table I (values in bold) and the corresponding
plots for AveCalc, LaTazza and iTrust in Figure 1 show that the
suites reduced with MORE overcome, in most of the cases, the
ones reduced by CC and RA while, in few cases, its result is
comparable with the best suites obtained from CC and RA.
The results achieved by CC and RA are generally worse.
We observe that the capability in revealing faults of suites
reduced with MORE (and using 30% of the Full test cases)
is, at least, double with respect to the other reduced suites,
considering the minimal number of revealing bugs per suite.In
particular, the suites reduced with RA have an highly variable
capability of revealing faults, with respect to those achieved
by MORE. This suggests also that MORE can improve the
capability of test suites reduced by CC and RA in revealing
faults by explicitly optimizing them with respect to code and
requirements coverage and execution time as well. However,
the good results achieved in few cases by RA, in terms of
revealed faults, indicates that improvements are still possible.

22Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 42 / 646

TABLE I. SUMMARY OF THE ACHIEVED RESULTS FOR THE REDUCED SUITES HAVINGSIZE 30% OF THE SUITES: FULL

AveCalc LaTazza iTrust
Full RA CC MORE Full RA CC MORE Full RA CC MORE

Size (%)
100 30 100 30 100 30

Effectiveness
Faultmin 15 1 6 6 15 2 6 5 21 1 7 3
Faultmed - 5 - 8 - 4 - 6 - 4 - 6
Faultmax - 8 - 10 - 8 - 8 - 11 - 10
rFDCmin 0.053 0.009 0.05 0.05 0.044 0.01 0.05 0.04 0.0019 0.0002 0.0019 0.0007
rFDCmed - 0.004 - 0.08 - 0.04 - 0.05 - 0.0014 - 0.0014
rFDCmax - 0.08 - 0.09 - 0.07 - 0.07 - 0.0026 - 0.0024

Sensitivity
Fault’min 6 0 4 2 6 0 3 2 12 1 7 2
Fault’med - 3 - 3 - 2 - 3 - 5 - 5
Fault’max - 4 - 4 - 4 - 4 - 7 - 10

Efficiency
Efficmin 0.83 0.8 0.95 1.5 0.62 0.8 2.2 1.9 0.075 0.011 0.076 0.041
Efficmed - 1.1 - 2 - 1.5 - 2.4 - 0.059 - 0.083
Efficmax - 1.7 - 2.5 - 2.6 - 3.2 - 0.132 - 0.133

Artifact Coverage
Code Covmin 426 414 426 419 316 230 301 233 7772 4602 7430 4690
Code Covmed - 420 - 424 - 284 - 296.5 - 4998.5 - 5681
Code Covmax - 426 - 426 - 308 - 312 - 5422 - 6095
Reqs Covmin 7 6 7 6 5 3 5 4 14 14 14 14
Reqs Covmed - 7 - 7 - 5 - 5 - 14 - 14
Reqs Covmax - 7 - 7 - 5 - 5 - 14 - 14

Robustness
Faultmin 15 - - 6 15 - - 6 21 - - 2
Faultmed - - - 7 - - - 7 - - - 4
Faultmax - - - 8 - - - 8 - - - 7

Fig. 1. Boxplots of Faults for AveCalc (left), LaTazza (center) and iTrust
(right). The solid line indicates the result of Full.

Fig. 2. AveCalc: results at increasing suite size. The solidline indicates the
result of Full, the dashed one the result of CC.

- Sensitivity. Table I shows that the suites reduced with
MORE overcome the ones reduced by CC and RA in terms of
minimal number of severe faults impacting top-three relevant
requirements (identified by one tester not involved in the rest
of the study), and for iTrust also in terms of maximum number
of revealed faults.

- Efficiency. Table I shows that the suites reduced with MORE
always overcome all the other suites (reduced and full ones)in
terms of efficiency in revealing faults, i.e., they have required
less time to reveal each fault.

- Artifact coverage. Table I shows that the suites reduced with

Fig. 3. AveCalc: results at increasing iterations. The solid line indicates the
result of Full, the dashed one the result of CC.

MORE achieved a good coverage degree of the application
artifacts, i.e., code and requirements. In particular, we can
observe that in the considered applications, reduced suites
composed of 30% of test cases of the Full suites have the capa-
bility to cover: (i) almost all the application requirements used
in the study (i.e., more than 60% of requirements); and (ii) a
relevant portion of the application source code (i.e., morethan
59% of requirements). By manually inspecting test suites and
application requirements, we observed that the suites contain
redundant test cases, that is test cases that exercise the same
portion of code but using different input values and oracles. In
addition, some of the used textual application requirements
represent quite high-level descriptions of requirements and
they do not present too many details, thus they shown high
similarity with several test cases, according to LSI.

- Diversity. Table II shows the values collected forDiv. The
test suites reduced by MORE seems to be highly different
from the ones reduced with the other techniques. In particular,
the high value of the minimal diversity (i.e., 42%), achieved
in all the applications by the suites reduced with MORE and
CC, suggests a substantial difference of the composition of
the test suites reduced by MORE with respect to the ones
generated by the single-objective (i.e., CC) technique. While,
the high value of the minimal diversity (i.e., 85%), achieved in
all the applications by the suites reduced with MORE and RA,
suggests that some of the suites reduced by RA are strongly

23Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 43 / 646

TABLE II. A VERAGE RESULTS ABOUTDIV

DIV AveCalc LaTazza iTrust
MORE - RA 92.4 ÷ 100 85 ÷ 100 99.1 ÷ 100
MORE - CC 42 ÷ 100 42.7 ÷ 100 98.2 ÷ 100

similar to the ones generated by MORE.

- Robustness:. Table I shows that the suites reduced with
MORE revealed less faults, on average, than the corresponding
suites reduced using the actual traceability links recovered by
MORE. However, for LaTazza the number of revealed faults
increases of few points, this indicates the existence of traceabil-
ity links incorrectly recovered. Further experimentationneeds
to be devoted to evaluate and detect such links.

- Settings:. Figure 2 shows, as example, the results of the
suites reduced with MORE for AveCalc at different suite size,
respectively for the code coverage measure (left figure) and
for the discovered faults (right figure). Similar plots havebeen
computed for all evaluation criteria and applications. From
these plots, we observe that the suites reduced with MORE at
20,30% of Full suite size achived results almost comparable
to the same Full suites, in terms of artifacts coverage, and
reasonably high results in terms of effectiveness and efficiency.
Conversely, the MORE suites built using less than 20% of Full
performed better, in terms of revealed faults, than CC. We
argue that this is mainly due to the fact that the suites reduced
with MORE by considering, e.g., 10% of Full size have a quite
limited coverage of the application artifacts, than CC (Figure 2-
left the plot of code covered by MORE and CC). Furthermore
about the technique settings, Figure 3 shows that increasing the
maximum number of iterations of the evolutionary algorithm
implemented by MORE does not allow achieving better results
in term of discovered faults and suite efficiency (see the plots
of all the three applications).

- Final remarks. In conclusion, the results achieved in the
experiment show that:(i) consistently with the existing litera-
ture [15], the multi-objective optimization is overall effective
in reducing test suites by balancing different dimensions and
(ii) MORE achieves good results and it tends to outperform CC
and RA, even when a non-trivial suite reduction (e.g., 20/30%
of the full suite) is considered.

E. Threats to Validity

A possible threat that might affect the validity of the
achieved results is represented by the injection of faults in
the application code and their distribution. Different sets of
faults can potentially lead to different results. To reducethis
threat, one of the authors (not involved in the rest of the
study) injected faults in the application code. An other issue
could be also represented by the non-deterministic behavior
of the reduction techniques used. To reduce these biases, we
applied MORE and RA several times and then evaluated all the
generated solutions to study the average trend. Finally, both
the size and complexity of the considered applications may
threaten the validity and the generalization of our results.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we proposed a multi-objective technique to
reduce test suites. The technique reduces test suite considering

the coverage of source code and application requirements, and
the cost to execute test cases. An IR-based traceability recovery
approach has been defined and applied to link software artifacts
(i.e., requirements specifications, source code, and test cases).
A reduced test suite is then determined by using a multi-
objective optimization, implemented in terms of NSGA-II.
Our technique has been evaluated using Java applications
and results are promising. Future work is, however, needed
to further assess MORE on bigger software applications and
compare our solution with additional test reduction techniques.

REFERENCES

[1] S. Yoo and M. Harman, “Regression testing minimization,selection and
prioritization: a survey,” Software Testing, Verificationand Reliability,
vol. 22, no. 2, 2010, pp. 67–120.

[2] J. Karlsson and K. Ryan, “A cost-value approach for prioritizing
requirements,” IEEE Software, vol. 14, 1997, pp. 67–74.

[3] D. Jeffrey and N. Gupta, “Improving fault detection capability by
selectively retaining test cases during test suite reduction,” IEEE Trans.
Softw. Eng., vol. 33, no. 2, Feb. 2007, pp. 108–123.

[4] S. McMaster and A. M. Memon, “Call stack coverage for testsuite
reduction,” in Procs. of Intern. Conf. on Software Maintenance, IEEE
Computer Society, 2005, pp. 539–548.

[5] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and
R. A. Harshman, “Indexing by latent semantic analysis,” Journal of the
American Society of Information Science, vol. 41, no. 6, 1990, pp.
391–407.

[6] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Recovering trace-
ability links in software artifact management systems using information
retrieval methods,” ACM Trans. Softw. Eng. Methodol., vol.16, no. 4,
2007.

[7] I. Aaqib, K. Farhan M., and K. Shahbaz A., “A critical analysis of
techniques for requirement prioritization and open research issues,”
International Journal of Reviews in Computing, vol. 2, no. 1, 2009,
pp. 8 – 18.

[8] K. Atkinson, An Introduction to Numerical Analysis, 2nded, Wiley,
1989.

[9] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Softw. Eng.,
vol. 6, no. 2, 2002, pp. 182–197.

[10] A. Marchetto, C. Di Francescomarino, and P. Tonella, “Optimizing the
trade-off between complexity and conformance in process reduction,” in
Procs. of Intern. Conf. on Search based software engineering, Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 158–172.

[11] Y. Zhang and M. Harman, “Search Based Optimization of Requirements
Interaction Management,” in In Procs. Intern. Symposium onSearch
Based Software Engineering, IEEE Computer Society, 2010, pp. 47–
56.

[12] A. Arcuri, M. Iqbal, and L. Briand, “Random testing: Theoretical results
and practical implications,” IEEE Trans. Softw. Eng., vol.38, no. 2,
2012, pp. 258 –277.

[13] F. Ricca, M. Di Penta, M. Torchiano, P. Tonella, M. Ceccato, and
C. A. Visaggio, “Are fit tables really talking?: a series of experiments
to understand whether fit tables are useful during evolutiontasks,” in
Procs. of Intern. Conf. on Software Engineering, ACM, 2008,pp.
361–370.

[14] V. Levenshtein, “Binary Codes Capable of Correcting Deletions, Inser-
tions and Reversals,” Soviet Physics Doklady, vol. 10, 1996, p. 707.

[15] S. Yoo and M. Harman, “Pareto efficient multi-objectivetest case
selection,” in Procs. of Intern. Symposium on Software testing and
analysis, ACM, 2007, pp. 140–150.

[16] L. de Souza, P. de Miranda, R. Prudencio, and F. de Barros, “A multi-
objective particle swarm optimization for test case selection based on
functional requirements coverage and execution effort,” in Procs. of
Intern. Con.e on Tools with Artificial Intelligence, 2011, pp. 245 –252.

[17] X. MA, Z. He, B. kui Sheng, and C. Ye, “A genetic algorithmfor
test-suite reduction,” in Procs. of Inter. Conf. on Systems, Man and
Cybernetics, vol. 1, 2005, pp. 133–139.

[18] M. M. Islam, A. Marchetto, A. Susi, and G. Scanniello, “Amulti-
objective technique to prioritize test cases based on latent semantic
indexing,” in Procs. of European Conference on Software Maintenance
and Reengineering, IEEE Computer Society, March 2012, pp. 21 –30.

24Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 44 / 646

Applying Mutation Testing to ATL Specifications:
An Experimental Case Study

Yasser Khan and Jameleddine Hassine
Department of Information and Computer Science

King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
{yasera, jhassine}@kfupm.edu.sa

Abstract—Mutation testing is a well-established fault-based
technique for assessing and improving the quality of test suites.
In order to support mutation testing for model transformations,
we define a set of eleven mutation operators for the Atlas
Transformation Language (ATL). The effectiveness of the result-
ing operators, generated automatically using our prototype tool
MuATL, is evaluated using a case study of an ATL program that
refactors a given UML use case model. Our analysis shows that
the proposed operators can successfully detect inadequacies in a
given test suite.

Keywords-Model transformation; Model Driven Engineering;
mutation testing; mutation operators; Atlas Transformation Lan-
guage;

I. INTRODUCTION

Model transformations aim to automatically convert a
source model to a target model based on a set of transforma-
tion rules [1]. A rule defines how attributes of a source object
map to attributes of a target object. The source and target
models must each conform to well defined metamodels, which
specifies the language (syntax and semantics) of the mod-
els [2]. Apart from model refinement, model transformation
can greatly improve several software development activities;
including model refactoring, reverse engineering of models,
and applying design patterns [3].

Faults in model transformations may result in defective
models, and eventually defective code. Many approaches to
test model transformations have been proposed in the liter-
ature. Lamari [4] used a functional testing approach based
on a data partitioning technique that focuses on the struc-
ture of models in order to take into account the structural
aspect of models when generating input test models. González
and Cabot [5] and McQuillan and Power [6] have proposed
white-box test model generation approaches for ATL model
transformations. Fleurey et al. [7] investigated the problem
of test data generation for model transformations and pro-
posed the use of partition testing to define test criteria to
cover the input metamodels. Fiorentini et al. [8] have pro-
posed a uniform framework for treating metamodels, model
transformation specifications and the automation of test case
generation. Their proposed technique [8] is based on a black-
box testing approach of model transformations to validate
their adherence to given specifications. A gray-box testing
technique has also been used by Bauer and Küster [9] for
model transformations. Mottu et al. [10] have introduced the

application of mutation testing to model transformations. The
authors [10] have identified four semantic classes of faults
(navigation, filtering, output model creation, and input model
modification) for model transformations and they have defined
a set of generic mutation operators to cover these class faults.

The widespread interest in testing model transformation
programs provides the major motivation for this research. We,
in particular, focus on investigating the applicability of fault-
based testing to model transformations. To this end, this paper
has the following purposes:

• It extends our previous work [11] on designing mutation
operators for the ATL language [12], so that model trans-
formation developers can gain the benefits of mutation
testing.

• It evaluates the usefulness and the effectiveness of the
proposed operators using a case study of a UML use
case refactoring ATL specification.

The remainder of this paper is organized as follows. Our
proposed ATL mutation testing approach is presented in
Section II. Section III introduces a suite of 11 mutation
operators for the ATL transformation language. In Section IV,
we apply the defined mutation operators to an ATL program
that refactors a given use case model. Finally, conclusions are
drawn in Section V.

II. ATL MUTATION TESTING APPROACH

Mutation testing is a well-established fault based testing
technique, for assessing and improving the quality of test
suites. An ATL mutation operator defines how a particular
ATL artifact is altered in order to inject a single fault. The
resulting ATL program is known as a mutant. If a mutant is
syntactically incorrect, it is considered as an invalid mutant.

An ATL test suite consists of a synthesis of a number
test cases consisting of input models and expected models.
The original ATL program (i.e., ATL Spec S in Fig. 1)
and the generated mutants run on the test cases and the
results are compared using an oracle. Defining a test oracle
for model transformations is a challenging task [13]. ATL
Mutants are generated automatically using our prototype tool
MuATL (Mutation Toolkit for ATL). MuATL, a Microsoft .NET
C# based tool, is inspired by MuJava (Mutation System for
Java) [14] . The execution of the test suite and the oracle
function are performed manually. The automation of such
activities is out of the scope of this paper.

25Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 45 / 646

Mutants

ATL Spec S

ATL Mutation
Operators

Apply the operators on the
Original ATL Spec

Test
Suite

Input models

Input m
odels

Result on S
(output model)

Result on S
Result on SResults on

mutants
(output models)

Test
Oracle

Killed ATL
mutants

Alive non-
equivalent

ATL mutants

Equivalent
ATL

mutants

Compute
adequacy

score

Not Acceptable

Acceptable

Improve the test suite

Using
MuATL tool

Fig. 1. ATL Mutation Process

A given test case, part of the test suite, is said to kill
a mutant if the output model produced by the mutant is
different from the expected model produced by the original
ATL specification. Hence the test case is good enough to
detect the change between the original and the mutant ATL
program. A test case cannot distinguish between a mutant and
the original ATL program if both produce the same output
model(s) for the same input model. If a mutant is not killed
(called alive) by a test suite, this usually means that the test
suite is not adequate. However, it may also be that the mutant
keeps the program’s semantics unchanged-and thus cannot be
detected by any test case. Such mutants are called equivalent
mutants. Equivalent mutants detection is, in general, one of
biggest obstacles for practical usage of mutation testing [15].
Fig. 1 illustrates our mutation testing process for the ATL
language [12].

The effectiveness of a test suite is determined by running it
on all mutants and computing its mutation adequacy score, that
is the ratio of killed mutants to total number of non-equivalent
mutants.

AdequacyScore =
Mk

Mt −Me
(1)

where Mk is the number of killed ATL mutants, Mt is the total
number of generated ATL mutants, and Me is the number of
ATL equivalent mutants. If the score is not acceptable, the
test suite should be improved by adding additional test cases
and/or modifying the existing ones.

III. ATL MUTATION OPERATORS

In this section, we briefly present the eleven proposed ATL
mutation operators.

A. Matched to Lazy (M2L)

The M2L operator converts a matched rule to a lazy rule
(which is an imperative rule). The consequence of applying
the M2L operator is that a mutant rule will never be executed,
since lazy rules must be explicitly invoked; thus, resulting in

loss of information. If an input model contains at least one ob-
ject on which the mutant rule is applicable, the corresponding
M2L mutant will be killed. Otherwise, the mutant rule will
not be exercised by the test case; therefore, resulting in an
alive M2L mutant. An example of a mutation performed by
applying the M2L operator is shown in Fig. 2(a). The M2L
operator prepends the rule AtoB by the lazy modifier in the
mutant rule AtoB’.

B. Lazy to Matched (L2M)

The L2M operator does the opposite of the M2L operator; it
converts a lazy rule into a matched rule. Matched rules cannot
be explicitly invoked; therefore, a runtime failure will occur
when a L2M mutant rule is called. However, a L2M mutation
cannot be detected if the mutant rule is not invoked during the
execution. An example of a mutation performed by applying
the L2M operator is shown in Fig. 2(b). The L2M operator
deletes the lazy modifier of rule AtoB in the mutant rule AtoB’.

C. Delete Attribute Mapping (DAM)

The DAM operator deletes an attribute mapping from the
definition of a particular rule. It is based on the CACD operator
in [10]. The consequence of applying the DAM operator on a
rule is that the attribute, whose mapping is deleted, will not
participate in the transformation process, resulting in a loss of
information. However, a DAM mutation will not be detected
when the source attribute does not have a specified value. The
DAM operator can be applied on matched, lazy and mapping
called rules. An example of a mutation performed by applying
the DAM operator is shown in Fig. 2(c). The DAM operator
deletes the mapping of attribute b2 in the mutant rule AtoB’.

D. Add Attribute Mapping (AAM)

The AAM operator adds a useless attribute mapping from
a source object to a target object in a given rule. It is based
on the CACA operator in [10]. The consequence of applying
the AAM operator on a rule is that unnecessary complexity is

26Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 46 / 646

Original Program Mutant Program
rule AtoB {
 from s : A
 to t: B (
 ……………
)
}

lazy rule AtoB’ {
 from s : A
 to t: B (
 ……………
)
}

(a) Example of a M2L mutation

Original Program Mutant Program
lazy rule AtoB {
 from s : A
 to t: B (
 ……………
)
}

rule AtoB’ {
 from s : A
 to t: B (
 ……………
)
}

(b) Example of a L2M mutation

Original Program Mutant Program
rule AtoB {
 from s : A
 to t: B (
 b1 <- s.a1,
 b2 <- s.a2
)
}

rule AtoB’ {
 from s : A
 to t: B (
 b1 <- s.a1
)
}

(c) Example of a DAM mutation

Original Program Mutant Program
rule AtoB {
 from s : A
 to t: B (
 b1 <- s.a1
)
}

rule AtoB’ {
 from s : A
 to t: B (
 b1 <- s.a1,
 b2 <- s.a2
)
}

(d) Example of a AAM mutation

Original Program Mutant Program
rule AtoB {
 from s : A (
 s.a1 > 0
)
 to t: B (
 b1 <- s.a1,
 b2 <- s.a2
)
}

rule AtoB’ {
 from s : A
 to t: B (
 b1 <- s.a1,
 b2 <- s.a2
)
}

(e) Example of a DFE mutation

Original Program Mutant Program
rule AtoB {
 from s : A
 to t: B (
 b1 <- s.a1,
 b2 <- s.a2
)
}

rule AtoB’ {
 from s : A (
 s.a1 > 0
)
 to t: B (
 b1 <- s.a1,
 b2 <- s.a2
)
}

(f) Example of a AFE mutation

Original Program Mutant Program
rule AtoB {
 from s : A
 to t: B (
 ……………
)
}

rule AtoB’ {
 from s : C
 to t: B (
 ……………
)
}

(g) Example of a CST mutation

Original Program Mutant Program
rule AtoB {
 from s : A
 to t: B (
 ……………
)
}

rule AtoB’ {
 from s : A
 to t: C (
 ……………
)
}

(h) Example of a CTT mutation

Original Program Mutant Program
lazy rule AtoB {
 from s : A
 to t: B (
 ……………
)
 do {
 ……………
 t;
 }
}

lazy rule AtoB’ {
 from s : A
 to t: B (
 ……………
)
 do {
 ……………
 }
}

(i) Example of a DRS mutation

Original Program Mutant Program

module A;

create OUT : UML from
IN : UML;

uses B;
uses C;

module A’;

create OUT : UML refining
IN : UML;

uses C;

(j) Example of a DUS mutation

Original Program Mutant Program
module A;
create OUT : UML

from IN : UML;

module A’;
create OUT : UML

refining IN : UML;

(k) Example of a CEM mutation

Fig. 2. Code examples of the proposed mutation operators

added to the output model. AAM mutants may also cause
a runtime failure if the source and target attributes types
are incompatible. An example of a mutation performed by
applying the AAM operator is shown in Fig. 2(d). The AAM
operator adds the useless mapping “b2 <– s.a2” in the mutant
rule AtoB’.

E. Delete Filtering Expression (DFE)

Filtering expressions constrain the input objects on which a
particular rule can be applied. If a filtering statement evaluates
to true for a given input object, its corresponding rule will be
executed. This can only be applied on matched rules, as they
allow filtering of input objects. The DFE operator deletes the
filtering statement specified in the definition of a rule. It is
based on the CFCD operator in [10]. The consequence of
applying the DFE operator is that the mutant rule will be
executed for incorrect objects of its source type. DFE operator
may cause filtering expressions of multiple rules to evaluate to
true for one source instance. In this case, a runtime failure will
occur. An example of a mutation performed by applying the

DFE operator is shown in Fig. 2(e). The DFE operator removes
the filtering expression s.a1 > 0 in mutant rule AtoB’.

F. Add Filtering Expression (AFE)

Based on the CFD operator in [10], we define the AFE
operator which performs the opposite of the DFE operator. It
adds an unnecessary filtering expression to a matched rule. The
consequence of applying the AFE operator is that some objects
of the input model will not participate in the transformation
process, thus resulting in a loss of information. In order to
apply the AFE operator on a rule, the source object must have
at least one attribute. If this condition is satisfied, a numerous
AFE mutants can be created for a given matched rule. Input
Space Partitioning [16] can be applied on each source attribute
to produce a set of mutant filtering expressions.

An example of a mutation performed by applying the AFE
operator is shown in Fig. 2(f). The AFE operator adds the
filtering expression s.a1 > 0 in mutant rule AtoB’.

27Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 47 / 646

G. Change Source Type (CST)

The CST operator changes the source type of a given rule.
It can be applied on matched and lazy rules. The consequence
of applying the CST operator is that incorrect transformations
may be performed. Indeed, the application of the CST operator
on a rule may cause a runtime failure if the new source
type does not contain the attributes which are specified to
be mapped, or if multiple rules are associated with the new
source type. An example of a mutation performed by applying
the CST operator is shown in Fig. 2(g). The source type of
rule AtoB is changed from A to C in the mutant rule AtoB’.

H. Change Target Type (CTT)

The CTT operator changes the target type of a given rule.
It can be applied on matched, lazy and mapping called rules.
The consequence of applying the CTT operator is that the
objects in the input model will be transformed into objects of
incorrect type in the output model. An example of a mutation
performed by applying the CTT operator is shown in Fig. 2(h).
The target type of rule AtoB is changed to C in the mutant
rule AtoB’.

It should be noted that CST and CTT do not produce
syntacticly incorrect mutants.

I. Delete Return Statement (DRS)

The last statement of a do block in a mapping called rule
must return the target object. It is optional to specify a return
statement in the do block of matched and lazy rules. The DRS
mutation operator deletes the return statement of a do block.
An example of a mutation performed by applying the DRS
operator is shown in Fig. 2(i). The DRS operator deletes the
return statement “t;” of the do block of rule AtoB in mutant
rule AtoB’.

J. Delete Use Statement (DUS)

An ATL module can import functions from a reusable
library via the uses keyword. We define, the DUS operator
which deletes an import statement from a given module. Since
the ATL compiler does not check whether external functions
are imported or not, the DUS operator does not produce an
invalid mutant. If no external function is invoked by a test case,
a DUS mutant will remain alive. An example of a mutation
performed by applying the DUS operator is shown in Fig. 2(j).
The DUS operator deletes the import statement of library B
in mutant module A.

K. Change Execution Mode (CEM)

ATL modules can execute in two modes, default and re-
fining. Default mode is the default execution mode of ATL
transformations and it is specified by the from keyword. The
refining mode allows developer to specify rules only for those
objects that need to be transformed; remaining objects will be
implicitly copied into the output model. It should be added that
refining mode applies only when the source and target models
conform to the same metamodel. We define the CEM operator
which switches the execution mode of an ATL module from

default to refining mode, or vice versa. In default mode, a
CEM mutation may cause useless objects to be copied into the
output model; whereas, in refining mode, it will cause loss of
information. If a module contains imperative code, which is
not allowed in refining mode, application of the CEM operator
will result in an invalid (i.e., syntactically incorrect) mutant.
An example of a mutation performed by applying the CEM
operator is shown in Fig. 2(k). The CEM operator changes the
execution mode of module A to refining mode in the mutant
module A’.

IV. CASE STUDY: UML USE CASE MODEL REFACTORING

The case study pertains to an ATL module, which im-
plements a use case model refactoring. This refactoring is
based on use case antipattern a1, which is introduced in [17].
Antipattern a1 occurs when an actor is associated with a
generalized use case in order to enable indirect access to a
framework of services, which are implemented by specialized
use cases. A generalized use case is often incomplete because
it contains parts of common behavior required by the special-
ized use cases. Therefore, initiation of such a generalized use
case will result in incomplete meaningless behavior. A given
use case is involved in this antipattern if it:

• is a concrete generalized use case
• neither includes nor extends any use case
• not extended by any other use case
• is directly or indirectly associated with an actor
For a given input use case model, the transformation detects

the model elements involved in a1, and performs the Con-
creteToAbstract refactoring, which converts the generalized
use case to an abstract use case. The semantics of abstract use
cases are similar to the semantics of an abstract entity in the
OO paradigm. Setting a use case as abstract indicates that it
cannot be solely performed. Therefore, one of the specialized
use cases will be performed. This guarantees that a complete
and meaningful service will be delivered to the actor. If a1 is
not detected, the refactoring is not performed. Fig. 3 shows the
subject ATL module, which is implemented in refining mode.
It references three reusable libraries: UseCase, Association,
and Actor. The filtering expression specified in the from
clause of matched rule AbstractGeneralizedUC implements
the detection conditions for a1. If a use case satisfies all of
these detection conditions, its isAbstract property is set.

The case study contains 9 test cases which satisfy the
Correlated Active Class Coverage (CACC) criteria [18], a
logic coverage testing criteria that tests individual clauses
in a logical expression. Each test case includes the input
model and the expected output model. For instance, Fig. 4 and
Fig. 5 illustrate the input model and the expected output model
relative to test cases TC1 and TC2, respectively. In the input
model of TC1, use case Apply Special Offer is involved in
antipattern a1; therefore, it is set abstract in the output model.
It should be noted that the antipattern a1 is not detected in
TC2; hence, no refactoring is performed.

The proposed mutation operators are automatically applied
on the subject module using our prototype tool MuATL, and

28Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 48 / 646

module ConcreteToAbstract;
create OUT : UML refining IN : UML;

uses UseCase;
uses Association;
uses Actor;

rule AbstractGeneralizedUC {
 from s: UML!UseCase (
 s.isGeneralization() and
 s.isConcrete() and
 not (
 s.isIncluder() or
 s.isExtension() or
 s.isExtended()
)
 and (
 (s.isAssociatedWithActor() and
 not s.isIncluded()) or
 s.isIndirectlyAssociatedWithActor()
)
)
 to t: UML!UseCase (
 isAbstract<-true
)
}

Fig. 3. Excerpt of the Use Case refactoring model transformation

(a) Input Use Case Model

(b) Expected Output Use Case Model

Fig. 4. Input and expected output models of TC1

result in 47 mutant modules. In addition to the proposed
operators, the Conditional Operator Replacement (COR) [16],
Unary Operator Deletion (UOD) [16], and the Non-Void
Method Call (NVMC) [19] operators are also applied. These
additional operators are used because they will target the
filtering expression of rule AbstractGeneralizedUC.

Fig. 5. Input and expected output models of TC2 (they are the same)

The rule AbstractGeneralizedUC contains 6 unmapped
source attributes (name, isAbstract, include, extend, gener-
alization, subject) and 5 unmapped target attributes (name,

DAM AAM DFE CST CTT CEM DUS COR UOD NVMC
Equivalent 0 11 0 0 9 0 0 1 0 0
Live 0 17 0 0 9 0 0 1 0 0
Killed 1 13 1 9 0 1 3 28 2 8

0
5
10
15
20
25
30
35
40
45

N
um

be
r o

f M
ut
an

ts

Mutants Statistics for the Use Case Refactoring Case Study

Fig. 6. Live, killed, and equivalent mutants for the ConcreteToAbstract model
transformation program

(a) Input Model for TC10

(b) Expected output Model for TC10

Fig. 7. Input and expected output models for TC10

(a) Input model for TC11

(b) Expected output model for TC11

Fig. 8. Input and expected output models for TC11

29Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 49 / 646

include, extend, generalization, subject); therefore, the appli-
cation of the AAM operator resulted in 30 mutants. One DAM
mutant was created for the mapping statement “isAbstract <-
true”. 10 source classes, and 10 target classes participate in the
model transformation; therefore, 9 CST and 9 CTT mutants
are created. It should be noted that these sets of source and
target classes are the same. One DFE mutant corresponds
to the filtering expression of AbstractGeneralizedUC. The
AFE operator could not be applied on AbstractGeneralizedUC
because it already contained a filtering expression. The M2L
and L2M operators are also not applicable because the subject
module is specified in refining mode. The module imports 3
reusable libraries; therefore, a DUS mutant is created for each
import statement.

The results of the mutation analysis, presented in Fig. 6,
reveal that 66 mutants are killed by the 9 test cases, and
27 mutants are kept alive. 1 DAM, 13 AAM, 5 CST, and
3 DUS mutants are killed as a result of runtime failures. 1
DFE, 4 CST, 1 CEM, 28 COR, 2 UOD, and 8 NVMC are
killed because they produce incorrect output models. The 9
live CTT mutants are equivalent mutants; they cannot be killed
by any test case. The single live COR mutant resulted in errors
states for several test cases; however, these error states did not
propagate into a failure. Moreover, for this mutant, no test case
can be designed which will result in a failure; therefore, it was
concluded as equivalent.

The nine test cases give an adequacy score of 91.67%.
The obtained results show that the AAM operator determined
inadequacies in the subject test suite. The 6 live non-equivalent
AAM mutants (i.e., 17-11 = 6) can be killed by adding new
test cases. We add TC10 and TC11, each of which kills 3 live
AAM mutants, to the subject test suite. This enhanced test
suite gives a 100% adequacy score. The input models of TC10
and TC11 are shown in Fig. 7(a) and Fig. 8(a), respectively.

V. CONCLUSIONS

In order to support mutation testing for ATL language, we
have defined a set of eleven mutation operators. Our approach
has been validated using a use case model refactoring program.
The results have shown that the operators successfully detected
inadequacies in the subject test suite.

As a future work, we are planning to further enhance
our prototype tool MuATL to include a test case execution
engine and a test oracle. In addition, we aim at conducting
an empirical study to better assess the usefulness and the
effectiveness of the proposed ATL operators.

Furthermore, we will investigate the addition of mutation
operators of traditional programming languages that are rel-
evant to ATL. The idea of mutation testing will also be
explored for other model transformation languages, such as
QVT, Tefkat, and Epsilon.

ACKNOWLEDGMENT

The authors would like to acknowledge the support provided
by the Deanship of Scientific Research at King Fahd Univer-
sity of Petroleum & Minerals (KFUPM) for funding this work
through project No. IN121009.

REFERENCES

[1] A. G. Kleppe, J. Warmer, and W. Bast, MDA Explained: The Model
Driven Architecture: Practice and Promise. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2003.

[2] J. M. Favre, “Towards a basic theory to model model driven engineer-
ing,” in In Workshop on Software Model Engineering, WISME 2004,
joint event with UML2004, 2004.

[3] S. Sendall and W. Kozaczynski, “Model transformation: The heart and
soul of model-driven software development,” IEEE Softw., vol. 20, no. 5,
pp. 42–45, Sep. 2003.

[4] M. Lamari, “Towards an automated test generation for the verification
of model transformations,” in Proceedings of the 2007 ACM symposium
on Applied computing, ser. SAC ’07. New York, NY, USA: ACM,
2007, pp. 998–1005.

[5] C. A. González and J. Cabot, “Atltest: a white-box test generation
approach for ATL transformations,” in Proceedings of the 15th interna-
tional conference on Model Driven Engineering Languages and Systems,
ser. MODELS’12. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 449–
464.

[6] J. A. Mc Quillan and J. F. Power, “White-Box Coverage Criteria
for Model Transformations.” in 1st International Workshop on Model
Transformation with ATL, Jul 2009, p. 63.

[7] F. Fleurey, J. Steel, and B. Baudry, “Validation in model-driven engineer-
ing: testing model transformations,” in Model, Design and Validation
(MoDeVa 2004), Rennes, France, nov. 2004, pp. 29 – 40.

[8] C. Fiorentini, A. Momigliano, M. Ornaghi, and I. Poernomo, “A con-
structive approach to testing model transformations,” in Proceedings of
the Third international conference on Theory and practice of model
transformations, ser. ICMT’10. Berlin, Heidelberg: Springer-Verlag,
2010, pp. 77–92.

[9] E. Bauer and J. M. Küster, “Combining specification-based and code-
based coverage for model transformation chains,” in Proceedings of
the 4th international conference on Theory and practice of model
transformations, ser. ICMT’11. Springer-Verlag, 2011, pp. 78–92.

[10] J.-M. Mottu, B. Baudry, and Y. Le Traon, “Mutation analysis testing
for model transformations,” in Proceedings of the Second European
conference on Model Driven Architecture: foundations and Applications,
ser. ECMDA-FA’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp.
376–390.

[11] Y. Khan and J. Hassine, “Mutation operators for the atlas
transformation language,” in Proceedings of the 2013 IEEE Sixth
International Conference on Software Testing, Verification and
Validation Workshops, ser. ICSTW ’13. Washington, DC, USA:
IEEE Computer Society, 2013, pp. 43–52. [Online]. Available:
http://dx.doi.org/10.1109/ICSTW.2013.13

[12] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL: A model
transformation tool,” Sci. Comput. Program., vol. 72, no. 1-2, pp. 31–39,
Jun. 2008.

[13] J.-M. Mottu, B. Baudry, and Y. Le Traon, “Model transformation testing:
oracle issue,” in IEEE International Conference on Software Testing
Verification and Validation Workshop (ICSTW), april 2008, pp. 105 –
112.

[14] Y.-S. Ma, J. Offutt, and Y. R. Kwon, “Mujava: an automated class
mutation system: Research articles,” Softw. Test. Verif. Reliab., vol. 15,
no. 2, pp. 97–133, Jun. 2005.

[15] Y. Jia and M. Harman, “An analysis and survey of the development
of mutation testing,” IEEE Trans. Software Eng., vol. 37, no. 5, pp.
649–678, 2011.

[16] P. Ammann and J. Offutt, Introduction to Software Testing, 1st ed. New
York, NY, USA: Cambridge University Press, 2008.

[17] M. El-Attar and J. Miller, “Improving the quality of use case models
using antipatterns,” Software & Systems Modeling, vol. 9, no. 2, pp.
141–160, 2010.

[18] P. Ammann, J. Offutt, and H. Huang, “Coverage criteria for logical
expressions,” in 14th International Symposium on Software Reliability
Engineering), 17-20 November 2003, Denver, CO, USA, ser. ISSRE ’03.
Washington, DC, USA: IEEE Computer Society, 2003, pp. 99–107.

[19] PIT, “PIT mutation testing,” http://pitest.org/quickstart/mutators/, last
accessed, August 2013.

30Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 50 / 646

The Use of Experimentation Packages for
Evaluating the Quality of Mobile Software Products

Auri Marcelo Rizzo Vincenzi
Instituto de Informática

Universidade Federal de Goiás, UFG
Goiânia-GO, Brazil

e-mail: auri@inf.ufg.br

Gilcimar Divino de Deus
Departamento de Computação

Pontifícia Univ. Católica de Goiás, PUC-GO
Goiânia-GO, Brazil

e-mail: gyngil@gmail.com

João Carlos da Silva
Instituto de Informática

Universidade Federal de Goiás, UFG
Goiânia-GO, Brazil

e-mail: jcs@inf.ufg.br

Plínio de Sá Leitão-Júnior
Instituto de Informática

Universidade Federal de Goiás, UFG
Goiânia-GO, Brazil

e-mail: plinio@inf.ufg.br

José Carlos Maldonado
Inst. de Ciências Matemáticas e de Computação

Universidade de São Paulo, USP
São Carlos-SP, Brazil

e-mail: jcmaldon@icmc.usp.br

Márcio Eduardo Delamaro
Inst. de Ciências Matemáticas e de Computação

Universidade de São Paulo, USP
São Carlos-SP, Brazil

e-mail: delamaro@icmc.usp.br

Abstract—Mobile devices are becoming more and more com-
mon. Embedded in these devices are different mobile applica-
tions, making the devices more useful and popular. The quality
of such applications is increasingly becoming a problem. Several
techniques have emerged to assess software quality. In this paper,
an experimentation package is proposed to evaluate some of
the well-known software testing criteria on detecting faults in
mobile software. This paper presents the results obtained after
three replications of the proposed package. Based on statistical
analysis, it was possible to arrive at statistical equivalences and
differences between the evaluated criteria. This can help people
concerned to establish testing strategies for mobile software.

Keywords-experimental package; software testing; ubiquitous
application

I. INTRODUCTION

When a customer orders an information system, he/she lists
some characteristics or requirements and he/she searches for
quality in each item of the list. Software engineers must aim
at quality during all the development process. According to
IEEE, software product quality is defined as: “The degree to
which a system, component or process meets the specified
requirements and the needs or expectations of the client” [1].

Standards such as ISO 9000, 9001, and 9002 deal with
quality management. One of the requirements of these models
is Verification and Validation (V&V). In other words, it is nec-
essary to determine if the product is being produced correctly,
if this product meets its requirements and if it responds as
expected. Software testing is largely responsible for ensuring
the quality of a software product and it is one of the most
common activities in software validation.

Several techniques have been adopted to expose faults in
software products. Ad-hoc testing is based on the experience
of the tester that executes a set of test cases he/she believes
enough to ensure quality. A more systematic way of carry-
ing out testing is to employ the best known functional and
structural techniques.

With the functional technique, a program is tested from
the user’s point of view. The component being tested is
considered as a black box, whose implementation details are
not known, inputs are supplied, and results are compared
against the expected ones. On the other hand, the structural
technique, also known as a white box test, determines test
cases based on implementation aspects and helps detect logical
and programming faults.

In 2012, there were around 256 million cell phones in
Brazil [2]. Their processing power, transmission speed, and
other technological characteristics allow information handling
by systems in mobile devices. It is very important for projects
to be developed, which focus on improving testing strategies
and applying them to the mobile environment.

One problem with mobile devices is the difficulty in
testing applications in the device itself (real environment).
Development and testing phases, in general, take place using
emulators on desktop computers. It is extremely important
for applications to be tested in their real environment, since
errors may occur and be camouflaged by emulators due
to their memory and processing limitations. Java Bytecode
Understanting Testing/Micro-Edition (JaBUTi/ME) is a tool
developed in this context, which supports the testing of Java
ME software in both emulators and real devices [3].

31Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 51 / 646

This paper presents the results collected after three replica-
tions of an experimentation package created with the purpose
of analyzing and comparing three testing techniques for mobile
devices: ad-hoc, functional (focusing on boundary analysis and
equivalence partitioning), and structural (mainly All-Nodes
and All-Edges criteria [4]).

An experimentation package is a controlled and systematic
way of carrying out experiments in several stages, making it
possible to incrementally obtain a quantity of statistically sig-
nificant data. In addition, the availability of an experimentation
package allows the same study to be carried out by different
people, in different places, with different cultures. This makes
it possible to update these data over time, increasing the
statistical database and increasing the confidence on the quality
of obtained results.

This paper shows the database status after the third replica-
tion of the experimental package (investigating ad-hoc, func-
tional, and structural testing techniques), and the adaptation of
the JaBUTi/ME tool to support one of the testing techniques.
Related works are described in Section II. In Section III, the
main characteristics of the JaBUTi/ME tool are described,
along with the testing criteria it supports. The experimentation
package used in the replications is detailed in Section IV.
Section V presents the experiment description, including the
statistical data analysis. Section VI presents the conclusion of
this study and future research directions.

II. RELATED STUDIES

Some studies in the literature have discussed mobile ap-
plications testing and the majority of them applies black-box
testing technique without comparisons with structural testing.

Malevris [5] presented a method to effectively perform
structural testing in Java programs. The proposed methods
intend to generate a set of feasible paths and automatically
generate test data to traverse such paths. Symbolic execution
is used to identify feasible paths and the results show that, in
general, the proposed methods avoid the generation of infea-
sible paths and ensure high coverage of the generated paths.
No comparison with additional testing criteria is provided.

Pocatilu [6] focuses on the aspects related to unit testing
in mobile applications based on Java ME. Emulators are
used to run test cases written according to the JUnit testing
framework. The author concludes that unit testing does not
have to be limited to the JUnit framework, and other methods
and techniques shall be used, such as the ones proposed in our
evaluation.

Hu and Neamtiu [7] propose an approach for automating
the testing process for Android applications. The first step
was to understand the nature and frequency of bugs affect-
ing graphical user interface (GUI) of Android applications.
Following, they proposed an automated test generator for
detecting these GUI bugs. The approach is based on feeding
the application with random events, instrumenting the Android
Virtual Machine, registering log/trace files, and analyzing
them post-run. In that work, no structural testing criteria was
employed to evaluate the quality of the generated test data.

In our work, we evaluate three different testing criteria
considering the coverage and fault detection capability of their
generated test set.

III. JABUTI/ME AND MOBILE DEVICES

Testing without a tool increases the chance of human mis-
takes, and lowers productivity in test execution and analysis
of results. Many tools have been produced, and each is
focused on the use of one or more criteria. Java Bytecode
Understanding and Testing (JaBUTi) [8] is one such tools.
It explores structural testing criteria, which help creating test
cases that exercise specific parts of the code.

Among the various resources offered by JaBUTi, one of
the most important is the support in the coverage of bytecode-
based Java programs. In others words, JaBUTi performs all
computations for the Java structural test directly on bytecode,
not on program source.

Java Bytecode Understanting Testing/Micro-Edition (JaBU-
Ti/ME) is a version of JaBUTi that supports the structural
testing of Java ME programs [3]. It explores the same re-
sources as the original version and complements the original
version with resources that allow program test in real mobile
devices or emulators. Among the customizable resources in
this version are the different code instrumentation mechanisms
offered, which make it possible for the real application to
communicate with the test server in accordance with memory
and connectivity restrictions imposed by the different types of
mobile devices, as shown in Figure 1.

Figure 1. Environment cross platform

Program instrumentation is an essential activity for applying
structural testing, making it possible to capture information
about code coverage during test case execution. When a
code is being instrumented, a call to a method responsible
for identifying and storing information about which section
of code has been executed is added to the bytecode. This
information is later sent to the test server which computes
the resultant coverage with respect to each testing criterion.

Since the development of JaBUTi/ME, a series of experi-
mental studies was carried out aiming at evaluating whether
its characteristics help the test of Java ME products. In this
context, the focus of this study is to execute tests of programs
developed for mobile devices using JaBUTi/ME. The creation
of an experimentation package allows the experiments to be
executed in a controlled environment and to be replicated by
other researchers also interested in this research area.

32Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 52 / 646

The replications of one particular package help to improve
the collected data, to increase the sample size and to allow
more reliable conclusions. One reason for carrying out the
replications was the physical impossibility of executing the
entire experimentation package with a large sample of sub-
jects. This was due to the limited number of places in software
laboratories available. The replications in this study serve to
increase the level of confidence in the collected data. They also
help to show which technique, ad-hoc, functional or structural
is more efficient in detecting faults in Java ME programs for
the creation of new test cases and program code coverage. An-
other intention was to evaluate whether the resources offered
by the tool are useful for testing Java ME programs in real
devices and emulators. Due to the unavailability of a sufficient
number of real devices, that replication was carried out using
mobile device emulators.

IV. EXPERIMENTATION PACKAGES

This section describes how the experimental study using the
JaBUTi/ME tool in replications was conducted. The purpose
was to evaluate the three techniques mentioned earlier and
their suitability for testing mobile device applications. This
also made it possible to evaluate the benefits the criteria
supported by the tool offer to the tester.

The goal of this study is to contribute to the development of
an incremental test strategy with the support of a testing tool
that can be used to improve the quality of software products
and information systems used in mobile devices. Considering
the increasing demand for mobile device software, the results
of this study may significantly contribute to evaluating of
testing techniques and to increasing in the quality of mobile
software products.

A. Experimentation Package for JaBUTi/ME

The experimental study follows the process described by
Wohlin et al. [9]. This experimentation package is defined and
organized in the following way:

• Definition: Structural Test of Java ME Software in Mo-
bile Devices Using JaBUTi/ME.

• Context: This experiment is an example of software
engineering and, more specifically, of software testing.
A specific tool, JaBUTi/ME, which was created for the
structural testing of Java ME programs.

• Hypotheses: The following hypotheses may or may not
have been valid after the experiment has been carried out.

– Null Hypotheses:
∗ H0,1 - The structural technique, supported by

JaBUTi/ME tool, detected the same number of
faults as the ad-hoc or functional techniques;

∗ H0,2 - The structural technique, supported by
JaBUTi/ME tool, obtained the same percentage of
coverage as the ad-hoc or functional techniques;

∗ H0,3 - The structural technique, supported by
JaBUTi/ME tool, did not contribute to the creation
of new test cases.

– Alternative Hypotheses:

∗ H1,1 - The structural test, supported by JaBU-
Ti/ME tool, detected different number of faults
obtained when compared to the ad-hoc or func-
tional technique;

∗ H1,2 - The structural technique, supported by
JaBUTi/ME tool, obtained a different percentage
of coverage when compared to the ad-hoc or
functional techniques;

∗ H1,3 - The structural technique, supported by
JaBUTi/ME tool, contributed to the creation of
new test cases which had not previously been
identified by either the ad-hoc or functional test.

• Dependent Variables:

– Program complexity;
– Number of defects revealed;
– Coverage percentage;
– Number of new test cases.

• Independent Variables:

– Ad-hoc technique;
– Functional technique;
– Structural technique;
– Selected programs.

• Participants: Sixty people with computer science and
Java programming knowledge participated in the experi-
ment as subjects. The only prerequisite to participate in
the experiment is a basic knowledge of Java program-
ming. Participants should be able to recognize commands,
programming structures, loops, and so on. No software
testing knowledge was required.

• Experimental Project: Four Java ME programs were
selected for the experiment. The factorial-fractional ran-
domized technique [10] was used to assign to each subject
a particular testing technique and a program to be tested.
One of these programs was used for teaching functional
and structural techniques. Participants used the other three
to run the experiment. The participants identification
by their names was not relevant for the object of the
experiment. Participants were grouped merely as a way
of dividing the same program among a given number
of students. The information was collected and evaluated
individually. It is important to mention that the programs
were divided equally among the groups.

The experiment was carried out over three non consecutive
days. An hour of training was provided for each technique.
Later, the participants had an hour and a half to apply “hands
on” the technique in one of the selected programs. The
laboratory had 20 desktop computers with the Linux operating
system, Java 6.0, Eclipse, Wireless Tool Kit 2.5, EclipseME,
and the JaBUTi/ME tool.

The programs were selected from software repositories
such as http://www.sourceforge.net and http://code.google.
com. Twenty programs were pre-selected based on the avail-
ability of source code and program complexity, of which the
four most complex were chosen.

33Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 53 / 646

All these programs were previously instrumented using
JaBUTi/ME to make it possible to collect trace data during
the program execution, even when the ad-hoc or functional
technique is used to generate test cases. The execution was
monitored and code coverage could be evaluated later in
relation to the structural criteria implemented by JaBUTi/ME.
It is important to point out that the same tool was used to
evaluate the three techniques. Figure 2 shows the process of
executing instrumented software and how coverage informa-
tion was collected. Additionally, each subject should also fill
out a form indicating when a given test case detects a fault.

• Instrumentation: In this stage, the forms, software, and
laboratory environment for carrying out the experiment
was prepared.

Figure 2. Monitoring scheme outline

Four forms were prepared to be filled out by the subjects:
Form 1 – Group Formation; Form 2 – Test Cases; Form 3 –
Suggestions; and Form 4 – Course Evaluation. These forms
and all the data collected may be obtained by contacting the
corresponding author.

The four most complex pre-selected programs were chosen
for the experiment. Table I presents the name of the programs
used for data collection, the average maximum cyclomatic
complexity of their methods, and a brief description of each.

TABLE I. SELECTED PROGRAMS AND COMPLEXITY

Id. Name Complexity Description
P1 AntiPanela 3.87 Registers soccer players and per-

forms team drawings based on the
number of players, avoiding fa-
voritism.

P2 CarManager 5.52 Monitors and manages motor vehi-
cle fuel expenses.

P3 CódiceFiscale 6.17 Checks the validity of or generates
the Italian “Codice Fiscale” tax ID.

Programs P1, P2, and P3 were used by participants to apply
ad-hoc, functional, and structural techniques. Their order and
distribution are defined in Table II. A fourth program, called
BMI, which calculates Body Mass Index based on height and
weight and classifies an individual according to obesity level,
was used for training participants in functional and structural
techniques and tools.

To assess the quality of the resulting test set on detecting
faults, ten faults were artificially seeded to each program
based on the concept of mutation [11]. Faults were related
to variable initialization, computations, control flow, interface,
and data structure. After inserting the faults, programs were
compiled and instrumented using JaBUTi/ME resources to
make it possible to monitor test case execution, and later to

analyze their coverage in relation to the criteria supported by
the tool.

• Evaluation: For all programs, the evaluation was based
on Form 2 – Test Cases, which contains information about
test case execution (faults found).

• Preparation: Materials and instructions for participation
in the experiment were distributed. It is important to
demonstrate what is really taking place as the experi-
ment was conducted. The BMI software was chosen for
teaching all of the techniques and for running programs
in mobile device emulators. This software was not used
for collecting information from the participants.

• Execution: This is the task of executing what was
planned in the estimated time and documenting any
deviation that could change or affect the objective of the
experiment. Program specifications were also explained
to the participants, so they could become familiarized
with the programs under testing.

• Data Validation: At the end of the application of each
technique by the participant, the entire project (including
the trace file) must be labelled and sent to the organizing
commission, ensuring that the generated data of each
participant was correct.

• Analysis and Interpretation: Immediately after experi-
ment and replication data had been collected, the informa-
tion was cross-checked and analyzed in order to evaluate
the hypotheses defined in the experimentation package.

• Presentation and Packaging: This paper intends to
group the data of these three replications.

V. EXPERIMENT DESCRIPTION

The proposed experimentation package was replicated
three times. The information collected after each replication
strengthen and increase the entire experiment’s sample size.

An introduction about software testing showing the impor-
tance of testing, the role of the tester, the main kinds of
tests, unit, integration, and system tests were explained to and
discussed with the participants during training. The students
were then randomly assigned to 6 groups. Once the groups
were defined, a Java ME program together with its respective
specification text were distributed to each group. The objective
on the first day was to find the largest number of faults in
the programs in accordance with each individual’s knowledge
of software construction and testing, i.e., using the ad-hoc
technique. The distribution of programs to the groups is shown
in Table II.

TABLE II. GROUP, PROGRAM AND TECHNIQUE DISTRIBU-
TION

Technique/Group G1 G2 G3 G4 G5 G6
ad-hoc P1 P3 P2 P1 P3 P2
Functional P2 P1 P3 P2 P1 P3
Structural P3 P2 P1 P3 P2 P1
G – Group; P – Program;

After executing the ad-hoc technique, on the second day
the participants received training concerning functional test

34Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 54 / 646

technique criteria. New programs and their specifications were
distributed to each group. The groups were again asked to
apply the knowledge they had acquired on functional testing
to carry out tests on the second program.

After the tests using the functional technique were run,
on the third day participants were trained in the structural
technique and use of the JaBUTi/ME tool. After this, the third
and final distribution of programs was carried out and students
applied structural technique concepts in running structural
tests.

During the execution of the tests using any of the tech-
niques, the participants recorded any nonconformity they
found. To conclude the experiment, they were asked to fill out
a form with suggestions for improvement and their individual
evaluation of the course. It is important to emphasize that all
students were required to test all three programs using the
three different testing techniques.

A. Data Analysis

The experimentation package was prepared to capture cov-
erage information for the programs under testing, regardless
of applied technique. The JaBUTi/ME tool was used to read
the data from the executed tests of each subject. The tool
supports four testing criteria: All-Nodes, All-Edges, All-Uses,
and All-Potential-Uses [8]. The training focused on the first
two criteria, known as control flow criteria (All-Nodes and
All-Edges). However, all the criteria cited above, including
data flow, were analyzed by measuring the coverage of the
tests in relation to these test criteria. It is important to point
out that non-executable test requirements produced by the
above mentioned criteria were not identified. In addition, test
execution time was limited to one hour and a half. Therefore, it
may be that the maximum coverage of 100% was not achieved
due to these requirements and time constraints. However, since
the objective was to compare which test set covered more
testing requirements, the maximum obtained coverage of any
test set is sufficient to establish this relationship. Tables III
and IV synthesize these data.

The cumulative data after the third replication shows that
the generated test set from the structural technique achieved
the highest coverage of all the programs tested, and, for this
set of programs, the standard deviations of the three techniques
were very close (see Table IV). These data show that the
values presented do not cluster around the mean and that the
structural technique demonstrates better coverage for software
testing in a mobile device context. Figures 3 to 5 show
the coverage evolution of each testing criterion supported by
JaBUTi/ME for each program under analysis. Observe that
structural testing test set achieved the highest coverage in all
three programs.

The structural and ad-hoc techniques detected more faults
(see Table IV and Figure 7). Although the numbers are
small in comparison with the number of faults inserted, it
is important to point out that program coverage was not
complete and that test execution time was a criterion in
creating the experimentation package. This suggests that there

is a tendency for increasing the number of detected faults
as coverage also increases, which would only be possible if
test creation and execution time increased. Since the structural
technique presented the best results in coverage and number
of test cases, it has a chance of revealing more faults than the
other techniques, due to its different characteristics , but this
should be further investigated.

Figure 3. Coverage by program: AntiPanela

Figure 4. Coverage by program: CarManager

Figure 5. Coverage by program: CodiceFiscale

Thus, the more complex the program, such as CarManager
and CodiceFiscale, the greater the time required to test it.
In addition, the structural and functional techniques with
JaBUTi/ME were used in actual practice by the majority of
participants for the first time. All this information can be found
in Tables III and IV, and Figures 6 and 7.

35Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 55 / 646

TABLE III. AVERAGE OF COVERAGE (%), TEST CASES AND FAULTS BY PROGRAM

AntiPanela CarManager CodiceFiscale
Criteria/Technique ad-hoc Functional Structrual ad-hoc Functional Structrual ad-hoc Functional Structrual
All-Nodes 68,76 63,50 87,25 56,56 56,63 66,27 40,88 50,71 64,69
All-Edges 58,35 53,50 77,67 43,89 43,84 52,53 31,29 38,79 51,69
All-Uses 57,47 52,89 77,17 48,22 47,63 56,33 34,47 43,00 57,00
All-Pot-Uses 57,59 53,33 75,92 40,17 39,32 48,27 28,47 34,93 42,81
Number of Test Cases 11,13 10,56 13,33 7,75 9,16 10,62 7,94 7,29 11,56
Faults Found 3,73 2,67 3,33 1,75 1,79 1,00 1,59 1,69 2,50

TABLE IV. STATISTICS OF COVERAGE (%), TEST CASES AND FAULTS BY TECHNIQUE

ad-hoc Funcional Structrual
Criteria/Technique Av SD Median Av SD Median Av SD Median
All-Nodes 55 20 56 57 18 61 72 18 73
All-Edges 45 18 44 46 17 50 59 18 59
All-Uses 47 19 48 48 17 50 62 18 63
All-Pot-Uses 42 19 40 43 18 44 54 20 54
Number of Test Cases 8,9 6,6 8,0 9,1 5,0 8,0 11,8 5,4 11,0
Faults Found 2,3 2,0 2,0 2,1 1,5 2,0 2,3 1,8 2,0

Figure 6. Number of test cases by program

Some data were lost during the experiment. The most
common causes were: a) the participant did not save Form
2 – Test Case files correctly and was unable to send them
to the course organizers; b) the participant did not initialize
the programs correctly. This made it impossible to capture
coverage information. Information loss reached about 20% for
AntiPanela, 12% for CarManager, and 20% for CodiceFiscale.

Figure 7. Number of faults found by program

Despite our emphasis on the importance of correctly follow-
ing all the steps and executing the experiment, unfortunately
deviations happen, the simultaneous supervision of around 20
participants per replication is very complex, and losses of
data are inevitable. On Form 3 – Suggestions, 45% of the

subjects asked for the presentation of other tools, including
other languages, to give them more options for carrying out
the tests. Thirty percent (30%) said that they would need more
time to learn and practice the techniques. In other words, they
assumed that they did not find more faults in the programs
because of time constraints. Fifteen percent (15%) suggested
not using Java ME programs.

In Form 4 – Course Evaluation, 100% of the participants
said that the course had increased their knowledge of testing.
Eighty-eight percent (88%) indicated that they felt confident
in applying presented techniques. On the form, participants
were asked to grade the level of knowledge acquired during
the course. The average was 7.9 and the general grade for
the course was 8.6, considering a 0 to 10 scale. Thus, the
majority of participants approved and praised the initiative
because testing techniques are not widely disseminated and
it is difficult to find a free course on testing.

The participants made a number of comments about the
course. The most important were: 1) that there is a lack of
trained testing personnel; 2) that testing software is difficult;
3) that there is a shortage of testing tools. Many participants
were interested in further studying JaBUTi/ME and in applying
it in academic and professional programs.

The first step in the statistical analysis was to group the data
by technique (ad-hoc, functional, and structural) rather than by
program (AntiPanela, CarManager, and CodiceFiscale). The
Shapiro-Wilk Test showed that the sample did not present
a normal distribution. That is, it was necessary to use non-
parametric statistical methods. The Kruskal-Wallis Test is
robust for normality and its use makes it possible to check if
there are relevant differences between the techniques evaluated
in this paper. Its application showed that there are relevant
differences between the three techniques for the criteria of
coverage and number of test cases, as shown in Table V.

TABLE V. KRUSKAL-WALLIS TEST – RANK SUM TEST

Crit./Tech. Ad-Hoc Functional Structural p-value Diff
All-Nodes 55,5 73,0 61,0 0,000019 Yes
Test Cases 8,0 11,0 8,0 0,009148 Yes
Faults 2,0 2,0 2,0 0,930200 Yes

36Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 56 / 646

Having discovered that there are differences between the
techniques, it is necessary to find out what these differences
are and then display the most effective technique for carrying
out Java ME software tests on mobile devices. The Kruskal-
Wallis Multiple Comparison Test is robust for normality and
number of samples. It was used to compare pairs of techniques
for each criterion. The result of this comparison is shown in
Table VI.

TABLE VI. KRUSKAL-WALLIS MULTIPLE COMPARISON
TEST

All-Nodes Diff Observed Crit Diff Diff
ad-hoc X Structural 37,531753 20,86848 Yes
ad-hoc X Functional 3,86463 19,95248 No
Structural X Functional 33,667123 20,96088 Yes
Test Cases Diff Observed Crit Diff Diff
ad-hoc X Structural 25,485814 20,69736 Yes
ad-hoc X Functional 5,804322 19,56142 No
Structural X Functional 19,681492 20,51164 No
Faults Diff Observed Crit Diff Diff
ad-hoc X Structural 4,3252033 20,500141 No
ad-hoc X Functional 3,8666667 19,48089 No
Structural X Functional 0,4585366 20,31164 No

VI. CONCLUSION

Together, the three replications of the experiment highlight
the importance and complexity of software testing in software
engineering. All the different techniques and criteria focus on
finding faults in types or parts of applications. The best known
criteria include value limit analysis, equivalence partitioning,
all-nodes, and all-edges.

Each technique has a particular focus, and techniques should
be used together to find more faults in programs. The presented
techniques help the tester select entry domain values systemat-
ically and may optimize the creation of test cases and increase
fault detection.

The data collected in the replications of this experiment by
Deus et al. (2008) show that the use of JaBUTi/ME and the
structural technique help create test cases and consequently,
provide greater coverage in mobile device programs. A statis-
tical analysis showed that all techniques work equally well in
detecting faults. In other words, the number of faults found
using the evaluated techniques in this study did not differ
significantly. However, it is important to point out that there are
other characteristics besides fault detection that add value to
software, which include the coverage of the software’s internal
structure, mainly important for program maintenance.

Thus, due to the techniques’ similar performance, it is
necessary to evaluate other criteria to choose the most effi-
cient technique for ensuring mobile software product quality.
Statistical analyses showed that among the evaluated tech-
niques, there are significant differences in the criteria of
code coverage and the number of test cases. Statistically, the
structural technique performs better with respect to both of
these aspects. More test cases were created and, consequently,
greater coverage was achieved. Therefore, this initial study
was not conclusive and should be replicated more times to
increase its knowledge database.

Lessons were learned with each replication. This will help
to improve the quality and objectivity of future studies that
assess the results of experimentation packages.

Future research into mobile device software quality may
include replication of this experimentation package using real
mobile devices instead of emulators, creation of an effective
method for mobile software quality control, and the evaluation
of these or other techniques for conventional (non-mobile)
software.

Smartphones are becoming more and more common and a
large number of applications are created and freely distributed
in different software repositories. Another option for future
research is to use this package or to create a new package for
Android environment that uses Java, that is a prerequisite for
execution in JaBUTi/ME.

ACKNOWLEDGMENT

The authors would like to thank the Instituto de Informática
– INF/UFG, Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior – CAPES – Brasil, and Fundação de Amparo à
Pesquisa do Estado de Goiás – FAPEG – Brasil, which support
this work.

REFERENCES

[1] IEEE, “IEEE standard glossary of software engineering terminology,”
International Standard, IEEE Computer Society Press, Standard 610.12-
1990 (R2002), 2002.

[2] G1, “Mobile phones reach 256 milion of lines in july on brazil,”
Web page, Aug. 2012, [retrieved: Sep., 2013] (in Portuguese).
[Online]. Available: http://g1.globo.com/tecnologia/noticia/2012/08/
telefonia-movel-alcanca-256-milhoes-de-linhas-em-julho-no-brasil.
html

[3] M. E. Delamaro, A. M. R. Vincenzi, and J. C. Maldonado, “A strategy
to perform coverage testing of mobile applications,” in I International
Workshop on Automation of Software Test – AST’2006. New York, NY,
USA: ACM Press, May 2006, pp. 118–124.

[4] P. Ammann and J. Offutt, Introduction to Software Testing. Cambridge
University Press, 2008.

[5] N. Malevris, “On structurally testing Java programs effectively,” in
Proceedings of the 3rd international symposium on Principles and
practice of programming in Java, ser. PPPJ’04. Trinity College
Dublin, 2004, pp. 21–26, [retrieved: Sep., 2013]. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1071565.1071570

[6] P. Pocatilu, “Testing Java ME applications,” Informatica Economica,
vol. 12, no. 3, pp. 147–150, 2008.

[7] C. Hu and I. Neamtiu, “Automating gui testing for android
applications,” in Proceedings of the 6th International Workshop on
Automation of Software Test, ser. AST’11. New York, NY, USA:
ACM, 2011, pp. 77–83, [retrieved: Sep., 2013]. [Online]. Available:
http://doi.acm.org/10.1145/1982595.1982612

[8] A. M. R. Vincenzi, W. E. Wong, M. E. Delamaro, and J. C. Maldonado,
“JaBUTi: A coverage analysis tool for Java programs,” in XVII SBES –
Brazilian Symposium on Software Engineering. Manaus, AM, Brazil:
Brazilian Computer Society (SBC), Oct. 2003, pp. 79–84.

[9] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. New York, NY,
USA: Springer Heidelberg, 2012.

[10] G. E. P. Box, J. S. Hunter, and W. G. Hunter, Statistics for Ex-
perimenters: Design, Innovation, and Discovery, 2nd ed. Wiley-
Interscience, May 2005.

[11] Y.-S. Ma, J. Offutt, and Y. R. Kwon, “Mujava: an automated class mu-
tation system: Research articles,” STVR – Software Testing, Verification
and Reliability, vol. 15, no. 2, pp. 97–133, 2005.

37Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 57 / 646

How Exception Handling Constructions are Tested:
An Initial Investigation with Open Source Software

Auri Marcelo Rizzo Vincenzi
Instituto de Informática

Universidade Federal de Goiás, UFG
Goiânia-GO, Brazil

e-mail: auri@inf.ufg.br

João Carlos da Silva
Instituto de Informática

Universidade Federal de Goiás, UFG
Goiânia-GO, Brazil

e-mail: jcs@inf.ufg.br

Plínio de Sá Leitão-Júnior
Instituto de Informática

Universidade Federal de Goiás, UFG
Goiânia-GO, Brazil

e-mail: plinio@inf.ufg.br

José Carlos Maldonado
Inst. de Ciências Matemáticas e de Computação

Universidade de São Paulo, USP
São Carlos-SP, Brazil

e-mail: jcmaldon@icmc.usp.br

Márcio Eduardo Delamaro
Inst. de Ciências Matemáticas e de Computação

Universidade de São Paulo, USP
São Carlos-SP, Brazil

e-mail: delamaro@icmc.usp.br

Marcos Lordello Chaim
Escola de Artes, Ciências e Humanidades

Universidade de São Paulo, USP
São Paulo-SP, Brazil
e-mail: chaim@usp.br

Abstract—Software testing is one of the most important ac-
tivities in software development to deliver quality to the final
product. Aiming at high efficacy, high quality and a low-cost
testing strategy, several testing techniques and criteriahave
been proposed in the last decades. In particular, structural
testing techniques are among the most popular. The authors
have extended traditional structural testing in order to meet
this requirement, allowing its application to a software with
exception handling structures to assess the coverage measurement
of such structures. In this paper, we present control- and data-
flow criteria to exercise such structures and then evaluate four
well-known open source software projects according to these
criteria. The results show that test cases for those software
achieved low coverage of exception handling code and normal
execution code as well. The work also shows that using test
criteria which discriminate between exceptional and normal
testing requirements might be useful to produce a better degree
of information about the test set evaluated.

Keywords-software engineering; testing criteria; structural test-
ing; code coverage; testing tools

I. I NTRODUCTION

The exception handling mechanism available in a variety
of languages brings improvements on how to deal with error
handling or special conditions to product implementation.
Instead of using the traditional return value for error indication,
exceptions provide a more sophisticated approach for error
handling. Despite its benefits, the use of exceptions brings
additional challenges to system verification and validation.

By complementing other verification and validation tech-
niques, like technical revision and formal methods, software
testing enhances productivity and provides evidence of the

reliability and the quality of the product. In addition, testing
artifacts can be valuable information to other software engi-
neering tasks, like debugging and maintenance.

Structural testing determines testing requirements from
program source code. In general, structural testing criteria
use a program representation known as def-use graph that
abstracts the flow of control and variable usage of the program
under testing. This paper describes a set of structural testing
criteria for programming languages with exception handling
mechanism. The underline control- and data-flow model is
defined to represent such criteria and a tool which supports
the model and implements the testing criteria instantiatedfor
Java is described.

A set of Open Source Software (OSS) projects was eval-
uated in a large international project, aiming at encompass
metric definition, measurement practices, data analysis, test
suite definition, performance benchmarking, and indicator
computation [1]. We applied structural testing to such projects
to assess the quality of the available test sets. Some of these
projects are employed in this paper to illustrate how OSS
have been using exception handling constructions and how
well their test sets exercise such structures.

The paper is organized as follows. In Section III, the ex-
ception handling mechanisms of Java language are described;
Section IV presents the set of control- and data-flow based
criteria we have extended to deal with exception handling
constructions. In Section V, we present the data collected
from four OSS projects, drawing a picture about the usage
of exception handling constructions in those projects and how
their OSS communities develop test cases for covering such

38Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 58 / 646

pieces of code. In Section VI, we offer our conclusions and
future work.

II. RELATED WORK

Aberdour [2] compares close- and open-source software
quality assurance and quality control, enumerating eleven
differences. In the context of our work, four of them have
a great impact since, according to Aberdour [2] in the OSS
software development 1) the development methodology often
is not defined or documented; 2) the testing and quality
assurance methodology is unstructured and informal; 3) the
defect discovery occurs from black-box testing late in the
development process; and 4) the empirical evidences regarding
quality are not collected. In one of the proposed guidelinesto
improve OSS development process, Aberdour [2] mentioned
that the user based system testing should be complement with
formal testing techniques and regression testing automation.

Considering specifically the testing process on OSS commu-
nity, Zhao and Elbaum [3] conducted a survey with 200 OSS
and found that instead of focusing on high quality milestone
releases, the “release early, release often” process, tradition-
ally adopted by the OSS community, results in a continual
improvement by a large number of developers contributing
iterations, enhancements, and corrections. With respect to the
way OSS community test their software, Zhao and Elbaum [3]
discovered that: 1) testing effort is concentrated on system
testing; 2) fewer than 20% of OSS developers use test plans;
3) only 40% of projects use testing tools, but this percentage
increases in case of Java, which has several available tools;
4) less than 50% of OSS use coverage concepts or tools to
improve test quality.

A more recent study from Khanjani and Sulaiman [4]
corroborates the ones above recognizing that despite the fact
the open source development has seen remarkable success in
recent years, there are a number of product quality issues and
challenges facing the OSS development model. Considering
exclusively the testing activities, they highlight the lack of
knowledge of participants to understand the OSS system
architecture and to create additional test cases for it.

Since we are interested to measure the coverage of exception
handling code, we evaluated a few papers that discuss the
analysis and testing of programs with exception handling
structures. For instance, the works of Chatterjee et al. [5]
and Choi et al. [6] present models to compute control- and
data-flow information for dealing with exceptions, but no tool
which implements the proposed models is available.

Sinha and Harrold [7] developed a family of criteria to
deal with exception handling construction instantiated for the
Java language. The testing criteria definition use a control-
and a data-flow model known as interprocedural control-flow
graph (ICFG) [8], [9], which is used for the identification of
testing requirements. Java exceptions, as presented next,may
be synchronized (explicitly raised by athrow statement) or
unsynchronized (that can be raised at any time implicitly).
The main limitation of ICFG is that, unlike our model, it does
not represent unsynchronized exceptions. On the other hand,

by considering only the synchronous exception it is possible
to verify the type of exception to be raised when connecting
nodes, so that no false edges are generated. To collect the data
for the experiment, the authors used a tool named JABA, which
is an acronym for Java Architecture for Bytecode Analysis.
JABA provides language-dependent analysis for Java programs
and is part of the Aristotle Analysis System [10], but JABA
only performed the static analysis and, as soon as we know,
there is no tool which implements such criteria.

III. E XCEPTION HANDLING: FEATURES AND

REQUIREMENTS INJAVA

According to Perryet al. [11], a pervasive exception han-
dling is required by almost anything that has an algorithmic
flow, such as a design process, a workflow or a computer
program. Exceptions are used not only as an implication of
error, but also as an indication of deviations from the normal
conditions established by the system. The main task of an
exception handling mechanism in the context of programming
languages is to overcome the problems posed by using the
usual “return values from a function” as an indication of
unexpected conditions. The use of exceptions to indicate error
conditions ease the propagation of the erroneous state and also
the implementation of the fault tolerance mechanism.

Programming languages like Java, C++ and Ada have
similar exception handling mechanisms. In the case of Java,
exceptions are represented by objects. We focus on Java for
some reasons: 1) it is one of the largest used programming
languages in this last decade [12]; 2) there are several open-
source Java software with unit testing available; and 3) our
previous effort on developing testing tools for Java [13].

Figure 1 shows part of the exception handling class hier-
archy of the Java language. All those classes are part of the
java.lang package. As Figure 1 shows, theThrowable
class, an immediate subclass of Object, is the root class of
the entire exception hierarchy. It has two direct subclasses:
Exception andError.

Figure 1. Part of the exception handling class hierarchy of
Java [14].

Subclasses ofException represent exceptional condi-
tions that a normal Java program may handle and, except
for RuntimeException and its subclasses, all the other
subclasses ofException are called “checked exceptions”,

39Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 59 / 646

i.e., exceptions that must be handled since they are verifiedat
compilation time.RuntimeException and its subclasses,
also known as “unchecked exceptions”, represent runtime
conditions that may generally occur in any Java method,
but the method is not required to inform that it can raise
runtime exceptions. Although they can be handled, unchecked
exceptions are not identified at compilation time. On the
other hand, all other standard exceptions a method can throw
must be informed by means of athrows clause. A Java
program should try to handle all standard exceptions, since
they represent abnormal conditions that should be anticipated
and caught to prevent program termination.

In addition to checked and unchecked exceptions, there are
errors that can never be raised or handled since they are usedto
show serious problems with the Java virtual machine, the class
loader or any other error which will abort program execution.

All checked exceptions may have exception handling code
associated with them. This is done in Java by using a
try-catch-finally construct. There are three possi-
ble valid combinations of these statements:try-catch,
try-catch-finally, and try-finally. The try
statement is composed by atry block. Thecatch block
is composed by one or morecatch clauses, responsible for
specifying the exception handlers. Thecatch clause formal
parameter determines the kind of exception it handles and the
variable which will be assigned with the exception instance.
Thefinally block, when present, is always executed, even
in the presence of control-flow transfer statements like break,
continue, and return in the body of thetry block [14]. A
feature of Java’s exception handling mechanism is its non-
resumable model, which means that once an exception is
raised, the control flow returns to the first statement after the
try statement responsible for handling such an exception.

In terms of testing, the exception handling mechanism
affects the normal control-flow execution. Moreover, the set
of instructions that may produce exceptions also has to be
considered in the creation of basic CFG blocks. The set
of instructions responsible for raising synchronous checked
exceptions may be found elsewhere [15].

IV. STRUCTURAL TESTING FOR EXCEPTION HANDLING

In this section, we present our approach to the structural
testing of programs with exception handling constructs. Itis
part of a general framework that permits the application of
control- and data-flow criteria to object oriented programs, in
particular those developed using the Java language.

As part of this framework, a control- and a data-flow model
were developed to accommodate our needs. The model is
based on the analysis of bytecode programs instead of source
code. This approach offers some advantages, it is language-
independent and reflects the actual structure of a program
under testing. The next subsections summarize our approach
and the way it affects the testing of units with exception
handling structures.

A. Control- and data-flow models

A common representation of the program under testing,
known as Control-Flow Graph (CFG), is generally used to
abstract the internal control flow of the tested unit. A program
P can be decomposed in a set of disjoint blocks of statements
so that the execution of the first statement inside a given block
leads to the execution of all other statements in that block in
the order they appear in. All statements in a block, except
possibly the first, have a single predecessor. All statements in
a block, except possibly the last, have exactly one successor.
This means that there is no external control flow from/to
statements in the middle of the block. In a CFG, such basic
blocks are represented as vertex and the possible execution
flow from one block to another is represented as directed
edges. A CFG has a single entry node that represents the block
which contains the entry instruction of the unit. An exit node
has no outgoing edge.

A Def-use graph (DUG) is an extension of the Control-Flow
Graph including sets of variables defined and used on each
CFG nodes [16]. Therefore, theDUG contains information
about the data flow of the program under testing, character-
izing associations between statements in which a definition
occurs and statements in which a use is present.

It is out of the scope of this paper to discuss the complete
OO testing approach and all the models and algorithms used
to analyze the programs. It may be seen in [17].

Two points should be highlighted in the analysis of control-
flow characteristics of a Java bytecode program:

• the use of intra-method subroutine calls. JVM has in-
structionsjsr, jsr_w and ret that allow a piece of
the method code to be “called” from several points in
the same method. This is mostly used to implement the
finally block of Java.

• exception handlers. Each piece of code inserted in a
catch block of a Java program is an exception handler
(EH). The execution of such a code is not performed
by ordinary control-flow, but by the throwing of an
exception. In the bytecode code the exception handler is
not activated by ordinary instructions either. Each method
has a table that describes where the handlers are located
in the code and which piece of code they apply to. The
flow of execution that is activated by an exception is
represented in ourDUG by a different type of edge, called
an “exception edge”.

To deal with Java’s exception-handling mechanism, the
underlying representation model, i.e., theDUG, should reflect
the control-flow during normal program execution and also
during the occurrence of exceptions. To represent regular
and exception control-flows, we use two kinds of edges:
regular edgesrepresent the regular control-flow, i.e., defined
by the language statements; andexception edgesrepresent the
control-flow when an exception is raised. With such distinc-
tion, testing criteria can be defined to assess test coverageon
normal execution flow and on exceptional execution flow.

40Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 60 / 646

B. Testing criteria

The basis to define testing criteria for exception handling
structures is the concept ofexception-free path:

An exception-free pathis a pathπ | ∀(ni, nj) ∈ π ⇒
(ni, nj) that is reachable through a path which does
not contain any exception edge.

A path that includes a noden, which may only be reached
through a path that contains an exception edge is anexception-
dependentpath.

To address explicitly the coverage of exception handlers
code, two non-overlapping testing criteria were defined, sothat
the tester may concentrate on different aspects of a program
at a time. Given the test setT = {t1, t2, ..., tr} and the
corresponding set of pathsΠ = {π1, π2, ..., πr} executed by
the elements ofT , we define:

• all-nodes-exception-independent(All-Nodesei): Π satis-
fies the all-nodes-exception-independent criterion if every
node n ∈ Nei is included inΠ. In other words, this
criterion requires that every node of theDUG graph,
reachable through an exception-free path, is executed at
least once.

• all-nodes-exception-dependent(All-Nodesed): Π satisfies
the all-nodes-exception-dependent criterion if every node
n ∈ Ned is included inΠ. In other words, this criterion
requires that every node of theDUG graph, not reachable
through an exception-free path, is executed at least once.

Considering edges as testing requirements, we have:

• all-edges-exception-independent(All-Edgesei):
Π satisfies the all-edges-exception-independent criterion
if every edge e ∈ Eei is included in Π. In other
words, this criterion requires that every edge of theDUG
graph that is reachable through an exception-free path is
executed at least once.

• all-edges-exception-dependent(All-Edgesed): Π satisfies
the all-edges-exception-dependent criterion if every edge
e ∈ Eed is included inΠ. In other words, this criterion
requires that every edge of theDUG graph not reachable
through an exception-free path is executed at least once.

As with the all-nodes and all-edges criteria, we split the
all-uses criterion [16], so that two sets of non-overlapping
testing requirements are obtained. We named such criteria all-
uses-exception-independent and all-uses-exception-dependent,
respectively.

• all-uses-exception-independent(All-Usesei): Π satisfies
the all-uses-exception-independent criterion if for every
node i ∈ N and for every variablex ∈ def(i), Π
includes a def-clear, exception-free path w.r.t.x from
node i to every use ofx. In other words, this criterion
requires that every exception-independent def-c-use as-
sociation(i, j, x) and every exception-independent def-
p-use association(i, (j, k), x) is exercised at least once
for any given test case.

• all-uses-exception-dependent(All-Usesed): Π satisfies
the all-uses-exception-dependent criterion if for every

node i ∈ N and for every variablex ∈ def(i), Π
includes a def-clear, exception-dependent path w.r.t.x

from node i to every use ofx. In other words, this
criterion requires that every exception-dependent def-c-
use association(i, j, x) and every exception-dependent
def-p-use association(i, (j, k), x) is exercised at least
once for any given test case.

The use of testing criteria which consider exception codes
when defining testing requirements can improve the testing
activity by offering hints to the tester on how the code is
organized, in terms of a “normal” or “abnormal” flow. Our
test criteria may help in at least three situations:

• it is well known that much of the exception handling code
is hard to test and it is left untested intentionally. With
the indication of exception-dependent and exception-
independent requirements, the tester may consider only
the latter, with no need to analyze the feasibility of each,
according to his/her goals;

• on the other hand, if the application requires the execution
of an exception-dependent code, the use of our criteria
can guide the tester indicating which requirements need
an abnormal situation to be covered and suggesting a
possible incremental testing strategy;

• exception dependent testing requirements can be used as
a static code metric. For example, comparing the number
of exception independent testing requirements against the
number of exception independent requirements may give
an indication of the cost of testing both normal and
abnormal flow and, in some extent, of the complexity
of these parts of the program. Other metrics like lines of
code or cyclomatic complexity could also be used in this
way if one considers these two types of code.

C. Automation aspects

To support the application of the structural testing criteria
presented in the previous sections, we are working on the
development of an Open Source testing tool called JaBUTi.
We have worked on this tool since 2003 [13], improving its
functionalities and extending its application to a varietyof
software products. Currently, besides testing Java programs
at unit level, the tool may also be applied for unit testing
of Aspect-Oriented programs [18], Java components [19],
Java micro-edition, and mobile programs [20], among others.
In addition, the tool can be easily employed to work with
any language which generates bytecode as a result of the
compilation process.

The steps for executing JaBUTi are depicted in Figure 2.
The first step is the creation of a test session, which shows
the classes that compose the program under testing and those
we want to instrument for the collection of the execution
trace. The second step is the generation of testing requirements
by using the eight testing criteria. Then, it is necessary to
instrument the selected classes. After instrumentation, the
program under testing may be executed with one or more
test cases and the coverage information is recorded. After test
set execution, the covered requirements are identified and the

41Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 61 / 646

current status of the test session is updated and visualizedon
testing reports with different levels of detail. With the reports
the tester may decide whether to continue or stop the testing
activity based on his/her previously defined stopping criterion.

Figure 2. Steps of a test session execution.

We have successfully used JaBUTi on several projects and
the tool has been released as an open source software to be
used in the context of the QualiPSo project. The interested
reader may consult [17], for further information.

V. EXPERIMENTAL APPLICATION

In this section, we present the results obtained from the
application of the exception-dependent criteria to a set ofOSS.
This initiative is part of our objectives in an attempt to identify
the usual behavior of the OSS community while developing
test sets for OSS.

Our first task was to make a static evaluation of some
open source projects, namely HSQLDB, JUnit, JMeter, PMD,
Weka, ServiceMix, Talend Open Studio, SpagoBI, Cimero,
Jboss Application Server, Mondrian, Pentaho, and Spago. We
have concluded that all of them have test sets associated with
them and, as they are integrated with automated tools (Ant or
Maven), it can be assumed that they are often run. However,
despite this testing culture, the testing techniques applied by
the OSS development community could not be identified with
accuracy. Considering the current state of testing carriedout
by OSS communities, it can be observed that:

• in general, the only testing criterion applied is functional.
There is no clear evidence of structural (control, data-
flow) or fault based testing;

• there is no clear distinction between unit, integration, and
system testing. Although there are test suites integrated
into the build process (most projects use Ant or Maven
to manage software compilation and packaging), there
are no clearly defined test plans and strategies after the
execution of the test suite. For example, how to proceed
when failed test cases are found (e.g., if more than 10%
of the test cases failed, the developers must be notified
and the software package cannot be released).

A question which regards these test suites is: “Aread hoc
test suites sufficient to assign trustworthiness to OSS?” To
answer this question we use an approach which comprises
structural testing criteria for test set evaluation.

Formal standards like DO-178B [21] and ANSI/IEEE 1008-
1987 [22] demand 100% statement and branch coverage for

safety critical systems. Regardless of the level of coverage
obtained, the importance of coverage testing does not lie on
identifying which parts of the product were exercised during
test set execution, but on identifying the ones which have not
yet been executed.

Cornett [23] discusses the minimum acceptable code cov-
erage and argues that a coverage level between 70-80% is
a reasonable goal for system testing for the majority of
software products. Moreover, Cornett [23] also defends that
unit, integration, and system testing levels demand a decreas-
ing coverage level since, in general, it is easier to achieve
a higher coverage of a single unit than that of an entire
system. An important point that has not been mentioned is
how exception handling structures affect coverage level. It is
not clear whether the 70-80% mentioned by Cornett considers
normal and exception handling codes or only normal code.
By using the testing criteria presented in Section IV, a more
precise assessment of code coverage may be obtained.

As an initial investigation, we analyzed four traditional
OSS: HSQLDB (version 1.9 Alpha 2), JMeter (version 2.3.2),
JUnit (version 4.6), and PMD (version 5.0). The evaluation is
performed via a testing tool that implements all the mentioned
criteria, but we concentrate the analysis on the exception
dependent ones. In this way, the restriction imposed by the
selection of a OSS is the need that its unit test set run suc-
cessfully, enabling the coverage information to be collected.

The OSS are implemented in Java and correspond to the
last release available at the time the data was collected. We
concentrate our effort on evaluating the impact of exception
handling in these projects and how test sets were developed
in order to cover exception code.

Our first evaluation consisted in identifying the size of the
projects and the number of methods which employ exception
handling constructions. The smallest OSS analyzed (JUnit)
has 2,614 lines of code (LOC), and the biggest (HSQLDB)
has 63,592 LOC. On average, at method level, the use of
exception handlers construction is present on 8% of the total
number of methods, percentage close to the average obtained
by Sinha and Harrold [9] for a different set of programs. After
performing the static analysis, we started the dynamic analysis.

We created an instrumented version of the programs under
testing and executed the available test set against those ver-
sions, so that dynamic trace information could be collected
and confronted with the structural testing criteria. Tables I,
II, and III show the data obtained.

Tables I and II show the coverage after the execution of
all available test sets developed by the OSS community for
each program, considering the exception-independent and the
exception-dependent testing criteria, respectively. Forinstance,
the JMeter test set was the one which determined the highest
coverage with respect to all testing criteria. For All-Nodesei,
the test set covered 7,845 out of 20,462 required elements,
38.34% of coverage. As for the other testing criteria with
higher complexity, the coverage percentage of the required
elements were 28.27%, 26.55%, and 25.75%. In general, a
level of coverage below 40% for these programs is very low

42Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 62 / 646

TABLE I. REQUIREMENT COVERAGE: EXCEPTION-INDEPENDENT CRITERIA

OSS
Criterion

All-Nodesei All-Edgesei All-Usesei All-Pot-Usesei
Coverage (%) Coverage (%) Coverage (%) Coverage (%)

HSQLDB 8,029 / 40,703 (19.73%) 7,476 / 45,098 (16.58%) 19,720 / 126,246 (15.62%) 67,847 / 458,843 (14.79%)

JMeter 7,845 / 20,462 (38.34%) 5,461 / 19,317 (28.27%) 10,935 / 41,180 (26.55%) 33,615 / 130,547(25.75%)

JUnit 608 / 1,951 (31.16%) 380 / 1,436 (26.46%) 631 / 2,624 (24.05%) 1,475 / 6,243 (23.63%)

PMD 7,938 / 21,184 (37.47%) 6,858 / 23,249 (29.50%) 13,331 / 57,552 (23.16%) 38,404 / 252,261 (15.22%)

TABLE II. REQUIREMENT COVERAGE: EXCEPTION-DEPENDENT CRITERIA

OSS
Criterion

All-Nodesed All-Edgesed All-Usesed All-Pot-Usesed
Coverage (%) Coverage (%) Coverage (%) Coverage (%)

HSQLDB 141 / 1,942 (7.26%) 49 / 6,513 (0.75%) 256 / 2,750 (9.31%) 3,591 / 38,032 (9,44%)

JMeter 51 / 1,541 (3.31%) 39 / 4,863 (0.80%) 52 / 2,093 (2.48%) 276 / 15,301 (1.80%)

JUnit 12 / 156 (7.69%) 9 / 184 (4.89%) 13 / 183 (7.10%) 29 / 632 (4.59%)

PMD 325 / 2,039 (15.94%) 121 / 3,814 (3.17%) 388 / 3590 (10.81%) 1689 / 20285 (8.33%)

TABLE III. E XCEPTION HANDLERS DATA AT METHOD LEVEL: ALL -NODESed CRITERION

OSS Number of methods Number of requirements Average Number of methods with no coverage Total coverage

HSQLDB 683 1,942 2.84% 669 (97.95%) 7.26%

JMeter 625 1,541 2.47% 595 (95.20)% 3.31%

JUnit 63 156 2.48% 57 (90.48%) 7.69%

PMD 374 2,039 5.45% 299 (79.95%) 15.94%

and demonstrates that much of the code is only executed by
the users and that their test cases are probably not integrated in
the official test set. In the case of HSQLDB, the percentage of
coverage of the All-Nodesei criterion is 19.73%, which means
that more than 80% of source code is not executed by any
official test case in the test set.

Table II shows the coverage obtained with respect to the
exception-dependent criteria, i.e., those criteria whichdemand
an exception to be raised for covering the testing require-
ments. Considering the most basic structural testing criterion
(All-Nodesed), the highest coverage was determined by the
test set of the PMD project, which executed 325 out of 2,039
testing requirements (15.94%). This is a clearly very low
coverage and additional test sets should be developed at least
to confirm that most of the exception handling construction in
the program could be executed at least once.

When comparing such a coverage against the exception-
independent criteria (Table I), one can see that even for the
All-Nodesed criterion, the level of coverage for all programs
ranges from 19.73% for HSQLDB and 38.34% for JMeter.
This implies that the provided test set for such programs has
a very low coverage in terms of structural testing criteria,even
for the criteria not related with exception handling.

In Table III, we present more detailed information about
the total number of methods with exception handlers, the total
number of testing requirements generated by the All-Nodesed

criterion, the average number of requirements per method,
the number of methods which do not have exception handler
construction executed by any test case, and the total coverage
obtained for such a criterion. As Table III shows, there is

a high percentage of methods with zero coverage against
any exception-dependent criterion. For three programs, more
than 90% of their methods have no test case to execute their
exception handling constructions. The best program is PMD,
for which the current test set is able to exercise 75 (20.05%)
out of 374 methods with exception handlers, but still 79.95%
of the methods are not executed by any test case.

Another point that might be inferred from Table III is that
the exception handlers have normally few nodes, i.e., they
are less complex in terms of logical structure. In fact, by
analyzing such products, it is possible to observe that the
majority of exception handlers have emptycatch blocks,
just avoiding the exception propagation but with no corrective
action associated with it. The most complex exception handlers
are found in PMD, which has on average 5.45 requirements
per method, followed by HSQLDB with 2.84 requirements per
method, considering the All-Nodesed criterion.

These numbers show that all the analyzed projects reveal a
low level of code coverage for code unrelated to exception han-
dling structures. This is disturbing because it reveals thelack
of concern from OSS communities on constructing a reference
test set for their products. The tests are in fact performedad
hoc by the user and test cases are not incorporated in the
official test set.

For exception handling criteria the situation is even worse.
Although the complexity of exception handlers is not high – as
shown by the number of testing requirements – the coverage
of such testing requirements is very low. Many of the methods
with this kind of code are not even executed once. In addition,

43Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 63 / 646

there is no indication of test cases specifically designed to
address exception handling.

In this scenario, the testing criteria presented in this paper
may be of great help for developers, as they guide the tester
through the process of selecting test cases that are or are not
related to exception handling. Even if the adopted policy isnot
to execute exception handlers because they may be difficult
to reach, our approach reveals which requirements could be
neglected and which should be covered.

VI. CONCLUSIONS AND FUTURE WORK

To support the control- and data-flow model and the defined
testing criteria, we implemented a tool and presented experi-
mental data collected from a set of four OSS. The experiment
intended to assess the adequacy of pre-existent test sets against
the set of exception-dependent structural testing criteria.

Our observations reveal that, for all the evaluated projects,
the coverage of exception handling constructions was con-
siderable low. For instance, the maximum coverage of the
All-Nodesed criterion was below 16%, which shows that, in
general, there is no concern for the development of test cases
to exercise exceptional conditions in the projects. Moreover,
many exception constructions have emptycatch blocks,
which reveals that the exception handler, though present, is
used only to avoid the spread of the exception, not to recover
from an erroneous condition.

Even when evaluating the quality of the pre-existent test
sets against the exception-independent criteria, the maximum
coverage for the All-Nodesei criterion was below 39%, which
is generally regarded as a low level of coverage and an
indicator that the test set should be improved. New versions
of the analyzed software products may include additional test
cases to improve the coverage with respect to the proposed
testing criteria. This is an issue to be investigated; however,
what this initial investigation indicates is that the open-source
community should pursue more thorough test suites, especially
addressing exception related code.

In future, we will continue to evaluate other OSS projects.
Our aim is to finalize the evaluations of the previously devel-
oped test sets, to improve some of them based on the coverage
criteria, to identify the contribution of the new added testcases
in terms of their fault detection capability – considering the
recorded faults in the bug tracker systems of these projects–
and, finally, to define an incremental approach for testing OSS
so that a minimal trustworthiness might be determined.

ACKNOWLEDGMENT

The authors would like to thank the Instituto de Informática
– INF/UFG, Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior – CAPES – Brasil, and Fundação de Amparo à
Pesquisa do Estado de Goiás – FAPEG – Brasil, which support
this work.

REFERENCES

[1] QualiPSo, “Qualipso project (quality platform for opensource
software),” Project Homepage – Europe Comission – Grant Number
IST-FP6-IP-034763, 2007, [retrieved: Oct., 2013]. [Online]. Available:
http://www.qualipso.org/

[2] M. Aberdour, “Achieving quality in open source software,” IEEE Soft-
ware, vol. 24, no. 1, pp. 58–64, 2007.

[3] L. Zhao and S. Elbaum, “A survey on quality related activities
in open source,” SIGSOFT Softw. Eng. Notes, vol. 25, no. 3,
pp. 54–57, May 2000, [retrieved: Oct., 2013]. [Online]. Available:
http://doi.acm.org/10.1145/505863.505878

[4] A. Khanjani and R. Sulaiman, “The process of quality assurance under
open source software development,” inComputers Informatics (ISCI),
2011 IEEE Symposium on, 2011, pp. 548–552.

[5] R. K. Chatterjee, B. G. Ryder, and W. A. Landi, “Complexity of
concrete type-inference in the presence of exceptions,” inLecture Notes
in Computer Science, vol. 1381. Springer, Apr. 1998, pp. 57–74.

[6] J.-D. Choi, D. Grove, M. Hind, and V. Sarkar, “Efficient and precise
modeling of exceptions for the analysis of java programs,”SIGSOFT
Software Engeneering Notes, vol. 24, no. 5, pp. 21–31, 1999.

[7] S. Sinha and M. J. Harrold, “Criteria for testing exception-handling
constructs in Java programs,” inInternational Conference on Software
Maintenance. Oxford, England: IEEE Computer Society Press, Aug.
1999, pp. 265–274.

[8] ——, “Analysis of programs with exception-handling constructs,”
in ICSM’98 – International Conference on Software Maintenance,
Bethesda, MD, Nov. 1998, pp. 348–357.

[9] ——, “Analysis and testing of programs with exception-handling con-
structs,”IEEE Transactions on Software Engineering, vol. 26, no. 9, pp.
849–871, Sep. 2000.

[10] M. J. Harrold, L. Larsen, J. Lloyd, D. Nedved, M. Page, G.Rothermel,
M. Singh, and M. Smith, “Aristotle: a system for developmentof
program analysis based tools,” inACM-SE 33: Proceedings of the 33rd
annual on Southeast regional conference. New York, NY, USA: ACM,
1995, pp. 110–119.

[11] D. E. Perry, A. Romanovsky, and A. Tripathi, “Current trends in
exception handling,”ieeese, vol. 26, no. 10, pp. 921–922, Oct. 2000.

[12] TIOBE Software BV, “TIOBE Index,” Web site, Sep. 2013, [retrieved:
Oct., 2013]. [Online]. Available: http://www.tiobe.com/

[13] A. M. R. Vincenzi, W. E. Wong, M. E. Delamaro, and J. C. Maldonado,
“JaBUTi: A coverage analysis tool for Java programs,” inXVII SBES –
Brazilian Symposium on Software Engineering. Manaus, AM, Brazil:
Brazilian Computer Society (SBC), Oct. 2003, pp. 79–84.

[14] J. Gosling, B. Joy, G. Steele, and G. Bracha,The Java Language
Specification, 3rd ed. Addison Wesley, Jun. 2005.

[15] T. Lindholm and F. Yellin,The Java Virtual Machine Specification,
2nd ed. Addison-Wesley, 1999.

[16] S. Rapps and E. J. Weyuker, “Selecting software test data using data
flow information,” IEEE Transactions on Software Engineering, vol. 11,
no. 4, pp. 367–375, Apr. 1985.

[17] A. M. R. Vincenzi, M. E. Delamaro, W. E. Wong, and J. C. Maldonado,
“Establishing structural testing criteria for Java bytecode,” Software
Practice and Experience, vol. 36, no. 14, pp. 1513–1541, Nov. 2006.

[18] O. A. L. Lemos, A. M. R. Vincenzi, J. C. Maldonado, and P. C. Masiero,
“Control and data flow structural testing criteria for aspect-oriented
programs,”The Journal of Systems and Software, vol. 80, no. 6, pp.
862–882, Jun. 2007.

[19] A. M. R. Vincenzi, J. C. Maldonado, W. E. Wong, and M. E. Delamaro,
“Coverage testing of Java programs and components,”Journal of Science
of Computer Programming, vol. 56, no. 1-2, pp. 211–230, Apr. 2005.

[20] M. E. Delamaro and A. M. R. Vincenzi, “Structural testing of mobile
agents,” inIII International Workshop on Scientific Engineering of Java
Distributed Applications (FIDJI’2003), ser. Lecture Notes on Computer
Science, E. A. Nicolas Guelfi and G. Reggio, Eds. Springer, Nov. 2003,
pp. 73–85.

[21] RTCA/EUROCAE, “Software considerations in airborne systems and
equipment certification,” Radio Technical Commission for Aeronautics
– RTCA & European Organization for Civil Aviation Equipment– EU-
ROCAE, Washington, D.C., EUA, Relatóro Técnico DO-178B/ED12B,
Dec. 1992.

[22] IEEE, “IEEE standard for software unit testing,” IEEE Computer Society
Press, Standard ANSI/IEEE Std 1008-1987, 1987.

[23] S. Cornett, “Minimum acceptable code coverage,” On-line
article, 2007, [retrieved: Oct., 2013]. [Online]. Available:
http://www.bullseye.com/minimum.html

44Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 64 / 646

Towards Scalable Bug Localization using the Edit Distance of Call Traces

Themistoklis Diamantopoulos and Andreas Symeonidis
Information Technologies Institute, Centre for Research and Technology Hellas
Electrical and Computer Engineering Dept., Aristotle University of Thessaloniki

Thessaloniki, Greece
{thdiaman,asymeon}@iti.gr

Abstract—Locating software bugs is a difficult task, especially
if they do not lead to crashes. Current research on automating
non-crashing bug detection dictates collecting function call traces
and representing them as graphs, and reducing the graphs before
applying a subgraph mining algorithm. A ranking of potentially
buggy functions is derived using frequency statistics for each node
(function) in the correct and incorrect set of traces. Although most
existing techniques are effective, they do not achieve scalability.
To address this issue, this paper suggests reducing the graph
dataset in order to isolate the graphs that are significant in
localizing bugs. To this end, we propose the use of tree edit
distance algorithms to identify the traces that are closer to each
other, while belonging to different sets. The scalability of two
proposed algorithms, an exact and a faster approximate one, is
evaluated using a dataset derived from a real-world application.
Finally, although the main scope of this work lies in scalability,
the results indicate that there is no compromise in effectiveness.

Keywords—automated debugging; dynamic bug detection; fre-
quent subgraph mining; tree edit distance

I. INTRODUCTION

Software reliability has grown to be a major concern for
both academia and the industry. Software bugs lead to faulty
software and dissatisfied customers, as testing and debugging
are quite costly even compared to the development phase. As
software grows more and more complex, though, identifying
and eliminating software bugs has become a challenging task.

There are two types of bugs: crashing and non-crashing
ones. The former lead to program crashes, thus they are easier
to locate by tracing the call stack at the time of the crash.
The latter are logic errors that do not lead to crashes and
thus do not produce stack traces. Since dynamic analysis is
performed to detect such bugs, the field is known as dynamic
bug detection. The techniques may be classified according to
the granularity of the source code instrumentation approach.
Highly granular approaches involve inserting checks in differ-
ent source code positions, either in the form of counters [1] or
boolean predicates [2] while others involve inserting checks at
block level [3], where blocks are fragments between branches.
Counter-level and block-level approaches are quite precise in
localizing bugs. However, since the rise of Object Oriented
Programming and Functional Programming has led to prefer-
ence for small comprehensive functions, instrumenting func-
tions is effective, as long as proper programming paradigms
are employed. Function-level approaches apply Graph Mining
techniques to call traces to identify which subgraphs are more
frequent in incorrect than in correct runs [4]–[6].

The steps used to localize bugs are common. The gener-
ated call traces constitute a dataset that has to be mined in
order to detect bugs; and this is where the problems start.

Even at function-level, datasets are usually huge. For a small
application, with, e.g., 150 functions, there may be couples of
thousands of transitions among them. In this context, creating
an effective, yet also scalable, solution is a challenging prob-
lem. And, though it has been broadly studied, most literature
approaches focus on reducing the size of each trace, without
reducing the number of traces in the dataset.

In this paper, we present a novel approach towards highly
scalable Graph Mining solutions for function-level traces.
The main contribution lies in the problem formulation, the
reduction of the call trace dataset size through different alter-
natives, and the construction of a realistic dataset to test upon.
Dataset size reduction is confronted using tree edit distance
algorithms, while the potential benefits and drawbacks with
respect to different solutions are discussed. Furthermore, the
applicability of several function-level dynamic bug detection
techniques in real applications is discussed and the efficiency
and effectiveness of our variations are evaluated against them.

Section II of the paper reviews current literature on
function-level dynamic bug detection, illustrating the general
procedure followed to mine the traces and identify the Graph
Mining problems. Section III provides an overview of alterna-
tive solutions to known scalability issues. The construction of
a realistic dataset that illustrates our contribution is explained
in section IV. Finally, our implementation is evaluated in terms
of efficiency and effectiveness in section V, while section VI
concludes the paper and provides insight for further research.

II. FUNCTION-LEVEL DYNAMIC BUG DETECTION

In this section, we discuss the steps of constructing a graph
dataset, reducing it, and applying Graph Mining techniques to
provide the ranking of possibly buggy functions.

A. Graph Dataset Construction

Given a set of tests, program functions are instrumented
and the tests are run to produce a set of call traces S. A
call trace is initially a rooted ordered tree, with the main
function as its root. Two more sets, Scorrect and Sincorrect

are defined, corresponding to correct and incorrect executions,
where correctness is determined by an oracle. Thus, the tree
(or graph, since all trees are graphs) dataset is constructed.

B. Graph Reduction

Since graphs are large, with hundreds of nodes, applying
any mining algorithm is inefficient. Thus, graph reduction is
performed to reduce the size of each graph while keeping
useful information. Figure 1 depicts reduction techniques.

45Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 65 / 646

A

B C

B B B

(a)

A

C

B

(b)

A

B C

B B

(c)

A

B C

B

1
1

3

(d)

A

B C

B

(e)

Fig. 1. An example call graph (a) and four different reduced graphs with
respect to the reduction techniques, including (b) total reduction, (c) one-two-
many reduction, (d) subtree reduction and (e) simple tree reduction.

The first technique, known as total reduction, is presented by
Liu et al. [4]. The authors create a graph using each edge of the
initial call graph once and discard any structural information
(i.e., tree levels). Total reduction is the most efficient reduction
method since it actually preserves minimum information.

However, since total reduction fails to capture the structure
of the call graph, different alternatives have been applied to
preserve more information, while keeping the graph as small as
possible. A straightforward solution is the one proposed by Di
Fatta et al. [5]; the authors perform one-two-many reduction,
preserving tree structure by keeping two child nodes whenever
the children of a node are more than two (see Figure 1c).

Eichinger et al. [6] claim that total reduction and one-
two-many reduction are not sufficient, since they discard call
frequency information. According to the authors, the number
of times (i.e., frequency) that a function calls another function
is crucial since it can capture bugs that may occur in, e.g., the
third or fourth time the function is called. Thus, they propose
subtree reduction, a technique that preserves both the structure
of the tree and the frequency of function calls (see Figure 1d).

Reduction techniques are based on a compromise between
information loss and scalability. Although subtree reduction
maintains most information, it is quite inefficient since it adds a
weight parameter to the graph. Since the scope of this work lies
in scalability, we propose using a reduction technique, which
we call simple tree reduction, shown in Figure 1e. Reducing a
graph using simple tree reduction involves traversing the nodes
once and deleting any duplicates as long as they are on the
same level. The reduced graph is a satisfactory representation
of the original one since large part of its structure is preserved.

C. Graph Mining

Upon reduction, the problem lies in determining the nodes
that are frequent in the incorrect set Sincorrect and infrequent
in the correct set Scorrect. Intuitively, if a function is called
every time the result is incorrect, it is highly possible to have
a bug. However, having more than one function with the same
frequency is also possible. Thus, the Graph Mining algorithm
should find the closed frequent subgraphs, i.e., the subgraphs
for which no supergraph has greater support in Sincorrect.

Finding frequent subgraphs in a graph dataset, known as
Frequent Subgraph Mining (FSM), is a well-known problem.
State-of-the-art algorithms include, e.g., gSpan [7]. Further-
more, since these graphs are actually trees, several Frequent
Subtree Mining (FTM) algorithms, such as FreeTreeMiner [8],
may be used as well. Although those algorithms are applicable
to the problem, there is strong preference for CloseGraph [9],

an algorithm that is highly scalable since it prunes unnecessary
input and outputs only closed frequent subgraphs.

D. Ranking

The output of CloseGraph is a set of frequent subgraphs,
along with their support in the correct and the incorrect set.
Hence, the question is how can a ranking of possibly buggy
functions be created by such a set. It is typical to use DM
techniques based on support and confidence to determine the
interesting subgraphs. For instance, Di Fatta et al. [5] suggest
ranking the functions according to their support in the failing
set. According to Eichinger et al. [6], this type of ranking can
be called structural and for each function f is defined as:

Ps(f) = support(f, Sincorrect) (1)

The support of each function in the failing set Sincorrect

provides a fairly effective ranking. However, the scoring is
not sufficient, since it does not take confidence into account.
Furthermore, finding the support only on incorrect executions
yields skewed results, since a function with large support
in both Scorrect and Sincorrect would be ranked high, even
though it may be insignificant with respect to the bug.

Several variations of the structural ranking have emerged
in order to overcome the aforementioned issues [2][5]. In this
paper, we use an entropy-based ranking technique proposed by
Eichinger et al. [6] since it is proven to outperform the other
techniques. The main intuition behind this ranking technique is
to identify the edges that are most significant to discriminate
between correct and incorrect call traces. A table is created
with columns corresponding to subgraph edges and rows
corresponding to graphs. The table holds the support of each
edge in every graph. Consider the example of Table I:

TABLE I. ENTROPY-BASED RANKING EXAMPLE

Graph f1 → f2 f1 → f3 f2 → f4 . . . Class
G1 4 7 2 . . . correct
G2 9 5 8 . . . incorrect
G3 6 3 1 . . . correct
.

where F = f1, f2, . . . is the set of functions and G =
G1, G2, . . . is the set of graphs. Supposing subgraph SG1

appears 4 times in graph G1 and edge f1 → f2 ∈ SG1,
the support of the edge in graph G1 is 4. As one might
observe, the problem is actually a feature selection problem,
i.e., defining the features (edges) that discriminate between
the values of the class feature (correct, incorrect). Thus,
any feature selection algorithm may be used to determine the
most significant features. Eichinger et al. [6] calculate the
information gain for each feature, and interpret the result for
each feature (ranging from 0 to 1) as the probability of it being
responsible for a bug. The respective probability Pe(f) for a
node (function) is determined by the maximum probability of
all the edges it is connected to.

The structural ranking Ps and the entropy-based ranking
Pe are used to compute the combined ranking as follows:

P (f) =
Pe(f)

2max
f∈F

Pe(f)
+

Ps(f)

2max
f∈F

Ps(f)
(2)

where the maximum values at the denominator are used in
order to normalize the weighting of each ranking.

46Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 66 / 646

III. REDUCING THE GRAPH DATASET

The steps given in Section II are common for all function-
level bug detection algorithms. Several researchers have indi-
cated the need for scalability, which is generally accomplished
by reducing the graphs (see subsection II-B). Ideally, the useful
information of the graph is retained while its size is minimized.
However, even upon reduction, the number of graphs in the
dataset is large, thus making the mining step quite inefficient.

Although a dataset of several graphs is given, not all of
them are equally useful in locating the bug. Consider a scenario
for the grep program. Assume the program has a bug that
results in faulty executions when the ? character is used in
a Regular Expression (RE), such that the appropriate words
are not returned, if the preceding element appears 0 times.
Normally, if a symbol is succeeded by the ? character, then it
may be found 0 or 1 times exactly. Consider running the grep
program for one word at a time for the following phrase:

there once was a cat that ate a rat
and then it sat on a yellow mat

In this text, the RE [a-z]*c?at should match the words in
the set Smatched = {cat, that, rat, sat, mat}, i.e., all
words having any letter from a to z 0 or more times, followed
by the letter c 0 or 1 times exactly, and followed by letters a
and t. Instead it only matches the word cat. Consider also
the set of words that are not matched Sunmatched = {there,
once, was, a(1), ate, a(2), and, then, it, on, a(3),
yellow}. Assuming that all the possible traces are created,
several of them, such as the ones created from the Smatched

set, are actually much more significant in identifying the bug,
since it actually resides only on the Smatched set. Thus, traces
of cat and rat should be more similar than traces of cat and
yellow. In fact, when executing the cat and rat scenarios,
many function calls coincide. This is however also true for
traces of was and it. Intuitively, determining which traces
are highly indicative of the bug can be based on the similarity
between them as well as whether they are correct or incorrect.
Thus, correct executions that are similar to the incorrect ones
(e.g., rat may be close to cat) should isolate more easily
the buggy functions. On the other hand, when two correct (or
incorrect) executions are quite close to each other (e.g., the
traces from was and it could be quite similar), then one of
them should provide all necessary information.

The example is formed such that it is easy to understand.
One could ask why not select test cases by hand, so that they
are discriminating. However, this is usually impossible since
real scenarios are much more complex, e.g., for the grep case
there may be passages instead of words. In addition, certain
executions may seem similar, yet be significantly different with
respect to the call traces. Thus, there is the need for a similarity
metric between two traces. Having such a metric, one can
apply the call trace selector algorithm shown in Figure 2.

As shown in this figure, the algorithm requires as input the
correct and incorrect sets, Scorrect and Sincorrect, along with
parameter n, which controls how many graphs are going to be
retained per set. Initially, the set D, which contains all correct-
incorrect pairs of graphs, is sorted according to the similarity
of each pair. The set S′correct contains the first n correct unique
graphs that are found in the sorted set D, i.e., the n correct

Input: n, Scorrect, Sincorrect

Output: S′
correct, S′

incorrect

D = {(g1, g2) ∀g1 ∈ Scorrect, g2 ∈ Sincorrect}
sort(D, key=similarity(g1, g2))
S′
correct =First(n, {g1 : g1 ∈ d ∈ D})

S′
incorrect =First(n, {g2 : g2 ∈ d ∈ D})

Fig. 2. The call trace selector algorithm that receives the two sets of graphs
as input (correct and incorrect) and its output is two new subsets of them.

graphs that belong to the most similar pairs d of D. The set
S′incorrect contains the first n incorrect unique graphs that are
found in the sorted set D. For example, given n = 2 and
D = {d1, d2, d3} = {(g1, g3), (g1, g4), (g2, g5)} so that the
similarity of pair d1 is larger than that of d2 and the similarity
of d2 is larger than that of d3, the sets S′correct and S′incorrect
are {g1, g2} and {g3, g4} respectively. Function sort sorts the
set according to the key and index provides the index of an
element. Thus, the issue is how to determine similarity between
two graphs, i.e., how to implement the function similarity.

A metric widely used to represent the similarity between
two strings is the String Edit Distance (SED). SED is defined
as the number of edit operations required to transform one
string to the other. SED operations usually contain insertion
or deletion of characters. Concerning trees, such as the ones of
our dataset, Tree Edit Distance (TED) algorithms can be used
to calculate the distance between two of them. The following
subsections provide a definition of the TED problem and two
well known algorithms of current literature in finding TED.

A. The Tree Edit Distance Problem

The TED problem was originally posed by Tai [10] in 1979.
The possible edit operations are defined in Figure 3.

A

B C

D E

(a)

A

B F

D E

(b)

A

B

D E

(c)

A

B C

D EF

(d)

Fig. 3. An example tree (a) and three different edit operations: (b) node
relabeling, (c) node deletion, and (d) node insertion.

Node relabeling concerns simply changing the label of a node
(see Figure 3b). Node deletion is performed by deleting a node
of the tree and reassigning any children it had so that they
become children of the deleted node’s parent. For example in
Figure 3c, the children of deleted node C are reassigned to C’s
parent A. Finally, node insertion concerns inserting a new node
in a position in the tree, such as inserting node F in Figure 3d.
Assuming a cost function is defined for each operation, an edit
script between two trees T1, T2 is a sequence of operations
required to turn T1 into T2, and its cost is the aggregate cost
of them. Thus, the TED problem is defined as determining the
optimal edit script, i.e., the one with the minimum cost.

B. Zhang-Shasha Algorithm

Let δ(T1, T2) be the edit distance between trees T1 and T2,
and γ(l1 → l2) be the cost of the edit operation from l1 to l2.

47Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 67 / 646

A simple algorithm for computing TED is defined as follows:

δ(θ, θ) = 0 (3)
δ(T1, θ) = δ(T1 − u, θ) + γ(u→ λ) (4)
δ(θ, T2) = δ(θ, T2 − v) + γ(λ→ v) (5)

δ(T1, T2) = min

δ(T1 − u, T2) + γ(u→ λ)

δ(T1, T2 − v) + γ(λ→ v)

δ(T1(u), T2(v)) + δ(T1 − T1(u),
(6)

T2 − T2(v)) + γ(λ→ v)

where T − u denotes tree T without node u and T − T (u)
denotes tree T without u or any of each children. Param-
eter λ is the performed edit operation. The Zhang-Shasha
algorithm, which was named after its authors, K. Zhang and
D. Shasha [11], uses Dynamic Programming (DP) in order to
compute the TED. The keyroots of a tree T are defined as:

keyroots(T) = {root(T)}∪ {u ∈ T : u has left siblings} (7)

Given (7), the relevant subtrees of T are defined as:

relevant subtrees(T) =
⋃
u

{T (u)}, ∀u ∈ keyroots(T) (8)

Thus, the algorithm recursively computes the TED by finding
the relevant subtrees and applying equations (3)–(6).

C. pq-Grams Algorithm

Several algorithms solve the TED problem. However, even
the most efficient ones lack scalability, since the polynomial
order of the problem is high. A promising way of reducing
complexity is by approximating the TED instead of computing
its exact value. Approximate TED algorithms can generally be
effective enough when results do not need to be exact. In the
call trace scenario, the TED is a value denoting the similarity
of two trees, thus, even if it is approximate, it shall provide
with the appropriate n most significant graphs as in Figure 2.

Such an approximate TED algorithm is the pq-Grams based
algorithm proposed by Augsten et al. [12]. The authors define
pq-Grams as a port of known string q-grams to trees. An
example tree and its pq-Grams are shown in Figure 4. The
p and q parameters define the stem and the base of the pq-
Gram, respectively. Let p = 2 and q = 3, the stem of the
first pq-Gram of Figure 4c is {∗, A} and its base is {∗, ∗, B}.
Since the pq-Grams for the tree of Figure 4a cannot be directly
created, an intermediate step of extending the tree with dummy
nodes is shown in Figure 4b. The pq-Gram profile is the set
of all pq-Grams of a tree (see Figure 4c), while the pq-Gram
index of the tree is defined as the bag of all label tuples for
the tree. The pq-Gram index for the tree of Figure 4 is:

I(T) = {∗A∗∗B, ∗A∗BC, ∗ABC∗, ∗AC∗∗, AB∗∗∗,
AC∗∗D,AC∗DE,ACDE∗, ACE∗∗, CD∗∗∗, CE∗∗∗} (9)

According to Augsten et al. [12], the TED between two
trees is effectively approximated by the distance between their
pq-Gram indexes. Let I(T) be the pq-Gram index of tree T ,
the pq-Gram distance between trees T1 and T2 is defined as:

δ(T1, T2) = |I(T1) ∪ I(T2)| − 2|I(T1) ∩ I(T2)| (10)

Equation (10) provides a fast way of approximating the TED
between any pair of trees of the dataset. Thus, the pq-Gram

A

B C

D E

(a)

∗

A

∗ ∗ B C ∗ ∗

∗ ∗ ∗ ∗ ∗ D E ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

(b)

∗

A

∗ ∗ B

∗

A

∗ B C

∗

A

B C ∗

∗

A

C ∗ ∗

A

B

∗ ∗ ∗

A

C

∗ ∗ D

A

C

∗ D E

A

C

D E ∗

A

C

E ∗ ∗

C

D

∗ ∗ ∗

C

E

∗ ∗ ∗

(c)

Fig. 4. A pq-Grams example for p = 2 and q = 3, containing (a) an example
tree, (b) its extended form for p = 2 and q = 3, and (c) its pq-Grams.

distance function can be used in place of the similarity
function which is required by the algorithm shown in Figure 2.

IV. DATASET

The techniques of section II are effective for bug localiza-
tion in small applications. For example, Eichinger et al. [6]
evaluate their method against two known literature bug local-
ization techniques ([4] and [5]) using a small dataset. Although
effectiveness is irrefutable, efficiency is not thoroughly tested
since the dataset is too small to resemble a real application.
Indicatively, the size of the program is almost 2 pages of code,
leading to graphs of roughly 20 nodes after the reduction step.

Since the main scope of this paper lies in achieving
scalability in order to locate bugs of real applications, a larger
dataset has to be used. The dataset was generated using the
source code of daisydiff [13], a Java application that
compares html files. We used the 1.2 version of daisydiff
and planted 3 types of bugs in the code, as shown in Table II.

TABLE II. PLANTED BUGS

Bugs Description Function Calls
1 Wrong limit conditions (Forgot +1) 17509
2 Missing condition (Forgot a < check) 54137
3 Wrong condition (> instead of <) 78837

These bugs do not aim to cover possible bug classes, as in [6],
rather to test algorithm efficiency. Three scenarios with differ-
ent number of function calls are created to demonstrate our
proof of concept. The bug-free and the three buggy versions
were run 100 times given different inputs. The application has
almost 70 files with 9500 lines, leading to graphs of almost
750 nodes after reduction. The dataset is given online in [14].

48Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 68 / 646

TABLE III. AVERAGE ELAPSED TIME (IN SECONDS) FOR THE DIFFERENT PHASES OF THE ALGORITHMS

pq-Grams NoTED ZhangShasha
5 10 15 20 25 30 35 - 5 10 15 20 25 30 35

Graph Parsing 7.81 7.15 7.11 7.15 7.13 7.12 7.13 7.14 8.71 7.05 7.06 7.02 7.03 7.02 7.02
Graph Reduction 4.03 3.97 4.00 4.04 4.03 3.96 3.97 3.93 4.07 3.98 3.97 3.94 3.99 3.92 3.94
Dataset Reduction 84.22 84.10 84.91 83.99 83.94 83.86 84.07 0.00 188.23 187.90 187.37 187.35 187.81 187.41 187.28
Subgraph Mining 7.55 27.10 54.69 131.63 440.51 412.46 450.87 4712.54 5.87 40.05 69.91 149.03 389.21 436.68 611.15

Ranking Calculation 0.56 2.25 6.51 16.62 34.82 36.47 45.86 533.59 0.58 2.77 7.23 16.33 33.87 38.31 55.12
Total 104.17 124.57 157.22 243.43 570.43 543.87 591.90 5257.20 207.46 241.75 275.54 363.67 621.91 673.34 864.51

TABLE IV. RANKING POSITION AND PERCENTAGE OF FUNCTIONS TO BE EXAMINED TO FIND THE BUGS

pq-Grams NoTED ZhangShasha
5 10 15 20 25 30 35 - 5 10 15 20 25 30 35

Position 7 7 31 9 8 8 8 8 7 6 9 8 9 8 8Bug 1 Percentage 1.10% 1.10% 4.87% 1.41% 1.26% 1.26% 1.26% 1.26% 1.10% 0.94% 1.41% 1.26% 1.41% 1.26% 1.26%
Position 5 5 9 9 9 10 9 9 5 5 9 9 9 9 9Bug 2 Percentage 0.68% 0.68% 1.22% 1.22% 1.22% 1.36% 1.22% 1.22% 0.68% 0.68% 1.22% 1.22% 1.22% 1.22% 1.22%
Position 105 105 341 27 3 1 15 17 105 337 342 352 1 1 1Bug 3 Percentage 13.51% 13.51% 43.89% 3.47% 0.39% 0.13% 1.93% 2.19% 13.51% 43.37% 44.02% 45.30% 0.13% 0.13% 0.13%

V. EVALUATION

This section presents the results of applying three different
algorithms to the dataset described in section IV.

A. Experimental Setup

We implemented three algorithms to test the validity of
our dataset reduction hypothesis. The first is the algorithm by
Eichinger et al. [6] as explained in section II. Due to perfor-
mance issues, subtree reduction (see subsection II-B) could not
be applied in such a large dataset. Thus, simple tree reduction
is used in its place. The mining step is performed through the
ParSeMiS [15] implementation of CloseGraph, while InfoGain
(ranking step) was implemented using WEKA [16].

The two other algorithms (ZhangShasha and pq-Grams)
were implemented similarly, inserting a dataset reduction step
before the graph mining step. Both implementations use the
call trace selector of Figure 2, while different values of the
n parameter are tested. The first implementation realizes the
ZhangShasha algorithm and the second implementation the pq-
Grams algorithm in order to reduce the size of the dataset.

All experiments were performed using an 8-core processor
with 8 GB of memory. The graph reduction, dataset reduction
and subgraph mining steps were performed in parallel. Graph
reduction was performed on 8 threads, where each thread
performed simple tree reduction to a fragment of the dataset.
The TED algorithms were applied in parallel using 4 threads
(using more threads was impossible due to memory limita-
tions) that calculated the TED for each correct-incorrect pair of
the dataset. Finally, CloseGraph was executed using 8 threads,
while the trace parsing and ranking steps were sequential.

B. Experimental Results

The algorithms are evaluated both in terms of effectiveness
and performance. Concerning certain parameters, p and q of
the pq-Grams approach were given the values 2 and 3 respec-
tively, having little impact on performance and effectiveness,
and CloseGraph was run with a 10% support threshold.

The performance results are shown in Table III, where the
NoTED approach is the one not using any TED algorithm to
reduce the size of the dataset. Due to space limitations in paper
length, the average measurements are shown for all three bugs,

instead of separate ones for each bug. In terms of performance,
both proposed implementations (pq-Grams and ZhangShasha)
clearly outperform the NoTED approach. In particular, even
when n equals 35, the pq-Grams algorithm requires no more
than 10 minutes, whereas the NoTED approach requires al-
most 90 minutes. The ZhangShasha algorithm is also quite
compelling requiring less than 15 minutes to run. Thus, the
pq-Grams and ZhangShasha approaches are approximately 9.5
and 6.5 times faster than the NoTED approach, respectively.

Concerning all approaches, the mining step is indeed the
most inefficient. Although ranking might also seem inefficient,
its elapsed time depends mainly on the output of the min-
ing step. Concerning the graph reduction step, simple tree
reduction performs quite efficiently. Although graph reduction
techniques deviate from the scope of this paper, note that
subtree reduction required many hours to reduce the graphs.

Performance results are also shown in Figure 5b, where
the vertical axis is in logarithmic scale in order to sufficiently
illustrate the steps of the algorithms. As expected, performance
is largely affected by the number of graphs taken into ac-
count, i.e., the n parameter. The impact of n is depicted in
Figure 5a; the execution time of both approaches is high-order-
polynomial with respect to consecutive values of n. This is
expected since subgraph mining algorithms, such as CloseG-
raph, are affected by the size of the graphs and the size of the
dataset. Further analyzing Figure 5a, the peak at n = 25 is not
totally unexpected since the performance of subgraph mining
algorithms may be affected by numerous properties, such as
the structure of the graph. In any case, concerning the proposed
algorithms, pq-Grams executes faster than ZhangShasha for all
values of n, while NoTED is certainly less efficient.

Table IV provides effectiveness measurements for locating
the three bugs, for all different algorithms. The “Position”
attribute of the table indicates how many functions should the
developer examine in order to locate the bug. This metric is
created using the final ranking of the functions and identifying
the position of the “buggy” function. Using the total number
of functions, which for bugs 1, 2, and 3 is 637, 737, and 777
respectively, the percentage of the program’s functions that
should be examined to locate the bug is also provided.

Our approaches seem to perform not only closely, but also
even more effectively than the NoTED approach, as long as

49Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 69 / 646

5 10 15 20 25 30 35

n

0

200

400

600

800

1000

E
la

p
se

d
 t

im
e
 (

se
co

n
d
s)

ZhangShasha

pq-Grams

(a)

n=
5

n=
10

n=
15

n=
20

n=
25

n=
30

n=
35

N
oT

ED
n=

5
n=

10
n=

15
n=

20
n=

25
n=

30
n=

35

pq-Grams ZhangShasha

0
100

101

102

103

104

105

106

107

E
la

p
se

d
 t

im
e
 (

se
co

n
d
s)

Ranking Calculation

Subgraph Mining

Dataset Reduction

Graph Reduction

Graph Parsing

(b)

5 10 15 20 25 30 35

n

0

5

10

15

20

P
e
rc

e
n
ta

g
e
 o

f
fu

n
ct

io
n
s

(%
)

pq-Grams

NoTED

ZhangShasha

(c)

Fig. 5. Average performance and effectiveness diagrams for the bugs of the dataset. Diagrams (a) and (b) provide the elapsed time for each run of the algorithm.
Diagram (a) depicts the total elapsed time of the pq-Grams and ZhangShasha approaches versus the value of parameter n (which denotes the number of traces
retained from each of the two sets, correct and incorrect), while diagram (b) illustrates the performance for each phase of the algorithms in logarithmic scale.
Diagram (c) illusrates the percentage of functions to be examined in order to detect the bug, versus n.

n is large enough. In fact, the pq-Grams and ZhangShasha
approaches provide a better ranking for the third bug if n is
greater than or equal to 25. Effectiveness is also satisfactory
for the first two bugs. The diversity of the results for the three
bugs is rather expected since the size of the traces is different
for each bug (see Table II). Thus, the third bug produces a
much more difficult test case than the other two.

The impact of n on effectiveness is illustrated in Figure 5c,
which depicts the percentage of functions required to be exam-
ined versus n for the three implementations. The effectiveness
of our algorithms is indeed significant for large enough values
of n. Although small n values result in less satisfactory results,
this is rather expected since useful trace information is lost.
However, selecting an appropriate n value not only reaches but
also surpasses the effectiveness of the NoTED algorithm.

VI. CONCLUSION AND FUTURE WORK

Although there are several approaches for locating non-
crashing bugs in source code, many of them suffer from
scalability issues. With support from the experimental results
of subsection V-B, we argue that our approaches achieve
scalability without compromising effectiveness. According to
our findings, reducing also the size of the dataset, as opposed
to reducing only the graphs, yields quite promising results.

Concerning the dataset reduction step, both TED algo-
rithms are very efficient. Although the performance of Zhang-
Shasha is satisfactory, using pq-Grams provided faster runs and
better function rankings. Conclusively, when only the relative
edit distance of tree pairs is important, approximate TED
algorithms, such as pq-Grams, perform similarly to exact ones.

The field of dynamic bug detection is far from exhausted
when it concerns creating a scalable and effective algorithm.
We argue, however, that our algorithms are a step in the right
direction. Future research includes further testing to explore
their efficiency in different datasets. In addition, further anal-
ysis of TED algorithms could lead to more effective solutions.
Finally, the dataset reduction and subgraph mining steps can
also be improved by designing new approaches. In any case,
dataset reduction should definitely be taken into account.

REFERENCES

[1] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan, “Bug isolation via
remote program sampling,” SIGPLAN Not., vol. 38, no. 5, May 2003,
pp. 141–154.

[2] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff, “Sober: statistical
model-based bug localization,” SIGSOFT Softw. Eng. Notes, vol. 30,
no. 5, Sept. 2005, pp. 286–295.

[3] M. Renieris and S. Reiss, “Fault localization with nearest neighbor
queries,” in Automated Software Engineering, 2003. Proceedings. 18th
IEEE International Conference on, 2003, pp. 30–39.

[4] C. Liu, X. Yan, H. Yu, J. Han, and P. S. Yu, “Mining Behavior Graphs
for ”Backtrace” of Noncrashing Bugs,” in SDM, 2005.

[5] G. Di Fatta, S. Leue, and E. Stegantova, “Discriminative pattern mining
in software fault detection,” in Proc. of the 3rd international workshop
on Software quality assurance (SOQUA), 2006, pp. 62–69.

[6] F. Eichinger, K. Böhm, and M. Huber, “Mining edge-weighted call
graphs to localise software bugs,” in European Conference on Machine
Learning and Knowledge Discovery in Databases, 2008, pp. 333–348.

[7] X. Yan and J. Han, “gspan: Graph-based substructure pattern mining,”
in Proceedings of the 2002 IEEE International Conference on Data
Mining (ICDM), 2002, pp. 721–724.

[8] Y. Chi, Y. Yang, and R. R. Muntz, “Indexing and mining free trees,” in
Proc. of the Third IEEE International Conference on Data Mining, ser.
ICDM ’03, 2003, pp. 509–512.

[9] X. Yan and J. Han, “Closegraph: mining closed frequent graph patterns,”
in Proc. of the 9th ACM international conference on Knowledge
Discovery and Data Mining, ser. KDD ’03, 2003, pp. 286–295.

[10] K.-C. Tai, “The tree-to-tree correction problem,” J. ACM, vol. 26, no. 3,
July 1979, pp. 422–433.

[11] K. Zhang and D. Shasha, “Simple fast algorithms for the editing
distance between trees and related problems,” SIAM J. Comput., vol. 18,
no. 6, Dec. 1989, pp. 1245–1262.

[12] N. Augsten, M. Böhlen, and J. Gamper, “Approximate matching of hi-
erarchical data using pq-grams,” in Proceedings of the 31st international
conference on Very large data bases (VLDB), 2005, pp. 301–312.

[13] “daisydiff: A java library to compare html files,” [retrieved August,
2013]. [Online]. Available: http://code.google.com/p/daisydiff/

[14] “Software & algorithms, ISSEL,” [retrieved August, 2013]. [Online].
Available: http://issel.ee.auth.gr/software-algorithms/

[15] M. Philippsen, M. Wörlein, A. Dreweke, and T. Werth, “Parsemis: The
parallel and sequential mining suite,” [retrieved August, 2013]. [Online].
Available: www2.informatik.uni-erlangen.de/EN/research/ParSeMiS/

[16] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: an update,” SIGKDD Explor.
Newsl., vol. 11, no. 1, Nov. 2009, pp. 10–18.

50Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 70 / 646

Finding Common Subsequences in Recorded Test Cases

Martin Filipsky, Miroslav Bures and Ivan Jelinek

Department of Computer Science and Engineering

Czech Technical University in Prague

Prague, Czech Republic

{filipma2, buresm3, jelinek}@fel.cvut.cz

Abstract—Current trends in the agile software development

prefer to deliver finished stories with automated tests, which

results in a fact that many Quality assurance engineers struggle

with the lack of time. Rapidly changing applications prevent

them from finishing the automation by the end of the sprint as

they cannot develop the tests in advance, and have to wait until

the stable deliverable is done. Test recording might help them to

resolve the problem as it offers very fast test automation in

comparison to other approaches. However, it results in a very

expensive and a time demanding test maintenance. In this paper,

we present an approach that helps the engineers with the

maintenance by introducing a concept of automatically detected

reusable parts within the test recordings. Those reusable parts

increase the efficiency of the test recording approach, remove its

main drawbacks, and help to bring test recording closer to

scripting approaches.

Keywords-functional testing, test automation, test recording,

genetic algorithm

I. INTRODUCTION

Test automation includes a couple of challenges [9]. Since
testing teams are usually limited by finances, time as well as
resources [3], they have to use simple but efficient approaches
for the test harnessing. Here comes the test recording [5] in
place as it allows creating automated tests quickly. On the
other hand, this method is not generally understood as
efficient due to its significant maintenance overhead [1].

In our recent research [6], we have proposed a framework
for the test automation based on the test recording. We
introduced a concept of reusable parts allowing simplifying
the test maintenance. Introducing the reusable parts means to
find common parts within the recorded tests. The problem of
finding them can be transformed into the finding longest
common subsequence problem [2].

The paper is organized as follows. Section 2 introduces the
problem. Section 3 summarizes the previous results. In
Section 4, we describe our solution of the problem. In Section
5, we conclude with outlines for future work.

II. THE PROBLEM

The Longest Common Subsequence (LCS) problem is
defined as finding LCS common to all sequences in a set of
sequences. The subsequence is a sequence that can be derived
from another sequence by deleting some elements of the
original sequence without changing the order of the remaining
elements. Unlike the subsequences, the substrings cannot be
derived from another string by deleting some elements.

Consider a string S = "AACECAACE", then following
strings: (i) S, (ii) "AACAE", (iii) "CCCE", (iv) "ACECA" and

(v) are subsequences of the string S. The subsequence
"ACECA" is also the substring of the string S but the
subsequences "AACAE" and "CCCE" are not. Now consider
strings S1 = ”AEBEEBCCBACA” and S2 =
”CEACEBEBCBAA”. Then “AEEBCBAA” is the LCS of
the given strings, which currently preserves the order of
elements and allows deleting elements from the original
strings.

The standard LCS problem is defined for finding a single
LCS. However, if we need to find all subsequences with at
least length l, the problem is getting more complex. In general,
the decision, if a subsequence w, which is common to all
sequences and has the length at least l, exists over an alphabet

, is an NP-complete problem [13]. To overcome this
limitation, we are planning to employ an evolutionary
computational technique to find LCS.

Understanding tests as sequences of steps might be more
beneficial than understanding them as strings. Finding
common subsequences (CS) might result in longer
subsequences than finding common substrings. However, it
brings the need to define conditions when a subsequence is
valid when excluding some steps from the test case.
Otherwise, it might happen that the found CS could not be
executed independently as the some steps might depend on
excluded steps. Therefore, the state of the application would
not be identical for all steps within the common part.

When finding CS for informational purposes, all steps can
be excluded. However, if we want to understand CS as
functions (as we want to get closer to the scripting approach),
we have to exclude all steps changing the state of the
application (Fig. 1), i.e., only the passive (validation) steps can
be interposed between the common sequence.

III. RELATED WORK

Searching in structured data like test steps or test scripts
represent challenges in the current computing. As the machine
processing becomes more widely used in order to replace the
human labor, standard approaches [10, 11] for the string
searching introduced in 70's cannot be often easily employed
for those data.

Unlike unstructured data, the structured data are organized
in elements. However, the elements (tags) are not supposed to
convey information, e.g., in Extensible Markup Language
(XML).

51Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 71 / 646

Figure 1. Two types of inserted steps (in light red)

Tags define a structure of the document. We talk about hybrid
data when both types of data are in one document.

Zhu et al. [17] noticed that the text search on hybrid data
may result in a bad ranking of the searching results. They
demonstrated why the text search fails or gives insufficient
results when used without considering the structured data.

XML can be seen as a good format for a test case
representation. However, searching within those structured
data requires special approaches, which can be divided into
two categories: (i) information retrieval, and (ii) database-
oriented. The database-oriented approach [12] is based on a
decomposition of XML documents and their storage in
relational databases. The drawback is a query processing,
which may become expensive due to an excessive number of
joins required to recover information from the fragmented
data. The information retrieval approaches employ other
computational techniques like genetic algorithms in several
ways [16].

Srinivasa et al. [15] introduced an approach for an XML
information retrieval mechanism. Based on keyword queries,
they explored how to retrieve and rank XML fragments using
Genetic Algorithms.

An evolutionary technique for the LCS problem is
discussed in [7]. The genetic algorithm (GA) encodes
candidate sequences as binary strings as long as the shortest of
given string. Authors initialize conventionally random
genotypes. They demonstrated that the algorithm always
found an optimum solution, runs in reasonable times even on
large instances, and achieves better results when compared to
approaches based on the dynamic programming.

Julstrom and Hinkemeyer [8] noticed that GA might find
good solutions more quickly in situations, when a problem is
one of constrained optimization, and genotypes of the initial
population are represented by empty solutions.

Finding longest common subsequences in strings is
commonly solved by GAs or dynamic programming. The
recent research shows that GAs achieve the best results in
comparison to other approaches. Several research teams
presented approaches finding the LCS in strings. Nevertheless,
those approaches do not deal with structured and
parameterized data represented by tests in different input
alphabets. Since the current research in testing is mostly
focused on the generation of test cases based on a code
analysis [4], or on an analysis of regression test selection [14],
we see a potential in the research of techniques for
the maintenance of recorded tests to decrease costs for the test
maintenance.

IV. PROPOSED SOLUTION

In this section, we present individual parts of our approach.

We start with mapping tests to strings. Then we present

control parameters, outputs, and introduce our proposal of

LCS solver. Finally, we explain step signatures.

A. Mapping of Tests to Strings

Current solutions for the LCS problem are proposed for
strings (unstructured data). Since test cases are represented,
e.g., in a domain-specific language (DSL), we need to adapt
the current solutions to work with the structured data. Strings
consist of single elements, i.e., characters, which form
sequences. We plan to represent the test cases internally in the
DSL (see Listing 1) describing tests, modules, objects, actions,
etc. The Listing 1 shows the recorded user activity forming the
sequence in the XML.

If we consider all child tags of the XML tag Step including
their parameters and values, we will deal with high number of
variables. It will result in a difficult mapping of the XML tag
Step to a single character required by LCS solvers. On the
other hand, if we consider just Step as one character, we can
understand the tag as one character of the string. Therefore,
the string will consist of complex units (Fig. 2). Such a
representation enables working with structured data using
conventional LCS solvers. However, this approach would be
too simplified as the steps might be understood as identical.
They do not have enough properties for the identification,
since the tag id or tag name is not enough. Therefore, all steps
mapped to the same character could not be recognized. To
identify test steps, we introduce step signatures, which are
supposed to replace a step description. Otherwise, we would
have to choose between the full text search not recognizing
two identical but parameterized steps, and the mapping of
steps to characters not allowing distinguishing them.

Unlike test cases in DSL, the use of, for example, Java
brings new challenges. First of all, steps represented by
commands or functions of the scripting language have to be
simplified. Consider the complexity of the comparison when
counting with language-specific features, parameters etc.
However, the simplified elements still should have signatures
to describe them, which results in a need to find either direct
mapping of commands to steps including signature definitions
for every proposed language. Another option is to find a
general mapping of a limited subset of commands to the
intermediate layer (DSL), and propose one signature based on
the DSL.

In our research, we plan to do more investigations in order
to decide if it is better to work with the source code directly, or
if it is worth to transform the source code to the DSL and then,
to process this representation.

B. Inputs and Outputs

The LCS solver expects two kinds of input data: (i) raw
input data intended for processing (test recordings), and (ii)
control data driving the processing. For the finding LCS, we
expect to provide the LCS solver, i.e., the GA, with the input
files either in the DSL, or in direct source codes.

52Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 72 / 646

Figure 2. Mapping tests to simple strings

The condition is that the relevant mapping exists from test
scripts to elements with signature. The output from the LCS
solver should be a processed package of test recordings with
identified common subsequences.

Since the LCS solver should be proposed to find the
longest common subsequence as well as shorter CS in order to
detect reusable parts, we need to provide the LCS solver with
a threshold defining what lengths of common subsequences
we are interested in. Moreover, we want the LCS solver to
work with simple test step signatures and/or with the complex
ones allowing recognizing identical but parameterized steps.
In other words, the LCS is supposed to work at different level
of details.

C. Evolutionary Computations

We based our solution on the approach presented in [8]
and tailored the GA used in the LCS solver to fit our needs.
For the LCS search, candidate sequences are encoded as
binary strings as long as the shortest mapped given tests or the
first given test if they are of the same length. If the element is
present in the candidate sequence (in the chromosome), it is
encoded by "1". If not, it is encoded by "0". Since [8]
demonstrated that the GA achieves better results when the
population is empty, i.e., the population is represented by
zeros, we have decided not to employ any technique for the
generation of the population.

Consider the example of three mapped tests T1 = “A E B E
E B C C B”, T2 = “C E A E E C B C B”, and T3 = “A E E E
A B C B E“, and the chromosome c[*] = 1 0 0 1 1 1 0 1 1,
then it means that T1: c[i] = 1 is in the subsequence T1[i], and
T1: c[i] = 0 is not in the subsequence T1[i]. T1 represents the
shortest given test or the first test from tests with identical
lengths.

Once GA finds a solution of the LCS problem, the LCS
will be encoded in the chromosome. However, the found
solution represents the LCS in one test, but does not define
where to find the subsequence in other tests. We only know
the mapping from the chromosome to T1. Since the LCS solver
is required to build a structure enabling to identify and access
the subsequence in all tests, the computation of the LCS has to
be followed up by another stage of computations finding the
mapping.

The fitness function v is proposed to remunerate (1) long
sequences, (2) the genotype whose subsequence is long as T1,
(3) strongly remunerate the genotype, in which the
subsequence appears for each given test (4) strongly penalize
the genotype whose subsequence is not found in any test. The
fitness function cannot be positive unless the sequence appears
in all given tests. Based on the assumptions above and the
research of [8], the initial general fitness function is defined
for every case as follows:

 v = l + * m (1)

v = v + (2)

v = * v (3)

v = * v * (K - m) (4)

where l is a length of the subsequence, which c[*] represents,
m is number of tests, which match with the subsequence, and

K is the number of tests in the instance. The constants , , ,
and represent the parameters of the genetic algorithm and
will be experimentally determined.

We are planning to employ several techniques for driving
the evolution of the population, which will be divided into
elite genotypes and the majority population. If the elite
population does not change for several generations, some of
the elite genotypes will be replaced by random genotypes to
avoid local optimums. Remaining genotypes will be evolved
using either a selective breeding of a position, or a mutation of
the position. The genotypes to be modified will be selected by
the tournament selection with the probability 1/l. We are
intending to carry out additional investigations to decide
which strategy would bring the best results.

D. Signatures

Steps of parameterized tests can be compared only in text
mode. Therefore, we proposed signatures to help the steps get
compared, and find common parts. Since the structure of the
command might be variable (for example, consider commands
with one, two, or more parameters), the usage of regular
expressions would require to define regular expressions for all
possible combinations to compare strings. Otherwise, the
standard LCS solver could not compare parameterized data.
Unlike the regular expressions, the signatures allow to define
simplified ones for rough searches, and also detailed
signatures for fine-grained searches. Moreover, they make use
of the opportunity of the clear structure of the DSL (see Figure
3 representing a sample recorded test), and can be built in a
simplified way for all commands than regular expressions.

<test case id=1 name="AddBob">
 <step id="1">
 <object id="Menu" type="Tree"\>
 <action name="Select" onFailure="">Tools;Login</action>
 </step>
 <step id="2">
 <object id="Username" type="InputBox"
 environment="Flex" \>
 <action name="Set" onFailure="">Alice</action>
 </step>
 <step id="4">
 <object id="Login" type="Button" environment="Flex" \>
 <action name="Click" onFailure="" \>
 </step>
</test case>

Figure 3. Recorded test case in the DSL

53Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 73 / 646

Let us explain the signatures on the example of the
recorded test case captured in the DSL. The test case
represents the login to the system. The base signature consists
of descriptions of two entities (objects and actions). We
proposed several levels of signatures for different needs. The
Level 0 signatures are intended to represent subsequences of
similar objects and actions. It provides the users with a
possibility to find groups of similar commands independently
of concrete objects. Level 1 is proposed for the standard LCS
search. It enables to work with parameterized tests, but it is
not so strict like Level 2, which finds absolute conformities of
the subsequences including input values. Level 2 gives the
user a choice, what attributes and parameters should be in the
signature.

TABLE I. SIGNATURES

Level Step Signature

0 2 obj:inputbox&act:set

1 2 obj:inputbox.username&act:set

2 2
obj:inputbox.username+environment=flex

&act:set+val:(hash)

The Table 1 presents the signatures for each level based on

the sample recording (Figure 3) for the step 2. To simplify the
signature as much as possible (consider long input data), the
input parameters are replaced by hashes. The syntax of the
signature is defined as follows:

obj:<type>{.<object_name>}{+<attribute>=<value>}&
act:<action_name>{+<parameter>:<value>}

where obj stands for the object entity, act represents the action
entity, the & char links different entities. If more attributes are
required to describe entities in the signature, they can be
associated with the entity using the char "+". The entity
attributes are not mandatory.

V. CONCLUSIONS AND FUTURE WORK

We have proposed the approach for finding LCS of test
steps based on the evolutionary computational approach
presented in [8]. Moreover, we proposed the method of the
adaptation of the GA processing strings to process structured
data represented by test cases. Furthermore, we introduced
signatures for descriptions of steps, which currently enable
finding LCS in different equivalence classes.

Our next goal of the research is to conduct experimental
verifications of the proposed approach as well as to tune up
the parameters of the GA. We are planning to compare results
gained using the signatures to results gained using the regular
expressions, and to find out the impact of different sizes of the
input alphabet. One of our goals is also to confirm or disprove
whether it is better transform inputs into the DSL, or if it is
worth to work with test recordings directly without
preprocessing.

Finally, we are planning to evaluate the results from
several points of view. Firstly, we will check whether the
results make sense, and whether found LCS would be similar
to reusable units designed by human testers. Secondly, we will
investigate the contribution of such approach with an

emphasis on the efficiency of test automation and test
maintenance.

REFERENCES

[1] B. R. Anand, H. Krishnankutty, K. Ramakrishnan, and V.C.

Venkatesh, Business Rules-Based Test Automation: A Novel
Approach for Accelerated Testing, White paper, Infosys,
SETLabs Briefing, Special Issue April 2007, pp. 21-28.

[2] M. F. Balcan, CS 3510 – Design and Analysis of Algorithms,
Lecture notes, Georgia College of Tech Computing, 2011.

[3] R. Black, Investing in Software Testing: The Cost of Software
Quality, White paper, RBCS, 2000.

[4] Ugo Buy, Alessandro Orso, and Mauro Pezze. 2000.
Automated Testing of Classes. In Proceedings of the 2000
ACM SIGSOFT international symposium on Software testing
and analysis (ISSTA '00), ACM, New York, USA, pp. 39-48.

[5] M. Fewster and D. Graham, Software Test Automation:
Effective Use of Test Execution Tools, Addison-Wesley
Professional, ACM Press Books, September, 1999.

[6] M. Filipsky, M. Bures, and I. Jelinek, Framework for Better
Efficiency of Automated Testing, In Proceedings The Seventh
International Conference on Software Engineering Advances,
Lisbon, Portugal, 2012, pp. 615-618.

[7] B. Hinkemeyer and B. A. Julstrom, A Genetic Algorithm for
the Longest Common Subsequence Problem, In Proceedings of
the 8th annual conference on Genetic and evolutionary
computation, GECCO '06, ACM, New York, USA, 2006, pp.
609-610.

[8] B. Julstrom and B. Hinkemeyer. Starting From Scratch:
Growing Longest Common Subsequences With Evolution. In
Parallel Problem Solving from Nature - PPSN IX, vol. 4193 of
Lecture Notes in Computer Science, Springer Berlin
Heidelberg, 2006, pp. 930-938.

[9] C. Kaner, Software Test Automation: A Real-World Problem,
White paper, Los Altos Workshop on Software Testing 1-3,
1997-98.

[10] R. M. Karp and M. O. Rabin, Efficient Randomized Pattern-
Matching Algorithms, IBM J. Res. Dev., vol. 31(2), March,
1987, pp. 249-260.

[11] D. E. Knuth, J. J. H. Morris, and V. R. Pratt, Fast Pattern
Matching in Strings. SIAM Journal on Computing, vol. 6(2),
1977, pp. 323-350.

[12] R. W. Luk, H. V. Leong, T. S. Dillon, A. T. Chan, W. B. Croft,
and J. Allan, A Survey in Indexing and Searching XML
Documents, J. Am. Soc. Inf. Sci. Technol., vol. 53(6), May,
2002, pp. 415-437.

[13] D. Maier, The Complexity of Some Problems on Subsequences
and Supersequences, Journal of the ACM 25, 1978, pp. 322-
336.

[14] G. Rothermel and M. J. Harrold, “Analyzing Regression Test
Selection Techniques,” IEEE Transactions on Software
Engineering, vol. 22, pp. 529–551, August 1996.

[15] K. G. Srinivasa, S. Sharath, K. R. Venugopal, and L. M.
Patnaik, Gaxsearch: An XML Information Retrieval
Mechanism Using Genetic Algorithms, In Australian
Conference on Artificial Intelligence, 2005, pp. 435-444.

[16] J. Yang and R. R. Korfhage, Effects of Query Term Weights
Modification in Annual Document Retrieval: A Study Based on
a Genetic Algorithm, In Proceedings of the Second Symposium
on Document Analysis and Information Retrieval, 1993, pp.
271-285.

[17] H. Zhu, X. Yang, B. Wang, and Y. Wang, Improving Text
Search on Hybrid Data, In Web-Age Information Management,
vol. 7419 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, 2012, pp. 192-203.

54Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 74 / 646

Architecture-Based Conformance Testing
Elena Leroux, Flavio Oquendo, and Qin Xiong

IRISA, University of South-Brittany, France
E-mails: {elena.leroux | flavio.oquendo | qin.xiong}@irisa.fr

Abstract—In the last two decades, software architecture
has played a central role in the development of software
systems. It provides a high-level description for large-size
and complex systems using suitable abstractions of the
system’s components and their interactions. In our work, the
software architecture is described using a formal Architec-
ture Description Language (ADL) designed in the ArchWare
European Project, π-ADL-C&C. One of the purposes of
this ADL is to allow formal validation of an implemented
system with respect to its architectural model. In this paper,
we propose a conformance testing approach for validating
a software system with respect to its architecture. The
architectural abstract test cases are derived from an Input-
Output Symbolic Transition System (IOSTS) representing
the architecture structure and behaviors, which are then
translated into concrete test cases to be executed on the
system under test. To illustrate our approach we use the
coffee machine example.

Keywords—Software Architecture, Architecture Description
Language, Architectural Conformance Testing, Validation

I. Introduction

During the past years a continuous growth, in size and com-
plexity, of software and hardware systems has been observed.
The problems, which were important in the pass, and which are
related to a code development, e.g., the choice of data structure
and algorithms, became less important than the ones related
to the system design. This is not only due to the increased
amount of code, but also to the need to distribute different
components of the system and to have them interact in complex
ways. To deal with these problems and to rise the level of
abstraction at which software is conceived and developed, a
software architecture has emerged. It was rapidly considered as
an important sub-discipline of software engineering [1]. Software
architecture allows developers: (1) to abstract away the details
of the individual components of a system, (2) to represent a
system as sets of components with associated connectors that
describe the interactions (a) among these components, and
(b) between the components and the environment, and (3) to
guide the system design and evolution. In order to describe
the software architecture of a system, a set of formal and
semi-formal languages has been proposed [2], [3]. These ADLs
help specify an architecture according to different viewpoints.
The two following viewpoints are frequently used at a runtime
perspective in the software architecture discipline.

The structural viewpoint is specified in terms of: (1) compo-
nents (i.e., units of computation of a system), (2) connec-
tors (interconnections among components for supporting
their interactions), and (3) configurations of components
and connectors. Thereby, an architecture description, from
a structural viewpoint, should provide a formal specifi-
cation of the architecture in terms of components and
connectors, and how they are composed together.

The behavioral viewpoint is specified in terms of: (1) actions a
system executes or participates in, (2) relations among ac-
tions to specify behaviors, and (3) behaviors of components
and connectors, and how they interact.

An ADL challenge is the ability of a language to enable vali-
dation of designed systems very early in the software life cycle
in addition to verification all along the software process. The
π-ADL [4] language has been designed in order to meet this
challenge. π-ADL is an executable specification language that
allows formal description of software architectures of a system
under development. A virtual machine of π-ADL runs specifi-
cations of the software architecture and enables its validation
by simulation and testing as described in this paper.

The analysis and validation, by using, for example, software
testing techniques, of software systems play a crucial role in the
system development process. That is one of the reasons of the
raising interest to the use of the architectural models in order to
test systems behaviors with respect to their early architectural
specification. Software testing [5] is a process consisting in the
dynamic verification of system behaviors, which is performed
by observing the execution of the system on a selected test
case. Several contributions [6]–[13] have been proposed to tackle
the problem of the validation of software systems by means
of architectural testing. The brief overview of them is done in
Section VI of this paper.

In this paper, we focus on model-based conformance test-
ing [14], [15], which permits to derive test cases from a model
representing the behavior of a software system, in order to
check that this system fulfills its behavior. We use IOSTS
as a model, which we generate from a formal architectural
specification designed in the π-ADL language. The goal is to
propose an approach for validation of software systems using
their architectural specifications, and to illustrate its feasibility
with a simple example.

The remainder of this paper is structured as follows: Sec-
tion II presents the π-ADL language, which is used for ar-
chitecture design, and a working example, used all along this
paper, for the demonstration of our approach. Section III briefly
describes the IOSTS formalism, which is used to model an ar-
chitectural π-ADL specification and abstract test cases derived
from this specification. Section IV presents our approach ex-
plaining how to generate test cases from a π-ADL architecture
and execute them on a black-box system under test. Section V
lists the tools used or/and developed to support our approach.
Section VI summarizes our work, positions it with respect to the
other works done in the field of the software architecture-based
testing and gives a brief overview of related work. Section VII
closes the paper with summary remarks.

II. The π-Architecture Description Language

In this section, we briefly present π-ADL, which we are using
for the architecture description of a system under development,
and we illustrate it with a working example of a coffee machine.

A. Overview

The π-ADL language [4], designed in the ArchWare Euro-
pean Project, is a formal, well-founded theoretically language

55Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 75 / 646

based on the higher-order typed π-calculus [16]. It supports de-
scription of software architectures from a runtime perspective.
Moreover, π-ADL has a virtual machine allowing execution of
architectural specifications, and therefore, the validation of a
software architecture by simulation is enabled. In the following,
we briefly explain how the π-ADL language can be used for the
formal definition of a software architecture.

In π-ADL, an architecture is described in terms of compo-
nents, connectors, and their composition.

Components are described in terms of external ports and an
internal behavior. Their architectural role is to specify
computational elements of a software system. The focus is
on computation to deliver system functionality. Ports are
described in terms of connections between a component
and its environment. Their architectural role is to put
together connections providing an interface between the
component and its environment. Protocols may be enforced
by ports and among ports.

Connectors are basic interaction points. Their architectural
role is to provide communication channels between two
architectural elements. A component can send or receive
values via connections. They can be declared as output
connections (values can only be sent), input connections
(values can only be received), or input-output connections
(values can be sent or received).

From a black-box perspective, only ports (with their con-
nections) of components and connectors and values passing
through connections are observable. From a white-box perspec-
tive, internal behaviors are also observable.

π-ADL consists of a family of related ADLs. The π-ADL-
C&C language describes an architecture at an abstract high
level. This language is user-friendly, and it allows rapid design
of architectures using the notions of component and connector.
The π-ADL-Spec language is a canonical form of π-ADL.
Finally, the π-ADL.NET language is a low level ADL, that
makes possible an execution of architectural specification as it
is equipped with a virtual machine.

B. Working Example

In this section, we present a working example of a simple
coffee machine, which will be used all along the paper. Fig.1
shows the abstract architecture of the coffee machine in terms of
components and connectors. This coffee machine accepts coins
(thought the Coin(Natural) connector), the request for a bev-
erage (thought the PressButton() connector), and the request
for a command canceling (thought the Cancel() connector), and
then either delivers the beverage (thought the Deliver() connec-
tor) or returns money back (thought the Return(Natural) con-
nector). It consists of two components: Payment and Beverage.

A request for a beverage is received by the Beverage compo-
nent from the user interface of the coffee machine. The purpose
of this component is (1) to stock the information about the
availability and the price of a coffee, (2) to wait until the
beverage button is pressed, (2) to communicate the price to the
Payment component, (3) to prepare a coffee, and (4) to deliver
it to a customer. The Beverage component serves the coffee
whenever the two following conditions are satisfied: first, a
customer has paid enough (this information should be received
from the Payment component), and second, coffee is not out

Coin(Natural)

Cancel()

PressButton()

Return(Natural)

Deliver()

P
a
id

()
/

P
a
id

()

N
o
tP

a
id

()
/

N
o
tP

a
id

()

S
en

d
P

ri
ce

(N
a
tu

ra
l)

/

R
ec

ei
ve

P
ri

ce
(N

a
tu

ra
l)

Coffee Machine

Payment

Beverage

Fig. 1. The coffee machine architecture.

of stock. If the first condition is not satisfied, the component
Beverage waits for another request for coffee and then checks
again if the payment is sufficient. If the second condition is
not satisfied, then the delivery of coffee is impossible, and the
Beverage component is blocked.

The requests for a payment and for a command cancel-
ing coming from the user interface of the coffee machine are
accepted by the Payment component. This component allows
(1) to memorize the amount of money already paid by the
customer, the number of coins inserted into the coffee machine,
and the price of a coffee received form the Beverage component,
(2) to communicate the information about sufficient/insufficient
payment to the Beverage component, (3) to return the money
back if the Cancel button has been pressed, or if the customer
inserted more coins than authorized by the coffee machine, and
(4) to return the difference between the price and the paid
amount in the case of a coffee delivery.

Note that, the Beverage and Payment components com-
municate not only with their environment, but also with
themself. Indeed, the Beverage component sends the price
of a coffee through the SendPrice(Natural) connector to the
Payment component. The latter receives the price through
the ReceivePrice(Natural) connector. Moreover, the Payment
component notifies the Beverage component if the customer has
paid enough or not using the Paid() and NotPaid() connectors.

C. Architecture Description using π-ADL-C&C

In the previous section, we have informally described the
structure and behavior of the coffee machine. In this section,
we explain how this structure and behavior can be formalized
using the π-ADL-C&C language. We begin with the description
of two components of the coffee machine, namely the Beverage
(see Fig.2) and the Payment (see Fig.3) components.

1) The beverage component. The Beverage component,
shown on Fig.2, is declared as an abstraction (see line 1) with
two Natural parameters: (1) cBeverageQuantity indicating the
quantity of the beverage in the coffee machine, (2) cPrice
indicating the price of the beverage. The external ports of
this component are shown on lines 3-9, and described in terms

56Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 76 / 646

1 component Beverage is abstraction(cBeverageQuantity : Natural, cPrice : Natural){

2 port is {

3 connection PressButton is in().

4 connection Deliver is out().

5 connection SendPrice is out(Natural).

6 connection Paid is in().

7 connection NotPaid is in().

8 }

9 drink is abstraction(vBeverageQuantity : location[Natural]){

10 if (vBeverageQuantity >= cBeverageQuantity) then{

11 via PressButton receive.

12 drink(vBeverageQuantity)

13 }else{

14 via PressButton receive.

15 via SendPrice send cPrice.

16 choose{

17 via NotPaid receive.

18 drink(vBeverageQuantity)

19 or

20 via Paid receive.

21 via Deliver send.

22 vBeverageQuantity := vBeverageQuantity’+1.

23 drink(vBeverageQuantity)

24 }

25 }

26 }.

27 behaviour is {

28 drink(location(0))

29 }

30 }

Fig. 2. The beverage component expressed in π-ADL-C&C.

of connections: PressButton, Paid, NotPaid, and SendPrice,
Deliver, where the three first connections permit to receive
the information from the environment (they are declared as
input connections by using the keyword in) and the two last
ones allow to send the information to the environment (they
are declared as output connections by using the keyword out).
Notice that, the SendPrice connection permits to send one
value of the Natural type (see line 6) in order to be able to
communicate the price of the beverage.

1 component Payment is abstraction(cCoinNumber: Natural){

2 port is {

3 connection Coin is in (Natural).

4 connection Return is out (Natural).

5 connection Cancel is in ().

6 connection ReceivePrice is in (Natural).

7 connection Paid is out ()

8 connection NotPaid is out ()

9 }.

10 paying is abstraction(

11 cCoinNumber: Natural,

12 vPaid: location[Natural],

13 vCoinNumber: location[Natural],

14 vPrice: location[Natural]

15){

16 choose {

17 if vCoinNumber < cCoinNumber then {

18 via Coin receive pCoin : Natural.

19 vPaid := vPaid’+pCoin.

20 vCoinNumber := vCoinNumber’+1.

21 paying(cCoinNumber, vPaid, vCoinNumber, vPrice)

22 } else {

23 via Return send vPaid.

24 paying(cCoinNumber, location(0), location(0), location(0))

25 }

26 or

27 via ReceivePrice receive pPrice : Natural.

28 vPrice := pPrice.

29 paying(cCoinNumber, vPaid, vCoinNumber, vPrice)

30 or

31 via Cancel receive.

32 via Return send vPaid.

33 paying(cCoinNumber, location(0), location(0), location(0))

34 or

35 if vPaid >= vPrice then {

36 via Paid send.

37 via Return send (vPaid-vPrice).

38 paying(cCoinNumber, location(0), location(0), location(0))

39 } else {

40 via NotPaid send.

41 paying(cCoinNumber, vPaid, vCoinNumber, vPrice)

42 }

43 }

44 }.

45 behaviour is {

46 paying(cCoinNumber, location(0), location(0), location(0))

47 }

48 }

Fig. 3. The payment component expressed in π-ADL-C&C.

The behavior of the Beverage component is shown on lines
27-29, and described as a call to the drink abstraction carry-

ing 0. The value 0 initializes the variable vBeverageQuantity
memorizing the quantity of beverage already used. The body
of the drink abstraction describes formally the behavior of the
Beverage component of the coffee machine, explained informally
in Section II-B. More precisely, the Beverage component verifies
if the quantity of beverage is sufficient or not (see line 10).
In the both cases above, it lets the customer to press the
button (see lines 11 and 14), but (1) in the last case (the
quantity of beverage is insufficient), the component is blocked
(see the call to the same abstraction drink with the same
value of parameter vBeverageQuantity on line 12), while (2)
in the first case (the quantity of beverage is sufficient), the
component communicates the price of the beverage using the
SendPrice connection (see line 15), and then: (a) either returns
into its initial state (see the call to the abstraction drink on
line 18), if it has received the notification of insufficient payment
through the NotPaid connection (see line 17), or (b) delivers the
beverage using the Deliver connection (see line 21) and increases
vBeverageQuantity by one (see line 22), if it has received the
notification of sufficient payment through the Paid connection
(see line 20), and comes back to its initial state (see the call to
the abstraction drink on line 23).

2) The payment component. The formal description of the
Payment component is given on Fig.3 and is similar to one of
the Beverage component. Therefore, we do not detail it.

3) The architecture of the coffee machine. The architec-
ture of the coffee machine is formally described in Fig.4. It
is an abstraction whose behavior (see 2-12) is composed of
two instantiated components Beverage(10,3) and Payment(10)
(see lines 3-7). These components communicate via the unified
connections shown on lines 8-10.

1 architecture CoffeeMachine is abstraction() {

2 behaviour is {

3 compose{

4 beverage is Beverage(10, 3)

5 and

6 payment is Payment(10)

7 } where {

8 payment::ReceivePrice unifies beverage::SendPrice and

9 payment::Paid unifies beverage::Paid and

10 payment::NotPaid unifies beverage::NotPaid

11 }

12 }

13 }

Fig. 4. The architecture of a coffee machine in π-ADL-C&C.

III. Underlying Model for Test Case Generation

In this paper, we are interested in conformance testing of
a system under development with respect to its architectural
specification expressed at the user-level using π-ADL-C&C
language. For test cases generation using STG [17], [18], we
automatically translate a high-level architectural specification
into the low-level model called IOSTS. We use IOSTS for
describing architectural specifications, test purposes, and test
cases, and assume that the black-box implementation can be
described by an IOSTS of which only the external interface
is known. The formal syntax and semantics of IOSTS are
defined in [19]. The intuitive explanation is given below using
the example depicted in Fig.5, which represents the payment
component of the coffee machine. Notice that, the beverage
component can also be modeled by IOSTS as it is shown in
Fig.5.

An IOSTS is made up of locations, for example, p1, p2,
p3 and p4, where p1 is the initial location, and transitions.

57Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 77 / 646

The transitions are labeled with actions, guards, and variable
assignments. For example, the transition with origin p2 and des-
tination p2 has the guard (vCoinNumber < cCoinNumber),
the input action Coin? carrying the data pCoin from the envi-
ronment, and two variable assignments vP aid := vP aid+pCoin

and vCoinNumber + +. The set of actions is partitioned into
three disjoint subsets of input, output, and internal actions.
The input/output actions interact with the environment and
may carry data from/to it, while internal actions are used
for internal computations. By convention, the names of input
(resp. output) actions end with “?” (resp. “!”). The IOSTS in
Fig.5 has two inputs: Coin? and Cancel?, three outputs: Paid!,
NotPaid!, Return!, and one internal action: τinit payment. It
operates with symbolic data consisting of variables, constants,
and parameters. Intuitively, variables are data to compute with,
constants are symbolic constants, and parameters are data to
communicate with the environment. Note that the scope of
parameters is only a transition labeled by an action, which
carries these parameters. Thus, if the value of a parameter
should be used in later computations, it should be memorized
through an assignment to a variable.

p1

p2

p3 p4

cCoinNumber¿0

τinit payment
vPaid:=0
vCoinNumber:=0
vPrice:=0(vCoinNumber ≥ vCoinNumber)

Return!(vPaid)

ReceivePrice?(pPrice)
vPrice:=pPrice

(vCoinNumber ¡ cCoinNumber)
Coin?(pCoin)

vPaid:=vPaid+pCoin
vCoinNumber++

(vPaid ¡ vPrice)
NotPaid!()

Cancel?()

Return!(vPaid)

(vPaid ≥ vPrice)
Paid!()

Return!(vPaid-vPrice)

Fig. 5. The payment component modelled by an IOSTS.

b1

b2

b3

b4

b5

(cBeverageQuantity¿0) and (cPrice¿0)

τinit beverage
vBeverageQuantity:=0

(vBeverageQuantity ¡ cBeverageQuantity)
PressButton?()

SendPrice!(cPrice)

Paid?()

(vBeverageQuantity ≥ cBeverageQuantity)
PressButton?()

NotPaid?()

Deliver!()
vBeverageQuantity++

Fig. 6. The beverage component modelled by an IOSTS.

Informal semantics. Consider the IOSTS (cf. Fig.5) rep-
resenting the Payment component of the coffee machine.
The payment starts in the location p1 with some value of
the cCoinNumber constant satisfying the initial condition
cCoinNumber > 0, that is, the number of coins accepted by the
coffee machine is strictly positive. Then, it fires the transition
labeled by the internal action τinit payment, assigns the three
variables: vPaid storing the amount already paid, vCoinNumber
memorizing the number of coins inserted into the machine, and
vPrice storing the price of the beverage, to 0, and reaches the
location p2. Next, the Payment component expects either:

– a coin, denoted by the Coin? input action that carries in the
pCoin parameter the value of the inserted coin. The vari-

ables vPaid and vCoinNumber are increased respectively
by pCoin and by 1. Note that the Coin? action can be
executed only in the case, where the number of the already
inserted coins is less than the value of the cCoinNumber
constant. Otherwise, the payment component returns the
amount already paid (through the Return!(vPaid) output
action) and moves back to the initial location p1. Or

– the price of a beverage, denoted by the ReceivePrice? input
action that carries in pPrice the cost of the beverage, the
variable vPrice is initialized to the value of pPrice.

In the two cases above, the machine stays in the location
p2. If the payment is enough, i.e., vPaid ≥ pPrice, the pay-
ment component, first of all, emits the Paid!() output action
and moves to the location p4, and then returns (through the
Return!(pPrice − vPaid) output action) the difference between
the paid amount and the cost of a beverage, i.e., pPrice − vPaid,
and moves to the initial location p1. Otherwise, the payment
component sends the NotPaid!() output action and stays in
the location p2. Note that in the location p2, the Cancel? input
action can be received, which signifies that the Cancel button
has been pressed. In this case, the payment component returns
the amount already paid (through the Return!(vPaid) output
action) and moves back to the initial location p1.

Formal semantics. A state s is a pair 〈l, ϑ〉, where l is
a location and ϑ is a valuation of the constants and vari-
ables, e.g., s = 〈Coin, cCoinNumber=10, vPrice=3, vPaid=2,
vCoinNumber=4〉. An initial state s0 = 〈l0, ϑ0〉 is a state where
l0 is the initial location, and ϑ0 is a valuation of the constants
and variables which satisfy the initial condition. We denote
by S (resp. S0) the set of all states (resp. initial states). A
valued action α is a pair 〈a, ω〉, where a is an action and ω is a
valuation of the parameters of a, e.g., α = 〈Coin, pCoin = 1〉
or α = 〈τinit payment〉. We denote by Λ = Λ? ∪ Λ! ∪ Λτ the
set of valued actions, which is partitioned into three subsets
of valued input, valued output, and internal actions. Next, we
define the transition relation → as the set of triples 〈s, α, s′〉,
where s = 〈l, ϑ〉, s′ = 〈l′, ϑ′〉 are states and α = 〈a, ω〉
is a valued action. Here, (1) ϑ and ω are valuations of the
constants, variables, and parameters, which satisfy the guard
of a transition t with the origin l and the destination l′ that
is labeled with the action a, and (2) ϑ′ is the new valuation
of the variables and constants obtained from ϑ by the variable
assignments of t.

Definition 1: A behavior β is a sequence of states and valued
actions starting from an initial state and following the transition
relation, i.e., β : s0 α1→ s1

α2→ s2 . . . sn−1

αn→ sn where → is the
transition relation, s0 ∈ S0, and for all i ∈ [1, n]: si ∈ S, αi ∈ Λ.

To describe observable behaviors of IOSTS we define the rela-
tion ⇒ as follows:

– s
ε

⇒ s′ , (s = s′) ∨ (∃s0, . . . , sn ∈ S. s = s0

τ1→

s1 . . . sn−1

τn→ sn = s′), where for all i ∈ [1, n]: τi ∈ Λτ ;
– s

α
⇒ s′ , ∃s1, s2 ∈ S. s

ε
⇒ s1

α
→ s2

ε
⇒ s′, where α ∈ Λ?∪Λ!.

Definition 2: An observable behavior β is a sequence of
states and valued input or output actions, i.e., β : s0 α1⇒
s1

α2⇒ s2 . . . sn−1

αn⇒ sn where s0 ∈ S0, and for all i ∈ [1, n]:
si ∈ S, αi ∈ Λ? ∪ Λ!.

Definition 3: A trace σ is the sub-sequence of an observable
behavior β : s0 α1⇒ s1

α2⇒ s2 . . . sn−1

αn⇒ sn, which consists of

58Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 78 / 646

High-Level Formal
Architectural Specification

(π-ADL C&C)

High-Level Formal
Architectural Specification

(π-ADL Spec)

Specification
(π-ADL.NET)

Compilation
Implementation

(.NET)

Implementation
(Java,C++)

Specification
(IOSTS)

Test Purpose
(IOSTS)

STG
Test Cases
(IOSTS)

Executable Test Cases
(π-ADL.NET,Java,C++)

Parallel Execution

Test Result:

Pass, Fail,
Inconclusive

Fig. 7. Outline of the approach.

valued input or output actions, i.e., σ : α1α2 . . . αn where for
all i ∈ [1, n]: αi ∈ Λ? ∪ Λ!.

A. Conformance Relation

The conformance relation defines the set of system’s imple-
mentations which are correct with respect to its architectural
specification. Intuitively, an implementation is conformant to a
specification if for each trace of the specification, the implemen-
tation produces only outputs, which are allowed by the spec-
ification. To define the conformance relation formally, we first
define the set of states in which an IOSTS M can be after the
observable trace σ: (M after σ) , {s ∈ S | ∃s0 ∈ S0. s0 σ

⇒ s},
and the set of valued output (resp. input) actions which can
be generated by M when it is in some state s among the set of
states S̃: Out(S̃) , {α ∈ Λ! | ∃s ∈ S̃. s

α
→} (resp. In(S̃) , {α ∈

Λ? | ∃s ∈ S̃. s
α
→}), where s

α
→ , ∃s′ ∈ S. s

α
→ s′. Finally,

denote by T races(M) the set of traces of M . Note that if a
trace σ does not belong to T races(M) then Out(M after σ)
and In(M after σ) are the empty set. For two IOSTS M1,
M2 and each trace σ ∈ T races(M1) \ T races(M2) we define
Out(M2 after σ) and In(M2 after σ) to be the empty set.

Definition 4: The conformance relation between
two IOSTS IUT and Spec with fixed, identical
constants is defined as follows: (IUT conf Spec) ,

∀σ ∈ T races(Spec).Out(IUT after σ) ⊆ Out(Spec after σ).

IV. Approach for Architecture Validation

In this section, we describe the approach, which we use for
the architecture validation of a system under development. This
approach is depicted in the Fig.7 and presented below.

A. From π-ADL-C&C to π-ADL-Spec

The first step of our approach consists in the transformation
of a high-level architectural specification described in π-ADL-
C&C into its canonical form in π-ADL-Spec. To illustrate this
transformation we use the payment component whose π-ADL-
C&C code is shown in Fig.3. The result of the transformation
is shown on Fig.8.

a) The components and their internal behaviors de-
clared as abstractions are translated into the individual abstrac-
tions of behaviors. These individual abstractions can be later
instantiated as behaviors by an application. Moreover, to enable
a recursive call of an abstraction instance, this abstraction
should be declared as a recursive abstraction in the π-ADL-
Spec language by using the keyword “recursive”. For example,
the payment component (see lines 1-44 of Fig.3) corresponds
to its individual abstraction shown on lines 43-45 of Fig.8;

and its internal behavior “paying” (see lines 12-45 of Fig.3)
corresponds to the recursive abstraction shown on lines 1-42 of
Fig.8. Notice that, the parameters of components and internal
behaviors are the same as the parameters of the corresponding
individual abstractions. See, for example, the line 1 of Fig.3 and
the corresponding line 43 of Fig.8.

1 recursive value paying = abstraction(

2 cCoinNumber: Natural,

3 vPaid: location[Natural],

4 vCoinNumber: location[Natural],

5 vPrice: location[Natural]

6){

7 value Coin = connection(Natural);

8 value Return = connection(Natural);

9 value Cancel = connection();

10 value ReceivePrice = connection(Natural);

11 value Paid = connection();

12 value NotPaid = connection();

13
14 choose{

15 if(’vCoinNumber < cCoinNumber) then{

16 via Coin receive pCoin : Natural;

17 vPaid := ’vPaid+pCoin;

18 vCoinNumber := ’vCoinNumber+1;

19 paying(cCoinNumber, vPaid, vCoinNumber, vPrice)

20 } else {

21 via Return send vPaid;

22 paying(cCoinNumber, location(0), location(0), location(0))

23 }

24 or

25 via ReceivePrice receive pPrice : Natural;

26 vPrice := pPrice;

27 paying(cCoinNumber, vPaid, vCoinNumber, vPrice)

28 or

29 via Cancel receive;

30 via Return send ’vPaid;

31 paying(cCoinNumber, location(0), location(0), location(0))

32 or

33 if(’vPaid >= ’vPrice) then{

34 via Paid send;

35 via Return send (’vPaid-’vPrice);

36 paying(cCoinNumber, location(0), location(0), location(0))

37 } else {

38 via NotPaid send;

39 paying(cCoinNumber, vPaid, vCoinNumber, vPrice)

40 }

41 }

42 };

43 value Payment = abstraction(cCoinNumber: Natural){

44 paying(cCoinNumber, location(0), location(0), location(0))

45 }

Fig. 8. The payment component expressed in π-ADL-Spec.

b) The connections, declared in a π-ADL-C&C compo-
nent (see for example, lines 3-8 of Fig.3), should be declared
in the scope of a π-ADL-Spec abstraction in which they are
used (see lines 7-12 of Fig.8). Notice that, the syntax for the
declaration of a connection has been changed. Moreover, in
the π-ADL-Spec language we do not need to specify if the
connection is used to receive or to send information from/to
its environment.

B. From π-ADL-Spec to π-ADL.NET

In order to obtain a system ready to be compiled and
executed, we need to transform the π-ADL-Spec specification
into the π-ADL.NET code. This section briefly outlines some
important points of this transformation (see Fig. 8 and 9).

59Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 79 / 646

a) For each abstraction of π-ADL-Spec, its list of pa-
rameters, containing more than one parameter (see for example,
lines 2-5 of Fig.8), is encapsulated as a value of the view type
in the π-ADL.NET code (see respectively lines 1-5 of Fig.9).
Each value of the view type view[label1:T1,...,labeln:Tn]

is a view view(label1=v1,...,labeln=vn), where for i ∈ [1, n],
each value vi has type Ti, and each label labeli has the same
name as its corresponding parameter in the π-ADL-Spec code.
The reason is that the π-ADL.NET language does not support
a list of parameters for a value passing.

1 value paying is abstraction(args:view[

2 cCoinNumber: Integer,

3 vPaid: Integer,

4 vCoinNumber: Integer,

5 vPrice: Integer]

6){

7 Coin : connection[Integer];

8 Return : connection[Integer];

9 Cancel : connection[Void];

10 ReceivePrice : connection[Integer];

11 Paid : connection[Void];

12 NotPaid : connection[Void];

13 pCoin : Integer;

14
15 choose {

16 if (args::vCoinNumber < args::cCoinNumber) do {

17 via Coin receive pCoin;

18 args::vPaid = args::vPaid+pCoin;

19 args::vCoinNumber = args::vCoinNumber+1;

20 via paying send view(cCoinNumber:args::cCoinNumber, vPaid:args::vPaid,

vCoinNumber:args::vCoinNumber, vPrice:args::vPrice);

21 } else do{

22 via Return send vPaid;

23 via paying send view(cCoinNumber:args::cCoinNumber, vPaid:0, vCoinNumber:0,

vPrice:0);

24 }

25 or

26 via ReceivePrice receive pPrice : Natural;

27 vPrice = pPrice;

28 via paying send view(cCoinNumber:args::cCoinNumber, vPaid:args::vPaid,

vCoinNumber:args::vCoinNumber, vPrice:args::vPrice);

29 or

30 via Cancel receive;

31 via Return send vPaid;

32 via paying send view(cCoinNumber:args::cCoinNumber, vPaid:0, vCoinNumber:0, vPrice:0);

33 or

34 if (vPaid >= vPrice) do {

35 via Paid send;

36 via Return send (vPaid-vPrice);

37 via paying send view(cCoinNumber:args::cCoinNumber, vPaid:0, vCoinNumber:0,

vPrice:0);

38 } else do {

39 via NotPaid send;

40 via paying send view(cCoinNumber:args::cCoinNumber, vPaid:args::vPaid,

vCoinNumber:args::vCoinNumber, vPrice:args::vPrice);

41 }

42 }

43 };

44 value Payment is abstraction(cCoinNumber: Integer){

45 via paying send view(cCoinNumber:args::cCoinNumber, vPaid:0, vCoinNumber:0, vPrice:0);

46 }

Fig. 9. The payment component expressed in π-ADL.NET.

b) Each call to a π-ADL-Spec abstraction carrying
parameters, which permit to establish the communications
between behaviors and abstractions (see for example, line 19 of
Fig.8), is transformed, in the π-ADL.NET code, into an output
action sending these parameters via the connection with the
same name as the corresponding π-ADL-Spec abstraction (see
line 20 of Fig.9).

c) Each location type in the π-ADL-Spec language (see
for example, line 3 of Fig.8) is transformed into the type of the
value stored in this location (see line 3 of Fig.9).

C. From Architectural Specification to Implementation

The goal of this step of our approach is to obtain an exe-
cutable software system. To reach this goal we use the π-ADL
compiler [20] developed in C# by Z.Qayyum, and executable
on .NET platform. This compiler takes as input a π-ADL.NET
code and transforms it into an executable system. We then
run this system on a persistent virtual machine developed for
executing architectural descriptions based on the operational
semantics of π-ADL.

D. From π-ADL-Spec to IOSTS

In this section, we informally describe the transformation of
an architectural specification expressed in π-ADL-Spec into its
IOSTS model. We use the example of the payment component,
shown in Fig.8 and called Sπ-ADL-Spec, in order to illustrate this
transformation, which results in the IOSTS, depicted in Fig.5
and called SIOSTS.

a) Each π-ADL-Spec abstraction corresponds to one
IOSTS model. For example, the abstraction shown on lines 44-
46 of Sπ-ADL-Spec corresponds to SIOSTS modeling behaviors of
the payment component of the coffee machine.

b) The connections of a π-ADL-Spec abstraction be-
come the input/output actions of the corresponding IOSTS. For
example, the connections of Sπ-ADL-Spec, i.e., Coin, Cancel, and
Return, Paid, NotPaid (see lines 7-12), are the input/output
actions of SIOSTS.

c) Each input and output prefix, whose respec-
tive syntax is “via connection receive value” and “via

connection send value”, of a π-ADL-Spec abstraction is
transformed into a transition of IOSTS labeled with an action
corresponding to connection carrying out parameters corre-
sponding to value of this prefix. Each silent prefix, indicated
by the keyword “unobservable”, is translated to a transition
of IOSTS labeled with an internal action. Notice that, all the
assignments following the prefix become assignments of the
transition corresponding to this prefix. Moreover, if the prefix
is surrounded with the “if(condition) then{...}” structure,
then its corresponding, in the IOSTS model, transition is
guarded by condition mentioned in this structure. For exam-
ple, the π-ADL-Spec code of lines 15-23 corresponds to two
transitions of SIOSTS leaving from the location p2 and labelled
with the Coin? and Return! actions.

d) A sequence of input, output, and silent prefixes in
the π-ADL-Spec language is modeled by the sequence of the
corresponding transitions in the IOSTS model. For example, the
sequence “via Cancel receive.via Return send ’vPaid” of
Sπ-ADL-Spec (see lines 29-30) is represented by two conse-
quent transitions (p2, Cancel?(), p3). (p3, Return!(pP aid), p1)
of SIOSTS (see Fig.5).

e) The “choice” structure of π-ADL-Spec permits to
model a location of an IOSTS with several outgoing transitions.
For example, the code of lines 14-41 of Sπ-ADL-Spec corresponds
to p2 of SIOSTS and to six transitions outgoing from p2.

f) A call to an abstraction in the π-ADL-Spec language,
means that the transition corresponding to a prefix preceded by
this call, should be redirected to one of already created locations
of the IOSTS. For example, the call of line 19 of Sπ-ADL-Spec

means that the transition of SIOSTS labeled with Coin? should
stay in the same location, while the call of line 22 signifies that
the transition labeled with Return! should go to p1.

The composition of two components (abstractions) is mod-
eled by the parallel composition between two IOSTS with
synchronization on the actions, which should communicate
together. The architectural specification of the coffee machine is
the result of the composition between two IOSTS (see Fig.5 and
Fig.6) used to model behaviors of the payment and beverage
components of the coffee machine. This specification is used in
order to derive test cases, however we did not show it in the
paper due to its size (20 locations and about 70 transitions).

60Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 80 / 646

E. Symbolic Test Generation

Symbolic Test Generation consists in computing, from the
formal specification of a system under test and from a test
purpose describing a set of behaviors to be tested, a reactive
program, called a test case, that observes an implementation of
the system to detect non-conformant behavior, while trying to
control the implementation towards satisfying the test purpose.
The STG tool [17], [18], used for test case generation, takes
as inputs an IOSTS specification and an IOSTS test purpose,
and then it produces an IOSTS test case. In Section IV-D, we
described how to obtain the IOSTS specification from the one
written in the π-ADL-Spec language. Bellow we explain the
notions of test purpose and test case.

tp1

tp2

tp3

tp4

Accept Reject

PressButton?()

Coin?(pCoin)

Deliver!()

Return!(pRemainingValue)

otherwise

otherwise

otherwise

otherwise

Fig. 10. The test purpose represented by an IOSTS.

1) Test purpose. A test purpose is used to select the be-
haviors from the specification that are to be exercised by
the derived test. Fig.10 illustrates a test purpose that selects
from the coffee machine specification a test case that exercises
a coffee delivery in the case where the beverage button is
pressed and a single coin, which should be sufficient for a coffee
payment, is inserted into the coffee machine.

The generation of test cases takes place through the compu-
tation of the product between the specification IOSTS and the
test purpose IOSTS. Thus, locations in the test case are pairs
made up of a location from the specification and a location
from the test purpose, and transitions between these locations
are added when (1) a specification transition action has the
same label as a test purpose action, or (2) the specification
is capable of advancing on an internal action. The locations
“Accept” and “Reject” in the test purpose indicate locations in
the test case that should be interpreted as final. The location
“Accept” indicates a successful execution of the tests, while the
location “Reject” indicates the behavior of the coffee machine
specification in which we are not interested for the moment.

The test purpose of Fig.10 was constructed to select a
behavior that (1) begins with the PressButton?() action, (2)
waits for a coin (see Coin?(pCoin)), and then (3) delivers a
coffee through the Deliver!() action, and (4) returns the rest
of amount that has been paid (see Return!(pRemainingValue)).
Note that, we are not interested in testing behaviors of the
coffee machine canceling a command. That is why theCancel
action leads to the “Reject” location. For the sake of simplicity,
all the arrows of Fig.10 leading to “Reject” are labelled with
otherwise. This indicates that we are not interested in all
the actions except of the authorized ones. For example, in
the location p1b1 tp1 the authorized action is PressButton?(),

all the others, i.e., Cancel?(), Coin?(pCoin), Deliver?(), and
Return?(pReminingValue), go to the “Reject” location.

p1b1 tp1

p2b3 tp2

p2b4 tp3

p4b2 tp4

P ass

InconclusiveF ail

(cBeverageQuantity¿0) and (cPrice¿0) and (cCoinNumber¿0)

PressButton!()
vBeverageQuantity := 0

vPaid := 0
vCoinNumber := 0

vPrice := 0

(pCoin¿0) and
(cPrice¡=pCoin+vPaid)

Coin!(pCoin)
vPaid := vPaid + pCoin

vCoinNumber++
vPrice := cPrice

(vPaid¿=vPrice)
Deliver?()

vBeverageQuantity++

(pPaid=vPaid-vPrice)
Return?(pPaid)

(pPaid=vPaid-vPrice) and
(vPaid ¿= vPrice)

Return?(pPaid)

(pPaid=vPaid) and
(vCoinNumber ¿= cCoinNumber)

Return?(pPaid)

otherwise?

otherwise?

otherwise?

otherwise?

Fig. 11. The test case represented by an IOSTS.

2) Test case. Finally, Fig.11 shows the IOSTS that results
from the symbolic test generation using the architectural spec-
ification of the coffee machine and the test purpose of Fig.10.
Note that, this test case is specific to the test purpose indicated
above. Different test purposes will generate different tests. The
computation steps carried out are identical to those given in the
specification. Actions have had their orientation (i.e., input vs.
output) reversed so that the test case becomes a generator of
commands and a receiver of responses, complementary to an im-
plementation of the specification. The location labeled “Pass”
in Fig.11 indicates that a correct interaction between the tester
and the system under test took place. The symbolic test gen-
eration method also generates transitions from every location
to a new location “Fail” that absorbs incorrect responses from
the system under test and lead to the “Fail” state, indicating
the non-conformance of the implementation. For each possible
erroneous input action received by the tester, the test case
generates a transition to “Fail” labeled, for the sake of clarity of
the presentation, with the otherwise? action from each location
of the graph. Note that, the test shown on Fig.11, like all the
tests generated by this method, incorporates its own oracle. All
of the computation steps necessary to verify the correctness of
numeric results are extracted from the specification and used
by the tester to verify arguments as they are received. This is
in contrast to test generation techniques that simply produce
a sequence of inputs to drive the implementation through a
specific path.

F. From Abstract to Executable Test Case

In this section, we explain how an abstract test case repre-
sented by an IOSTS is translated into an executable code to be
run on the black-box implementation of a system under test.
First of all, the test case, shown in Fig.11 and called T CIOSTS, is
translated into the π-ADL-C&C component, shown on Fig.12
and called T Cπ-ADL-C&C, as follows:

a) The symbolic constants of T CIOSTS, such as
cCoinNumber, cBeverageQuantity, and cPrice, are transformed
into parameters of T Cπ-ADL-C&C (see lines 2-4).

61Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 81 / 646

1 component TestCase is abstraction(

2 cCoinNumber : Natural, // 10

3 cBeverageQuantity : Natural, // 15

4 cPrice : Natural) // 2

5
6 port is {

7 connection Coin is out (Natural).

8 connection Cancel is out ().

9 connection PressButton is out().

10 connection Return is in (Natural).

11 connection Deliver is in().

12 }.

13 ...

14 P2B3_TP2 is abstraction(

15 vBeverageQuantity : location[Natural],

16 vPaid : location[Natural],

17 vCoinNumber : location[Natural],

18 vPrice : location[Natural]

19){

20 choose {

21 pCoin : location(4).

22 if ((cPrice’ <= pCoin’+vPaid’) and (pCoin’ > 0)) then{

23 via Coin send pCoin.

24 vPaid := vPaid’+pCoin.

25 vCoinNumber := vCoinNumber’+1.

26 vPrice := cPrice’.

27 P2B4_TP3(vBeverageQuantity’,vPaid’,vCoinNumber’,vPrice’)

28 }

29 or

30 via Deliver receive.

31 Fail()

32 or

33 via Return receive pPaid : location[Natural].

34 Fail()

35 }

36 }

37 P2B4_TP3 is abstraction(

38 vBeverageQuantity : location[Natural],

39 vPaid : location[Natural],

40 vCoinNumber : location[Natural],

41 vPrice : location[Natural]

42){

43 choose {

44 via Deliver receive.

45 if (vPaid’>=vPrice’) then{

46 vBeverageQuantity := vBeverageQuantity’+1.

47 P4B2_TP4(vBeverageQuantity’,vPaid’,vCoinNumber’,vPrice’)

48 }else{ Fail() }

49 or

50 via Return receive pPaid : location[Natural].

51 if ((pPaid’=vPaid’-vPrice’) and (vPaid’>=vPrice’)) then{

52 Inconclusive()

53 }else{ Fail() }

54 or

55 via Return receive pPaid : location[Natural].

56 if ((pPaid’=vPaid’) and (vCoinNumber’>=cCoinNumber’)) then{

57 Inconclusive()

58 }else{ Fail() }

59 }

60 ...

61 Pass is abstraction(){ print("PASS") }

62 ...

63 behaviour is { P1B1_TP1(0,0,0,0) }

64 }

Fig. 12. The extract of the π-ADL C&C test case.

b) The input/output actions of T CIOSTS (Deliver?,
Return?, and Coin!, Cancel!, PressButton!) play the role of
connectors in T Cπ-ADL-C&C (see lines 7-11).

c) Each location of T CIOSTS is transformed into an
abstraction of T Cπ-ADL-C&C. All the abstractions, except the
ones corresponding to the test verdicts, have the same number
of parameters. These parameters correspond to the variables
of T CIOSTS. For example, the location p2b3 tp2 of T CIOSTS

is translated into the abstraction P2B3 TP2 (see lines 14-
36), which has four parameters: vBeverageQuantity, vPaid,
vCoinNumber, and vPrice. Notice that, the special locations,
such as Pass, Fail, and Inconclusive, correspond to the abstrac-
tions without parameters (e.g., the location Pass corresponds
to the abstraction represented by the code on line 61). The role
of these abstractions is to produce a test verdict.

d) For each location of T CIOSTS, each outgoing transi-
tion is translated into one case of the “choose” structure of
the abstraction corresponding to this location. For example,
the transition t1 with origin p2b3 tp2 and destination p2b4 tp3

labeled with the Coin!(pCoin) output action corresponds to the
first case of the “choose” structure of P2B3 TP2 (see lines
21-28). Notice that, the destination of t1 is modeled by a call

to the P2B4 TP3 abstraction. The code, corresponding to a
guarded transition labeled with an output action, is surrounded
by the “if(...)then{...}” structure, where the guard of this
transition appears as a condition. Moreover, in order to fire a
transition labeled with an output action carrying parameters,
a test case should automatically generate values for these
parameters satisfying the guard of this transition if it is present.
At the moment, such parameters are instantiated with values
chosen by the test developer. For example, the pCoin parameter
is instantiated with 4. This value satisfies the guard of the
transition t1, i.e., (pCoin > 0) and (cP rice ≤ pCoin + vP aid)
if the price of the beverage is 3, for example. The code, corre-
sponding to a guarded transition labeled with an input action,
is surrounded by the “if(...)then{...}else{...}” structure,
where the guard of this transition appears as a condition. The
input action should be invoked just before this structure as we
need to know received values of its parameters. Notice that, if
the guard/condition is not satisfied, then the test case generates
the “Fail” verdict. For example, the code corresponding to lines
44-48, models two transitions of T CIOSTS outgoing from the
p2b4 tp3 location and labeled with the Delivery?() action. One
of them permits to reach the p4b2 tp4 location, if the guard
g : vP aid ≥ pP rice is satisfied, and other goes to the “Fail”
location, if the guard g is unsatisfied.

e) The behavior of the test case T Cπ-ADL-C&C is modeled
by a call to the P1B1 TP1 abstraction, which corresponds to
the initial location of T CIOSTS.

To obtain an executable test case, a test case expressed in
the π-ADL-C&C language is automatically translated into π-
ADL-Spec code (see Section IV-A), and then into a concrete
executable test program expressed in the π-ADL.NET language
(see Section IV-B).

G. Test Case Execution

The last step of our approach is to compile and to execute
the π-ADL.NET test case obtained from an abstract test case,
represented by IOSTS, as was explained in Section IV-F. This
test case is executed on a real black-box implementation of
the system under development, where the execution is modeled
by the parallel composition between the test case and the
implementation with synchronization on common input/output
actions. The results of a test execution are: “Pass”, meaning
no errors were detected and the test purpose was satisfied,
“Inconclusive” – no errors were detected but the test purpose
was not satisfied, or “Fail” – the implementation exhibits a non-
conformance with respect to the architectural specification in a
behavior targeted by the test purpose.

V. Tool Support

A major impetus behind developing formal languages for
architectural description is that their formality renders them
suitable to be manipulated by software tools. The usefulness
of an ADL is thereby directly related to the kinds of tools it
provides to support architectural description, but also analysis,
refinement, code generation, and evolution. Indeed, we have
developed a comprehensive toolset for supporting architecture-
centric formal development around π-ADL. It is composed of:

– a callable compiler and a persistent virtual machine for ex-
ecuting architecture descriptions based on the operational

62Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 82 / 646

semantics of π-ADL (implemented in C# on the .NET
platform) [20];

– three transformators implemented in C++ and allowing to
translate (1) a π-ADL-C&C code into a π-ADL-Spec code,
(2) a π-ADL-Spec code into a π-ADL.NET code, and (3)
a π-ADL-Spec code into an IOSTS model.

– a π-ADL-C&C syntax checker implemented in C++.

The work presented in this paper adds a new method and
tool for architecture validation based on conformance testing.
Indeed, in order to validate the conformance of the executable
system with respect to its architectural specification, we apply
the conformance testing technique, i.e., tests are generated
automatically, using the STG tool [17]–[19], and then they are
executed on the system under test. To be able to generate tests
from a π-ADL-Spec architectural specification with STG, the
specification should be translated into a low-level IOSTS model.
This step is almost automatized. The STG tool generates
abstract test cases expressed by IOSTS, therefore we need also
to transform them into the π-ADL-C&C language (this step is
done manually, at the moment).

VI. Summary and Related Work

The main purpose of this paper is to propose an approach
that permits (1) to easily design the architecture of a system
under development using π-ADL, (2) to automatically generate
an implementation of this system that can be executed on
the platform .NET, and (3) to test the conformance of the
implemented system against its architectural specification.

As it is mentioned in [2] and [3], several works propose
different formal and semi-formal ADLs for the description of
software architecture. Some of these ADLs rely on Labeled
Transition Systems (LTSs) used to model the behaviors of a
software architecture, for example, Chemical Abstract Machine
(CHAM) [21], Finite State Process (FSP) [22], and π-ADL [4].
As this paper is based on our previous work [4], the choice of
π-ADL, as a language for architecture design, is natural for us.
Once the architecture of a software system is designed using
the user-friendly π-ADL-C&C language, we refine it into a low-
level π-ADL.NET architecture that can be compiled, using the
compiler [20] developed in our research team, and executed on
the .NET platform.

The choice of π-ADL allows us to use formal methods in
order to assure the quality of a system under development.
Indeed, π-ADL is a formal, well theoretically founded ADL.
Moreover, the behaviors of designed systems can be captured
by means of transition systems. In this work, we use a testing
technique in order to check the conformance of a system’s
implementation with respect to its architectural specification,
and therefore to assure the quality of this system. This work
is based on our previously proposed technique [19] and on a
tool [17], [18] allowing automatic test generation for reactive
programs (written in Java or C++) from low-level specifications
modeled by IOSTSs.

The closest works to our proposal are these of Muccini,
Bertolino, and Inverardi [11], [12], [23], [24]. Their approach
consists of the automatic derivation of suitable abstract test
cases from the behaviors of a system under test that is modeled
by LTS. The test cases are selected by the use of Abstract
LTS (ALTS) allowing to abstract away uninteresting, for the

moment, system’s actions, and then applying the coverage
criterion of McCabe (another criteria can also be used) to
obtained abstract test cases. One of the difficulties of this
approach underlined by the authors, is to establish a relation-
ship between the system at its abstract architectural level and
the system’s implementation. It is needed in order to obtain
concrete executable test cases from the abstract ones.

In the approach presented in this paper, we generate ab-
stract test cases from the IOSTS model of an architectural
specification written in π-ADL. We use the notion of test pur-
pose, as a test selection mechanism, in order to focus on specific
behaviors of the system under test. The inconvenient is that we
do not generate the test purposes automatically, therefore their
elaboration needs a human intervention. On the other hand,
the translation of abstract test cases is quite straightforward in
our approach as it was described in Section IV.

Bellow we listed other related works that have been done
in the domain of architectural testing. This list is certainly
not exhaustive. The authors of [6] define six architectural-
based testing criteria and use them in order to generate test
plans from the software architecture modeled by CHAM by
adapting existing specification-based techniques to the domain
of architecture-based testing. In [7], Bertolino and Inverardi
use the architectural testing in order to test extra-functional
properties of a system under test. Tracz [25] shows how to
use Domain-Specific Software Architecture (DSSA) in order to
capture structural and temporal properties of a system under
development. He gives some ideas on how architectures can be
specified to enable its analysis and testing. In [8], [26], the au-
thors propose dependence analysis techniques based on software
architecture and called chaining. In [27], Rosenblum adapts
its component-based test strategy based to an architecture-
based test of software systems. This approach is based on the
architectural models that can be simulated, executed, or used
to realize the integration or regression testing on the implemen-
tation of a system under test. Finally, the author describes how
formal models, combined with architectural models, can be used
to guide software testing. In [9], Harrold presents approaches
for using software architecture for effective regression testing.
In [28], she also discusses the use of software architecture
for testing. In [10], the authors define several test criteria,
and propose techniques, and automated tools for the specifi-
cation and generation of system level tests from architectural
descriptions. Muccini and his colleagues are also interested
by regression testing. Their contribution to this topic can be
found in [13], [29], [30]. These works explore the question how
regression testing can be systematically applied to the software
architecture to reduce the cost of regeneration tests for modified
systems. The authors are interested in two types of changes of a
software system, which are (1) modification of the architecture
and (2) modification of the implementation. There is also an
interesting work of Bertolino [31] discussing different important
achievements in the field of software testing and listing the most
relevant challenges to be addressed in this field.

VII. Conclusion

This paper has presented a formal approach which, starting
from the architecture of a software system, generates a system
implementation and tests it at the architectural level. In par-
ticular, this approach has been applied to software systems de-

63Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 83 / 646

signed using high-level architecture description language called
π-ADL. The test part of the approach is based on symbolic
test generation, which (1) automatically derives test cases in
order to check the conformance of a system with respect to the
behavior of an architectural specification selected by the test
purposes; (2) automatically determines whether the results of
the test execution are correct with respect to the architectural
specification. It performs test derivation as a symbolic process,
up to and including the generation of test program source code.
The reason to use symbolic techniques instead of enumerative
is that symbolic test generation allows us to produce (1) more
general test cases with parameters and variables, which should
be instantiated only before the test cases execution, and (2)
test cases that are more readable by humans. We validated our
approach on a simple example of the coffee machine.

As it was mentioned in this paper, some steps of our
approach are semi-automatized, therefore, the first direction of
our future work is to render the approach completely automatic
from test generation down to test execution. To show the
feasibility and utility of our approach we plan to apply it to a
realistic case study. Second, we plan to work on the implemen-
tation of a mechanism to automatically compute test purposes
from the system architectural specification using, for example,
coverage criteria instead of test purposes written by hand.
Third, we plan to extend our approach by incorporating in it a
technique of model checking in order to enable the automatic
verification of critical parts of a system under development.

References

[1] S. Shaw and D. Garlan, Software Architecture: Perspectives on
an Emerging Discipline. Prentice Hall, 1996.

[2] N. Medvidovic and R. N. Taylor, “A classification and compari-
son framework for software architecture description languages,”
IEEE Trans. on Software Eng., vol. 26, no. 1, pp. 70–93, 2000.

[3] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang,
“What industry needs from architectural languages: A survey,”
IEEE Trans. Software Eng., vol. 39, no. 6, pp. 869–891, 2013.

[4] F. Oquendo, “π-adl: an architecture description language based
on the higher-order typed pi-calculus for specifying dynamic
and mobile software architectures,” SIGSOFT Softw. Eng.
Notes, vol. 29, no. 3, pp. 1–14, 2004.

[5] G. Myers, The Art of Software Testing. John Wiley & Sons,
1979.

[6] D. J. Richardson and A. L. Wolf, “Software testing at the
architectural level,” in Proc. of ISAW and Viewpoints’96 on
SIGSOFT’96 workshops, ser. ISAW’96. New York, NY, USA:
ACM, 1996, pp. 68–71.

[7] A. Bertolino and P. Inverardi, “Architecture-based software
testing,” in Proc. of ISAW-2 and Viewpoints’96 on SIGSOFT
’96 workshops, ser. ISAW’96. New York, NY, USA: ACM,
1996, pp. 62–64.

[8] J. A. Stafford, D. J. Richardson, and A. L. Wolf, “Chaining: A
software architecture dependence analysis technique,” 1997.

[9] M. J. Harrold, “Architecture-based regression testing of evolv-
ing systems,” in Proc. of the Int. Workshop on the Role of Soft-
ware Architecture In Testing and Analysis, ser. ROSATEA’98,
1998, pp. 73–77.

[10] Z. Jin and J. Offutt, “Deriving tests from software architec-
tures,” in Proc. of the IEEE Int. Symposium on Software
Reliability Engineering, ser. ICSE’01, 2001, pp. 308–313.

[11] A. Bertolino, P. Inverardi, and H. Muccini, “Formal methods
in testing software architectures,” in SFM, 2003, pp. 122–147.

[12] H. Muccini, A. Bertolino, and P. Inverardi, “Using software
architecture for code testing,” IEEE Trans. on Software En-
gineering, vol. 30, no. 3, pp. 160–171, March 2004.

[13] H. Muccini, M. S. Dias, and D. J. Richardson, “Reasoning
about software architecture-based regression testing through a
case study,” in Proc. of the Computer Software and Applications
Conf., ser. COMPSAC’05, 2005, pp. 189–195.

[14] B. Beizer, Software Testing Techniques. New York: Van
Nostrand Reinhold, 1990.

[15] G. J. Tretmans, “A formal approach to conformance testing,”
Ph.D. dissertation, University of Twente, the Netherlands, De-
cember 1992.

[16] D. Sangiorgi, “Expressing mobility in process algebras: First-
order and higher-order paradigms,” Ph.D. dissertation, Univer-
sity Edinburgh, UK, February 1992.

[17] D. Clarke, T. Jéron, V. Rusu, and E. Zinovieva, “STG: A
Symbolic Test Generation tool,” in Proc. of the 8th Int. Conf.
on Tools and Algorithms for the Construction and Analysis of
System (TACAS’02), ser. LNCS, vol. 2280, Grenoble, France,
April 2002, pp. 470–475.

[18] F. Ployette and F.-X. Ponscarme, “The STG tool page,”
Available at http://www.irisa.fr/prive/ployette/stg-doc/stg-
web.html, October 18, 2007.

[19] E. Zinovieva-Leroux, “Symbolic methods in test generation for
reactive systems with data,” Ph.D. dissertation, University of
Rennes 1, France, November 22, 2004.

[20] Z. Qayyum and F. Oquendo, “The π-adl.net project: an inclu-
sive approach to adl compiler design,” WSEAS Transactions
on Computers, vol. 7, no. 5, pp. 414–423, May 2008.

[21] P. Inverardi and A. L. Wolf, “Formal specification and analysis
of software architectures using the chemical abstract machine
model,” IEEE Trans. on Software Eng., vol. 21, no. 4, pp. 373–
386, 1995.

[22] J. Magee, J. Kramer, R. Chatley, S. Uchitel, and H. Fos-
ter, “Ltsa - labelled transition system analyser,” Available at
http://www.doc.ic.ac.uk/ltsa/, June 04, 2009.

[23] A. Bertolino, F. Corradini, P. Inverardi, and H. Muccini, “De-
riving test plans from architectural descriptions,” in Proc. of the
22nd Int. Conf. on Software Engineering, ser. ICSE’00. New
York, NY, USA: ACM, 2000, pp. 220–229.

[24] A. Bertolino, P. Inverardi, and H. Muccini, “An explorative
journey from architectural tests definition downto code tets
execution,” in Proc. of IEEE Int. Symposium on Software
Reliability Engineering, ser. ICSE’01, 2001, pp. 211–220.

[25] W. Tracz, “Test and analysis of software architectures,” in
Proc. of the 1996 ACM SIGSOFT Int. Symposium on Software
Testing and Analysis, ser. ISSTA’96. New York, NY, USA:
ACM, 1996, pp. 1–3.

[26] J. Stafford, D. Richardson, and A. Wolf, “Aladdin: A tool
for architecture-level dependence analysis of software systems,”
University of Colorado, Tech. Rep. CU-CS-858-98, 1998.

[27] D. Rosenblum, “Challenges in exploiting architectural models
for software testing,” in Proc. of the Int. Workshop on the
Role of Software Architecture in Testing and Analysis, ser.
ROSATEA’98, Italy, Jul. 1998, pp. 49–53.

[28] M. J. Harrold, “Testing: a roadmap,” in Proc. of the Conf. on
The Future of Software Engineering, ser. ICSE’00. New York,
NY, USA: ACM, 2000, pp. 61–72.

[29] H. Muccini, M. Dias, and D.Richardson, “Towards software
architecture-based regression testing,” in Workshop on Archi-
tecting Dependable Systems (WADS), ser. ICSE’05, vol. 30:4.
St. Louis, Missouri (USA): ACM, May 2005, pp. 1–7.

[30] ——, “Towards software architecture-based regression testing,”
University of L’Aquila, Tech. Rep., 2005.

[31] A. Bertolino, “Software testing research: Achievements, chal-
lenges, dreams,” in Proc. of the Future of Software Engineering,
ser. ICSE’07. IEEE-CS Press, 2007, pp. 85–103.

64Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 84 / 646

Combining Model-based Testing and Continuous
Integration

Martin Koskinen, Dragos Truscan, Tanwir Ahmad and Niklas Grönblom
Åbo Akademi University,

Turku, Finland

Email: [martin.koskinen, dragos.truscan, tanwir.ahmad, niklas.gronblom]@abo.fi

Abstract—We present our approach on combining model-
based testing with the continuous integration process. The main
benefits of this combination lie in the ability to automatically
check the conformance of the implementation with respect to its
specification, while shortening the feedback cycles and providing
increased test coverage. A case study on developing an in-house
academic tool is presented in which the online model-based
testing approach is used with the continuous integration process.

Keywords—Continuous Integration; Model-Based Testing; UP-
PAAL Timed Automata

I. INTRODUCTION

Continuous Integration (CI) is a software development
practice in which developers frequently integrate their work [1]
[2]. The CI process runs continuously during the lifetime of a
project, resulting in that the different parts of the product are
always updated, integrated, and tested. Regression test suites
are used for checking the quality of the integration.

One perceived problem of CI is that the increasing size of
the code base leads to increasing run time of the integration
build. According to Rogers [3], one of the main causes behind
this, is not the increasing compilation time, but rather the
increasing number of tests executed. In addition, the mainte-
nance of the regression test suites can be time consuming and
error-prone. As current practice, Duvall et al. [2] recommend
that system builds are run several times, or at least once a day,
which imposes tight constraints on the CI and testing process.

In this paper, we discuss the inclusion of the model-based
specifications and automated test design techniques into the CI
process, in order to enable incremental development, shorter
feedback cycles and increased test coverage. There are two
enablers for achieving these targets: (a) early detection of
errors is facilitated by performing simulation and verification
on the model-based specification after each update of the
specifications; and (b) the test suite corresponding to the latest
version of the specifications is generated automatically and
made available to the CI process.

Our testing approach focuses on the conformance testing
using automated test generation techniques. The system is
developed incrementally. The specifications are done using
UPPAAL timed automata (UPTA) [4]. Every time a new fea-
ture is added, it is first modeled, simulated and verified. Once
the specifications are updated, they are used for automated

test generation. When the feature is also implemented in the
source code, the automatically generated tests are executed in
order to detect possible behavioral inconsistencies between the
specification and the implementation, and a report is issued as
feedback.

The paper has the following structure: Section II will
briefly discuss different background concepts. In Section III
we introduce a generic process for combining MBT with CI,
followed by a concrete case study in Section IV. Section IV
also describes how we applied this approach in a practical
software development project. An evaluation of our approach
is discussed in Section V, whereas final thoughts and future
work are presented in Section VI.

II. BACKGROUND

In the following subsection, the CI process is described in
more detail, followed by a short introduction to Model-based
testing (MBT) [5]. The last subsection briefly introduces the
UPPAAL tool and its capabilities.

A. Continuous Integration revisited

The traditional workflow of the CI process can be sum-
marized as following. When a developer has finished an
implementation task, he makes a local build to see whether
the program builds correctly. Ideally, he also runs tests locally
to verify that the implementation is correct. After this, the
developer commits the code to the Source Code Management
(SCM) system.

A CI-server is used to integrate source code from different
SCMs used in the process and to create an integration build,
either at regular time intervals or based on commit triggers
linked to the SCMs. The build process might contain different
kinds of code analysis, for example to ensure that the code
conforms to common code conventions, or integration/ac-
ceptance tests for the newly built software. Subsequently,
feedback is provided to the concerned parties on the outcome
of the build. If errors occurred or conventions were violated,
these are mentioned in the report. When errors or violations are
detected in the integration build, the responsible developer is
supposed to fix them as soon as possible. In many instances of
CI, the CI process is stopped, i.e., no one can commit updates,
before the previous failed build is fixed or the code is reverted
to the previous working version.

65Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 85 / 646

B. Model-based Testing

MBT is a testing approach which reduces the effort needed
for testing [6], by automatically designing test suites from
abstract behavioral specifications of the system under test
(SUT). The main philosophy behind MBT is to automatically
generate tests from abstract models, which specify the ex-
pected behavior of the system under test. Based on how tests
are generated and executed MBT has two flavors: online and
offline [7]. In online testing, tests are generated from the model
and executed on-the-fly against the SUT. At each step, a new
test is designed based on the output of the previous test. In
contrast, in offline mode, all test are pre-generated (scripted)
into an executable format, which is then executed in batch
mode using test execution frameworks.

C. UPPAAL

UPPAAL is a toolbox for verification of real-time sys-
tems [4]. The tool provides a graphical user interface for
editing, simulating and verifying models based on an extended
version of time automata, referred to as UPTA [4].

Informally, in UPTA, systems are modelled as a network of
timed automata which communicate with each other through
global variables and channel synchronizations. An edge, that
connects locations, can be decorated by a guard, allowing or
not allowing the edge to be taken, depending on some condi-
tion. A channel can be sending or receiving synchronizations,
which are annotated by the suffixes ! and ? subsequently. An
edge with a sending synchronization requires one edge that
can receive the synchronization. If several receiving channels
are available, one will be chosen non-deterministically. Syn-
chronization channels can be declared as broadcast channels,
which removes the requirement of a synchronization receiver.
This implies that broadcast synchronizations will be sent, even
if there is no receiver. If there are several receivers available
for a broadcast, all receivers will receive the synchronization
simultaneously. On edges, variable values are updated by
assignment statements. Initial locations are marked with a
double circle. There are two other special location types except
the normal location. An urgent location, which stops time, is
marked by an ’U’. A committed location, marked by a ’C’, is
stricter than the urgent one, since the automaton is allowed to
leave the location in the next transition without intervention by
another process. For a formal definition of UPTA, one could
refer to [4].

III. COMBINING MBT AND CI

As mentioned in the introduction, in order to take advantage
of the MBT approach, we integrate MBT into the CI process.
We use MBT to make sure that the specification and the
implementation of the SUT always conform to each other. A
generic view of our CI process is shown in Figure 1.

The CI process employs several SCM servers, used for
maintaining different artifacts of the development process. In
Figure 1, there are different SCMs for versioning the source
code, specifications, toolchain, test suites, etc. In practice, one

can use the same SCM server for accommodating several or
all artifacts.

Several teams are involved in the development, for in-
stance, a specification and a development team, each following
specific processes and committing regularly (with different
frequency) to the corresponding SCM server. Basically, when
a new feature is introduced, it is specified, validated and
then committed. Validation helps in detecting potential in-
consistencies in the specifications, such as misunderstanding
of requirements or omissions. The simulation and validation
ensure that the desired behavior can be achieved.

The task of the development team is to implement the
requested features according to the specifications. The devel-
opers can test their code locally, after which they commit it to
the corresponding SCM server. These tests may be unit tests
developed by the developers themselves or tests retrieved from
the test suite SCM.

As the main idea of software testing is to verify the
behavioral conformance between the specification and the
implementation, every time one of them is updated, we check
that they conform to each other using MBT.

This process is controlled by a CI server, which is config-
ured to monitor the SCM repositories involved in the build.
Whenever a commit to any of the repositories is detected,
all repositories related to the project are updated on the CI
server. Regardless of which repository triggered the update,
the following steps are executed depending whether an offline
or online testing approach is used.

a) Offline process: When a build is triggered due to
changes on a SCM server storing the specifications, the CI
server checks if the existing test suite needs updating due to
changes to the specifications. If needed, a fresh test suite is
generated from scratch. The test generation replaces the need
for maintaining and deciding which tests should be added or
removed from a manually created regression test suite. The
updated test suite is stored on a SCM server for later use.
The test suite is generated once and can be reused as long
as the specifications do not change. Updating the test suite
can be done as part of the CI, or as a separate process as for
convenience is showed in Figure 1.

When the code is updated on the corresponding SCM server,
a build is started. Upon completion, the test suite is executed
in batch mode against the SUT. Finally, the developers get
feedback on how the build proceeded.

b) Online process: For distinction, the online testing
process is depicted with thicker line pattern in Figure 1. When
a build is triggered by either of the SCM servers, the CI server
starts by building the project. As in online mode the tests are
generated and executed on-the-fly, there is no previous test
suite as such to be updated.

IV. CASE STUDY

In this section, we provide a concrete example of how
the generic process described in Section III can be put into
practice. The case study presented in this paper is part of
the development process of an academic tool for performance

66Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 86 / 646

Figure 1. Generic process overview

testing, called MBPeT. MBPeT [8] is a model-based load
generation tool which uses probabilistic models to generate
load and applies it interactively against the target system.
The development team consists of 2-4 developers, while the
specification team consists of 1-3 persons.

In the following subsections, we briefly describe different
activities involved in our development process.

A. Model-based specifications

The MBPeT tool has a distributed architecture, in which
one master node controls several slave nodes that are actually
generating the load by executing the desired number of con-
current virtual users. During load generation, the master node
decides how the load is distributed to the slaves. Each slave has
a predefined saturation threshold for the local resources which
is used to ensure that the slave node is able to generate the
required load. Whenever the saturation threshold is reached,
the load on the current slave is kept constant, while the
remaining load is delegated to the next available slave.

In the specification phase, the models of both the master
node (see Figure 2) and the slave node (see Figure 3) are
created and their communication is modelled in UPTA. The
behavior of the two node types is described in the following:

c) Master model: The master process in Figure 2 is
designed to handle several slaves. It starts by waiting for all
slave processes to connect, by receiving the i slave connect
synchronization from each slave process. Then the master
process continues with configuration and initialization of the
connected slaves, by sending an o initSlave synchronization
to each slave process. The initialization is completed when
all slave processes have sent an i slaveInit synchronization
to the master. At this point, the master requests the first
slave to start load-generation by sending an o generateLoad
synchronization to it. The master continues to listen for either
an i slaveSaturated or an i slaveDone synchronization. If an
i slaveSaturated is received and there are no available slaves

to start, the failure variable is set to 1. When the master
process has received the i slaveDone synchronization from
all started slaves, the master proceeds by shutting down all
connected slaves, by sending an o killSlave synchronization to
each slave process. At the end of the test session, the master
process enters the STOPPED location.

d) Slave model: The process model, corresponding to
the previously described master process, is shown in Figure
3. The process starts by sending an i slave connected sig-
nal to the master process. The master initializes the slaves
by sending configuration information, which corresponds to
the slave process reaching the Initialized location. Here it
waits for either an o killSlave or an o generateLoad syn-
chronization. The former results in a return to the initial
location and the latter instructs the slave process to start
generating load. The slave saturation is calculated by looping
via the locations Load calculated - Saturation Check. If the
slave’s load variable is greater than a threshold value, the
slave is considered saturated. When the slave becomes satu-
rated, it transitions to the generate load saturated location by
sending an i slaveSaturated synchronization. When test time
runs out, the slave transitions to the initial location via the
Load generation completed location. If the test duration runs
out without the slave being saturated, the slave transitions to
the Load generation completed location via location TestDu-
ration timeout and sends an i slaveDone synchronization to
the master. The slave instances share a global clock timer,
which is used for exiting the load generation when test
time runs out. The clock is reset when the first slave starts
generating load. For the rest of the slaves, the load generation
is started without resetting the timer. The models discussed
above allow for an instance of the master to communicate with
several instances of the slaves, thus imitating the architecture
of the real tool.

Simulation The models of the MBPeT tool have been
created incrementally, one feature being added at the time.

67Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 87 / 646

Figure 2. Master process model

Figure 3. Slave process model

After each feature is modeled, the models are simulated in
the UPPAAL tool, allowing us to experiment and check if the
proposed models behave as specified in the requirements.

Verification The models are also used for verification
of different system properties, e.g., reachability, safety, and
liveness. UPPAAL provides its own verification engine [4],
which uses a simplified version of the TCTL language [9].
For brevity, we refer the reader to [4] for more details.

B. CI process

In our development process, we have used three repositories:
one for the implementation of the SUT, one for the specifica-
tions of the SUT and one for the tool chain. We follow the
online testing process described in Section III.

1). When a new feature is to be introduced to the MBPeT
tool, it is first modelled in UPTA. The specification is sim-
ulated and verified. When the new feature is considered
”approved”, the new models are submitted to the specifications
SCM. The first time, this commit will trigger a build which

will fail, since the specification contain an unimplemented
feature. The failed build shows that the system implementation
is lagging behind the specifications, i.e., it does not conform
to the specified behavior.

2). The development team will start implementing the
new feature in code. When the implementation is ready, the
developers run unit tests locally. The development team also
has access to the entire testing tool chain to validate their
updated implementation before committing. When the code is
committed, a new build is started followed by the model-based
testing of the build. If the integrated system behaves according
to the specification, the build will pass the testing successfully;
otherwise an error-report will be generated.

3). Both the development and the specification teams will re-
ceive an error-report, which will be discussed and analyzed in
order to detect the source of the failure(s). It may happen that
the error is in the specification, instead of the implementation,
due to misunderstanding of the requirements or undetected

68Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 88 / 646

errors in the specification. The error may also be located in
the tool chain or in the test environment.

4). The identified failures are fixed by the team responsible.
Upon committing the updated artifact, a new build is triggered
which should result in a successful test run.

The CI process is supported by the Jenkins CI server [10],
an open source continuous integration server, configurable via
a Web interface. Its functionality is extendable via plugins,
e.g., integration with SCM systems. The building of projects
is configured via jobs. A job can be triggered manually, based
on a time trigger or based on an event, e.g., the completion
of another job.

The SCM software we use is Subversion [11]. In order
to implement the job-triggering mechanism, we implemented
a set of ”hook” scripts, which are run on the SCM servers
and monitor certain paths for commits. When a commit is
detected by a hook script, via a regular expression match on
the monitored path, the Jenkins CI server job is triggered by
an a HTTP request.

C. Test generation

In our approach, we have targeted the online mode of
MBT, since it addressed better the non-determinism in the
specifications. In our case, study we have non-determinism at
several locations, for example in the generating load location.
There is no limit on how many times, if any, the loop
calculating the slave’s saturation is taken.

Since the models of both the master and the slave nodes
are created and verified in the specification phase, any one
of them can be used as a SUT model, whereas the other one
will be used as environment model. Consequently, in our CI
environment, we have two independent jobs: one considering
the master node as the SUT, while the other uses the slave node
as the SUT. In this paper, we selected for exemplification the
setup where the master node is the SUT, and the slave nodes
act as the test environment.

An overview of our model-based test setup, is shown in Fig-
ure 4. We use three repositories: specifications, source code,
and tool chain. Whenever one of the repositories is updated
the commit trigger is activated and the CI process is started
by updating the repositories (if new versions are available),
building and deploying the implementation, instantiating the
tool chain and starting test execution.

The tool chain is composed of several components. Dis-
tributed TRON (DTRON) [12] is a tool for distributed online
test generation. DTRON uses a Spread network, the Spread
Toolkit [13] for its multicast communication between different
instances of DTRON and an eventually distributed SUT. In
order to interface with the implementation under test (IUT),
an adapter written in Java, is used to convert tests messages
received from DTRON into messages compatible with the
communication protocols required by the IUT. DTRON will
receive output from the SUT via the adapter, which distributes
it via the Spread network. The received values are compared
with the expected output and a verdict is given.

Figure 4. Overview of the test setup

The adapter is updated every time new observable interfaces
of the SUT are added to the UPTA specifications. There
is a naming convention for making channels and variables
observable by DTRON. A channel name prefixed by o
means the channel is used for IUT-to-model communication.
Similarly, a channel prefixed by i is used for model-to-
IUT communication. Integer variables can be sent along with
these synchronizations. In this case, the variable name is
prefixed by the observable synchronizing channel’s name,
i.e., i channelname variablename; see Figures 2 and 3 for
exemplification.

Once the test session is started, DTRON will generate tests
via symbolic execution of the specifications using randomized
choice of input. The observable communication between the
environment model and the system model is captured by the
adapter and send or expected to be received from the SUT.
Whenever an expected output is not received from the IUT
with the expected value or within the specified timeframe, a
failure will be observed and the test generation and execution
will be stopped. Consequently, the build job on the CI-server
will generate a test report and will send it to the respective
teams.

D. Measuring coverage

In our approach, for each new commit, we measure both
specification coverage and code coverage for each test run.

Specification coverage. In order to achieve a certain
coverage level, with respect to specific coverage criteria, we
have two options available when using UPPAAL-based tools.
The first option is to use an environment model which will
drive the test generation to follow specific test targets in the
SUT model, as described by Hessel et al. [14]. The second
option is to have an environment model which does not enforce
explicitly specific test targets in the SUT model (e.g., the
model of the slave node) and to recognize the coverage level
of the test run upon completion.

In our CI process, we use the second approach, which
requires an additional utility script to be included in the
process. The general idea is to automatically customize the
UTPA models, without modifying the original behavior, in

69Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 89 / 646

order to allow one to observe how different structural parts
of the model have been covered during the test execution.

The coverage recognizer tool (CRT), as shown Figure 4, has
two main functionalities. When the specification is updated
and detected by the CI-server, the script processes the UPTA
model by adding unique counter variables and a corresponding
updates statements on each edge of the SUT model. See for
exemplifications variables i c1, . . . , i c20 added to the Master
model in Figure 2.

An observable channel is also added, hereafter referred to
as the counter channel, which is used for synchronizing the
counter variable values to the CRT. The channel is declared of
type broadcast, which is weakly synchronized and therefore
does not require a receiver automaton [4]. In order to be
visible on the Spread network, the counter variables and the
counter channel follow the naming conventions of DTRON as
explained earlier. The counter channel has to be synchronized
at some point for the CRT to be able to produce a coverage
report. To achieve this, the tool adds a process to the system,
containing one location with a self-edge, that synchronizes the
counter channel periodically.

The second functionality of the CRT is to connect to
the Spread network and monitor the counter variables and
to build statistics about the edges visited during the test
run. At the moment, CRT provides support for edge, edge-
pair and requirement coverage, respectively. However, other
structural coverage criteria could be implemented in the tool.
The requirement coverage criterion, is a simplified version of
the edge coverage one described above, in which test targets
fulfilling certain system requirements are manually added to
the model as counter variables.

If we would follow an offline test generation approach,
a set of traces satisfying, e.g. edge coverage, can be eas-
ily obtained via model-checking of the property E <>
i c1&& . . .&&i c20 using tools like verifyta provided by
UPPAAL as described in [14].

Code coverage. Since we have access to the source code of
the IUT we also track how much of the code has been covered
by each test run. For this purpose, we use the coverage tool
for Python [15]. The tool counts the number of statements in
the source files and monitors which of them are executed. At
the end of the test run, it provides a coverage report detailing
the coverage level for different source files.

V. EVALUATION

MBT has two distinct components: modeling and test gen-
eration. Each of them brings its own benefits to reducing the
effort of the testing process. The main benefit of modeling is
that it forces the designers to simulate and verify the system
specification before deciding to implement a new feature.
During the specification and development of the MBPeT tool,
we detected many specification inconsistencies which could
have resulted otherwise time spent during the implementation,
testing and debugging.

The automatic test design has also its benefits, even if
the test suite has to be generated for each iteration. Due to

the online generation approach and also of the available tool
support, generating only parts of the test suite when the model
changes has not been considered. We do not consider it a
problem for two reasons: 1). with our approach the duration
of a test run requires less than one minute to achieve an
acceptable edge coverage level and 2) if the models would
become too complex to handle timely test generation, then
raising the level of abstraction or focusing the test generation
on certain parts of the models will help.

However, if complex test suites cannot be avoided there exist
a body of work which has addressed regression testing in the
context of MBT, e.g., [16], [17], [18], in its vast majority
targeted to offline test generation. In addition, there exist
already commercial tools such as Conformiq tool-set [19],
which optimizes the offline test suite generation by generating
only new test cases and removing old test cases which are not
relevant anymore.

With respect to our case study, the code base of the Master
node is approx. 2100 LOC written in Python, whereas the test
adapter needed for the models in Figures 2 and 3 is slightly
over 200 LOC written in Java.

Letting the DTRON tool randomly generate tests from the
model in Figure 2, we could identify six different test scenar-
ios, as depicted in Table I. For each scenario, we extracted the
corresponding edge coverage and statement coverage levels.
As shown in this table, the minimal edge coverage achieved
for our particular models is 70%, when running with one slave
which does not saturate. This corresponds to 91% statement
coverage. The highest edge coverage, 95%, is achieved when
having more than two slaves, of which at least one saturates,
one generates load unsaturated, and one is idling. In this case,
the statement coverage increased to 98% coverage.

With the model in Figure 2, full edge coverage cannot be
achieved due to two mutually exclusive paths in the model:
for a given set of slaves one cannot have both an idling slave
(which would be killed via edges c18, c19) and all slaves
saturated (edge c14).

Test Scenario Covered Edges EC Statement
Coverage

1 slave, no saturation 1-11, 15, 17, 20 70% 91%
1 slave, saturation 1-11, 14, 15, 17, 20 75% 91%
2 slaves, slave 1 saturated 1-13, 15, 16, 17, 20 85% 92%
2 slaves, both saturated 1-17, 20 90% 91%
2 slaves, 1 idle 1-13, 15, 17-20 90% 92%
>2 slaves, 1 idle 1-13, 15-20 95% 98%

TABLE I
COVERAGE RESULTS

Due to the way the tests are generated from these models,
with each test run we may obtain a different trace depending
on the number and behavior of the slaves. However, using two
slave nodes in the test configuration, provided an acceptable
edge coverage level. Adding another slave will increase the
edge coverage by 5% and the statement coverage by 6%. At
the moment, we did not consider this approach necessary, since
when inspecting the source code coverage for all three test

70Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 90 / 646

scenarios using two slave nodes, we found that actually the
entire code base was covered by the respective traces.

VI. CONCLUSION AND FUTURE WORK

We have presented an approach in which model-based
testing and continuous integration approaches have been com-
bined in order to lessen the testing effort and consequently
shorten the integration cycles.

Having performed simulation and verification of the speci-
fications increased their quality and decreased the number of
failures originating in the specifications, such as common mis-
takes, omissions and misinterpretations of the requirements.
The UPTA formalism allowed us the modeling of time and the
verification of time properties. Using automatically generated
tests decreased the time spent to develop tests every time a
new update was performed either in the specification or in the
implementation.

Since the repositories can be updated independently, the
modeling and development teams are immediately aware of
problems in the build. Ideally, the implementation and the
models should be in sync, that is the implementation should
reflect the model. As long as the tests conclude that the
implementation and models conform to each other the builds
are successful. If they start diverging, we can conclude that
either the model or implementation is erroneous, or the other
team has not yet updated their part of the system to conform
to new requirements.

In our current case study, we used tests generated and
executed on-the-fly. This approach has both advantages and
disadvantages. As explained in the paper, one benefit is that
using online MBT allows for non-deterministic behavior due
for instance to concurrency or to time/value domains. In addi-
tion, it does not require an additional test execution framework
to be included in the toolchain, although it does require the
implementation of the adapter. However, the adapter has to be
updated only when new observable interfaces are added to the
SUT, otherwise it can be reused as such.

Among the perceived drawbacks of online MBT is that tests
have to be regenerated from scratch every time, which can be
time consuming. However, since all the tests are generated
automatically, the generation times are short for reasonably
sized models. If the models become too complex, increasing
the level of abstraction or focusing only on certain parts of
the functionality should be considered. For instance, with
our models, the average test run is on average less than a
minute. This means that one can get a test report in several
minutes since a new version is committed to the SCM servers.
Another drawback of our online MBT approach is that the
test session is stopped on the first failure of the tests, which
compared to offline testing will not give a good overview
of the failed/passed test case ratio. However, observing the
achieved coverage with the CRT tool alleviated this problem
and allowed us to identify which parts of the specification
passed testing and which did not.

Future work will look into more detail at using offline MBT,
and, in particular in deploying more efficient methods of model

and test suite update via the modularization of test specifi-
cations. Also, by improving test reporting, more meaningful
debug information can be provided for the development teams.

REFERENCES

[1] M. Fowler. (2006, May) Continuous inte-
gration. Retrieved: 20.08.2013. [Online]. Available:
http://martinfowler.com/articles/continuousIntegration.html

[2] P. M. Duvall, S. Matyas, and A. Glover, Continuous integration: improv-
ing software quality and reducing risk. Addison-Wesley Professional,
2007.

[3] R. Rogers, “Scaling continuous integration,” in Extreme Programming
and Agile Processes in Software Engineering, ser. Lecture Notes in
Computer Science, J. Eckstein and H. Baumeister, Eds. Springer
Berlin Heidelberg, 2004, vol. 3092, pp. 68–76. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-24853-8 8

[4] G. Behrmann, A. David, and K. G. Larsen, “A tutorial on UPPAAL,” in
Formal Methods for the Design of Real-Time Systems: 4th International
School on Formal Methods for the Design of Computer, Communication,
and Software Systems, SFM-RT 2004, ser. LNCS, M. Bernardo and
F. Corradini, Eds., no. 3185. Springer–Verlag, September 2004, pp.
200–236.

[5] M. Utting and B. Legeard, Practical Model-Based Testing – A Tools A
pproach. San Francisco, CA, USA: Morgan Kaufmann, 2007.

[6] ITEA 2, “D-MINT project result leaflet:
Model-based testing cuts development costs,”
http://www.itea2.org/project/result/download/result5519?file=06014 D
MINT Project Leaflet results oct 10.pdf, February 2010, retrieved:
20.08.2013.

[7] G. J. Myers et al., The Art of Software Testing. John Wiley & Sons,
Hoboken, NJ, 2nd ed edition, 2004.

[8] T. Ahmad, F. Abbors, D. Truscan, and I. Porres, “Model-based per-
formance testing using the MBPeT Tool,” Turku Centre for Computer
Science, TUCS Technical Reports 1066, 2013.

[9] R. Alur, C. Courcoubetis, and D. Dill, “Model-checking for real-time
systems,” in Logic in Computer Science, 1990. LICS’90, Proceedings.,
Fifth Annual IEEE Symposium on Logic in Computer Science. IEEE,
1990, pp. 414–425.

[10] Jenkins CI - Meet Jenkins. Online at https://wiki.jenkins-
ci.org/display/JENKINS/Meet+Jenkins. Retrieved: 20.08.2013.

[11] Subversion. Online at http://subversion.apache.org/. Retrieved:
20.08.2013.

[12] A. Anier and J. Vain, “Model based continual planning and control
framework for assistive robots.” in PECCS 2012 - Proceedings of
the 2nd International Conference on Pervasive Embedded Computing
and Communication Systems, C. Benavente-Peces, F. H. Ali, and
J. Filipe, Eds. SciTePress, 2012, pp. 403–406. [Online]. Available:
http://dblp.uni-trier.de/db/conf/peccs/peccs2012.html

[13] The Spread Toolkit - Overview. Online at
http://spread.org/SpreadOverview.html. Retrieved: 20.08.2013.

[14] A. Hessel, K. G. Larsen, M. Mikucionis, B. Nielsen, P. Pettersson,
and A. Skou, “Testing real-time systems using UPPAAL,” in Formal
methods and testing, R. M. Hierons, J. P. Bowen, and M. Harman,
Eds. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 77–117. [Online].
Available: http://dl.acm.org/citation.cfm?id=1806209.1806212

[15] Code coverage measurement for Python – coverage, v. 3.6. Online at
https://pypi.python.org/pypi/coverage. Retrieved: 20.08.2013.

[16] B. Jiang, T. Tse, W. Grieskamp, N. Kicillof, Y. Cao, and X. Li,
“Regression testing process improvement for specification evolution of
real-world protocol software,” in Quality Software (QSIC), 2010 10th
International Conference on. IEEE, 2010, pp. 62–71.

[17] E. Fourneret, F. Bouquet, F. Dadeau, and S. Debricon, “Selective test
generation method for evolving critical systems,” in Software Testing,
Verification and Validation Workshops (ICSTW), 2011 IEEE Fourth
International Conference on. IEEE, 2011, pp. 125–134.

[18] Y. Chen, R. L. Probert, and H. Ural, “Model-based regression test
suite generation using dependence analysis,” in Proceedings of the
3rd international workshop on Advances in model-based testing, ser.
A-MOST ’07. New York, NY, USA: ACM, 2007, pp. 54–62. [Online].
Available: http://doi.acm.org/10.1145/1291535.1291541

[19] Conformiq tool set. Online at http://www.conformiq.com/. Retrieved:
20.08.2013.

71Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 91 / 646

Static Analysis Techniques and Tools: A Systematic
Mapping Study

Vinícius Rafael Lobo de Mendonça
Instituto de Informática

Universidade Federal de Goiás, UFG
Goiânia-GO, Brazil

e-mail: viniciusmendonca@inf.ufg.br

Cássio Leonardo Rodrigues
Instituto de Informática

Universidade Federal de Goiás, UFG
Goiânia-GO, Brazil

e-mail: cassio@inf.ufg.br

Fabrízzio Alphonsus A. de M. N. Soares
Instituto de Informática

Universidade Federal de Goiás, UFG
Goiânia-GO, Brazil

e-mail: fabrizzio@inf.ufg.br

Auri Marcelo Rizzo Vincenzi
Instituto de Informática

Universidade Federal de Goiás, UFG
Goiânia-GO, Brazil

e-mail: auri@inf.ufg.br

Abstract—The main disadvantage of static analysis tools is
their high false positive rates. False positives are errorsthat either
do not exist or do not lead to serious software failures. Thus, the
benefits of automated static analysis tools are reduced due to the
need for manual interventions to assess true and false positive
warnings. This paper presents a systematic mapping study to
identify current state-of-the-art static analysis techniques and
tools as well as the main approaches that have been developed
to mitigate false positives.

Keywords-automatic static analysis; false positive; systematic
mapping study.

I. I NTRODUCTION

There are two Verification and Validation (V&V) ap-
proaches: dynamic and static [1]. The first approach is char-
acterized by software implementation and defect detection
through assessment of program outputs, which is similar to
software testing. In the second approach, program execution is
not required, and identification of potential faults is carried out
through evaluation of software source codes, design diagrams,
requirements, etc. Inspections and code reviews are types of
techniques used in static analysis but, in general, they are
performed by human. The focus of this work is the evaluation
of techniques and tools used to perform automated static
analysis.

Automated static analysis vocabulary includes the following
terms: false positives, true positives and false negatives. A false
positive occurs when a tool alerts to the presence of a non-
existent fault. A false negative occurs when a fault exists,but
it is not detected due to the fact that static analysis tools are
not perfectly accurate and may not detect all errors. Finally, a
true positive occurs when a tool produces a warning to indicate
the presence of a real defect in the product under analysis.

Examples of automated static analysis tools are Find-
Bugs [2], PMD [3] and CheckStyle [4]. The disadvantage of
these tools is that they produce a high rate of false positives,

whereas developers are only interested in true errors, which
are the ones that require correction. False positive alertslead to
an increase in process costs, because their detection is usually
done by human intervention. This consumes precious time that
could be used for the correction of real faults [5]. Regardless
of such disadvantage, static analysis tools are very useful
for carrying out initial verification and validation activities
compared to other quality assurance procedures, especially due
to their low implementation cost.

We conducted a Systematic Mapping Study (SMS) of static
analysis techniques and tools to investigate how they avoid
false positives. A comprehensive data extraction process and
classification of the primary studies provided answers to our
research questions. The remaining of this paper is organized as
follows: Section II describes the methodology used to conduct
the systematic mapping and shows the results obtained in each
phase. Section III reveals main results and answers to the
research questions defined in Section II. Finally, Section IV
shows our conclusions and implications for future studies.

II. BACKGROUND

This paper shows the development of a systematic map
based on the process presented by Petersen [6]. It is composed
of the following steps: i) definition of research questions,ii)
analysis of relevant studies, iii) study selection, iv) keywording
of abstracts, v) data extraction, and vi) mapping process
(Figure 1). To increase the reliability of our proposed SMS,
some of the guidelines provided by Kitchenham et al. [7] were
followed, such as the use of control studies to assess search
string quality and Quality Assessment Strategy [8].

A. Research Questions

Our systematic mapping identifies relevant papers on static
analysis. We aim to understand the behaviour of automated
static analysis tools as well as find out which of the proposed
methods mitigate false positives, if any.

72Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 92 / 646

Process Steps

Definition of
Research Quest ions

Outcomes

Study Scope

Conduction of
Research

All Papers

Selection of Papers Relevant Papers

Keywording of
Abstracts

Qual i ty Assessment
S t ra tegy

Classification Scheme

Data Extract ion
and Mapping Processes

Systematic Map

Figure 1. Steps of a Systematic Mapping Study - Adapted
from [6].

Each question is answered according to the following crite-
ria: Population, Intervention, Control and Results. The criteria
comparison is not applicable to this research, so it was not
used. Information on each of them is found in [7]. Our research
questions are:

• RQ1: Which static analysis tools and approaches are used
to reduce false positives?

• RQ2: Which types of warnings are emitted by the tools
and which static analysis methods are employed?

• RQ3: Should various static analysis techniques be used
in combination to reduce false positives?

B. Search Strategy, Data Sources and Study Selection

The search strategy involved the creation of a string to
operate upon scientific digital libraries for the selectionof
primary studies. The digital libraries selected were: ACM,
IEEE, Engineering Village (Compendex) and SpringerLink.
The search string presented in Figure 2 was applied to search
engines by using the advanced search mechanism and, in some
cases, it was tailored for a specific search engine. The papers
used as controls are listed in Table I, it was developed from
generic terms found in the control articles used. Static analysis
does not have a broad vocabulary, similar terms are usually
found in papers, resulting in small search string. The general
search string is as follows:

((static analysis OR bug finding OR static code analysis OR find bug
OR analysis static) AND (false positive OR warnings))

Figure 2. The general search string.

After excluding control articles and their repeated retrievals,
the string used in databases returned 615 primary studies,
all of them catalogued in a specialized tool, named State of
the Art through Systematic Review (StArt) [9]. The results
extracted from StArt revealed that ACM retrieved the highest

rate of primary studies (52%), followed by Engineering Village
(23%), IEEE (17%) and SpringerLink (8%). The main data
retrieved from each primary study was stored using the JabRef
tool [10] for further classification.

TABLE I. CONTROL PAPERS

Title Citation Consultation Database
CA1 Which Warnings Should I

Fix First?
[11] ACM

CA2 Finding Bugs is Easy [5] ACM
CA3 Comparing Bug Finding

Tools with Reviews and
Tests

[12] SpringerLink

CA4 A Comparison of Bug
Finding Tools for Java

[13] IEEE

CA5 Static Code Analysis [14] IEEE

The inclusion criteria for this study are:

• IC1: Primary studies analysing the warnings emitted by
static analysis tools;

• IC2: Primary studies proposing methods/tools to reduce
false positives;

• IC3: Primary studies comparing static analysis
tools/methods;

The exclusion criteria are:

• EC1: Primary studies on static analysis that do not assess
warnings or reduce false positives;

• EC2: Primary studies that are repeated retrievals or con-
tain a maximum of two pages;

• EC3: Primary studies that cannot be accessed;
• EC4: Primary studies that do not use static analysis;
• EC5: Primary studies that are not written in English or

Portuguese.

The primary studies underwent two other stages of selection.
In the second stage, EC2, EC3 and EC5 were applied. This
action ensured a significant reduction in the number of studies,
after which 270 studies remained. In the third and last stage,
each study’s title and abstract were assessed by applying EC1

and EC4, eliminated respectively 40% and 33% of the primary
studies, remaining 64 papers for quality assessment strategy
(Figure 3).

1s t Phase
Identif ication of relevant studies

 for database searching
6 1 5

Exclusion of primary studies after
 application of the exclusion criteria

2nd Phase 2 7 0

Exclusion of primary studies after
 review of t i t le and abstract

3 rd Phase 6 4

Qual i ty assessment s t ra tegy4 th Phase 5 1

Figure 3. Four stages for selection of primary studies

73Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 93 / 646

C. Quality Assessment Strategy and Classification of Selected
Studies

After application of the previous steps, 64 papers were
selected. Aiming at increasing and ensuring the quality of
the developed work, we decided to assess the quality of
the selected primary studies based on the criteria created by
Dybå and Dingsøyr [8]. These criteria are composed of eleven
question but we use only eight since three of them are out of
the scope of our work (questions 5, 6 and 9). Information on
each of them is found in [8]. It was assigned 1 when the
primary study satisfies the criterion and 0 otherwise. Observe
that criteria 1 and 2 are considered exclusion criteria since a
primary study not satisfying them implies it should be dropped
of. Table II presents the final results of the quality assessment.
Among 51 articles, 9 (17%) received the maximum score
(8) indicating that only a few number of primary studies are
concerned to document the stages of the development of their
research. 90% of the primary studies collected data to answer
the research question, but only 40% of the work are worried
to validate the collected data, and 41% are worried to show
the results clearly. Observe that the lack of such information
makes difficult to draw conclusions about these research areas.
Primary studies were classified into three classes, identified
after reading the 51 remaining papers: research type, approach
type, and types of false positive errors.

In the first class, works were classified based on the types
of research: validation research, evaluation research, solution
proposal, philosophical papers, opinion papers and experience
papers. Information on each of them is found in [6]. The
second class was defined to answer RQ1. Therefore, a clas-
sification scheme was developed based on the terminology
used in the primary studies. The types of approaches identified
were: comparative study, algorithm, new tool, improve existing
tool, ranking error, hybrid approach, technique and method.
A main approach type was defined for each primary study,
which means that it may or may not contain features of other
less relevant types of approaches. The characteristics of each
approach type are:

• Comparative Study (CS): A primary study that compares
static analysis approaches to identify cases in which
application of an approach is better than another;

• Algorithm (A): A primary study that proposes a new
algorithm that may or may not be used in combination
with a static analysis tool to reduce false positives;

• New Tool (TL): A primary study that proposes a new tool
which may be more effective than existing tools or used
in combination with other tools to identify false positives
not yet detected;

• Improve Existing Tool (IT): A primary study that pro-
poses an improvement of an existing tool. For instance,
a new bug pattern;

• Ranking Error (RE): A primary study that proposes a new
ranking or an improved technique to rank error reports;

• Hybrid Approach (HA): A primary study that combines
static and dynamic approaches to reduce the disadvan-

tages of each technique aiming at false positive mitiga-
tion;

• Technique (T): A primary study that aims to find a
solution to a specific problem [15];

• Method (M): A primary study that searches for a general
solution to a problem [15].

The third class is related to false positive errors. It was
developed to identify the primary focus of our study. Errors
were classified as interface fault, data fault, cosmetic fault,
initialization fault, control fault, and computation fault. This
classification was created by Basili and Selby [16], where one
can find more information on each class of fault. However,
most of the 64 selected studies mention the false positives
generated by static analysis tools in a general way. Thus, a
new error category was created: extensive study. The primary
studies that identify more than 10 error types were also
included in this category. Studies containing 2-9 defects were
classified into several categories. Also, when more than one
defect of the same type was detected, only one would be
considered. Most primary studies aimed at reducing false
positives of various types. This is a relevant result, because the
purpose of our systematic mapping is to provide an overview
of the research field.

D. Data Extraction and Mapping Processes

The JabRef and spreadsheets were used in the remaining 51
primary studies to create a three-class classification: research
type, error type, and approach type. Figure 4 shows that 25
out of 51 (49%) primary studies were classified as solution
proposals. This indicates that many proposed new approaches
or improvements for existing ones aimed at reducing false
positive alerts emitted by static analysis tools. However,none
of them was classified as validation research, indicating that
there is no experimental validation of the proposed approaches.

Figure 4. The classification of selected papers in relation
research classes

Regarding the types of approaches identified, there were
a variety of proposed solutions to problems, mainly methods
(18.91%) and new tools (16.21%), which are shown in Fig-
ure 5). This indicates that many researchers, who were not
satisfied with existing tools, proposed new ones as well as
prototypes to assist developers. Some works also presented

74Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 94 / 646

TABLE II. R ESULTS OF SYSTEMATIC MAPPING STUDY

QUALITY EVALUATION AND THE AMOUNT OF THE FALSE

POSITIVES ACHIEVED IN EACH PRIMARY STUDY

Paper RE AI CO RD DC DA FI VA RS TFP A FPR(%)
[17] 1 1 1 1 1 0 1 0 6 S T 63%
[18] 1 1 1 1 1 0 0 1 6 ND T 0%
[19] 1 1 1 1 1 1 1 1 8 S T 20%
[20] 1 1 1 1 1 0 0 1 6 S T BCI 13%
[21] 1 1 1 1 1 0 0 1 6 S T IINC
[22] 1 1 1 1 1 1 1 1 8 S RE 19%
[23] 1 1 1 1 1 1 1 1 8 S RE BCI 0%
[24] 1 1 0 1 1 0 0 1 5 S RE IINC
[25] 1 1 1 1 1 0 1 1 7 S M IINC
[26] 1 1 0 1 1 0 1 1 6 SB M 0%
[27] 1 1 0 1 1 1 1 1 7 S M IINC
[28] 1 1 1 1 1 1 0 1 7 S M IINC
[29] 1 1 1 1 1 1 1 0 7 S M 32%
[30] 1 1 1 1 1 1 1 1 8 S M BCI 74%
[31] 1 1 0 1 1 0 1 1 6 S M IINC
[32] 1 1 0 1 1 1 1 0 6 S M BCI 0%
[33] 1 1 1 1 1 1 0 1 7 S M IINC
[34] 1 1 0 1 0 0 0 0 3 S M 34%
[35] 1 1 0 1 1 1 1 1 7 C M IINC
[36] 1 1 1 1 0 0 1 0 5 S IT 15%
[37] 1 1 1 1 1 1 1 1 8 S IT IINC
[38] 1 1 1 1 0 0 0 1 5 S IT BCI 0%
[39] 1 1 0 1 1 0 0 1 5 S IT IINC
[40] 1 1 1 1 1 1 1 1 8 S IT IINC
[41] 1 1 0 1 1 1 1 1 7 S TL BCI 0%
[42] 1 1 0 1 1 0 0 0 4 S TL IINC
[43] 1 1 1 1 1 0 0 0 5 IB TL IINC
[44] 1 1 1 1 1 1 1 1 8 BO TL IINC
[45] 1 1 1 0 1 0 0 1 5 S TL IINC
[46] 1 1 0 1 1 0 0 0 4 S TL IINC
[47] 1 1 1 1 1 1 1 1 8 C TL IINC
[48] 1 1 1 1 1 0 0 0 5 D TL IINC
[49] 1 1 0 1 1 0 0 0 4 S TL IINC
[50] 1 1 0 1 1 1 0 0 5 S TL IINC
[51] 1 1 0 1 1 0 0 0 4 CS
[52] 1 1 0 1 1 0 0 0 4 CS
[53] 1 1 0 1 1 0 0 1 5 CS
[54] 1 1 0 1 0 0 0 0 3 CS
[55] 1 1 1 1 1 0 0 0 5 CS
[56] 1 1 0 1 1 0 1 0 5 CS
[57] 1 1 1 0 1 0 0 1 5 DR A BCI 0 %
[58] 1 1 0 1 1 0 0 1 5 DR A IINC
[59] 1 1 1 1 1 0 0 1 6 S A IINC
[60] 1 1 0 1 1 0 0 0 4 S A BCI 20%
[61] 1 1 0 1 1 1 0 1 6 S A IINC
[62] 1 1 1 1 1 0 0 0 5 S A BCI 38%
[63] 1 1 0 0 1 0 0 1 4 S HA IINC
[64] 1 1 0 1 1 1 0 0 6 S HA IINC
[65] 1 1 1 1 1 1 0 0 6 S HA IINC
[66] 1 1 1 1 1 1 0 1 7 S HA IINC
[67] 1 1 0 1 1 0 0 0 4 S HA IINC
RS 51 51 28 49 46 20 21 32 * * * *

Acronyms

RE: RESEARCH VA: VALUE SB: STRING BUG
AI: AIM RS: RESULT C: CONCURRENCE
CO: CONTEXT TFP: TYPE OF FALSE POSITIVE IB: INTEGER BUG
RD: RESEARCH DESIGN A: APPROACH BO: BUFFER OVERFLOW
DC: DATA COLLECTION FPR: FALSE POSITIVE RATE RC: DATA RACE
DA: DATA ANALYSIS S: SEVERAL BCI: BEST CASE IS
FI: FINDINGS ND: NULL DEFERENCE IINC: IT IS NOT CLEAR

improvements for the FindBugs tool [2], which is used for
static analysis of Java programs. Most primary studies suggest
ways to mitigate false positives of various types (Figure 5).
The fact that a large number of research proposals focus on
the many kinds of errors exposed by static analysis contributes
to the provision of a variety of mitigation techniques.

A bubble chart was designed to display the intersection
of two classes: approach type and types of false positives
(Figure 5). According to Petersen et al. [6], the bubble chart
was effective in the sense that it gave an overview of the
research field and produced a map of results.

III. M AIN FINDINGS

In this section, we present the answers to the three proposed
research questions based on the primary studies found.

A. Answer to RQ1 – Tools and Approaches

With respect the tools, it can be observed that a significant
number of static analysis tools is used by researchers trying
to reduce false positives, i.e., there is not a consensus that the
tool A is better or worse than the tool B, or whether it is

better to use an open source tool or a commercial tool. Some
authors believe that the use of tools is not mutually exclusive
because if tool A finds more real faults of “null deference”
than a tool B, but B is better than A on detecting real faults
of “buffer overflow”, then the correct choice should be to
combine both tools taking the advantage of both. This strategy
aims to potentiating the strengths of each tool, increasingthe
amount of real defects found, and also the precision, because
if more than one tool reports a same warning on the same
line, this may indicates that the probability of the warning
corresponds to a true positive is greater than the one reported
by a single tool.

The collected data indicate that 16.21% of the papers
propose a new static analysis tool, the majority without
any comparison with other existing tool to demonstrate the
effectiveness of the proposed approach. From this percentage,
just 25% seek to mitigate defects in a comprehensive way, the
other 75% remaining seek to reduce false positive of a specific
class. This large concentration of new tools with a focus on
some specific defect demonstrates a possible deficiency of
existing tools for detecting such defects. The main defects
found are “data fault” and “initialization fault” representing
together 50% of the works proposed of improved tool.

There are also 12.16% of the studies which present hybrid
techniques by combining dynamic and static analysis. Accord-
ing to Aggarwal and Jalote [45], IT community believes that
the static and dynamic approaches are complementary. Static
analyzers are faster and simpler to use than dynamic ones.
Moreover, they also help to identify problems earlier in the
development process, when the cost to correct them is lower
but, in general, static analyzers generate large amounts offalse
positives and false negatives. On the other hand, dynamic
analyzers are accurate and generate few false positives, but
to test all possible conditions in a program with thousands of
line of code is practically impossible. During the systematic
mapping were found works which use both approaches in a
complementary way to reduce the drawbacks of each other.

Among the tools used or cited in the primary studies, those
that stand out are: FindBugs and Checkstyle. Both are used
together with PMD by the quality platform SonarQube for the
calculation of part of its static metrics, but SonarQube does
not seek to reduce false positives.

B. Answer to RQ2 – The types of false positive errors

We also tried to identify specific classes of false positives
warnings but the majority of the works (33.78%) fell down in
the generic classification of false positives, i.e., the information
is not available. The fact that significant amount of work de-
velops techniques or tools to mitigate various false positives is
something negative demonstrating the existence of a large gap
in this research area to be filled. 20% of the proposed methods
provided generic methods which are palliative solutions, not
solving the problem of the high rate of false positive efficiently.

Table II shows a summary of the type of false positive,
the technique and the false positive rate of the 51 primary
studies investigated. Excluding the comparative studies that do

75Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 95 / 646

Figure 5. Bubble chart – Types of Approaches× Types of False Positives

not investigate the effectiveness of a specific approach, 63%
of the remaining works do not make clear how the proposed
approach was efficient, they just mention that the false positive
rate was reduced without any evidences. But, how much is the
reduction? Without this information, the proposed approach
has no change to be addopted on real software development
environments. Therefore, improve the way the experiments are
conducted on these research area is of fundamental importance
to provide such an evidences.

Maybe the real solution does not treats in reduce the rate
of false positives, but reducing the amount of certain typesof
false positives. Treating this problem broadly, your solution
may be far from being achieved. One approach might be to
assign a weight or priority for each type of false positive,
characteristic established in some bug-finding tools (FindBugs,
PMD, and Checkstyle are some of them).

In this manner, bugs with greater weight, hence higher
priority should be given greater attention and other bugs with
lower priority can be observed or subsequently depending on
how much low is your priority should be ignored. Currently,
we live in a scenario that programs are getting ever larger,
exceeding millions of line of code, so the task of analyzing the
warnings emitted by bug finding tools, should be performed
in a smarter way, reducing the human effort and time on this
activity. To do this, we think an important step is to valorize
the types of false positives but, among existing tools, there is
no consensus between the weight or priority, and similar or
identical bugs may have different values in different tools.

C. Answer to RQ3 – Application of Static Analysis Tools

The answer to reduce false positives rate might be resumed
in one word: combine. It is not necessary to create something
new or improve something that already exists, but the strategy
should be to combine static analysis tools and/or dynamic
and static tools and to conduct significant empirical studies to
identify the best combination of tools to reduce drawbacks and
to increase benefits. Unfortunately, the task is not so easy since

there are several technical details to be overcome to createa
meta static analysis tool, such as, how to combine different
warning’s prioritization classification in a single meta tool;
how to manage different output formats; and so on.

Rutar et al. [13] is an example of primary study which
uses this approach. They utilizes tools in conjunction with
applications of different sizes. Each tool performs a different
balancing to equilibrate the real location of errors, the gener-
ation of false positives and true positives and, consequently,
there is little overlap among the generated warnings. These
different approaches of balancing can involve the necessity
of using multiple tools in the verification of an application.
Then, Rutar et al. [13] suggested the development of a meta-
tool, which combines the results of different tools for searching
errors.

IV. F INAL CONSIDERATIONS

This paper showed the development of a systematic map-
ping study on static analysis approaches and tools aiming
at reducing the number of false positives generated. After
the selection of 51 studies, the mapping combined protocol
processes developed by Petersen et al. [6] and Kitchenham et
al. [7]. The selected works provided a variety of static analysis
approaches, including proposals for improving existing tools.
FindBugs stands out in the sense that many primary studies
not only use it, but also discuss how it may be improved.

Among the retrieved studies, there was a lack of works on
the types of false positive errors and the tools that generate
them. This kind of research would help developers identify the
tools that best serve their needs. The mapping also revealed
studies that use hybrid approaches, which combine static and
dynamic analyses techniques. Furthermore, a combination of
different static analysis approaches proved more efficientthan
their isolated use.

Based on the mapping results and due to a lack of validation
research on the subject, we propose a large-scale experimental
study aiming at finding answers to open questions. This would

76Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 96 / 646

contribute to advancements in the use of static analysis tools
in the early stages of the development cycle, as well as
identification of the types of defects that should be treated
by other verification and validation techniques. Moreover,the
development of a methodology for combining static analysis
approaches and tools is also recommended for future research.

ACKNOWLEDGMENT

The authors would like to thank the Instituto de Informática
– INF/UFG, Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior – CAPES – Brasil, and Fundação de Amparo à
Pesquisa do Estado de Goiás – FAPEG – Brasil, which support
this work.

REFERENCES

[1] I. Sommerville, S. Melnikoff, R. Arakaki, and E. de An-
drade Barbosa, Software Engineering. ADDISON WESLEY
BRA, 2008, [retrieved: Oct., 2013]. [Online]. Available:
http://books.google.com.br/books?id=ifIYOgAACAAJ

[2] FindBugs, [retrieved: Oct., 2013]. [Online]. Available:
http://findbugs.sourceforge.net/

[3] PMD, [retrieved: Oct., 2013]. [Online]. Available: pmd.sourceforge.net/
[4] CheckStyle, [retrieved: Oct., 2013]. [Online]. Available:

http://checkstyle.sourceforge.net
[5] D. Hovemeyer and W. Pugh, “Finding bugs is easy,”SIGPLAN Not.,

vol. 39, no. 12, pp. 92–106, 2004.
[6] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic map-

ping studies in software engineering,” in12th International Conference
on Evaluation and Assessment in Software Engineering, vol. 17, 2008,
p. 1.

[7] B. Kitchenham and S. Charters, “Guidelines for performing Systematic
Literature Reviews in Software Engineering,” Keele University and
Durham University Joint Report, Tech. Rep. EBSE 2007-001, 2007.

[8] T. D. Aě and T. D. Aÿyr, “Empirical studies of agile software devel-
opment: A systematic review,”Information and Software Technology,
vol. 50, pp. 833–859, 2008.

[9] StArt, [retrieved: Oct., 2013]. [Online]. Available:
http://lapes.dc.ufscar.br/tools/start-tool

[10] JabRef, [retrieved: Oct., 2013]. [Online]. Available:
http://jabref.sourceforge.net/

[11] S. Kim and M. D. Ernst, “Which warnings should i fix first?”in
Proceedings of the the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, ser. ESEC-FSE’07. New York,
NY, USA: ACM, 2007, pp. 45–54.

[12] S. Wagner, J. Jürjens, C. Koller, and P. Trischberger, “Comparing bug
finding tools with reviews and tests,” inProceedings of the 17th IFIP
TC6/WG 6.1 international conference on Testing of Communicating
Systems, ser. TestCom’05. Berlin, Heidelberg: Springer-Verlag, 2005,
pp. 40–55.

[13] N. Rutar, C. B. Almazan, and J. S. Foster, “A comparison of bug finding
tools for java,” in Proceedings of the 15th International Symposium
on Software Reliability Engineering, ser. ISSRE’04. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 245–256.

[14] P. Louridas, “Static code analysis,”Software, IEEE, vol. 23, no. 4, pp.
58–61, 2006.

[15] L. Nascimento, D. Viana, P. Silveira Neto, D. Martins, V. Garcia, and
S. Meira, “A systematic mapping study on domain-specific languages,”
in ICSEA’12, The Seventh International Conference on Software Engi-
neering Advances, 2012, pp. 179–187.

[16] V. Basili and R. Selby, “Comparing the effectiveness ofsoftware testing
strategies,”Software Engineering, IEEE Transactions on, vol. SE-13,
no. 12, pp. 1278–1296, 1987.

[17] M. G. Nanda and S. Sinha, “Accurate interprocedural null-dereference
analysis for java,” inProceedings of the 31st International Conference
on Software Engineering, ser. ICSE’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 133–143.

[18] P. Emanuelsson and U. Nilsson, “A comparative study of industrial static
analysis tools,”Electron. Notes Theor. Comput. Sci., vol. 217, pp. 5–21,
Jul. 2008.

[19] Lucia, D. Lo, L. Jiang, and A. Budi, “Active refinement ofclone
anomaly reports,” inProceedings of the 2012 International Conference
on Software Engineering, ser. ICSE’12. Piscataway, NJ, USA: IEEE
Press, 2012, pp. 397–407.

[20] S. S. Heckman, “Adaptively ranking alerts generated from automated
static analysis,”Crossroads, vol. 14, no. 1, pp. 7:1–7:11, Dec. 2007.

[21] S. Heckman and L. Williams, “A model building process for identifying
actionable static analysis alerts,” inProceedings of the 2009 Interna-
tional Conference on Software Testing Verification and Validation, ser.
ICST’09. Washington, DC, USA: IEEE Computer Society, 2009,pp.
161–170.

[22] A. Vetro, M. Morisio, and M. Torchiano, “An empirical validation of
findbugs issues related to defects,” Durham University – Grey College,
Durham, Apr., pp. 144–153.

[23] E. Bodden and K. Havelund, “Aspect-oriented race detection in java,”
IEEE Trans. Softw. Eng., vol. 36, no. 4, pp. 509–527, Jul. 2010.

[24] G. Liang, L. Wu, Q. Wu, Q. Wang, T. Xie, and H. Mei, “Automatic
construction of an effective training set for prioritizingstatic analysis
warnings,” inProceedings of the IEEE/ACM international conference on
Automated software engineering, ser. ASE’10. New York, NY, USA:
ACM, 2010, pp. 93–102.

[25] S. Kim, T. Zimmermann, K. Pan, and E. J. J. Whitehead, “Automatic
identification of bug-introducing changes,” inProceedings of the 21st
IEEE/ACM International Conference on Automated Software Engineer-
ing, ser. ASE’06. Washington, DC, USA: IEEE Computer Society,
2006, pp. 81–90.

[26] P. Chen, Y. Wang, Z. Xin, B. Mao, and L. Xie, “Brick: A binary
tool for run-time detecting and locating integer-based vulnerability,”
in Availability, Reliability and Security, 2009. ARES’09. International
Conference on, 2009, pp. 208–215.

[27] D. Babi? and A. J. Hu, “Calysto: Scalable and precise extended static
checking,” 2008.

[28] C. Csallner and Y. Smaragdakis, “Check ’n’ crash: combining static
checking and testing,” inProceedings of the 27th international confer-
ence on Software engineering, ser. ICSE’05. New York, NY, USA:
ACM, 2005, pp. 422–431.

[29] A. Fehnker, R. Huuck, and S. Seefried, “Concurrency, compositionality,
and correctness,” D. Dams, U. Hannemann, and M. Steffen, Eds.
Springer-Verlag, 2010, ch. Counterexample guided path reduction for
static program analysis, pp. 322–341.

[30] F. Ivancic, G. Balakrishnan, A. Gupta, S. Sankaranarayanan, N. Maeda,
H. Tokuoka, T. Imoto, and Y. Miyazaki, “Dc2: A framework for
scalable, scope-bounded software verification,” inAutomated Software
Engineering (ASE), 2011 26th IEEE/ACM International Conference on,
2011, pp. 133–142.

[31] S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with noise in defect
prediction,” in Proceedings of the 33rd International Conference on
Software Engineering, ser. ICSE ’11. New York, NY, USA: ACM,
2011, pp. 481–490.

[32] S. Lu, S. Park, and Y. Zhou, “Detecting concurrency bugsfrom the
perspectives of synchronization intentions,”Parallel and Distributed
Systems, IEEE Transactions on, vol. 23, no. 6, pp. 1060–1072, 2012.

[33] A. Tomb and C. Flanagan, “Detecting inconsistencies via universal
reachability analysis,” inProceedings of the 2012 International Sym-
posium on Software Testing and Analysis, ser. ISSTA’12. New York,
NY, USA: ACM, 2012, pp. 287–297.

[34] A. C. Nguyen and S.-C. Khoo, “Discovering complete api rules with
mutation testing,” inMining Software Repositories (MSR), 2012 9th
IEEE Working Conference on, 2012, pp. 151–160.

[35] J. Hoenicke, K. R. Leino, A. Podelski, M. Schäf, and T. Wies, “Doomed
program points,”Form. Methods Syst. Des., vol. 37, no. 2-3, pp. 171–
199, Dec. 2010.

[36] C. Csallner, Y. Smaragdakis, and T. Xie, “Dsd-crasher:A hybrid analysis
tool for bug finding,”ACM Trans. Softw. Eng. Methodol., vol. 17, no. 2,
pp. 8:1–8:37, May 2008.

[37] B. Chimdyalwar and S. Kumar, “Effective false positivefiltering for
evolving software,” inProceedings of the 4th India Software Engineering
Conference, ser. ISEC’11. New York, NY, USA: ACM, 2011, pp. 103–
106.

[38] H. Shen, J. Fang, and J. Zhao, “Efindbugs: Effective error ranking for
findbugs,” inSoftware Testing, Verification and Validation (ICST), 2011
IEEE Fourth International Conference on, 2011, pp. 299–308.

77Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 97 / 646

[39] A. Shi and G. Naumovich, “Field escape analysis for dataconfidentiality
in java components,” inSoftware Engineering Conference, 2007. APSEC
2007. 14th Asia-Pacific, 2007, pp. 143–150.

[40] Y. Kim, J. Lee, H. Han, and K.-M. Choe, “Filtering false alarms of
buffer overflow analysis using smt solvers,”Inf. Softw. Technol., vol. 52,
no. 2, pp. 210–219, Feb. 2010.

[41] E. Bodden, P. Lam, and L. Hendren, “Finding programmingerrors
earlier by evaluating runtime monitors ahead-of-time,” inProceedings
of the 16th ACM SIGSOFT International Symposium on Foundations of
software engineering, ser. SIGSOFT’08/FSE-16. New York, NY, USA:
ACM, 2008, pp. 36–47.

[42] F. Otto and T. Moschny, “Finding synchronization defects in java
programs: extended static analyses and code patterns,” inProceedings
of the 1st international workshop on Multicore software engineering,
ser. IWMSE’08. New York, NY, USA: ACM, 2008, pp. 41–46.

[43] Q. Chen, L. Wang, and Z. Yang, “Heat: An integrated static and
dynamic approach for thread escape analysis,” inComputer Software
and Applications Conference, 2009. COMPSAC’09. 33rd Annual IEEE
International, vol. 1, 2009, pp. 142–147.

[44] A. Shi and G. Naumovich, “Improving data integrity witha java
mutability analysis.” inAPSEC. IEEE Computer Society, 2007, pp.
135–142.

[45] A. Aggarwal and P. Jalote, “Integrating static and dynamic analysis
for detecting vulnerabilities,” inComputer Software and Applications
Conference, 2006. COMPSAC’06. 30th Annual International, vol. 1,
2006, pp. 343–350.

[46] D. Kong, Q. Zheng, C. Chen, J. Shuai, and M. Zhu, “Isa: a source
code static vulnerability detection system based on data fusion,” in
Proceedings of the 2nd international conference on Scalable information
systems, ser. InfoScale ’07, 2007, pp. 55:1–55:7.

[47] M. G. Nanda, M. Gupta, S. Sinha, S. Chandra, D. Schmidt, and
P. Balachandran, “Making defect-finding tools work for you,” in Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software
Engineering - Volume 2, ser. ICSE’10. New York, NY, USA: ACM,
2010, pp. 99–108.

[48] M. Al-Ameen, M. Hasan, and A. Hamid, “Making findbugs more
powerful,” in Software Engineering and Service Science (ICSESS), 2011
IEEE 2nd International Conference on, 2011, pp. 705–708.

[49] C. Le Goues and W. Weimer, “Measuring code quality to improve
specification mining,”Software Engineering, IEEE Transactions on,
vol. 38, pp. 175–190, 2012.

[50] P. Anderson, “Measuring the value of static-analysis tool deployments,”
Security Privacy, IEEE, vol. 10, pp. 40–47, 2012.

[51] S. Kim, K. Pan, and E. E. J. Whitehead, Jr., “Memories of bug fixes,”
in Proceedings of the 14th ACM SIGSOFT international symposium on
Foundations of software engineering, ser. SIGSOFT’06/FSE-14, 2006,
pp. 35–45.

[52] C. Cifuentes and B. Scholz, “Parfait: designing a scalable bug checker,”
in Proceedings of the 2008 workshop on Static analysis, ser. SAW’08,
2008, pp. 4–11.

[53] Z. Ding, H. Wang, and L. Ling, “Practical strategies to improve test
efficiency,” Tsinghua Science and Technology, vol. 12, pp. 250–254,
2007.

[54] V. Pessanha, R. J. Dias, J. a. M. Lourenço, E. Farchi, andD. Sousa,
“Practical verification of high-level dataraces in transactional memory
programs,” inProceedings of the Workshop on Parallel and Distributed
Systems: Testing, Analysis, and Debugging, ser. PADTAD’11. New
York, NY, USA: ACM, 2011, pp. 26–34.

[55] S. Heckman and L. Williams, “On establishing a benchmark for eval-
uating static analysis alert prioritization and classification techniques,”
in Proceedings of the Second ACM-IEEE international symposium on
Empirical software engineering and measurement, ser. ESEM’08, 2008,
pp. 41–50.

[56] S. Kim and M. D. Ernst, “Prioritizing warning categories by analyzing
software history,” in Proc. of Int’l Workshop on Mining Software
Repositories (MSR’2007, 2007, p. 27.

[57] K. Li, C. Reichenbach, C. Csallner, and Y. Smaragdakis,“Residual
investigation: predictive and precise bug detection,” inProceedings of
the 2012 International Symposium on Software Testing and Analysis,
ser. ISSTA’12. New York, NY, USA: ACM, 2012, pp. 298–308.

[58] D. Reimer, E. Schonberg, K. Srinivas, H. Srinivasan, B.Alpern, R. D.
Johnson, A. Kershenbaum, and L. Koved, “Saber: smart analysis based
error reduction,”SIGSOFT Softw. Eng. Notes, vol. 29, pp. 243–251,
2004.

[59] J. Wu, Y. Tang, G. Hu, H. Cui, and J. Yang, “Sound and precise analysis
of parallel programs through schedule specialization,” inProceedings of
the 33rd ACM SIGPLAN conference on Programming Language Design
and Implementation, ser. PLDI’12. New York, NY, USA: ACM, 2012,
pp. 205–216.

[60] D. Babíc, L. Martignoni, S. McCamant, and D. Song, “Statically-
directed dynamic automated test generation,” inProceedings of the
2011 International Symposium on Software Testing and Analysis, ser.
ISSTA’11, New York, NY, USA, 2011, pp. 12–22.

[61] W. Han, M. Ren, S. Tian, L. Ding, and Y. He, “Static analysis of format
string vulnerabilities,” inSoftware and Network Engineering (SSNE),
2011 First ACIS International Symposium on, 2011, pp. 122–127.

[62] W. H. K. Bester, C. P. Inggs, and W. C. Visser, “Test-casegeneration and
bug-finding through symbolic execution,” inProceedings of the South
African Institute for Computer Scientists and InformationTechnologists
Conference, ser. SAICSIT’12. New York, NY, USA: ACM, 2012, pp.
1–9.

[63] A. Avancini and M. Ceccato, “Towards security testing with taint
analysis and genetic algorithms,” inProceedings of the 2010 ICSE
Workshop on Software Engineering for Secure Systems, ser. SESS’10.
New York, NY, USA: ACM, 2010, pp. 65–71.

[64] S. Keul, “Tuning static data race analysis for automotive control soft-
ware,” in Source Code Analysis and Manipulation (SCAM), 2011 11th
IEEE International Working Conference on, 2011, pp. 45–54.

[65] N. Ayewah and W. Pugh, “Using checklists to review static analysis
warnings,” inProceedings of the 2nd International Workshop on Defects
in Large Software Systems: Held in conjunction with the ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA
2009), ser. DEFECTS’09. New York, NY, USA: ACM, 2009, pp.
11–15.

[66] J. Lawall, J. Brunel, N. Palix, R. Hansen, H. Stuart, andG. Muller,
“Wysiwib: A declarative approach to finding api protocols and bugs
in linux code,” in Dependable Systems Networks, 2009. DSN ’09.
IEEE/IFIP International Conference on, 2009, pp. 43–52.

[67] T. Kremenek and D. Engler, “Z-ranking: Using statistical analysis to
counter the impact of static analysis approximations,” inStatic Analysis,
ser. Lecture Notes in Computer Science, R. Cousot, Ed. Springer Berlin
Heidelberg, 2003, vol. 2694.

78Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 98 / 646

An Approach for Validation, Verification, and
Model-based Testing of UML-based Real-time

Systems

Mehdi Nobakht and Dragos Truscan
Department of Information Technologies, Åbo Akademi University, Turku, Finland

{mehdi.nobakht, dragos.truscan}@abo.fi

Abstract—UML is gaining popularity in designing real-time
systems. However, UML tools often lack support for verification.
This paper describes an approach and a tool in which UML
models used for designing real-time systems are translated into
UPPAAL timed automata in order to take advantage of validation
and verification support in the UPPAAL tool. This allows one to
increase the quality of the UML models by complementing static
validation via OCL with behavioral validation and verification
using the UPPAAL model-checker. Having an implementation
of the system under consideration, the obtained UPPAAL timed
automata serve as input of the UPPAAL-TRON tool to perform
online model-based conformance testing. The proposed approach
also generates a skeleton of the test adapter required to interface
the testing tool and the implementation under test. The approach
and the tool are exemplified with a telecommunication case study.

Keywords—UML; UPPAAL; model verification; model-based
conformance testing; real-time systems.

I. INTRODUCTION

Unified Modeling Language (UML) [1] is a standardized
general-purpose modeling language originally designed for the
object-oriented paradigm. UML has also been suggested for
designing embedded and real-time systems. It has been gaining
popularity and is familiar to most designers and developers in
this class of systems [2]. A key advantage of UML is the
hierarchical mechanism giving a high degree of modularity
and encapsulation to the model. It is particularly useful for
modeling the behavior of complex systems. Moreover, an
increasing number of UML tools provide code generation
facilities which has increased its popularity further.

Once a real-time system is designed using UML, there
is a need to ensure that the model conforms to the system
specification. Model validation and verification methods aim
at finding possible discrepancies between a system model and
the corresponding specification at an early design stage. The
Object Constraint Language (OCL) [3] is a formal language to
supplement UML for detecting both syntactic inconsistencies
and, to a limited extent, semantic ones in the models. While
UML is particularly promising in designing embedded and
real-time systems, it lacks support for verification of the timing
and schedule related properties.

Testing is the pivotal part of real-time systems development
process, being used to ensure that a product meets its require-
ments. This way, it helps to increase the quality of the product.
Model-Based Testing (MBT) [4] is a testing technique which
automatically generates tests from the behavioral specifications

of the System Under Test (SUT). Depending on how tests are
generated and executed, there are two flavors of MBT; in offline
testing, the test cases are generated before the execution step,
whereas through online testing both steps are integrated [5].

The work presented in this paper proposes an approach for
validation, verification, and online model-based conformance
testing of real-time systems which are designed using UML.
In our approach, in order to compensate for the lack of formal
and executable semantics of UML, the UML models includ-
ing class and state machine diagrams are translated into the
UPPAAL timed automata and later on validated and verified
using the UPPAAL model-checker tool [6]. The translation
is automated by a tool which beside creating the UPPAAL
specifications, it propagates requirement information from the
UML models to the UPPAAL timed automata and generates
deadlock free and reachability queries for verification pur-
poses. In addition, it generates a tester adapter stub required
to interface UPPAAL-TRON – an online model-based testing
tool [7] – and the Implementation Under Test (IUT).

Overview. The information presented in this paper will
appear in the following order: Section II contains the works
related to verification methods for the UML-based designs of
real-time systems. Section III provides a background to the
theory of timed automata, the semantics of timed automata as
used by the UPPAAL toolbox, and the underlying principles
of TRON. Section IV initially provides a UML solution for
designing real-time systems explaining UML notation of static
structures and timed state machines. Then, it describes the
principles of our approach for translation of a UML model into
UPPAAL timed automata and the tool support to automate the
translation process. Section V describes a real telecommunica-
tion case study to demonstrate applicability of our approach. In
addition, it describes the TRON test setup to perform model-
based conformance testing. Section VI concludes the paper,
while discussing future work.

II. RELATED WORK

In the context of the UML model validation, Richters and
Gogolla [8] propose the USE animation-based tool for valida-
tion of UML models and OCL constraints. We propose using
the UPPAAL tool which integrates validation and verification
processes. Later on, the obtained UPPAAL timed automata can
also be used as input to the UPPAAL-TRON testing tool for
test generation.

79Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 99 / 646

Work on verification of the UML-based design of real-time
systems has been published by several authors. Similar to our
approach, many of these authors base their approaches on the
UPPAAL model checker and on the translation of UML to
the input language of the UPPAAL, but in general they use
different elements of UML.

A translation of the UML timed sequence diagrams into
UPPAAL timed automata has been presented by Firley et
al. [9]. Sequence diagrams specify required sequence of mes-
sage between objects, but they are too weak to specify stronger
properties like state invariants. In contrast, our approach uses
class and state machine diagrams which are richer in express-
ing the system properties.

Similar to our work, Ober et al. [10] use class diagrams and
state machine diagrams to capture the structure and the behav-
ior of the system respectively. They utilize the IF toolset [11]
to analyze the model and propose a translation from UML
1.4 to input language of IF, though no implementation of
IF seems to be available. David et al. [12] suggest the time
extension of the state diagram by adding clocks, timed guards,
and invariants. However, their approach mainly focuses on
flattening the hierarchical timed automata. Moreover, the event
communication between processes has to be coded by hand.

A prototype tool called Hugo/RT has been presented by
Knapp et al. [13]. It uses UML collaboration (sequence
diagram) with time constraints and a set of timed UML
state machines as input for the tool. However, their approach
has several limitations. Most prominently, the input/output
events between IUT and its environment model cannot have
parameters. Muniz et al. [14] discussed an approach for
verification of real-time systems represented for the CORBA
component model. In their approach, UPPAAL is deployed
for verification purposes and their tool called TANGRAM
takes UML component and state machine diagrams to generate
the equivalent UPPAAL timed automata. They extended the
component diagram with a stereotype to model event passing
between components. This mechanism does not allow to have
parameterized events like [13]. Compared to these approaches,
we use the UML interface element to model parameterized
event passing.

III. BACKGROUND TO TIMED AUTOMATA AND UPPAAL

A. Timed Automata

According to theory of timed automata [15], a timed
automaton is a non-deterministic finite state machine accom-
panied with clock to express timing properties. Clocks can be
set to zero and their value increases linearly with time. At
any instant, the value of a clock is equal to the time elapsed
since the last time it was reset. The state of a system of timed
automata includes the control state, variables and the clocks.
Execution of timed automata are infinite sequences of system
states that fulfil the invariants which may be either the passing
of time or running of transitions. A transition is enabled
either separately or synchronized with another automaton.
The transition is taken when the associated time constraint
is satisfied and its guard expression evaluates to true in the
system state.

B. UPPAAL

UPPAAL is a tool-suite for modeling and model checking
of real-time systems. It uses an extended version of timed au-
tomata, called UPPAAL Timed Automata (UPTA), to specify
a system as a network of timed automata consisting locations
and transitions. The behavior of the system is expressed by
transitions (called edges in UPPAAL) between these locations.
UPPAAL enriches the notion of timed automata by allowing
to declare bounded integer variables in a automaton locally
either or globally. Structured data types, user defined functions,
binary channel synchronization, and broadcast channels are
other UPTA extensions to timed automata. Moreover, it defines
urgent and committed locations. In urgent location time is not
allowed to pass as long as the location is active. Additionally,
leaving the committed location has precedence over other
possible transitions.

The channel synchronization between processes is denoted
with a? for the sending process, and with a! for the receiving
process. This way, several transitions are enabled simultane-
ously, but the assignment(s) in the sending automaton (with
a! label) is executed before the receiving automaton (with a?
label). This enables communication in a network of concurrent
automata with the help of global variables. Value assignment
and clock resetting can be two possible actions when a transi-
tion is enabled. It has to be noted that a transition is not taken
when the resulting system state would not satisfy the associated
invariant with the target location. The next system state is
achieved by updating the control states of the timed automata
involved in the transition by performing its defined actions.
Furthermore, UPPAAL uses the idea of invariant which is a
progress condition imposed on the location, that is, the system
is not allowed to stay in the location more than the value
mentioned by the invariant.

C. UPPAAL-TRON

The UPPAAL-TRON tool – or simply TRON – is an
extension to the UPPAAL tool for conformance testing of real-
time systems, designed according to relative timed input/output
conformance relation (rtioco) [5]. The test specification in
TRON is partitioned into a model of the environment and
a model of the SUT. These two models communicate using
input/output channels. TRON attaches to the IUT via a test
adapter which is a physical interface to enable communication
between the testing tool and an implementation under test.

IV. DESCRIPTION OF THE APPROACH

Throughout this section, we describe the main features
of our approach to translate a UML model of a system,
including class diagram and state machines into UPPAAL
timed automata. More practical details and concrete examples
can be found in [16].

A. UML Modeling

A real-time system interacts with its environment via in-
put/output actions (from SUT’s perspective). This work utilizes
two types of UML diagrams to represent a real-time system
and its environment: 1) a class diagram, describing SUT
and its test system environment, and 2) the corresponding

80Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 100 / 646

(a) Class diagram specifying SUT and its environment (b) State machine diagram describing behavior of SUT

Figure 1. Abstract UML model of a system.

state machine diagrams specifying the behavior of each class
element.

The class diagram describes the entities involved in a test
process: SUT and its environment testing system which are
communicating using dedicated protocols. SUT is a real-time
system taking input form the environment via communica-
tion networks and producing output to it. In our approach,
class elements are used to represent all entities in a system
which typically consists of SUT and its environment. We also
deployed two model elements using stereotype extensibility
mechanism in UML to distinguish SUT and its environment
testing system in the system architecture model rendered as
«SUT» and «ENV» respectively. The defined stereotypes are
derived from the base element in UML. In our approach,
all classes have to be stereotyped before proceeding to the
translation into UPTA. We also allow for several classes to be
stereotyped as SUT or as environment. At the testing time, the
partitioning will be used for identifying the test interface.

We specify communication between entities via interface
elements containing a set of operations. The interface specifies
the operations which a given class (supplier) can provide to
other classes (clients). The class can have attributes of type
integer or char. The latter are used to define clocks in
our UML model. Figure 1 shows an illustrative example of a
system model including a SUT and its environment. The archi-
tecture of the system is depicted by the class diagram in Fig-
ure 1a, showing two class elements named Test_Environment
and System_Under_Test. The Test_Environment sends a re-
quest message to System_Under_Test via input interface, and
receives a response message accordingly.

Each class has associated state machine describing the
behavior of the class element in terms of states and transitions.
Figure 1b describes the dynamic behavior of SUT showing an
initial state and two simple states state_1 and state_2. A state
can have time invariant specified as Boolean expression, (e.g.,
the SUT state machine is not allowed to stay in state_2 more
than constant time units after entering the state).

Events are triggers of transitions between states and re-
sponse actions become effects on the transitions. In real-time
systems, an event can be either call event or time event
to trigger a transition. A fully defined transition includes a
trigger, a guard, and an action. UML uses the following syntax
for transitions:

event trigger(parameters)[guard]/action(s)

The guard condition is a Boolean expression which has to be
met in order to fire the transition. The actions are executed
only if the transition is taken. Transitions without any explicit
trigger are triggered by an implicit completion event which
occurs when all activities of the source state have been
finished. In fact, it is handled like a time event with duration
of 0 time units.

Specifying requirements. Requirements are modeled using
SysML requirements diagram [17] and linked to different tran-
sitions in state machines, with the purpose of showing which
requirements are fulfilled when a certain state is reached.
An example of the approach can be found in [18]. For
readability, in this paper, generic requirements are attached
to transitions via a UML comment elements. For instance, in
the state machine in Figure 1b, Req 1.1 is achieved when the
corresponding transition is taken and the state machine enters
state_2.

B. Translation from the UML model into UPTA

A translation from UML models of real-time systems
including class and state machine diagrams into UPTA consists
of several steps as described below. Each step produces certain
artifacts of UPTA.

1) Class element: class elements in class diagrams rep-
resent test entities in a test process. A class element in a
UML class diagram whose behavior is defined by a state
machine, is encoded by a timed automaton. Timed automata
are represented by templates in UPPAAL. Templates are in
turn instantiated to constitute the actual model.

2) Interface and interface usage: A set of interface oper-
ations in the UML model is used as means of communica-
tion among test entities. The corresponding communication
between templates in UPPAAL is represented by channel
synchronizations. Each operation in an interface is translated
into a binary synchronization channel in UPTA. The class
element that realizes interfaces acts as the receiving automaton,
whereas the class element that uses the interface acts as
sending automaton. In addition, a list of interfaces in test
adapter is created according to the interfaces between IUT and
its environment. This list is used to generate Java source code
including all input/output entries used by I/O handler as will
be discussed later.

81Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 101 / 646

(a) Declaration of SUT and its ENV (b) SUT template

Figure 2. UPPAAL model of the example system.

3) Attributes: Class elements in UML class diagrams are
inspected and for each attribute of integer type, a constant
or an integer variable is declared in UPTA. For simplicity,
all attributes with integer data type are declared globally in
UPTA. UPPAAL only supports integer data types either as
constants or variables. This approach takes advantage of this to
represent char data type variables in class attributes as clocks.
Consequently, these char variables are translated into the
locally declared clocks of the corresponding timed automaton.

4) Superstates: In general, for each state in a UML state
machine diagram, a single location is considered in a template.
Initial and final pseudo-states in the UML state machine
determine the initial and the final locations of the template,
respectively.

5) Transitions: Each UML transition is represented by
one or a sequence of edges in UPTA. Pertinent guards of a
transition are copied appropriately to edge properties in UPTA.
The trigger and effect actions of a transition are translated as
receiving and sending binary synchronization channel respec-
tively. In case a transition consists of a trigger and an effect
action, it will be transformed by two edges and one urgent
location in-between which the first edge is synchronized with
the trigger and the second edge is synchronized with the effect
action.

6) Requirements: Transitions in the UML model may have
associated requirements. These requirements can be formulated
as reachability properties and verified in UPPAAL. In addition,
each requirement is translated into an auxiliary variable of type
integer (initialized to 0) and attached on the corresponding
edge in UPTA. These auxiliary variables are used during test
generation for recognizing the coverage level or by formulating
a property checking that an intended state can be reached or
not.

7) Hierarchical state: UPPAAL does not support hierar-
chical locations. Thus, there is a need to flatten eventual
hierarchical states in the UML state machines. This can be
achieved by encoding hierarchical states as states of a flat
timed automaton. Hierarchical states are replaced with several
simple states so that the behavior of the system remains the
same. Initial and final pseudo-states of sub-state machine are
translated to committed locations in UPPAAL templates, and
then, the transitions to and from sub-state machine are mapped
to the corresponding committed locations.

C. Tool support

The transformation defined above is generic and can be
used in conjunction with any UML based approach which
follows the same modeling principles. To automate the trans-
formation, a tool has been developed in Python as a Mag-
icDraw [19] plug-in. As such, the transformation can be di-
rectly invoked from the GUI of MagicDraw and automatically
produces equivalent UPTA and test adapter. An example of
applying these transformations steps to the models in Figure 1
is shown in Figure 2.

V. THE LTE CONTROL-PLANE CASE STUDY

The applicability of our approach is demonstrated in a case
study on the Long Term Evolution (LTE) [20] interface for
cellular mobile telecommunication systems. The LTE network
consists of the access network and the core network. Evolved
Universal Terrestrial Radio Access Network (E-UTRAN) is
the radio access network technology and Evolved Packet Core
(EPC) is the core part. Together, they form the Evolved Packet
System (EPS). The EPC consists of Packet Data Network
Gateway (PDN-GW) router and Mobility Management Entity
Serving Gateway (MME/S-GW) router. The latter is split into
two parts: Mobility Management Entity (MME) – managing
the control plane and tracking user equipment; and Serving
Gateway (S-GW) – dealing with user plane IP packets. The
E-UTRAN NodeB (eNodeB) network element is a central

Figure 3. LTE Overall Architecture [20].

82Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 102 / 646

(a) The MME state machine (b) The MME attach sub-state machine

Figure 4. Dynamic Behavior of MME.

network element in the LTE infrastructure whose main func-
tionality is to connect a User Equipment (UE) (e.g., a mobile
phone) to the MME. The interface between the UE and the
eNodeB is a radio interface, while the interface between
eNodeB and MME, called S1AP, often is a fiber optic; refer
to Figure 3.

Here, the main focus is on specific parts of the LTE control
plane focusing on Initial Attach and Tracking Area Updat-
ing procedures from the EPS Mobility Management (EMM)
layer from the None Access Stratum (NAS) protocols [21].
NAS is the highest stratum of the control-plane between the
UE and the MME accounting for mobility management and
session management. We designed a UML model to reflect
the structure of UE and MME, and to express the behavior
of aforementioned procedures, which are represented by class
and state machine diagrams respectively. Implementations of
the UE and of the MME were developed according to the UML
model; however, only the MME will be used as SUT in this
paper.

The main goals of the case study are: 1) to validate and
verify the UML models of these two procedures regarding the
NAS protocol requirements using the UPPAAL tool, and 2) to
perform timed model-based conformance testing against the
implementation of MME using TRON in order to determine
whether the implementation conforms to the models.

A. EMM specific procedures

The Initial Attach procedure creates UE context when a
UE is turned on and attaches to the network. According to
Section 5.5.1 of the NAS Protocols, the UE sends a NAS
Attach Request message to the MME via the eNodeB, starts
timer T3410. The Attach Request reception in the MME is
acknowledged with Attach Accept message and followed by
starting timer T3450. Reception of the Attach Accept message
by the UE causes to stop timer T3410. If timer T3410 expires
prior to receiving an Attach Accept, the attach procedure
is restarted. The MME also triggers the update location
procedure, as well as the route establishment procedure. It
communicates with Home Subscriber Server (HSS) and Home
Location Register (HLR) in the update location procedure.
S-GW is another entity that the MME communicates with

it for route establishment procedure. After the bearers in
the core network have been established, The MME tries to
establish user-plane transport functions on interface between
the UE and the eNodeB, as well as interface between the
eNodeB and the MME. After establishment of user-plane, the
UE sends Attach Complete message to the MME in order
to confirm the assignment of user-plane tunnel. The MME
supervises the reception of the Attach Complete by T3450
timer. However, in this case study, our main focus is on NAS
protocols between MME and UE, making eNodeB, HSS, HLR,
and S-GW irrelevant.

Based on Section 5.5.3 of the NAS Protocols, the UE must
periodically perform tracking area updates procedure in order
to update the registration of its actual tracking area in the
network. This procedure is controlled in the UE by means
of timer T3412. When timer T3412 expires, the tracking area
update is started by sending Tracking Area Update Request to
the MME. If this request has been accepted by the network,
the MME shall send a Tracking Area Update Accept to the UE.
The MME supervises the periodic tracking area updating pro-
cedure of the UE by mobile reachable timer which according
to the protocol is 4 minutes greater than timer T3412. Upon
expiry of the mobile reachable timer, the MME considers the
UE to be inactive and performs Detach procedure to cancel
the registration of this particular UE.

B. UML models for SUT and the environment

Here, we assume that the MME acts as SUT and the UE
as its environment. However, having the implementation of
both entities allows changing their role. Figure 4 displays the
UML model for behavior of MME to support initial attach
and tracking area updating procedures. The MME model is
designed according to the procedures defined in the NAS
protocols specification as explained earlier. The state machine
of the MME in Figure 4a shows a hierarchical state named
EMM_Attach. This gives modularity to the model and makes
it easier to follow. The sub-state machine itself consists of
one initial state, one final state, and two simple states, as
presented in Figure 4b. The comment elements on the MME
state machine named Req 5.5.1 and Req 5.5.3 express
clearly the satisfying condition for the initial attach and
tracking area updating procedures respectively.

83Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 103 / 646

C. Generating the UPPAAL model

Once the UML model of MME and UE includes all the
necessary elements, it serves as input of the transformation tool
to generate an equivalent UPTA using our tool. The resulting
MME automaton in Figure 5 corresponds to the MME state
machine in Figure 4 and exhibits the same behavior. It is worth
mentioning that the hierarchical state machine in Figure 4 has
been flattened automatically by the tool and included in the
automaton of its parent.

1) Validation: The simulator tab of UPPAAL allows ex-
ploring the UPTA in a guided or random fashion without being
exhaustive. When the simulation tab is selected, prior to the
simulation phase, UPPAAL performs syntax checking which
validates the UPTA with regard to consistency, correctness,
and completeness. Once the syntax checking has succeeded,
the UPPAAL simulator allows following the execution of
the models visually, checking the instantaneous states and
variables, and inspecting the communication trace between the
UE and the MME parallel processes.

2) Verification: Different properties of the resulting model
can be verified in UPPAAL. These properties are specified as
queries written using a simplified version of Timed Computa-
tion Tree Logic (TCTL) [22]. The UPPAAL query language
consists of the path and the state formulas. The path formulas
quantify the paths or the traces of a UPTA with temporal logic,
while state formulas describe individual states with regular
logical operators.

As mentioned in the previous sections, our UML to UPTA
translation automatically creates two types of queries. Firstly,
we generate ’no deadlock’ query to facilitate checking of this
property in the system model.

A[] no deadlock

Secondly, we generate queries for checking the reacha-
bility property for the states whose incoming transition are
tagged with the comment element. In our case study, the
following query was produced by our tool, according to Req
5.5.1 in Figure 4, and used by UPPAAL verifier to check
whether the MME automaton eventually reaches the location
EMM_Registered.

E<> MME.EMM_Registered

However, the reachability property does not guarantee the
correctness of a system model, i.e., it just checks the basic be-
havior of the system model by performing such sanity checks.
For instance, when the MME automaton enters the location
EMM_Deregistered after the registration of a UE, the mobile
reachable timer must have been expired. This requirement can
be expressed with the following safety property:

A[] MME.EMM_Deregistered imply
MME.c >= MobileReachableTimer

D. TRON Test setup

The test setup for the MME entity of LTE includes TRON
engine and its internal Socket Adapter, the TCP/IP Socket
with input/output handler, and an implementation of MME as
shown in Figure 6. The I/O Handler translates abstract inputs

Figure 5. The MME UPPAAL Template.

from TRON into concrete physical actions for the IUT. On the
other hand, it recognizes physical output of the IUT and then
encodes it into proper abstract message readable by TRON.
The I/O Handler communicates with the TCP/IP Socket and
the IUT via function calls. Communication between TRON
built-in adapter and MME is done via TCP/IP.

Inputs in the implementation model are AttachRequest,
AttachComplete, and TAUrequest and outputs correspond to
AttachAccept and TAUaccepted, refer to Figure 5. TRON
derives test cases directly from the environment model by
choosing one of the possible inputs within allowed time delay
at each state using the UPPAAL engine. It then executes them
against an IUT and observes the output. Finally, it evaluates
the correctness of a test experiment based on the model of
IUT and determines the test verdict. Since TRON is an online
testing tool, it keeps the connection to the IUT in real-time
when performing all of the test procedure steps.

VI. CONCLUSIONS AND FUTURE WORK

The proposed approach is aimed at increasing the quality
of UML-based models of real-time systems via validation and
verification using UPPAAL. For this purpose, we suggested an
approach in which UML specifications are created and subse-
quently transformed into UPPAAL timed automata. Whenever
a problem is discovered in the UPTA specifications, the UML
model is updated and then re-transformed. Using this approach
allows using UML and UPTA in a complementary fashion.

At UML level, our approach allows one to clearly identify
the SUT and the test environment and to model their behavior
and the communication interfaces. Via a set of mappings,
we translate these models into UPTA. The translation also
propagates requirement-related information which is then used
to generate reachability properties.

The resulting UPTA specifications are also used for test
generation using the TRON tool, which allows for generating
and executing tests in timely fashion. One overhead of setting
up the online MBT toolchain is the creation of the test adapter,
which requires an initial investment followed by relatively

84Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 104 / 646

Figure 6. Specific TRON setup.

small updates each time the interfaces of the SUT is updated.
In order to cut down on this initial investment, we generate a
skeleton of the adapter during the transformation as described
in [16]. Using TRON for model-based conformance testing, we
managed to uncover a number of bugs in the implementation
of MME which were addressed accordingly.

One current limitation of our approach is its scalability.
Increasing the complexity of the specifications may result in
a state space explosion in UPPAAL during verification and
test generation. Although some ad-hoc optimizations can be
considered to avoid this problem, we plan to search for a more
systematic approach in future work.

In this study, we restricted ourselves to a limited set of
UML model and extend this with real-time elements such as
clock and state invariant. The clock expression in the UML
state machine using the char data type is rather limited.
Further research in this context will look into a more elaborated
modeling of time and clock in UML. In addition, we will
investigate how more UML diagram types can be included in
our approach.

REFERENCES

[1] (2013, August) Documents associated with unified mod-
eling language (UML), version 2.4.1. [Online]. Available:
http://www.omg.org/spec/UML/2.4.1/

[2] L. Lavagno, G. Martin, and B. V. Selic, UML for Real: Design of
Embedded Real-Time Systems. Secaucus, NJ, USA: Springer, 2003.

[3] (2013, August) Documents associated with object con-
straint language (OCL), version 2.3.1. [Online]. Available:
http://www.omg.org/spec/OCL/2.3.1/

[4] M. Utting, “The role of model-based testing,” in Verified Software:
Theories, Tools, Experiments, ser. LNCS. Springer, 2008, vol. 4171,
pp. 510 – 517.

[5] A. Hessel, K. G. Larsen, M. Mikucionis, B. Nielsen, P. Pettersson,
and A. Skou, “Testing real-time systems using UPPAAL,” in Formal
Methods and Testing, ser. LNCS. Springer, 2008, vol. 4949, pp. 77–
117.

[6] G. Behrmann, A. David, and K. G. Larsen, “A tutorial on UPPAAL,”
in Formal Methods for the Design of Real-Time Systems, ser. LNCS.
Springer, 2004, vol. 3185, pp. 200–236.

[7] K. G. Larsen, M. Mikucionis, B. Nielsen, and A. Skou, “Testing
real-time embedded software using UPPAAL-TRON: An industrial
case study,” in Proc. 5th ACM international conference on Embedded
software, Jeresy, NJ, USA, September 2005, pp. 299–306.

[8] M. Richters and M. Gogolla, “Validating UML models and OCL
constraints,” in «UML» 2000 - The Unified Modeling Language, ser.
LNCS. Springer, 2000, vol. 1939, pp. 265–277.

[9] T. Firley, M. Huhn, K. Diethers, T. Gehrke, and U. Goltz, “Timed se-
quence diagrams and tool-based analysis - a case study,” in «UML» ’99
- The Unified Modeling Language, ser. LNCS. Springer, 1999, vol.
1723, pp. 645–660.

[10] I. Ober, S. Graf, and I. Ober, “Validating timed UML models by
simulation and verification,” International Journal on Software Tools
Technology Transfer, vol. 8, no. 2, pp. 128–145, 2006.

[11] M. Bozga, J.-C. Fernandez, L. Ghirvu, S. Graf, J.-P. Krimm, and
L. Mounier, “IF: An intermediate representation and validation environ-
ment for timed asynchronous systems,” in FM ’99 - Formal Methods,
ser. LNCS. Springer, 1999, vol. 1708, pp. 307–327.

[12] A. David, M. O. Möller, and W. Yi, “Formal verification of UML
statecharts with real-time extensions,” in Fundamental Approaches to
Software Engineering, ser. LNCS. Springer, 2002, vol. 2306, pp. 218–
232.

[13] A. Knapp, S. Merz, and R. Christopher, “Model checking - timed
UML state machines and collaborations,” in Proc. 7th International
Symposium on Formal Techniques in Real-Time and Fault-Tolerant
Systems, Oldenburg, Germany, September 2002, pp. 395–416.

[14] A. L. N. Muniz, A. M. S. Andrade, and G. Lima, “Integrating UML
and UPPAAL for designing, specifying and verifying component-based
real-time systems,” Innovatioin in Systems and Software Engineering,
vol. 6, no. 1-2, pp. 29–37, 2010.

[15] R. Alur and L. D. Dill, “A theory of timed automata,” Theoretical
Computer Science, vol. 126, no. 2, pp. 183–235, 1994.

[16] M. Nobakht and D. Truscan, “Tool support for transforming UML-
based specifications to UPPAAL timed automata,” Turku Centre for
Computer Science (TUCS), Tech. Rep. 1087, June 2013. [Online].
Available: http://tucs.fi/publications/view/?pub_id=tNoTr13a

[17] (2013, August) Documents associated with systems mod-
eling language (SysML), version 1.3. [Online]. Available:
http://www.omg.org/spec/SysML/1.3/

[18] F. Abbors, D. Truscan, and J. Lilius, “Tracing requirements in a model-
based testing approach,” in Proc. First International Conference on
Advances in System Testing and Validation Lifecycle. Porto, Portugal:
IEEE Computer Society, September 2009, pp. 123–128.

[19] (2013, August) MagicDraw webpage on NoMagic. [Online]. Available:
http://www.nomagic.com/products/magicdraw/

[20] ETSI TS 136 300 Evolved Universal Terrestrial Radio Access (E-UTRA)
and Evolved Universal Terrestrial Radio Access (E-UTRAN); Overall
description; Stage 2, ETSI Std., Rev. V8.4.0, 04 2008.

[21] ETSI TS 124 301 Universal Mobile Telecommunications System
(UMTS); LTE; Non-Access-Stratum (NAS) protocol for Evolved Packet
System (EPS); Stage 3, ETSI Std., Rev. V8.10.0, 06 2011.

[22] R. Alur, C. Courcoubetis, and D. Dill, “Model-checking for real-time
systems,” in Proc. Fifth Annual IEEE Symposium on Logic in Computer
Science, ser. LICS ’90, 1990, pp. 414–425.

85Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 105 / 646

Toward a Definition of π-DSL for Modelling Business Agents

MDA based π–calculus extension

Charif Mahmoudi and Fabrice Mourlin

Laboratory of Algorithms, Complexity and Logics,

Paris 12th University

Créteil, France

{charif.mahmoudi, fabrice.mourlin}@u-pec.fr

Abstract—In this paper, we will address the issue of modeling

the integration of agents with various resources and services,

as found in an Service-Oriented Architecture (SOA) platform.

We are proposing an approach for modeling agents and

integrating these agents in existing pipes and filters based

message routing and mediation engines. Using Model-driven

development (MDA) as a base for our modeling strategy, our

agent model generates source code based on Enterprise

integration patterns (EIP) by Hohpe and Woolf. We are

presenting a new agent design that uses the Open Gateway

Services Interfaces (OSGi) architecture as an agent platform

and the Apache Camel enterprise integration framework as the

EIP based engine. The approach is illustrated by a business

process use case, and a complete example including process

specification and code generation. The main objective of the

example is to demonstrate the benefits of using agents as

orchestration of external services via a specialized message

routing engine that supports EIPs.

Keywords- Process algebra; Orchestration languages;

Software agents; Web services; EIP; π–DSL; MDA; SOA; OSGi

I. INTRODUCTION

In the business world, the orchestration of Web Services
is becoming increasingly widespread [1] This technology
allows, via tools, a simple way to handle graphically
different business needs. We give as an example BPMN [2].
Other specifications can be described as the specification for
the construction of orchestrations as Apache CAMEL [3]
and Spring Integration [4]. For some researchers [5], the
specifications based on based on Enterprise Integration
Pattern (EIP) [6] are dedicated routing within ESB [7]. But
most of them [8] agree that specifications based on EIP are
ideal for building orchestrations. In addition, it should be
noted that most of the specifications based on EIP do not
offer graphical tools to develop visually unlike BPMN
specification.
In this paper, we will present an approach allowing
orchestrations in a mobile agent [9] form based on the EIP
specifications. This approach is based on the work [10] that
we previously published and which we consider as the
foundation of an OSGi [11] based ecosystem able to run
mobile agents.

The paper is organized as following. We review a
number of related works in Section 2, and describe the

standards we have set as a framework of our work in Section
3. Section 4 provides the detail of the MDA approach that
we used to define our system. Section 5 presents the formal
specifications of our EIP based target system. It uses EIP
specifications as a mean to declare a mobile orchestration
carrying agent [12]. We conclude our work, and describe the
future work in Section 6.

II. WORK CONTEXT

In the context of SOA [13], the orchestration has a
central role since it defines the steps to be performed to
provide a result. The steps are Web services calls, the results
of the various services are handled by the orchestrator. The
final result of the orchestration is based on the results of each
step.

The orchestrations are defined by the W3C (glossary) as
"the pattern of interactions that must respect a Web service
agent to achieve its purpose." Based on this definition, we
can consider an orchestration as a director of a software
agent (program) behavior [14]. The agent exposes a Web
service that is available to other agents, the result returned by
the agent consists of a series of calls to basic services and
transformations on the data retrieved from the basic services
used. Figure 1 illustrates a simple agent based orchestrations
[15].

Figure 1. Connections of orchstration.

An orchestration gives rise to a semantic once
interpreted. The benefit of orchestration is noticed during
interpretation. The same semantics can come from many

86Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 106 / 646

styles of definitions. The model depends on the language
used to implement the definition of an orchestration.

The approach that we present is an EIP based model of
orchestration definition. The proposed model allows the
building of orchestrations with semantics quite similar to
those built by other models in the domain [16] [17] [18].

A. Business Agent

Our approach allows managing orchestrations composed of

EIP's. In this section, we will see what a software agent; we

will also see how to use an orchestration within an agent.

A business agent is an agent first. In addition, this agent

assures the autonomy property. An agent is a program that is

autonomous [19]. It has the ability to communicate with its

environment and to perform the task for which it was made.

An agent is characterized by four main features:

• Autonomy: an agent is master of its decisions. Its behavior

is not directed from the outside but it is self-managing

agent. We can see the property of autonomy in two aspects:

autonomy of the internal state of the agent and the

autonomy of the agent's actions. Internal autonomy means

that the agent is able to change its state by objective. The

autonomy of action means that the agent is able to make a

decision based on the information from its environment.

Both aspects of the autonomy of the agent are provided by

the π-DSL language. The ultimate goal of the agent is to

compose a response to an invocation. This composition is

based on communications with business and monitoring

components.

• Reactivity: the agent is able to perceive the changes in its

environment using the components of monitoring and

possibly take action in response to changes in this

environment.

• Proactivity: an agent is able to determine the actions to

achieve its objective, it is based on its internal state and the

information received from its runtime environment.

• Social: an agent is able to communicate with other agents,

to carry out its mission and achieve its objective. Given that

agents expose their services using the same interface type as

the components business. Calls to agents and business

services base happens in a transparent manner.

A business agent is a composition of business services

characterized by four properties of the agent. These four

properties are provided by our approach to defining business

agent A. π-DSL.

B. EIP orchestration

Several EIP based specifications exist, which were not
initially dedicated to Web services orchestration, but could
be used as tools allowing orchestration, like Translator or
Aggregator. We have decided to base our approach on these
specifications. These EIP specifications are the base of the
different interactions with basic services as well as the
transformations necessary to build an orchestration. Thereby,
orchestrating inherits the properties of the EIP that compose

it. Note that the order of definition is important and must be
preserved during execution.

EIPs provide a framework for interacting with partners to
transform the data flow and be invoked by other partners.
Each EIP provides a work step, i.e., interaction in the
orchestration; it is possible to have a work step composed of
several EIPs.

Given that the EIPs are based on the "pipe and filter"
architecture, they automatically provide the concepts of
channel messages, routing, transformation and endpoint.
Messages are what travel between a pipe and a filter. The
structure of a message is as specified in the JMS [20]. In this
paper, a channel allows a message to transit and an endpoint
is a destination of the message. In addition, EIPs introduce
the concepts of routing and transformations between
channels and endpoints.
Our orchestration will be a composition in which each step is
based on one or more of EIP concepts.

Figure 2. An EIP based system

Figure 2 shows some EIPs, and how it is possible to build
an EIP from basic treatments. These treatments are basic
bricks we use to define our orchestrations.

Our orchestrations are exposed as Web Services
endpoints. When an exposed endpoint is invoked, the
orchestration activates the different EIP component of the
requested orchestration. Activation of an orchestration can
allow data transformation, invoking the participants in this
orchestration and returning a result to the client on the
initiative of the invocation on the exposed endpoint.

Our system supports various treatments and activities
offered by other systems, such as BPM orchestration. The
difference lies in the fact that the treatments and activities are
implemented within well-defined patterns.

III. FORMAL SPECIFICATIONS

In this section, we will present the formal specifications

of our system. We will start by a reminder of the π-calculus

language, then we will present and comment on some parts

of the specifications of our system and finally, we will

present an example of agent-based orchestration definition

as a foundation of our case study.

A. π-calculus

The π-calculus is a formal language designed to define
concurrent systems. The language basically focuses on the
communication between parallel systems. The language was
developed by R. Milner [21] and was published for the first
time in [22]. The π-calculus is based on the concept of terms
and names. Term represents a process or sub-process. Also,
a term consists of a sequence of emissions and receptions via
communication channels. It also consists of calls to other

87Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 107 / 646

terms. However, a name can be either a communication
channel or a variable that will be calculated by the values
received via a channel.

 () (()| ())

 () () (() ̅〈 〉|) (1)

 () () (̅〈 〉 ()|)

The equation (1) is a definition of S, a term that execute

in parallel the term P and Q that use the canals c and d to
communicate with each other. This definition is expressed
using one of the three variations of the π-calculus, which is
the monadic π-calculus. This variation characteristic is that a
communication channel can transfer only a single value.

The second variation of the π-calculus is polyadic π-
calculus. The main difference between the monadic and
polyadic is that the latter can transmit and receive multiple
names on the same channel as demonstrated in the (2) using
the same example from term "S".

 () (()| ())

 () () (() ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅〈 〉|)
 () () ()
 (̅〈 〉 ()|)

The third variation is the π-calculus of higher order. This

variation contains all the characteristics of the polyadic π-
calculus. In addition, it allows to send and receive terms and
names via a channel in the same way. The equation (3)
shows the transfer of a term 'R' between terms 'P' and 'Q'.
Therefore, showing that the execution of the term 'R' is on
the target process.

 () (()| ())
 ()

 () (() ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅〈 〉|)
 () () ()
 (() ̅̅ ̅̅ ̅̅ ̅̅ ̅〈 〉|)
 () ()
 (̅〈 ()〉 ()|)

We will use the extension communication operator [23]
in a polyadic context as shown below:

 | ̅ ()
Let us define the following:

 (⃗)
 [⃗] ()

The operator allows us to define an interface

between the two terms in which it operates. This will make
possible to dynamically integrate terms with the entire
orchestration steps. This operator can be assimilated to a
communication interface in UML as shown in Figure 3.

Figure 3. π-calculus interface

B. Construction of a definition of orchestration

We consider ‘Orch’ an orchestration with a single

participant. The variable IN from (6) represents an input of
the orchestration:

 ()[⃗] | (⃗) ()

And the term OUT in (7) is the sole participant in the
orchestration:

 (⃗) | [⃗] ()

The vector ⃗⃗⃗⃗⃗ represents all the terms corresponding to
processing steps and transformations performed between
receiving a request and returning the result.
We can then define the term ‘Orch’ as follows:

 (((⃗) [⃗]))
‖ ‖

 ()

The term „Orch‟ given in (8) creates a flow through all
terms between the input 'IN' and the output 'OUT'. Each
term representing a step in the orchestration will have a
vector of names as input. Each term will have a second
vector as output. These vectors will be transported
between the different steps following the same order defined

within the vector ⃗⃗ ⃗⃗ ⃗⃗ . The input ⃗ to the Term is
connected to the output ⃗ of the term while its output

is connected to ⃗ the input ⃗ of the term .

The operator “ ” is an ideal way to represent an exchange
that carries the communication streams between two steps of
an orchestration. This operator will help us to connect the
various processes that define an orchestration.

As we have seen, our orchestrations are in the form of a

set of steps (transformations) between an endpoint and the

participants of the orchestration. The list of steps has not

been known by the engine before loading the definition of

orchestration. We will use a data structure in order to persist

the definition of orchestration. The instance of this structure

will be loaded by the engine via an activator that is a

particular endpoint type for connecting managed services to

an input channel. The engine will be based on this definition

that it receives in the form of a linked structure to activate

the orchestration.

Activation of the orchestration can link the different

steps. As illustrated in Figure 4, the link between these steps

is the connection of inlet flow of step 'n' with the exit of 'n-1'

using the concept of exchange, which carries a two-way

flow.

88Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 108 / 646

Figure 4. An EIP based system

We will use both π-calculus concepts of abstraction and

concretion in order to implement dynamic linking on

chained lists. These lists will be used to contain the different

steps of our orchestration.

IV. AN APPROACH BASED ON MDA

We defined the π-calculus language as meta-meta-model.

In Section 5, we will present the definition of a meta-model

in π-calculus. Meta-model consists of an extension of π-

calculus as dedicated to DSL service orchestration based

routes. Routes are an implementation of pipe and filter

architecture using routing rules. The proposed DSL takes a

form of a composition of EIP. Meta-model also describes

the tools needed to run a model once created. These tools

are in the form of a set of components. The models are

created using the π-calculus based DSL. Figure 5 illustrates

the four levels of our approach.

Figure 5. MDA Model

In the next section, we will detail the transformations

made between the different models.

A. Model-driven orchestrations definition

Our approach in defining orchestrations is a MDA based
approach [24]. The business area of our system is the
definition of orchestrations; these orchestrations are
components of the fundamental services. We have extracted
domain-specific vocabulary as a π-DSL language. We can
represent the π-DSL as a set of terms called EIP when EIP =
{from, process, to ...}

Each orchestration will be defined using a language
described in π-calculus. This language allows the interaction
between various tools made available to the orchestrations.

Our meta-meta-model describes a language of
orchestration in addition to the tool permitting the
interpretation of this DSL orchestration language. The
interpretation tools using π-DSL will be subject to a manual
transformation [25] to object-oriented programming
language [26]. The execution of the system supports
different terms materialized from meta-meta-model in order
to connect via the EIP channels. These channels are essential
to the π-DSL.

Each orchestration is defined as a set of "emissions" on
the EIP channels. Emissions existing on the EIP channels are
received by one of the tools, which are the same as the term
Routes that will be described in detail in subsequent section.
We will also specify the term Route that allows transforming
the definition of a π-DSL orchestration into a definition
taking the form of data structure. This data structure
represents the Platform independent model (PIM) [27]
orchestration.

The structure representing the PIM is transformed in
order to activate the orchestration. The step involving the
activation transforms the structure representing the PIM in an
executable code representing an orchestration language. The
code will be generated automatically as Camel java-DSL
[28]. The Camel DSL code communicates on the same
channels as the EIP tools defined in the meta-meta-model.

Figure 6 illustrates an example of an orchestration that
uses a service that transforms the Route of this service before
returning it to the customer at the initiative of the invocation.
Consumer and Provider are specific process wrappers for
external endpoints interaction.

Figure 6. Exchages in orchestration

Our goal is to reach an executable system from the
definition in the form of π-DSL. To do this, we perform a set
of transformations whose outlines are highlighted in the
Figure 7.

In the next section, we detail the structure of meta-meta-
model orchestrations then in the next section, we will talk
about the definition of the various EIP, which constitute the
π-DSL routing and orchestration oriented language. Then, in
the section dedicated to message route, we will detail the
activation principle such as we designing our approach.

B. Model-driven orchestrations transformations

In our approach, the definition of orchestrations is the

body of the wrapper agent of these orchestrations. Each
agent has a definition, which characterizes it by an
orchestration that is unique for the agent itself. Applying the
definition of the agent in our system triggers a change in the
system state. This new state is reached after the activation of

89Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 109 / 646

the orchestration definition. The activation implements the
semantics described by the definition of orchestration.

Figure 7. MDA transformations levels

Orchestrations will use the concept of route introduced by
EIP. The Route is the building blocks of an orchestration.
The Route is used to associate an input to transformations
and outputs. Inputs are endpoints exposed by the agent while
the outputs are endpoints consumed by the agent.
Transformations can be applied to both input and output
stream flows.

The Figure 8 shows an orchestration using the content
based router EIP and message translator EIP to route the
input message to the adequate translator

Figure 8. An EIP orchestration

The definition of an orchestration and the semantics of an
orchestration are separate concepts. So far we have only
discussed the definition of orchestration, which is composed
of the series of actions to take in response to an external

invocation. Each orchestration is a model. It is described
using the π-DSL, which is the extension of π-calculus
offered by the meta-meta-model (see Section 5).

The π-DSL consists of all the EIP channel names. It
defines an orchestration through signals on EIP names. Since
π-DSL is an extension of π-calculus, it inherits all its
properties. This gives the possibility to manipulate some
terms that are free within the π-calculus limitations.
Manipulated terms will be called processors and will have at
their disposal data streams they can use.

During the orchestration activation, the definition is
transformed into an instance. Activation is made via a
component that is one of the different tools defined in the
meta-meta-model. These tools are defined as terms in the
section dedicated to the definition of the system.

The definition of an orchestration considers the definition
of a general context of the process as shown in Figure 9.This
context allows the exchange of shared information between
the various components of the orchestration. This set of
shared variables is a part of the state context of the business
agent at a given time. The result of the invocation of a route
will depend on the current state of the agent because a
previous invocation may have set a value on a shared
variable, and thus influence the final result.

Figure 9. Shared context

The semantics of the agent is enhanced after loading the
definition by the engine. The engine activates the
orchestration routes and thus integrates the wrappers
(Consumers and Providers). Then, the engine loads the
context of the agent. Following this action, we end up with
an active and ready-to-receive external invocations system
state. However, it is important to make the distinction
between the contexts of the agent corresponding to the
internal information of the agent on one side and the state of
the system that contains the context and the routes
constituting the different agents on the system.

V. SYSTEM DEFINITION

Based on the definition (1), our system (9) defines a
container running in parallel with the Repository.

 ()

90Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 110 / 646

 ()|
 ()

(9)

The Repository (10) is a term that represents a
composition for sharing the definition of agents. It can add
an artifact containing the definition of an orchestration or
retrieve the artifact using the URL that was used to add the
artifact. The processing performed inside the Repository
complies with the Maven [29] specifications. We will ignore
the details of the inner workings in this paper.

 ()

 ()
 ̅̅ ̅̅ ̅̅ 〈 〉

 ()

 ()

(10)

The container (11) is the container application on which
our services and our agents will be deployed. It allows
loading definitions of orchestrations in its context. The
container and the system have the same execution context.

A container can host any number of agents and services.
Because each agent/service has a definition of its own, let's
take the example of a system that contains one agent that
performs an orchestration using a couple of services. The
container allows the sharing of different channels to activate
the definition of an agent in the engine.

Shared channels are associated with EIP. The definition
of orchestration is transformed after activation in a set of
Routes respecting an EIP sequence.

 In order not to overload our definitions with a large
number of parameters we will use the name "EIP" to
represent all EIP names.

 ()
() (()
(()
| ())
|()
(()| ()| ()))

(11)

Runtime (12) is designed to: manage the retrieval,

activation and shutdown of various artifacts containing the
definition of the agent as well as services. For this, it
communicates with the Repository to recover the definition
using the URL of the artifact. Once the artifact is recovered,
it executes the definition to activate the engine.

 () ()

(()
 () ()

 () () ̅̅ ̅̅ ̅̅ ̅̅ ̅〈 〉)
 ()(()
 () ̅̅ ̅̅ ̅̅ ̅̅ ̅〈 〉)

(12)

The Engine (13) enables The Routes activation. Routes

will be added to the system’s context. The integration of
context changes their status. The new status supports
invocation of the active orchestration.

 () ()
 ()| ()

 () (())
‖ ‖

 | ()(() ()
 () ̅̅ ̅̅ ̅̅ ̅̅ ̅〈 〉 ()
 ()(() ()
 () ̅̅ ̅̅ ̅̅ ̅̅ ̅〈 〉 ()

(13)

The term Routes (14) is the basic element of the

activation of an orchestration, as the term that uses the
"emissions" on EIP channels. It is able to add to the system
the ability to run the orchestration, then, transform this
definition to a set of steps that are executed after the event
fired.

 () () () (14)

The term Route (15), as its name suggests, allows you to

link an entry to one or more outputs. Routing the term can
manage a set of connections between both ends with a
transform in the stream exchanged if needed.

 ()

 () (())

 () (())

 () (())

(15)

The first step is the transformation of a π-DSL definition

to data structure representing an orchestration. This
transformation is conducted by the term 'Routes' listening on
the EIP channels. At each "emissions", the term Route
manages the integration of a Route in the current
orchestration. To do this, the term 'Routes' Delegates the
treatment of integration PIEs to orchestration. Therefore,
appealed to the term Route after each transmission on
channel EIP 'from'.

The second level of transformation is the transformation
of the structure representing a Route in a set of processes
chained together and able to implement the semantics of the
orchestration

Figure 10. Activation of orchestration

91Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 111 / 646

This subdivision illustrated in Figure 10 allows us to
keep control of an intermediate data structure, which may be
modified to adapt it to the target platform. This
transformation is at the heart of the migration mechanism
that we will detail in a future paper

VI. CASE STUDIES

In order to illustrate our approach by case studies, we
will take as an example the definition of an orchestration
between two weather services and compare the values
returned by called services.

We begin by defining our orchestration that will be as
shown in Figure 11:

 ̅̅ ̅̅ ̅̅ ̅〈 〉 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅〈 〉 ̅〈 〉 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅〈 〉 ̅〈 〉

Figure 11. Generated Camel-DSL code

This definition is subject to an automatic transformation
(as shown in Figure 7) of π-DSL part, against the terms {P1,
P2} that represent the processor, which will be subject to
manual transformation.

A mapping is defined between the pair {P1, P2} and
there collocations in a π-DSL definition. The result will be in
the form of Camel DSL code ready to be loaded and run on
tools materialized from the meta-meta-model. Tools are
generated in the form of a container, which uses Apache
Felix [30] as a basis for implementing the definition of the
container.

The second tool is the repository, which is an
implementation standard Apache maven.

The third is the runtime that is included in the OSGi
container (Felix) and provides a shell "Gogo" for interacting
with the external.

Go back to our example of the definition of agent
orchestration. The transformation from the π-DSL in code
"Camel-DSL" leads to a deployable artifact on the container.
The code is as shown in Figure 12.

import org.apache.camel.builder.RouteBuilder;

/**

 * A Camel Java DSL Orchestration

 */

public class OrchestrationRouteBuilder extends

RouteBuilder {

 public void configure() {

 from("nmr:uri1")

 .process(p1)

 .to("nmr:uri2")

 .process(p2)

 .to("nmr:uri3");

 }

}

Figure 12. Generated Camel-DSL code

Once deployed and activated, this route allows us to
integrate the services present on the uri2 and 3 with the client
that invoked the uri1.

The Camel engine will take control of the artifact
deployed and ensure the interpretation of the Camel-DSL
code. The engine will incorporate routes contained in the
artifact to its execution context. The result will change the
state of the system initially defined by the tools generate
during the transition from meta-meta-meta-model to model.

The system is then enriched by the definition of the
agent. Activation of this definition enhances the overall
execution context.

VII. CONCLUSION

In this paper, we were able to develop an approach for
generating a system dedicated to the orchestrations. Our
approach is based on the MDA approach to obtain a
dedicated orchestration and a set of tools constituting the
execution context of the π-DSL orchestration

The formalism represented by the π-DSL language,
defines an orchestration as a composition EIP. The
orchestration is transformed into a camel-DSL and packaged
as Maven artifact. The activation of the archetype load routes
EIP composes orchestration.

We will discuss in a forthcoming paper on mobility in
order to include in the definition of our system. We will
prove by model checking [31] the mobility support of the
system code.

We propose an extension of the semantics of our
approach by adding a new dimension of freedom through the
mobility aspect, which will be added to the semantics of an
orchestration.

REFERENCES

[1] C. Peltz, “Web Services Orestrestration and Choreography,”

Computer, vol. 36, no. 10, Oct. 2003, pp. 46-52

[2] BPMN. Bpmn - business process modeling notation.
‘http://www.bpmn.org/ retrieved: October, 2013

[3] C. Ibsen and J. Anstey, Camel in Action, Manning Publications, 2010

[4] C. Walls, R. Breidenbach, Spring in Action, 2nd Ed, Manning
Publications, 2008

[5] M. Endrei et al., Patterns: service-oriented architecture and web
services. IBM Corporation, International Technical Support
Organization. 2004.

[6] G. Hohpe and B. Woolf, Enterprise Integration Patterns : Designing,
Building, and Deploying Messaging Solutions . Addison-Wesley,
Boston, 2004.

[7] D. Chappell, Enterprise Service Bus, O‟Reilly Media, Inc.,
Sebastopol, 2004.

[8] A.Charfi and M. Mezini, “Hybrid Web service composition: business
processes meet business rules,” Proc. ICSOC ‟04, Proceed- ings of
the 2nd international conference on Service oriented computing,
ACM Press, New York, 2004, pp. 30–38.

[9] D. B. Lange and M. Oshima, “Seven good reasons for mobile
agents,” Commun. ACM , vol. 42(3), 1999, pp. 88–89.

[10] C. Mahmoudi and F. Mourlin, “Adaptivity of Business Process,”
Proc. ICONS 2013, The Eighth International

[11] OSGi Alliance. OSGi Service Platform Core Specification , release 4,
version 4.2 ed. 2009 http://www. osgi.org retrieved: October, 2013.

92Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 112 / 646

[12] G. B. Laleci et al., “A Platform for Agent Behavior Design and Multi
Agent Orchestration,” Agent-Oriented Software Engineering
Workshop, the Third Inter- national Joint Conference on Autonomous
Agents & Multi- Agent Systems, 2004, pp 205–220.

[13] BonitaSoft. Bonitasoft : open source business process management
and workflow software. URL : http://www.bonitasoft.com/ Retrieved
on January 25, 2013

[14] T. Erl, Service-Oriented Architecture (SOA): Concepts, Technology,
and Design ; Prentice-Hall, 2005.

[15] S. P. Fonseca, M. L. Griss, and R. Letsinger, “Agent behavior
architectures a MAS framework comparison,” Proc. AAMAS, 2002,
pp. 86–87.

[16] M. Viroli, E. Denti, and A. Ricci, “Engineering a BPEL orchestration
engine as a multi-agent system,” Journal of Science of Computer
Programming, vol 66, issue 3, 2007, pp. 226-245.

[17] A. Charfi and M. Mezini, “Aspect-oriented web service composition
with AO4BPEL,” ECOWS, LNCS, vol.

[18] D. Jordan and J. Evdemon editors. Web services business process
execution language version 2.0.http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-specification-draft.pdf retrieved:
October, 2013

[19] F. Stan and A. Graesser, "Is it an Agent, or just a Program?: A
Taxonomy for Autonomous Agents." Intelligent agents III agent
theories, architectures, and languages. Springer Berlin Heidelberg,
1997, pp. 21-35.

[20] R. Monson-Haefel and D. Chappell, Java Message Services.
O’Reilly, 2001.

[21] R. Milner, The polyadic p-calculus: a tutorial. Technical Report ECS-
LFCS-91-180, Laboratory for Foundations of Computer Science,
Department of Computer Science, University of Edinburgh, UK,

October 1991. Also in Logic and Algebra of Specification, ed. F. L.
Bauer, W. Brauer and H. Schwichtenberg, Springer-Verlag, 1993.

[22] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes,
Parts I and II . Volume 100 of Journal of Information and
Computation , pages 1-40 and 41-77, 1992.

[23] D. Sangiorgi, “From -calculus to Higher-Order -calculus | and back,”
Proc. TAPSOFT, LNCS 668 . Springer-Verlag, 1993.

[24] A. Kleppe, S. Warmer, and W. Bast, MDA Explained. The Model
Driven Architecture: Practice and Promise, Addison- Wesley, April
2003.

[25] S. R. Judson, R. B. France, and D. L. Carver, Specifying Model
Transformation at the Metamodel Level, Wisme 2003.

[26] M. Campione and K. Walrath, The Java Tutorial. Addision-Wesley,
2003.

[27] G. Benguria, X. Larrucea, B. Elvesæter, T. Neple, A. Beardsmore,
and M. Friess, “A platform-independent model for service-oriented
architectures,” Proc. I-ESA‟06, 2006.

[28] R. Z. Frantz, “A DSL for enterprise application integration,”
International Journal of Computer Applications in Technology, vol.
33(4), 2008, pp. 257–263.

[29] Maven , In Apache Maven Project, http://maven.apache.org/
Retrieved on January 25, 2013

[30] Apache felix. http://felix.apache.org/site/index.html Retrieved on
January 25, 2013.

[31] B. Bérard et al., “Systems and Software Verification,” Model-Chec
king Techniques and Tools, Springer, 2001.

93Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 113 / 646

Relationships Between Risks in an IT Project

Development Portfolio

Rob J. Kusters

Depts. Of Management Science

Open University

Heerlen, The Netherlands

Rob.kusters@ou.nl

Jort J. Postema

i-Dienst

H2O

Oldebroek, The Netherlands

jortjp@gmail.com

Jos J. M. Trienekens

IE&IS

Eindhoven University of Technology

Eindhoven, The Netherlands

j.j.m.trienekens@tue.nl

Abstract— More and more it is seen that IT (Information

Technology) projects are managed as a whole as part of a IT

project portfolio. As one of the arguments for doing so, risk

management at the portfolio level was identified as one of the

advantages that could benefit from this. This was based on the

notion that risks are not independent from each other and that

an understanding of relationships between risks should

support portfolio management. Given this origin it is

somewhat surprising that the notion of relationships between

risks does not play a part in IT portfolio literature. This

prompted this research project aimed at investigating the

existence and relevance of risk relationships in practice. A

series of interviews with experienced IT project portfolio

managers confirms both the existence and relevance of the risk

relationships providing a basis for further research.

Keywords-portfolio project management; risk management;

risk relationships

I. INTRODUCTION

IT projects are managed as a whole as part of a IT project
portfolio. As a concept this was proposed as early as 1982 by
McFarlan [17], who, as one of the arguments for doing so,
identified risk management at the portfolio level as one of
the advantages that could benefit from portfolio
management. He based this on the notion that risks are not
independent from each other and that an understanding of
relationships between risks should support portfolio
management.

The importance of using risk management at the portfolio
level is evident [21]. Interactions between projects, in terms
of shared scarce manpower and usage of project results in
other projects, are unavoidable. Ignoring these will lead to
more problems than taking them into account. Even for small
organizations that means someone should monitor risks
across projects. In larger organizations part-time or even
dedicated portfolio managers are seen to take up this task.

Given the original argumentation by McFarlan, it is
somewhat surprising that the notion of relationships between
risks does not play any part in IT portfolio literature. This
prompted this research project aimed at investigating the
existence and relevance of risk relationships in practice. In
this paper, we will first discuss the theoretical background of
this study. Next, the research design used will be discussed,

followed by the results of the study. Finally, a discussion of
results and conclusions will be provided.

II. BACKGROUND

Risk, in the context of IT projects, can be defined as the
possibility of an unfavorable outcome in terms of time, cost,
or functionality of the final project deliverable [22]. There is
an extensive body of literature on identifying risks for IT
projects [19], and managing risk in IT projects
[19][22][23][24][11].

Risk can also be discussed at the IT development
portfolio level. Turner & Müller [21] give the following
definition of such a portfolio “a portfolio of projects is an
organization, (temporary or permanent) in which a group of
projects are managed together to coordinate interfaces and
prioritize resources between them and thereby reduce
uncertainty”. De Reyck et al [4] state that: “the selection of
projects to compose a portfolio should ensure that all areas of
the organization’s strategy are properly addressed and that
the portfolio is well balanced”. Risk is an important aspect of
this balance [11] and therefor plays an important role when
managing a portfolio.

This is also emphasized in the definition of portfolio
management by McFarlan who states that within the context
of a portfolio “assessing the risk of their projects, separately
and in the aggregate, will help managers make more
informed decisions and ensure more successful outcomes”
[17]. He also states that risk analysis of individual projects
should play a major part in selecting projects for such a
portfolio since “risks in practical situations, of course, are
not independent of each other; rather, they are closely
related” [17]. McFarlan based his work on the still widely
used financial portfolio theory as developed by Markowitz
[16] who states: “Sometimes the addition of the risky
security produces a more conservative portfolio than the
addition of the conservative security. This illustrates a basic
principle: the security which is risky or conservative,
appropriate or inappropriate, for one portfolio may be the
opposite for another. One must think of selecting a portfolio
as a whole, not securities per se”.

Identifying portfolio risk can start by identifying all
individual project risks and adding these to a single portfolio,
see e.g., [3]. This approach can already provide significant
insight. However, it misses the notion contended by

94Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 114 / 646

Markowitz and McFarlan that risks themselves can have
relationships. If risks of individual projects can influence
each other (across projects) these interactions should also
play a role when making decisions of additions to a project
portfolio.

When looking at literature for the management of a
portfolio as a whole, attention has mainly be focused at
interrelationships between projects. This relationship can be
complementary, negative, or neutral [1][5]. Chien [1]
identified four types of interrelationships among projects:
outcome or technical, cost or resource-utilization, impact or
benefit, and serial (present-value) interrelationships.
Santhanam and Krypakis [18] identified three fairly similar
types of interdependencies involving IT projects: resource,
benefit, and technical. And in 2011 Kundisch & Meier [15]
describe project interactions based in outcome or resource
interaction. It is interesting to see that direct relationships
between projects have received explicit attention, while
relationships between risks receives no attention in this part
of the portfolio literature.

Also, a wider search for literature aimed at identifying
these relationships between risks in a IT project portfolio
context yielded no results. In other fields the notion does
exist. For example, Fan, Suo & Feng [7], when discussing
the related area of IT outsourcing identify the existence of
risk relationships. They state: “in some situations, the
interrelationships among risk factors can induce the
transmission effect from one risk to another”. In their
research they elaborate further on this statement and identify

eight relevant risks and their relationships. The notion of
relationships between risks is also known in other
disciplines. Examples are engineering [13], finance [6], and
medical science [20][25].

Given this, it was found worthwhile to investigate the
existence of relevant relationships between risks in an IT
project portfolio setting.

III. APPROACH

The objective of this study is to investigate if
relationships exist in practice between risks of projects in an
IT portfolio setting that are relevant at the portfolio level.
The notion of relevance has been added to the original
question since slight interactions between phenomena can
always exist, but from a management point of view these are
only worth investigating if they have a significant effect on
the management of the portfolio. The notion of ‘relationship
between risks’ can now be further detailed. An obvious form
exist when occurrence of risk X will impact the likelihood
and/or the impact of risk Y. This can be termed a direct
relationship between risks X and Y and can be interpreted as
“if risk X occurs, this can influence the likelihood and/or the
impact of risk Y”. A second type of relationship occurs when
an external event can influence both the likelihood and/or the
impact of risks X and Y (see Figure 1). In both cases the
impact on likelihood and / or impact can be positive or
negative, resulting in either a mitigating of aggravating effect
on the portfolio level.

Figure 1. types of relationships.

Given the explorative nature of the research, and the

fairly complex notions of ‘risk relationship’ involved it was
decided to perform the research by interviewing a number of
experts. This would provide the possibility of explaining the
issues, seeing if these were understood and assessing the
answers, also by asking additional questions if possible.
These advantages of interaction, enabled by the interview
format in our mind outweigh the more detailed and possibly
more representative results that might be obtained from a
survey.

For the interviews persons with relevant experience as IT
project portfolio manager in a sizeable organization were
sought. Two years or more of experience was required, since
the expectance was, that this would provide the required
relevant experience from which to answer our questions. A
sample of five respondents from different organizations was
aimed at. A larger number would of course have increased
the number of identified relationships. However, given the
objective: give a proof of existence of these risk relationships
across projects, this was deemed to be sufficient. For the
search use was made of relevant groups in Linkedin. In the

95Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 115 / 646

end, five experienced IT-portfolio managers were found with
the required profile who were willing to participate in the
research (Table 1).

TABLE I. OVERVIEW OF RESPONDENTS

Respondent Type of organization Size

1 Energy provider 1.000-5.000

2 Government 10.000+

3 Insurance 1.000-5.000

4 University 5.000-10.000

5 Hospital 5.000-10.000

Respondents are supposed to provide concrete risk

relationships they themselves have experienced. This is a
fairly difficult questions to answer. To support their thought
process it was decided to provide them with a short list of
candidate risks to trigger them. To develop this list, an
additional literature search was executed. The search was
aimed at identifying 12 often used but dissimilar risks. The
number of 12 was chosen as sufficiently small to be usable in
an interview but also sufficiently large to be able to give
material for discussion. For this, seven useful papers were
selected:

 Risks that influence the risk profile of an IT project
portfolio [17].

 A structured overview of risks: [11].

 Sources that can originate common risks: [19].

 Twelve dominant risks [12].

 A top 10 of software risks [9].

 A number of risks derived from failed projects [2].

 A recent publication containing critical risks [8].
The selection process of these papers took into account a

number of quality criteria: an assessment of the methodology
used and the number of times the paper was referenced.
An overview of all risks identified in these papers was
developed. Overlaps between papers were identified and the
risks were sorted according to frequency of occurrence in the
papers. This resulted in the following list (with between
brackets the number of papers in which the risk is
mentioned):

 incorrect or misunderstood requirements (6)

 insufficient project planning (6)

 lack of non-IT human and/or financial resources (6)

 inexperienced IS project team (5)

 unclear project scope (5)

 insufficient project approach (5)

 lack of end user participation (4)

 changes in team composition (4)

 changes in project scope and / or requirements (4)

 lack of man power (IS related) (4)

 unfamiliarity with hardware in the project team (4)

 unfamiliarity with software in the project team (4)

In order to achieve results of sufficient quality a semi-

structured interview set-up was developed. The interview
started with a question regarding the work experience of the
respondent in order to confirm their level of experience. This
was followed by an explanation of the issues involved and

the notion of risk relationship types (Figure 1). The objective
was to explain the objective of the interview and the
concepts involved. Part of this was a check on
comprehension of these concepts, preferably by having the
respondent explaining them in their own words.

This was followed by the key component of the
interview: a discussion regarding possible risk relationships.
To focus this discussion as a visual aid a (half) matrix was
provided in which the risks identified were set off against
each other. Also, a more detailed version of figure 1 was
included as a memory aid.

Using the resulting matrix, respondents were prompted to
identify relationships (direct and based on a common
external event) between risks and to provide concrete
examples of occurrences of these relationships which they
personally encountered. The examples were required to
ensure that only actually occurring risk relationships were
identified and not just theoretical / hypothetical possibilities.
No completeness in the discussion of all 66 possible
combinations of risk was striven for. This would have been
pointless in the limited time available for such an interview.
Respondents could add risks on top of the twelve identified if
this helped them in identifying additional risk relationships.
These new risks were added to the risk matrix to be available
for subsequent interviews. The basic question put to the
respondents here was: do you have a specific relationship
between risks from this matrix in mind which you want t
discuss?

After this part of the interview, results from previous
interviews were presented. Respondents could indicate if
they agreed with them in principle, providing a face value
validation of previous results.

The setup of the interview was tested beforehand with a
test subject, who was not an active IT project portfolio
manager but did have some experience with portfolio
management. No changes were made to the set-up as a result
of this test.

All interviews were recorded. The recording were
transcribed and then analyzed. The analysis was aimed at
identifying actual risk relationships discussed and the
examples provided by the respondents. In recording these
results, as much as possible the original statements made by
the respondents were used. The results were send back to the
participants for approval. Based on their feedback, some
minor changes were made in the results.

IV. RESULTS

The interviews were carried out over a period of five
weeks, allowing for sufficient time between interviews to
have the results of a previous interview ready for the next. Of
each interview an extended abstract was made, based on an
audio recording. This abstract was sent back for confirmation
to the respondents, who could make corrections.

All respondents have the required two years of IT
portfolio management experience, ranging up to 10 year. The
organizations involved are sizeable, indicating that the
respondents have to deal with a significant IT-portfolio.
Respondent 4 is also active as a consultant specialized in
portfolio implementation and director / owner of a company

96Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 116 / 646

specialized in portfolio management (> 20 employees). This
indicates that a sufficient basis exists to accept the expertise
of the respondents.

During the interviews, all respondents indicated that after
some discussion they understood the concepts of risk
relationship and the associate types of direct relationships
and those based on a common external event. This, then
provided a solid basis for the further interviews.

In the next step, all respondents were able to identify
(direct and based on a common external event) risk
relationships. They also were able to support this by
providing concrete examples. As mentioned in the foregoing
respondents were allowed to add risks if required for their
discussion. All in all 5 additional risks were added to the
matrix:

 Change in planning

 Benefits not achievable

 Portfolio out of control

 Common resource usage across projects

 Safety or security endangered
All-in-all 15 relationships were found, of which 7 based on a
common external event and 8 direct. Table 2 gives an
overview of the portfolio risk relationships found. The first
seven lines of the table contain situations where the
relationship is based on a common external event (situation
B in figure 1). The remaining eight lines contain situation
where a direct relationship between risks across projects
exists (situation A in figure 1).

V. DISCUSSION AND CONCLUSIONS

This discussion will look at the validity and reliability of
the results, and their degree of completeness. It will end with
a discussion of the added value of this notion, set off against
approaches already in use.
Let us first look at the validity and reliability of the results.
In this project five 2-hour semi-structured interviews were
conducted with experienced IT project portfolio managers
from fairly large organizations. These respondents all
understood and recognized the phenomenon. Together they
succeeded in identifying and validating fifteen risk
relationships, of which eight direct and seven based on a
common external event. All fifteen risk relationships were
supported by concrete examples, based on their own
experience. In consecutive interviews respondents were
asked to confirm the existence of the earlier identified
relationships. In interviews 2, 3 and 5 this was done. In
interview 4 this proved not to be possible due to time
constraints since discussion in the first part of the interview
took too long. Interview 5 focused only on the validation of
the previous results. In total this provided 27 options to
confirm or deny a risk relationship. In 26 of these, existence
of the relationship was confirmed, providing an additional
face value support for its existence and relevance. In one
case a relationship was accepted by one consecutive
interviewee and denied by another. This is the relationship
mentioned in the seventh row of the table in Table 2.
Together this provides strong evidence of the existence of
the phenomenon and the relevance of the relationships

found. Together it can be concluded that the results are valid
and reliable.

As mentioned above, the research was explorative and
not aimed at achieving any degree of completeness. An
indication of the degree of completeness achieved can be
judged from the overlap between the relationships identified
by the individual respondents. This is possible, since results
from previous interviews were not shown until at the end of
the interview. Of the fifteen relationships identified only two
were identified more than once. Each was identified twice in
different interviews. That means that four independent
drawings (interviews) from a population of risk relationships
of unknown size resulted in only two doubles. This would
indicate that the results are far from complete and (many)
other risk relationships are still to be identified.

When looking at the relevance of the results it is required
to compare them with the approaches currently being used to
see if any added value can be identified. In the background
study two current approaches are identified. A first approach
identified is adding individual risks to a portfolio risk profile
see e.g., [3]. It is obvious that such an approach is likely to
miss the additional insight in risk and benefit offered by the
notion of risk relationship proposed here. The notion of risk
relationship can be considered as a straight add-on to this
approach. A second approach looks at describing project
interactions e.g., in outcome or resource interaction (e.g.,
[15]. Such an approach is unlike to identify the common
external events that are at the basis of some of the risk
relationships identified in this study. The direct risk
relationships could also be identified when looking at direct
interactions between projects. However, the more detailed
and forward looking approach enabled by the view on risk
relationships is probably a useful addition to this approach.

VI. CONCLUSIONS AND FUTURE WORK

Following this discussion, we conclude that the notion of
risk relationship in the context of IT project portfolio
management is a useful addition to the current state of the art
and merits further research. Such relationships do appear to
exist and are unlikely to be fully captured by existing
approaches. This holds especially for the notion of external
events impacting several risks across projects. Further
research could be directed at providing a more complete
overview of relationships as depicted in figure 1 and table 2.
Extending the approach used in this research seems not
feasible. There are not that many experienced project
portfolio managers around willing to invest the large amount
of time required for the required structural analysis.

Given that a structured literature review would yield a list
of risk factor far larger than the one used in this research
such a set of interviews would need to discuss hundreds of
risk combinations, each again in combination with dozens of
possible external events, leading to thousands of items to be
analyzed.

 A more feasible approach might be found in the analysis
risk documentation, e.g., as captured in risk repositories.
That would also be more directed (looking at actual
occurrences) while not trying to cover an extreme number of

97Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 117 / 646

combinations of which probably only a limited number yield results.

TABLE II. OVERVIEW OF PROJECT RISK RELATIONSHIPS

External event Z Risk X Risk Y Example

Change in organization (culture) incorrect or misunderstood
requirements

changes in team composition This type of change can lead to outflow
of current staff. This will then influence

both the understanding of requirements

by new staff and will immediately impact
team composition, with the entailing loss

of common project understanding.

Change in organization (culture) lack of man power (IS related) benefits not achievable The change caused a difference in usage
of the document management system

which impacted the effectiveness of

running projects. It also caused outflow
of current staff.

Market competition stronger changes in team composition change in planning Competitive pressure caused moving

deadlines forward. Due to unreasonable

pressure projects got out of hand. This

also caused outflow of staff.

Change in labor market lack of (non-IT) human and / or

financial resources

lack of man power (IS related) Staff with specific competences left for

higher wages. This caused a lack of these
competences within the organization.

Similarly, hiring temporary replacement

staff became too expensive.

Change in (marketing) policy changes in project scope and /
or requirements

change in planning The change resulted in new projects,
resulting in delay and higher risk because

of the delay for other projects. Also, other

projects were required to change their
scope to fit in with the new projects.

New legal requirement changes in project scope and /

or requirements

safety (or security) endangered Decentralization of youth care to civic

communities impacted the scope of
projects for existing suppliers. Also,

because of this decentralization, security

risks increased.

Downsizing due to external

circumstances

inexperienced IS project team &

lack of (non-IT) human

resources

lack of man power (IS related) In a downsize situation the best staff had

a tendency to leave (because they can).

This resulted in lack of manpower and

experience.

 changes in project scope and /

or requirements

changes in project scope and /

or requirements

When a project was faced with a change

of scope, this directly impacted the scope

an output related project.

 lack of financial resources changes in project scope and /

or requirements

When a project consumed too much

resources, this directly impacted the

availability of the (remaining) resources
for the other / later projects.

 changes in project scope and /

or requirements

benefits not achievable When a project adjusted its scope, an

output related project was unable to

achieve its objectives.

 lack of man power (IS related) lack of financial resources Staff works on several projects. A

specific project is put on hold. As a

consequence, the capacity that became
available was absorbed by the other

projects, increasing their costs.

 change in planning lack of man power (IS related) A project required specific and scarce

capabilities. When the project ran late,

this capability was not available for other

projects, who all ran late as well.

 portfolio out of control insufficient project planning A program with many dependencies
between projects ran out of control. The

result was that planning of these projects

could not be maintained.

 common resource usage across

projects

insufficient project approach An organizations used configuration

management tools of insufficient quality.

This impacted the entire portfolio.

 lack of financial resources lack of financial resources A specific project had lack of funding.
Portfolio management challenged all

other projects to work more efficient in

order to release the required funding.

98Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 118 / 646

Another field of research is the notion of external event.

It could be envisaged to do further research into the type of
events that could impact project risk and thus provide a
reference that can be used by portfolio managers to support
their work. Finally, it could be worthwhile to investigate the
strength of the relationships identified and the likelihood of
occurrence.

REFERENCES

[1] Chien, C.-F. (2002). Portfolio-evaluation framework for
selecting R&D projects. R&D Management, 32(4), 359-368.

[2] Chua, A. (2009). Exhuming it projects from their graves - an
analysis of eight failure cases and their risk factors. Journal of
Computer Information Systems / spring, 31-39.

[3] De Giorgi, Enrico G., A Note on Portfolio Selection under
Various Risk Measures (August 2002). Available at
<http://dx.doi.org/10.2139/ssrn.762104> 21-08-2013.

[4] de Reyck, B., Grushka-Cockayne, Y., Lockett, M., Calderini,
S., Moura, A., & Sloper, A. (2005). The impact of project
portfolio management on. International Journal of Project
Management, 524-537.

[5] Devinney, T. M., & Stewart, D. W. (1988). Rethinking the
product portfolio: A generalized investment. Management
Science, 34(9), 1080–1096.

[6] Dhaene, J., & Denuit, M. (1999). The safest dependence
structure among risks. Leuven, België: Katholieke
Universiteit Leuven.

[7] Fan, Z., Suo, W., & Feng, B. (2012). Identifying risk factors
of IT outsourcing using interdependent information: An
extended DEMATEL method. Expert Systems with
Applications 39, 3832-3840.

[8] Hajeer, S. (2012). Critical risk factors for IS projects IS
project between sink and swim. International Journal of
Communication Engineering and Technology / June, Vol 2,
issue 6, 1270-1279.

[9] Han, W., & Huang, S. (2007). An empirical analysis of risk
components and performance on software projects. The
Journal of Systems and Software 80, 42-50.

[10] Heemstra, F.J. and Kusters, R.J. (1996). Dealing with risk: a
practical approach, Journal of Information Technology, vol.
11, pp. 333-346.

[11] Heemstra, F.J., and Kusters, R.J. (2004). Defining ICT
Proposals. Journal of Enterprise Information Management,
Special Issue on IS Evaluation, vol. 17, no. 4, pp. 258-268.

[12] Kappelman, L., McKeeman, R., & Zhang, L. (2006). Early
warning signs of IT project failure: the dominant dozen.
Information Systems Management / fall, 31-36.

[13] Karningsih, P., Kayis, B., & Kara, S. (2007). Risk
Identification in Global Manufacturing Supply Chain.
International Seminar on Industrial Engineering and
Management (pp. 8-15). Jakarta: ProdEff Technology.

[14] Kumar, Ram , Haya Ajjan, and Yuan Niu (2008). Information
technology Portfolio Management: literature review,
framework, and research issues, Information Resources
Management Journal, Volume 21, Issue 3.

[15] Kundisch, D., & Meier, C. (2011). IT/IS Project Portfolio
Selection in the Presence of Project Interactions – Review and
Synthesis of the Literature. Proceedings of the 10th
International Conference on Wirtschaftsinformatik - Volume
1 (pp. 477 - 486). Zurich, Switzerland: Lulu.com.

[16] Markowitz, H. (1959). Portfolio Selection - efficient
diversification of investments. In H. Markowitz, Portfolio
Selection - efficient diversification of investments. New York:
John Wiley and Sons, inc.

[17] McFarlan, F. (1981). Portfolio approach to information
systems. Harvard Business Review, 142-150.

[18] Santhanam, R., & Kyparisis, J. (1996). A decision model for
interdependent information system project selection.
European Journal of Operational Research, 89(2), 380–399.

[19] Schmidt, R., Lyytinen, K., Keil, M., & Cule, P. (2002).
Perceptions of IT project risk: A Delphi study. Information
Systems Journal, 12(2), 103–119.

[20] Sorrentino, G., Migliaccio, R., & Bonavita, V. (2008).
Treatment of Vascular Dementia: The Route of Prevention.
European Neurology, 217-223.

[21] Turner, J., & Müller, R. (2003). On the nature of the project
as a temporary organization. International Journal of Project
Management 21, 1-8.

[22] Wallace, L., & Keil, M. (2004). Software project risks and
their impact on outcomes. Communications of the ACM,
47(4), 68–73.

[23] Westerman, G. (2005). What makes and IT risk management
process effective. MIT Sloan School of Management Center
for Information Systems Research, 5(3B), 1–3.

[24] Westerman, G., & Walpole, R. (2005). Working article:
PFPC: Building an IT risk management competency. CISR,
1–13.

[25] Wilson, P., Abbot, R., & Castelli, W. (1988). Arteriosclerosis
thrombosis and vascular biology. Journal of the American
Heart Association, 737-741.

99Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 119 / 646

A Proposal of Requirements Specification Process for Adaptive Systems Based on

Fuzzy Logic and NFR-Framework

João DionisioParaiba

FACEN – Faculty of Exact and Natural Science

Methodist University of Piracicaba (UNIMEP)

Piracicaba, SP – Brazil

jdparaiba@gmail.com

Luiz Eduardo G. Martins

UNIFESP – Science and Technology Department

São José dos Campos, SP – Brazil

legmartins@unifesp.br

Abstract— Fuzzy Logic is a concept that deals with

ambiguities, uncertainties and vague information on the

solution of problems. NFR-Framework deals with the non-

functional requirements which also are, very often, vaguely

and full of uncertainties. In this paper, we use these concepts to

propose a process for requirements specification of adaptive

systems, called PERSA - Portuguese acronym to “Processo de

Especificação de Requisitos para Sistemas Adaptativos”.

Adaptive systems consist of functional and non-functional

requirements, which hold the capacity to modify themselves

during the runtime with little or no human intervention at all.

However, despite being a very discussed topic in Requirements

Engineering (RE) community, it still lacks tools and techniques

to standardize its modeling. The proposed process is

instantiated in a case study which is discussed along this paper.

Keywords-Adaptive Systems, Adaptive Requirements,

Requirements Specification, Fuzzy Logic, NFR-Framework.

I. INTRODUCTION

The continuous evolution of software systems, the

increase in complexity and the integration of technology,

among other factors, lead the Requirements Engineering

(RE) community to seek inspiration in some related areas

(Robotics, Control Theory and Biology), in the attempt of

finding innovative approach to the building and

management of software systems. Therefore, adaptive

systems are able to set their behavior at runtime as an

answer to the environment and to the system itself, making

it a very discussed theme in the RE community [1].

Adaptive systems have grown in importance with the

increasing complexity of software systems and the need of

such systems to be versatile, flexible, reliable, robust,

recoverable, customizable, self-sustained and optimized,

since they deal with these characteristics and with uncertain

contexts which are often not discussed in the specification

process, then requiring the system to adapt to unexpected

changes. Adaptive system is a new frontier for RE

community and industry setting.

 The most common use of adaptive systems is in the

previously mentioned areas of robotic and control theory,

which demand dynamic readings of the context and

immediate response to the system with as little human

intervention as possible. The development of these systems

has been significantly more challenging than the traditional

model due to the need of mechanisms to automate and

simplify the adaptation and modification of software after

its installation [2]. Despite this, software engineers have

focused their research on development of new technologies

to manage the progressive complexity of software systems.

The RE community and industry practitioners still lack

templates and patterns to help and minimize the cost of

developing such systems. It is noted in these circumstances

the immense difficulty of specifying requirements for

adaptive systems without previously defined and

satisfactorily utilized pattern or tool.

Adaptive systems, as the name suggests, need to adapt to

new context, but contextual uncertainties make it difficult to

create, validate and manage the requirements. These

systems are able to adjust their behavior at runtime as a

response to the new reading of the context where the system

is inserted [3]. However, despite being a very discussed

topic in RE community, it still lacks tools and techniques to

standardize its modeling.

RE technique and tools are satisfactory when the context

is well known or evolves slowly. However, there is a need

of mechanisms which automate and simplify the adaptation

and modification of the system to operate in volatile

contexts. The purpose of this research is to propose a

specification process to adaptive systems focusing the

definition of requirements that demand system adaptation.

Such proposal is based on using Fuzzy Logic [4] and NFR-

Framework [5].

Efforts to develop this research included a literature

review on adaptive systems, requirements engineering,

Fuzzy Logic and NFR-Framework. Such review aimed

providing a theoretical basis for the definition of the object

of the research that this study intends to produce. The

activities began with a study about adaptive systems in

general and about the works already produced by the RE

community concerned to these systems. Papers and articles

that dealt with these techniques and tool for specification

and modeling of adaptive systems requirements were

searched.

It was observed in the literature review that to

manipulate requirements that go through changes at

100Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 120 / 646

runtime, studies with Fuzzy Set Theory could be helpful.

Several articles related to the context of adaptive systems

with set theory were researched. It was found that in the

context of adaptive systems, it would be viable to approach

Fuzzy Logic context [6][7][8][9], due to its use in problems

involving fuzzy contexts.

Next, a model able to cover this complex context of

requirements for adaptive systems was sought, opting for

this NFR-Framework, which deals with uncertainties

through the concepts of softgoals and represents them

satisfactorily by means of SIG diagrams. The next step was

to map the contexts explored, making a relationship among

the three areas studied: adaptive systems, Fuzzy Logic, and

NFR-Framework. To finish the relationship identified in the

mapping, it was realized that the concept of requirements

for adaptive systems should be better characterized. After

this characterization, later called adaptive requirements, it

was noted the need of creating a conceptual model. For the

representation of such a model, a class diagram (from UML)

was adopted, which shaped the main concepts involved,

based on a previously done array of mapping.

The rest of this paper is organized as follows: an

overview about adaptive systems and requirements for such

systems are presented in section II; a proposal of

requirements specification process for adaptive systems is

presented in section III; a case study using the suggested

proposal is reported in section IV; and conclusions and

further works are presented in section V.

II. ADAPTIVE SYSTEMS

Adaptive Systems are those that can be modified at

runtime, due to changes in the system, in requirements or in

the environment where they are implanted [3], depending

upon various aspects, such as particular properties of a

system, users requirements and characteristics of the

environment.

According to Cheng [1], the simultaneous boom of

information, the integration of technology and the

continuous evolution of systems based on ultra large-scale

software require new and innovative approach to building,

implementing and managing software systems. To support

this evolution, systems must become versatile, flexible,

adapted to the three aspects mentioned above. To achieve

this, the adaptive systems have become a topic of great

interest in current researches in the Software Engineering

Community [10].

There are requirements that are sensitive to the context

in which the system will be implanted. Where the context is

well known and static or evolutes slowly, the existing RE

techniques can perform a good job. What is noticeable is

that, increasingly, development projects are being

challenged to build systems able to operate in volatile

context, so that they are not totally previously understood

[11][2].
Such systems must have the ability to dynamically adapt

to new environmental context, but the contextual uncertainty

that requires this adaptive potential hinders the elaboration,
validation and management of its requirements and can be
varied according to environmental requirements. The
unexpected contexts may even lead to new requirements
[3][12][13].

A. Requirements for Adaptive Systems

A conventional requirement (functional or non-

functional) can be defined as a declaration of a service or

constraint of a system being developed. It can also be

simply defined as “something the client needs”. However,

from the developer point of view, a requirement can also be

defined as “something that needs to be developed”.

Developing adaptive systems demands making explicit

the alternatives to achieve the goals, i.e., the variability in

which and how it can be enhanced and the variability where

and when, due to the operational environment.

This leads to the definition of requirements that are not

only functional or non-functional, but also the specification

of monitoring that takes under consideration the variability

on an operational context, evaluation criteria and the

behavior of alternative software being adopted by the

software system at runtime to ensure the achievement of the

user`s goals [14]. Requirements for adaptive systems are

those that include the notion of variability associated to any

functionality or a system quality constraint. Software

requirements are generally characterized over the functional

and non-functional classification. During the elicitation, the

analyst first gives attention to the characterization of the

stakeholders’ needs, which can be obtained through

interviews or documents in a natural language.

Requirements for adaptive systems reflect the uncertainties

about the conditions at runtime due to the variability in the

operational context and in the user`s necessities. In

summary, adaptive systems are based on requirements that

specify the necessity to modify the system behavior at

runtime. Hereafter, requirements for adaptive systems with

this characteristic are called adaptive requirements (AR).

III. PERSA: REQUIREMENTS SPECIFICATION PROCESS

FOR ADAPTIVE SYSTEMS

This section presents the basic lines of the approach to

the Requirements Specification Process for Adaptive

Systems (PERSA – Portuguese acronym to Processo de

Especificação de Requisitos para Sistemas Adaptativos).

The process aims to aid the adaptive requirements

specification activities through a well defined set of

activities. Fuzzy Set Theory allows treating factors, such as

ambiguity and uncertainty. Thus, the Fuzzy Sets, Fuzzy

Logic and Fuzzy Reasoning provide the basis to generate

the techniques to solve problems with a large applicability,

especially in the control and decision making areas. In this

work, the universe of fuzzy concepts formed by Fuzzy Set

Theory, Fuzzy Logic and Fuzzy Reasoning will be

mentioned as Fuzzy Logic. The NFR-Framework, which

allows developers to work with the non-functional

101Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 121 / 646

requirements, systematically expressing and using them to

guide the development process of software systems. The

NFR-Framework has the softgoals as main component,

which have a subjective nature.

 PERSA process used Fuzzy Logic concepts as a basis

for its development since they treat factors, such as

ambiguity, uncertainty, and vague information in the

solution of problems, enabling handling adaptive

requirements, as well as NFR-Framework concepts, which

has the definition of softgoals, fully compliant to the

modeling of uncertain requirements, providing notation and

semantics for the construction of SIG diagrams, which will

be used as a graphic representation for adaptive

requirements. The Fuzzy Logic concepts applied to PERSA

process were entirely used and there was no expansion or

alteration. The NFR-Framework concepts, also entirely

used, will shape the process when building the SIG diagram

and the adaptive requirements and not only the functional

and non-functional requirements.

Thus, this work has begun with the challenge of creating

an approach for adaptive system based on requirements

(functional and non-functional), which may undergo

variations during their lifespan. Requirements suffering

variability, changes or extensions at runtime are classified as

adaptive. Process aims to specify requirements for adaptive

systems handling them with the Fuzzy Logic concepts and

shaping them with NFR-Framework concepts.

The initial stage of requirements specification deals with

the definition of global aspects of the project, determining

items such as: project purpose, project scope and functional

areas involved; goals to be achieved; technical and business

assumptions that affects the project; critical factors for the

success, among others. It is important to remember the

necessity of being previously defined. This way, the activity

of collecting functional and non-functional requirements

must be performed in a conventional manner. The analyst

may use any modeling technique available in the RE

community. The PERSA Process begins its life cycle right

after the stage of requirements collecting.

A. Conceptualization

As mentioned above, adaptive requirements (AR) are

those which include the notion of variability associated with

any functionality or with any quality constraint of the

system [15]. The first step in the creation of PERSA process

consisted of the attributes identification for each concept

related to an adaptive system concept:

User`s goals: what the software must meet. The user`s

goals must be achieved.

Environment Variability: the environmental context

where the software is implanted can change.

Alternative Behavior: according to a new reading of the

environmental behavior, the behavior of the software may

change.

Mutant Variables: are those which do not offer a clear

definition of all values they may take. For example, the

variable “fire intensity” may have values like high, middle

or low.

Evaluation Criteria: an analysis of the software is

performed after a change to check it is still meets the user`s

goals satisfactorily.

Below the list of attributes of Fuzzy logic:

Linguistic Variables: have values with names of Fuzzy

Sets. They can be put in a specific language, from primary

terms, logic connectives, modifiers or delimiters.

Membership Functions: each Fuzzy Set is characterized by

the membership function.

Fuzzification Interface: identifies the input variables

values, which characterize the state of the system which

normalizes it in a universe of standardized speech.

Inference Rules: represent the model of the system to be

controlled. They characterize the goals and the control

strategy used by specialists.

Defuzzification Interface: consists in obtaining a single

discrete value usable in a concrete action of controlling the

real world from the obtained fuzzy output values.

The list of NFR-Framework attributes completes the

group of concepts in which PERSA is based on:

Softgoals: represent and aid developers to work on non-

functional requirements (NFR).

SIG Diagram: the representation and use of NFR-

Framework are made through SIG Diagrams.

Evaluation: determines the degree of satisfaction of the

softgoal in its dependency relation with others.

Contribution: type of positive or negative collaboration

to achieve the goals.

Interdependencies: are inter-relations between the

softgoals refinements aiming the satisfaction of the related

softgoals.

Catalogues: store the acquired knowledge structuring

and enabling the reuse.

B. PERSA Process Activities

As previously reported, PERSA process starts right after

the requirements survey ends. The PERSA process activities

concerned with the creation of fuzzy rules was based on

Mamdani method, which is a well known method to specify

fuzzy rules. The PERSA process activities were organized

in three main phases:

1st phase: Analysis of the Requirements List.

2nd phase: Fuzzy Modeling:

1
st
 Stage: Create Linguistic Variables.

2
nd

 Stage: Create Fuzzy Sets.

3rd Stage: Add values to the Fuzzy Sets.

4th Stage: Fuzzification Process:

1. Charge Input Values;

2. Choose Membership Function;

3. Perform Calculations according to Membership

Functions;

4. Assemble Fuzzification Matrix.

5th Stage: Assemble Inference Rules:

1. Use Fuzzification Matrix;

102Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 122 / 646

2. Seek Specialist in Business Rule;

3. Choose Mamdani Method;

4. Build Knowledge Base according to Mamdani

Method;

5. Interview Specialist;

6. Add data to the Knowledge Base;

7. Calculate Function MINIMUM;

8. Generate Graphic of Inference Rules;

9. Calculate Function MAXIMUM;

10. Generate Knowledge Base Graphic.

6th Stage: Defuzzification Process:

1. Use Knowledge Base Graphic;

2. Choose Defuzzification Method;

3. Use points from the Graphic of Knowledge Base;

4. Make Calculations.

3rd Phase: NFR Modeling

1st Stage: Specify Goals.

2nd Stage: Name NFR Softgoals.

3rd Stage: Generate SIG Diagram:

1. Create NFR Softgoals;

2. Decompose Softgoals;

3. Verify Operationalization;

4. Verify Decomposition;

5. Verify Correlation;

6. Select Operationalizations.

The input to PERSA process comes from the

requirements elicitation performed in a conventional way.

The elicited requirements are analyzed with the intention to

find those that present variations during the adaptive system

life cycle. That is the first phase of the process. For each

requirement that presents meaningful variability, the 2
nd

 and

3
rd

 phases of PERSA process must be performed. At the 2
nd

phase a fuzzy model is created following the steps listed

before. At the 3
rd

 phase a NFR model is created, associating

linguistic variables and fuzzy sets to the softgoals. The

fuzzy model and NFR model complement each other,

helping requirements engineers to better understand the

adaptive requirements.

IV. CASE STUDY

In this section a case study is presented, in which PERSA
process was used integrally, aiming to specify adaptive
requirements in the analyzed problems. The case study,
called “cook`s problem”, consisted of the specification of an
automate system to prepare steaks, requiring an adaptive
system related to the different types of meat, which are
prepared according to the customers` order being rare,
medium or well-done.

A. Cook`s Problem

As recommended by PERSA process, the input variables,
the output and their respective fuzzy sets were initially
defined, as showed in Tables I and II. In Figure 1, the
graphics with the values of fuzzy sets of the variables
“Time” are presented. The horizontal axis represents

membership degrees and vertical axis represents the fuzzy
sets thresholds.

TABLE I. VALUES RANGE OF THE INPUT FUZZY SETS

TABLE II. VALUES RANGE OF THE OUTPUT FUZZY SETS

Figure 1. Input Variable “Time” with the values of Fuzzy Set

According to the fuzzy sets, the membership function
triangular was chosen. In this case study, the system was fed
with the values 98 for the input variable Tone and 1.9 for the
input variable Time.

TABLE III. FUZZIFICATION MATRIX

Input
Variable

Input
Value

 Fuzzy Sets

Time 1.9
µShort µMedium µLong

0.10 0.90 0.00

Tone 98
µReddish µPink µBrown

0.00 0.10 0.62

The fuzzification matrix was made from the result of the

Membership Function Triangular, according to Table III.

With this done, it moved to the fifth stage of the second

phase of PERSA process. At this point, the process requires

a specialist to assist the definition of the system inference

rules.

This fifth stage of the second phase may be considered

essential since it contains the main difference between the

adaptive and the conventional system. Here, the table

Knowledge Base is constructed, based on Mamdani method,

when the specialist determines the results of each

combination among the input variables. In the cook`s

problem case study, according to Table IV, it may be noted

that the specialist`s answers are in the last column. For

example, If Short Time and Reddish Tone, then state of the

steak = Raw.

103Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 123 / 646

TABLE IV. KNOWLEDGE BASE MATRIX –

Reg.
Time Tone

 Fuzzy Pert. Fuzzy Set Pert.

01 µShort 0.10 µReddish 0.00

02 µShort 0.10 µPink 0.10

03 µShort 0.10 µBrown 0.62 Medium

04 µAverage 0.90 µReddish 0.00

05 µAverage 0.90 µPink 0.10 Medium

06 µAverage 0.90 µBrown 0.62 Well Done

07 µLong 0.00 µReddish 0.00 Medium

08 µLong 0.00 µPink 0.10 Well Done

09 µLong 0.00 µBrown 0.62

To each rule created by the Mamdani Method and

described in Table II, the function Minimum must be
calculated and the graphics must be generated, which are the
basis to create the Knowledge Base Graphic, illustrated in
Figure 2. Through this, the Centroid is calculated and the
mathematical data are transformed in numbers from the real
world. In the case study, the inputs inform that the stea
contains 56% (fifty six percent) of characteristics in the
Fuzzy Set “Well Done” and thus, the fuzzification process is
finished in PERSA Process.

Figure 2. Knowledge Base Graphic

TABLE V. DEFUZZIFICATION METHOD ADOPTED IN

- CENTROID CALCULATION

The result of defuzzification method presented 7.46 in

the output variable, showed in Table III. This means

with the inputs in the system (time = 1.9 min. and to

98), this Steak contains 56% (fifty six

characteristics inside the Fuzzy Set “Well Done” and 0%

(zero percent) membership in the other sets. Then, it ca

said that the steak is “well done”.

The last phase of the PERSA Process, named NFR

Modeling, generates SIG diagrams: to each input variable a

NFR softgoal is created, as illustrated in Figure

noted that the main difference between modeling in a

1.5 2.5 3.5 4.5 5.5 6.5

0.1 0.1 0.1

0.1 0.1 0.1

0.2

0.1 0.1 0.1 0.1 0.1 0.2

0.15 0.25 0.35 0.45 0.55 1.3

Score in the Graphic

Medium

Well Done

MAXIMUM

Rare

Score * MAXIMUM

SUM (MAX)

SUM (Score * MAX)

RESULTADO

2.7

20.15

7.462962963

– COMPLETE

State Minim.

Raw 0.00

Rare 0.10

Medium 0.10

Rare 0.00

Medium 0.10

Well Done 0.62

Medium 0.00

Well Done 0.00

Burnt 0.00

To each rule created by the Mamdani Method and
described in Table II, the function Minimum must be
calculated and the graphics must be generated, which are the

raphic, illustrated in
. Through this, the Centroid is calculated and the

mathematical data are transformed in numbers from the real
nform that the steak

percent) of characteristics in the
fication process is

Graphic

DOPTED IN THE CASE STUDY

presented 7.46 in

. This means that

with the inputs in the system (time = 1.9 min. and tone =

contains 56% (fifty six percent) of

characteristics inside the Fuzzy Set “Well Done” and 0%

(zero percent) membership in the other sets. Then, it can be

The last phase of the PERSA Process, named NFR

Modeling, generates SIG diagrams: to each input variable a

ted, as illustrated in Figure 3. It may be

noted that the main difference between modeling in a

conventional system and an adaptive one, thro

Modeling is in Figure 3, exactly in the “Verify Inference

Rules” softgoal. To meet this, three conditions must be met:

• The “Monitoring Color” softgoal must be Pink;

• The “Monitoring Time” softgoal must be Short or

Average Time;

Figure 3. SIG Diagram specifying the adaptive requirement

Rare Steak”

If the two softgoals above were satisfied, the “Verify
Inference Rules” softgoal must be met w
claim softgoal.

B. Discussion and Analysis of Results

With the purpose of observing and validating the

activities suggested in PERSA process, the theoret

proposal was applied in a case study

adaptive system aiming to determine the degree of

understanding, the clarity of activities and the necessary

adjustments to improve the activities proposed in PERSA

process. PERSA Process was divided in three different

stages: analyze the list of requirem

requirements through fuzzy modeling, modeling adaptive

requirements through NFR modeling.

of adaptive requirements specified in the

table Knowledge Base (Table IV

runtime to satisfy the main goal of the adaptive systems,

which consists the possibility of alterations at runtime due

to the variability in the environmental context.

In the Cook`s Problem, it can be imagined a reading of

the tone “Black”: in case it does not fit i

inference rules and that would, by approximation lead the

adaptive system to an adjustment to this situation by

creating a new rule bases on a preexistent one, similar to the

color “Black”, thus continuing its running. The new rule

would have the following definition:

Tone, the state of the Steak Burnt. It is emphasized that the

column filled by the specialist do not alter, only the columns

with the fuzzy sets. At the end of the

there is a satisfactory assessment, because it reached

purpose of specifying requirements for adaptive system.

PERSA process specifies adaptive requirements clearly and

systematically. Though it is a support technique to software

specification demanding the Requirements

acquire knowledge about Fuzzy Logics and NFR

Framework, it leads to improvements in quality and

7.5 8.5 9.5

0.6 0.7 0.7

0.6 0.7 0.7

4.5 5.95 6.65

conventional system and an adaptive one, through NFR

, exactly in the “Verify Inference

Rules” softgoal. To meet this, three conditions must be met:

lor” softgoal must be Pink;

The “Monitoring Time” softgoal must be Short or

SIG Diagram specifying the adaptive requirement “Prepare

If the two softgoals above were satisfied, the “Verify
Inference Rules” softgoal must be met with the “Rare State”

Discussion and Analysis of Results

With the purpose of observing and validating the

activities suggested in PERSA process, the theoretical

case study, which contemplates an

adaptive system aiming to determine the degree of

understanding, the clarity of activities and the necessary

adjustments to improve the activities proposed in PERSA

PERSA Process was divided in three different

stages: analyze the list of requirements, treat adaptive

requirements through fuzzy modeling, modeling adaptive

requirements through NFR modeling. In the implementation

ied in the case study, the

(Table IV) must modify itself at

satisfy the main goal of the adaptive systems,

which consists the possibility of alterations at runtime due

to the variability in the environmental context.

In the Cook`s Problem, it can be imagined a reading of

the tone “Black”: in case it does not fit in any of the

inference rules and that would, by approximation lead the

adaptive system to an adjustment to this situation by

creating a new rule bases on a preexistent one, similar to the

color “Black”, thus continuing its running. The new rule

the following definition: If Short time and Black

. It is emphasized that the

column filled by the specialist do not alter, only the columns

with the fuzzy sets. At the end of the case study explanation,

tory assessment, because it reached its

purpose of specifying requirements for adaptive system.

PERSA process specifies adaptive requirements clearly and

systematically. Though it is a support technique to software

specification demanding the Requirements Engineering to

acquire knowledge about Fuzzy Logics and NFR-

Framework, it leads to improvements in quality and

104Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 124 / 646

productivity when developing adaptive systems which

justifies the cost of initial investment for the learning of the

process. In conclusion, despite performing only few case

studies and the need of a wider range of evaluation, based

on this initial assessment, the specification outcome is

positive, achiever of its goal, confirming that PERSA

Process specifies requirements for adaptive systems clearly,

effectively and systematically

V. CONCLUSION

This paper presented an approach of requirements

specification for adaptive systems, based on the

characteristics identified in systemic context with high

variability and many fuzzy variables, full of uncertainties as

well as the relevant definitions to the adaptive requirements

modeling, based on Fuzzy Logic and NFR-Framework.

The purpose of this research aimed to assist the existing

lack in the requirements specification for adaptive systems.

The requirements specification for any type of system is not

a trivial task, since it still presents problems identified

decades ago. Thus, the adaptive requirements specification,

which has special features, such as the possibility of

modifying at runtime, makes the challenge even greater.

A. Main Contributions

PERSA Process presented in this study aimed to

recommend a systematic way to the activities of

requirements specification for adaptive systems. The

following aspects may be indicated as this study`s main

contributions:

• The conception of a requirements specifications process

for adaptive systems;

• The creation of a specific requirements documentation

for adaptive systems;

• The specification of systemic uncertain and with vague

information contexts.

This study limits itself to the requirements specification

for adaptive systems by PERSA process. Slightly extending

beyond limitation and crossing the border with

code/implementation phase, it may be stated that the core of

adaptive system is in the creation and management of the

Knowledge Base Matrix (as seen in Tables IV and V). The

Knowledge Base should be modified at runtime to satisfy

the changes in the environmental context, being the main

difference of an adaptive system and a conventional one.

B. Future Works

This work, through a series of new proposals, can be

expanded by further studies. To this end, the following

proposals are highlighted:

• Adjustment and inclusion of activities in PERSA

process identified by the study of more complex

cases;

• Validation of the proposed PERSA process by

developing other case studies;

• Development of an automated tool to support and

facilitate the use of PERSA process;

• Creation of a repository for storing and retrieving the

generated artifacts along the use of PERSA process;

• To perform the next phase of Requirements

Engineering (validation), based on the artifact

generated by PERSA Process.

REFERENCES

[1] B. H. Cheng, R. Lemos, H. Giese, P. Inverardi, and J. Magee,
“Software Engineering for Self-Adaptive Systems: A Research
Roadmap”, In: Software Engineering for Self-Adaptive Systems,
Springer, 2009, pp.1-28.

[2] A. J. Ramires, B. H. Cheng, and P. K. Mckinley, “Adaptive
Monitoring of Software Requirements”, In: Requirements@Run.Time,
First International Workshop on, 2010, pp. 41-50.

[3] G. Brown, B. H. Cheng, H. Goldsby, and J. Zhang, “Goal-oriented
Specification of Adaptation Requirements Engineering in Adaptive
Systems”, In: SEAMS '06: Proceedings of the International ICSE
Workshop on Self-adaptation and self-managing systems. ACM, 2006,
pp. 23–29.

[4] L. A. Zadeh and R. R. Yage, Fuzzy Sets and Applications: Selected
Papers by L.A. ZADEH, Wiley-Interscience, 1987

[5] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, “Non-Functional
Requirements in Software Engineering” In: The Kluwer International
Series in Software Engineering, Vol. 5, 1999.

[6] L. Baresi, L. Pasquale, and P. Spoletini, “Fuzzy Goals for
Requirements-driven Adaptation”, In: 18th IEEE International
Requirements Engineering Conference, 2010, pp.125-134.

[7] G. Klir, U. H. St. Clair, and B. Yuan, Fuzzy Set Theory – Foundations
and Applications, United States : ed. Prentice Hall, 1987.

[8] W. Pedrycz and F. Gomide, An Introduction to Fuzzy Sets: Analysis
and Design, A Bradford Book, 1998.

[9] M. Serrano and J. C. S. P. Leite, “Dealing with softgoals at runtime: A
fuzzy logic approach”, In: Requirements@Run.Time, 2nd International
Workshop on, 2011, pp. 23 - 31.

[10] S. Liaskos, S. A. Mcllraith, S. Sohradi, and J. Mylopoulos,
“Integrating Preferences into Goal Models for Requirements
Engineering”, In: 18h IEEE International Requirements Engineering
Conference, 2010, pp. 135-144.

[11] P. Sawyer, N. Bencomo, J. Whittle, E. Letier, and A. Finkelstein,
“Requirements-Aware Systems: A research agenda for RE for self-
adaptive systems”, In: 18th IEEE International Requirements
Engineering Conference, 2010, pp. 95-103.

[12] N. A. Qureshi and A Perini, “Requirements Engineering for Adaptive
Service Based Applications”, In: 18th IEEE International
Requirements Engineering Conference, 2010, pp.108-111.

[13] J. Pimentel and J. Castro, “Specification of Failure-Handling
Requirements as Policy Rules on Self-Adaptive Systems”, In: 14th
Workshop on Requirements Engineering, 2011. pp. 345 -356.

[14] N. A. Qureshi and A. Perini, “Engineering Adaptive Requirements”,
In: SEAMS '09: Proceedings of the ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems. ACM, 2009,
pp. 126-131.

[15] N. A. Qureshi, S. Liaskos, and A. Perini, “Reasoning about adaptive
requirements for self-adaptive systems at runtime”, In:
Requirements@Run.Time, 2nd International Workshop on, 2011, pp.
16 – 22.

105Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 125 / 646

Requirements Elicitation Guide for Embedded Systems: An Industry Challenge

Luiz Eduardo Galvão Martins

Institute of Science and Technology

Federal University of São Paulo, UNIFESP

São José dos Campos, Brazil

e-mail: legmartins@unifesp.br

Jaime Cazuhiro Ossada

Technology College of Indaiatuba

Indaiatuba, Brazil

 e-mail: Jaime.ossada@fatec.sp.gov.br

Anderson Belgamo

Methodist University of Piracicaba, UNIMEP

Piracicaba, Brazil

e-mail: anbelgamo@unimep.br

Bárbara Stefani Ranieri

Methodist University of Piracicaba, UNIMEP

Piracicaba, Brazil

e-mail: bsranieri@unimep.br

Abstract—This paper presents GERSE, a guide to

requirements elicitation for embedded systems – GERSE is a

Portuguese acronym to Guia de Elicitação de Requisitos para

Sistemas Embarcados. Despite the advances in the area of

embedded systems, there is a shortage of requirements

elicitation techniques that meet the particularities of this

segment. The contribution of GERSE is to improve the

capturing process and organization of the embedded systems

requirements. The proposed guide was based on a field

research with Brazilian developers to find out the state of

practice in embedded systems requirements. GERSE had been

tested in a case study and had been evaluated by embedded

systems engineers. A tool called ZAKI was developed to

support GERSE and is also presented in this paper.

Keywords - Embedded Systems; Requirements Elicitation;

Requirements Template.

I. INTRODUCTION

Currently, the Embedded Systems (ES) projects have

been created for a lot of purposes and they are an area with

several aspects to be explored. The presence of ES has

increased in the last years and they have become almost

ubiquitous in segments as industry, commerce and

residences [4]. The developed software for ES is becoming

more and more complex and sophisticate, of course this

increased sophistication has a strong influence in system

requirements elicitation and management. In ES context,

more than 50% of the problems occur after the system is

delivered to the customer [10][15]. However, the described

problems are not implementation mistakes, but most of

them are requirement issues emerged during the system

conception.

The ES are present in our daily life and the trend is to

increase in large scale in the next years. Currently, billions

of processors have been built a year to supply the ES market

[2]. Taking such context under consideration, we present

GERSE in this paper as a guide to drive the requirements

elicitation for embedded systems. GERSE will support ES

developers to create safer, trustworthy, complete, and

correct ES using requirements engineering as a basis.

The ES development has grown a lot in the last years,

but the industries still have serious problems to define

patterns and templates to adequately address the

particularities of the requirements definition of ES. The

consolidation of the good practices that effectively support

the demands of the ES development process is still a great

challenge to industry.
This paper is organized as follows: in section two,

related works involving requirements engineering to ES are
commented; in section three, the phases and activities
proposed by GERSE are presented; section four presents a
case study and the evaluation of the GERSE, performed by
ES engineers; section five presents a software tool to support
GERSE; and finally, in section six, some conclusions and
future works are pointed out.

II. REQUIREMENTS ENGINEERING FOR EMBEDDED

SYSTEMS

While embedded software is becoming more complex

the ES engineers are asking the software engineering

community techniques, methods and tools which can help

them to improve software quality for ES. On the other hand,

software engineering community is recognizing the

necessity to adapt the existing methods and to offer new

ones to effectively support the particularities of the ES area

[15][16][17].

Based on the literature review and the interaction to the

ES professionals it is possible to detect just few

requirements engineering methods, techniques and tools to

address the ES particularities [1][7][9]. For instance, the

software development in the automotive industry is a field

that brings a great challenge to software engineering, where

real time and security requirements come together. For the

automotive ES to reach their goals, it is necessary that

software control functions work correctly according to strict

requirements [5].

106Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 126 / 646

Beyond the automotive industry, the ES projects have

become larger following the electronic components

evolution and consequently making new challenges to

requirements engineering. A great challenge is to produce

ES with high quality and also supply the market before the

system becomes obsolete. As discussed by Cheng and Atlee

[8], the development teams must use software engineering

techniques and processes to improve the productivity of the

developers and the quality of the incoming software. The

requirements engineering processes [12][14] help the

stakeholders to define what they really need, allowing the

suppliers to clearly understand the requirements being

implemented in the ES. In this requirements definition

process, several professionals with different skills

collaborate, such as: users and customers, specific domain

experts, marketing specialists, project managers, electrical

engineers, mechanical engineers, software engineers and

others. For this group, the requirements engineering can

offer several benefits, as follows: support to agreements and

project planning, shortening the development schedule,

offering a consistent basis for deadlines estimation, a

baseline for validation and verification, and trustworthy

artifacts to drive the ES development.

In Broy’s work [5], two phases are suggested to run

requirements elicitation:

(i) Pre-phase: the first approximation of the product to be

developed; during this phase the strategies and the

position of the product in the marketplace are defined.

The goals and marketing issues are planned and a

document must be written reporting the product

constraints and possible alternatives.

(ii) Main phase: based on the results from the pre-phase an

agreement among the stakeholders must be done. This

agreement is an extensive specification of the technical

requirements of the product.

As discussed in [5][15], the conventional methods used

to perform requirements engineering are incomplete and do

not adequately address the particularities and necessities of

ES. The requirements engineering to specify electronics,

automotives and other devices that need ES demand

adjustments. That is the main point discussed in this work

and the motivation to propose GERSE.

To propose the requirements elicitation guide for ES

presented in this paper, a literature review about

requirements engineering related to many aspects of ES was

performed. This review covered the period from 1997 to

2012.. Most of the reviewed works pointed out the issues

and difficulties at the early stages of the ES development [3]

[6] [13] [19], however, it was not found any suggestion

about specific methodologies for capturing and defining

requirements, or even a guide to refine and transform the

high level requirements - close to customers and users - to

technical requirements - close to ES engineers.

III. GERSE: A PROPOSAL FOR A REQUIREMENTS

ELICITATION GUIDE

In GERSE elaboration, a field research with 53

professionals that worked with ES in the Brazilian market

was initially performed. The goal of this field research about

requirements elicitation of the ES was to know the state of

practice in Brazil. Therefore, professionals who worked in

several segments using ES were invited, most of them being

professionals working in industries in São Paulo state. The

main segments covered in this research were: automotive

systems, industrial automation, home appliance, domotics,

medical devices, telecommunication and entertainment.

After the organization and analysis of the field research

results, a study about IEEE Std. 830-1998 recommendation

[11] and Volere template [18] was performed. The IEEE

Std. 930-1998 recommendation suggests how to organize

software requirements proposing several generic

specification templates. The Volere template is a document

that suggests a detailed framework to document and

organize software requirements. Both IEEE Std. 830-1998

recommendation and Volere template are very known by the

requirements engineering community, but they are generic

guides for requirements elicitation.

Based on these three elements (IEEE Std. 830-1998, Volere

template and the field research results) groups of activities

that compose GERSE were proposed, such set of activities

was organized in a way to support the ES engineers to better

capture and specify ES requirements.

The main goal of the proposed guide is to help ES

engineers during the requirements elicitation process.

GERSE leads ES engineers during the elicitation process

offering a set of activities that addresses the ES main

features. Using GERSE, ES engineers can manage the

requirements elicitation process in an organized way. The

proposed guide helps the requirements definition allowing

its complete specification for products based on embedded

technology. GERSE is divided into two phases, named pre-

phase and main phase, which are organized in seven

categories. These categories are organized in 46 activities,

which are responsible to generate the artifacts that will

compose the ES requirements. Each activity produces at

least one artifact that can be both a document describing a

specific feature of the product or a diagram modeling any

specific feature. The activities of the pre-phase will help the

ES engineers to make the transition from the high level

requirements to technical requirements. Figure 1 shows a

GERSE overview presenting the categories proposed to

each phase.

GERSE is divided into two phases: pre-phase e main

phase. During the pre-phase the activities were gathered into

three categories: Context Organization, Stakeholders

Definition and High Level Requirements Elicitation. In the

main phase, the activities were gathered into four categories:

Definition of Hardware Requirements, Definition of

Software Requirements, Identification of Quality Metrics

and Identification of Production Requirements. Considering

107Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 127 / 646

the activities of all categories GERSE offers 46 activities to

perform a complete requirements elicitation of the ES. Each

category has specific goals supported by activities that

should help the ES engineers to produce useful artifacts to

compose the requirements specification of the ES to be

developed.

Figure 1. Phases and categories supported by GERSE.

During the pre-phase, the requirements that will help the

ES engineers to understand the system to be developed are

captured, such requirements define the system basic

features, purposes, and goals. The final artifact obtained

using GERSE set of activities is a high level requirements

specification, which defines all the ES characteristics,

referring to mechanical, electrical and functional aspects

plus the system cost overview, prototype model and all

functional and non-functional requirements. It is important

to observe that ES non-functional requirements are different

from those usually managed in conventional systems. For

example, energy consumption is an ES specific non-

functional requirements.

When the pre-phase requirements are gathered, it is

necessary to transform them into technical requirements,

such transformation will enrich the requirements with more

details. In this process, the category “High Level

Requirements Elicitation” has a very important role because

the requirements obtained from this category will be the

requirements core to be transformed into technical

requirements. After all activities suggested in GERSE are

performed, the ES engineers gather a large set of functional

and non-functional requirements that specify the main

features of the ES. The cost to gather such requirements

documentation is low when GERSE activities are followed

by the ES engineers. This documentation facilitates the

project development in parallel ways: one team developing

the hardware and other team developing the software,

turning the ES development faster to answer the time to

market.

IV. CASE STUDY AND GERSE EVALUATION

In this section, a case study is presented using GERSE.

The guide was instantiated to produce the requirements

elicitation of a digital chess clock used in professional chess

tournaments. The purpose of this experience was to evaluate

GERSE in a real situation choosing a specific product and

eliciting ES requirements that must control such product.

The case study shows some artifacts generated using

GERSE during the requirements elicitation process.

Table 1 presents the results gathered from the activities

performed in the category “Stakeholders Definition”. The

identified stakeholders include: commercial department,

marketing department, components suppliers, chess

referees, other manufacturers, chess players, and hobbyists.

The evolvement degree and influence degree on the project

were defined for each type of stakeholders.

TABLE I. RESULTS GATHERED IN THE ACTIVITIES FROM THE

CATEGORY “STAKEHOLDERS DEFINITION”

Activity Output Artifacts

Definition of

key stakeholder

Commercial Department:

Involvement level: low

Influence on project: Approval of final costs.

Department of Marketing

Involvement level: High

Influence on project: approval of the

characteristics of packaging, reliability,

performance, usability and action buttons.

Component manufacturers and suppliers

Involvement level: High

Influence on project: collaborate by providing

technical specifications of the components to

engineers to make better use of components to

be used in product development.

Determine

domain experts

stakeholders

Chess referee
Involvement level: High

Influence on Project: help understand the

official rules of chess game according to the

FIDE (World Chess Federation).

Identify

stakeholders

against the

project

Competitors' manufacturer

Involvement level: High, because the clocks

available on the market by manufacturers are

used as references for comparison of new

product.

Characterize

User Profiles
Professional chess players

Profile: Users accustomed with digital chess

clock available in the market. Use the clock to

study and compete.

Hobbyists

Profile: users more accustomed to analog clocks.

Use the clock to study, and eventually in

competitions.

Figure 2 presents a suggestion for the design of the case,

as well as the keys and the chess clock display, this

prototype is resulted from the activities in the category

“High Level Requirements Elicitation”. This prototype was

based on market analysis and a requirements elicitation

process performed with professional chess players, which

pointed out the main functions that a digital chess clock has

to offer for the users, especially for those who use it in

professional tournaments.

108Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 128 / 646

The complete requirements specification of the digital

chess clock and GERSE documentation were sent to four ES

engineers to evaluate the proposed guide, the evaluation was

performed based on a survey. The ES engineers’ expertise

was in automotive systems, medical devices and

entertainment areas. The survey was composed by twenty

one questions based on Likert’s scale [20]. The case study

results, GERSE documentation and the survey were e-

mailed to the ES engineers. The answers to the survey

allowed a realistic evaluation of GERSE viability.

Figure 2. Initial product prototype showing the main functions -

gathered in the activities performed from the category “High Level

Requirements Elicitation”.

Table II presents the results gathered in the activities

performed from the category “Definitions of Hardware

Requirements”. In this table, the main hardware

requirements of the digital chess clock are presented, which

specify the sensors, interaction displays, keys, external

communication interface, hardware interruptions and

microcontroller necessary to build the product. Considering

the unique aspects of this project it was not necessary to

specify actuators.

TABLE II. RESULTS GATHERED IN THE ACTIVITIES FROM THE

CATEGORY “DEFINITION OF HARDWARE REQUIREMENTS”

Activity Output Artifacts

Determine sensor 01 Humidity sensor

Function: continually check the internal moisture of

the product to avoid damage to the components.

Type: analog.

01 Temperature sensor

Function: check the value of the internal chassis

temperature, to ensure that it will not exceed the

working temperature range of the internal

components.

Type: analog.

Delimit the

actuators

Not applied to this product.

Clarify user

interaction
02 LCD graphical with 128 x 64

Function: display the playing remaining time for

each player (update the display in real time).

01 Buzzer
Function: warning to the end of settings, end of the

game and battery low level.

Characterize

hardware

interruptions

Temperature Range

Function: sound and light warning should be issued

if the temperature is outside the ranges of

acceptable values.
Humidity range

Function: sound and light warning should be issued

if the humidity is outside the ranges of acceptable

values.

Battery

Function: sound and light warning should be issued

if the battery low level.

Pause

Function: by pressing the"pause" the time count

both counters should be frozen.

Identify the

action buttons
02 on/off switch with lock

Function: activation of the stop watch time player

who makes the move (and freezing the timer player

that does the move).

01 Button type joystick

Function: button for programming should have 4

positions (left, right, up, down) and a central

(enter), for control and navigation mode for

programming.

04 Buttons without locking
Function: buttons to pause, start, save

programming, turn off and on the clock.

Specify the

memories

01 PROM memory

Function: storage modalities of game time.

01 Flash memory
Function: store setup(variable) of types of playing

time.

Define external

communication

ports

USB Port
Function: connection to external board for

automatic storage of moves.

Fix component

requirements

AC / DC Adapter

Function: battery charging

Specify the

requirements for

layout of

controller board

The layout of the printed circuit board to be double

sided to contribute to miniaturization of the

enclosure.

Defining the

parameters of

legacy hardware

Not applied to this product.

Demarcating the

parameters of

special COTS

Not applied to this product.

 Identify

microcontrollers

PIC PIC18F4550-I/P 32 KB/2048 RAM 35 I/O

microcontrollers with USB support.

All ES engineers evaluated GERSE as a useful guide for

ES requirements elicitation stating that such guide is easy to

use and contributes to increase the ES development quality.

Table III shows GERSE general evaluation results. It is

possible to observe that GERSE was well evaluated,

especially the aspects concerned to clearness, easiness of

use and the contribution to improve the quality of

requirements elicitation. The ES engineers considered the

guide easy to use and it supports their requirements

elicitation necessities. The completeness is an issue that

must be improved in GERSE.

109Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 129 / 646

TABLE III. GERSE GENERAL EVALUATION

Questions Totally

agree

Partially

agree

Partially

disagree

Totally

disagree

The presented

guide is clear

enough to be used

in an embedded

systems design

for small and

medium

businesses.

50%

50%

0%

0%

The presented

guide is complete

and meets the

needs of

embedded

systems projects

for small and

medium

businesses.

50%

25%

25%

0%

Would adopt the

presented guide

for requirements

elicitation on

future projects.

50%

25%

25%

0%

The presented

guide is easy to

use.

50%

50%

0%

0%

The presented

guide contributes

in improving the

quality of

embedded

systems

development.

50%

50%

0%

0%

The presented

guide meets your

needs

requirements

definitions in

embedded

systems projects.

50%

50%

0%

0%

V. ZAKI: A COMPUTATIONAL SUPPORT TO GERSE

The adoption of any software process can be facilitated

by the use of computer support. In this sense, a tool called

Zaki [21] was developed, to support GERSE activities and

the requirements elicitation process for embedded systems.

Zaki tool is divided into two modules, according to

GERSE phases (pre-phase and main phase), supporting

activities like requirements elicitation, analysis and

management for embedded systems. Zaki tool was

developed using .NET platform (C# language) and the SQL

Server database.

During the pre-phase, Zaki tool supports functionalities

related to manage information about project guidelines and

main product features, development organizational impact

and target audience. During the main phase, Zaki tool is

divided into three modules: Definition of Hardware

Requirements, Definition of Software Requirements, and

Identification of Quality Metrics.

Specifically related to Definition of Hardware

Requirements, Zaki tool converts high level requirements to

technical ones, allowing the definition of sensors, actuators,

memory, microcontrollers, legacy hardware and other

requirements associated to hardware components. Besides,

it is possible to choose COTS (Commercial Off-The-Shelf)

to be used in the embedded systems. Figure 3 presents a

user interface of Zaki tool responsible to record actuators

related to the embedded system project.

Figure 3. User interface of Zaki tool to manage actuators.

Aiming to perform a feasibility study of Zaki tool, three

requirements engineers - with over two years of experience

in the area - were asked to perform the requirements

elicitation and specification for an embedded system to a

data logger device. The main goal of such device is

monitoring and collecting environmental data, including

temperature, atmospheric pressure, humidity, rainfall, wind

speed, and others.

TABLE IV. ADDRESSING QUESTIONS TO THE ELICITATION PROCESS

SUPPORTED BY ZAKI

Questions Totally

agree

Partiall

y

agree

Disagr

The tool meets the goals of the

requirements elicitation process for

embedded systems.

100%

0%

0%

The tool facilitates the process of

requirements elicitation, assuring

quality of project and time reduction.

100%

0%

0%

The tool organizes information about

the project and ensures an efficient

requirements elicitation process.

25%

75%

0%

The tool supports a complete

requirements elicitation process,

ensuring the completeness of the project

goals.

100%

0%

0%

110Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 130 / 646

The evaluation was performed by the filling of a

questionnaire with 15 questions - 13 objective questions and

2 personal observations. The goal of evaluation was to

analyze the use of Zaki tool to identify improvements and

non compliances.

According to Table IV, the requirements engineers were

unanimous in stating that the tool supports the requirements

elicitation process, facilitating and reflecting in time savings

and quality of the embedded systems project. However,

interfaces improvements must be performed to facilitate the

usage of Zaki tool.

VI. CONCLUSION AND FUTURE WORK

GERSE proposed activities support engineers guiding

ES requirements elicitation and specification, which help

them to produce an organized, easy to understand and

complete requirements document. According to the

evaluation performed by ES engineers, GERSE reaches the

goal of being itself a consistent guide for ES requirements

elicitation. One of this work’s relevant contribution is to

narrow the gap between Software Engineering – specifically

concerned to Requirements Engineering - and ES

engineering. The requirements elicitation for any kind of

system is not a trivial job. Particularly for ES, there are a lot

of specific issues to be managed, for instance: real-time

requirements, energy consume control, hardware constraints

– sensors, actuators, memory and microcontrollers – short

window of time-to-market.

GERSE evaluation performed by ES engineers with

expertise in several areas of application, as automotive,

medical devices and entertainment, pointed out that the

guide is clear and easy to understand. But the evaluation

also reveals that some aspects can be improved such as

GERSE completeness, specially the activities concerned to

quality metrics and production requirements. These issues

are going to be treated in future works. In general, GERSE

was considered satisfactory contributing to fulfill the

existent gap in the early stages of an ES project. GERSE

contributes to decrease the occurrence of faults, errors and

mistakes that are very common during the ES requirements

capturing. A mature requirements elicitation process can be

reached using GERSE, which supports the transition of high

level requirements to technical ones. This paper also

presented Zaki, a tool to support GERSE adoption, since it

can assist ES engineers to better manage the requirements

gathered when GERSE is running.

REFERENCES

[1] A. Post, I. Menzel, J. Hoenicke, and A. Podelski, “Automotive
Behavioral Requirements Expressed in a Specification Pattern
System: a Case Study at BOSCH”, Requirements Engineering,
Springer-Verlag, vol. 17, 2012, pp. 19-33.

[2] M. Aoyama, “Persona and Scenario Based Requirements Engineering
for Software Embedded in Digital Consumer Products”. 13th IEEE

International Conference on Requirements Engineering, 2005, pp. 85-
94.

[3] A. Aurum and C. Wohlin, “Requirements Engineering: Setting the
context”. In: Aurum C. & Wohlin C. (Eds), Engineering and
managing software requirement. Springer. Berlin, Germany, 2005,
pp. 1-15.

[4] J. Boulanger and D. van Quang, “Experiences from a model-based
methodology for embedded electronic software in automobile”,
(ICTTA) 3rd International Conference on Information and
Communication Technologies: From Theory to Applications, 2008,
pp. 1-6.

[5] M. Broy, “Requirements Engineering for Embedded Systems”,
Workshop on Formal Design of Safety Critical Embedded Systems
(FemSys), Munich, Germany, 1998.

[6] R. Cancian, M. Stemmer, and A. Frohlich, “New Developments in
EPOS Tools for Configuring and Generating Embedded Systems”,
Proceedings of the 12th IEEE International Conference on Emerging
Technologies and Factory Automation, Patras, 2007, pp. 776-779.

[7] H. Chae, “The Partitioning Methodology in Hardware/Software Co-
Design Using Extreme Programming: Evaluation through the Lego
Robot Project”, Proceedings of the sixth IEEE International
Conference on Computer and information Technology, 2006, p. 187.

[8] B. Cheng and J. Atlee, “Research Directions in Requirements
Engenneering, Future of software Engeneering”. IEEE Future of
Software Engineering (FOSE’07), 2007, pp. 285 – 303.

[9] E. Sikora, B. Tenbergen, and K. Pohl, “Requirements Engineering for
Embedded Systems: an Investigation of Industry Needs”, Proceedings
of the 17th International Working Conference on Requirements
Engineering: foundation for software quality (REFSQ'11). Springer-
Verlag, Berlin, Heidelberg, 2011, pp. 151-165.

[10] B. Graaf, M. Lormans, and H. Toetenel, “Embedded Software
Engineering: the State of the Practice”, IEEE Software archive, vol.
20, no. 6, 2003, pp. 61-69.

[11] IEEE Computer Society Software Engineering Standards Committee,
“IEEE Recommended Practice for Software Requirements
Specifications”. IEEE Std 830-1998.

[12] H. Hoffmann and F. Lehner, “Requirements Engineering as a Success
Factor in Software Projects”. IEEE Software, vol. 18, no.4, 2001, pp.
58-66.

[13] L. Jiang and A. Eberlein, “Selecting Requirements Engineering
Techniques Based on Project Attributes - A Case Study”. Proceedings
of the 14th Annual IEEE International Conference and Workshops on
the Engineering of Computer Based Systems, 2007, pp. 269 – 178.

[14] G. Kotonya and I. Sommerville, Requirements Engineering:
Processes and Techniques. John Wiley and Sons, 1998.

[15] P. Liggesmeyer and M. Trapp, “Trends in Embedded Software
Engeneering”, IEEE Software Magazine, v. 26, n. 3, 2009, pp. 19-25.

[16] E. Nasr, J. Mcdermid J, and G. Bernat, “Eliciting and Specifying
Requirements with Use Cases for Embedded Systems”, Proceedings
of the 7th International Workshop on Object-Oriented Real-Time
dependable systems (WORDS), 2002, pp. 350 – 357.

[17] A. Pretschner, M. Broy, I. H. Kruger, and T. Stauner, “Software
Engineering for Automotive Systems: A Roadmap Future of Software
Engineering”, In: International Conference on Software Engineering -
Future of Software Engineering (FOSE), 2007, pp. 55 -71.

[18] S. Robertson and J. Robertson, Mastering the Requirements Process,
Addison-Wesley, 2nd edition, London, 2006.

[19] F. Vahid and T. Givargis, Embedded System Design: A Unified
Hardware/Software Design. John Willey & Sons, 2002.

[20] R. Likert, “A technique for the measurement of attitudes”. Archives
of Psychology, 1932.

[21] J. C. Ossada, L. E. G. Martins, A. Belgamo, and B. S. Ranieri,
“GERSE: Guia de Elicitação de Requisitos para Sistemas
Embarcados”, XII Workshop on Requirements Engineering (WER),
Argentina, 2012, pp. 1-14.

111Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 131 / 646

Separation of Concerns and Code Enhancement: Aspect-oriented Programming

Versus Customization Approach Followed in Open Source Software

Sidra Sultana

Department of Computer Software Engineering

National University of Sciences and Technology (NUST)

Islamabad, Pakistan

sidra.sultana88@gmail.com

Fahim Arif

Department of Computer Software Engineering

National University of Sciences and Technology (NUST)

Islamabad, Pakistan

fahim@mcs.edu.pk

Abstract— In order to facilitate the separation of concerns

and code enhancement without modifying the original code,

open source software (OSS) offers a package containing the

core code. Depending upon the design or architecture pattern

followed in the specified package, the ways to facilitate code

enhancement are provided. Hook Architecture is followed in

Wordpress, Drupal, etc., in customizing plugins or modules,

and Model View Controller (MVC) pattern is followed in

Joomla, open source content management systems. Aspect-

oriented Programming (AOP) is a programming paradigm

that addresses the same code scattering and code tangling

issue, and thus, ensure code enhancement without modifying

the core code. The research question is whether AOP supports

the separation of concerns and allows the enhancement in

functionality without modifying the core code; then, hook

architecture and other open source customization patterns are

there to facilitate the goal. What different features does it offer,

as compared to AOP? This research paper differentiates

between the separation of concerns and code enhancement

addressed by OSS and AOP.

Keywords-Aspect-oriented Programming (AOP); Open

Source Software (OSS); Advice; Joinpoint; Pointcut; Hook

Architecture; MVC pattern; Aspect-oriented Model View

Controller (AOMVC)

I. INTRODUCTION

Aspect-oriented Programming (AOP) [1] is a

programming paradigm that complements Object-oriented

Programming (OOP) [2] by separating concerns of a

software application to improve modularization. The

separation of concerns (SoC) aims at making software easier

to maintain by grouping features and behavior into

manageable parts, which all have a specific purpose and

business to take care of. It is the decomposition approach

followed in the conventional modular programming that

leads to code tangling (code mingling) and code scattering

(replication and duplication of same code chunk at many

places).

Third party tools, off-the-shelf components, and open

source modules are there to be used by the current

application; if the application is flexible enough to utilize it

without modifying the core code and by simple joining the

new functionality from a point where changing

(adding/removing) additional code is easier to maintain.

Thus, an effortless and unified approach is offered by

AOP in terms of making the dynamic switching of complete

features along with providing the conciseness, evolution,

and testability. Aspect-oriented approach focuses on the

argument related to the maintainability and readability of

the constructed software.
Section II offers a brief literature survey. The comparative

analysis is performed in Section III. Research Results are
presented in Section IV. Section V provides a discussion.
Conclusion is given in Section VI.

II. LITERATURE SURVEY

AOP is designed to formulate code easier to query about,

trace, develop, enhance, maintain, and modify certain verity

of application code. For the sake of validating these

potentials claimed by AOP and to verify the impact of AOP

on the program structure, Robert et al. conducted two

investigatory experiments [1]. AspectJ version 0.1 [14] was

the language in which the requirements are implemented to

trace change and debugging process supported by AOP.

Developer’s ability to trace and then resolve the issues

(programming fault) of the multi-threaded program is

analyzed in the very first experiment. In the other

experiment, existing distributed system is focused on

checking the ease in change management provided by the

AOP.

A. Modularization in AOP

Kiczales et al. [2] have familiarized AOP for providing

more organized and well managed way of capturing the

code while enhancing the scope of the program concerns.

Software programmers explicitly manage the separation of

some concerns within the code by the help of built-in

functionalities provided by the selected programming

language. Explicit language support is provided by AOP to

help functional decomposition in the program and to be well

modularized upon the design decisions.

B. Usability of AOP

Usability and usefulness of AOP are well proved in the

experimental results [3]. The core code that is functionally

decomposed and aspects’ interface has some characteristics

highlighted by the experiment, to show that programming

benefits can be accrued best with the understanding of it.

Vital feature as per the completeness point of view of AOP

approach is that, it is beneficial in totality [4]. This refers to

the fact that partial benefits cannot be extracted by the

partial implementation of separation of concerns. Well

112Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 132 / 646

defined scope of the aspect effected across the boundaries,

is necessary to provide the refined (narrowed) scope of the

aspect without digging deep the core code for extensive

analysis. Thus, when the separation is more complete, i.e.,

interface is narrow, only then the AOP approach will be

more promising [5] [6].

C. Design Quality in AOP

With regards to the design quality and software

development efficiency [7], a web based system is

developed to empirically study its behavior in both AOP

and OOP fashion. The study reveals that if the number of

subjects undertaken in the experiment increases, then

benefits offered by AOP will be much more as compared to

those underline in the present study. To produce high

quality, design aspects are very vital so, Madeyski et al. [8]

aimed at providing empirical evidence of the impact of AOP

on design quality metrics and software development

efficiency.

III. COMPARATIVE ANAYSIS

In order to facilitate the separation of concern and code

enhancement without modifying the original code, OSS

provides with a package containing the core code.

Depending upon the design or architecture pattern followed

in the specified package, the ways to facilitate code

enhancement are provided. Hook Architecture is followed

in Wordpress, Drupal, etc., in customizing plugins or

modules, while MVC pattern is followed in Joomla,

FLOW3, etc., open source content management systems.

AOP is a programming paradigm that addresses the same

code scattering and code tangling issue and thus, ensure

code enhancement without modifying the core code. The

research question is whether AOP supports the separation of

concerns and allows the enhancement in functionality

without modifying the core code; then, hook architecture

and other open source customization patterns are there to

facilitate the goal. What different features does it offer, as

compared to AOP?

For the comprehensive analysis, three aspects are

implemented in FLOW3 (an open source framework) to

address all cross cutting concerns in components of MVC.

For potential cross-cutting concern in Model Class,

Logging Aspect is used to log the delete details, in other

case; it can be mistakenly added as a part of business logic

in Model class of the package.

To address potential cross-cutting concern in View Class,

Flash Message Aspect is used to inject html element (i.e.,

styled div) with specific list of actions, thus addressing the

cross cutting concerns at interface level or View class of the

package.

For potential cross-cutting concern in Controller Class,

Manipulation Aspect is used to provide control access for

number of controller’s actions so in terms of addressing

control flow, manipulation aspect resolves cross cutting

concerns in Controller Class.

Kato et al. [21] also presented the Context-Oriented

Programming implementation along with the OOP and AOP

comparison but lacking the comprehensive metrics analysis.

The novelty of the conducted research lies in the wide

domain discussion of the concerned problem in functional

and non-functional requirements domain like

maintainability, re-usability, scalability, code organization,

dynamics, etc.

This section differentiates between the separation of

concerns and code enhancement addressed by OSS and

AOP and thus, giving an insight of AOMVC and MVC

cross-cutting concerns resolved by MVC.

A. OSS

OSS like CMS [8] or frameworks provide with the general

package containing backend (administrator view) and front

end (user view) of the application. Some of the cross cutting

concerns like security (Manipulation Aspect), logging

(Modeling Aspect), flash messaging (View Aspect) etc., are

addressed by the CMS and frameworks like Joomla, Drupal,

Wordpress, YII, Zend, Virteom, Magento, Oscommerce,

etc.
Almost all OSS followed certain programming approaches

for handling the separation of concerns and demotivates
modifying the core code. Mostly MVC or Hook Architecture
is followed to code custom components, modules, or plug-
ins. It helps in enhancing the application functionality in a
flexible adding/removing way.

B. AOP

“Separation of concerns” principle has been used for

many years by software engineers to handle the software

system’s development [9]. Software programmers explicitly

manage the separation of some concerns within the code by

the help of built in functionalities provided by the selected

programming language. Explicit language support is

provided by AOP to help functional decomposition program

and to be well modularized upon the design decisions.

AOP is made for code enhancement, so that the cross

cutting code related to the design decision is not dispersed

throughout the program rather it is expressed in a separate

set of coherent code chunks [10]. AOP owns a better way of

modularizing cross-cutting concerns, resulting in the more

readable and less complex developed system

implementation.

C. Cross Cutting Concerns

Allowing the modularization of the concerns that usually

cross-cut in the object-oriented way of programming

application [11], AOP resolved number of programming

issues encountered by OOP like code tangling and code

scattering, all as result of cross-cutting concerns.

Aspects are declared by using around, after and before

advices for the retrieval of properties and intercepting

settings.

113Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 133 / 646

D. Code Enhancement in OSS

In order to facilitate the code enhancement without

modifying the original code, OSS provides with a package

containing the core code. Depending upon the design or

architecture pattern followed in the provided package, the

ways to facilitate code enhancement are specified [12].

Hook Architecture is followed in Wordpress, Drupal, etc.,

customizing plugins or modules, while MVC pattern is

followed in Joomla, etc., Open Source CMS.

E. Code Enhancement in AOP

Code scattering and code tangling are not the only results

of implementing security concerns in an application - by

following OO approach - but it also because the weaker

existence of the security related issues. AOP addresses this

code scattering and code tangling issue hence, advocating an

improvement in dealing these issues previously in OO way.

A number of reasons are there for showing weaker

enforcement of security including programming error,

inherit design of the system etc.

Conventional software engineering practices failed to

modularize cross-cutting concerns and Aspect-oriented

Software development offsets this limitation of current

software engineering constructs. The advice injected in the

point-cut expression is to be bonded after, before or around

the code. Also, wildcards (.*) can be used to bind advice

with number of join-points. This flexibility of hooking the

code at number of places creates the difference and provides

an edge to the AOP paradigm.

F. AOMVC

MVC refers to modularizing the application in terms of

separating the layers of Control flow and management (i.e.,

Controller), Interface Design (View) and Database

interaction (Model) [13]. MVC framework, in the domain of

J2EE [14], has cross cutting concerns throughout the

multiple modules (e.g., validation transaction, logging, etc.).

MVC framework is the well-known layered architecture

but it has greater limitations and architectural constraints in

dealing with cross-cutting concerns. These overlapping

concerns lead to code confusion, code tangling and code

scattering and finally, result in the difficulty of system

maintenance and extensibility. AOP addresses all these

problems in every layer of abstraction, i.e., Model, View

and Controller. Aspects can be defined to modularize such

concerns. All such concerns are well defined by the aspects

of AOP.

G. MVC cross-cutting concerns and AOP

The three potential cross-cutting concerns that address

almost all components of MVC are presented.

a. Potential cross-cutting concern in Model Class

Logging Aspect is used to log the delete details and hence

can be mistakenly added a part of business logic in Model

class of the package.

b. Potential cross-cutting concern in View Class

Flash Message Aspect is used to inject html element (i.e.,

styled div) with specific list of actions, thus addressing the

cross cutting concerns at interface level or View class of the

package.

c. Potential cross-cutting concern in Controller Class

 Manipulation (security) Aspect is used to provide control

access for number of controller’s actions so, in terms of

addressing control flow, manipulation aspect resolves cross

cutting concerns in Controller Class.
Thus, by extracting the different cross-cutting concerns

from the model, view and controller component of the MVC
model, an aspect layer is to be composed to weave with the
core functionality.

IV. RESEARCH RESULTS

Some of the factors that distinguished the contribution of

AOP and OSS for separation of concerns and code

enhancements are: point of access, code management,

development time, line of codes, and functional breakdown,

etc. These qualitative and quantitative factors that contribute

in the estimation of software metrics are analyzed in this

section.

A. Point of Access

In case of AOP, aspect classes with variety of advices are

defined to be injected at different levels of code. For

example, this injection of the wildcard \before ("method

(.*Controller->.* Action ())") to all controllers actions will

bind the particular advice with all actions of every

controller. \before ("method (studentController->.*Action

())") this one-to-many injection will affect all actions of

student controller only and \before ("method

(studentController->registerAction ())") this one-to-one

injection will bind the advice to registerAction of the

studentController and for all three injection types, advice

will be bound before the action’s code. This single class is

the single point of access for all related code management in

terms of adding and removing the aspect’s advices.

For OSS, customization is to be ensured by coding

plugins, components and modules as per the coding

conventions of the selected OSS. In that case modifications

are to be managed in multiple files and thus, there are

multiple points of code access that increases the complexity

measure.

B. Separation of Cross-cutting Concerns

AOP is designed for handling cross-cutting concerns and

thus, resolving them by addressing the code tangling and

code scattering issues. Code Tangling refers to the

phenomena where the concerns are interwoven with each

other in a module. Code Scattering occurs when the

concerns are dispersed over many modules. It results in a

typical design problem of high-coupling and low cohesion.

All the components that are specifically fragmented using

the traditional techniques for highlighting their role as a

114Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 134 / 646

cross-cutting concern, should be well evaluated. For

instance, if a logging functionality is implemented in an

aspect-oriented way then in large number of modules

invocation to the logger necessitates being present in the

model.

The interesting insight of the aspect-oriented

implementation is that along with providing the

modularized solution to cross-cutting concerns there is no

negative effect on software size and system modularity with

AOP implementation. If any particular task is to be

performed at a lot of places, then that particular

functionality, for instance logging, will be the part of the

application domain logic. All of the functional dependencies

related to logging would be then injected into the model.

Logging is not the domain model logic, neither its view nor

controller. So, it does not fit in any layer of MVC. Aspect

logging is the non-functional requirement and an example of

cross cutting concern. Therefore, such concerns should be

implemented in a separate layer, i.e., the Aspect Layer.

Hook Architecture is followed along with MVC to run the

code side by side in most of the AOP applications.

Separation of cross-cutting concerns is not addressed in

OOP, thus OOP with AOP is suggested for better

modularization and code optimization.

C. Change Management

Due to singularity of Aspect Class, maintainability and

change management is easy for AOP. For OSS, plugins and

components have multiple files, so need to track all related

code in case of any required modification.

Insertion and deletion in case of OSS is also complex like

change management and thus affected other related metrics

like development time, line of codes, coupling and cohesion

etc.

D. Code Enhancement

In case of OSS convention modular code enhancement,

scope of the customized or enhanced code is specific to that

particular module for customization of the package. And

the defined code has a limited impact on the package. For

hook architecture (Wordpress and Drupal, etc.), flexibility

of hooking enhanced code is ensured through a single

function definition instead of multi-files modules or

components. But the impact of the hooked functionality is at

a single code point and there is no way to hook the same

code to multiple points of the package’s core code.

Wildcard (.*) access in case of AOP advice binding

enhanced the impact to advice to wide variety of code

clones. For example, this injection of the wildcard \before

("method (.*Controller->.*Action ())") to all controllers

actions will bind the particular advice with all actions of

every controller.

E. Development Time

Aspects developer requires one time focus to learn the

aspects implementation and once learned she can bind

advices of aspects to any desired code clone. As no

knowledge of the current system is required for aspects

implementation, the development time is optimized by

aspects customization and the development time is focused

on required functionality instead of replicating and testing

the same code at number of points.

For OSS customization, knowledge of the current system

is required, so development time is also spent on related

modules. As per the OSS architecture and conventions,

there are variable maintenance time issues.

F. Line of Codes

In order to measure the size of the set of instructions – the

computer program – there is a metric named line of code

LOC, which simply shows the count of the number of code

lines of program. Maintainability, programming

productivity and effort to be required for developing a

program are predicted by LOC. As the cross cutting code is

resolved at a single point, line of codes are limited. The

same code needs to be coded at all required points, so, line

of codes are more as compare to that in AOP.

For instance, there is a requirement of making a detailed

entry with timestamp in a logger file whenever any record is

deleted. For this simple requirement, wherever delete code

is written in the package OSS customization approach will

handle the case by coding a plugin, component or module to

log the details separately for every code. Thus, if the

modified functionality is ‘m’ and number of clones to be

modified is ‘n’, then the m*n is the number of code lines

(LOC) increased in case of OSS customization approach.

In case of AOP, LOC increases by ‘m*1’, meaning

that ‘m’ lines are added in the original LOC. If there is a

single point of change, then, the OSS and AOP approaches

are equally to adopt but in common practices logging related

codes are required at number of joinpoints. This refers to the

strong adoptability of the AOP for large scale projects. In

the light of this calculation, it revealed that the usability of

aspect-oriented technique directly depends upon the size of

application. In case there is a large number of code clones

then, the AOP will help in reaping maximum time saving

benefits whereas the development speed decreases when this

technique is used for small number of code clones.

G. Direction of Functional Breakdown

For a student manager, customization in terms of adding

student registration functionality, the direction of functional

breakdown varies as per nature of the functionality to be

focused. For instance, student registration comprises of two

main modules, i.e., Managing Student Bio data and

Managing Student Courses. Courses Manager is further

divided into content manager and batch manager with

course information. All these managers are the functional

breakdown of registration manager in top to down direction

and thus, will be implemented by OSS way of customization

as modularization is done in a vertical fashion.

In case of displaying a flash message on every successful

insertion of record in registration manager, advices need to

115Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 135 / 646

be defined to manage the case in AOP way. For AOP, cross-

cutting concerns are handled in the horizontal fashion, i.e.,

left to right.

Thus, a combination of AOP and OSS customization will

be used where the cross-cutting concerns are implemented

in AOP to manage code maintainability in single file and

other particular module functionalities are implemented in

OSS modules, plugins or components.
Summary of these qualitative and quantitative factors that

contribute in the estimation of software metrics are
tabularized in Table 1.

TABLE I. AOP VS OSS

System having cross cutting concerns can be successfully

handled through AOMVC using AOP techniques. AOMVC

creates an additional layer of aspects and then declared the

aspects in the configuration file in order to provide

scalability, maintainability and refined modularization

within the system. Also, wildcards can be used to bind

advice with number of join-points. This flexibility of

hooking the code at number of places creates the difference

and provides an edge to the AOP paradigm.

V. DISCUSSION

The potential benefits as per the system’s features offered

by the AOP approach include the simplicity, readability and

modularity. This way, the created system with improved

software development efficiency works faster than its

object-oriented version.

A. Code Reuse

Reusability of the code refers to the phenomena of writing

the code once and using it later on number of occasions as

per the scenario defined. Once a code is defined and as per

its invocation, it gets weaved and called on multiple

locations. Hence, the code duplication is reduced manifold.

In case of Manipulation aspect the reusability measure is too

high to affect number of code clones. Thus, through single

point of access, code gets reused and maintained.

B. Maintainability

System gradation is a part of every real world application.

Code once developed has to be maintained and to ensure

configuration management application maintainability is a

vital concern for meeting user’s needs. Instead of tracing the

code in each and every file for the modification or deletion

purpose, AOP offers a woven point defined as per language

selection in XML, PHP, JAVA, .NET etc., in the declarative

way, in order to delete the cross-cutting concern if it is no

longer in need, which progresses the maintainability of the

system compared with traditional methods - one by one

steps to locate the code.

C. Scalability

Through scalability, demand for the change in

functionality of the original system is facilitated. New

functional requirement proposed by the user is coded as an

aspect in the form of new feature, specified in the

configuration files, woven or bind in a respective point

instead of updating number of files required to be modified.

Hence, aspects provide scalability for a large amount of

changes in the current system in the way to incorporating

user’s emerging requirements with the passage of time.

D. Reduced Development Time

As the line of code is decreased in case of using OOP

with AOP, so the development time gets reduced. In case

there is a large number of code clones (as in case of

Manipulation Aspect) then the AOP will help in reaping

maximum time saving benefits whereas the development

speed decreases when this technique is used for small

number of code clones.

E. Code Organization

Cross-cutting concerns of logging, flash message and

manipulation are kept aside from Model, View and

Controller classes in case of coding aspects for logging,

flash message and manipulation functionality. Thus, the

domain logic is not confused with the supporting domain

logic (logging entry in file or database) in case of logging

aspect implementation.

F. Changeability

Request for change in web application is too common.

With the advent of technology changeability should be

offered by the web development. Code once developed has

to be maintained and to ensure configuration management

application maintainability is a vital concern for meeting

user’s needs. If in case of Logging Aspect, instead of

recording entry in file, requirement got changed to record

entry in database then a single line of aspect get replaced

instead of replacing code in every related file in case of

OOP without AOP.

G. Extensibility

Aspects provide scalability for a large amount of changes

in the current system in the way to integrating user’s

evolving requirements with the project advancement. In

case of Logging Aspect, if along with recording deletion

time in file, recoding an entry in database is required then a

 AOP OSS

Point of Access Single File Multiple Files

Separation of Cross-cutting

Concerns
Resolved Not Addressed

Code Enhancement Wide Impact Limited

Change Management Easy Complex

Development Time Optimized Increased

Line of Codes Optimized

Increased

(Replication in
case of cross-

cutting concern)

Direction of Functional

Breakdown
Vertical Horizontal

116Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 136 / 646

single line code at one place need to be added in the logging

aspect class.

H. Dynamics

Dynamics refers to the enabling and disabling of the

aspects. If the injected functionality is no more required

then the aspect injection code can be commented. In case of

Logging Aspect, if the logging of the delete record is no

more required then single line code of recording time of the

delete can be commented. Similarly, if the Flash Messages

are not to be injected then the code can be commented and

same is the case for manipulation aspect.

VI. CONCLUSION

OSS customization mostly follows OOP. Replacing the

OOP by AOP was an obsolete question and now it reveals

that AOP basically complements OOP and cannot be used

in isolation because AOP is developed on the basis of OOP.

AOP counterbalances the constraint of OOP. When applied

together with OOP, AOP is more efficient and

complementary in providing an ideal structure for modular

programming.

The scope of aspect-oriented implementation –that either

it solves a specific cross cutting concern or it can be applied

in general to the whole application – is to be well estimated

by the metrics, so that to ensure the risks involved and

opportunities offered by AOP. There are several factors that

affect the performance of the application like main memory

size, memory management, cache size and even program

size (line of codes, etc.). Switching between the base code

and the aspect is more often resulting in the back and forth

movement of the control flows of the system, with the

potential increase in the number of join points.

ACKNOWLEDGMENT

Many thanks to Saeeda Sultana Sadia, that we are able to

complete the research. It could have been near to impossible

to achieve the successful completion without the supervision

and guidance of Saeed ur Rehman - Mentor. The

cooperation of Department and faculty is heartedly

acknowledged. Special thanks to Salma Sultana and Sara

Sultana for their support and motivation to complete the

research successfully.

REFERENCES

[1] R. J. Walker, E. L.A. Baniassad, and G. C. Murphy, “An Initial
Assessment of Aspect-oriented Programming, ICSE99 Proceedings of
the 21st international conference on Software engineering”, ACM,
ISBN: 1-58113-074-0, 1999, pp. 120-130.

[2] G. Kiczales, J. Lamping, and A. Mendhekar, “Aspect-oriented
Programming, Proceeding of 11th European Conference of Object-
Oriented Programming”, LNCS 1241, 1997, pp. 220-242.

[3] S. K. Otrappa and P. J. Kulkarni, “Multilevel Security Using Aspect
Oriented Programming AspectJ, Advances in Recent Technologies in
Communication and Computing (ARTCom)”, 2010 International
Conference, IEEE, ISBN: 978-0-7695-4201-0, 2010, pp. 369 – 373.

[4] H. Li, M. Zhou, G. Xu, and L. Si, “Aspect-oriented Programming for
MVC Framework, Biomedical Engineering and Computer Science

(ICBECS)”, 2010 International Conference, IEEE, ISBN 978-1-4244-
5315-3, 2010, pp. 1 – 4.

[5] B. Amar, H. Leblanc, B. Coulette and C. Nebut, “Using Aspect-
Oriented Programming to Trace Imperative Transformations,
Enterprise Distributed Object Computing Conference (EDOC)”, 2010
14th IEEE International, IEEE, ISBN 978-1-4244-7966-5, 2010, pp.
143 – 152.

[6] S. Hanenberg, S. Kleinschmager, and M. J. Walter, “Does Aspect-
Oriented Programming Increase the Development Speed for Cross-
cutting Code? An Empirical Study”, ESEM '09 Proceedings of the
2009 3rd International Symposium on Empirical Software
Engineering and Measurement, ACM, ISBN: 978-1-4244-4842-5,
2009, pp. 156-167.

[7] J. Zhang, and Y. C. G. Liu, “Modeling Aspect-Oriented
Programming with UML Profile”, 2009 First International Workshop
on Education Technology and Computer Science, ISBN: 978-0-7695-
3557-9, vol. 2, 2009, pp. 242-245.

[8] L. Madeyski, and L. Szała, “Impact of aspect-oriented programming
on software development efficiency and design quality: an empirical
study”, Software, IET, IEEE, ISSN 1751-8806, 2007, pp. 180 – 187.

[9] D. Zhengyan, “Aspect Oriented Programming Technology and The
Strategy Of Its Implementation, Intelligence Science and Information
Engineering (ISIE)”, 2011 International Conference, IEEE, ISBN
978-1-4577-0960-9, 2011, pp. 457 – 460.

[10] M. Bartsch and R. Harrison, “An exploratory study of the effect of
aspect-oriented programming on maintainability”, Software Quality,
vol. 16, no 1, 2007, pp. 23-44.

[11] R. Coelho et al. , “Assessing the Impact of Aspects on Exception
Flows: An Exploratory Study Proceedings of the European
Conference on Object-Oriented Programming”, 2008, pp. 207-234.

[12] P. Greenwood et al. , “On the Impact of Aspectual Decompositions
on Design Stability: An Empirical Study”, Proceedings of ECOOP
2007, pp. 176-200.

[13] K. Gybels and J. Brichau, “Arranging language features for more
robust pattern-based cross-cuts”, Proceedings of AOSD, 2003, pp. 60-
69.

[14] M. Kuhlemann and C. Kästner, “Reducing the Complexity of AspectJ
Mechanisms for Recurring Extensions, In Proceedings of the Second
GPCE Workshop on Aspect-Oriented Product Line Engineering
(AOPLE)”, 2007, pp. 14-19.

[15] J. Zhang, Y. Chen, G. Liu, and H Li, “An Aspectual State Model and
its Realization based on AOP, Proc. of WRI World Congress on Soft.
Eng”., vol.3, 2007, pp. 163-166.

[16] T. Osogami and S. Kato, “Optimizing System Configurations Quickly
by Guessing at the Performance, Proc. of ACM Special Interest
Group on Measurement and Evaluation”, 2007, pp. 145-156.

[17] C. A. Cunha, “Reusable Aspect-Oriented Implementations of
Concurrency Control Patterns and Mechanisms, Proc. of the Aspect-
Oriented Software Development”, 2006, pp. 134 –145.

[18] W. Liu, C. Lung, and S. Ajila, “Impact of Aspect-Oriented
Programming on Software Performance: A Case Study of
Leader/Followers and Half-Sync/Half-Async Architectures”,
COMPSAC 2011, 2011, pp. 662-667.

[19] G. Kiczales, E. Hilsdale, and J. Hugunin, “An Overview of AspectJ”,
In Proc. ECOOP 2001, LNCS 2072, Berlin, June 2001,Springer-
Verlag, 2001, pp. 327-353.

[20] R. Douence, T. Fritz, N. Loriant, J. M. Menaud, M. S. Devillechaise,
and M. Suedhol, “An expressive aspect language for system
applications with Arachne”. 4th Int. Conf. on Aspect-Oriented
Software Development (AOSD ’05), Chicago, Illinois, Mar. 2005.
ACM, pp. 27–38.

[21] F. Kato, K. Sakamoto, H. Washizaki, and Y. Fukazawa,
“Comparative Evaluation of Programming Paradigm: Separation of
Concerns with Object-, Aspect-, and Context-Oriented
Programming,” Proceedings of 24th International Conference on
Software Engineering and Knowledge Engineering (SEKE 2013), pp.
594-599.

117Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 137 / 646

Design and Innovation in Game Development

Observations in 7 Small Organizations

Erno Vanhala, Jussi Kasurinen and Kari Smolander

Software Engineering and Information Management

Lappeenranta University of Technology

Lappeenranta, Finland

erno.vanhala | jussi.kasurinen | kari.smolander@lut.fi

Abstract—Design and innovation of game software is

considered to be a creative task, which also involves methods

from software development. But how do the game

organizations actually design their products and innovate? The

objective of this paper is to understand how game products are

designed, what factors affect the design process and how game

designers innovate. This study observed and analyzed seven

game-developing organizations to allow comparison of their

used design methods, design objectives and sources of their

innovation. Based on our study, the game organizations

regardless of their size are generally driven by the business

factors, such as expected sales, in product design. Even though

several organizations promote innovation and creative design,

the business practicalities require the organization to prioritize

to products that have high profit expectations. The findings

indicate that the game development organizations acknowledge

originality and creativity in their product design, but their

major objective in the design work is to confirm marketability

and business potential of the product.

Keywords- Game design, innovation process, game industry,

design restrictions

I. INTRODUCTION

Game development is a creative field of industry. Its
software development tasks are also a means of expression
[1], meaning that the development and design work is much
more than just collecting and realizing the functionality and
quality criteria for the new product. Unlike conventional
software, game products do not have the requirement to
fulfill a certain purpose and do it efficiently. Instead they are
required to provide entertainment and keep the player
interested in the product.

However, there are also studies on the game industry that
see game development as comparable to normal software
design and development [2, 3]. In some occasions, the
promotion of creative chaos and informality may even be a
publicity stunt to maintain an illusion that the game business
is more relaxed or artistic, or at least less money-centric than
conventional software development [1]. In the development
of new products for popular, existing franchises this can be
considered to be somewhat true, since there are established
markets and a customer base for a certain type of product.
However, in the development of new concepts, trends and
franchises there still is room for innovation, since the game
markets thrive for novelty factors and products, which offer
something new to the user experience. This innovation and

design for novel concepts is especially thriving in small and
medium-sized game studios that are still searching for their
first breakthrough product and trademark franchise [1].

In this paper, we study the innovation processes and
design principles in small and medium sized game
developing software organizations. The objective of this
paper is to identify how game developers design their
products, what factors affect the design in practice and what
is the source of innovation in these organizations. Overall,
the research questions were “How game studios design their
products” and “How game-developing organizations
innovate and make business?”. Our research group
interviewed 27 professional game developers from seven
game developing organizations to observe how game
developers innovate and design game products. These 27
interviews were conducted with several stakeholders in the
organizations, game designers, developers, project managers
and upper management, to gain a comprehensive view into
the game organizations and to understand how these
organizations innovate and design in game development.

 This paper is also related to our earlier studies on game
developing organizations and innovation. In the earlier
publications, game organizations have been studied from the
viewpoints of technical infrastructure [4], organizational
processes [5] and application of new technologies [6].

The rest of the paper is structured as follows: In Section
2, a number of related studies are introduced and assessed. In
Section 3, the applied research methods are introduced and
the results are presented in the Section 4. Section 5 discusses
the study observations and Section 6 closes the paper with
conclusions.

II. RELATED RESEARCH

Game business has been a growing area of industry for
the last decade [7], regardless of the economic turbulences in
other global business areas. This has driven up the number of
game studios in many countries such as United States [7] or
Finland [8], and increased the demand for new products and
novel concepts.

Game design has been addressed in a number of
publications. For example, a study by Blow [2] has identified
the increasing complexity of game products during the last
ten years. Due to increased processing power of the game
platforms, the game products are able to simulate more
sophisticated concepts, and at the same time allow more
complex designs for new products. In addition of increased

118Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 138 / 646

computing power, the game industry has also developed a
fairly stable environment of well-known release platforms.
The major shareholders, such as Sony or Microsoft are
influential enough to form a de-facto industry standard [9].

Dymek [10] discusses the sources of innovation and the
relationship between the software and game industry. The
usual problem with the development models in the game
industry is that the models overestimate the technology
needs of game products, because the game industry is
usually associated closely to the software industry. From the
viewpoint of the game industry, games are cultural products
that in the design process resemble more interactive movies
than software [10]. However, Kanode and Haddad [3] have
identified the most common problems in game development
projects and point out that the most common problems are
related to project management and development processes.
The creative work is mostly used to develop the design for a
game concept, and then later applied to refine the design “to
find the fun”. Callelle et al. [11] agrees with Kanode and
Haddad, mentioning that the development of a game design
document is the most important design-phase work.

Kultima and Alha [1] identified seven profiles for people
working in the games industry. The most common profiles
were called “Instrumentalists” and “Artists”. The
instrumentalists were people were able to identify useful or
interesting characteristics in the applied platforms. The
artists were the more common type of innovators; their drive
to work in the game industry was based on the need to create
something new. Interestingly, the third most common group
was the “Nihilists”, who had a negative view on innovation.
Almost every sixth interviewee was very critical towards
innovativeness of the game industry, or innovation for the
sake of innovation.

From the business viewpoint the game industry has gone
through a paradigm shift from arcade video game halls to
massive multiplayer online games and mobile games [12]. In
games, new business and revenue models have been recently
taken into use, including free-2-play or in-game
advertisement models [13-17].

Computer gaming industry is also special in the sense
that it can implement advertising embedded in games as
value-adding parts [14]. Especially this is seen in sport
games, where, for example, football players have real team
outfits with sponsor tags on them. Gamers’ attitudes towards
advertising is also more permissive than those of the people
who do not play games [18]. This has made it possible, for
example, to develop the free-2-play business model [19, 20],
where games can include advertising and in-game
purchasing can be done to monetize the game.

Traditionally in games, there has been a game package to
buy, but currently digital distribution has started to eliminate
this expense. Vanhatupa [21] claims that browser-based
games can be offered for free and still get a steady long-term
revenue stream by selling extra features and/or
advertisements. This means that besides actual games, game
companies always need to develop a working business model
to monetize their ideas and technological innovations as
technology itself has no value [22].

Overall, it seems that the game design is strongly related
to the development of novel concepts and innovation for new
ways to use the existing systems [2, 9]. The game industry
sees itself more creative than “traditional” software industry,
but in practice it seems that the most of the creative work is
done when establishing new brands and franchises, and that
the creative needs of game development are not that critical
as expected [1,3,11]. On the business side, new technologies
and business models cause further development needs for the
ways how games are developed [19,21,22].

III. RESEARCH METHOD

The software process including the design, development
and testing of a commercial product is a complex
phenomenon, which has varying approaches even with
seemingly similar organizations [23]. Acknowledging this,
we decided to pursue empirical qualitative analysis by
applying the grounded theory method [24-26]. We
considered Grounded theory suitable for discovering and
analyzing the activities done during a software project, as it
observes and describes real-life phenomena within their
social and organizational context. According to Hughes and
Jones [27], the method suits well to these objectives.

Our approach is in accordance with the Strauss and
Corbin [24] approach and in the process of building a theory
from the case study research, we followed guidelines as
described by Eisenhardt [28]. The interpretation of the field
study results was completed in accordance with principles
derived from [29] and [30].

A. Data Collection

The initial strategy for the population criteria and
selection was based on our prior research experiences on
conducting industry-wide studies on software industry in
general, made by our research group [for example 23, 31].
We carried out four interview rounds in our study (Table 1)
with four different interviewee groups; project managers,
game developers, upper management and game designers.
The sample of the interview rounds consisted of seven game
development organizations selected from our research
partners and supplemented with additional volunteering
organizations to achieve a heterogeneous group of different
target audiences, development platforms and organizational
histories. Overall, 27 interview sessions were held during the
spring, summer and fall of 2012 by seven researchers from
two research laboratories.

The 7 organizations in the study group were small to
medium-sized professional game companies. Five of the
seven were either recent business startups or new companies
(less than five published products) and two were more
experienced organizations with more than five published
titles. The selection of the cases was based on the polar type
selection [28] to cover differences between organizations;
the cases included different target platforms and different
sizes of development projects. In practice, the organizations
were selected from a number of volunteering research
partners and supplemented with additional organizations.
These organizations varied (Table 2) from newly started
mobile game developers to browser-based games, PC games

119Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 139 / 646

offered through digital distribution and even included an
established developer with products in the retail stores. The
smallest organization in the focus group was a startup with
three persons; the largest organization included several
hundred people that contributed to the product development.
All of the participating organizations were commercial
companies, with game development their main source of
income.

The objective of this approach was to gain a broader
understanding of the practice of and to identify the general
factors that affect the design and innovation work. To
achieve this, our research team developed four
questionnaires that included questions on themes such as
design methods, development processes, quality, business
models and innovation. Before the first interview round the
questionnaire was peer reviewed within the research group to
check for sanity, and between the interview rounds some
follow-up-questions were added to collect more details and
test observations. All of the complete questionnaires are
available at http://www2.it.lut.fi/project/SOCES/.

The interviews contained semi-structured questions, and
the whole sessions were tape-recorded for qualitative
analysis. Typically, an interview lasted for approximately
one hour and they were arranged as face-to-face interviews
with one or two organization participant and one or two
researchers at the location selected by the interviewees. As
we wanted to test and further flesh out our initial findings
and observations from the earlier rounds, the interview
rounds were conducted in order; for example the interviews
with the second round interviewees started only after all first
round interviews were conducted. Because of this and
scheduling problems, we were unable to interview one
representative during the second interview round, but the
round-specific topics were discussed with the organization
representatives on the latter interview rounds.

The decision to interview project managers during the
first round was based on our aim to gain a better
understanding of the operational level of software
development. We wanted to see whether our observations
and experiences from [23,31] the software industry were
applicable in the game industry context.

The interviewees in the second round were selected from
a group of developers or programmers, who directly
contributed to the software product and had experience with
the technical details of the developed product. To gain more

insight into the technical infrastructure, the interview topics
in this round were heavily focused towards programming
techniques, process activities and applied development tools.

In the third round, the focus of the interviews was to
collect more general data on the company beyond the
development process of the products. During this round
additional themes beyond the software development such as
marketing, innovation and financing were collected to better
understand the context in which the game industry operates.
In the fourth round, the focus was on the creative aspects of
the game development, in the design work. During this round
the interviewed employees were game designers, or
management-level personnel with the ability to affect the
final design of the developed product.

The interview rounds, interviewee roles in the
organization and study structure are summarized in Table 1,
and the participating organizational units are summarized in
Table 2.

B. Data Analysis

The grounded theory method contains three data analysis
steps: open coding, where categories and their related codes
are extracted from the data; axial coding, where connections
between the categories and codes are identified; and selective
coding, where the core category is identified and described
[24].

The objective of the open coding was to classify the data
into categories and identify leads in the data. The process
started with “seed categories” [33] that contained essential
stakeholders and known phenomena based on our prior
studies in this context. Seaman [33] notes that the initial set
of codes (seed categories) comes from the goals of the study,
the research questions, and predefined variables of interest.
In our case, the seed categories were derived and further
developed from our prior studies on software industry. Our
selection for the seed categories included general phases of
the software processes such as design, development, testing
and project management, and common terms and
stakeholders such as financers, customers, project personnel,
software tools and quality; areas and concepts which should
exist in software development but which are not too
restrictive or descriptive to bias the collected data. These
seed categories were also used to define the themes for the
questions in the questionnaire. The final data collection
instrument, a series of open questions, included topics such
as development process, test processes, tools, quality, design

TABLE I. INTERVIEW ROUNDS AND THEMES

Interviews Interviewee Description Main themes of the interviews
Qualitative
interview with 7

organizations

Team leader or
project

manager

The interviewee is responsible for the management
of the development of one product, or one phase of

development for all products.

Development process, test process,
quality, outsourcing, development tools,

organizational aspects.

Qualitative

interview with 6
(+1*) organizations

Developer or

tester

The interviewee was responsible for the

development tasks, preferably also with the
responsibilities of software testing activities.

Development process, test process,

development tools, development
methods, quality.

Qualitative

interview with 7
organizations

Upper

management or
owner

The interviewee was from the upper management, or

a business owner with an active role in the
organization.

Organization, quality, marketing,

innovation and design process,
development process.

Qualitative

interview with 7

organizations

Lead designer

or Art designer

The interviewee was a game designer, or managerial

level person with the ability to affect the product

design and selection of the implement features.

Development process, design and

innovation, testing, quality

* Interview themes discussed during later rounds with other representatives of the organization

120Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 140 / 646

process and finances, weighted between rounds based on the
roles of the interviewees.

In open coding, the classified observations can be
organized into larger categories. New categories appear and
are merged because of new information that surfaces during
the coding. For example, our initial concept of infrastructural
problems being a seed category was abandoned as the coded
interview data proved that the process problems were more
related to personnel and management, technical issues
having little to none observations in the study group.
Similarly, several observations in different categories and
issues which emerged from the data formed the coding for
our data. Overall, at the end of the open coding, the number
of codes was 172 codes with 1574 individual observations,
collected from over 1400 minutes of recordings from 27
interview sessions.

The objective of the axial coding, which starts when the
categories start to emerge and runs somewhat parallel with
the open coding [24], is to further develop the categories by
looking for causal conditions or any kind of connections
between the categories. In this phase, the categories and their
related observations were becoming fixed, allowing the
analysis to focus on developing the relationships between
larger concepts. In this phase, the categories formed groups
in the sense that similar observations were connected to each
other. For example, codes such as “Design process: refining
designs”, “Development process: knowledge transfer” and
“Problem: Documentation/knowledge transfer related to
design” formed a chain of evidence of how the organization
documented and refined their product designs and what
problems the designers and developers had with this
approach. By following these types of leads in the data, the
connections between categories were identified and made.

The third phase of grounded analysis, selective coding, is
used to identify the core category [24] and relate it
systematically to the other categories. The core category is
sometimes one of the existing categories, and at other times
no single category is broad or influential enough to cover the
central phenomenon. In this study, the examination of the
core category resulted to the category “Overall Objectives of
the Innovation and Design in Games”, which is an umbrella
category explaining the observations related to design work,
innovation and long-term objectives the organizations have.

The core category was formed by abstracting the

categories and most important issues as none of the existing
categories was considered influential enough to explain the
entire phenomena. For example, we observed that the
primary method of design work was based on one individual,
who made the decisions based on group work, and that in all
organizations the objective of the development work was in
economic aspects, not in artistic presentation or other non-
economic issue even though these topics were discussed in
some organizations. In addition, the most important
limitation was resources, specifically time, not the release
platform or available tools. Additionally, we also observed
that the most important source of innovation was previous
experience with game products, and somewhat surprisingly
the other cultural sources such as folklore or literature were

not used to a large degree. We adjusted the core category
“Overall Objectives of the Innovation and Design in
Games” to include all of the categories and observations,
which discuss the objectives of the design work in
organizations before the actual development starts, the
sources of innovation in the organization and the overall
effect the marketing and financial aspects have on the game
product design work.

IV. RESULTS

In this section we discuss the analysis results. The
categorized observations and main findings are presented in
Table 3, and the connections between the categories in
Figure 1. After explaining the main categories we introduce
the findings on game design methods and innovation and the
effect of business aspects on the game design. Finally, we
discuss the implications of the results.

A. Categories

The core category, Overall Objectives of the Innovation
and Design in Games, is a composition of several categories,
which all discuss the design work, innovation or aspects that
affect the design work or innovation. The categories were
formed inductively from the interviews. They explain the
relationship between the design objectives and innovation
process, or the effects of business practices affecting the
product-related decisions. These selected categories describe
how our case organizations approached design process and
how business factors affected the product design.

The category Objectives of the design phase summarizes
the most important objective the organization has for the
design work. In most organizations the objective was on
exploring the game concepts and testing that the potential
new product could be marketable, fun to play and with
proof-of-concept prototypes, doable with the target platform.

The category Design method describes how the
organization designs their new products. Vision means that
the organization has lead game designers that draft the first
concept based on their own ideas. Idea pitching means that
the organization applies open sessions where employees can
pitch their ideas, and the most liked ideas are further studied.

TABLE II. DESCRIPTION OF THE ORGANIZATIONS

Release

platforms

Production

team size1

Maturity. amount of

released games
Case

A

PC, game

consoles
Large

Established, more than 10

released products

Case

B

Mobile

platforms
Small

Recent startup, Less than 5

released products

Case
C

Game

consoles,

PC

Large

Established, Less than 10

released products.

Case

D

Mobile
platforms,

PC

Medium
Startup, developing first
product

Case
E

Mobile
platforms

Small
Recent startup, less than 5
released products

Case

F
PC Medium

Startup, developing first

product

Case

G

Browser

games
Small

Startup, developing first

product

1Amount of people contributing to the released product, size by SME

definitions [32]

121Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 141 / 646

Brainstorming means that the development team organizes
dedicated design sessions, in which they make the first
designs for potential new products as a group effort.
Prototypes mean that the organization develops crude
prototypes to explore their new concepts and decide which
prototype to develop to a full game based on their look and
feel. Pen and paper means that the organization has
designers or artists, which create mock screenshots and
concept drawings to flesh out concepts which may be based
on personal ideas or a group effort.

The category First vs. published product indicates the
amount of differences between the typical first functional
prototype of a game product and the final outcome. Major
changes indicate that the game may have large changes in
the design, including genre, theme, release platform or main
marketing features. Minor changes indicate that the changes
are only related to the smaller features, such as amount and
type of game content, game mechanics, changes in creative
writing or control scheme. In Case G this category was
divided to technical and game design, since their game had
only minor changes content-wise, but underwent drastic
changes in the technical solution.

The category Level of details in the design describes the
amount of details in the initial design, which is used to start
the development of an actual product. Functional prototype
indicates that the organization develops a proof-of-concept
prototype, which has all of the intended main features of the
game to assess the feasibility of the product design. If the
design is considered usable and marketable, then the
development team starts to build an actual product. Basic
gameplay elements mean that the organization designs a
functional concept with the basic features, story elements,
themes and characters with some technical studies on
concept feasibility. Core features and concept art is one step
towards simple draft documentation; the main features and
some concepts for theme and creative aspects are drafted but
usually no programming work is done.

The category Effect of industry describes the ways the
organization considers the games industry in general to affect
their product design, marketing approach or business models.
Case organizations A, B, C, D and F considered the industry
to affect mostly on the required features of the game;
customers expect some abilities such as hand gestures or
platform-specific functionalities which demand the designers
to cater to these expectations. Cases C, E and G also
mentioned that the industry affects their business model,
either by forcing the organization to constantly update their
products (Case C) or by opening new market segments or
revenue models such as free-2-play [20].

The category Most important designers indicate in the
project-level who in the case organization actually leads the
design work for new product. Producer indicates that in the
organization the design decisions are ultimately made by the
project manager, who supervises the designers, developers
and game artists. Lead designer means that the organization
has a separate role for the person who makes the decisions
on designs and can dictate what features are included and

Overall Objectives
of the Innovation

and Design in
Games

Objective of
the design

phase

Innovation vs.
money

Effect of
marketing in

design

Design
method

Sources of
Innovation

Most
important
designers

Effect of
Industry

First vs.
published

Level of details
in the
design

Figure 1: The main relationships between the study categories; the

lines represent categories which share related features.

TABLE III. OBSERVATIONS FROM THE CASE ORGANIZATIONS AND CATEGORIES RELATED TO THE FINDINGS
 Case A Case B Case C Case D Case E Case F Case G

Objective of the

design phase

Make something

that sells,
marketable in

near future

Concept demo

on technology,
game mechanics

Test if the

concept is fun

Good

mechanics,
game that sells

Test mechanics

for concept,
something that

is fun.

Design of own

thing, things
selling are old

six months

Design

something we
are very good at

making

Design method Idea pitching,
prototypes,

brainstorming

Vision,
brainstorming

Vision, Idea
pitching,

prototypes

Vision, pen and
paper

Brainstorming,
prototypes, pen

and paper

Prototyping,
Vision

Vision

First vs.

published

Major changes Minor changes Major changes Major changes Minor changes Large major

changes

Large technical,

minor design

Level of details

in the design

Functional

prototype

Basic gameplay

elements

Functional

prototype

Core features,

concept art

Basic gameplay

elements

Core features,

concept art

Basic gameplay

elements

Effect of

industry

Enforces

features

Publisher sets

requirements

Enforces

upkeep, adding
new content

Changes to

design

New customers,

business models

Stabilizing

effect on designs

"Marketing

dictates success"

Most important

designers

Producer Lead designer,

team

Producer Lead designer Team Management Lead designer

Innovation vs.

money

Money first, then
innovation

Money first,
then innovation

Innovation,
hopefully money

Money first,
then innovation

Money first Money first
(free2play)

Money first, then
innovation

Effect of

marketing in

design

"We design fun,

management
handles sales"

"Has to be

profitable"

"Make fun demo

and sell it"

"Business first" "Business first" "Good game

sells"

"Finances has to

be taken into
account"

Sources of

innovation

Movies, other

games

Success stories,

industry trends

Success stories Prior

experiences, old

games

Platform

possibilities, old

games

Movies, books,

TV, games,

"portfolio of
stuff"

Prior

experiences,

competition
analysis

122Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 142 / 646

excluded from the product. Team indicates that the decisions
on game design are made by the entire development team,
with more or less democratic system of discussions and
voting. Management indicates that the design is directly
overseen by the management above the development team,
and deviations from the original design have to be accepted
by them.

The category Innovation vs. money describes whether
organization units are aiming to build financially successful
business or are motivated by developing their creative idea
into a product and “hoping” it can produce income. All the
companies, except Case C, are going with the philosophy
money first, where they first build products that generate
profit and after that start building their dream products.

The category Effect of marketing in design describes how
the marketing aspects affect the game design. Cases A, C
and F considered the design work to be separated from
marketing, indicating that the most important objective of
design work is to come up with a creative and fun concept,
with management or marketing focusing on how to sell that
design. In other case organizations the design starts with a
market study on what could be a financially feasible product,
and based on the market study the product is designed and
developed so that it fits the target audience.

Finally, the category Sources of innovation describes the
main sources of innovation and ideas for the designers. Cases
A, B, C, D and G named the other, earlier success stories of
the games industry as one of their most important sources of
innovation, meaning that the organization did markets
studies such as “what sort of games sell” and “why did this
game become success”. Other usual sources for innovation
and ideas were prior gaming experiences and old games in
general.

B. On design process, design objectives, innovation and

business

The organizations shared two common features in the
design work. First, all organizations based their design work
on economic issues, placing financial success over critical
success. In other way, all organizations expressed that should
they choose between highly innovative and memorable but
financially adequate and financially successful but
forgettable product, they would aim for the financial success.
Secondly, all organizations considered that the available
resources, mostly time, was their most limiting design factor.
As the case organizations had to plan their product
publications within a foreseeable timeframe – usually 3-12
months –, in all organizations the design, development and
testing tasks did not have much excess time to fine-tune the
technical implementation or user experience beyond an
acceptable level of quality.

“… after all, there really is very limited amount of time
to do surprisingly large amount of tasks.” – Case B, Lead
Designer

 “I don’t think that there really are [technical]
restrictions to creativity, it’s just that there are limited
amount of people.” and “ …”too few people, too little time,
too little money.” – Case E, Lead Designer

Besides these two observations, our analysis also yielded
six main findings describing how the game organizations do
design and innovation work. In following, we will introduce
these findings one by one.

1) Game product design is driven by economic factors.
In most organizations the game design is strongly related

to the financial potential of the game product. Even if the
game industry in general is seen as a creative industry, the
product design follows mostly economic principles. In all
organizations with the exception of Case C, the organization
considered the profits to be more important than innovation.

“It is nice if the critics and people like your game, or if it
is a review hit, but it may not translate into profits. If I had to
select between [money and publicity] I would definitely go
with money.” – Case E, Project manager

 “I would like to make a game that has cultural impact,
or at least is very well known for artistic merits. However,
first we need to have significant financial successes…” –
Case D, Upper management

In most organizations the tradeoff between innovative
and money-making products was that the organization
needed money first to build innovative, experimental
products later. This approach also affected the design
objectives. In cases A, B, D, E and F the organization was
designing their products based on the marketing potential or
business-first approach. In case C and F the organizations
were geared towards more innovative design. These
organizations considered that well-made games sell
themselves, so a good design makes a game easy to sell.
Case A expressed similar sentiments, but ultimately held
financial potential as the most important design objective.

“Our strategy is based on our analysis on what is going
on, what are the most potential, growing areas, and where it
is most likely to get our investment to resources back.” –
Case A, Project manager

Cases F and G had additional considerations for their
product design. In Case G, the product design was examined
with proof-of-concept prototypes to ensure that the product
was possible to develop for the target platform. In Case F the
design focused heavily into doing “own thing”. As it takes at
least six months to develop a game, any product resembling
the themes and concepts of the current top-selling products
would be “old news” and a past trend when released.

“If we look into the best seller list of [platform] right
now, they probably no longer sell in six months.”...”When
our game after months and months of development is
released, it is nothing new or exiting. That is why we should
do something different.” – Case F, Lead designer

2) Design relies on prototypes, which test out potential

game concepts
Game organizations heavily rely in the prototyping

approaches in their designs. In Cases A, C, E and F the
organization did design work by studying the game concept
with varying degrees of prototypes. This approach was
applied to ensure that the created design also worked in the
actual implementation.

“We make a prototype to test if the concept is actually
fun to play with and ensure that it has the needed potential.”
– Case C, Project manager

123Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 143 / 646

The two organizations that had already released a number
of games, built functional prototypes as the first design
version (Cases A and C). The organizations that were
building their first product relied merely on concept art and a
list of core features (Cases D and F). This may indicate that
early start-ups do not yet have the skill to build a working
prototype, and therefore they focused on concept art only.

“We started by simply thinking what sort of control
mechanics are used in mobile games, based a simple design
on top of that and with pen and paper, tested, thought out
and developed a first build.” – Case E, Project manager

3) Most game designs are based on a concept innovated

by individuals
The design work in the development of new products

was heavily focused on one or few individuals in the
organization. In Cases B, C, D, F and G the first concept of a
new game product came from a designer, or a person who
came up with an idea that was feasible to implement. After
the initial idea, Cases B and C worked in teams to flesh out
the idea, whereas in Cases D, F and G the design was still in
hands of one or few individuals.

“I am responsible for [making design decisions]. I have
to do the final call, since groups simply do not sometimes
have that ability.” – Case B, Lead Designer

 “I make the decisions, but usually based on the group
input” – Case D, Upper Management

In Cases A and C the design work started with an idea
pitching event, where each individual could propose new
ideas for new products. Case A was more geared towards
making a communal decision within a group to select the
best concepts, whereas Case C relied more on the work of
the individuals to convince the group to their game concept.

 “When someone gets an idea, they can show their ideas
on these concept cups.”…”If enough people like it we take it
forward to design.” – Case C, Developer

In all organizations with the exception of Case E and – to
a lesser extent Case F – the product design and decisions on
included and excluded features was the responsibility of one
named person. In Cases B, D and G this person was a lead
designer, who in all cases was also the person responsible for
making the first design. In Cases A and C the design changes
were managed by the game producer, a project manager,
who made the decisions on what the product should include
and exclude.

“We sit down and have a team discussion once in a
fortnight to see where we are and discuss new ideas. After
these sessions the producer goes through the ideas and what
can be included and what not, and includes feasible stuff to
the next sprint.” – Case A, Upper Management

The Cases F and B are exceptions to the strong creative
control observed in other studied organizations. In Case F the
upper management had a direct control over the aspects of
the developed games. In this organization the creative
control was outside the development team. However, the
upper management was also responsible for designing new
products for the organization. In Case E the design work and
change management was done as a group effort. The design
was changed only if everyone or at least most of the
development team approved the idea. The first idea was

developed in brainstorming sessions, explored with
prototypes and fleshed out as a group effort. Unlike Case B,
which had similar activities in the design (pre-production)
phase, Case E did not have a separate lead designer or
decision maker for creative aspects at any stage.

“With our first game, we really did not have specific
planning phase, we simply went as a group and decided to
do something simple, something like a proof of concept for
our team being able to make games.” – Case E, Project
manager

“We just brainstorm within our development team, there
really is no further magic to [design work].” – Case E,
Upper Management

The most important designer in the project was also
related to the age of the company. Cases A and C had been
in the business longer and they reported that their most
important designer is the producer, whereas the smaller and
newer companies did not report that such a person even
existed. This is a bit similar as with functional prototypes in
finding 2. The early start-ups had not yet grown big enough
to have their own producers.

4) Design and innovation are ad-hoc processes
The Cases report various design and innovation methods,

like idea pitching, brainstorming, group work and pen and
paper. Yet, none of the cases report that they have used more
formalized ways of design, like lateral thinking [34,35]
which can be used also as a tool to build completely new
ideas. Although brainstorming can be considered as a more
formal method [35,36], its whole potential was not used by
the organizations as interviewees did not explain any
systematic use of the method.

“Personally my ideas are born when I have slept
overnight and I am driving a car by myself and I have some
time to think.” – Case G, Upper management

The companies relied more on ad-hoc innovation, which
could be because they were not aware of the more formal
methods. As for these methods, brainstorming and idea
pitching can be seen as semi-formal methods. In idea
pitching the new idea has to be presented with maximum of
three slides and after that decision is made whether
functional prototype is build or not.

Cases A, B and C mentioned “game concept day” or
“proto day” as a day when developers discuss and develop
new concepts and prototypes. This can also be seen as semi-
formal method as the aim is to produce new ideas.
“If these ideas are developed further, there is reward given.”
– Case A, Upper management

One interviewee mentioned a reward system as a
motivational factor in the innovation process. Its usefulness
is unclear, but Case A had been in the business for some
time, this system seems to work at least to some degree.

5) Sources of innovation are mostly in existing game

products and success stories
The most important sources for innovation and ideas for

new products were old games released for older generation
of game systems and popular, successful game products of
the current markets. All interviewed game designers
indicated that they used their past experiences with game
systems and old games as one of their source of innovation.

124Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 144 / 646

 “Our newest game is inspired by this old game from the
90’s… it basically was the initial model for our design. We
made our thing on top of that.” – Case D, Lead Designer

Beyond prior experiences with games, some of the case
organizations did actual market reviews and analyzed
success stories. In Cases B, C, F and G the organization paid
close attention to the business, analyzing why some games
were successful and what sort of features the current
successes had incorporated. Case E added also technical
point of view into these analyses.

“We know about markets enough because we took our
demo to [industry convention] and talked with people. We
met over 30 people from the industry to understand what
publishers look for”…”Now we know that we are doing the
right thing.” – Case G, Upper Management

“With our prototypes we also test out to see if the
technical solution is capable of doing what we want it to
do.” – Case E, Project Manager

Besides success stories, existing products and
competition analysis, other sources for innovation in product
design were movies, books and other popular media. The
only popular media that was mentioned several times as a
source of innovation was summer blockbuster movies.

“…Also movies, we use movie references really too
much.” – Case A, Lead Designer

6) Start-ups are business-driven in game industry
Six out of seven case organizations described their

ideology as “money first” (see Table 3). We can argue that
these companies have understood that technology itself has
no value [22], as it is the responsibility of the company to
monetize the technology. In addition four out of these six
“money first” organizations described their
marketing/finance design as “has to be profitable”, “business
first” or “finance has to be taken into account”. The one
organization that had the philosophy of doing “innovation,
hopefully money” wanted to “make fun demo” and then sell
it. With these opposite philosophies we saw that money
played the most important role for almost all cases.

In addition to the rows innovation vs. money and effects
of marketing in design, money and selling are also listed in
three cases in objectives in the design phase. Although this
paper focuses on design and innovation we also observed
that selling, business and money were important issues for
almost all the companies. For example, Case D goes with
“money first”, “business first” and its design objective is
“game that sells”; they are going with business-driven
development where the aim of software development is
satisfy business requirements [37]. Case C, as an opposite,
goes with “innovation”, “make fun demo and sell it” and its
design objective is to “test if the concept is fun”. Although
Case C has a different attitude than the rest of the
organizations, it has still managed to establish itself.

In Figure 2 we present seven case organization units and
both their number of released products and their business-
drivenness. The latter is calculated from Table 3 by using
rows objectives in the design phase, innovation vs. money
and effects of marketing in design. If business/money is
mentioned as a first thing 1 point is gained. If it is mentioned

as second thing 0.5 points are gained. If it is not mentioned,
no points are gained. Maximum is three points.

Figure 2: Number of released products from Cases and their business-

drivenness

The Cases D, F and G are all making their first product
and they are also business-driven as the lowest score among
them is 2. On the other hand the rest of the companies have
already released at least one game and among them the
highest score is 2. As several cases described that they first
aim to make profit and after that produce games they really
want to do. Our observations support the concept that newly
established game companies are more business-driven and
think more about money whereas companies who have
already released successful products can concentrate more on
other than immediate economic issues.

“I would like to make a game that is a landmark… But
first I aim that we can do economic success, which would
give us economic freedom which would give us freedom to
ourselves to do artistic game.” – Case D, project manager

V. DISCUSSION

In this work the core category is the Overall Objectives
of the Innovation and Design in Games. Based on our
observations, the game products are designed with creative
processes comparable to movies or any other artistic
creation, but games are not intended to be art for art’s sake,
they are designed and intended to be commercial products
which generate income. All game developers interviewed in
this study considered themselves to be doing more or less
creative work, but in all organizations the most important
objective in product design was in commercial success.

The concept that games are designed based on business
aspects can also be observed from the viewpoint of design
principles. In some organizations the most important design
aspect was in developing “fun” product, but in the long run
the organization was still aiming at commercial success.
When faced with the dilemma of selecting between a
commercially successful but forgettable and critically
acclaimed but commercially adequate product, all
interviewees selected the commercially successful product.
In all organizations marketing and marketability had at least
some effects on the product design. In Cases B, D, E, F and
G the financial aspects dictated the products the organization
was developing, and even in the larger Cases A and C, the
product had to have a clear audience and a reasonable
expectation for profit before the product would advance from
a proof-of-concept prototype onwards.

125Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 145 / 646

Considering the research questions, “How game studios
design their products” and “How game-developing
organizations innovate and make business?”, the results
indicate that the design process is usually led by one
individual, who uses the team input as suggestions. The
initial concepts are heavily influenced by the “vision” of the
new product, and the decisions on which designs mature
from proof-of-concept prototypes to fully developed
products is usually dictated by the potential for revenue. The
common source for innovation in game development seems
to be legacy games, experiences gathered from other game
products and movies. The marketing and business aspects
also heavily affect the innovation process.

None of the organizations used formalized methods when
developing new ideas and concepts. The methods used were
merely ad-hoc and ideas “just emerged” rather than were
systematically developed, with a few exceptions of “proto
days” and team brainstorming. In addition, companies seem
to be more business-driven when they are starting up and
establishing their position. After that they can be more
innovative and concentrate less on monetizing ideas.

In grounded theory study, there are threats to validity. As
the method of data collection was based on semi-structured
interviews, threats such as personal bias caused by the
researchers or questionnaire are valid concerns. For example,
a study by Whittemore et al. [38] lists integrity, authenticity,
credibility and criticality as primary criteria for validity in
qualitative studies. The aim is to describe the observed
phenomenon and the applied approach with enough details to
warrant that the analysis process has been critically designed,
unbiased and faithful to the data. Similar considerations have
been expressed by Morse et al. [39]. The nature of the
qualitative studies requires the presentation to constantly
verify the collected data and analysis results to achieve the
necessary rigor for a trustworthy qualitative study.

In our study, the validity concerns have been addressed
with several precautions. The data collection instruments
were developed by seven researchers from two different
research groups. Before the first interview round, the data
collection instrument was peer-reviewed for sanity and
neutrality within the research group. The instruments were
further developed during the data collection, and the data
collection itself was conducted by six researchers. For this
study, the data analysis was conducted and discussed by
three researchers, with conflicts resolved with discussions
during meetings. To minimize the bias caused by the release
platforms, business types or interviewee roles, the interviews
were collected from different types of interviewees, and the
case study organizations were selected to represent different
areas of game industry in business maturities, sizes and
business platforms. In any case, these qualitative results are
valid only in this environment, and beyond the scope of this
study these results should be used as recommendations or
indications of possible organizational activities.

VI. CONCLUSIONS

We have introduced our grounded theory study on the
game developing organizations. We observed seven game
developing organizations by interviewing 27 industry

professionals encompassing different roles such as project
managers, developers and game designers. Our results
suggest that game design and innovation are closely related
to the economic aspects of the game industry. The design
objective is to generate income with development projects
that are considered feasible for economic success. In many
organizations the creative game design work is done by one
person or a small group of people who have creative control
over the project, although in some cases group decisions also
have influence. The main sources of innovation in game
design seem to be in the existing game products and industry
success stories, with some novel concepts taken from
popular media, mostly from movies.

The organizations in our study had different attitudes
towards business and innovations. Whereas most of the
organizations wanted to build their business on a business-
driven model, one organization pushed successfully ahead
with creativity, innovation and fun. It seems that start-up
organizations are business-driven in the beginning because
they need to established their position and secure their future
in the industry.

The results of this study can be used to understand the
business practices and development processes of the game
industry. In future work, the business modeling methods and
effects of marketing to the development processes should be
addressed in more detail to study how much influence the
business decisions have on the development in practice.

ACKNOWLEDGMENT

This study was supported by the European Union
Regional Development Fund project number A31814,
“Kaakon Peliklusteri”, administered by the Council of
Southern Karelia, Finland and the organizations funding the
related research project. We would also like to thank all the
interviewed organizations and the project partners, especially
Cursor Oy.

REFERENCES

[1] A. Kultima and K. Alha, “Hopefully Everything I’m Doing

Has to Do with Innovation: Games industry professionals on
innovation in 2009”, Proc. 2nd International IEEE Consumer
Electronics Society’s Games Innovation Conference, Hong
Kong, China, 2010.

[2] J., Blow, “Game Development: Harder Than You Think”,
Queue, Vol. 1(10), February 2004, pp. 28–37.

[3] C.M. Kanode and H.M. Haddad, “Software Engineering
Challenges in Game Development”, Proc. 2009 Sixth
International Conference on Information Technology: New
Generations, 27.-29.4., Las Vegas, USA, 2009. DOI:
10.1109/ITNG.2009.74

[4] J. Kasurinen, J-P Strandén and K. Smolander, “What do game
developers expect from development and design tools?”, In
Proceedings of the 17th International Conference on
Evaluation and Assessment in Software Engineering (EASE
'13). ACM, New York, NY, USA, 2013. pp. 36-41.
DOI=10.1145/2460999.2461004

[5] J. Kasurinen, R. Laine and K. Smolander, “How applicable is
ISO/IEC 29110 in Game Software Development?”, accepted
to the Proc. 14th Int. Conf. on Product-Focused Software
Development and Process Improvement (Profes 2013), 12.6.-
14.6.2013 Paphos, Cyprus, 2013.

126Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 146 / 646

[6] L. Riungu-Kalliosaari, J. Kasurinen and K. Smolander,
”Cloud Services and Cloud Gaming in Game Development”,
accepted to the Proc. Cloud services and cloud gaming in
game development, accepted to the Proc. IADIS International
Conference: Game and Entertainment Technologies 2013,
22.-24.7. Prague, Czech Republic.

[7] Entertainment Software Association (ESA), “2011 Sales,
demographic and usage data: Essential facts about computer
and video game industry”, 2011.

[8] M. Peltoniemi, “Life-cycle of the Games Industry The
Specificities of Creative Industries”, Proceedings of the
Mindtrek’08, 7.-9.10.2008, Tampere, Finland.

[9] S. Gallagher and S.H. Park, Innovation and competition in
standard-based industries: a historical analysis of the US
home video game market, Engineering Management, IEEE
Transactions on vol.49, no.1, Feb 2002, pp.67-82. doi:
10.1109/17.985749

[10] M. Dymek, Content Strategies of the Future: Between Games
and Stories – Crossroads for the Video Game Industry, Proc.
3rd Int. Conf. on Digital Interactive Media in Enterntainment
and Arts (DIMEA’08), 10.9.-12.9.2008, Athens, Greece,
2008.

[11] D. Callele, E. Neufeld and K. Schneider, “Requirements
engineering and the creative process in the video game
industry”, in Requirements Engineering, 2005. Proceedings.
13th IEEE International Conference on, pp. 240 – 250.

[12] P. Zackariasson and T.L. Wilson, “Paradigm shifts in the
video game industry”, Competitiveness Review: An
International Business Journal incorporating Journal of Global
Competitiveness 20, 2010, pp. 139–151.

[13] T.R. Alves and L. Roque, “Because Players Pay: The
Business Model Influence on MMOG Design”, Situated Play,
Presented at the DiGRA 2007, Tokyo.

[14] M.R. Nelson, H. Keum, and R.A. Yaros, Advertainment or
Adcreep? Game Players’ Attitudes toward Advertising and
Product Placements in Computer Games. Journal of
Interactive Advertising 5, 2004, pp. 3–21.

[15] A. Ojala and P. Tyrvainen, “Developing Cloud Business
Models: A Case Study on Cloud Gaming”, IEEE Software 28,
2011, pp. 42–47.

[16] D.J. Teece, “Business Models, Business Strategy and
Innovation”, Long Range Planning 43, 2010, pp. 172–194

[17] M. Yang, D. Roskos-Ewoldsen, L. Dinu and L. Arpan, “The
Effectiveness of “in-Game” Advertising: Comparing College
Students’ Explicit and Implicit Memory for Brand Names”,
Journal of Advertising 35, 2006, pp. 143–152.

[18] S. Youn, M. Lee and K.O. Doyle, “Lifestyles of Online
Gamers: A Psychographic Approach”, Journal of Inter 3,
2003.

[19] J. Hamari And A. Järvinen, A., ”Building Customer
Relationship through Game Mechanics in Social Games.
Business, Technological and Social Dimensions of Co mputer
Games: Multidisciplinary Developments”, IGI Global, 2011,
Hersey, PA, USA.

[20] H. Tyni, O. Sotamaa and S. Toivonen, S., “Howdy pardner!:
on free-to-play, sociability and rhythm design in
FrontierVille”, Proceedings of the 15th International
Academic MindTrek Conference: Envisioning Future Media
Environments. ACM, Tampere, Finland, 2011, pp. 22–29.

[21] J.-M. Vanhatupa, ”Business model of long-term browser-
based games - Income without game packages”, 7th
International Conference on Next Generation Web Services
Practices (NWeSP), 2011, pp. 369–372.

[22] H. Chesbrough, “Business model innovation: it’s not just
about technology anymore”, Strategy & Leadership 35, 2007,
pp. 12–17.

[23] J. Kasurinen, O. Taipale and K. Smolander, K., “Analysis of
Problems in Testing Practices”, Proc.of the 16th Asia-Pacific
Software Engineering Conference, 1.12.-3.12.2009, Penang,
Malaysia, 2009. doi: /10.1109/APSEC.2009.17

[24] Strauss, A. and Corbin J. (1990). Basics of Qualitative
Research: Grounded Theory Procedures and Techniques.
SAGE Publications, Newbury Park, CA, USA.

[25] B. Glaser and A.L. Strauss, “The Discovery of Grounded
Theory: Strategies for Qualitative Research”, Chicago:
Aldine, 1967.

[26] J.C. van Niekerk and J.D. Roode, J.D., “Glaserian and
Straussian grounded theory: similar or completely different?”,
Proc. of the 2009 Annual Research Conference of the South
African Institute of Computer Scientists and Information
Technologists, Vanderbijlpark, South Africa, 2009. DOI:
10.1145/1632149.1632163,

[27] J. Hughes and S. Jones, "Reflections on the Use of Grounded
Theory in Interpretive Information Systems Research" . ECIS
2003 Proceedings. Paper 62.
http://aisel.aisnet.org/ecis2003/62

[28] K.M. Eisenhardt, 'Building Theories from Case Study
Research', Academy of Management Review, vol. 14, no. 4,
1989, pp. 532-550.

[29] G. Paré and J.J. Elam, “Using Case Study Research to Build
Theories of IT Implementation”, The IFIP TC8 WG
International Conference on Information Systems and
Qualitative Research, Philadelphia, USA. Chapman & Hall,
1997.

[30] H.K. Klein and M.D. Myers, "A set of principles for
conducting and evaluating interpretive field studies in
information systems”, MIS Quarterly, vol. 23, 1999, pp. 67-
94.

[31] J. Kasurinen, O. Taipale, and K. Smolander, “Software Test
Automation in Practice: Empirical Observations”, Advances
in Software Engineering, Special Issue on Software Test
Automation, Hindawi Publishing Co., 2010. doi:
10.1155/2010/620836

[32] European Comission, "The new SME Definition User guide
and model declaration" Enterprise and Industry Publications,
European Commission, 2003.

[33] C.B. Seaman, "Qualitative methods in empirical studies of
software engineering", IEEE Transactions on Software
Engineering, vol. 25, 1999, pp. 557-572.

[34] D.J. Hall, “The role of creativity within best practice
manufacturing”, Technovation 16, 1996, pp. 115–121.

[35] A. Kultima and J. Paavilainen, ”Creativity techniques in game
design”, Presented at the FuturePlay 2007, ACM Press,
Toronto, Canada, 2007, pp. 243.

[36] P.C. Shih, G. Venolia and G.M. Olson, “Brainstorming under
constraints: why software developers brainstorm in groups”,
Proceedings of the 25th BCS Conference on Human-
Computer Interaction. British Computer Society, Newcastle-
upon-Tyne, United Kingdom, 2011, pp. 74–83.

[37] J. Koehler, R. Hauser, J. Küster, K. Ryndina, K., J. Vanhatalo
and M. Wahler, ”The Role of Visual Modeling and Model
Transformations in Business-driven Development”, GT-VMT
2006. Presented at the 5th International Workshop on Graph
Transformation and Visual Modeling Techniques, Vienna,
Austria, 2006, pp. 1–12.

[38] R. Whittemore, S.K. Chase, C.L. Mandle, “Validity in
Qualitative Research”, Qual Health Res, July 2001, Vol. 11,
pp. 522-537. doi:10.1177/104973201129119299

[39] J.M. Morse, M. Barrett, M. Mayan, K. Olson and J. Spiers,
“Verification Strategies for Establishing Reliability and
Validity in Qualitative Reseach”, International Journal of
Qualitative Methods, Vol 1(2)., 2002.

127Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 147 / 646

An Automatic Petri-net Generator for Modeling Multi-agent Systems

Meriem Taibi, Malika Ioualalen, Riad Abdmeziem
LSI - USTHB

Algiers, Algeria
emails: {taibi,ioualalen,abdmeziem}@lsi-usthb.dz

Abstract— A multi-agent system can be studied as a
concurrent, asynchronous, stochastic and distributed computer
system. These characteristics of multi-agent systems make
them also a discrete-event dynamic system; it is, therefore,
important to analyze the behavior of such system to ensure that
it terminates correctly and satisfies other important properties.
Several analytical methodologies have been used to study
multi-agent system, particularly Petri nets. Petri nets have a
well-defined mathematical structure that can be leveraged to
provide formal analysis on discrete-event systems. In this work,
we propose an automatic transformation to model multi-agent
systems using Colored Petri nets.

Keywords-Multi-agent system; Colored Petri net; Modeling; De-
scription language.

I. INTRODUCTION

Multi-agent systems have been widely studied in the past
few decades, where several frameworks have been defined
in order to apply the multi-agent system concept to different
applications in control and optimization of complex systems
[1][2]. An agent is a computer system or computer program
that presents several complex characteristics. A Multi-Agent
System (MAS) [3] consists of a set of agents, interacting to
achieve a common goal. Generally, MAS are known to work
properly in a dynamic large-scale complex environment (open
environment), thanks to several properties like: autonomy,
adaptability, robustness and flexibility. The complexity and
capabilities of a multi-agent system are greater than those
presented in distributed software systems. In both cases, the
study of system properties is becoming more important due to
the fact that we are faced more and more to deal with large
complex dynamic systems.

Tests and simulations have contributed for a long time to
validate such systems. However, these techniques allow to
investigate just a part of the global behavior. By that, they
differ from the formal verification techniques, which ensure
that a property is verified by all possible system executions.

Therefore, the important challenge in this field is the de-
velopment of analytical methods to assess key properties of
such systems. Such methods could be used to impart a pre-
liminary analysis of the multi-agent system, providing design
and operation feedback before the development of expensive
systems. Many models based on Belie f −Desire− Intention
(BDI) architecture were proposed in [4] and [5].

Other works include various attempts to deliver a formal
model from AUML (Agent Unified Modelling Language)
diagrams [6][7]. The advantage of these methods is that most
developers are familiar with the (A)UML and an automatic

transformation of their diagrams into formal models and
model-check them, would greatly simplify the software quality
control. The difficulty is that AUML diagrams allow much
more freedom for the designer than formal models and the
automatic translation is not trivial.

Petri nets have a well-defined mathematical structure that
can be leveraged to provide formal analysis on discrete-event
systems. In addition, Petri nets have been successfully used
in several areas for the modeling and analysis of distributed
systems [8].

Several studies have been proposed to model MAS with
Petri nets (PN). In [9], a model was proposed for a promotional
game of viral marketing on the Internet. Specifically, authors
used stochastic Petri nets for modeling a multi-agent wish list.
As well, Gazdare [10] used Colored Petri nets (CPN) as a
formal method to model a transport system with containers,
then, simulate and solve the storage problem. In EL Fallah-
Seghrouchni [11], Boukredera [12] and Khosravifar [13],
authors also proposed to use the CPN formalism to model
interaction protocols.

In this work, we propose an automatic transformation for
modeling multi-agent systems. This automation is based on
two steps: first, the system is described using a language called
MASDL, then, a set of transformation rules are applied to
obtain the CPN models.

This document is organized as follows. Motivations and the
problem statement are presented next. Section III gives an
introduction to MAS. Section IV presents the main aspects
of the language we define to specify MAS. In Section V, we
present our transformation algorithm allowing to model MAS
using CPN. Section VI presents our application, and finally,
Section VII discusses the obtained results and presents future
work.
We assume that the reader is familiar with Colored Petri net
[14].

II. MOTIVATIONS

The Petri nets can be considered as graphic and mathe-
matical tools of modeling and analyzing the discreet system,
particularly the competitive, parallel and non-determinist ones.
In the field of MAS, the previous works of the Petri nets
concentrated on their uses and not on the creation of the
new tools and platforms. The goal of our work is to develop
a platform which generates automatically models for multi-
agent system using CPN. The system in question must be
described in an intermediate language. We find in literature
two classes of specification languages [15][16]. The first allows
the definition of agent and its behavior (e.g., AgentSpeak [17])

128Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 148 / 646

and the other describes the system environment (e.g., ELMS
[18]). Therefore, the definition of a new language including
both aspects is necessary. We propose, then, a new language
based on XML. The use of XML has many advantages:

• Universality: The adoption of a simple and powerful
syntax which allows the representation of the most
generic models with hierarchical elements, attributes and
textual content.

• Interoperability: Thanks to their universal syntax, XML
documents are easily transportable and readable between
systems.

• Independence between models and data: We can write
an XML document without resorting ever to a schema.
If we need to validate the document, we can build a
schema afterward.

III. MULTI-AGENT SYSTEMS (MAS)

According to Weiss [19], agents are computational systems
situated in some environment, and are capable of autonomous
action in this environment in order to meet their design
objectives. Agents perceive and interact with each other via
the environment, and they act upon it, so that it reaches a
certain state where their goals are achieved. Consequently, the
MAS environment consists of a set of states S = {s1,s2, ...},
where an agent can undertake a set of actions A = {a1,a2, ...}
and perceive a set of percepts P = {p1, p2, ...}. Therefore, en-
vironment modelling is an important issue in the development
of multi-agent systems. Although, some multi-agent systems
may be situated in an existing environment, in agent-based
simulations, the environment is necessarily a computational
process too, so modelling multi-agent environments is always
an important issue. For this objective, we present in the next
section Multi-Agent System Description Language, a language
used for the specification of multi-agent environments.

IV. MULTI-AGENT SYSTEM DESCRIPTION LANGUAGE

In this section, we introduce the main aspects of the
language we defined for the specification of the multi-agent
system and its environment. The language is called Multi-
Agent System Description language (MASDL). MASDL is
inspired from the Environment Description Language for Multi
Agent Simulation (ELMS) language [18], which is an XML-
based language that provides the ability to describe multi-
agents.
The syntax and the various components of our language are
given below. The validation of the syntax is done using World
Wide Web Consortium (W3C) scheme which is a grammar
defined in XML formalism.

• MAS general structure: MAS specification contains
the name of the system, a list of agents, a set of
objects (system environment), a list of states (agents
states and objects states) and finally a list of ac-
tions may be performed by agents. The code sample

Listing 1 gives the general structure of the system.

Listing 1: MAS description structure

<MAS NAME = ””>
<AGENTS LIST>

<AGENT NAME = ””>
</AGENT>

</AGENTS LIST>
<OBJECTS LIST>

<OBJECT NAME = ””>
<OBJECT></OBJECTS LIST>

<STATES LIST>
<AGENT STATE LIST></AGENT STATE LIST>
<OBJECT STATE LIST></OBJECT STATE LIST>

</STATES LIST>
<ACTIONS LIST>

<ACTION NAME = ””></ACTION>
</ACTIONS LIST>

</MAS>

• Agent description: This description contains the name
of the agent, a list of its attributes (agent proper-
ties), the current state and list of actions. The fol-
lowing example in Listing 2, defines an agent named
agent1 which has an attribute prop1 of type type1
with a value val1. The agent1 has state agent1 like
initial state and can perform action1 and action2.

Listing 2: Agent description example

<AGENT NAME = ” a g e n t 1”>
<ATTRIBUTES>

<ATT NAME= ” prop1 ”
TYPE=” t y p e 1 ”
VALUE = ” v a l ”/>

</ATTRIBUTES>
<CURRENTSTATE>

<ITEM NAME = ” s t a t e a g e n t 1 ”/>
</CURRENTSTATE>
<ACTIONS>

<ITEM NAME = ” a c t i o n 1 ”/>
<ITEM NAME = ” a c t i o n 2 ”/>

</ACTIONS>
</AGENT>

• Resources description This concept allows the specifi-
cation of the different objects in the MAS environment
(all the entities in the environment that are not agent).
An object class includes its name, the current state of the
object, its identifier and the available quantity (a negative
amount is used in case where the amount is unlimited).

Listing 3: Example of object description

<OBJECTS LIST>
<OBJECT NAME = ” O bje t1”>

<ATTRIBUTES>
<ATT NAME= ” q u a n t i t y ”

TYPE= ” i n t ”
VALUE=”100”/>

</ATTRIBUTES>
<CURRENTSTATE>

<ITEM NAME = ” s t a t e r e s ”/>
</CURRENTSTATE>

</OBJECT>
</OBJECTS LIST>

The code sample Listing 3 above, defines a resource
called object1. This object has an integer attribute rep-
resenting the number of units available in the system
and current state state res.

129Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 149 / 646

• State description The state is defined in the tag
<AGENT STATE LIST> when it relates to agents and
in the tag <OBJECT STATE LIST> when it concerns
resources. A state is described by its name and an infor-
mal description given by the designer, it corresponds to
the semantics of the state. A state represents a situation
in which an agent or a resource can be, during the
running of the system. In Listing 4, the code exemplifies
definition of two states (one for agent state and the
second for resource one).

Listing 4: Description of states
<STATES LIST>

<AGENT STATE LIST>
<STATE NAME = ” s t a t e a g e n t 1 ”>
<DESCRIPTION></DESCRIPTION>
</STATE>

</AGENT STATE LIST>
<OBJECT STATE LIST>

<STATE NAME = ” s t a t e r e s ”>
<DESCRIPTION></DESCRIPTION>
</STATE>

</OBJECT STATE LIST>
</STATES LIST>

• Action description The description of the action in-
cludes its name, its content and an informal description.
Content specifies the agents that are involved in the
execution of the action and also the potential resources
(objects) needed. The agents specification includes their
name, input and output states. An action can be executed
by an agent, if it is in the defined input state. These states
represent the preconditions of the action.
Resources can also be instantiated or removed by action.
The specification of resources including their type, input
and output states and the number of units to subtract
(sub quantity entry) or to add (add quantity exit).

Listing 5: Action description
<ACTIONS LIST>

<ACTION NAME = ” a c t i o n 1”>
<CONTENT>

<ACTIONS AGENT>
<ACTION ITEM NAME= ”Ag”
ENTRYSTATE =” s t a t e 1 A g ”
EXITSTATE=” s t a t e 2 A g ”/>

</ACTIONS AGENT >
<ACTIONS OBJECT>

<ACTION ITEM NAME= ” Res ”
ENTRYSTATE=” s t a t e 1 R e s ”
EXITSTATE=” s t a t e 2 R e s ”
SUB QUANTITY ENTRY= ”2”
ADD QUANTITY EXIT=”5”/>

</ACTIONS OBJECT>
</CONTENT>
<DESCRIPTION>

<!−− I n f o r m e l D e s c r i p t i o n−−>
</DESCRIPTION>

</ACTION>
</ACTIONS LIST>

In the example above Listing 5, an action named action1
is defined and has as a precondition: the agent Ag must
be in the state state1 Ag and the object Res in the state
state1 Res. As a result of the execution of this action,
the agent Ag will be in the output state state2 Ag and
the resource Res in state2 Res state with the production
of three units of this resource.

V. AUTOMATIC MULTI-AGENT MODELING USING CPN
The objective of this section is to give an algorithm allowing

to transform a description of multi-agent system to Colored
Petri net models. The CPN models obtained are written in a
XML based language with a specific syntax which we call
Petri Net Description Language (PNDL).

A. Transformation algorithm
The transformation algorithm 1 allows to generate automat-

ically CPN models of the described system. The important
steps of the algorithm are given in Fig. 1. Based on MASDL
language, the system is defined by a set of states S= {s1,s2, ...}
and agent is able to perform a set of actions A = {a1,a2, ...}.
The execution of an action causes changes in the environment.

Fig. 1: Schema of the modeling process.

• Algorithm assumptions: We assume that our algorithm
has as input and output data the following sets, described
in the Fig. 2, which are calculated from the MASDL
system specification.

Name Description
AG Set of agent
RE Set of resources
SA Set of agents states
SR Set of resources states
AC Set of actions
P Set of places
T Set of transitions

Arc Set of Arcs
C1 Color with the structure < id,state >
C2 Color with the structure < id,state,quantity >

Fig. 2: Algorithm’s input and output data

The algorithm also uses a set of predefined functions,
the definition of which is as follows:

130Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 150 / 646

◦ Act : AG → AC: Act(a) allows to give all the
actions which can be made by the agent a,

◦ ActR : RE→ AC: ActR(r) calculates all actions that
affect the resource r,

◦ Entry Agent : AG⊗ AC → SA: Returns the entry
state of one agent to undertake an action

◦ Entry ob ject : RE ⊗AC→ SR: Returns the entry
state of one resource to undertake an action states,

◦ Exit Agent : AG⊗AC→ SA:Returns the exit state
of one agent after action execution,

◦ Exit ob ject : RE⊗AC→ SR: Returns the exit state
of one resource after action execution,

◦ Sub Ob ject : RE⊗AC→ N: Gives the number of
units to subtract from one resource after action
execution,

◦ Add Ob ject : RE⊗AC→ N: Gives the number of
units to add to one resource after action execution,

◦ Create Place(): Allow to create places,
◦ Create Transition(): Allows to create transitions,
◦ Create Arc(): Creates arcs connecting places to

transitions or vice versa.

Algorithm 1 Petri net Generator
P←�
T ←�
for each sa ∈ SA do

Create Place(psa)
P← P∪ psa

end for
for each sr ∈ SR do

Create Place(psr)
P← P∪ psr

end for
for each c ∈ Act(a) do

Create Transition(ta)
T ← T ∪ ta

end for
for each a ∈ AG do

for each c ∈ Act(a) do
sa← Entry Agent(a,c)
sa′← Exit Agent(a,c)
Create arc(psa, ta) with color function 1/ < a,sa >
Create arc(ta, psa′) with color function 1/ < a,sa′ >

end for
end for
for each r ∈ RE do

for each c ∈ ActR(r) do
sr← Entry Agent(r,c)
sr′← Exit Agent(r,c)
Create arc(psr, tc) with color function
Sub Ob ject(r,c)/ < r,sr,quantity >
Create arc(ta, psa′) with color function
Add Ob ject(r,c)/ < r,sr′,quantity >

end for
end for

• Initial marking: the initial state is calculated as:

1) If an agent a is initially in the state sa, we put one
token of color < a,sa >∈C1, in the place psa;

2) If an resource r is initially in the state sr, we put
one token of color < r,sr,quantity >∈C2, in the
place psr;

B. Output format
We propose an XML-based language for the description of

the models generated by the algorithm. We entitle our language
Petri Net Description Language, which is based on the tags
<PLACES>, < T RANSIT IONS> and <ARCS> to describe
the model and on <COLORS > and < TOKENS > to give its
marking. The general structure of the language is presented in
the following Listing 6:

Listing 6: Description of CPN Model
<RDPC NAME = ” RdP Example”>

<PLACES>
<PLACENAME = ” p1”/>

</PLACES>
<TRANSITIONS>

<TRANSITIONNAME = ” t 1 ”/>
</TRANSITIONS>

<ARCS>
<PRE ARCS>

<ARC FROM ” p1 ” TO ” t 1”>
<WEIGHT COLOR = ” c1 ” PRE = ”1”/>
</ARC>

</PRE ARCS>
<POST ARCS>

<ARC FROM ” t 1 ” TO ” p1”>
<WEIGHT COLOR = ” c1 ” POST = ”1”/>
</ARC>

</POST ARCS>
</ARCS>
<COLORS>

<COLOR NAME = ” c1”>
<ITEM NAME = ” i d ” VALUE = ”01”/>

</COLOR>
</COLORS>
<TOKENS>

<TOKEN COLOR = ” c1 ” PLACE = ” p1”/>
</TOKENS>

</RDPC>

VI. RUNNING MASDL ENVIRONMENT

The use of XML provides various advantages, wide range
of XML tools are currently available and it can be useful
for the future development. The validation of the description
is done using W3C scheme. For the implementation of our
tool, we chose Java, which allows us to use Java Architecture
for XML Binding (JAXB) and Application Programming
Interface (API) to create XML application data. The global
architecture of our application is shown in Fig. 3.

Our tool allows users to introduce environment
specifications from a graphical interface, as shown in
Fig. 4. With this interface, users do not need to deal with the
language syntax but just fill the different fields.

Filled fields will be checked and compiled to generate
the corresponding XML file, as shown in Fig. 5, on which
the transformation algorithm will be applied. To generate a

131Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 151 / 646

Fig. 3: The global architecture

graphical representation of the Petri net model, as shown in
Fig. 6, we use the GraphViz tool [20].

Fig. 4: Tool interface

VII. CONCLUSION AND FUTURE WORKS

In this paper, we introduced the MASDL language, used
for the specification of the agents and their environment. The
language is based on XML and is independent of the agent
runtime platform and implementation language. We defined
also transformation rules to obtain formal models from the
system specification to analyze and verify the described multi-
agent system. We plan in our further work to connect our tool
to another verification tool, as CPN Tool or GreatSPN for the
general properties verification (deadlock, boundedness, etc.).
We will focus mainly on extending our model by introducing
the temporal dimension in order to perform a quantitative
analysis and compute MAS system performances (average
waiting time, average resources available, etc.).

Fig. 5: MASDL file exemple

Fig. 6: Petri net generation

REFERENCES

[1] M. Greaves, V. Stavridou-Coleman, and R. Laddaga, “Guest editors’
introduction: Dependable agent systems,” IEEE Intelligent Systems, NJ,
USA, vol. 19, September 2004, pp. 20-23.

[2] S. S. Heragu, R. J. Graves, B.-I. Kim, and A. St Onge, “Intelligent agent
based framework for manufacturing systems control,” Trans. Sys. Man
Cyber. Part A, NJ, USA, vol. 32, no. 5, September 2002, pp. 560-573.

[3] J. Ferber, Les systèmes multi-agents vers une intelligence collective.
Inter-Editions, 1995.

[4] H. Mouratidis, M. Kolp, P. Giorgini, and S. Faulkner, “An architectural
description language for secure multi-agent systems,” Web Intelli. and

132Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 152 / 646

Agent Sys., Amsterdam, The Netherlands, vol. 8, no. 1, January 2010,
pp. 99-122.

[5] M. Dziubiński, “Complexity of multiagent bdi logics with restricted
modal context,” in The 10th International Conference on Autonomous
Agents and Multiagent Systems - Volume 3, ser. AAMAS ’11. Inter-
national Foundation for Autonomous Agents and Multiagent Systems,
Taipei, Taiwan, 2011, pp. 1171–1172.

[6] S. Maalal and M. Addou, “A new approach of designing multi-agent
systems,” CoRR, vol. abs/1204.1581, 2012.

[7] L. J. B. Ayed and F. Siala, “Event-b based verification of interaction
properties in multi-agent systems,” JSW, vol. 4, no. 4, 2009, pp. 357-
364.

[8] J. R. Celaya, A. A. Desrochers, and R. J. Graves, “Modeling and
analysis of multi-agent systems using petri nets,” JCP, 2009, pp. 981-
996.

[9] C. Balague, “Multi-agent system in marketink: Modelisation by petri
net,” Ph.D. dissertation, École des Hautes études Commerciales, 2005.

[10] M. K. Gazdare, “Heuristic optimization of distributed problem storage
containers in port,” Ph.D. dissertation, ECOLE CENTRALE DE LILLE,
2008.

[11] A. El Fallah-Seghrouchni, S. Haddad, and H. Mazouzi, “Protocol
engineering for multi-agent interaction,” in International Workshop on
Modeling Autonomous Agents in a Multi-Agent World (MAAMAW),
Valencia, Spain, 1999.

[12] D. Boukredera, S. Aknine, and R. Maamri, “Modeling temporal aspects
of contract net protocol using timed colored petri nets,” in STAIRS,
December 2012, pp. 83–94.

[13] S. Khosravifar, “Modeling multi agent communication activities with
petri nets,” International Journal of Information and Education Tech-
nology, Singapore, vol. 3, no. 3, September 2013, pp. 310–3014.

[14] K. Jensen, Coloured Petri nets: basic concepts, analysis methods and
practical use, vol. 2. London, UK, UK: Springer-Verlag, 1995.

[15] M. M. Dastani, C. M. Jonker, and J. Treur, “A requirement specification
language for configuration dynamics of multi-agent systems,” Interna-
tional Journal of Intelligent Systems., vol. 19, 2004, pp. 277–300.

[16] M.-P. Huget, “Agent uml notation for multiagent system design,” IEEE
Internet Computing, Piscataway, NJ, USA, vol. 8, no. 4, 2004, pp. 63–
71.

[17] A. S. Rao, “Agentspeak(l): Bdi agents speak out in a logical computable
language,” in Proceedings of the 7th European workshop on Modelling
autonomous agents in a multi-agent world : agents breaking away:
agents breaking away, ser. MAAMAW ’96. Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 1996, pp. 42–55.

[18] F. Y. Okuyama, R. H. Bordini, and A. C. da Rocha Costa, “Elms:
an environment description language for multi-agent simulation,” in
Proceedings of the First international conference on Environments for
Multi-Agent Systems, ser. E4MAS’04. Berlin, Heidelberg: Springer-
Verlag, 2005, pp. 91–108.

[19] G. Weiss, Ed., Multiagent systems: a modern approach to distributed
artificial intelligence. Cambridge, MA, USA: MIT Press, 1999.

[20] Graphviz - graph visualization software. http://www..graphviz.org. Re-
trieved: June, 2013.

133Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 153 / 646

Data From Configuration Management Tools As Sources
For Software Process Mining

Jana Šamalíková, Rob Kusters, Jos Trienekens, Ton Weijters,

IS, IE&IS
University of Technology Eindhoven

Eindhoven, The Netherlands
j.j.m.trienekens@tue.nl

Abstract—Process mining has proven to be a valuable
approach that provides new and objective insights into
processes within organizations. Based on sets of well-
structured data, the underlying ‘actual’ processes can be
extracted and process models can be constructed
automatically, i.e., the process model can be ‘mined’.
Successful process mining depends on the availability of well-
structured and suitable data. This paper investigates the
potential of software configuration management (SCM) and
SCM- tools for software process mining. In a validation
section, data collected by a SCM tool in practice are used to
apply process-mining techniques on a particular software
process, i.e., a Change Control Board (CCB) process in a large
industrial company. Application of process mining techniques
revealed that although people tend to believe that formally
specified and well-documented processes are followed, the
‘actual’ process in practice is different. Control-flow discovery
revealed that in the CCB process in most of the cases, i.e., 70%,
an important CCB task ‘Analysis’ was skipped.

Keywords-software configuration management; process
mining; validation

I. INTRODUCTION
 Software process improvement is a cyclic activity during

which improvements are planned, applied and their impact is
analyzed. Before planning improvements, the current state of
the software process has to be assessed. Nowadays, process
assessment is based on process descriptions obtained from
quality manuals and process standards, as well as on
information that is derived from interviews and brainstorm
sessions with representative software developers [1]. A
promising alternative way to obtain close-to-the-reality
process descriptions is process mining. Process mining has
proven to be a valuable approach that provides new and
objective insights into the way processes are actually carried
out within organizations [2], [3], [4]. In a number of case
studies, event logs were created from data that were
automatically recorded by process-enactment systems. Based
on sets of well-prepared data, the underlying ‘actual’
processes can be extracted and process models can be
constructed automatically, i.e., the process model can be
‘mined’. Software developing organizations use various
types of software tools to support and manage their software
development processes, e.g., configuration management
tools, inspection tools and testing tools. In this paper, we will
focus on software configuration management (SCM) and

SCM tools as a good example of process support tools.
"Software Configuration Management (SCM) tools are ‘the’
real process-centered tools due to their ability to model,
support and enact the processes by which all software
developers are supposed to manipulate the product” [6]. In
SCM tools, several types of data about the development
processes are stored, such as data about the tasks or activities
that are carried out by the developers, and data about the
creation of and the changes on software components.
Various SCM tools can provide so-called 'audit trails' of the
collected data. However, data logged during software
development are often not intended for process mining. It is
necessary to investigate whether the data logged by SCM
tools could in principle be used for process mining. For
example regarding process mining, these data should have a
notion of a process (e.g., time-stamp data), but they should
also offer the possibility to identify particular objects with
particular attributes that are handled by a process. In process
mining, these objects are called 'cases'. The aim of this paper
is to evaluate selected SCM tools regarding their potential to
provide data for process mining. The paper is organized as
follows. In Section 2, a structured overview is derived of the
data types that are required for the application of process
mining techniques. Section 3 identifies, from the viewpoint
of process mining, the data that play a central role in the
software processes, which are supported by SCM.
Subsequently, Section 4 investigates the potential of selected
SCM tools to provide the required data for software process
mining. Section 5 finalizes the paper with conclusions and
points to future work to be done.

II. PROCESS MINING TECHNIQUES AND THE DATA
THAT THEY REQUIRE

Process mining techniques attempt to extract non-trivial
and useful process information from so-called audit trails. In
order to be useful for process mining an audit-trail has to be
transformed into an event log. Currently a variety of process
mining techniques is available and has been applied in
practice [7]. These mining perspectives and mining
techniques are described in more detail in the next
subsections.

A. The control-flow perspective and the data required
From the control-flow perspective process model

discovery techniques are applied to discover a process model
that specifies the relations between the activities in an event

134Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 154 / 646

log. The resulting mined process model is a ‘real’ model that
depicts the possible flows that were followed by particular
cases in an event log. Subsequently, conformance checking
can be carried out in order to compare the ‘official’ process
model with the ‘real’ process model as it is stored in the
event log. The data requirements for process model
discovery and conformance checking are: an event log
containing ordered sequences of events (i.e., of type ‘start’ or
‘end’) where each event refers to a case and each event refers
to an activity.

B. The performance perspective and the data required
The performance perspective focuses on the performance

of processes. Mining from the performance perspective
calculates the timeliness of cases, the execution times of
tasks, and reveals the bottlenecks in processes by calculating
waiting times (synchronization time). The throughput time
calculation technique can be applied if a timestamp of an end
event is recorded. This mining technique implements an
event log replay and therefore a ‘real’ process model is
required that captures the behavior in the event log. Applying
performance sequence analysis techniques reveals sequence
patterns that are present in an event log. Based on this
application, it is possible to determine which sequence
patterns are common and which patterns are less frequent.
The data requirements are respectively: an event log
containing ordered sequences of events where each event
refers to a case and each event refers to an activity, and
timestamps of the start and end event of activities.

C. The organizational perspective and the data required
The organizational perspective in process mining focuses

on the analysis of the interrelations among persons (or
groups of individuals) who are performing the activities in a
process, i.e., their social network. Social network analysis
techniques focus on the discovery and examination of the
social interrelations. Several types of social network mining
are possible with different types of results; such as a work
transfer model, a subcontracting model, a collaboration
model, and a similar activity model. Data requirements are
respectively: an event log containing ordered sequences of
activities, where each activity refers to a case, and each case
refers to an activity and to its originator.

D. The case perspective and the data required
A case is an ‘object’ that is being handled by a process.

Case attributes represent various case properties and together
they specify a case. Two types of case attributes exist: the
stable attributes (e.g., a defect id. or a phase in which a
defect was detected) and the dynamic attributes, which
become available during a process (e.g., a defect priority).
Both types of case attributes enable process mining from the
case perspective. The case perspective shows the process
based on the case types (i.e., a set of cases with the same or
similar attributes), discovering the data dependencies that
affect the routing of a case. Within the case perspective
decision analysis techniques are being applied. These
techniques focus at the way case attributes influence the
choices that are being made in the process, based on past

process executions. The data requirements of decision
analysis techniques are respectively: an event log containing
ordered sequences of events where each event refers to a
case and each event refers to an activity, and the case
attributes that are modified during the execution of activities.
Table I summarizes the event log data requirements per
process mining technique.

TABLE I. EVENT LOG DATA REQUIREMENTS

Required data

Process
 mining

techniques

Event log data

C
as

e
id

A
ct

iv
ity

Ev
en

t t
yp

e

Ti
m

es
ta

m
ps

O
rig

in
at

or

A
dd

iti
on

al
 a

ttr
ib

ut
es

Process model
discovery x x x

Conformance
checking x x x

Throughput
time

calculation,
bottleneck
analysis

x x x x

Performance
sequence
analysis

x x x x

Social network
analysis x x x x

Decision
analysis x x x x

III. SOFTWARE PROCESSES (AND THEIR CASES) THAT
ARE SUPPORTED BY SOFTWARE CONFIGURATION

MANAGEMENT
A key aspect of SCM in software development is version

management. A software component put under version
control is called a configuration item (CI). Besides managing
the versions of CIs in the software development process,
SCM supports the change control process, the problem
management, and the requirements management process. We
selected these four processes as well-structured and formally
described processes. In the following, we describe these
processes in more detail and we will investigate whether the
recorded data, i.e., their primary ‘cases’, can be used for
process mining.

135Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 155 / 646

E. Software development process
The software development process contains the activities of
developers that are performed during the software lifecycle.
The process contains activities for requirements analysis,
design, coding, integration, testing, and installation of
software products. During these activities, various software
components or CI's are produced [5]. Components are put
under version control and are controlled by SCM. Therefore,
we identify a software component as a case that is handled
by the software development process.

F. Change control process
The change control process manages the change requests

to a software product. Configuration management is in
general under control of a CCB [1]. A CCB coordinates
changes made to CI’s. The CCB tracks and records the status
of each change request, e.g., labeled as defects, from its entry
until its exit from the CCB process. The CCB distributes
tasks related to the required changes of CI’s and evaluates
the outcomes of the executed tasks with respect to the
requests. A so-called audit trail is available, where each
modification, the reason for the modification, and the
authorization of the modification can be traced. Based on the
foregoing we identify a change request as a case that is
handled by the change control process.

G. Problem resolution process
The problem resolution process is established for

handling problems detected in software products and
activities. The process ensures that all detected problems are
promptly reported and entered into the problem resolution
process. A unique identification of a problem is assigned
during this activity. A problem report is to be used as part of
a close loop process, from detection of a problem through
investigation, analysis, and resolution, and later for trend
detection across problems. Status is tracked and reported,
and records of problem reports are maintained. A problem
report can be considered as a case that is handled by the
problem resolution process.

H. Requirements management process
Requirements management is the process of eliciting,

documenting, analyzing, tracing, prioritizing and agreeing on
requirements with the relevant stakeholders. Requirements
management includes the ensuring that requirements are well
defined, agreed to by relevant parties and modified in
accordance with defined procedures. The modification
procedures must ensure that later changes are incorporated
properly and that project plans are updated accordingly. In
SCM, requirement specifications are considered as common
CI's.

TABLE II. CASE IDENTIFICATION
Processes supported by SCM Cases handled by the

processes
Software development process Component

Change control process Change request
Problem resolution process Problem report
Requirements management

process
Requirement specification

Therefore, we consider a requirement specification as a
case that is handled by the requirements management
process. Table II summarizes the software development
processes that are supported by SCM together with the cases
that are being handled by these processes. In the next section,
we will investigate the potential of four selected SCM tools
with respect to the data that they can provide to software
process mining.

IV. SCM TOOLS AS DATA SOURCES FOR PROCESS
MINING

Nowadays, a variety of SCM tools exists. We can
distinguish SCM tools that offer particular basic
functionalities, such as version management, but also ‘more
rich’ SCM tools that are called ‘SCM suites’. The latter
support a range of additional functionalities such as change
request control, problem resolution control, build and release
management, requirements management, project and task
management, and even workflow management. SCM tools
assist developers in their collaborative work, support the
maintenance of software products, storing their history,
providing a stable development environment and
coordinating simultaneous product changes [8]. Data
recording in SCM tools is reflected by so-called audit trails.
We will investigate the content and the data structure of
these audit trails, and to what extend these data can be used
as event log data for software process mining. We will
analyze selected SCM tools with respect to their ability to
provide data for process mining techniques.

I. SCM tool selection and analysis
Based on a survey we selected the two most commonly

used SCM tools in order to analyze their audit trails with
respect to process mining. These tools, respectively
Subversion and Microsoft Visual SourceSafe, are examples
of basic version management tools. Additionally, we selected
CM Synergy & Change Synergy and HP Quality Center
tools as examples of the more ‘richer’ tools. These tools
provide also support for change request control, problem
resolution control and requirements management. Regarding
the first mentioned SCM suite we identified the part that is
called Rational Synergy as a basic version management tool.
Consequently, we had three basis version management
systems. In our analysis, we will focus on the one hand on
particular software processes that are supported by these
tools, respectively: the software development process, the
change control process, the problem resolution process and
the requirements management process (see section III, Table
II). On the other hand, we will focus on particular data that
are recorded by the selected SCM tools, respectively: case
id., task, event type, time stamp, task originator, additional
attributes of cases, as identified in Section II, Table I.

1) Basic version management tools

Basic version management tools offer basic functions of
version management such as managing the evolution of
configuration items, file sharing, controlling concurrent
work, history tracking, and security and access control. We
analyzed three basic version management tools more in

136Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 156 / 646

depth, respectively Subversion, Microsoft Visual
SourceSafe, and Rational Synergy (the basic version
management part of the ‘SCM suite’ CM Synergy and
Change Synergy). Because of similarities in the results we
will describe in this paper only the analysis results of
Subversion. Subversion is a basic open-source file-based
version management tool, which tracks the changes to files
and directories under version control. After a revision, i.e., a
change of a file is made, the file is committed to a repository
of files, and a log-entry is created in the tool log (the so-
called ‘change log’). Subversion supports the software
development process. The software development process is
reflected by sequences of document changes, with respect to
particular components, in a change log. Table III shows the
identified event log elements. Please note that there are no
additional attributes of cases recorded.

TABLE III. EVENT LOG ELEMENTS IN THE

SUBVERSION LOG
Event log
element

Case id Acti
vity

Event
type

Time
stamp

Origi
nator

software
develop-

ment
process

com-
ponent

docu-
ment
type

end of
check-in

user
check-
ing-in

In the following subsection, we will analyze two ‘SCM

suites’, respectively CM Rational Synergy and HP Quality
Center.

2) Integrated SCM tools

The so-called ‘SCM suites’ are in fact integrated tools
that incorporate various functions of version management in
combination with enhanced functionalities such as change
control, build management, problem issue management,
process and workflow management, baseline management
and requirements management.

a) CM Rational Synergy and Rational Change
This is a SCM tool that provides integration and

synergy between the different SCM functions. It is an
integrated tool that supports distributed development on a
unified change, configuration and release management
platform. The ‘suite’ consists of a Rational Synergy part and
a Rational Change part. The Rational Change part is a web-
based, integrated, change management tool for tracking and
reporting changes of cases. Rational Change supports in
particular three processes, respectively the change control
process, the problem resolution process and the
requirements management process. The cases handled by
these processes are respectively change requests, problem
reports and requirements specification requests. The
identified event log elements are shown in Table IV. Case id
corresponds to a case, Activity corresponds to a status
adjustment of a case, Event type: ‘start’ and ‘end’,
Timestamp corresponds to a commit date and time,
additional attributes of cases such as priority, severity.

Regarding originator: an actual originator of an activity is
not provided.

TABLE IV. EVENT LOG ELEMENTS IN THE

RATIONAL CHANGE LOG

Event
log

element

Case id

A
cti
vit
y

Eve
nt

Typ
e

Time
stamp

Add.
attributes
of cases

 change
control
process

problem
resolu-

tion
process

req.

mngt.
process

change
control
request

pro-
blem
report

req.
spec.
request

s
t
a
t
u
s

start
end

of
activities
e.g.,:
submit
analysis
resolu-
tion
evalua-
tion

e.g.,:
priority,
severity,
phase
detected,
phase
caused

b) HP Quality Center
 HP Quality Center supports the change control process,

the problem resolution process and the requirements
management process. As shown in Table V, the event-log
elements are identified as follows: for each of the cases a
Case identification number is stored, Activity corresponds
to the status adjustment of these cases (the status of a
change request is adjusted as a result of executing an
activity), Event-type: start or end, Timestamps: timestamp
of the end event of a related activity. Additional attributes:
for each supported process a rich variety of additional case
attributes are recorded. These attributes describe the cases in
more detail than the previously discussed Rational Change
tool and as a consequence allow for more detailed analysis.
Pleae note that although the originator is not shown in Table
V, information on person/department executing the
activities is recorded.

J. SCM tools and the process mining techniques that can
be supported by them
Data needed for process mining are (partially) available

in the so-called audit trails of the selected and analyzed
SCM tools. These process data can be used as a basis for the
construction of the event logs needed for process mining.
We discovered that all the selected SCM tools, provide the
minimal data requirements for process mining, i.e., the
identification of a case, an activity, and the type of an event.

137Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 157 / 646

TABLE V. EVENT LOG ELEMENTS IN

THE HP QUALITY CENTER LOG
Event
log
ele-
ment

Case
 id

Ac-
ti-

vity

Event
type

Time
stamp

Add.
Attri-
butes
of
cases

Chang
e
Con-
trol
Pro-
cess

chan-
ge
re-
quest

sta-
tus

start,
end

his-
tory
date,
end
event
of a
re-
lated
acti-
vity

change
category,
root cause,
priority,
phase detec-
ted,
estimated
cost,
responsible
team,
affected
component

Prob.
Reso-
lution
Pro-
cess

pro-
blem
report

end problem
category,
related
component,
criticality,
phase
detected,
responsible
team

Req.
mngt.
Pro-
cess

spec.
re-
quest

end priority,
linked test,
responsible
team,
related
component

Furthermore, both the basic version management tools

and the ‘SCM suite’ HP Quality Center provide originator
information. The ‘SCM suites’ also provide various
additional case attributes. Based on our findings in the
foregoing sections, we summarize our SCM tool analysis
results in Table VI, i.e., which shows the interrelations
between the SCM tools (and the supported processes) and
the process mining techniques. The mining techniques
process model discovery, and conformance checking can be
supported by each of the selected SCM tools. The process
mining technique decision analysis is only possible with the
SCM tools that provide additional case attributes, i.e.,
Rational Change and HP Quality Center. Rational Change is
the only SCM tool that records both Start and End events of
tasks, thereby enabling the process mining techniques
Performance Sequence Analysis, Throughput Time
Calculation and Bottleneck Analysis. The process mining
technique social network analysis is possible with each of
the SCM tools that record task originator (i.e., Subversion,
VSS, Rational Synergy, and HP Quality Center).

TABLE VI. INTERRELATIONS BETWEEN PM
TECHNIQUES AND SCM TOOLS

 Process
mining technique

SCM tool
(and process supported) Pr

oc
es

s m
od

el
 d

is
co

ve
ry

C
on

fo
rm

an
ce

 c
he

ck
in

g

D
ec

is
io

n
an

al
ys

is

Th
ro

ug
hp

ut
 ti

m
e

ca
lc

ul
at

io
n,

bo

ttl
en

ec
k

an
al

ys
is

Pe

rf
or

m
an

ce
 se

qu
en

ce
 a

na
ly

si
s

So
ci

al
 n

et
w

or
k

an
al

ys
is

Subversio
n

software
development

process

x x x x

Visual
SourceSa
fe

software
development

process

x x x

Rational
Synergy

software
development

process

x x x

Rational
Change -
Change
Synergy

change control,
problem

resolution,
requirements
management

process

x x x x x

HP
Quality
Center

change control,
problem

resolution,
requirements
management

process

x x x

 x

Summarizing we can state that the selected SCM tools

meet important event log requirements for process mining.
The basic version management tools, such as Subversion,
provide software development process data. However, the
integrated ‘SCM suites’, such as Rational Synergy, support
particular software processes as well, respectively the
change control process, the problem resolution and the
requirements management process.

V. VALIDATION
In order to validate our approach, we used the data

collected during ten middleware embedded-software
projects of a large industrial company in The Netherlands.
The detailed results of the validation are presented in [1]. In
this section we address some main results of the case study.
The industrial company develops software components for
consumer electronic devices. The process under study is the
CCB process. The CCB is an organizational unit that
handles problem reports, change and implementation
requests identified during software development. These are
further referred to as defects. A CI’s defect is detected and
submitted. The developer assigns attributes to the defect
(e.g., priority, severity). After that, the defect is either

138Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 158 / 646

processed by the main sequence of tasks Analysis,
Resolution, Evaluation, Conclusion or it is evaluated by the
CCB. If the CCB evaluates the defect, it sends the defect to
a required task depending on the need, with the following
possibilities: the defect is redirected to the Concluded task
in case the defect is found duplicated, expected to be
repaired in a next release, or out of the scope of the
functionality required. The defect is redirected to tasks
Analysis, Resolution or Evaluation depending on the need.
When the task Analysis, Resolution or Evaluation is
completed, one of the four possibilities is chosen: if the
task’s execution is successful, then an important defect is
directed to the CCB and it waits to be redirected again to the
next task; if the task’s execution is successful, then a less
important defect continues with the next task of the main
sequence of tasks; if the task was not successfully executed,
then an important defect is returned to the CCB for a re-
evaluation. Once all the tasks of the CCB process have been
successfully carried out, the defect is closed.

The software development team collects defect data and
these are stored in the status database recorded by a Rational
Change SCM tool. A quality assurance specialist creates
copies (snapshots) of the status CCB database content on a
weekly basis. The snapshots follow the evolution of the
handling of the defects by the CCB. The snapshots include
the following information: the date when the snapshot was
taken, identification of a subsystem from which the
snapshot was taken, identification of the defect, priority and
severity of the defect, type of the defect, the actual status of
the defect, identification of a team responsible for resolving
the defect, timestamps of the start event of the tasks of the
main sequence, timestamps of the end event of the tasks of
the main sequence and a timestamp of the date of an update
of the status database. We studied whether it is possible to
use such data to discover and construct underlying process
models. We identified the following event log elements.
Case id (a defect is identified as a case), a Case id is
retrieved from a Problem_nr data field that uniquely
identified the defect. Activities are executed when they
handle a case during a process. As a result of executing an
activity, the status of the defect changes, therefore activities
have been derived from the status field. Event-type: in the
snapshots, only the event types start and end are used.
Timestamp have been extracted from the fields in the
snapshots that store time information. Originator is not
available due to the fact that the snapshots only provide the
information about the team responsible for resolving the
defect. Additional attributes are derived from the priority,
severity, request type, life-cycle phase during which a defect
had been discovered. Based on the identified event log
elements, we identified process mining techniques that are
possible to be applied to the data. We applied respectively
control-flow discovery and conformance checking. We
applied the mentioned techniques to the event-log filtered
on additional case attributes, namely priority, severity,
request type and life-cycle phase. The control-flow

discovery revealed that the official CCB process as
described above was not followed. Furthermore,
conformance checking of the CCB process revealed that in
most of the cases (70%) the Analysis task is skipped and the
cases are being directly resolved. Moreover, we compared
the duration of tasks and the total throughput time during
different lifecycle phases. The results showed that the
duration of the validation tasks involving external
stakeholders are longer than the verification tasks performed
without the external involvement. Application of process
mining techniques revealed that although people tend to
believe that specified and well-documented processes are
followed, the real practice is different., and that process
mining techniques can provide useful insights into the
software development process.

VI. CONCLUSIONS
This paper investigates the application of process-mining

techniques in the software development domain. We
addressed the suitability of particular software development
support tools, i.e., SCM tools, to provide process data. Our
research provides an original view at process mining
literature from a data requirements perspective: ‘different
process mining techniques require different data’, and can
form a basis for the development of new functionalities, i.e.,
process mining support, to develop a future generation of
SCM tools. We addressed some main results of a case study,
to indicate which process mining techniques can make use
of particular SCM tool data to get in-depth insights into
‘actual’ software development processes.

REFERENCES
[1] J. Samalikova, R. Kusters, J. Trienekens, T. Weijters, and P. Siemons,

“Towards objective software process information: experiences from a
case study,” Software Quality Journal, vol. 19, Jan. 2011, pp. 101-
120.

[2] A. Weijters, W. van der Aalst and A.K. Alves de Medeiros, “Process
Mining with the Heuristics Miner Algorithm,” BETA Working Paper
Series, WP 166, Eindhoven University of Technology, Eindhoven,
2006, pp. 1-18.

[3] W. van der Aalst et al, “Business process mining: An industrial
application,” Information Systems, 32(5), 2007, pp. 713-732.

[4] A. Rozinat., and W. M. P. van der Aalst, “Decision Mining in ProM”,
in S Dustdar and A Sheth eds., Business Process Management.,
Lecture Notes in Computer Science, Berlin, Springer, 2006, pp. 420-
425.

[5] J. Samalikova, R Kusters, J Trienekens and T Weijters. “Information
gathering in software process assessment,” In Proceedings of the
Information Systems IADIS Conference, Berlin, Germany, 2012, pp.
43-52.

[6] R. Conradi, A. Fuggetta and M. Jaccheri. “Six theses on software
process research”. Software Process Technology, 1998, pp. 100-104.

[7] B.F. van Dongen et al, “The ProM Framework: A New Era in Process
Mining Tool Support”, in Applications and Theory of Petri Nets
Lecture Notes in Computer Science, Berlin, Springer, 2005, pp. 444-
454.

[8] J. Estublier, “Software Configuration Management: a roadmap”, in:
Proceedings of the Conference on the Future of Software
Engineering, Limerick, Ireland, 2000, pp. 279-289.

139Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 159 / 646

Refactoring of Simulink Diagrams via Composition of Transformation Steps

Quang Minh Tran, Benjamin Wilmes
Berlin Institute of Technology

Daimler Center for Automotive IT Innovations (DCAITI)
Berlin, Germany

E-Mail: {quang.tranminh,benjamin.wilmes}@dcaiti.com

Christian Dziobek
Daimler AG

Mercedes-Benz Cars Development
Sindelfingen, Germany

E-Mail: christian.dziobek@daimler.com

Abstract—Model-based design has been increasingly adopted
by the industry, especially the automotive industry, for the
development of embedded software. Today, Matlab/Simulink
by The MathWorks is widely employed as a modeling tool in
which embedded software is modeled as data flow diagrams
consisting of blocks and signals. While refactoring has be-
come an established technique for improving the structure of
code in textual programming languages, refactoring Simulink
diagrams is relatively unexplored. This paper introduces a
technique for specifying and implementing refactoring oper-
ations for Simulink diagrams by composing elementary and
composite transformation steps. How the transformation steps
can be leveraged to specify and implement complex refactoring
operations is demonstrated based on the two refactoring
examples Replace Goto/From With Explicit Signals and Merge
Subsystems. Our prototypical implementation of a refactoring
extension for Simulink is also briefly described.

Keywords-Simulink; Refactoring; Transformation

I. INTRODUCTION

The model-based design (MBD) paradigm has been
widely adopted by the automotive industry to develop em-
bedded software, with Matlab/Simulink [1] by The Math-
Works being the defacto standard modeling tool. Using
Simulink, software functionality is modeled as data flow dia-
grams by connecting functional blocks via data-carrying sig-
nals. Additional concepts of the Simulink modeling language
address practical needs, like the readability of large models.
For instance, model fragments can be hierarchically grouped
into logical units called subsystems and related signals can
be grouped into structured bus signals. The adoption of
MBD using Simulink leads to models being central artifacts
in development. Due to the continuously increasing software
complexity and short development cycles, the creation and
maintenance of models have become highly intensive and
time-consuming activities.

Refactoring is an established restructuring technique
which implies changing the structure of a development
artifact without changing its observable behavior. Semi-
automated or interactive refactoring operations have been in-
tegrated into textual programming environments like Eclipse
or Visual Studio. However, at present, refactoring is practi-
cally non-existent in the Simulink Editor. The missing sup-
port for refactoring in Simulink has two potentially severe

consequences. First, the model quality may be compromised
if quality-improving model changes are not done due to
tight development time, even if the modeler is aware of
the structural deficits. Second, refactoring a huge Simulink
model manually can be very labor-intensive and error-prone.

Thus, in this paper, we present a modular technique for
refactoring Simulink diagrams based on the composition
of predefined transformation steps. While the focus of this
paper is on the underlying refactoring mechanism, we refer
to a previous publication of ours for a wider spectrum of
useful refactoring operations for Simulink diagrams [2].

The paper is structured as follows. In Section II, we
present our meta-model for Simulink models, which serves
as the basis for defining transformation steps. Our mech-
anism for composing transformation steps is described in
Section III. How even complex refactoring operations can
be specified and realized by utilizing primitive but powerful
transformation steps is shown in Section IV. Insight into our
prototypical implementation of the concept as an extension
of the Simulink Editor is provided in Section V, followed by
a summary of related work in Section VI, and our conclusion
in Section VII.

II. SIMULINK META-MODEL FOR REFACTORING

The development of a refactoring technique for Simulink
diagrams inevitably requires the existence of a meta-model.
Unfortunately, to date, no official meta-model for Simulink
diagrams has been published. Hence, we defined our own
Simulink meta-model which, for the purpose of refactoring,
implicitly meets the following criteria:

1) All necessary structural properties of diagrams that are
required by refactorings should be captured, including
model hierarchy, signal properties and bus structure

2) Support for incomplete diagrams, such as those with
unconnected signals, since some refactorings can be
triggered at any time during the modeling

3) Layout information must be captured because the
execution of a refactoring operation should preserve
the layout as much as possible

4) Establish a degree of granularity that enables local
structural changes during a refactoring operation with-
out affecting irrelevant model parts

140Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 160 / 646

Block

ModelBlock

GainBlock ...

SubsystemBlock

#name : string
-position : point

BusCreatorBlock

-isAtomic : bool RealPort
#portNumber : int

Inport

Outport

AbstractPort
-position : point

VirtualPort

Segment
-label : string
-points

* in

* out

*
contains

contains
*

*

*

SignalProperty
0..1

busChild *

*
contains

Figure 1. Excerpt of our meta-model for Simulink diagrams

Figure 1 shows an excerpt of our meta-model as class
diagram. In this meta-model, Block is the superclass for
all other block types. A Block has a unique name in its
hierarchical scope and an ordered list of Inport and Outport
instances. Its position is stored in the field position. A
Subsystem is a block that can contain child blocks including
other subsystems. An entire model is also a Subsystem.

Regardless of whether a signal is completely connected,
i.e., constituting an uninterrupted path from one source block
to one or more destination blocks, it is divided into one or
more segments. A segment connects a source and a target
port - which can be of the following types: A real port
belongs to a block and is either an inport (for an incoming
signal) or outport (for an outgoing signal). A virtual port is
either a branching point of a signal or an end point of an
incompletely connected signal. Both real ports and virtual
ports have an (x, y) position. In contrast to a virtual port, a
real port has a port number. A segment is called unconnected
if its source is a virtual port but not a branching point, or
its target is a virtual port.

III. TRANSFORMATION STEPS AND THEIR COMPOSITION

Instead of formulating each refactoring operation individ-
ually, we have set the goal to define basic transformation
and modification steps that can be aggregated for specifying
and implementing complex refactoring operations. As a
result, on top of the meta-model in Section II, we have
identified a collection of transformation steps (see Table
I). A transformation step modifies an instance of the meta-
model, i.e., a Simulink model. While defining the steps, we
had to address the following key questions:

How powerful in terms of the effect should a
transformation step be?

The use of a powerful transformation step reduces the
complexity of a refactoring specification but is more difficult

Category Transformation Steps

Elementary

addBlock(blockType, [pos])
addInportBlock(destSubsys,[pos])
addOutportBlock(destSubsys,[pos])
copyBlock(block, destSubsys, [pos])
replaceBlock(block, newBlockType)
deleteBlock(block)
addSegment(srcPort, targetPort)
rerouteSegmentToNewTargetPort(seg, newTargetPort)
rerouteSegmentToNewSourcePort(seg, newSourcePort)
branchSegmentToNewTargetPort(seg, newTargetPort)

Composite

moveBlocks(blocks, destSubsys, [pos])
deleteBlockWithSignals(block)
addCrossHierarchicalSignal

(sourcePort, targetPorts)
rerouteSegmentCrossHierarchicallyToNewTargetPort

(sourcePort, newTargetPort)
branchSegmentCrossHierarchicallyToNewTargetPort

(seg, newTargetPort)

Table I
EXCERPT OF THE TRANSFORMATION STEPS COLLECTION WITH THE

STEPS BEING DISCUSSED IN MORE DETAIL MARKED BOLD

to reuse. For instance, there are two possible ways to
define the transformation step deleteBlock that deletes a
block. One way is, if a block is removed, its incoming
and outgoing segments remain and become unconnected
segments. A more powerful version of deleteBlock would
also remove the incoming and outgoing segments. The
former is especially useful if after the deletion, the references
to the now unconnected segments are still needed - if, for
instance, the segments are rerouted to other blocks in a
following transformation step. For the sake of reusability, we
have decided to keep basic transformation steps as granular
as possible. If necessary, more powerful versions are defined
by composing more fine-grained steps, such as deleteBlock-
WithSignals, which is realized by using deleteBlock and
then deleting the incoming and outgoing segments using
deleteSegment.

How can transformation steps be composed to
define more complex transformation steps?

We distinguish between elementary and composite trans-
formation steps. An elementary step modifies an instance
of the meta-model without using other transformation steps,
while a composite step consists of an ordered list of (pos-
sibly elementary or composite) child steps. Performing an
elementary step directly changes an instance of the meta-
model. A composite step can be performed by executing
each step in the list in the specified order. Back to the
previous example, deleteBlock is an elementary step while
deleteBlockWithSignals is a composite step.

How should a step affect the layout?
Layouting of Simulink models ultimately addresses the

positioning of blocks and signals in the Simulink Editor.
Since the layout plays a crucial role for the readability of a
Simulink diagram and layouting thus needs to be considered
by refactoring operations, transformation steps can receive

141Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 161 / 646

Precondition: sameSubsystem(srcPort,targetPort)
∧¬ targetPort.hasIncomingSegment

1: function ADDSEGMENT(srcPort,targetPort, [name])
2: p ← srcPort.containingSubsystem
3: newSeg ← new Segment(name)
4: newSeg.source ← srcPort
5: newSeg.target ← targetPort
6: srcPort.outSegs ← srcPort.outSegs ∪ {newSeg}
7: targetPort.inSeg ← newSeg
8: p.childSegments ← p.childSegments ∪ {newSeg}
9: end function

Figure 2. Algorithm for elementary transformation step addSegment

layout information from parent composite transformation
steps. If layout information is not provided, predefined
layout heuristics or Simulink itself determine the layout. For
an improved layout after refactoring, the automatic layouting
algorithm for Simulink diagrams [3] can be used.

Based on these basic principles, we show by examples
how elementary and composite steps modify an instance of
the meta-model. Figure 2 depicts (informal) pseudo code for
the elementary step addSegment that adds a new segment
from a source port srcPort to a target port targetPort. It pre-
sumes that srcPort and targetPort are in the same subsystem
and targetPort does not have an incoming segment. If these
conditions are satisfied, a new segment newSeg is created. A
name is given depending on the type of refactoring in which
this step is used. The segment’s start and end ports are set
to srcPort and targetPort, respectively. Additionally, the new
segment is added to the collection of outgoing segments of
srcPort and assigned to targetPort as the incoming segment.
Finally, newSeg is added to the current subsystem.

Figure 3 shows the algorithm for addCrossHierarchi-
calSignal which adds (possibly cross-hierarchical) signals
from a source port to one or several target ports. Unlike
addSegment, addCrossHierarchicalSignal is a composite
transformation step because it makes use of other trans-
formation steps such as addSegment, addOutportBlock and
addInportBlock. Note that the algorithm contains control
structures, as well as other commands, and is not purely
a list of transformation steps as indicated before. Due to
space limitations, we abstract from implementation details
here. As mentioned, the steps’ algorithms as described in
this paper are executed on an instance of the meta-model.
Each call of an elementary transformation step is registered
in an ordered step list which is then executed step by step
on the real Simulink model.

The precondition of addCrossHierarchicalSignal states
that the list of target ports must have at least one element
and all target ports must be in the same subsystem. If
a precondition is not satisfied, the entire refactoring in
which this step is used will not be applied. If satisfied,
it determines the subsystem where a forward constructed
signal from source to target and a backwards constructed
signal from target to source would meet (least common
subsystem). Then, the signal is forwarded from the source

Precondition: sameSubsystem(targetPorts) ∧ targetPorts 6= ∅
∧ ∀ tp ∈ targetPorts: ¬tp.hasIncomingSegment

1: function ADDCROSSHIERARCHICALSIGNAL
(srcPort,targetPorts)

2: leastSub ← getLeastCommonSubsystem(srcPort,targetPorts)
3: curPort ← srcPort
4: curSubsys ← curPort.containingSubsystem
5: while curSubsys 6= leastSub do
6: outBlock = addOutportBlock(curSubsys)
7: ret = addSegment(curPort,outBlock.inport)
8: curPort ← curSubsys.outportOf (outBlock)
9: curSubsys ← curPort.containingSubsystem

10: end while
11: subsysPath ← getSubsystemPath(targetPorts(1),leastSub)
12: for p ∈ sortByHierarchyTopDown(subsysPath) do
13: inBlock = addInportBlock(p)
14: addSegment(curPort,p.inportOf(inBlock))
15: curPort ← inBlock.outport
16: end for
17: for tp ∈ targetPorts do
18: addSegment(curPort,tp)
19: end for
20: end function

Figure 3. Algorithm for composite transformation step addCrossHierar-
chicalSignal

port up to the ancestor and from there down to the subsystem
containing the target ports by creating outport blocks, inport
blocks and signals for the intermediate subsystems. Finally,
in the subsystem containing the target ports, branching
signals are added from the newly added inport block to the
target blocks. Note that addCrossHierarchicalSignal avoids
redundant blocks and signals by creating a single signal path
from the source port to the parent subsystem of the target
ports before branching it to the target ports.

IV. SPECIFICATION OF REFACTORINGS

The transformation steps can be leveraged to formulate
refactoring operations, as shown next using two examples:
(1) Replace Goto/From With Explicit Signals creates explicit
(possibly cross-hierarchical) signals from the source Goto
block to all associated From blocks, (2) Merge Subsystems
merges two subsystems into a single subsystem. These two
refactorings are part of our Simulink refactoring catalog [2].

A. Replace Goto/From With Explicit Signals

Motivation: An advantage of data flow diagrams such
as Simulink is that the data flow between blocks is explicit
thanks to visual signal connections. However, Simulink pro-
vides Goto/From blocks as a means to define implicit, non-
visual signal connections between blocks that may reside on
different model levels - usually to reduce the visual complex-
ity. Similar to the Goto construct in imperative programming
languages, the use of Goto/From blocks, especially of global
scope, may dramatically reduce the understandability of
the model because tracing the data flow becomes more
difficult. Goto/From blocks can be replaced by explicit signal
connections without changing the behavior of the model.
This can be a tedious task when done manually.

142Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 162 / 646

Subsystem

1.5

Replace Goto/From

1
A

2

[A]

[A]

1

2

Goto From

From1

Subsystem

1.5

1

2

1

2

1Signal
Conversion

x

x

y

y

z

z

Figure 4. Example for refactoring Replace Goto/From with Explicit Signals

Mechanics: Figure 6 shows (informal) pseudo code for
Replace Goto/From with Explicit Signal. Take a look at
Figure 4 for an example.

As first operation, the function buildSubsystemList is
called to obtain a list of the corresponding From blocks’
parent subsystems. This list is used for signal forwarding
while avoiding redundant signal paths at the same time.
Then, the transformation step replaceBlock is used to replace
the Goto block with a Signal Conversion block. Signal
Conversion blocks are used here solely for preserving signal
names. More specifically, if the incoming signal of the Goto
block has a different name than the signal names leaving
the From blocks, the use of Signal Conversion blocks would
allow these names to continue to exist after the refactoring.

Next in the algorithm, subsystemList is iterated. In each
iteration, the From blocks within the current subsystem are
replaced by Signal Conversion blocks. Finally, the composite
transformation step addCrossHierarchicalSignal is used to
foward signals to the Signal Conversion blocks.

B. Merge Subsystems

Motivation: During creation and maintenance of a
Simulink model, reorganizing activities are frequent. In
particular, it is often necessary to combine functionalities
residing in separate subsystems into a single subsystem.
With the current modeling support of the Simulink Editor,
the modeler would have to cut and paste the content of one
subsystem into the other subsystem. Then, the signals must
be reconnected to re-establish the initial signal relationships.
If lots of signals must be connected manually, this activity
becomes both labor-intensive and error-prone.

Mechanics: While Figure 5 provides an example of this
refactoring, Figure 7 shows (informal) pseudo code for
merging two subsystems A and B. The precondition speci-
fies that A and B must be non-atomic (virtual) subsystems.
This restriction exists since merging atomic subsystems may
change the behavior of the model.

In essence, the algorithm uses suitable transformation
steps to move the content of B to A (line 18), adjust the

Precondition: -
1: function REPLACEGOTOFROMWITHEXPLICITSIGNALS

(gotoBlock)
2: fromBlocks ← gotoBlock.fromBlocks
3: inSeg ← gotoBlock.inSeg
4: subsystemList ← buildSubsystemList(fromBlocks)
5: gotoConverter ← replaceBlock

(gotoBlock,’SignalConversion’)
6: curOutport ← gotoConverter.outport
7: for s ∈ sortByHierarchyTopDown(subsystemList) do
8: targetPorts ← ∅
9: for fromBlocks ∈ s do

10: for fromBlock ∈ fromBlocks do
11: fromConverter ← replaceBlock

(fromBlock,’SignalConversion’)
12: targetPorts ← targetPorts ∪ fromConverter.inport
13: end for
14: end for
15: targetRootPort ← addCrossHierarchicalSignal

(curOutport,targetPorts)
16: curOutport ← targetRootPort
17: end for
18: end function

Figure 6. Algorithm for refactoring Replace Goto/From With Explicit
Signals

signal connections (line 23, 26, 32, and 35) and finally delete
B (line 37). Before the actual transformation, some book
keeping needs to be done. In particular, inSegsOfB contains
all incoming segments of B. Hash tables inMap and outMap
are used to keep track of the references between inport
and outport blocks of B to the source ports of the signals
reaching them for reconnecting signals.

For inMap, if an inport block inpBlock of B has an
incoming segment entering B at the inport corresponding to
inpBlock, we store the mapping between inpBlock and the
source port of that incoming segment returned by getSrcPort.
In this context, the source port is returned by getSrcPort,
which checks if the root source of the segment is an outport
of A. If yes, we go into A and retrieve the source of
the signal within A. Otherwise, the source port is the root
source of the segment and is located on the common parent
subsystem of A and B. For outMap, if an outport block
outBlock of B has an outgoing segment leaving B at the
outport corresponding to outBlock, we store the mapping
between outBlock and the segment.

For transformation, moveBlocks(B.content,A) moves B’s
content to A. inMap is used to reestablish incoming signal
connections to the blocks that used to be in B. In particular,
for each inport block inpBlock stored in inMap, if the
source port of inpBlock is in A, inpBlock is replaced by a
Signal Conversion block before connecting the source port
to the inport of that Signal Conversion block. Otherwise, the
source port is connected to the inport of A corresponding to
inpBlock. Then, using outMap, the initial outgoing segments
of B are rerouted to the outports of A corresponding with
the outport blocks being moved from B. Finally, the initial
incoming segments of B and B itself are removed.

It should be noted that the decision of which of the two
subsystems to be merged serve the role of A and B in the

143Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 163 / 646

10
1

2
1

1

1

1.5

+

+

A
1

1
2

inX

inY

x

y
z

2

+

+2

outZ

inB

a

b
c outC

B
AB

10

1

inX

inY

2
inB

1
outZ

outC

1

2
1

+

+

x

y
z

Signal
Conversion

2

1.5

+

+
b

c3

Merge
A with B

a
2

Figure 5. Example for refactoring Merge Subsystems

Precondition: ¬A.isAtomic ∧ ¬B.isAtomic
1: function MERGESUBSYSTEMS(A,B)
2: inSegsOfB ← B.inSegments
3: inpBlocksInB ← B.inportBlocks
4: for inpBlock ∈ inpBlocksInB do
5: inport ← B.inportOf (inpBlock)
6: if inport.hasIncomingSegment then
7: inMap.value(inpBlock) ← getSrcPort(inpBlock,A)
8: end if
9: end for

10: outBlocksInB ← B.outportBlocks
11: for outBlock ∈ outBlocksInB do
12: outport ← B.outportOf (outBlock)
13: if outport.hasOutgoingSegment then
14: outSeg ← outport.outSegment
15: outMap.value(outBlock) ← outSeg
16: end if
17: end for
18: moveBlocks(B.content, A)
19: for inpBlock ∈ inMap.keys do
20: srcPort ← inMap(inpBlock)
21: if srcPort.containingSubsystem = A then
22: converter ← replaceBlock

(inpBlock,’Signal Conversion’)
23: addSegment(srcPort, converter.inport)
24: else
25: targetPort ← A.inportOf (inpBlock)
26: addSegment(srcPort,targetPort)
27: end if
28: end for
29: for outBlock ∈ outMap.keys do
30: outport ← A.outportOf (outBlock)
31: outSeg ← outMap.value(out)
32: rerouteSegmentToNewSource(outSeg,outport)
33: end for
34: for seg ∈ inSegsOfB do
35: deleteSegment(seg)
36: end for
37: deleteBlocks(B)
38: end function

Figure 7. Algorithm for refactoring Merge Subsystems

algorithm affects the port order of the inports and outports
within the resulting merged subsystem. This is due to the
way Simulink automatically assigns port numbers when a
port is added or deleted. However, since the port order does
not affect the behavior, the refactoring does not change the
model behavior. We have also defined a refactoring operation
called Reorder Ports that can be used to rearrange the port
order of inports or outports of a subsystem. If required, this
refactoring can be used to achieve the desired port order.

V. IMPLEMENTATION

We have implemented a prototype in Matlab’s m language
that integrates refactoring support directly into Simulink

Editor. Specifically, a refactoring operation can be directly
triggered in Simulink Editor via a menu item or shortcut.
Based on the Template design pattern [4], the prototype
implements a generic workflow of refactorings as a graphical
wizard. The behavior of a specific refactoring operation
such as the required graphical dialogs for user input and
the (interactive) specification of transformation steps can be
easily defined and integrated into the prototype.

The meta-model in Section II is implemented as Matlab
classes. The elementary and composite transformation steps
in Section III are provided in the form of Matlab functions.
In addition, the prototype also contains a collection of
Matlab functions for model analysis that are useful for
refactoring purposes. For instance, the functions getLeast-
CommonSubsystem used from Figure 3 and buildSubsystem-
List from Figure 6 are stored in a special collection since
they are needed by multiple refactorings. The functions for
transformation steps and model analysis serve as a high-level
and compact API for formulating refactoring operations.

The prototype also features a graphical preview that shows
the list of transformation steps to be executed in a tree.
Moreover, it shows the Simulink diagram before and after a
refactoring operation.

We have tested our prototype on several industrial
Simulink models from the automotive domain at Daimler.
The biggest time factor turned out to be the time required
to convert a Simulink model into an instance of the meta-
model. In an extreme case, for a model of about 20,000
blocks and a refactoring operation that affects almost the
entire model, the parsing time took roughly 10 minutes. For
most models and operations, however, the parsing time was
just a matter of seconds. The transformation itself usually
took only seconds, or at most, a few minutes.

VI. RELATED WORK

In textual programming, refactoring has become a stan-
dard technique for restructuring code without changing its
observable behavior [5], such as for object-oriented lan-
guages [5] and functional languages [6]. Modern Integrated
Development Environments (IDEs) like Eclipse, NetBeans
and Visual Studio offer built-in support for refactoring.

In model-based development, UML models have been
targeted for refactoring support [7]. Refactoring of data flow

144Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 164 / 646

diagrams such as Simulink, however, is only scantly re-
searched. Sui et al. [8] propose an implementation approach
for an automated refactoring tool aimed at visual dataflow
programming languages. However, the focus of their paper
is rather on the tool architecture aspect than on specifying
refactoring operations modularly.

The current version of Simulink Editor does not provide
refactoring support. Tools such as Model Advisor [9] or
Model Examiner [10] can automatically detect violations of
modeling guidelines and do provide, to a limited extent,
so-called repair scripts for repairing guideline violations.
Nonetheless, the focus of these tools is on automated detec-
tion of guideline violations and not on providing complex
refactoring operations with possible user input or interaction.

The approach which is most related to our work has
been developed in the MATE project [11]. It is an approach
to visual specification and transformation for Simulink and
Stateflow models based on graph transformation techniques.
Specifically, modeling guideline violations and possible re-
pair scripts are formulated in the graphical specification
language called Story Driven Modeling (SDM). It turned
out, however, that a purely visual specification language,
such as SDM, is not powerful enough for complex real
specification scenarios such as those including regular ex-
pressions, complex mathematical calculations and complex
navigation through a network of linked objects.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have introduced our technique for
specifying and implementing complex refactoring operations
for Simulink diagrams based on the composition of trans-
formation steps. The concept has been successfully imple-
mented as a prototype that integrates refactoring support
into Simulink Editor. Using the infrastructure provided by
the prototype, we were able to implement many refactoring
operations from our catalog [2] with little effort.

As the next step, we plan to extend our catalog and
tool with further useful refactoring operations. Our future
work will also address the automated identification of model
constructs for which the application of certain refactorings
is recommendable - so-called model smells, in analogy to
code smells known from code refactoring [5]. There exist
several techniques for Clone Detection in a Simulink dia-
gram, as explored by Deissenboeck et al. [12] and Petersen
[13], which could be used to identify similar or identical
fragments in a Simulink diagram and suggest applicable
refactoring operations for eliminating them. Moreover, we
plan to evaluate the developed techniques and tool in real
development environments at Daimler.

In addition, having automated transformation and refac-
toring techniques for Simulink models on hand, advanced
applications are rendered possible. For instance, Simulink
models could be automatically optimized by search-based
algorithms using our transformation steps, as suggested for

code [14], with respect to measurable model quality criteria,
which already exist for Simulink diagrams [15].

REFERENCES

[1] The MathWorks, “Matlab/Simulink,” http://www.mathworks.
de/products/simulink/ [Last access: 11/06/2013].

[2] Q. M. Tran and C. Dziobek, “An approach to design
and maintenance of Simulink models by using transforma-
tions/refactorings and generation operations,” in Proceedings
of the Model-Based Development of Embedded Systems Work-
shop (MBEES), 2013, pp. 1–12.

[3] L. Klauske and C. Dziobek, “Improving modeling usability:
Automatic layouting for Simulink,” in Proceedings of the
2010 MathWorks Automotive Conference, 2010, pp. 1–8.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[5] M. Fowler, Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

[6] H. Li, “Refactoring Haskell programs,” Ph.D. dissertation,
University of Kent, 2006.

[7] G. Sunyé, D. Pollet, Y. L. Traon, and J.-M. Jézéquel, “Refac-
toring UML models,” in Proceedings of the 4th International
Conference on The Unified Modeling Language, Modeling
Languages, Concepts, and Tools, 2001, pp. 134–148.

[8] Y. Y. Sui, J. Lin, and X. T. Zhang, “An automated refactoring
tool for dataflow visual programming language,” SIGPLAN
Notices, vol. 43, no. 4, pp. 21–28, Apr. 2008.

[9] The MathWorks, “Model Advisor,” http://www.mathworks.
de/de/help/simulink/ug/consulting-the-model-advisor.html
[Last access: 11/06/2013].

[10] Model Engineering Solutions, “Model Examiner,”
http://www.model-engineers.com/de/model-examiner.html
[Last access: 11/06/2013].

[11] I. Stürmer, I. Kreuz, W. Schäfer, and A. Schürr, “The MATE
approach: Enhanced Simulink and Stateflow model transfor-
mation,” in Proceedings of the 2007 MathWorks Automotive
Conference, 2007, pp. 1–9.

[12] F. Deissenboeck et al., “Clone detection in automotive model-
based development,” in Proceedings of the 30th International
Conference on Software Engineering, 2008, pp. 603–612.

[13] H. Petersen, “Clone detection in Matlab Simulink models,”
Master’s thesis, Technical University of Denmark, DTU In-
formatics, 2012.

[14] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based
software engineering: Trends, techniques and applications,”
ACM Comput. Surv., vol. 45, no. 1, pp. 11:1–11:61, 2012.

[15] J. Scheible and H. Pohlheim, “Automated model quality rating
of embedded systems,” in Proceedings of the 4th SQMB
Workshop, 2011, pp. 1–10.

145Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 165 / 646

Experiences on Mobile Cross-Platform Application Development Using PhoneGap

Jussi Ronkainen, Juho Eskeli, Timo Urhemaa, Kaisa Koskela-Huotari
VTT Technical Research Centre of Finland

Finland
jussi.ronkainen@vtt.fi, juho.eskeli@vtt.fi, timo.urhemaa@vtt.fi, kaisa.koskela-huotari@vtt.fi

Abstract—Cross-platform mobile application development
frameworks are an attractive alternative to native application
development, with potential for improved asset reuse and
reduced development costs. Few reports exist, however, on
determining their suitability for a given type of application or
identifying their potential pitfalls. To address this, we report
our experiences from implementing a hybrid web application
demonstrator on Android, iOS, Windows Phone 8, and desktop
platforms for cloud-based content sharing and co-creation. The
hybrid web application approach was found adequate for
implementing the demonstrator. Notable challenges discovered
during the process were platform dependent variation in
HTML5 feature support, differences in the way browsers
interact with platform services, and lack of platform specific
debugging tools. Based on the results, emphasis on debugging
tool support is suggested, as well as early and frequent testing
on all target platforms.

Keywords-cross platform; multi platform; phonegap; jquery;
cordova; cloud; cloud-based; content; content sharing; liquid
experience

I. INTRODUCTION
The current mobile device market is dominated by two

operating systems (Q4 2012: Android 69.7%, iOS 20.9%),
and the global smartphone sales for 2013 is estimated to be
close to one billion units [1]. In this light, cross-platform
development approaches, which facilitate application
development for multiple operating systems with a single
code base, seem compelling. Furthermore, in the current
market situation there could be some room for a third
competitor (e.g., Windows Phone or BlackBerry) into the
mix of operating systems, which could make cross- platform
mobile application development even more lucrative for
software developers.

The advantages of a cross-platform development
approach compared to a multi-platform approach using
native development platforms come from the use of a single
codebase, which in turn can result in improved asset reuse
and reduced development and maintenance costs, for
example. Additionally, the barrier of entry into mobile
application development can be lower in cross platform
development environments where HTML, CSS, and
JavaScript technologies are commonplace [2].

The downside of the cross-platform mobile development
approach is that it may not be suitable in all situations, for
example when native look and feel in user interface is
required, or in games where adequate performance cannot be
guaranteed [2].

For the reasons mentioned above we wanted to study the
feasibility of the cross-platform approach for a specific
application, and to learn of the potential pitfalls with the
approach. As a result we want to share the experiences
gained to practitioners in the field in form of practices that
did or did not work.

To achieve this, we implemented a hybrid web
application demo for cloud-based content sharing and co-
creation. Our aim was to study the practicalities of cross-
platform development on the popular PhoneGap platform to
gain an understanding of its strengths and weaknesses, as
well as the skills and effort required. As a secondary
objective, we studied the suitability of a hybrid web
application approach for our particular application.

In the next section, the application concept is explained.
Section 3 illustrates our implementation approach, along
with expected results. Section 4 discusses mobile cross-
platform development approaches with respect to identified
state of the art. Results are described in Section 5, followed
by conclusions and future work in Section 6.

II. CASE CONTEXT
The background for developing the application is in our

previous research into the way people understand digital
content, how they currently use it, and how they would want
to use it. Sixty people participated in the research via the
online user interaction forum Owela [3]. Of the 71 narratives
and more than a thousand discussion comments provided by
the participants, we chose photographs as the theme for our
application.

We wanted to focus on the ease of content sharing and
co-creation because of their perceived importance in many of
the user stories. Cloud storage for the photos was also a
recurring theme in the stories, and an evident requirement
also because the wider context of the Cloud Sofware
Program in which this research was carried out.

Our earlier research in content sharing and co-creation
had also focused on the concept of liquid experience [4],
which aims to provide users with a consistent experience
regardless of the device used for accessing the information.
This concept also gave us more freedom in choosing the
cross-platform framework since following native application
look and feel on each device platform was not deemed
critical.

III. APPROACH
Wishing to experiment further with the liquid experience

concept, we chose to implement the application as a hybrid

146Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 166 / 646

web application that would allow running it standalone on
Android, iOS, and Windows Phone 8 and, with some
restrictions, on a desktop browser. For backend, we chose to
use Google App Engine mostly because of our prior
experience with it, and because it offers rudimentary image
manipulation functionality we assumed could be useful. At a
later stage in the project, we also evaluated the feasibility of
porting the application to another backend, experiences of
which will be briefly discussed later.

A. Framework Selection
We didn’t want to limit the application to any particular

platform or device. At the time of writing, HTML5 based
approaches support the most platforms and also, via the use
of CSS3, make adaptation to different screen sizes and
orientations relatively simple. Of the available HTML5
cross-platform frameworks, we chose PhoneGap due to its
widest device support and because it imposes minimal
restrictions to applications that utilize it. Also, PhoneGap
enables the packaging of HTML5 applications as native
applications. PhoneGap ships without visual components,
which makes it very flexible in terms of UI, but also means
that the developer has to choose or implement all application
components oneself and ensure they will work together.
Browser based applications also have a performance
overhead with respect to native applications but that was not
considered an issue, since the performance requirements for
our application were considered very modest.

Furthermore, the PhoneGap framework has a plugin
interface for running native code that can access device
capabilities. Many common plugins such as GPS, camera
and local file access are implemented by default in
PhoneGap. Utilizing these plugins does not require any
native development skills. PhoneGap also supports custom
plugins, so the application can be extended to use native
code for functionality that is not supported in HTML5 or
PhoneGap by default, or which would be computationally
too intensive to implement in JavaScript. Although our
application does not make much use of PhoneGap plugins,
from a research perspective we found native code support to
be an important feature in cross-platform development for
added flexibility.

From application development point of view, there are
many JavaScript frameworks available that focus on, for
example, the graphical user interface and widgets, DOM tree
manipulation, and web application architecture (Model-
view-controller).

We chose the jQuery Mobile application framework as
the JavaScript library for implementing the application UI.
jQuery was used for DOM tree manipulation and Ajax based
server requests. Our choice of frameworks was largely
influenced by the vast popularity jQuery, and in case of
jQuery Mobile, the fact that it seemed to provide wider
platform support than most similar frameworks. Both jQuery
Mobile and PhoneGap have active user communities and
both projects are frequently updated and well documented. In
addition, many examples and demos paved our way to
choose these platforms.

Figure 1. Our client/server structure.

B. Development Methods and Tools
We had three developers, each focusing on one platform

in particular and the common codebase in general. This gave
us an opportunity to observe the multi-platform development
procedures with respect to, e.g., version control where the
common application codebase had to be integrated into three
platform specific codebases.

Our version control setup was such that there was a Git
repository for each native project, and a repository for the
common application code. The common repository was
included into each native project as a Git submodule.
Implementation was done on platform specific preferred
editors for the native part - Xcode for iOS, Eclipse for
Android, and Visual Studio for Windows Phone 8. HTML5,
JavaScript and CSS3 editing was mostly done with JetBrains
WebStorm.

The testing, largely UI driven and ad hoc, was done by
the developers themselves on desktop browsers, mobile
devices, and device emulators. Some functionality was also
tested as automated unit tests on the Jasmine JavaScript unit
test environment, which was run on a desktop browser.

C. Expected Results
From user interface point of view, we expected to have to

make some conditional layout in the common code to cater
for different screen sizes and resolutions. Also, we expected
some minor variations in the way the application would
render on the different devices. But for the most part, we
assumed the ”write once, run anywhere” promise of cross-

147Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 167 / 646

platform development to work more or less straight out of
the box, especially since we were using the popular jQuery
Mobile framework which we assumed to be well adapted for
most platforms.

PhoneGap uses the device’s browser as the application
platform. Browsers are complex applications themselves,
meaning that there is performance overhead for applications
running on them. Also, since browsers have to handle all
kinds of content, they are not optimized for any specific kind
of application. Different browsers support HTML5 features
to varying degrees, so application performance on different
platforms might also vary. Performance was not, however,
considered to be an issue in our case due to the simplicity of
the application.

The use of HTML5 and jQuery / Ajax as the common
implementation technology on all platforms was also
expected to make cloud resource access simple.

IV. RELATED WORK
We identified the current state of the art in mobile cross-
platform development ([2][5][6][7][8][9]). In the following,
cross-platform approaches are described in general,
followed by a detailed discussion on one publication which
most closely relates to our work discussed in more detail.

In native application development approach the
application is implemented for a particular platform (as
opposed to multiple platforms in cross-platform
development) by using the provided Software Development
Kit (SDK). The applications developed in this fashion
maintain the look and feel of the platform. Porting the
application to another platform is not possible without
additional effort.

We consider cross platform application development to
be development that is done with the help of cross-platform
framework or with combination of platforms. Combining of
platforms may be required because the frameworks focus on
different purposes; some of them support development of
complete applications that include application logic, user
interface, and deployment, while some of them may focus on
just one of these [2]. Related to UI representation in
frameworks there are two different approaches commonly
used; to imitate native look and feel (or use native
components), or to maintain uniform look and feel for the
supported platforms that ignores the native styling [2].

A definition of cross-platform frameworks is given by
Sommer as follows: “Cross-platform frameworks are
frameworks that support multiple platforms, with the same or
similar effort involved to create an application on potentially
more than one platform at once (or porting an application to
other platforms with very little effort), as compared to
creating it for only one platform with the native SDK. This
essentially requires that a framework has to provide means to
reuse parts of the architecture and source code that are
platform-independent” [2].

The most commonly used frameworks in mobile cross-
platform development can be categorized by the architectural
approach taken into web-based, hybrid, and self-contained

categories as presented in [2][6][7]. The publications also
mention other types of approaches that utilize, e.g., cross
compilation techniques. However, none of the current cross-
compilation solutions that we are aware of are ready for
production quality application deployments to prevalent
mobile operating systems (e.g., Qt Alpha 5.1 advertises
preliminary support for Android and iOS, with full support
announced later in the oncoming 5.2 version).

By utilizing web based frameworks the application is
developed as regular web site using HTML, CSS, and
JavaScript technologies. An example framework in this
category is jQuery Mobile. Pure web applications cannot be
installed in similar fashion as native applications nor can
they access the sensors or actuators of the mobile device.

In hybrid frameworks, the web based and native approach
have been combined to create applications that inherit
features of native applications (e.g., capability to install from
an application store, native fashion application launching,
capability to interface with sensors and actuators) but are
developed using web technologies. An example framework
from this category is PhoneGap.

Self-contained runtime environments, as described in [2],
do not attempt to reuse existing web frameworks of the
selected platform. By implementing their own web container
the frameworks are in theory less constrained by any
shortcomings in platform frameworks. Example of this type
of framework is Titanium Mobile.

Zibula and Majchrzak [9] document the development of a
Smart Metering Application using similar tool set as in our
work. They outline the relevance of continuous testing on all
target platforms because bugs might be visible only on a
single platform. Our experiences also highlight the
importance of continuous testing in cross-platform
development. They also mention immaturity of the
frameworks used, namely jQuery Mobile. We didn’t face as
severe problems in our work, which could be an indication
that the frameworks have matured already. They also
mention the debugging tools that they used, but don’t go into
detailed discussion about debugging, other than that the tools
were very useful. Based on our experience debugging is one
of the more important issues in cross-platform mobile
development in which we focus in more detail in our work.
Finally, they note that the hybrid approach is viable and
advisable approach for cross platform development, but that
in the long term it could be a transitional technology that
may be replaced by pure HTML5 approach. While this may
turn out to be true, we think that some form of tool or a
solution is still needed to wrap the HTML5 application as a
native application, and additionally HTML5 is unlikely to
allow native extensions for whatever purpose. Zibula and
Majchrzak also note that usability (of cross-platform
developed mobile applications) and value for users are
important research topics to consider besides technological
development.

V. RESULTS
Overall, we feel the application demo we implemented is

complex enough to get an idea of the potential of hybrid web
applications and to gather meaningful experiences from

148Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 168 / 646

building it. Figure 2. shows a screenshot of the application
during photo sharing on Android, Windows Phone and iOS
devices. The figure illustrates differences due to the different
fonts and screen aspect ratios on the devices.

We have divided our findings into three main groups;
platform specific findings, user interface findings, and
findings on the development process in general.

Figure 2. User photo sharing screen on Android (Galaxy Nexus, left),

WP8 (Nokia Lumia 920, middle), and iOS (iPhone 4, right).

A. User Interface Findings
We found the user interface rendered from the common

codebase to be fairly consistent among the platforms. This
was largely due to our use of the jQuery Mobile framework
which provided most of the UI elements. On the phones we
tested, there were some nuances caused by different default
fonts and different screen aspects, as illustrated in Figure 2.
We used seven CSS3 media queries to set UI component
dimensions to cater for all the screen sizes and orientations
on the phones and tablets we had. In general, we found the
underlying browser engines to do a good job in laying out
the application on different screens and orientations. Some
layout issues were discovered, such as different default page
footer element handling on WebKit based vs. Windows
Phone 8 devices but these could be fixed with platform
specific style definitions.

We also encountered a few UI issues that affected only
some platforms, such as page transition animations flickering
on Android and completely missing or visually different on
Windows Phone 8, and difficulties in disabling the default
visual cue when attempting to scroll past the end of page on
Windows Phone 8. Some of these issues have already been
fixed in recent jQuery Mobile and PhoneGap versions, and
we assume such easily noticeable visual differences will be
fixed in future versions. However, we had to use platform
specific style definitions from time to time to enable, e.g.,
HW acceleration for UI transition effects.

Another source of UI issues was the virtual keyboard
which is unique to each platform. The screen area taken by
the keyboard varies, as does its interaction with the
underlying application. In our experience, the effect of the
virtual keyboard needs to be tested thoroughly on each
platform.

Probably the most notable issue we discovered, however,
was the occasional sluggishness of touch input. This seemed
to affect all platforms at some time or another. Most

commonly there were missed touch events such as pressing a
button or starting a swipe. The issues were random and slight
but still noticeable and detrimental to a smooth user
experience. We did not analyze the cause of the sluggishness
but to get the UI really responsive would probably require
platform specific analysis and optimization of the
HTML5/JavaScript/CSS3 code. Also, we did not pay any
attention to DOM tree optimization, which at least in large
applications could have a significant effect in application
performance.

In general, UI event support was found to differ between
browsers and if mobile and desktop browsers are to be
supported, both touch and mouse events need to be handled.
Also, touch event support differs between platforms – for
example, not all jQuery Mobile swipe events work on
Windows Phone 8 without platform specific HTML5 style
definitions. For this reason it is necessary to test all UI events
as early as possible on all devices, and support multiple
navigation methods where possible.

B. Platform Specific Findings
In addition to user interface issues which were caused by

the differences in browser rendering engines, there were a
couple of platform specific issues we could not solve or
circumvent by modifying the application.

By request from a Cloud Software Program partner, we
briefly experimented with the possibility of porting the
application to use another backend. During our trials with the
second backend which used HTTPS we came across a
problem with SSL certificates. The development installation
of the backend used a static IP address without a domain
name, which meant that browsers could not ensure the
authenticity of the certificate. On desktop browsers we could
add an exception, and on the Android PhoneGap version we
observed no issues. However, we could not get iPhone to
create an exception for the server. This meant that the iOS
application could not be run against that backend. While the
problem is eliminated when the certificate is tied to a domain
name, it could be a problem during development as in our
case. Certificate handling was not tested using Windows
Phone 8.

Another issue we could not solve from within the
application was with browser cookies on Windows Phone 8.
Our application uses a session cookie received from the
server at login to identify the user during subsequent
operations. PhoneGap obtains the cookie settings from the
browser, but these settings vary between platforms. On
Windows Phone 8, we had to change the system wide cookie
settings manually on the browser of the device in order to get
the application to store the session cookie. This, of course, is
not acceptable for a consumer application. The need for
cookies could be averted by implementing an authentication
token scheme on the client and the server but that would
require extra work.

Overall, however, we found cloud-based resource access
straightforward and uniform across all platforms.

Native plugins are also a source of platform specific
differences. It should be noted that even the plugins that ship
with PhoneGap are not supported on all platforms, so the

149Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 169 / 646

need for native support should be considered early on in a
cross-platform development project. We implemented a
native application settings screen on each platform and
passed the settings to the HTML application via the plugin
interface. Activation of the settings screen was also done via
the interface. We found the plugin interface to work quite
well. The native side of the plugins can be debugged on
platform specific development environments like any native
code.

C. Development Method and Tool Findings
JavaScript is an interpreted language, meaning that

without a compiler, the role of the editor in finding
programming errors is emphasized.

While all native development environments (Xcode,
Eclipse, Visual Studio) support the development of HTML5
applications, none of them in our opinion match the best of
dedicated HTML5 editors. Also, the use of a common editor
for the HTML5 application by all developers in a project is
justifiable in order to establish, e.g., common practices and
file templates. While significant parts of an application can
be implemented against a desktop web browser, deploying
the application on a device, however, requires the native
development environment. This causes extra steps and
switching between applications in the development process.

We found automated unit testing useful in detecting
problems in program logic earlier. Running unit tests with a
framework such as Jasmine is quick and isolates program
logic issues well. We ran a limited set of unit tests on a
desktop browser and because of the ease of running the test
suite, unit testing was useful in detecting programming errors
quickly. Unit testing frameworks typically provide means for
writing stubs, spies and mocks that enable the separation of,
e.g., network code from the UI. This helps in isolating
program logic issues and programming errors, but in our
experience, automated unit testing frameworks are of limited
use in exposing issues related to the target platform.

We also found the SW project structure to have
significance in cross-platform development. Since in our
case the common application code project was included as a
subproject in each of the native projects, we occasionally
ended up with subproject version conflicts. In the Git version
control system the only links between the main repository
and the submodules are submodule IDs which are saved in
the main repository, and in some situations changes in the
IDs are not automatically reflected into the submodules. As a
result, we ended up cloning the common module as a
separate project into the appropriate directory in each native
project, and excluding the directory from version control in
the native projects. Automatic refreshing of the subproject
during native project refresh was thus lost, but in our case
extra manual work caused by that was negligible since the
native projects were changed much less frequently than the
common project. Native project updates were mostly
PhoneGap version updates. In our experience, however, they
need to be done with care as PhoneGap version updates
usually have to be synchronized between all native projects
and the common project. Occasionally, a new PhoneGap
version forced us to recreate the native projects from scratch.

The documentation of the new release was also outdated at
times, which caused some extra work to solve out the native
project upgrade process.

To reduce the need for handling native projects, Adobe
offers the cloud-based PhoneGap Build service which builds
native applications from the HTML5, JavaScript and CSS
code. There are, however, restrictions to custom plugins in
PhoneGap Build.

The most significant shortcoming we experienced during
development was the limited debugging ability of PhoneGap
applications. The reason is that the embedded native browser
PhoneGap uses is not accessible to a debugger on every
platform, and thus problems that arise only on a specific
platform may be very difficult to debug. At the time of
writing, only BlackBerry and iOS browsers offer remote
debugging that can be extended to PhoneGap applications.
The Chrome browser on Android offers remote debugging
but not via PhoneGap. Windows Phone 8 lacks remote
debugging capability for both of the scenarios. At the time of
writing, the best solution for remote debugging of hybrid
web applications is Apple’s development tools for iOS.
Xcode in combination with Safari on Mac offers all required
debugging capabilities including DOM tree manipulation,
breakpoints and variable inspector.

For most of the time we used a desktop browser for
debugging, occasionally augmented by the PhoneGap
Emulator on Google Chrome. The emulator was useful in
verifying the UI with different screen sizes and resolutions,
and getting a hang of using the native interfaces exposed by
PhoneGap, although the emulator mostly uses mock data for
them. A good rule of thumb for hybrid web application
development is to use desktop browsers so that Chrome is
used as a preliminary test for Android, Safari for iOS and IE
for Windows Phone. Some browsers also have built-in tools
for simulating different mobile device screen sizes.

Another useful PhoneGap debugging tool we used is
weinre that is available either as a local installation or online
via debug.phonegap.com. While weinre does not offer
breakpoints, it does allow the inspection, highlighting and
modification of DOM elements and JavaScript variables via
a console.

PhoneGap can also relay the JavaScript console.log()
output to the development environment console window. We
found debug prints to console a viable debugging method,
although understandably limited.

D. Summary of Findings
HTML5-based cross-platform applications rely heavily

on the web browser on each platform, and differences in how
the browsers implement HTML5 features were the
underlying cause for most of our findings. In particular, we
found occasional platform specific issues with page element
layout and certain jQuery Mobile page animations, and touch
event support. Most issues were solved by platform specific
code and style definitions, but the intermittent problems with
touch input responsiveness on all platforms were not.

Issues were also encountered in the way the browsers
interact with their surroundings, namely in the visual cue the
browsers give on trying to scroll past page boundaries,

150Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 170 / 646

virtual keyboard behaviour, SSL certificate handling, cookie
handling, and PhoneGap plugin support. While some of the
issues were remedied via native project settings, solutions
were not found during this study for the SSL certificate and
cookie problems.

From a developer viewpoint, we found a dedicated
HTML editor more useful than native IDEs which are
typically not optimized for editing HTML5. Support for
debugging on the device is only possible on iOS and
Blackberry at the moment, which was found to be the biggest
drawback of the approach. When device debugging is not
required, desktop browsers provide good debugging options
– although their use is not as seamless as debuggers on
native IDEs.

VI. DISCUSSION
In our experiment, we implemented a content sharing and

co-creation application using PhoneGap and jQuery Mobile.
We found the approach to fit our type of application well,
and platform specific additions to the common codebase to
be fairly minimal. HTML5 and CSS3 were found to do an
efficient job of scaling the layout to different screen sizes
and orientations, and that in general, the UI renders smoothly
on the different platforms. However, we encountered issues
with jQuery Mobile animations, so it is advisable to keep
them to a minimum. This is particularly important if the
targeted range of platforms is wide, or targeted devices are of
modest performance or use old web browser engines.

There were also issues with UI responsiveness. Some
issues we were able to fix via platform specific, non-standard
style definitions, but we could not quite reach consistent,
native quality responsiveness on any of the platforms.

Development tools were found adequate for most of the
time, when the code could be developed and tested against a
desktop browser. Automated unit testing was also
experimented, and found useful in finding program logic
bugs quickly.

Debugging on the target devices is the area that is in our
experience most evidently lacking in hybrid web application
development. The role of debugging is emphasized by the
loosely typed, interpreted nature of Javascript, as without a
compiler there are fewer safety nets to catch programming
errors early. For limited device debugging we experimented
with weinre and the PhoneGap emulator. Both were found
useful, but lacking in functionality. Problems that do not
surface on a desktop browser tend to concern non-standard
HTML5 / CSS3 extensions or other platform specific
browser behaviour. Thus, solving these problems is difficult
without platform specific source-level debugging with
breakpoints. For these reasons, the role of active and early
testing on every platform is paramount.

VII. CONCLUSIONS AND FUTURE WORK
The current smartphone and tablet market has made it

necessary to develop applications for several platforms.
Cross-platform development approaches are one way of
increasing asset reuse between platforms and reducing

development cost. Our study focused on the hybrid web
application approach using the popular PhoneGap platform.

Overall, the approach was found solid and suitable for
the type of application presented in the study. The biggest
drawback encountered in the approach is insufficient
debugging support on mobile devices. Platform specific
variation in HTML5 feature support and browser interaction
with the platform were found to necessitate constant testing
on all platforms. UI performance issues that varied between
mobile platforms were also encountered. Examining them
would be one potential objective for future research.

Comparison of the hybrid web application approach with
other cross-platform approaches would be another interesting
topic, perhaps by implementing the same demonstrator using
different approaches.

ACKNOWLEDGMENT
The authors wish to thank the TiViT Cloud Software

Program in which this research has been carried out.

REFERENCES
[1] Gartner, “Gartner Says Worldwide Mobile Phone Sales

Declined 1.7 Percent in 2012”, Press release,
http://www.gartner.com/newsroom/id/2335616 08.08.2013

[2] H. Heitkötter, S. Hanschke, and T. A. Majchrzak, “Evaluating
Cross-Platform Development Approaches for Mobile
Applications,” in Lecture Notes in Business Information
Processing, Volume 140, 2013, pp. 120-138

[3] P. Näkki and K. Koskela-Huotari, “User Participation in
Software Design via Social Media: Experiences from a Case
Study with Consumers,” in AIS Transactions on Human-
Computer Interaction, vol. 4, 2012, pp. 128-151.

[4] H. Kiljander and V. Nore, “Experiences from Long-Term
Online User Collaboration in Strategic Product Design,” in
Proceedings of NordiCHI 2012, Industrial Track, ACM.

[5] A. Sommer, Comparison and evaluation of cross-platform
frameworks for the development of mobile business
applications, Master’s thesis, Fakultät für Informatik,
Technische Universität München, 2012.

[6] A. Holzinger, P. Treitler, and W. Slany, “Making Apps
Useable on Multiple Different Mobile Platform: On
Interoperability for Business Application Development on
Smartphones,” in Multidisciplinary Research and Practive for
Information Systems, Lecture Notes in Computer Science,
Volume 7465, 2012, pp. 176-189.

[7] E. Masi, G. Cantone, M. Mastrofini, G. Calavaro, and P.
Subiaco, ”Mobile Apps Development: A Framework for
Technology Decision Making,” in Mobile Computing,
Applications, and Services. Lecture Notes of the Institute for
Computer Sciences, Social Informatics and
Telecommunications Engineering, Volume 110, 2013, pp. 64-
79.

[8] L. Corral, A. Janes, and T. Remencius, “Potential Advantages
and Disadvantages of Multiplatform Development
Frameworks – A Vision on Mobile Environments,” in
Procedia Computer Science, Volume 10, 2012, pp. 1202-
1207.

[9] A. Zibula and T. A. Majchrzak, “Cross-Platform
Development Using HTML5, jQuery Mobile, and PhoneGap:
Realizing a Smart Meter Application,” in Web Information
Systems and Technologies, Lecture Notes in Business
Information Processing, Volume 140, 2013, pp. 16-33.

151Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 171 / 646

A Real-Time Design Pattern for Actuators in Advanced Driver
Assistance Systems

Hela Marouane∗, Achraf Makni†, Claude Duvallet∗, Bruno Sadeg∗ and Rafik Bouaziz†
∗University of Le Havre

Le Havre, France
Email: {Hela.Marouane, Claude.Duvallet, Bruno.Sadeg}@litislab.fr

†University of Sfax
Sfax, Tunisia

Email: {Achraf.Makni, Raf.Bouaziz}@fseg.rnu.tn

Abstract—Advanced Driver Assistance Systems are hard real-
time control systems in the automotive domain. They consist
mainly of data acquisition, decision and action subsystems. The
action subsystem constitutes a complex system which is composed
of several embedded devices. The design of these systems is
considered to be a complex process, as all components and
real time constraints have to be considered during the design.
Failures in hard systems could result critical situations. To tackle
this problem, the design patterns present a reuse solution that
improves the quality of the development process and reduces the
complexity of systems design. However, the patterns which exist
in the literature are abstract and do not represent the advanced
driver assistance systems. In this paper, we focus on defining
a specific real-time design pattern for an action subsystem of
an advanced driver assistance system. This pattern captures
the structural and the behavioral aspects. The definition of this
pattern is based on a development process. To make this pattern
more flexible and understandable, we add some semantics to the
UML concepts using an UML-Profile, which expresses the real-
time elements of the pattern and its variability.

Keywords—Design pattern; Real-Time; UML-Profile; Actuator;
ADAS.

I. INTRODUCTION

In recent years, the number of vehicles on the road
has greatly increased. To reduce the risk of accidents, new
technologies in vehicles, called Advanced Driver Assistance
Systems (ADAS), have been appeared. Among these systems,
we can quote Adaptive Cruise Control (ACC) [1] and Lane
Departure Warning system [2]. Furthermore, ADAS systems
help drivers in their driving tasks. As a result, the use of
these systems improves road safety and reduces the risk of
accidents. An ADAS is a complex real-time (RT) embedded
system which consists of three subsystems:

1) The data acquisition subsystem: it includes a series
of sensors (e.g., radar and wheel speed sensors)
and a sensor data fusion unit that allows computing
appropriate sensors data to estimate the consistent
state of a vehicle and its environment [3].

2) The decision subsystem: it uses the data fusion unit
outputs to analyze the current situation and decide
the appropriate actions to be transmitted to actuators
[4].

3) The action subsystem: it reacts to the decision sub-
system by (i) providing automatic actions such as
braking, and/or (ii) delivering visual, acoustic or

haptic warning information to the driver [5]. This
subsystem is consisting of several technologies (e.g.,
automatic actuators and Human Machine Interface),
which serve more sophisticated functions.

The design of ADAS is highly complex; it is difficult to model
the components, their interactions and the time constraints
related to both data and transactions. Most often the accidents
that are caused by failing developed systems, due the errors
in the design phase. Moreover, the interaction with a human
driver introduces even more complexity, since a driver can
behave unpredictably to warnings or automatic action. This
problem adds a level of complexity to the design of these sys-
tems. In addition, ADAS may be implementing with different
platforms, but implementation details and design methods are
absent. For these reasons, it is essential to capture the design
into appropriate methods that can be analyzed and applied to
each system.

A way to design these systems may be to exploit reusable
components like design patterns. These patterns provide ab-
stract components that aim to facilitate systems design, lead-
ing to efficient and reuse solutions. Design patterns can be
classified into general or domain-specific. General patterns are
intended for several domains; so, they are often too abstract
[6]. The problem with this category of patterns is to determine
in which context or in which part of the system they can be
applied. On the other side, domain specific design patterns
often provide an optimal solution for a particular domain. In
fact, they provide to the designers some well-defined concepts
(e.g., attributes and methods) of the domain. For these reasons,
several works [7][8][9][10] have proposed domain specific
design patterns applied to the RT domain.

In this paper, we are interested to define a real-time
design pattern that models the ADAS action subsystem, which
is one of the complex subsystems composing an ADAS.
This pattern models the structural and behavioral aspects in
common way of an ADAS action subsystem which may be
implemented with different languages and tools. The proposed
pattern omits sufficient description of device characteristics,
control algorithms, user interface and mechanical actuators
design and alerts generation to construct an ADAS correctly.
Moreover, this pattern allows designers to build an ADAS
system without starting from scratch since the pattern models
the common concepts of ADSA systems. To define this pattern,
we apply a development process composed of three steps:
(i) The study and the modeling of several representative real

152Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 172 / 646

ADAS in order to highlight their similarities and differences.
(ii) The identification of the concepts of these systems, their
similarities and differences to define our pattern. (iii) The
application of a set of rules defined by Rekhis et al. [11],
with some adaptations. Indeed, we have adapted some of them
to ADAS systems and we have added some others for class
and sequence diagrams. In addition, we have added some
semantics to some basic UML concepts to make this pattern
more flexible. This semantics consists of applying the UML-
RTDB2 profile [9] that contains a set of stereotypes which
express timing constraints, non functional properties and the
variability of the pattern.

II. RELATED WORK

RT design patterns are reusable components that can
be applied in the design phase in order to reduce the
complexity of the software design. For this reason, several
works [8][12][13][14][15][16] have defined RT design pat-
terns. Among these works, (i) Slutej et al. [14] have pro-
posed design patterns which model the real-time components
behavior of an industrial turntable system using state machine
diagrams, (ii) Konrad et al. have proposed in [16] patterns to
model structural and behavioral parts of embedded systems.
These patterns are applied to applications from automotive
domain. These patterns do not describe all specificities of
an action subsystem of an advanced driver assistance system;
the designer must add the specific components, attributes and
operations of ADAS action subsystem. Therefore, the system
can be developed with anomalies, and (iii) Armoush et al.
have defined in [7] a template of design patterns which aim
at modeling safety-critical embedded systems. This template
shows the implications of the patterns on the non-functional
requirements including safety, reliability, modifiability, cost
and execution time. These patterns do not represent the func-
tional aspects and the architecture of an embedded system.
These patterns do not take into account the time constraints
related to both data and transactions. For these reasons, we are
interested to model RT design patterns that take into account
these requirements.

Rekhis et al. [10][12] have proposed RT domain specific
design patterns which model RT data acquisition and decision
subsystems. These patterns allow modeling the structural and
behavioral aspects for these subsystems. In [10], we find a RT
design pattern which models the decision subsystem of RT
applications that need to be managed by database systems.
In addition, Rekhis et al. [12] have proposed RT design
patterns which model the RT data acquisition. They describe
how to model the requirements (real-time data and real-time
transactions) and non functional aspects of RT applications.
They have also defined another RT design pattern which
models the multi-versions RT data which allow maintaining
for each data item related to a measure type (e.g., velocity and
position) multiple versions in order to reduce data access con-
flicts between transactions [12]. In addition, they express the
variability of the patterns to facilitate and guide their reuse. We
agree that the expression of the non functional requirements
and the variability are very important for the design of RT
applications. In fact, the variability is an important criterion to
maximize pattern reuse, and the non functional aspects play an
important role in the quality of the development process. So,
we will take into account these aspects to model our pattern.

However, the patterns presented in [10] and [12] are at a high
abstraction level; they do not clearly differentiate between
some concepts of real-time applications, such as the sensor
and derived data. Thus, the patterns instantiation is complex
and the developed system cannot meet all its requirements; the
designer must identify and model the entities, their attributes,
their relationships and their operations, that are not showed in
the pattern according to a specific RT application. Moreover,
these patterns describe the RT domain in general. They do
not clearly represent some time constraints like the deadlines
of actions. Modeling time constraints is very important since
once these constraints are taken into account, they can help
to verify and understand the temporal behavior and aid in
the development of RT systems. When RT constraints are not
satisfied (e.g., missing of the transaction deadlines), it can
result in a system failure. For these reasons, we define our
RT design pattern which takes into account these constraints.

However, to the best of our knowledge, there are no
patterns exist in the literature to model the action subsystem
(actuators and HMI devices). For these reasons, we define
a new RT design pattern, named ADAS-Action Subsystem
(ADAS-AS), which takes into account the specific constraints
and requirements related to the action subsystem of ADAS.
This subsystem is responsible for handling the outputs from
all the different applications in order to carry out appropriate
intervention strategies (automatic actions and warnings) to
reduce critical situations.

III. UML-RTDB2 PROFILE STEREOTYPES

In this section, we describe the stereotypes of UML-
RTDB2 profile we have proposed in [9]. This profile is an
extension of UML 2.1.2 [17] to represent real-time character-
istics of ADAS systems. It provides features to express (a) the
variability of the patterns, (b) the real-time constraints and (c)
the non functional properties.

The variability of patterns is an important criterion to
obtain a flexible pattern. To specify the variability of patterns,
we have used the following stereotypes [18] to extend the
class diagram of our pattern: (a) << mandatory >> which
specifies the fundamental classes and relations that must be
instantiated when the model is applied to a specific application,
(b) << optional >> which is used to express optional
features (e.g., classes, attributes, operations and relations). The
optional element can be omitted in a pattern instance and (c)
<< extensible >> which indicates that a concerned class
in a model may be extended by adding new attributes and/or
methods during pattern reuse. This stereotype has the following
tagged values: extensibleAttribute and extensibleMethod which
are boolean. With true value, they indicate that the model can
be extended by adding new attributes (if extensibleAttribute is
true) and new methods (if extensibleMethod is true) in a pattern
instance. We extend also our pattern sequence diagram using
the stereotypes << mandatory >> and << optional >>
which are applied to the interaction fragments, lifelines and
messages.

In order to model the RT features of ADAS, we have
also imported some stereotypes from UML-RTDB [19] and
from NFP (Non Functional Properties) sub-profile of MARTE
[20]. From UML-RTDB, we have imported the following

153Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 173 / 646

stereotypes: (a) << sensor >> which is applied to a class
interface and indicates that the measurement is a sensor data,
(b) << derived >> which is applied to classes and is used to
express derived data that are calculated from sensor data, and
(c) << periodic >> and << sporadic >> which are applied
to express periodic and sporadic methods, respectively. The
<< periodic >> stereotype is characterized by a deadline and
a period. The << sporadic >> stereotype is characterized
by a deadline and a triggered time. From NFP sub-profile
of MARTE, we have imported the following stereotypes: (a)
<< nfp >> that declares non functional requirements and
(b) << nfptype >> that extends the DataType metaclass.
It is used to specify NFP values such as NFP Duration and
NFP Frequency. In addition, we have expressed real-time
constraints with OCL (Object Constraint Language) [21].

IV. DEVELOPMENT PROCESS FOR THE RT DESIGN
PATTERN

In this section, we propose a development process to define
a RT design pattern in order to facilitate the design of ADAS
applications. To be able to define this pattern, we study and
model several ADAS systems in order to determine each
application model (i.e., class and sequence diagrams). These
models allow extracting the similarities and differences which
are represented using class diagram and sequence diagram. The
identification of similarities is based on a semantic comparison
between different concepts through a domain dictionary. This
dictionary holds for each term the synonyms, the variations and
the hyponyms. The common concepts are added to the pattern
as fundamental elements whereas the different concepts are
added as optional elements. The defined patterns are applied
to model each ADAS system in order to validate them. The
quality of these patterns is evaluated through amount of reuse
metrics [22].

In order to derive the pattern class diagram, firstly, we adopt
and adapt a set of rules defined in [11]. It is proposed in [11] to
represent a fundamental class with a highlighted border and an
optional class with a simple border. These representations have
not added semantics to the model. For this, we propose to use
the following stereotypes to add semantics and make the pat-
tern more flexible and understandable: (i) << mandatory >>
for fundamental classes and (ii) << optional >> for the
optional classes.

Then, we add some rules, which are not defined in [11].
These rules are expressed through the following relations [23]:

◦ N var(CA1,...,CAn) means that the names of the
classes are a variation of a concept such as propri-
oceptive sensor and exteroceptive sensor.

◦ Att equiv(CA1,...,CAn) and Op equiv(CA1,...,CAn)
means that the names of attributes and the names of
operations respectively of classes are either identical
or synonym.

The added rules are defined as follows:

• RC-1: If a class is present with variation
names (N var(CA1,...,CAn)), but has equivalent
attributes (Att equiv (CA1,...,CAn)) and operations
(Op equiv(CA1,...,CAn)), then it is added as a

fundamental class. The relations N var(CA1,...,CAn),
Att equiv(CA1,...,CAn) and Op equiv(CA1,...,CAn)
are defined in [23]. We propose to use the stereotype
<< mandatory >> for this class.

• RC-2: If attributes (respectively operations) of a class,
which is present in all applications, are present in
several applications (in more than a fixed threshold
(e.g., 50%) fixed by the designer), then they are
added in the pattern as optional elements. We use the
stereotype << optional >> for these elements.

• RC-3: If a relation exists between two mandatory
classes, then it is added to the pattern as a fundamental
relation and it is stereotyped << mandatory >>.
However, if the relation exists between two classes
which one of them is optional, it is added to the
pattern as an optional relation and it is stereotyped
<< optional >>.

Rekhis et al. have defined in [11] some rules to derive the
class diagram of the pattern, but they do not represent rules
for sequence diagram. For this, we have proposed the rules to
design the sequence diagram of the pattern. These rules are
expressed using the following relations:

◦ N equiv(OA1,...,OAn) means that the lifelines have
identical or synonym names.

◦ N dist(OA1,...,OAn) means that none of the above
relations holds.

◦ N equiv(MA1,...,MAn) means that the names of mes-
sages are either identical or synonym.

The proposed rules for sequence diagram are defined as
follows:

• RS-1: If a lifeline is present in all applications with
identical or synonym names (N equiv(OA1,...,OAn)
[23]), then it is added to the pattern as a fundamental
lifeline and it is stereotyped << mandatory >>.

• RS-2: If a lifeline is present in several applications i.e.,
in more than a fixed threshold (e.g., 50%) fixed by the
designer, then it is added to the pattern as an optional
lifeline and it is stereotyped << optional >>.

• RS-3: If a lifeline is too specific for an application
(N dist(OA1,...,OAn) [23]), then it is not added to the
pattern.

• RS-4: If the sender and the receiver are mandatory
lifelines, and the message between them is present
in all applications with identical or synonym names
(N equiv(MA1,...,MAn) [23]), then it is added to the
pattern as a fundamental message and it is stereotyped
<< mandatory >>.

• RS-5: If the sender and the receiver are mandatory
lifelines, and the message between them is present
in several applications, then it is added to the pat-
tern as an optional message and it is stereotyped
<< optional >>.

• RS-6: If a message exists between two lifelines which
one of them is optional, then it is added as an optional
message and it is stereotyped << optional >>.

154Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 174 / 646

• RS-7: If a combined fragment is present in all appli-
cations with synonym or identical names, it is added
to the pattern as a fundamental fragment and it is
stereotyped << mandatory >>.

V. BUILDING OF AN ACTION SUBSYSTEM PATTERN

In this section, we define a new specific real-time de-
sign pattern, entitled ADAS Action Subsystem (ADAS-AS),
designed to model the architecture of ADAS actuators and
HMI elements. The definition of the appropriate solution, in
terms of static and dynamic views, is based on the process
development described in the Section IV. In order to describe
common and variable parts that must be present in the pattern,
we begin to study and model three commercial ADAS systems
among the systems which we have modeled. These systems
are: Lateral Safe (LS) system that is representative of lateral
control systems, Adaptive Cruise Control (ACC) system that
is representative of longitudinal control systems and Saferider
system that is representative of longitudinal and lateral control
systems. These applications are designed by professors who
have an experience in UML based on the study several
documents provided by the automotive companies [5][1][24].

A. Description of ADAS systems

1) Lateral Safe system (LS): LS [5] is a system that reduces
the risk of collisions in lateral and rear area of the vehicles.
In addition, this system assists the driver in adverse or low
visibility conditions. LS system warns the driver by using an
effective HMI. This HMI has been evaluated and demonstrated
in VOLVO cars [5]. LS system consists of several HMI
elements: (i) The side and rear view mirrors HMI with leds
which are activated in different colors and number, related to
the danger level (e.g., cautionary and imminent warnings),
(ii) the a-pillar with a symbol light, activated to warn the
driver of the risk of a critical lateral collision and (iii) the car
speaker, providing directional acoustical warnings in the case
of imminent lateral collisions. The time warning depends on
speed and driver reaction time and is presented to driver few
times before the hazard using two warning levels (imminent
danger and cautionary danger). The warnings are provided for
a period with priority during each critical situation in order
to reduce the number of false alarms. The HMI devices are
activated via the HMI manager for each received action signals.

Figure 1 shows the class diagram which represents the HMI
of LS system. This class diagram is resulted from the study of
several documents provided by the automotive companies [5].
This model represents the following classes: (a) HMIElement
class that contains the main properties of the HMI elements
included in the lateral safe system; (b) CarSpeaker and LED-
Device that represent the subclasses of HMIElement generic
class; (c) HMIManager class that activates the HMI warning
elements; (d) WarningSignalType class that represents the type
of warning provided by the HMI elements; (e) BeepSound and
LightSymbol that represent subclasses of WarningSignalType
class; (f) WarningSignal class that concerns the warnings
delivred to the driver in critical situations; (g) Driver class
that is associated with WarningSignal class to indicate that the
driver will be warned in critical situations; (h) Vehicle class that
is associated with Driver class to indicate that the driver has
changed the status of the controlled vehicle taking into account

the generated alert; (i) DriverAction class that represents the
driver’s reactions to the warning in order to avoid accidents.
Figure 2 shows the sequence diagram which represents the
dynamic aspect of the action subsystem of LS system.

2) Adaptive Cruise Control system (ACC): ACC system
is an automotive application that is integrated and tested in
modern luxury cars such as BMW [1]. ACC system aims at
reducing the risk of accidents and providing safety and comfort
to drivers and vehicles by adapting the vehicle’s speed to
the traffic environment. This system allows also keeping safe
distance between the ACC-vehicle and the forward vehicle.
The controller reads sensor data and calculates the desired ac-
celeration or deceleration to maintain the safe distance. Then,
it sends the corresponding values to the brake actuator or the
throttle actuator. If a preceding slower vehicle is detected, ACC
will decelerate the vehicle by applying the brakes (activate
brake actuator) without driver application of the brake pedal to
maintain a safe distance. In the absence of a preceding vehicle,
ACC will accelerate the vehicle back to its set cruise control
speed by activating the throttle actuator. In the case where
braking is insufficient to maintain the safety distance, ACC
will generate a light symbol and an audible distance alert if the
intervention by the driver is needed to keep the safe distance.

Figure 3 shows the class diagram of the action subsystem
of ACC system. This diagram represents the following classes:
(a) AutomaticActuator class that contains the main properties
of the automatic actuators of ACC system. AutomaticActuator
class concerns each device in a car that executes some kinds
of automated mechanical actions such as brake and throttle
devices, (b) DashboardDisplay that includes the main prop-
erties of the HMI element, (c) BrakeActuator and Throttle-
Actuator that represent the subclasses of AutomaticActuator
generic class, (d) AutomaticAction class that models the actions
triggered by automatic actuators; (e) InterfaceActuator class
that properly activates the HMI components or the mechani-
cal actuators; (f) WarningAlarm class; (g) WarningSignalType
class that constitutes the type of signals; (h) BeepAlert and
SymbolLight that represent subclasses of WarningSignalType
class; (i) Driver class and CorrectiveAction class; (j) Car class
that is associated with Driver and CorrectiveAction classes
to indicate that the driver modifies the status of the vehicle
taking into account the warning signal. Besides, Car class
is associated with AutomaticAction class to indicate that the
status of the vehicle can be updated by activating the brake or
the throttle actuators. Figure 4 presents the sequence diagram
of the actuators and the HMI elements of ACC system to
model the interactions between the components of the action
subsystem.

3) Saferider system: Saferider system (www.saferider-
eu.org) is an advanced telematics for enhancing the safety and
comfort of motorcycle riders [24].

It consists of the following functions: (a) speed alert that
alerts the rider when the speed exceeds the legal speed limits,
(b) curve speed warning that alerts the rider when his/her speed
is too high into a curve, (c) frontal collision warning that warns
the rider when an obstacle is detected in front of the motorcycle
and (d) intersection support that alerts the rider when a danger
is present in intersections.

These functions are based on the comparison between

155Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 175 / 646

Fig. 1. Class diagram of the action subsystem of LS system.

Fig. 2. Sequence diagram of the action subsystem of LS system.

Fig. 3. Class diagram of the action subsystem of ACC system.

the actual rider manœuvre and the safe reference manœuvre
which is calculated based on both the motorcycle’s dynamics
and the road characteristics. Once a hazard is detected, the
warnings are generated through the following HMI elements
which are activated using the HMI manager: (i) Head Up
display integrated in the helmet, dashboard display and visual
attractor on rear mirror providing visual warnings, (ii) in-
helmet speakers providing audio warnings (e.g., acoustic and
speech messages), (iii) haptic seat, haptic throttle, haptic golve

and haptic handle providing haptic warnings (i.e., vibration).
The HMI elements have been tested and demonstrated on
the Yamaha and the Piaggio [24][25]. Figure 5 and Figure
6 illustrate, respectively, the class diagram and the sequence
diagram of the HMI of Saferider system.

We note that the common elements are represented with a
bold lines in Figures 1, 3 and 5.

156Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 176 / 646

Fig. 4. Sequence diagram of the action subsystem of ACC system.

Fig. 5. Class diagram of the action subsystem of Saferider system.

Fig. 6. Sequence diagram of the action subsystem of Saferider system.

B. Application of rules to define ADAS-AS pattern

We note similarities and differences between LS system,
ACC system and Saferider system. The identification of these
similarities and differences allows us designing the pattern
class and sequence diagrams. The design of our pattern class
diagram is based on applying the unification rules as shown
in the following:

• The following elements are equivalent:

◦ HMIElement (LS), DashboardDispaly (ACC)
and HMIDevice (Saferider).

◦ HMIManager (LS), InterfaceActuator (ACC)
and HMIManager (Saferider).

◦ Vehicle (LS), Car (ACC) and Motorcycle
(Saferider).

157Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 177 / 646

◦ Driver (LS), Driver (ACC) and Rider
(Saferider).

◦ WarningSignal (LS), WarningAlarm (ACC) and
WarningSignal (Saferider).

◦ WarningSignalType (LS), WarningSignalType
(ACC) and WarningModality (Saferider).

HMIElement, Vehicle, Manager, Driver, WarningSig-
nal and WarningSignalType classes are added to the
pattern as fundamental classes and they are stereo-
typed << mandatory >>.

• Visual, audio and haptic warnings (N var(BeepSound
(LS), LightSymbol (LS), VisualWarning (Saferider),
StereoAudio (Saferider), HapticWarning (Saferider),
BeepAlert (ACC), SymbolLight (ACC)) [23]) are vari-
able elements (i.e., represented with specialization re-
lationships). Thus, VisualWarning, AudioWarning and
HapticWarning are added as optional classes and they
are stereotyped << optional >>.

• AutomaticAction and AutomaticActuator classes are
present in ACC system and in other modeled sys-
tems which exist in the literature. Thus, Automat-
icAction and AutomaticActuator are added to the
pattern as optianl classes and they are stereotyped
<< optional >>.

• LEDDevice, CarSpeaker, ThrottleActuator, Brake-
Actuator, VisualDevice, VisualDisplay, HeadUpDis-
play, VisualAttractor, InHelmetSpeaker, HapticDe-
vice, HapticThrottle, HapticHandle, HapticSeat and
HapticGolve are specific classes for each application.
Thus, they are not added in the pattern.

• Once the classes are added to the pattern, we define
the relations between classes. For example, the system
provides warnings to the driver in critical situations.
Thus, it exists a relation between Driver and Warn-
ingSignal classes. That is, Driver class is associated
with the WarningSignal class. Driver and WarningSig-
nal are mandatory classes, thus the association be-
tween them is added to the pattern as a fundamental
relation which is stereotyped << mandatory >>.

The design of our pattern sequence diagram is based on
the application of the unification rules (Section IV), as shown
in the following:

• The following elements are equivalent:
◦ HMIManger (LS), InterfaceActuator (ACC),

HMIManager (Saferider).
◦ HMIElement (LS), DashboardDisplay (ACC),

HMIDevice (Saferider).
◦ Driver (LS), Driver (ACC), Rider (Saferider).
◦ Vehicle (LS), Car (ACC), Motorcycle

(Saferider).
Rule RS-1 is applied by adding the following lifelines:
Manager, HMIElement, Driver and Vehicle to the
pattern sequence diagram as fundamental elements
and they are stereotyped << mandatory >>.

• AutomaticActuator lifeline is present in several ap-
plications (ACC and other modeled systems). Rule
RS-2 is applied by adding this lifeline to the pattern

sequence diagram as an optional element and it is
seterotyped << optional >>.

• The following messages are equivalent:
◦ GenerateWarning() (LS), DisplayWarning()

(ACC), ProvideWarning() (Saferider).
◦ TakeAction() (LS), TakeAction() (ACC), Took-

CorrectiveAction() (Saferider).
◦ UpdateState() (LS), UpdateState() (ACC), Up-

dateState() (Saferider).
Rule RS-4 is applied by adding GenerateWarning(),
TakeAction() and UpdateState() messages to the se-
quence diagram as fundamental elements.

• ExecuteAction() is present in ACC system and other
modeled systems. It exists between InterfaceActuator
and AutomaticActuator. Rule RS-6 is applied. Exe-
cuteAction() message is added to the pattern sequence
diagram as an optional message and it is stereotyped
<< optional >>.

VI. DESCRIPTION OF ADAS ACTION SUBSYSTEM
PATTERN

In this section, we describe the proposed pattern through
the following elements: name, context, problem, forces and
solution.

1) Name
ADAS Action Subsystem (ADAS-AS).

2) Context
When the system detects a critical situation, it gen-
erates warning information to the driver through
an HMI and/or it provides automatic actions (e.g.,
activates the brake actuator or the throttle actuator).

3) Problem
How ADAS-AS can be applied to take the actions
(automatic actions and/or warning information) that
increase the driver’s safety and prevent collisions?

4) Forces
The action subsystem communicates the warnings
to the driver through an appropriate HMI (visual,
audible and haptic devices) and/or activates vehicle
dynamic actuators (e.g., steering and brakes) accord-
ing to a potential risk. Driver will be warned early
of hazards using different warning levels (e.g., low
danger and high danger) to have enough time to take
a corrective action. In fact, the warning time depends
on the reaction time of each driver.

5) Solution
Static specification: Figure 7 presents the action sub-
system static view, i.e., the participants represented
by the class diagram.
AutomaticActuator. The modeled actuators are de-
vices in a vehicle, used to generate automatic me-
chanical actions such as brakes actuators which make
the vehicle go slow or stop. AutomaticActuator class
has: (i) Status attribute that represents the state’s
actuator (i.e., an actuator can be activated or de-
activated) and (ii) ReactionTime attribute that rep-
resents the time needed for an actuator to provide
automatic actions. This class has an ExecuteAction()
operation to indicate that the actuator makes an

158Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 178 / 646

Fig. 7. ADAS-AS pattern.

Fig. 8. Action subsystem sequence diagram.

automatic force to change the vehicle’s state, and
thus reduces the risk of accidents. This operation is
stereotyped << sporadic >> to indicate that the
action is performed whenever a critical situation is
detected. We define an OCL constraint related to
the AutomaticActuator class. This constraint (context
AutomaticActuator::ExecuteAction() pre: deadline ≤
current time + D), where D is the duration before a
risk occurs.
HMIElement. The modeled HMI elements are de-
vices that provide warning information to the driver.
They can be a car speaker, a Head-Up Display and

a haptic seat. HMIElement class has: (i) Location
attribute that represents the position of the HMI
element in the vehicle, (ii) Status attribute that rep-
resents the state’s HMI and (iii) RateFA attribute that
represents a needless alarm given by a processing
error. This Class has a GenerateWarning() operation
to indicate that an HMI element provides warnings to
the driver in order to react. This operation is stereo-
typed << sporadic >> because an HMI element
generates warning information only if a danger is
detected. We define an OCL constraint related to the
HMIElement class. This constraint (context HMIEle-

159Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 179 / 646

ment::GenerateWarning() pre: deadline ≤ current
time + D + self.Driver.ReactionTime), where D is
the duration before a risk occurs. The HMI element
generates warnings taking into account the driver’s
reaction time.
Manager. The manager is responsible for processing
the warning provided by the controller. It indicates
which HMI hardware components or automatic actu-
ators should be active/inactive.
AutomaticAction. This class represents the different
actions provided by an automatic actuator to avoid
dangers (e.g., automatic braking).
WarningSignal. The action subsystem provides dif-
ferent warnings if a critical situation is detected.
These warnings are generated to the driver through
HMI elements.
WarningSignalType. The warning signals are clas-
sified into visual, auditory and haptic modes. These
types are characterized by (i) a priority that represents
the level of the warning according to the degree of
hazard (e.g., high warning and low warning). The
high priority warning requires an immediate action
and should be distinguishable from other warnings,
(ii) a duration that constitutes the time interval in
which the warning is considered valid and (iii) repeti-
tion that represents the repetition rate of the warning.
AudioWarning. Auditory warnings include both
acoustic (e.g., tone and auditory icons) and speech
outputs. These warnings should be presented in
higher frequency.
VisualWarning. Visual outputs can be symbols and/or
texts. These warnings should take into account some
properties such as luminance, size, flashing rate and
color.
HapticWarning. Haptic warnings should be suffi-
ciently intense to make drivers able to feel them.
They should be presented in a form that the driver is
physically able to perceive them (e.g., steering wheel
vibration and accelerator vibration).
Driver. The driver needs to understand the warning
signal, to choose an appropriate response and to take
action. The driver must react immediately to reduce
the risk of accident. This class has TakeAction()
operation which is stereotyped << sporadic >> to
indicate that the driver take a corrective action only
if the system generates warnings.
DriverAction. This class represents the reactions
taken by the driver after each warning of a hazard
event, such as braking and steering. We use notes
to define a constraint under OCL (Object Constraint
Language) related to the DriverAction class. This
constraint (context DriverAction inv: self.Duration ≤
self.WarningSignalType.Duration) indicates that the
driver must react immediately.
Vehicle. This class has the UpdateState() operation to
indicate that the vehicle changes its status according
to any automatic action provided by a mechanical ac-
tuator (represented by the association between Vehicle
class and AutomaticAction class) or any action taken
by the driver (represented by the association between
Vehicle class and DriverAction class).
Dynamic specification: Figure 8 presents a sequence

diagram of the action subsystem pattern. In this
diagram, we are interested in modeling the manner
to take an action that minimizes the hazards and
prevents accidents. In fact, the action subsystem con-
sists of (i) several automatic actuators which provide
some automated actions through the ExecuteAction()
operation such as the brake actuator which activates
the brake pedal to decelerate the vehicle, and (ii)
different HMI elements which deliver warnings to
the driver through the GenerateWarning() operation.
The driver takes the appropriate decision according
to the generated warning through the TakeAction()
operation. For example, if a system detects a risk
of frontal collision, it provides warnings indicating
that the driver must decelerate to avoid the collision.
When the action (automatic action or warning) is
taken, the controlled vehicle updates its state through
the UpdateState() operation. ExecuteAction(), Gener-
ateWarning(), TakeAction() and UpdateState() opera-
tions are stereotyped << sporadic >> to indicate
that the actions are triggered only if the system
detects an hazard.

VII. CONCLUSION AND FUTURE WORK

The main objective of this work was to define a RT design
pattern specific to the action subsystem of ADAS. This pattern,
named ADAS-AS, models the structural, behavioral and real
time aspects of an action subsystem. In fact, it models the
different components of the actuator subsystem of ADAS
such as the automatic actuators and the HMI elements. This
pattern facilitates the modeling of any ADAS; it will be easy
for the designer to reuse this pattern by adapting it to the
needs of a particular advanced driver assistance system without
starting from scratch. Therefore, modeling using ADAS-AS
reduces the system failure. However, using another pattern
such as [6][10][16] allows the designer to add all specificities
of an ADAS. So, the developed system does not meet the
requirements.

In future work, we will propose to reuse the following
patterns to model real industrial ADAS systems: the data
acquisition pattern proposed in [9], the controller pattern
defined in [10] and the ADAS-AS pattern defined in this
paper. We will propose also to develop a tool that supports
the definition of ADAS patterns and the dictionary of the
semantic relations in the design process. Then, we will propose
an approach of using patterns to build a new architecture of
an ADAS system that integrates a RT database. This approach
helps designers to build their systems without starting from
scratch. The developer is limited to provide the properties and
the specificities related to a particular system.

REFERENCES

[1] W. Prestl, T. Sauer, J. Steinle, and O. Tschernoster, ”The BMW active
cruise control ACC,” SAE transactions, vol. 109, no. 7, 2000, pp. 119-
125, doi:10.4271/2000-01-0344.

[2] E. Johansson, E. Karlsson, C. Larsson, and L. Eriksson, ”Implementation
and evaluation of lane departure warning and assistance systems,”
Advances in Human Aspects of Road and Rail Transportation, Edited
by Neville A . Stanton, 2012, pp. 37-46.

160Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 180 / 646

[3] M. R. Ghahroudi and R. Sabzevari, ”Sensor data and fusion,” Vienna,
Austria: I-Tech Education and Publishing KG, ch. Multisensor Data
Fusion Strategies for Advanced Driver Assistance Systems, 2009, pp.
141-166.

[4] F. Biral, M. D. Lio, R. Lot, and R. Sartori, ”An intelligent curve warning
system for powered two wheel vehicles,” European Transport Research
Review, vol. 2, no. 3, Dec. 2010, pp. 147-156.

[5] L. Danielsson, H. Lind, E. Bekiaris, M. Gemou, A. Amditis, M. Migli-
etta, and P. Stålberg, ”HMI principles for lateral safe applications,” in
Universal Access in Human-Computer Interaction, ser. Lecture Notes in
Computer Science, C. Stephanidis, Ed. Springer-Verlag Berlin, Heidel-
berg, vol. 4555, July. 2007, pp. 330-338.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, ”Design patterns: Ele-
ments of Reusable Object-Oriented Software,” Addison-Wesley Edition,
1994.

[7] A. Armoush, F. Salewski, and S. Kowalewski, ”Design pattern rep-
resentation for safety-critical embedded systems,” Journal of Software
Engineering and Applications, vol. 2, April. 2009, pp. 1-12.

[8] P. D. Bruce, ”Real-Time Design Patterns: Robust Scalable Architecture
for Real-Time Systems”, Addison-Wesley Edition, 2002.

[9] H. Marouane, A. Makni, R. Bouaziz, C. Duvallet, and B. Sadeg, ”A
real-time design pattern for advanced driver assistance systems,” in
Proceedings of 17th European conference on Pattern Languages of
Programs (EuroPLoP 2012), 2012, pp. C6:1-C6:11.

[10] S. Rekhis, N. Bouassida, C. Duvallet, R. Bouaziz, and B. Sadeg, ”A
UML-profile for domain specific patterns: Application to real-time,”
in DE@CAISE’10: the Domain Engineering workshop of the 22nd

International Conference on Advanced Information Systems Engineering
(CAiSE’10), Hammamet, Tunisia, 2010, pp. 32-46

[11] S. Rekhis, N. Bouassida, C. Duvallet, R. Bouaziz, and B. Sadeg,
”A Process to Derive Domain-Specific Patterns: Application to the
Real-Time Domain,” Proceedings of 14th International Conference on
Advances in Databases and Information Systems (ADBIS’2010), Sept.
2010, pp. 475-489.

[12] S. Rekhis, N. Bouassida, C. Duvallet, R. Bouaziz, and B. Sadeg, ”Mod-
eling real-time applications with reusable design patterns,” International
Journal of Advanced Science and Technology (IJAST), vol. 22, 2010,
pp. 71-86.

[13] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, ”Pattern-
Oriented Software Architecture: Patterns for Concurrent and Networked
Objects,” 2nd ed. New York, NY, USA: John Wiley Sons, Inc., 2000.

[14] D. Slutej, J. Hakansson, J. Suryadevara, C. Seceleanu, and P. Pettersson,
”Analyzing a pattern-based model of a real-time turntable system,” in 6th

International Workshop on Formal Engineering approaches to Software
Components and Architectures(FESCA), ETAPS’09, York, UK, B. Z.
Jens Happe, Ed., Electronic Notes in Theoretical Computer Science
(ENTCS), Elsevier, vol. 253, Oct. 2009, pp. 161-178.

[15] K. Soundararajan and R. W. Brennan, ”Design patterns for real-
time distributed control system benchmarking,” Journal of Robotics and
Computer-Integrated Manufacturing, vol. 24, no. 5, Oct. 2008, pp. 606-
615.

[16] S. Konrad and B. H.C. Cheng, ”Requirements Patterns for Embedded
Systems,” Proceedings of the IEEE Joint International Conference on
Requirements Engineering (RE02), Sept. 2002, pp. 127-136.

[17] OMG, ”Unified modeling language (UML) infrastructure,” v2.1.2,
formal/2007-11-04, 2007.

[18] M. Clauß and I. Jena, ”Modeling variability with UML,” in In GCSE
2001 Young Researchers Workshop, 2001.

[19] N. Idoudi, C. Duvallet, R. Bouaziz, B. Sadeg, and F. Gargouri,
”Structural model for real-time databases: an illustration,” in Proceedings
of 11th IEEE International Symposium on Object-oriented Real-time
distributed Computing (IEEE ISORC’2008). Orlando, United States:
IEEE Computer Society Washington, May. 2008, pp. 58-65.

[20] OMG, ”A UML profile for MARTE,” 2007.
[21] OMG, ”UML 2.0 OCL specification,” 2007.
[22] K. K. Aggarwal, Y. Singh, A. Kaur, and R. Malhotra, ”Software reuse

metrics for object-oriented systems,” in Proceedings of the third ACIS
International Conference on Software Engineering Research, Manage-
ment and Applications (SERA’05). IEEE computer society, Aug. 2005,
pp. 48-54.

[23] N. Bouassida, H. Ben-Abdallah, F. Gargouri, and A. Ben-Hamadou, ”A
stepwise framework design process,” in IEEE International Conference
on Systems Man and Cybernetics, Hammamet, Tunisia, 2002.

[24] E. D. Bekiaris, A. Spadoni, and S. I. Nikolaou, ”Saferider project: new
safety and comfort in powered two wheelers,” in Proceedings of the 2nd

conference on Human System Interactions. Piscataway, NJ, USA: IEE
press, May. 2009, pp. 600-602, doi: 10.1109/HSI.2009.5091045.

[25] J. P. Diederichs, M. Fontana, G. Bencini, S. Nikolaou, R. Montanari,
A. Spadoni, H. Widlroither, and N. Baldanzini, ”New HMI concept
for motorcycles - the saferider approach,” in Proceedings of the 8th

International Conference on Engineering Psychology and Cognitive
Ergonomics: Held as Part of HCI International 2009. Springer-Verlag
Berlin, Heidelberg, July 2009, pp. 358-366.

161Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 181 / 646

Metrics for Measuring Quality of Real-time Design Patterns

Saoussen Rekhis∗, Hela Marouane∗, Rafik Bouaziz†, Claude Duvallet∗ and Bruno Sadeg∗
∗University of Le Havre

Le Havre, France
Email: {Hela.Marouane, Claude.Duvallet, Bruno.Sadeg}@litislab.fr

†University of Sfax
Sfax, Tunisia

Email: {Saoussen.Rekhis, Raf.Bouaziz}@fsegs.rnu.tn

Abstract—In recent years, the influence of domain specific
design patterns on software quality has attracted increasing
attention in the area of software engineering. Indeed, such
patterns facilitate the development process of systems, leading
to efficient solutions for a particular domain. Since the usage of
such patterns has been recommended, there is a need to evaluate
their efficiency in a domain, i.e., they answer the question if
the provided model encapsulates really the concepts tied to a
particular domain. It is also important to determine the amount
of pattern elements reuse in order to verify that the patterns cover
the majority of domain concepts. The amount of reuse metrics
determine how much pattern elements are reused in a designed
system, whereas reusability metrics are intended to measure the
degree to come up with the specificities of a particular domain
in the patterns. Our proposal aims to adapt some existing reuse
metrics and to define new metrics for reusability assessment. The
usage of these metrics is illustrated through a case study in real-
time domain.

Keywords—Reusability metrics; Amount of reuse metrics; De-
sign pattern.

I. INTRODUCTION

Reusability and software reuse are two major aspects in
object oriented software. Reusability is the possibility that
an artifact can be reused, i.e., the fitness of an artifact to
be reusable. Software reuse is the use of existing software
components to build new systems, rather than designing and
implementing from scratch. It provides significant improve-
ments in software productivity and quality during the life
cycle of a system. Software reuse is supported by different
approaches including frameworks, product lines, patterns and
program libraries. Our research focuses on the reuse of design
patterns that are applied in a specific domain (e.g., real-time
domain). These patterns offer flexible architectures with clear
boundaries, in terms of well-defined and highly encapsulated
parts that are in alignment with the natural constraints of the
domain [1]. They present a successful mechanism to capture
and promote best practices in the software design. These
reasons motivated several researchers on the definition and
the application of domain specific design patterns [1][2][3].
However, these researchers do not provide a quantitative
evaluation of effectiveness of applying these patterns.

In this paper, we have seen necessary (i) to adapt two
existing metrics namely, Class Template Factor (CTF) and
Function Template Factor (FTF) [4] to measure, respec-
tively, the amount of pattern classes reuse and operations reuse
in a given application and (ii) to add a new metric to compute
the amount of attributes reuse since each class in a pattern

has two essential parts, corresponding to its attributes and
its operations. Moreover, we are interested in defining new
metrics for assessing reusability of domain specific design
patterns. The aim of these metrics is to determine whether
the patterns represent the concepts that suit a specific domain;
they compute the degree to meet the concepts related to this
domain. These metrics are applied in a validation step of
domain specific design patterns. After their definition, these
patterns are used to model different systems in the considered
domain. For each pattern reuse, we compute the amount of
reuse metrics and reusability metrics in order to evaluate the
quality of patterns. Indeed, it is essential to show that the
application designers need only to add some system specific
elements since the majority of application elements are reused
from the patterns. Without computing the amount of reuse
metrics, we are not sure that the patterns cover the majority
of domain concepts. Thereafter, we consider an example of a
real-time application (the freeway traffic control application)
designed without and with using a domain specific pattern
(sensor pattern [5]), as the base for the illustration of the
defined metrics. We also interpret how the values measured
of these metrics may contribute and be used effectively to
evaluate the quality of the sensor pattern.

The remainder of this paper is organized as follows. Section
II presents related work. The definition of metrics for the
measure of the amount of domain specific design patterns
reuse and the reusability assessment is described in Section
III. The explanation of these metrics is presented in Section
IV. This latter gives a case study to illustrate these metrics.
The evaluation of applying the sensor pattern is described in
Section V. Finally, Section VI concludes the paper and outlines
our future work.

II. RELATED WORK

The use of reusable components (e.g., design patterns)
provides a key element in improving the way software is de-
veloped and supported over its life cycle. Design and software
reuse reduce development efforts and increase the quality of
developed systems. In this context, a critical issue is to identify
and qualify reusable components. For these reasons, several
works on reuse and reusability metrics have been proposed.

A. Amount of reuse metrics

Frakes et al. postulated in [6] that ”amount of reuse
metrics are used to assessing and also monitoring the reuse
improvement effort by tracking of the percentages of reuse for

162Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 182 / 646

life cycle objects”. These metrics aim to determine how much
reuse is present within a given system. The common form
of these metrics is defined as the ratio between the amount
of the life cycle object reused and the total size of the life
cycle object [6]. However, there are many ways to implement
this metric. Each way provides different aspects of the reuse
ranging from how much code is reused to how often it is
reused. For example, the amount of code reuse is defined as
the ratio between the number of reused lines of code in a
system and the total lines of code in a system.

Frakes et al. have shown in [7] various implementations
of reuse level (RL) and reuse frequency (RF) metrics which
have been proposed in [6] for measuring amount of reuse. RL
and RF metrics are measured relative to different granularity
of items (e.g., line of codes, functions, files and projects) of
source software (i.e., C, java and C++).

Zaigham et al. [8] analyze the existing amount of reuse
metrics on the basis of their industrial applicability. These
metrics are applied to different software projects written in
C++ to provide a complete understanding of the level of
correlation that exists between them and other software metrics
such as cyclomatic complexity, volume and lines of code.

Aggarwal et al. have proposed in [4] two metrics for
measuring amount of reuse in object oriented software using
generic programming in the form of templates. The first metric,
called CTF, is defined as a ratio between the number of classes
using class templates and the total number of classes in a
source code. The second metric, called FTF, is defined as a
ratio between the number of functions using function templates
and the total number of functions.

These works are focused on different reuse metrics, aiming
to measure the amount of reuse of software components and
to determine the portion of the new or modified code and
the portion of the reused code. These metrics only deal with
source code which is typically available at the later stages of
the software life cycle, failing to address the importance of
the software artifacts produced during earlier stages such as
analysis and design. So, we see that it is necessary to define
metrics for the assessment of the level of design structures
reuse in application models. In fact, analysis and design are
crucial phases in software development, because they heavily
influence the cost of the implementation and maintenance
phases. Thus, we intend hereafter to adapt existing reuse
metrics defined in [4] for measuring the amount of patterns
reuse in applications designed with UML. Moreover, we will
add another metric to compute the amount of attributes reuse.

B. Reusability assessment

Reusability metrics indicate the possibility that a compo-
nent is reusable and enable to identify a good quality of a
component for reuse, but, they don’t provide a measurement
of how many components are reused.

Different studies are based on the definition of reusability
metrics.

Bhatia et al. [9] have proposed an approach to measure
the reusability of a class diagram based on Depth of Inheri-
tance Tree (DIT) of a class, Number of Children (NOC) and
Coupling Between Object classes (CBO) metrics [10]. This

approach consists to define a formula for reusability based
on the principle that DIT and NOC have positive effect on
reusability, whereas CBO has negative impact on reusability of
a class. The authors consider that reusability of a class diagram
is equal to the maximum reusability of a class in the diagram.

Gill et al. [11] have proposed new metrics which can be
computed from inheritance hierarchies: Breadth of Inheritance
Tree (BIT), Method Reuse Per Inheritance Relation (MRPIR),
Attribute Reuse Per Inheritance Relation (ARPIR), Generality
of Class (GC) and Reuse Probability (RP). BIT metric is
compared to two existing metrics (DIT [10] and NOC [10])
to indicate that this metric measures the breadth of the whole
inheritance tree, not to compute the number of immediate sub
classes of a class. MRPIR and ARPIR metrics are compared
respectively to Method Inheritance Factor (MIF) [12] and
Attribute inheritance Factor (AIF) [12] to highlight that these
two proposed metrics give clearer picture of reuse due to
inheritance. In fact, MRPIR metric (respectively ARPIR met-
ric) computes average number of reused methods (respectively
attributes) in inheritance hierarchy and not in all classes. GC
metric considers the generality of the class as feature of
reusability whereas DIT does not consider characteristics of
the class.

Subedha et al. [13] have used reuse utility percent and reuse
frequency metrics as the assessment attributes for reusability
of the software component in context level. These metrics
determine which components have high reuse potential from
a set of standard components in an existing environment.

The previous metrics estimate the probability of reusability
of a component and evaluate its design quality (e.g., when
CBO increases, reusability decreases and it becomes harder
to modify the software system). These metrics indicate that
whether or not the components are reusable in the future. But,
they do not answer an essential question: Do the reusable
components represent the specificities of a particular domain?
In order to fill this lack, we propose in this paper other metrics
for reusability assessment of domain specific design patterns.
The aim of these metrics is to show if these patterns are
well-defined and they take into account the concepts of the
considered domain.

III. METRICS DEFINITION

In this section, we adapt some existing metrics related
to the amount of reuse for class diagrams. We also define
new metrics that determine the reusability of patterns, i.e., the
probability of their reuse.

A. Amount of reuse metrics

We have to adapt the pair of metrics CTF and FTF [4] to
compute how much classes and operations to reuse are present
within a given application. Moreover, we consider as important
to add a new metric, called Attribute Reuse Level, to measure
reuse level of attributes in each class of a system. In fact,
attributes are essential elements that represent the properties
of a class.

The values of these metrics range from 0 to 1. When reuse
of patterns elements increases, the reuse level value approaches
to 1. A reuse level of 0 indicates no reuse of pattern elements.

163Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 183 / 646

1) Metric 1: Class Reuse Level (CRL): This metric is
defined as the ratio between the number of reused pattern
classes (RPC) and the total number of classes in the designed
system as shown in (1).

Let us consider a model, with n classes C1, C2, ..., Cn.

CRL =

n∑
i=1

RPC(Ci)

n
(1)

where,

RPC(Ci) =

{
1 if the class is reused from a pattern,
0 otherwise.

2) Metric 2: Attribute Reuse Level (ARL): This metric is
defined as the ratio between the number of reused attributes
(RAT) of pattern classes and the total number of attributes in
the designed system as shown in (2).

Let us consider a model having n classes C1, C2, ..., Cn

and mi attributes a1, a2, ..., ami
for each class Ci.

ARL =

n∑
i=1

mi∑
j=1

RAT (aij)

n∑
i=1

mi

(2)

where,

RAT (aij) =

{
1 if the attribute is reused

from a pattern class,
0 otherwise.

3) Metric 3: Operation Reuse Level (ORL): This metric is
defined as the ratio between the number of reused operations
(ROP) of pattern classes and the total number of operations in
the designed system, as shown in (3).

Let us consider a model having n classes C1, C2, ..., Cn

and ki operations op1, op2, ..., opki
for each class Ci.

ORL =

n∑
i=1

ki∑
q=1

ROP (opiq)

n∑
i=1

ki

(3)

where,

ROP (opiq) =

{
1 if the operation is reused

from a pattern class,
0 otherwise.

B. Reusability Metrics

We propose new metrics which indicate the possibility
that a pattern can be reused in new systems. Moreover, these
metrics indicate whether these patterns allow designing the
specificities tied to this domain or not. They are calculated
from two releases of each application. Release 1 is designed
without using any pattern. Release 2 is designed using design
patterns. Measurement values of these metrics are always
normalized to a number between 0 and 1. When metric
values approach to 1, this means that the majority of the
pattern elements (i.e., classes, attributes and operations) are
recognized in the systems which are designed without using
patterns. Thus, the patterns support the requirements related to
a particular domain. Otherwise, the value 0 indicates that no
pattern elements are identified in the systems designed without
using patterns.

1) Metric 1: Class Reusability (CR): The metric CR is
defined as the ratio between the number of identified pattern
classes (IPC) in a model designed without using patterns and
the number of reused pattern classes (RPC) in this model when
designed using patterns as shown in (4).

Let us consider a model with n classes C1, C2, ..., Cn.

CR =

n∑
i=1

IPC(Ci)

n∑
i=1

RPC(Ci)

(4)

where,

IPC(Ci) =

{
1 if the class is identified as

a pattern class,
0 otherwise.

RPC(Ci) =

{
1 if the class is reused from a pattern,
0 otherwise.

2) Metric 2: Attribute Reusability (AR): The metric AR is
defined as the ratio between the number of identified attributes
(IAT) of pattern classes in a model designed without using
patterns and the number of reused attributes (RAT) of pattern
classes in this model when designed using patterns as shown
(5).

Let us consider a model with n classes C1, C2, ..., Cn and
mi attributes a1, a2, ..., ami

for each class Ci.

AR =

n∑
i=1

mi∑
j=1

IAT (aij)

n∑
i=1

mi∑
j=1

RAT (aij)

(5)

where,

IAT (aij) =

{
1 if the attribute is identified as

an attribute of a pattern class,
0 otherwise.

164Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 184 / 646

RAT (aij) =

{
1 if the attribute is reused from

a pattern class,
0 otherwise.

3) Metric 3: Operation Reusability (OR): The metric OR is
defined as the ratio between the number of identified operations
(IOP) of pattern classes in a model designed without using
patterns and the number of reused operations (ROP) of pattern
classes in this model when designed using patterns as shown
in (6).

Let us consider a model with n classes C1, C2, ..., Cn and
ki operations op1, op2, ..., opki

for each class Ci.

OR =

n∑
i=1

ki∑
q=1

IOP (opiq)

n∑
i=1

ki∑
q=1

ROP (opiq)

(6)

where,

IOP (opiq) =

{
1 if the operation is identified as

an operation of a pattern class,
0 otherwise.

ROP (opiq) =

{
1 if the operation is reused from

a pattern class,
0 otherwise.

IV. CASE STUDY

In this section, we present a case study as an example to
explain the application of reusability and reuse metrics. The
measurement of these metrics was carried out in a pattern
specific to the real-time domain [5] (Figure 1). We consider
this domain as the base of the illustration of the defined metrics
since the design of real-time systems is considered to be a
complex process, as all components and real-time constraints
have to be considered during the design phase. In fact, real-
time applications must be able to meet real-time constraints,
i.e., they have to guarantee that each action meets its deadline
and that data are used during their validity interval. Thus, it is
necessary to give a great importance to real-time applications
design.

The real-time domain consists of three functionalities: (1)
acquisition of data from environment, (2) data analysis and
control and (3) sending orders and commands to actuators.
For each functionality, we have defined a design pattern that
captures RT domain knowledge and design expertise. In this
paper, we present only the sensor pattern [5], which focuses
on the modeling of data acquisition functionality of real-time
domain. This pattern is applied to model the freeway traffic
control application.

A. Application description

The COMPASS [3] is a freeway traffic management system
intended to improve safety and to provide a better level of
service to motorists. According to this system, the current
traffic state is obtained from sensors installed in the freeway:

inductance loop detectors and supervision cameras. In fact,
inductance loop detectors are embedded in the pavement. Their
shape may vary depending on the system requirements. Induc-
tance loop detectors, which are active sensors, measure speeds
and lengths of vehicles, number of vehicles and occupancy
rates of road segments. These acquired measures are updated
and transmitted periodically to the Central Computer System
to monitor traffic and to identify traffic incidents. Whereas
the Closed Circuit Television (CCTV) supervision cameras
constitute passive sensors that transmit periodically the images
to the Traffic Operation Centre (TOC). These images are
used to confirm the reception of data through the inductance
loop detectors and to provide information on local conditions.
CCTV cameras are normally mounted on the top of 15 meters
poles at approximately 1 km apart along the freeway. These
cameras are characterized by a resolution 126 x 185 pixels.
Each measure, taken from the environment of this system,
has a value, a timestamp and a validity interval to verify the
temporal consistency of the collected traffic data. In addition,
the minimum and maximum thresholds of each taken measure
must be defined in order to determine the abnormal values for
which COMPASS system may detect an incident.

The data acquisition subsystem of this application is de-
signed without and with using sensor pattern to calculate the
reusability metrics defined in Subsection III-B. Whereas the
amount of reuse metrics (Subsection III-A) are computed
based on this application model reusing the pattern. Figures
2 and 3 show respectively the model without and with the use
of the pattern. The model without using pattern is designed by
three professors who have an experience in UML.

B. Metrics illustration

Table I shows all metrics calculated from the models of
freeway traffic management application already presented (c.f.
Figures 2 and 3).

TABLE I
REUSE AND REUSABILITY METRICS CALCULATIONS.

Metrics Value

Amount of reuse
metrics

Class Reuse Level (CRL) 5
9 = 0.55

Attribute Reuse Level (ARL) 10
14 = 0.71

Operation Reuse Level (ORL) 6
9 = 0.67

Reusability metrics

Class Reusability (CR) 5
5 = 1

Attribute Reusability (AR) 7
10 = 0.7

Operation Reusability (OR) 4
6 = 0.67

According to the model presented in Figure 2, we identify
the following classes as elements of sensor pattern: (i) Sensor,
InductanceLoop and Camera classes: they play, respectively,
the role of Sensor, Active Sensor and Passive Sensor classes,
(ii) RoadSegment and Vehicle classes: they correspond to the
ObservedElement class and (iii) trafficData class: it matches
the Measure class. As the RoadSegment and Vehicle classes
play the same role (i.e., ObservedElement class), they are

165Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 185 / 646

Fig. 1. Sensor pattern [5].

Fig. 2. Data acquisition subsystem of COMPASS without using sensor pattern.

calculated as only one identified pattern element. In other
words, the number of identified (RoadSegment,Vehicle) is equal
to 1 (not to 2). This avoids any conflicts in the evaluation of
conceptual models with various correct solutions. Indeed, if
the elements have the same role in a system, the designer has
two solutions: he may use or not the inheritance relationships.
Thus, we must calculate the number of identified elements
considering the classes which play the same role as one
element to obtain the same measurement.

Sensor class has one attribute corresponding to the attribute
of the Sensor pattern class: it is periodicity. The takeImage()
operation of Camera class matches the getValue() operation
of Passive Sensor pattern class. Whereas, the takeMeasure()
operation of InductanceLoop class correspond to the set-
Value() operation of Active Sensor pattern class. RoadSegment
and Vehicle classes have, respectively, segmentId and vehi-
cleImmat attributes that correspond to elementId attribute of
ObservedElement pattern class. All attributes and operations

166Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 186 / 646

Fig. 3. Data acquisition subsystem of COMPASS with using sensor pattern.

of TrafficData class are elements of Measure pattern class.
The identification of model elements (classes, attributes and
operations) as pattern participants is based on a semantic com-
parison between classes names using a domain dictionary. This
dictionary holds for each term (i.e., a class name, an attribute
name and operation name) the possible synonyms, antonyms,
hypernyms. The construction of this dictionary requires the
intervention of pattern designers to determine the linguistic
relations for each introduced pair of terms. The designer
specifies, for example, that the class name observedElement
is the hypernym of vehicle class name.

The reusability metric values presented in Table I approach
to 1, it indicates that the majority of pattern participants are
recognized in the application model. If we obtain the same
results in several case studies, this means that the patterns
cover the domain concepts.

As shown in Figure 3, the image is considered as a measure
taken by a camera sensor. It has a value (the taken photo),
a timestamp and a validity duration. But, it does not have
minimum and maximum values. Thus, minVal and maxVal
attributes have the multiplicity [0..1]. The other attributes have
the default multiplicity [1].

We have reused the classes Sensor, Active Sensor, Pas-
sive Sensor, ObservedElement, and Measure. RoadSegment
and Vehicle classes constitute specific application elements
which specialize ObservedElement class. This class reuses
all features of ObservedElement pattern class. We have also
reused all attributes and operations of Measure class except
Maximum Data Error attribute. From Sensor class, we have
instantiated description and periodicity attributes. In addition,
the reused operations of Active Sensor and Passive Sensor
classes correspond respectively to setData() and getImage()

operations of InductanceLoop and Camera classes.

The reuse metric values presented in Table I mean that
the majority of application elements (classes, attributes and
operations) are reused from the pattern and a limited number of
application specific elements are added. This result is approved
in the next Section by applying the sensor pattern in several
real-time applications.

V. SENSOR DESIGN PATTERN EVALUATION

We present in Table II the values of reuse metrics and
reusability metrics obtained for the sensor pattern which is
used for modeling ten different real-time applications that we
reference A1, A2, ... , A10. On one hand, the values obtained
for reuse metrics show that more than half of the classes,
the attributes and the operations of real-time applications
corresponding to the sensor pattern are instantiated from this
pattern. For example, the values of reuse metrics obtained in
Table II for the application A1 show that 83% of classes (CRL
= 0,83), 62% of attributes (ARL = 0,62) and 87% operations
(ORL = 0,87) belonging to the model fragment relative to
the sensor pattern are instantiated from this pattern. There are
even cases (applications A7, A8 and A9) where all applications
classes are instances of pattern classes (CRL = 1). Thus, we
deduce a good level of reuse of the sensor pattern elements in
the modeling of real-time applications.

On the other hand, the values obtained for reusability
metrics calculated for the sensor pattern indicate that the
degree of reusability of classes and attributes is better than the
reusability of operations. Indeed, we identified all the classes
of the sensor pattern (CR = 1) in seven cases of real-time
applications modeled without reusing this pattern. In addition,
we have identified the majority of the attributes reused from the

167Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 187 / 646

TABLE II
RESULTS FOR REUSE METRICS AND REUSABILITY METRICS CALCULATED FOR SENSOR PATTERN.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 Averge

Amount of reuse
metrics

CRL 0,83 0,57 0,7 0,71 0,8 0,83 1 1 1 0,71 0,81

ARL 0,62 0,59 0,72 0,6 0,83 0,75 0,75 0,76 0,87 0,73 0,72

ORL 0,87 0,71 0,83 0,75 0,83 0,7 0,83 0,83 0,72 1 0,80

Reusability
metrics

CR 1 1 1 1 1 0,6 1 1 0,8 0,8 0,92

AR 0,8 0,76 0,66 0,73 0,7 0,76 0,77 0,8 0,64 0,81 0,74

OR 0,71 0,60 0,5 0,66 0,4 0,42 0,6 0,4 0,37 0,5 0,51

pattern classes. For example, the values of reusability metrics
obtained in Table II for application A1 show that all reused
classes of the sensor pattern are identified (CR = 1), 80% of the
attributes are identified (AR = 0,8) and 71% of operations are
identified (OR = 0,71). This means that the reuse of this pattern
is interesting in the real-time domain because it adequately
represents the concepts of data acquisition functionality.

VI. CONCLUSION AND FUTURE WORK

The main objective of this work is to define two categories
of metrics that are important for reuse design. The first one
aims to assess the reuse level of pattern participants. When the
measurement of amount of reuse metrics increases, it means
that the pattern elements are simply reused in the model with
a minimal possibility for modification. The second category
focuses on predicting the reusability of domain specific design
patterns. This kind of metrics checks the presence of pattern
elements in a system designed without the usage of patterns.
When the measurement of reusability metrics increases, it
means that the patterns well represent the domain concepts.
Reuse and reusability metrics are then illustrated using a
case study and they are calculated for ten applications to
evaluate the quality of the sensor pattern. The values of reuse
metrics show a high degree of the pattern elements reuse (i.e.,
more than 70% of classes, attributes and operations of the
considered applications are modeled by reusing the sensor
pattern in the majority of cases). Similarly, the values obtained
for reusability metrics show that the attributes, the operations
and especially the classes of the sensor pattern are identified in
the applications models designed without reuse of this pattern.
Thus, we can conclude that it has a good ability to be reused
for modeling real-time applications.

In future work, we will check and evaluate the effectiveness
of applying other domain specific design patterns (controller
and actuators patterns) for real-time systems based on the
measurement of these metrics taken for different case studies.

REFERENCES

[1] D. Port, ”Derivation of domain specific design patterns,” USC Center for
software engineering, 1998.

[2] H. Marouane, A. Makni, R. Bouaziz, C. Duvallet, and B. Sadeg, ”A real-
time design pattern for advanced driver assistance systems,” in 17th

European conference on Pattern Languages of Programs (EuroPLoP),
2012, pp. C6:1-C6:11.

[3] S. Rekhis, N. Bouassida, C. Duvallet, R. Bouaziz, and B. Sadeg, ”A
process to derive domain-specific patterns: Application to the real-time
domain,” in Proceedings of 14th International Conference on Advances
in Databases and Information Systems (ADBIS), 2010, pp. 475-489.

[4] K. K. Aggarwal, Y. Singh, A. Kaur, and R. Malhotra, ”Software reuse
metrics for object-oriented systems,” in Proceedings of the third ACIS In-
ternational Conference on Software Engineering Research, Management
and Applications (SERA’05). IEEE computer society,2005, pp. 48-54.

[5] S. Rekhis, N. Bouassida, C. Duvallet, R. Bouaziz, and B. Sadeg, ”Mod-
eling real-time applications with reusable design patterns,” International
Journal of Advanced Science and Technology (IJAST), vol. 22, 2010,
pp. 71-86.

[6] W. Frakes and C. Terry, ”Software reuse: metrics and models,” ACM
Comput. Surv., vol. 28, no. 2, Jun. 1996, pp. 415-435.

[7] W. B. Frakes, R. Anguswamy, and S. Sarpotdar, ”Reuse ratio metrics
RL and RF,” in 11th International Conference on Software Reuse, Falls
Church, VA, USA, 2009.

[8] M. Zaigham and R. Tauseef, ”Correlation between amount-of-reuse
metrics and other software measures with respect to programming code
in c++,” Software Quality Control, vol. 11, no. 4, Nov. 2003, pp. 301-
312.

[9] K. B. Pradeep and M. Rajbeer, ”An approach to measure software
reusability of OO design,” in Proceedings of 2nd National Conference
on Challenges & Opportunities in Information Technology (COIT-2008)
RIMT-IET, Mandi GobindgarhA, 2008.

[10] S. R. Chidamber and C. F. Kemerer, ”A metrics suite for object oriented
design,” IEEE Transaction on Software Engineering, vol. 20, no. 6, Jun.
1994, pp. 476-493.

[11] S. G. Nasib and S. Sunil, ”Inheritance hierarchy based reuse &
reusability metrics in oosd,” International Journal on Computer Science
and Engineering (IJCSE), vol. 3, no. 6, 2011, pp. 2300-2309.

[12] R. Harrison, S. Counsell, and R. Nithi, ”An evaluation of the MOOD
set of object oriented software metrics,” IEEE Transaction on Software
Engineering, vol. 24, no. 6, 1998, pp. 491-496.

[13] V. Subedha and S. Sridhar, ”Design of a conceptual reference framework
for reusable software components based on context level,” International
Journal of Computer Science Issues (IJCSI), vol. 9, no. 3, 2012, pp.
26-31.

168Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 188 / 646

Using a New UML Profile for Modeling Software Tests

Andrew Diniz da Costa, Carlos José Pereira de Lucena, Ricardo Venieris, Gustavo Carvalho
Laboratory of Software Engineering

Pontifical Catholic University of Rio de Janeiro
Rio de Janeiro, Brazil

{acosta, lucena}@inf.puc-rio.br, {rvenieris, guga}@les.inf.puc-rio.br

Abstract—The development of complex systems is becoming

extremely common; hence, is motivating the work on software

testing. When a large number of tests must be executed to

validate the release of a system, several data should be used to

correctly coordinate the execution of these tests, such as

knowing (i) if the current version of a particular test has been

updated, (ii) the interdependence between tests, (iii) the order

of execution to be followed, (iv) the priority, (v) the risks

associated with the tests, etc. Based on this concern for

providing and documenting useful data for the coordination of

test execution, this paper offers a new modeling language

called UML Testing Profile for Coordination (UTP-C). UTP-C

was created from testing experiences of several web and

desktop applications in the Software Engineering Lab, located

at the Pontifical Catholic University of Rio de Janeiro. In order

to illustrate the use of UTP-C, the paper presents tests modeled

for validating an e-commerce multi-agent system.

Keywords-UML testing profile; model based test; software

testing.

I. INTRODUCTION

Creating and executing software tests is an activity that is
extremely important in the development process. Depending
on the size and complexity of the system evaluated, System
Under Test (SUT), a large number of tests should be created
and maintained. The U.S. National Institute of Standards and
Technology (NIST) informs that systems without adequate
tests generate annual costs of up to US$ 59.5 billion [24].
This is almost 1% of the gross domestic product of the U.S.

In order to control software tests, it is necessary to apply
a process of management, which makes it possible to execute
these tests to evaluate if each one is behaving as expected.
Several concerns are identified in this process, such as high
costs to recruit or train people, the defining of documentation
standards, etc.

One approach that has gained prominence to document
and assist the activities of test creation, execution and
maintenance is the application of test modeling languages,
which provides a graphic view that facilitates the abstraction
of concepts and the communication between stakeholders. In
the literature, there are several approaches related to test
modeling, such as the UML Testing Profile [1], the AGEDIS
Modeling Language [2], and the Unified Testing Modeling
Language [3].

Over the past six years, the Software Engineering Lab
(LES) at the Pontifical Catholic University of Rio de Janeiro
has worked extensively on coordinating and carrying out
tests of large-scale software systems developed (for web and

desktop) for different domains (e.g., petroleum, e-commerce,
etc). Based on this experience and a request from a client,
who wanted to have all the tests modeled, we investigated
how UML could be used to model relevant test data and
hence to help the coordination of test execution. These data,
which could be modeled, were identified from different
sources: (i) test maturity models (TMM [14] and TMMi
[15]); (ii) continuous integration tools [16] (e.g., Hudson,
Continuum and Cruise Control); (iii) test management tools
(e.g., Rational Quality Manager [19] and Rational Test
Manager [20]); (iv) test modeling languages; and (v) IEEE
documents (such as, IEEE 829-2008 [21]). Some of the
identified data were described in [23].

From this work, a test group of the LES proposed a new
test modeling language called UML Testing Profile for
Coordination (UTP-C), which is presented in the paper.
UTP-C is an extension of the UML Testing Profile, which is
an OMG pattern for the UML language. This approach was
provided to allow the modeling of useful data that help the
coordination of software testing. According to Baker e al.
[1], a profile defines new stereotypes, attributes, and
methods to provide additional semantics for the UML.

When UTP-C was being created, we identified the
possibility of generating a set of useful artifacts from UTP-C
models. However, to conduct this generation, an appropriate
tool needed to be created and used. The artifacts identified
for automatic generation were: (i) javadoc commentaries in
test script source code; (ii) reports that provide important
data about modeled tests; and (iii) a set of XML files
considered as input data for multi-agent systems [22] that use
the Java Self-Adaptive Agent Framework for Self-Test
(JAAF+T) [5][6].

JAAF+T is a framework that aims to allow the creation
of self-adaptive software agents that perform a self-test
before executing self-adapted behaviors. We consider self-
test as the action of validating some adaptation before using
it. These validations are performed by a set of tests described
in XML files and that are explained in detail in [5] and [6].
Hence, from the JAAF+T, a self-adaptive agent can
coordinate the execution of tests, i.e., choosing and executing
which tests will validate some self-adaptation performed by
it.

Since different LES projects use the Rational Software
Architecture (RSA) tool to model UML diagrams, we
decided to create a new plug-in for the tool called “RSA
applying Model-Based Test” (RSA-MBT). The main focus
of this plug-in is to generate test artifacts from UTP-C
models.

169Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 189 / 646

Thus, the paper is organized as follows. In Section II, the
new UML profile is explained. In Section III, a case study is
presented that illustrates examples of UTP-C diagrams at an
e-commerce multi-agent system developed for the web.
These diagrams are modeled using the Astah tool [13]. In
Section IV, the main idea of the RSA-MBT plug-in is
presented, and the diagrams modeled from the Astah (in
Section III) are modeled in the RSA tool. Thus, it is possible
to see the modeling based on UTP-C in two different tools.
In Section V, conclusion and future works are presented.

II. UML TESTING PROFILE FOR COORDINATION

In this section, the UML Testing Profile for Coordination
(UTP-C), which was created to model useful data to test
coordination, is presented. As stated previously, UTP-C is an
extension of the UTP, a standard test profile of the OMG for
the UML language. UTP-C uses UML class and activity
diagrams for modeling a set of test data. These diagrams
were chosen because they allow the modeling of structural
and dynamic information that helps the coordination of tests.

The meta-class diagram illustrated in Figure 1 presents a
set of stereotypes defined by the UTP-C profile, as well as
where they can be used in UML elements. Some of these
stereotypes are new, while others are provided by the UTP,
but had constraints and properties included. In spite of these
inclusions in the UTP-C, they do not challenge the
compatibility to the ones that use UTP. Due the limited space
of the paper, we will not be able to present in detail these
constraints and properties that are described in [6]. However,
the example presented in Section III illustrates how UTP-C
diagrams can be modeled.

Below, the description of each stereotype used by the
UTP-C is presented.

• <<TestCase>>: It states a test case of a system
under test (SUT). Each test case is composed of a
set of data: test type (e.g., white box, functional,
non-function, regression, etc), priority of
execution, version of the SUT that it is currently
updated, type of obligatoriness, i.e., if execution is
mandatory or optional, and the related risk of the
system when the test case fails (e.g., to stop the
system, data inconsistency, etc.). This set of data
related to each test case was not considered by the
UTP.

• <<TestContext>>: It states that a set of test cases is
responsible for testing some artifacts of the SUT. A
test context is composed for: 1 to N test cases, it
informs the version of the SUT that their test cases
should be updated (desired version), test tool used
for executing it, test level related (e.g., unit,
integration, system or acceptance), and if it is
executed automatically or manually. All these data,
except the definition that a test context is
composed for 1 to N test cases, were not
considered by the UTP.

• <<OrderedSuite>>: It is used to represent a test
suite, i.e., an entity that executes a set of test
contexts and test cases upon a specific order. UTP
considers that a test context is a suite. However, to
allow a better identification of a suite class that
does not have developed test cases, in comparison
to a class that has test cases (test context), we
decided to offer the <<OrderedSuite>> stereotype.

• <<TestCriterion>>: It defines a criterion of
selection to execute tests of the SUT. An example
of a criterion is to execute all the regression and
unit tests with high priority and mandatory.

• <<ArtifactUnderTest>>: This stereotype is
responsible for representing a set of data related to
some artifacts under test (AUT) that are provided
in a comment entity. Examples of provided data are
the following: path where the results of the tests
executed to validate the AUT are stored (result’s
log), name of the AUT, and type of artifact tested
(e.g., class, agent of software, web-service, etc.).

• <<TestClassification>>: It represents a test
classification. Test classification is any information
that allows grouping and relating test contexts and
ordered suites. Its focus is to help the visualization
of test entities and their conceptual relations.

• <<Development>>: It represents the real package
that stores a given created and modeled class. This
is different than the stereotype
<<TestClassification>>, which represents
conceptual views.

In Figure 1, the Element meta-class is a superclass of the
Classifier meta-class, which is a superclass of the Class
(used in class diagrams) and Activity meta-classes (used in
activity diagrams) [4]. Thus, the TestContext, OrderedSuite,
and TestCriterion stereotypes can be used in any sub meta-
class of Classifier, while the TestCase stereotype is related to
the Behavior meta-class to allow the modeling at behavioral
entities, such as Activity.

Figure 1. UTP-C meta-model.

170Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 190 / 646

Figure 1 also illustrates that the Classifier meta-class is
related to StructuralFeature and BehavioralFeature meta-
classes. A structural characteristic is a characteristic of a
classifier that specifies the structure of instances of the
StructuralFeature meta-class, whereas a behavioral
characteristic is a characteristic that specifies an aspect of
behavior of theirs instances. Thus, the StructuralFeatures
meta-class is a generalization of Property meta-class
(attributes of a class are represented as instances of
Property), and the BehavioralFeatures meta-class is a
generalization of the Operation meta-class, according to the
definition of the UML [4]. The original UTP considers that a
test case also can be represented as an operation. Hence, the
TestCase stereotype can be used in the Operation meta-class.

The Comment meta-class is a subclass of the Element
meta-class and it can receive the ArtifactUnderTest
stereotype. As stated previously, this stereotype informs that
data which compose a Comment instance are related to an
artifact of the SUT.

TestClassification and Development stereotypes are used
in packages (represented by the Package meta-class) that
allow, respectively, test classifications or development
packages to group test contexts and/or suites.

Figure 2. Meta-model of relationships.

Another important data for test coordination is to
understand which dependences exist between tests. In order
to represent additional semantics on relationships of
dependency, a set of stereotypes were proposed by the UTP-
C to the UML. These stereotypes were proposed from
situations identified in test projects of the Software
Engineering Lab. Although this is a limited set, other
stereotypes can be included depending on the needs of each
project, such as proposals that express more situations of
security in SUTs (e.g., <<permissionRevoked>>).

These stereotypes are presented in Figure 2 and described
below.

• <<artifactCreated>>: It is used when a test case
depends on the creation of some artifact (e.g., file,
component, entity, etc.) performed by another test
case.

• <<artifactUpdated>>: It states that a test case
depends on the updating of an artifact (e.g.,
changing the name, path, etc.).

• <<artifactRemoved>>: It indicates that the test case
depends on the exclusion of another system
artifact.

• <<environmentChanges>>: The test case depends
on changes in the environment where it is being
executed, such as changes to the operating system,
environment variables, etc.

• <<permissionGranted>>: It is used when a test
case depends on a permission granted from another
test case.

• <<loginAccess>>: It states that a test case depends
on a login performed in the SUT from another test
case.

• <<executionSuite>>: It informs which test contexts
an OrderedSuite executes.

• <<artifactIsAvailable>>>: It is used when a test
case needs to use an artifact provided by another
test case.

III. CASE STUDY: VIRTUAL MARKET PLACE SYSTEM

This section presents the test modeling of the Virtual
Marketplace (VMP) application, an e-commerce system
where software agents represent users (buyers) and markets
(sellers) that sell new and used books. Each buyer agent
executes a set of tests to decide which seller will be used to
buy his desired books. In order to show how the UTP-C
approach can be used a subset of tests created and executed
by the buyer agents are modeled. Thus, this section is
organized as follows. In Section A, the idea of the VMP
system is presented in more detail, and in Section B, UTP-C
diagrams are presented and described.

A. Main Idea

Aiming to exemplify the use of the UTP-C, we decided
to use the VMP system that provides markets responsible for
selling new and used books for users. As stated previously,
each user is represented by a buyer software agent, which
negotiates with seller agents that represent markets (e.g.,
Amazon, Ebay, etc.).

Initially, a buyer user should register with the system
providing: (i) its preferred market; (ii) the minimum
reputation a seller (market agent) must have; and (iii) if he
prefers to buy either new or used books. These data are used
by the buyer agent to negotiate with seller agents that satisfy
the requests made by the user.

171Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 191 / 646

After registering, the user can request the purchase
desired. However, a set of data must be provided: (i) title(s)
of book(s) desired, (ii) name(s) of author(s), and/or (iii) the
maximum price he is willing to pay for book. From these
data, the buyer agent (representative of the user) verifies if
the seller agent (representative of his preferred market) can
meet the request that has been made.

If a seller cannot satisfy the request, the buyer agent tries
to meet another seller agent that can sell the desired books.
In order to meet another seller, three verifications are
performed: (i) if the prices of the desired books provided by
the seller are lower than the maximum price informed by the
buyer, (ii) if the type of book (used or new) informed by the
buyer is respected, and (iii) if the seller agent’s reputation is
higher than or equal to the minimum reputation of the buyer.

The idea of reputation used on the VMP system is based
on the interaction and witness reputations proposed by the
Fire model [7]. The interaction reputation is related to the
provision of reputations from the negotiation between two
agents. In this case, a buyer agent can define a reputation of
the seller agent involved in the interaction performed. This
reputation is stored in a private buyer agent database. On
other hand, the witness reputation allows an agent A to
request the reputation (opinion) for an agent B about an
agent C. Thus, a buyer agent can request opinions about a
seller agent for other buyer agents.

When a seller agent is able to meet the request provided
by a buyer, the VMP system presents details of the purchase
for the user and it expects confirmation to conclude the
negotiation between the agents.

B. Modeling VMP

Figure 3 illustrates a class diagram, created from the
Astah tool [13]. This diagram has two test contexts created
for the VMP system: TestAvailableItem and

TestVerifyWitnessReputationSeller. TestAvailableItem has a
test case named testAvailableItem, while
TestVerifyWitnessReputationSeller has the test case
testWitness. These test contexts execute automatic (use of
the attribute isAutomatic) test cases for the version 7.0 of the
SUT (represented by the attribute desiredSystemVersion).
Furthermore, they use the JAT tool (represented by the
attribute tool) [8], which allows the development of unit tests
(use of the attribute testLevel) for multi-agent systems.

The main goal of the TestAvailableItem test context is to
verify if a seller agent can sell a given book requested by the
buyer agent while the TestVerifyWitnessReputationSeller
test context verifies if the seller agent has a reputation higher
than the reputation informed by the buyer. This conclusion is
achieved from the average generated by the reputations
provided for other buyer agents of the system about the
analyzed seller agent.

Figure 3 shows that each test case of the system contains
five more pieces of important associated information: (i) the
system version with which the current test case is associated
and updated (described by using the attribute
currentVersion); (ii) its type of test (e.g., functional, non-
functional, regression, etc.); (iii) the priority of the execution
(e.g., high, medium, low); (iv) the type of obligatoriness
(e.g., mandatory or optional); and (v) the risk related to the
test when this test fails. The model allows a description of a
risk in detail (e.g., to stop the system) or only its severity
related to the SUT (e.g., high severity as illustrated in Figure
3) when a test case to fail. The works presented in [6] and
[23] describe in detail the relevance of modeling these test
data.

The SuiteVMP class is a test suite responsible for
executing the test contexts mentioned previously. If a suite
executes a subset of test cases developed through some test
context, the modeling can inform which are these test cases

Figure 3. Class Diagram based on UTP-C.

172Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 192 / 646

from the following structure: <<executionSuite>>
[name_test_case_1, …, name_test_case_N].

The entities modeled in Figure 3 are grouped in packages
that have the stereotype <<Development>>. This stereotype
represents the package where the classes of a given project
are stored. On the other hand, the stereotype
<<TestClassification>> can be used to group conceptually
test contexts and suites. Packages with this stereotype do not
store developed classes, different than packages with the
stereotype <<Development>>.

Figure 4. Example of activity diagram.

Finally, but not least important, Figure 4 shows an
activity diagram that illustrates the order of execution
considered by the SuiteVMP. In this diagram, the first test
context to be executed is TestAvailableItem followed by
TestVerifyWitnessReputationSeller. The diagram shows that
these test contexts are responsible for testing a given seller
agent, and the test results are stored at
“\\logs\logSellerAgent.txt”. These data are provided for a
commentary entity with stereotype <<ArtifactUnderTest>>
illustrated in Figure 4.

IV. RSA-MBT PLUG-IN

When UTP-C was being created, we identified the
possibility of generating a set of useful artifacts from UTP-C
models. Thus, the RSA-MBT was proposed. It is an open-
source plug-in, developed in Java, for the Rational Software
Architecture (RSA) tool, and it is available in [9].

From the RSA-MBT it is possible to generate test
artifacts based on UTP-C diagrams. The possible test
artifacts, which can be generated from it, are the following:
(i) test reports for test teams; (ii) javadoc commentaries; and
(iii) a set of XML files used in multi-agent systems that
instantiate the JAAF+T framework. Notice that currently the
plug-in is not creating test codes. However, we intend to
include this generation in the next releases of the plug-in.
Thus, the main idea of the RSA-MBT is to generate a set of
artifacts that can help the work of test teams, such as
understanding characteristics of each test case (e.g., from
javadoc commentaries), and knowing which tests are not
updated to a specific version of a system under test (e.g.,
using test reports generated).

The RSA tool allows several transformations, such as
from UML diagrams to Java. When this transformation is
requested, the RSA-MBT is executed.

Figure 5 illustrates the same classes modeled in Figure 3,
but modeled from the RSA tool. Data of the test cases
(methods) are presented in the Documentation tab, when a
test case method is selected, as illustrated in Figure 6. This
approach was considered, because RSA tool does not allow
modeling these data of the test cases as the Astah tool.
Besides, we informed that the current version of the
testWitness is v6_00, which is different from the one in
Figure 3. This was performed in order to show better some
data generated from the plugin proposed and explained more
in the following.

Figure 5. Example of class diagram based on UTP-C.

Figure 6. Documentation tab of the RSA tool.

From modeling of diagrams based on the UTP-C

approach, the user should request the UML to Java
transformation. With this request the main screen of the
RSA-MBT is presented (see Figure 7). Such a screen allows
choosing which test artifacts will be generated and which
language must be considered. Nowadays, the plug-in allows
generating artifacts in six different languages: English,
Portuguese, Italian, French, Spanish, and German.

173Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 193 / 646

Figure 7. RSA-MBT screen.

Figure 8 illustrates an example of javadoc commentaries
generated in English. In this example, commentaries are
provided to the class (test context)
TestVerifyWitnessReputationSeller and to its test case
(testWitness method) modeled in the class diagram presented
in Figure 5.

The commentaries generated to the class TestWitness
are based on the data provided in the modeled attributes:
desiredSystemVersion, testLevel, tool and isAutomatic.
Hence, it is informed that such test context uses the JAT tool,
is an automatic and unit test context, and should be updated
to the version “v7_00” of the SUT. On other hand, the
commentaries generated by the “testWitness” method are

based on the data provided in the “Documentation” tab
presented in Figure 6. Thus, RSA-MBT informs that it is a
mandatory and a white-box test case currently updated to
version v6_00 of the SUT. Besides, it has priority and risk 0
(zero), i.e., high priority and risk, respectively.

Figure 8. Example of javadoc commentaries.

Figure 9. Summary tab – test report generated.

174Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 194 / 646

In order to provide an overview of which test contexts
and test cases are updated to a specific version informed by
the user (by using the text field “Desired System Version”
illustrated in Figure 4), a test report (“.xls” extension) is
created. This report has three tabs, which are explained in
detail as follows.

• Summary tab (see Figure 9): It presents two
graphics that inform the number of test contexts and
test cases updated to the version provided by the
user (we are considering that the desired version is
v7_00).

• Details tab (see Figure 10): It lists the test contexts
(test classes) updated and not updated to the version
desired.

• ReportData tab (Figure 11): It presents an
overview of the current state of these updates.

Figure 10. Details tab – test report generated.

Figure 11. ReportData tab – test report generated.

Also, RSA-MBT generates XML files as input data to the
JAAF+T framework. As stated previously, JAAF+T is a

framework that allows creating self-adaptive agents that
perform self-tests based on a set of XML files.

Three XML files can be generated by the plug-in:
TF.xml, CFF.xml and CEF.xml. Test File (TF.xml) is
responsible for describing all the tests that can be executed in
self-adaptations (see Figure 12). Control Flow File
(CFF.xml) presents the order of execution that tests must be
executed to validate some artifact of the SUT (see Figure
13). While Criterion of Execution File (CEF.xml) describes
the criterions that define which tests, present in the TF.xml
file, will be executed (see Figure 14).

Figure 12. Example of a TF.xml file.

Figure 13. Example of a CFF.xml file.

The main idea of using UTP-C models was to make
creation and maintenance of these XML files easier since,
depending on the size of an XML file, the editing work can
be difficult. Thus, as all the data considered by the XML
files can be modeled in UTP-C diagrams, it is often easier to
edit diagrams than to work with XML files. Details of these
files are presented in [5].

175Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 195 / 646

V. DISCUSSION

One of the most relevant work related to test modeling is
the UML Testing Profile [1] that defines a profile for
designing, visualizing, and documenting the artifacts of test
systems. Such an approach extends UML 2.x [4] with test
specific concepts, such as test components, verdicts, defaults,
etc. These data are grouped in test architecture, test data, test
behavior and time. Being a profile, the UML testing profile
seamlessly integrates into UML: it is based on the UML
meta-model and reuses UML syntax. Although the approach
proposes interesting concepts for modeling test systems, it
does not support the modeling of important test data
represented by our test modeling language, such as the
identification of (i) the system version that each test is able
to test, (ii) the mandatory and optional tests, (iii) the test
types created, (iv) the types of dependences that exist
between the tests (such as data dependence), and (v) the
automated and manual tests. On the other hand, the UTP-C
approach provides support to represent these test data.

Figure 14. Example of a CEF.xml file.

AGEDIS modeling language (AML) [2], which is
another testing language, is based upon the UML (1.4) meta-
model and enables the specification of tests for structural
(static) and behavioral (dynamic) aspects of computational
UML models. AML comes as part of the AGEDIS
methodology and has been designed with two main goals in
mind: to create a test adequate abstraction of the SUT that
will be analyzed by the AGEDIS tools, which allows
generating automatically suite tests, and to set meaningful
test directives for the testing process. AML presents the same
problems mentioned for the UML Testing Profile.

The Testing and Test Control Notation (TTCN-3) [11] is
a modular language that has the similar look and feel of a
typical programming language. This language is widely
accepted as a standard for test system development in the
telecommunication and data communication area. The main
reason for such acceptance is that it comprises concepts
suitable to any type of distributed systems to be tested, such
as important features necessary to specify test procedures for
functional, conformance, interoperability, load and

scalability tests. Besides this, it defines mechanisms to
compare the reactions of the system under test with the
expected range of values, time handling, distributed test
components, ability to specify encoding information,
synchronous and asynchronous communication, and
monitoring. Similar to the UML Testing Profile, TTCN-3
also does not provide a set of useful concepts that the test
modeling language, presented in this paper, proposes. All the
concepts not included in the UML Testing Profile and
AGEDIS are also not considered in this work.

According to [3], the benefits of Model-Driven
Engineering (MDE) for product software development have
been demonstrated in numerous instances. Therefore, similar
benefits can also be achieved in applying MDE to test
software development. This form of Model-Based Testing
(MBT) is called Model-Driven Test Engineering (MDTE) or
simply Model-Driven Testing (MDT). However, to optimize
the efficiency of MDT, good-practices and patterns specific
to test development must be taken into account. Based on
this idea, Feudjio [12] proposes a Unified Test Modeling
Language (UTML) that is a test notation designed for
pattern-oriented MDT. It provides the means for designing
all aspects of a test system at a high level of abstraction and
independent of any specific lower-level test infrastructure.
Besides this, at the same time it provides guidance in
following test design patterns and avoids usual pitfalls of
MDT. Such an approach provides a tool called MDTester
that allows modeling the concepts proposed by UTML.
However, this tool does not allow to explicitly model the test
data provided by the UTP-C, such as, test type, test level,
risk, priority, etc.

VI. CONCLUSION AND FUTURE WORK

This paper presented a new test modeling approach
named UML Testing Profile for Coordination (UTP-C). This
approach extends the UML Testing Profile in order to model
useful data that helps test coordination. These data were
identified from tests created and executed for different
systems (web and desktop) in the Software Engineering Lab.
This work has been motivating research related to the test
area, especially the Model Based Test, such as the creation of
the RSA-MBT plugin, presented in the paper.

Considering that the plug-in was created for the Rational
Software Architecture (RSA), when a transformation is
requested in the RSA, files generated by the tool are replaced
(e.g., Java files created from UML diagrams). Due to this
behavior, we are currently developing a treatment that allows
applying a merge between Java files. Thus, important
contents of Java files already created will not be lost when a
UML to Java transformation is requested.

Besides, we are deciding how to automatically generate
codes for test scripts for the Rational Functional Tester
(RFT) [17] and for the Rational Performance Tester (RPT)
[18]. RFT and RTP are tools used in different test projects of
the LES that allow creating functional and performance test
scripts, respectively.

176Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 196 / 646

VII. ACKNOWLEDGMENTS

This work has been sponsored by the INCT on
WebScience through grants from CNPq and FAPERJ.

REFERENCES

[1] P. Baker, Z. Ru Dai, J. Grabowski, O. Haugen, I.
Schieferdecker, and C. Williams, “Model-Driven Testing:
Using the UML Testing Profile”, Springer, ed. 2008,
December, 2007.

[2] A. Hartman and K. Nagin, “The AGEDIS Tools for Model
Based Testing”, Book UML Modeling Languages and
Applications, vol. 3297, 2005, pp. 277-280, doi: 10.1007/978-
3-540-31797-5_33.

[3] UTML - The Unified Test Modeling Language for Pattern-
Oriented Test Design,
<http://www.fokus.fraunhofer.de/distrib/motion/utml/>,
retrieved: August, 2013.

[4] UML 2 Specification, <http://www.omg.org/spec/UML/2.3/>,
retrieved: August, 2013.

[5] A. D. Costa, C. Nunes, V. T. Silva, C. J. P. Lucena, and B.
Fonseca, “JAAF+T: A Framework to Implement Self-
Adaptive Agents that Apply Self-Test”, in proceedings of the
25th Symposium On Applied Computing, Sierre, Switzerland,
2010, pp. 928-935.

[6] A. D Costa, “Automation of the Management Process of the
Test of Software”, Thesis at Portuguese, Pontifical Catholic
University of Rio de Janeiro, August, 2012.

[7] T. D. Huynh, N. Jennings, and N. Shadbolt, “FIRE: an
Integrated Trust and Reputation Model for Open Multi-agent
Systems. In Proceedings of the 16th European Conference on
Artificial Intelligence”, Valencia, Spain, 200, pp.18-22.

[8] R. Coelho, E. Cirilo, U. Kulesza, A. Staa, A. Rashid, and C. J.
P. Lucena, “JAT: A Test Automation Framework for Multi-
Agent Systems”, in Proceeding of the International
Conference on Software Maintenance, France, 2007, pp. 425-
434.

[9] RSA-MBT: Web site for downloading,
<http://www.les.inf.puc-
rio.br/escritorioqualidade/index.php?option=com_content&vi
ew=article&id=57&Itemid=58>.

[10] Rational Software Architect,
<http://www.ibm.com/developerworks/rational/products/rsa/>
, retrieved: August, 2013.

[11] TTCN-3 web site, <http://www.ttcn-3.org/>, retrieved:
August, 2013.

[12] A. V. Feudjio, “MDTester User Guide”,
<http://www.fokus.fraunhofer.de/distrib/motion/utml/>,
retrieved: August, 2013.

[13] Astah tool, <http://astah.net/>, retrieved: August, 2013.

[14] I. Burnstein, A. Homyen, R. Grom, and C.R. Carlson, “A
Model to Assess Testing Process Maturity”, Crosstalk 1998,
Software Technology Support Center, Hill Air Force Base,
Utah, <http://www.crosstalkonline.org/storage/issue-
archives/1998/199811/199811-Burnstein.pdf>, retrieved:
August, 2013.

[15] TMMi: The Test Maturity Model Integration,
<http://www.tmmifoundation.org/html/tmmiref.html>,
retrieved: August, 2013.

[16] P. M. Duvall, S. Matyas, and A. Glover, Continuous
Integration: Improving Software Quality and Reducing Risk,
Publisher: Addison-Wesley Professional, 2007.

[17] Rational Functional Tester, <http://www-
03.ibm.com/software/products/us/en/functional/>, retrieved:
August, 2013.

[18] Rational Performance Tester, <http://www-
03.ibm.com/software/products/us/en/performance/>,
retrieved: August, 2013.

[19] Rational Quality Manager tool, <http://www-
03.ibm.com/software/products/us/en/ratiqualmana/>,
retrieved: August, 2013.

[20] Rational TestManager tool, <http://www-
01.ibm.com/software/awdtools/test/manager/>.

[21] IEEE 829-2008 – IEEE Standard for Software and System
Test Documentation,
<http://standards.ieee.org/findstds/standard/829-2008.html>,
retrieved: August, 2013.

[22] M. Wooldridge and N. R. Jennings, “Pitfalls of agent-oriented
development”, in Proceedings of the Second International
Conference on Autonomous Agents (Agents'98), ACM Press,
Minneapolis, USA, 1998, pp. 385-391.

[23] A. D. Costa, V. T. Silva, A. Garcia, and C. J. P. Lucena,
"Improving Test Models for Large Scale Industrial Systems:
An Inquisitive Study", in Proceedings of the ACM/IEEE 13th
International Conference on Model Driven Engineering
Languages and Systems, Part I, LNCS Springer 6394, Oslo,
Norway, 2010, pp. 301-315.

[24] NIST: National Institute of Standards and Tecnology,
Software Errors Cost U.S. Economy $59,5 Billion Annually –
NIST Planning Report 02-3, 2002.

177Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 197 / 646

An Ontology-based System to Support Distributed Software Development

Rodrigo G. C. Rocha,
Ryan Azevedo,

Eduardo Tavares,
Daniel Figueredo

UFRPE
Garanhuns – PE, Brazil

rodrigo,
ryan@uag.ufrpe.br,eteduard
otavares,jdanielll3593@gm

ail.com

Catarina Costa
Department of Statistics and

Mathematics
Federal University of Acre
Rio Branco – AC, Brazil

catarina@ufac.br

Marcos Duarte
Information Systems

Course
Paraíso College of Ceará
Juazeiro do Norte – CE,

Brazil
marcos.duarte@fapce.edu.br

João Paulo Fechine
UNIPETECH

UNIPE
João Pessoa – PB, Brazil

fechine@gmail.com

Fred Freitas, Silvio
Meira

Federal University of
Pernambuco – CIn
Recife – PE, Brazil

fred,srlm@cin.ufpe.br

Abstract— Distributed Software Development has become an
option for software companies to expand their horizons and
work with geographically dispersed teams, exploiting the
advantages brought by this approach. However, this way of
developing software enables new challenges to arise, such as
the inexistence of a formal, normalized model of a project’s
data and artifacts accessible to all the individuals involved,
which makes it harder for them to communicate, understand
each other and what is specified on the project’s artifacts. With
that being said, this paper proposes a knowledge management
tool that utilizes a domain-specific ontology for distributed
development environments, aiming to help distributed teams
overcome the challenges brought by this modality of software
development proposing techniques and best practices. Thus,
the main output of this work is Ontology-based System to
Support the software development process with distributed
teams.

Keywords-Distributed Software Development; Ontologies;
Knowledge.

I. INTRODUCTION

Motivated by opportunities like the availability of experts
worldwide, cost reduction, local government incentives and
employee turnover reduction, several software development
companies have been starting to work with geographically
distributed development teams, adopting the Distributed
Software Development approach.

The aforementioned distribution of teams brings along
with it new challenges to the software development scenario.
Carmel [1] and Komi-Sirvo and Tihinen [2] reiterate the
existence of these challenges by presenting some factors that
are likely to lead distributed software development projects
into failure: inefficient communication between distributed
team members, diverging cultures and high complexity or
lack of project management.

In this context, the nonexistence of a formal, normalized
project data model accessible by the entirety of the team
makes the communication between them and the
understanding of the project artifacts harder, which can be
aggravated when each member’s culture and customs is
barely or even not known by the rest of the team.

In order to mitigate these problems, the utilization of
ontologies can be useful because they enable the creation of
a common vocabulary. Wongthongtham et al. [3] mention
that the use of ontologies represent a paradigm shift in
Software Engineering and can be used especially to provide
semantics for support tools, strong, knowledge-based
communication, centralization and information availability.

This paper proposes DKDOnto, a domain-specific
ontology for distributed software development projects,
whose purpose is to aid those projects by defining a common
vocabulary for distributed teams. Besides, this work
proposes a tool that enables both handling and searching the
information in the knowledge base, in order to get more
useful information as to mitigate and avoid future problems
inside the project.

The main goal of this work is the proposal of both the
ontology and the tool, which together will compose a
mechanism to ease the distributed software development
process, from sharing of common knowledge between
distributed team members or smart agents to the decision-
making process effectuated by the project managers.

This paper is organized as follows: Ontology concepts
are presented in Section II; Section III contains the
knowledge-based system proposal; Related works are
presented in Section IV, where a succinct analysis and
comparison of related work and this paper is made; and,
finally, Section V brings the final considerations.

II. ONTOLOGIES

Various definitions are given as to determine a meaning
to ontologies in the Computer Science context, the most
popular and best-known definition being “a formal, explicit
specification of a shared conceptualization”, given by Gruber
[4]. By ‘formal’, he means that it is declaratively defined so
that it can be comprehended by smart agents; by ‘explicit’,
he means that the elements and their restrictions are clearly
defined; by ‘conceptualization’, he means an abstract model
of a field of knowledge or a limited universe of discourse; by
‘shared’, he indicates it is consensual knowledge, a common
terminology of the modeled field. Thus, ontologies set an
unambiguous, common higher abstraction level for several
knowledge domains.

178Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 198 / 646

Ontologies, according to Guizzardi [5], are composed by
concept, relations, function, axioms and instances. In short,
concept can be ‘anything’ about ‘something’ that is going to
be explained. The interaction between a domain’s concepts
and attributes is called relation, whose type is called
function. Axioms model sentences that are always true and
instances represent elements from the domain associated
with specific concepts.

The use of ontologies has been made popular by many
other Computer Science subfields, such as: Software
Engineering, Artificial Intelligence, Database Design, and
Information Systems. One of the principal persons
responsible behind this phenomenon is Web Semantics’
creator [6], Sir. Tim Berners Lee.

Many reasons instigate the development of ontologies,
according to [7] [8]. Some of these reasons are:

• Sharing common understanding of how information is
structured between humans and smart agents;

• Reusing knowledge of a domain. In case there is an
ontology that adequately models certain knowledge of a
domain, it can be shared and used by engineers and
ontology developers, as well as teams that develop
semantic and cognitive applications;

• Making explicit assumptions of a domain. Ontologies
provide vocabulary to represent knowledge and its use
prevents misinterpretations;

• Possibility of translation from and to various languages
and knowledge representation formalisms. The
translation concretizes an ideal pursued for generations
by researchers in Artificial Intelligence. It makes it easier
to reuse knowledge, and may allow for communication
between agents in different formalisms, since this service
is available in an increasing number of knowledge
representation formalisms. Another way to reach this
intent is to use ontology editors in which it is possible to
choose in which language of representation the generated
code is going to be written.

• The mapping between two knowledge representation
formalisms, that, inspired in the connectivity component
for Open Database Connectivity (ODBC) management
systems, links two formalisms creating an common
access interoperable interface for them, allowing an
agent to access the other agent’s knowledge.
Furthermore, ontologies help solve some of DSD project

problems; for example, how to establish better
communication, allow a homogenous comprehension of
project information, make the project management a less
laborious task, prevent task interpretation errors and
synchronize the enrolled, distributed team’s efforts and
facilitate the knowledge sharing and standardization.

III. KNOWLEDGE-BASED SYSTEM PROPOSAL

In this work, we present the DKDOnto, a domain-
ontology according to classification adopted by [9], which
classifies the types of ontologies in: i) generic, ii) domain,
iii) task and iv) application.

The ontology proposed intends to be the basis for
possible solutions of knowledge-based systems in the context

of global software development, in order to assist all the
professionals (client too) involved in the software
development process with distributed teams. The DKDOnto
emerges, thus, as a common knowledge base for this context,
leveraging the challenges deals, best practices and possible
solutions, as well a road map with all the actors and their
assignments.

This proposal takes a step beyond, discussing also an
inference engine called DKDs, extremely flexible,
customizable for each environment and giving support for
the professional in real time. The general flow, operating
means and features of the proposed system and the
DKDOnto, as well as a systematic mapping study
(methodology) are presented in the following subsections.

A. Systematic Mapping Study

In this research, a Systematic Mapping Study was
conducted to identify ontologies supporting the DSD. And
indirectly to identify tools, techniques, best practices, and
models that use ontologies to support this area.

An important issue in this process was to search for
reviews and accurate analyses on the field, looking for
current researches and open challenges related to the use of
ontological resources in Distributed Software Development
processes. Thus, the following research question were
intended to be answered: “Which ontologies have been
proposed or adopted in the context of DSD?”

The searches for the primary studies were conducted
according to the research plans defined in the protocol. The
search process retrieved 1588 studies from the chosen
scientific databases.

This question aims to find out which are the ontologies
normalized on the DSD context. In order to answer this
research question, four ontologies have been found. Table 1
presents the proposed ontologies in the distributed context.
The first column presents the name and identifier of each
ontology. The second column shows a description of each
one.

Based on results, it is evident that the development
phases that are benefiting from the use of ontologies are:
process, management, requirements and design. On the other
hand, some important branches have not been fully
approached, for example, quality and tests, which involves
lots of information management activities, and may have a
considerable evolution with the utilization of ontologies as
means to standardize, manage and share knowledge.

By answering the research question from this mapping,
there have been found four works that propose some
ontologies, especially developed for distributed software
development, according to what was previously presented.

Since these ontologies have been designed specifically
for distributed teams, they bear the concepts and features
required to work in this environment. Noteworthy to mention
that two of the four ontologies were developed for open-
source software development communities. According to
Mirbel [10], the free dynamic nature of this environment
poses challenges to the coordination of activities and
knowledge sharing.

179Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 199 / 646

Therefore, the use of ontologies as a support to open-
source software development simplifies the management of
knowledge resources in the communities. Noticeable that
several other works use ontologies to solve or mitigate
challenges and in DSD environments, however, these
ontologies are not specific for this environment.

Thus, four ontologies have been found, they are not
shared which does not allow further evaluation and
according to the literature, they have not correct modeling to
cover the entire software development process using
distributed teams. But they have a major limitation, they
have not resources to recommend best practices for possible
problems.

There are numerous tools that utilize nonspecific-to-DSD
ontologies only to mitigate challenges and limitations. These
tools are distributed and used as support in the various
project parts, from actual Software Engineering branches to
specific project activities.

TABLE I. ONTOLOGIES FOR DSD

Models Description

OFFLOSC[10]

This ontology is formalized in the context of open-
source software development communities. Its goal
is help coordinate activities, management of
resources and knowledge sharing. It is composed by
46 classes and describes the concepts related to
open-source communities such as actors, artifacts,
activities, operations, relationships and resources.

Knowledge
Management
Ontologies
[11]

A set of ontologies that formalize structural
concepts of DSD environments, directed to
knowledge management. It describes concepts of
software artifacts, environment problems,
interaction among the distributed development
teammates, infrastructure, business rules and
general information of the project.

Open Source
Communities
[12]

This ontology is also formalized in the context of
open-source software development and its main
purpose is to compose a project knowledge basis
having semantically related, categorized data, which
allows the execution of semantic searches and data
inferences by smart agents. It is composed of 6
classes that describe concepts of actor’s relations,
rules, activities, processes, artifacts and tools from
open-source communities’ projects.

OntoDISEN
[13]

This ontology is formalized in the DSD Project
scenario and is used to aid the establishment of
communication between distributed teams. It is
integrated to a textual information-spreading model,
enabling sharing information in distributed
environments to be comprehended by all the
software engineers in a clear, homogeneous way. It
describes concepts of elements that are represented
and shared in a DSD environment, such as users,
tools, other environments, activities and processes.

With these results, it is clear that there are a lot of
advantages in using ontologies to support DSD, especially to
generate solutions aiming at mitigating the communication,
collaboration, knowledge flow management, coordination of
project activities and knowledge, and process management
issues.

B. DKDOnto: Proposal Ontology

The DKDOnto ontology was developed using Ontology
Engineering, Methontology [14] and IEEE Standard [15] for
developing knowledge-based information systems
methodologies; also, Method 101, proposed by N. F. Noy
and D. L. Mcguinness's [7] was used a complement to
Methontology.

Thus, the language used to build the ontology was OWL,
which eases the publication and sharing of ontologies [16]
and it has also been proposed as a standard for the World
Wide Web Consortium (W3C), incorporating and taking
advantage of the strength of earlier languages. OWL is an
ontology language (Semantic Web [17]) with high-level
expressivity and great potential for knowledge inference. In
order to edit the ontology, the use of Protégé [18] was
employed. It is a free, extensible, Java-based, open-source
ontology editor and knowledge-based framework.

The DKDOnto has about 50 classes, but this paper
describes the following core classes.

• Project: the main class of this knowledge base. It is
responsible to store all the information about the settings of
projects, from allocated team members to phases to activities
to artifacts used.

• Member: it is a subclass of Resource. Member is an
individual who has access to the environment and are
allocated to Projects. A member has skills and works in a
place and participates directly in the project, reporting best
practices and challenges, using and creating artifacts.

• Best Practices: all the solutions and best practices used
to face any problem should be stored in this entity. This class
is responsible for helping avoid challenges and problems
found and reported by a member during the execution of
their activities. It also to solve these challenges and
problems.

• Challenges: all the challenges and problems found by
members should be stored in this class. A challenge can use
best practices to solve itself. This entity is fundamental
because the challenges has some solution or best practice
associated with some practice can be used and available to
another members with same problems.

• Skills: all members’ knowledge are stored in this entity.
The Member's skill enables to avoid challenges and solve it
too. This class allows too that activities be distributed for the
members according their skills.

• Place: it is a fundamental class to define exactly where
the envolved member are in Project. This entity estores all
information about member's localization, defining what is
dispersion level and temporal distance.

• Artifact: class that is used by almost all other main
classes. It supports members and their activities. Tools can
use artifacts in specific activities, too.

• Tool: class reponsible for all the tools envolved in
Project. It allows that all the users knows which tools are
used for another members and another projects. This way, is
possible to follow the patterns and find specific informations
and instructions for use this tools.

• Workspace: is a class that contains Artifacts and Tools
that Users can use and create in their activities. All the users

180Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 200 / 646

allocated in that Project can be access the workspace for
commit and checkout all the documents, artifacts or tools.
The main goal of this class is storable of Artifacts and the
Member uses the Workspace of that specific Project.

This ontology uses two fundamental classes for the
sucess of this proposal. These classes are responsibles for
storage all information about the problems and solutions
during the project. These classes are called of Challenges
and BestPractices. Thus, user's queries allows to view
responses of the challenges, the knowledge base returns the
best practices found for a certain team setting and can be
applied to support challenges, which can be useful for other
teams involved with the same project or other teams from
different projects.

Figure 1 shows some relations between classes defined in
DKDOnto. This diagram of generated from a plugin for
Protégé called Ontoviz. For space constraints, a restrict set
classes was chosen to be exhibited.

C. DKDs: Proposal Tool

DKDs was developed to aid in the transmission,
generation and distribution of knowledge. It is a support tool
for decision-making in DSD, which, based in resources and
information from the context of a project, the system
suggests possible solutions for the problems found to its
users. In this sense, the system accesses the knowledge base
having distributed projects experiences, their configurations,
challenges faced and solutions used to overcome those
challenges.

This tool’s main goal is to support the complete DSD
process, offering recommendations considering the project
setting and organization, technical and nontechnical
experiences.

In order to develop DKDs, the general platform adopted
was J2EE [19]; the web application frameworks utilized
were Grails [20] (High-productivity web framework based
on the Groovy language [21]) and Google Web Toolkit
(GWT) [22]; Hibernate (Java persistence framework project)
[23] was used for persistence; and to manipulate the
ontology, the Jena framework was employed, which is also
responsible for construction and manipulation of Resource
Description Framework (RDF) [24] graphics.

With the DKDs a member from a project can know who
are the another members envolved and have some
instructions to talk each other depending their cultural
characteristics. So, it helps to avoid any problems the

communication (email, talk, phone). Furthermore, any doubt
about some artifact or activity can be solved with the correct
member, that is indicated by the tool.

Among DKDs’ main features, the most important ones
are: DKDs uses the inference engine Pellet for inferring facts
based on the information that has been previously stored in
the knowledge base, thus, some outcomes that the system
can generate:

• Starting the project, request a guideline with
suggested best practices for similar contexts

• Starting the project, request a guideline with main
challenges for similar contexts

• Determines who are the most qualified members to
solve technical problems;

• Suggests possible practices, tools or techniques that
can be employed to avoid challenges

• Find possible solutions used previously to problems
encountered

• Evaluating the solutions proposed by the tool
• Suggest adaptations to the proposed solutions

The application is basically composed by four modules:
• Inference Module: allows for a precise deduction of

information about DKDOnto in RDF and OWL
code, using inference engine Pellet.

• Query Module: this is where all the queries made
by users occur. As it was mentioned earlier, queries
are made in SPARQL language and are transparent
to the users.

• Views Module: gives access to all the reports made
according to the users’ needs.

• Management Module: responsible for enabling
access to the ontology with insertion, removal and
editing of the data in the ontology permissions.

For example, an user can access the application and
insert, delete, edit and view all the data (instances contained
in DKDOnto) by the Management Module. The same user
can use View Module for the ask the system to inform what
is necessary, so, this module activates the Query Module that
use the Inference Module to bring appropriate responses for
the user.

The users have an access interface to execute the
abovementioned functions on one side, whereas on the other
side, there is the SPARQL (Query language for Resource
Description Framework) [25] inference engine to consult

Figure 1. The Core classes and relationships of DKDOnto

181Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 201 / 646

DKDOnto, and the interface component (OWL API [26]) in
the middle, which interacts with both sides. Integrating all
the demands from user using the inference module.

Figure 2 shows the tool’s general functioning as
described above.

IV. RELATED WORK

In this section, works having the same goal or theme of
this paper are described. Based on the amount of related
works found, it can be affirmed that relatively few works on
Software Engineering Ontologies have been carried out.

Wongthongtham et al. [27] present the project and
implementation of a social network approach as a mean to
support the sharing and evolution of a Software Engineering
ontology. A multi-agent recommender system that uses the
'Software Engineering Ontology' and 'SoftWare Engineering
Body of Knowledge (SWEBOK)' as sources of knowledge is
designed within multi-site communities of software
engineers and developers working on related projects as the
target audience. Though a big challenge faced by this
approach is ensuring that the knowledge bases of different
agents are coherent and consistent with one another, as stated
by Dilon and Simmons [28].

Ankolekar et al. [29] considers as one of the toughest
problems faced by online professional communities the fact
that the vast amount of data generated as a result of their
interactions is not well-linked on the basis of the meaning of
its content. With the assumption that a better semantic
support can bring improvements to these communities, a
prototype Semantic Web system was developed.

Such task required a way of describing the semantic
content retrieved from the data obtained from these
communities, which was accomplished through the use of
ontologies. The large amount of data generated was a large
obstacle as the parsers used were unable to reason efficiently
for large amounts of data.

The ‘instance Store (iS)’ system was the solution for such
problem, for it stores assertions about individuals and their
types in a database, reducing reasoning over individuals to

terminological reasoning. But the version of iS used was
limited to role-free reasoning of individuals, what at first was
deemed to be a major limitation but was dismissed by the
authors since the primary use of ontologies in the system “is
for the description, annotation and retrieval of large number
of individuals” and it “does not make use of the open world
assumption nor does it make use of ontologies distributed
over multiple sites”.

In their work, Dillon and Simmons [28] reiterate the
growing importance of the use of ontologies in various
aspects of Software Engineering, showing examples ranging
from the support that offered to multi-site developers, to the
provision of semantics to different categories of software.
The ‘Software Engineering Ontology’ is described and used
for the creation of a software engineering knowledge
management system that is formed by a ‘safeguard system’,
‘ontology system’ and a ‘decision-maker system’. The
purpose behind this system is to facilitate knowledge
sharing, access, update and exchange.

The essential difference of this work is the proposal of
the use of best practices for the challenges found by any
member, thus, they can be use the DKDs to check or consult
all knowledge stored looking for possible best practices. It
also allows the creation of a list of possible problems during
the initial phases, so the manager or developers can avoid
some challenges. Other interesting resource is the creation of
a list of possible developers who may be able to help solve
technical problems through their skills.

V. CONCLUSION

As globalization took place, the distribution of software
development processes have become an increasingly
common fact. The DSD work environments are very
complex and there are no mature practices for this context
since it is relatively new. In this sense, ontologies can bring
benefits such as a shared understanding of information, ease
of communication among distributed teams and effectiveness
in information management.

This work presents evidences from collected papers and a
briew analysis of the results reached. The results support the
foundation for proposing and developing a feature based on
ontologies to support the DSD. The systematic mapping
aimed to identify ontologies formalized in DSD context,
provided that advance the state of art, highlighting the need
to use ontology in this field. Is possible to view all the
Systematic Mapping Results in Borge's work [30]. The
complete information about it is available at a specific
repository files [31].

DKDOnto and DKDs fulfill what has been proposed,
consisting of a computing tool that can be used for treatment,
analysis and utilization of information on distributed
software projects. In this sense, the ontology and the tool
allow that actors in this scenario obtain and access correct
information and artifacts, providing a high-level knowledge
model for the team members.

The results obtained to this date are expressive, in which,
for example, the project manager has actual consistent
knowledge of which cultures are involved in the distributed
teams and which are the implication of this, which enables

Figure 2. Tools General Functioning

182Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 202 / 646

them to handle each case effectively. Similarly, a technical
leader has access to the project participants’ technical
knowledge, making them able to require or assign specific
activities accordingly to the expertise of each team member.

Another important point is that the ontology, as presented
in Section 3, has two fundamental classes, namely
Challenges and Solutions that are directly utilized by the
query tool. That way, the knowledge base will return the
challenges found for a certain team setting and also which
solutions can be applied to such challenges, which can be
useful for other teams involved with the same project or
other teams from different projects.

The next step in this segment is to concretize the
acquisition of knowledge in a systematic way in order to fill
the ontology. In this case, it will be possible to make tests
and simulations with higher precision since all the inserted
data will be from real projects. Furthermore, other
techniques can be used for improves the support of
Challenges, for example, the use of natural procesing
language for retrieve better solutions or best practices based
in challenges cases.

ACKNOWLEDGMENT

Rodrigo was supported partially by CNPQ and Ryan are
supported by CNPq. This work is partially supported by the
National Institute of Science and Technology for Software
Engineering (INES), funded by CNPq and FACEPE, grants
573964/2008-4 and APQ-1037-1.03/08.

REFERENCES

[1] E. Carmel. “Global Software Teams: Collaboration Across Borders
and Time Zones”. Prentice-Hall, EUA. 1999.

[2] S. Komi-Sirvo and M. Tihinen. “Lessons Learned by Participants of
Distributed Software Development”. Journal Knowledge and Process
Management, vol. 12 no 2, 2005, pp. 108–122.

[3] P. Wongthongtham, E. Chang, T. Dillon, and I. Sommerville.
“Ontology-based Multi-site Software Development Methodology and
Tools”. J. of Systems Architecture. ACM, New York. 2006. 640–653.

[4] T. Gruber. “Toward Principles for the Design of Ontologies used for
Knowledge Sharing”. In formal Ontology in Conceptual Analysis and
Knowledge Representation. Kluwer Academic Publishers. 1995.

[5] G. Guizzardi. “A methodological approach to development and reuse,
based on formal domain ontologies” Master Degree. Federal
University of Espírito Santo. 2000.

[6] T. Berners-Lee, O. Lassila, and J. Hendler. “The semantic web.”
Scientific American, 2001, pp. 5:34–5:43.

[7] N. Noy and D. Mcguinness,. “Ontology development 101: A guide to
creating your first ontology,”.
[Online].Available:http://www.ksl.stanford.edu/people/dlm/papers/on
tology101/ontology101-noy-mcguinness.html. [retrieved: 06, 2013].
2001.

[8] F. Freitas. “Ontologies and the semantic web”. Proceedings of XXIII
Computer Sience Brazilian Society Symposium. Campinas: SBC. v.
8, 2003, pp. 1-52.

[9] N. Guarino, “Formal ontology and information systems,” in
Proceedings of FOIS98. Trento, Italia: IOS Press, pp. 3–15. 1998.

[10] I. Mirbel. “OFLOSSC, “An Ontology for Supporting Open Source
Development Communities”. In Proceedings of the International
Conference on Enterprise Information Systems (ICEIS). 2009.

[11] W. Maalej and H. Happel. “A Lightweight Approach for Knowledge
Sharing in Distributed Software Teams”. In Proceedings of the
Practical Aspects of Knowledge Management (PAKM). 2008.

[12] T. Dillon and G. Simmons. “Semantic Web support for Open-source
Software Development”. In Proceedings of the International
Conference on Signal Image Technology and Internet Based Systems
(SITIS). 2008.

[13] A. Chaves, I. Steinmacher, C. Lapasini, E. Huzita, and A. Biasão.
“OntoDISEN: an Ontology to Support Global Software
Development”. CLEI Electronic Journal. 2011. v. 14, pp. 1-12.

[14] M. Fernandez, A. Gomez-Perez, and N. Juristo, “Methontology: from
ontological art towards ontological engineering,” in Proceedings of
the AAAI97 Spring Symposium Series on Ontological Engineering,
Stanford, USA, 1997, pp.33–40.

[15] IEEE, “Standard for developing software life cycle processes”. p. 96,
may 1997, eEE Computing Society. Available:
http://standards.ieee.org/catalog/olis/archse.html.[retrieved:06, 2013].
1997.

[16] OWL. Web ontology language overview. Available:
http://www.w3.org/TR/owl-features.[retrieved: 06, 2013]. 2009.

[17] J. Berners-Lee and O. Lassila, “The semantic web,” Scientific
American Magazine.[retrieved: 06, 2013]. 2001.

[18] Protégé. Protégé ontology editor. Online. [Online]. Available:
http://protege.stanford.edu/doc/users.html. [retrieved: 06, 2013].
2009.

[19] J2EE. JAVA Enterprise Edition. Available:
http://oracle.com/technetwork/java/javaee/overview/index.html,
[retrieved: 06, 2013]. 2013.

[20] Grails. Available: http://grails.org, [retrieved: 06, 2013]. 2013.
[21] Groovy. Available: http://groovy.codehaus.org, [retrieved: 06, 2013].

2013.
[22] Google Web Toolkit. Available: http://gwtproject.org, [retrieved: 06,

2013]. 2013.
[23] Hibernate. Available: http://hibernate.org, [retrieved: 06, 2013]. 2013.
[24] J. Carroll, D. Reynolds, I. Dickinson, A. Seaborne, C. Dollin, and K.

Wilkinson, “Jena: Implementing the semantic web recommendations”
. pp. 74–83. 2004.

[25] SPARQL Query Language for RDF. Available: http://w3.org/TR/rdf-
sparql-query, [retrieved: 06, 2013]. 2013.

[26] OWL API. Available: http://owlapi.sourceforge.net, [retrieved: 06,
2013]. 2013.

[27] P. Wongthongtham, E. Chang, and T. Dillon. “Ontology-based Multi-
agent System to Multi-site Software Development”. In Proceedings of
the Workshop on Quantitative Techniques for Software Agile
Process (QUTE-SWAP). (Newport Beach, USA). 2004.

[28] T. Dillon, G and Simmons, G. “Semantic Web support for Open-
source Software Development”. In Proceedings of the International
Conference on Signal Image Technology and Internet Based Systems
(SITIS). 2008.

[29] A. Ankolekar, K. Sycara, J. Herbsleb, and R. Kraut. Welty Chris.
Internactional Conference on World Wide Web. Pg 575-584. 2006.

[30] A. Borges, R. Rocha, C. Costa, H. Tomaz, S. Soares, and S. Meira.
“Ontologies Supporting the Distributed Software Development: a
Systematic Mapping Study”. In Proceedings of the International
Conference on Evaluation & Assessment in Software Engineering
(EASE). Porto de Galinhas, PE, Brasil. 2013.

[31] Files Repository of Mapping Study about Ontologies in Distributed
Software Development: http://www.rgcrocha.com/ms, [retrieved: 06,
2013]. 2013.

183Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 203 / 646

Comparative Influence Evaluation of Middleware Features on Choreography DSL

Nebojša Taušan, Pasi Kuvaja, Jouni Markkula,

Markku Oivo

Department of Information Processing Sciences

University of Oulu

Oulu, Finland

{nebojsa.tausan, pasi.kuvaja, jouni.markkula,

markku.oivo}@oulu.fi

Jari Lehto

Department for Process Improvement

Nokia Siemens Networks

Espoo, Finland

jari.lehto@nsn.com

Abstract—Domain-Specific Languages for service interaction

modeling in the embedded systems domain are generally

considered insufficiently expressive. To fully represent what is

relevant for the developers, service interactions are commonly

modeled from two viewpoints: orchestration, which is the

individual, and choreography, which is the global viewpoint. In

the embedded systems domain, proposed modeling languages

are focused on orchestrations, while choreography modeling is

neglected. For this reason, we compared two middleware

products, one from the automotive and the other from the

telecom industry sector, and analyzed variations in the

implementation of choreography relevant features. Our

analysis shows the influences of implementation variations on

language for choreography modeling. Our findings can be

useful in developing a domain-specific language that will allow

the full representation of choreographies in the embedded

systems domain.

Keywords-choreography; DSL;middleware; SOA; MDE

I. INTRODUCTION

Service-Oriented Architecture (SOA) is an architectural
style that is commonly used in the development of large
enterprise systems [1]. Recently, SOA has found its
application in industrial sectors such as the automotive and
telecom where it is used in the development of embedded
systems [2] [3] [4]. This has opened an opportunity to
transfer knowledge and technology from one domain to
another, but also to extend existing knowledge and
technology, so it can meet new challenges that are specific
to the embedded systems domain.

Systems built based on the SOA style can be described
as collections of autonomous applications, called services,
which interact to fulfill the stakeholder’s needs. Therefore,
explicit representation of how services interact becomes an
important aspect of SOA systems. According to Dijkman
and Dumas [5] and Peltz [6], modeling of the service
interaction aspect should comprise two viewpoints,
orchestration and choreography. In short, orchestration
shows service interactions from a single participant’s point
of view, while choreography shows a global, peer-to-peer
interaction between participants. These viewpoints overlap
in the sense that both illustrate how underlying services
interact, but differ in the perspective, or in the viewpoint,
from which they show the interaction aspect.

One approach to how service interaction aspect can be
analyzed and specified is to use Domain-Specific Languages
(DSL). DSLs, unlike general purpose languages are focused
on one particular aspect or one particular domain of a
software system. The main idea behind DSL usage is to
shorten the development time, reduce errors, and improve
the communication by enabling language support for
concepts that are specific to the aspect of interest [7].

Modeling of service interaction aspects in the enterprise
system domain is supported with several DSLs; examples
are [8] [9] [10] [11] [12] for orchestration and [13] [14] [15]
[16] for choreography. These languages, however, are not
sufficiently expressive to represent interactions that may
occur in embedded systems [17] [18] [19]. Therefore, new
DSLs, or supplements to existing DSLs, have been
developed for embedded systems.

In the telecom domain, Call Control eXtensible Markup
Language (CCXML) [20] is used to controls the invocation
order of telephony services. The drawback of CCXML is
that it can invoke only services developed in telephony
specific technologies. To overcome this limitation, a State
Chart eXtensible Markup Language (SCXML) [21] was
proposed. SCXML is a generic language for describing
complex state machines. It complements CCXML by
providing a generic state-machine framework and by
enabling it to invoke services developed in telephony and
non-telephony-specific technologies.

Vandikas and Niemoeller proposed SCALE [22] as a
modeling language whose main goal is to enable modeling
of telecom specific interactions, but also to allow
convergence of telecom services and services developed in
different domains and technologies. Similarly, SPATEL
[23] language targets the same problem, and offers
technology-independent primitives that can be used for the
development of telecom services where large numbers of
resources needs to interact over different protocols.

The described DSLs enable service interaction
modeling; however, they support only the modeling of
individual participant point of view, or orchestration. Global
view on interactions, or choreography, is not natively
supported with their language entities.

Service interactions can be modeled with domain-
agnostic languages or by modifying languages from
different domains. A case in the automotive domain is
reported by Fiadeiro et al. [24] where SENSORIA

184Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 204 / 646

Reference Modeling Language (SRML) is used. SRML [25]
is designed to be a domain-agnostic language, with strong
expressiveness for SOA, and to be easy for formalization.

Business Process Execution Language (BPEL), which is
used for modeling enterprise service interactions, is
modified by Iwai et al. [18] to represent the complex
interactions of services in automotive domain. As in the
case of telecom DSLs, these approaches target only the
orchestration point of view. With the exception of the work
by Tsai et al. [26], the current state-of-the-art in service
interaction modeling led us to conclude that less focus is put
on modeling choreography aspects in service-oriented
embedded systems development.

To bridge this gap, part of the work done during the
AMALTHEA [27] research project was to develop a DSL
suitable for choreography modeling in the embedded
systems domain. The language is one of the several tools in
the tool-chain platform that is implemented within the
project. During implementation tasks, we adopted the
guidance for DSL development proposed by Merink et al.
[28]. This guidance is organized according to DSL
development phases, and in this article, we will present our
findings from the analysis phase. During this phase, together
with industry partners, we analyzed middleware products
that are used in the automotive and telecom industry. There
are two main reasons why middleware analysis is relevant
for the development of DSL.

The first reason originates from the DSL development
guidance [28], according to which the input to the DSL
analysis phase can be technical documentation, knowledge
provided by experts, customer surveys, and the existing
source code base. Accordingly, for our analysis, we used
expert’s knowledge, and technical documentation of two
middleware products. Middleware, and its documentation, is
an unavoidable part of any large software system, and its
main responsibility is to enable seamless interaction
between system parts [29]. Accordingly, it is a valuable
source of service interaction-related knowledge, which is
the key result of the DSL analysis phase.

The second reason is related to Model-Driven
Engineering (MDE) [30], which is the engineering approach
in companies that participated in this project. In the MDE
approach, relevant system aspects are modeled using DSLs.
Unlike in traditional, document-driven approaches, the
developed models in MDE are executable or readable by
tools. This allows automatic analysis, transformation from
one system representation (one model) to another, and
automatic test and source code generation. Source code
generated from different models relies on, or executes on
top of, middleware. Middleware, however, imposes rules
and constraints to that code that must be understood and
followed during modeling [31]. One way to enable this is to
include and enforce those rules and constraints with DSLs.
This way, DSLs and their models become tightly coupled to
the middleware on top of which the developed application
will execute.

Middleware products support developers by providing
them with features that hide complex low-level tasks [29].
Different middleware products, however, implement

features differently, which introduces variations in
implementation and in extent of support the feature
provides. If features, with the rules and constraints they
impose, are to be addressed with DSL, these variations must
be taken into account. To better understand the relationship
between variations and DSL development, in this study, we
will answer the following research question.

How do variations in the implementation of middleware
features influence the implementation of the DSL for
choreography modeling?

Answering this research question will help choreography
DSL developers by pointing out which language entities are
influenced by feature implementation variation and how. To
answer this research question, we identified choreography-
relevant features and their implementation variants (Section
II). Based on these features, we compared two middleware
products, identified influenced choreography language
entities, and described the influence in more detail (Section
III). Following is the discussion on benefits that can be
expected from DSL that includes implementation variations
(Section IV). Finally, we summarize the study findings and
describe the future work (Section V).

II. RESEARCH DESIGN

Analysis phase of DSL development is conducted by
adopting DESMET [32] approach for evaluation, and Goal
Question Metrics (GQM) method [33] for feature and scale
derivation. DESMET proposes nine methodological
approaches for evaluating methods, tools, and technologies
[34], and defines the criteria based on which an evaluator
can select the most appropriate one. Based on the evaluation
context, nature of the impact, nature of the evaluation
object, and maturity of the item criteria, we have selected
feature analysis in screening mode (FA) approach for this
study. The evaluation context criterion recommends FA in
cases where the object under evaluation will be sold as a
part of a larger product. Middleware, as the object under
evaluation, is a part of the overall system that resides
between the operating system and application. The nature of
the impact criterion recommends FA in cases when a study
produces qualitative results. This is in line with this study,
since we are aiming to show the influence of
implementation variations on DSL development. The nature
of evaluation object criterion recommends FA when tools
are in the focus of evaluation. Middleware is primarily a
technology, but it can also be approached as a tool for
supporting a developer’s work. The maturity of the item
criterion proposes FA when large amounts of information
about study object are available. This corresponds with the
middleware products evaluated in this study. The first is the
de facto standard in the automotive industry. The second is a
proprietary technology owned by the company that
participates in this research project.

A. Analysis Procedure

DESMET FA is a qualitative approach to evaluation. It
formulates features according to what users expect from the
method, tool, or technology, and derives corresponding
scales that measure the extent to which the candidate

185Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 205 / 646

method, tool, or technology conforms to the formulated
features. When FA is done in the screening mode, feature
derivation and evaluation is done by a single person based
on public documentation only. Accordingly, during this
study, middleware features that are seen as relevant for
choreography DSL are identified, their scales are derived,
and, based on those, two middleware products are evaluated.
Contrary, instead of one, four researchers and one industry
expert collaborated during feature derivation and evaluation.
Research collaboration consisted of face-to-face meetings,
teleconference meetings, and exchange of email messages.

DESMET FA evaluation consists of six steps, which we
followed during this study, and described in the text below.

Step 1: Identify the candidate method/tool/technology.
This research project, brought together researchers and
experts from automotive and telecom industry. In both
industries, different middleware products are used for
systems development and for this analysis, AUTOSAR [35]
and LISA were chosen. The reason for choosing
AUTOSAR, over other products such as OSGi, is that it
represents a de facto standard in automotive industry. It is a
result of a global partnership of automotive manufacturers
and suppliers, which aims to become the standardized
architecture for automotive software. AUTOSAR is also a
dominant middleware in automotive companies which
participated in this research project. LISA stands for Light
Intelligent Software Architecture and it is a proprietary
middleware solution for the development of telecom
systems. The reason for choosing LISA for this analysis is
that it is still a prototype and open for modifications. This
motivated telecom experts to compare LISA against more
mature AUTOSAR and to learn about similarities and
differences in the implementation of two products.

Regardless of differences in many aspects of automotive
and telecom systems, closer inspection of the middleware
products revealed a number of similarities. These
similarities form a basis for comparing AUTOSAR and
LISA. Figure 1, illustrates the similarities between the two
systems, and shows the position of middleware within them.
With reference to Figure 1, these similarities are: a) Systems
consist of heterogeneous hardware devices (Hardware A, B,
and C). b) Hardware devices are interconnected with
heterogeneous network technologies (labeled with 1 and 2).
c) Hardware devices can have different operating systems
(OS 1, 2, and 3). d) The middleware homogenizes hardware
devices, network and operating systems. e) The middleware
hides hardware, network, and OS complexities by offering
higher level application programing interface (API) to

application components. f) Application components (C1–5)
reside in hardware devices and run on top of middleware. g)
Applications are realized with one or more application
components. h) Hardware and application components may
or may not be under the control of a single authority
(Hardware A and B belong to D1 domain, Hardware C
belongs to D2 domain, while domain here denotes different
organization units or different companies). i) End-user
perceived functionality (Functionality 1 and 2) is realized
through application component interactions. j) Application
components that realize functionalities can reside on the
same or on different hardware devices. Described
similarities are the key argument why we consider
AUTOSAR and LISA comparable and therefore they will
be explained in more detail.

Step 2: Devise the assessment criteria. FA is a
comprehensive approach to evaluation. Besides technical
issues, the method proposes to evaluate features from
economic, cultural, and different quality aspects such as
maintainability or portability. To narrow down the scope of
evaluation, we applied the GQM method during the
derivation of features and corresponding judgment scales.
The importance of the clear goal definition is highly stressed
in the GQM approach since it provides a converging point
for future scales and it reduces the number of possible
measurements [36]. It is important to note the misalignment
in terminology within DESMET and GQM. In DESMET,
judgment scales are used to estimate the derived features,
while in GQM, scales are used to estimate the
measurements. Therefore, in this study, the terms
measurements and features can be considered equivalent
since both are used for answering questions formulated
according to a specified goal. Goal specification is further
facilitated with a GQM template [33], which consists of five
key-value tuples. A study goal, based on this template, is
presented in Table I.

The first tuple in the template defines the object under
investigation. In this study, the object under investigation is
the middleware. The second tuple defines the purpose for
analyzing that object. In this article, the purpose is to learn
which middleware features should be considered during the
development of choreography language. Accordingly, the
choreography aspects of service interaction support in
middleware are the quality focus against which we analyzed
LISA and AUTOSAR. Viewpoint narrows the scope of
learning by focusing it on a specific role in the development
process. We selected the software architect role because it is
responsible for middleware-related decisions, and because
LISA and AUTOSAR can be easily compared in
architectural terms such as components, services, interface,
and message. Lastly, this international research project is

TABLE I. FEATURE ANALYSIS GOAL BASED ON GQM TEMPLATE

Key Value

Analyze the : Middleware
For the purpose of: Learning
With respect to (quality
focus) :

Service interaction aspects relevant for
choreography modeling

From the viewpoint of: Software architect
In the context of: Research project

Figure 1. Architectural similarities of two systems

186Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 206 / 646

the context in which the evaluation took place.
Specified in this way, the goal guided our collaboration

with the industry experts and our study of the literature. This
resulted with the definition of three questions whose
answers will contribute to the goal accomplishment.
Questions are broken into features relevant for the
choreography DSL, and for each feature, a corresponding
ordinal scale is derived. Here, we will emphasize that scales
are derived based on the extent of support the feature
provides to developers. A higher feature score corresponds
to higher flexibility, less effort, and less cognitive burden
for developers. Scales do not measure the variations in
technology that is used for feature implementation.

The first question, based on the defined goal, is: How
does middleware support the invocation of services offered
by different systems or system parts? To answer this, three
features are identified and explained in the following text.
Functionality access is the first. It concerns middleware
support for invoking services that use different interfacing
technologies, e.g., Web Service Description Language
(WSDL) and Interface Definition Language (IDL). Location
transparency is the second. It concerns middleware support
for binding service requesters and providers. Location
Transparency can be realized using requester’s criteria
based on which middleware selects the provider, logical
names based on which physical location of the provider is
resolved, or by plain routing. State information is third. It
concerns types of state information that middleware
monitors. State information types are classified into service,
session, and functions categories. Service indicates the state
of the application or component that implements the service.
Session indicates the state of the interaction between two
services. Function indicates the state of the composition of
services that fulfills a system-level task. Table II shows the
extent of support the middleware provides for identified
features.

The second question based on the defined goal is: How
does a middleware product supports issues related to
messages? Message is used in a broad meaning, and covers
both the format of the message and the type of data that is
carried. To answer this question, three features are identified
and explained. First is message format. It indicates which

message and data formats can be processed. Message format
examples can be Session Initiation Protocol (SIP) or Simple
Object Access Protocol (SOAP), while the data format can
range from streams of bits to documents written in plain text
or in eXtensible Markup Language (XML). Data format is
commonly defined by the message format that carries it.
Second is message transformation. It concerns middleware
support for transformation of messages from one format to
another. Third is interaction scenario. It shows the
middleware ability for processing predefined ordering of
message exchange occurrences. These features and extent of
support are given in Table III.

Lastly, a third question based on the defined goal is:
How is a message transmitted from its origin to its
destination? Two features are identified and explained.
Protocol support is the first, and it shows middleware
support for a variety of communication protocols. As is the
case with messages, the term protocol here is used to cover
all types of protocols, ranging from lower-level network
specific protocols, such as Controller Area Network (CAN),
to high level application protocols, such as Hypertext
Transfer Protocol (HTTP). Protocol translation is the
second identified feature, and it shows how middleware
supports the translation of one protocol to another. These
features and implementation variants are shown in Table IV.

Step 3: Compiling information about the study object.
To evaluate the candidate technologies, relevant

TABLE II. FEATURES FOR SERVICE INVOCATION SUPPORT

Feature Scale Scale description (implementation variants)

Functionality
access

2
Middleware supports standardized interfacing
technology specific for an industry sector

1 Middleware supports key interface technologies
0 Middleware imposes single interface technology

Location
transparency

2
Middleware selects service provider, resolves its
location and routs the request

1
Middleware resolves service provider’s location
and routes the request

0
Request contains details that are necessary for
binding (provider name, physical location, etc.).
Middleware only routs request to provider

State
information

2
Middleware provides state information on
function, session, and service level

1
Middleware provides state information on
session, and service level

0
Middleware provides state information on
service level

TABLE IV. FEATURES FOR MESSAGE TRANSMISSION SUPPORT

Feature Scale Scale description (implementation variants)

Protocol
support

2
Middleware supports different protocols by
providing protocol-independent communication
service

1
Middleware supports different protocols by
providing protocol-dependent services

0 Middleware imposes the protocol

Protocol
translation

2
Middleware communication services hide
protocol translations from services

1
Middleware provides distinct services for
protocol translation

0
Middleware does not provide translation
support. Services are responsible for translation

TABLE III. FEATURES FOR MESSAGING SUPPORT

Feature Scale Scale description (implementation variants)

Message
format

2
Middleware processes message format that is
standardized within an industry sector

1
Middleware processes key message formats
that are used in an industry sector

0 Middleware imposes message format

Message
transformation

2
Middleware transforms key message formats,
and allows developers to create custom
pluggable transformation additions

1
Middleware transforms key message formats;
middleware vendors supply additional
transformations through product updates.

0
Middleware does not provide message
transformation services

Interaction
scenario

2
Middleware processes custom definitions of
message interaction scenarios

1
Middleware service supports generic
interaction scenarios

0
Middleware does not support the processing of
interaction scenarios

187Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 207 / 646

documentation needs to be collected and studied. This
research project provided a context that allowed us to collect
high-quality, company-specific documents, and to capture
the knowledge of company experts in meeting notes, email
discussions, and workshop summaries.

Step 4: Scoring of features. Based on the gathered
information, middleware products are evaluated against
derived features. The process of scoring consisted of the
initial score proposals and discussion. During score
proposal, each team member proposed a score for each
feature. During the discussion, the differences in score
proposals are aligned.

Step 5: Analysis of the score. To decide which method,
tool, or technology best fits the needs of the most target
users, feature scores are analyzed. The goal of this
evaluation, however, is not to select between middleware
products. Our goal is to learn about middleware features and
to show how their variants can have an influence on the
language for choreography modeling. For this purpose, we
used the meta-model for choreography language defined in
[37]. This model defines what is necessary for the
development of global interactions, and represents a
foundation for the development of choreography modeling
languages. It consists of attributes enclosed in entities that
are interconnected and grouped into model subsets. We used
this model to identify how, and which of its entities are
influenced by the variations in middleware’s feature
implementation.

Step 6: Presenting a report on the evaluation. The
research findings are summarized in a technical report.

III. RESEARCH FINDINGS

The research findings are divided into two groups. The
first group consists of feature scores and the rationale
behind scoring. In the second, we explain how variations in
feature implementation have an influence on DSL for
choreography modeling.

A. Features Scores

The rationale behind scoring is based on an in-depth
analysis of the technological solutions and concepts that are
used for feature implementation and on industry expert’s
evaluation of the extent of support the feature provides. The
implementation details used in AUTOSAR and LISA for an
identified feature are described below.

Functionality access: To describe what a service can
provide, what other services it uses, and how to invoke the
service, AUTOSAR developed the AUTOSAR Interface
[38]. This interface has a formal structure that describes all
aspects required for the invocation of functionality. LISA, in
contrast, has no structured description of a service. LISA
facilitates access to service functionalities by offering a
proprietary API through which applications (services)
register and publish their functionalities. Through this,
potential clients are able to invoke the functionalities they
need. Other than function names, no additional details are
provided.

Location transparency: Both middleware products
studied in this evaluation provide support for binding by

hiding the location details of services. A service can invoke
another services’ functionality using only its logical names,
while the middleware pairs logical names with the services’
functionality and its physical location. This allows services
to be moved to different hardware devices, and if there is a
need, to change its implementation details. Since the
functionality is invoked using logical names, flow of service
interactions is not affected.

State information: Both AUTOSAR and LISA provide
state information on the service and session levels. On the
service level, AUTOSAR monitors the state of the runnable
concept [38], while LISA allows for monitoring of each
service that implements the proprietary LISA-specific
addresses. On the session level, AUTOSAR’s inter-runnable
communication state information is provided with global
variables and/or shared memory monitoring [38], while
LISA provides session-level information by monitoring its
implementation of message queues.

Message format: AUTOSAR services exchange
information using three standardized variable groups: data
element, mode declaration, and application error [38]. The
data element is the piece of information transmitted between
services. This information is sent to, and received from, the
service’s operations, and it can be any primitive type, such
as integer or float, or a collection of primitive types referred
to as the complex type. Mode declarations define data for
the service mode configuration, while application errors
carry the information about error occurrences within a
service or during communication. In AUTOSAR, variables
are exchanged by passing them to functions directly, and no
additional messaging technology is used.

Messages in LISA are exchanged using proprietary
messaging technology. Before a message of any type is sent,
it is wrapped up in a LISA-specific message format and
routed to the destination. On arriving at the destination, it is
unwrapped and parsed by the receiver.

Message transformation: In AUTOSAR, the object of
transformation is the data element variable group, and this
task is appointed to the runtime environment (RTE).
Transformation definitions are provided by developers, and,
based on them, RTE can perform several types of
transformations. Examples are transformations to/from
different linear-scaled data representations, different text-
table data representations, and transformation of composite
data representations [39]. LISA does not provide any
features for transforming messages. Instead, it is the
responsibility of the sending or receiving service to
preprocess the message so that it can be used by the
receiving application.

Interaction scenarios: There are two generic scenarios
that describe a message exchange in AUTOSAR, Client-
Server and Sender-Receiver [39]. Client-server involves the
client, who requires the functionality and server that
provides that functionality. The client initiates the
communication by requesting the server to perform the
functionality and if necessary it provides one or more
parameters. The server performs the required function, and
dispatches a response to the client. Invoking a function is
performed by RTE, and these invocations can be either

188Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 208 / 646

asynchronous or synchronous. The sender-receiver involves
the sender of the message and one or more receivers. This is
one way, the asynchronous interaction scenario, and any
reply sent by receiver is seen as a separate sender–receiver
communication. The same scenarios exist in LISA. The
difference is that in the case of AUTOSAR these patterns
are explicitly defined within the interface, while in LISA, no
such definition exists. The client-server scenario occurs
when one service invokes the operation of other service,
while that of the sender-receiver is realized through
multicast message delivery. No custom definition of
interaction scenarios is possible in either product.

Protocol Support: Both products under evaluation
provide unique services that hide the transport protocol and
networking technologies and allow the inclusion of
additional ones without modifications at the application
level. In AUTOSAR, this is realized with a group of
modules called communication services, and an Interface-
Protocol Data Unit (I-PDU protocol) [40]. These concepts
provide an interface to the communication network, API for
network management and diagnostics, and hide protocol and
network-level details from applications. Similarly, LISA has
developed a proprietary module called the Media Module.
This module abstracts different protocols and network types,
such as Ethernet, Socket, and W-LAN, and enables uniform
transmission of messages over a heterogeneous network
environment.

Protocol translation: AUTOSAR and LISA provide
middleware-specific, communication protocols to services,
and, during message exchange, this is the only protocol
services are aware of. Internally, middleware translates this,
into a protocol specific to, e.g., a physical network through
which the message is transported. In the case of AUTOSAR,
the Communication Services pack and unpack messages to
and from the I-PDU, which are then passed to network
specific modules for transmission over the physical
network. Likewise, LISA uses Media Module and its
protocol at communication endpoints, but translates it to the
network specific protocols used during transmission.

Based on analysis, extent of support the feature provides
to developers is evaluated and summarized in Table V.

B. Language Entities Influenced by Variants

To understand the influence of variations in feature
implementation on DSL for choreography modeling, we
studied a meta-model proposed in [37]. This resulted in the
identification of language entities whose implementation
varies depending on the extent of the support feature
provides to developers. To express variations in language

entity implementation, we used language constructs such as
sub-entity, attribute, and relationship multiplicity. Identified
entities are as follows:

Participant: an entity that represents any logical
encirclement within the system that has a degree of
autonomy, and provides functionality for other Participants
in the system. An example can be an accounting unit within
an enterprise, a braking subsystem in the car, or a home
subscriber server in telecom network. From implementation
point of view, a Participant can encompass a component,
collection of components, or an entire application.

To access a Participant’s functionality different
interfacing technologies are offered and these should be
supported by middleware so that Participants can seamlessly
interact. In Table II, we proposed implementation variants
for a functionality access feature that can influence how a
Participant, as a language entity, is implemented.

In the case of AUTOSAR, due to the use of unique and
standardized interface across industry sector, Participant
entity should define the attributes that are needed to describe
the AUTOSAR interface only. In LISA, no structured
description for accessing functionality is defined. IN this
case, a Participant should include attributes that describe
proprietary, LISA-specific invocation methods. In the case
that a middleware product supports different interfacing
technologies, a Participant entity should implement distinct
sub-entity types with attributes specific to each of the
supported technologies. The relationship between the
Paritcipant and sub-entity should be constrained to a one-to-
one relationship.

Implementation of a Participant entity is also dependent
on the location transparency feature. In Table II, we
proposed variations for this feature, which we see as
influential for an entity implementation. Since AUTOSAR
and LISA use logical names for accessing the service
functionality, in both cases, a participant should provide
attributes where these names will be recorded.

Role: an entity that represents the responsibility of the
Participant in the scenario, and as a choreography language
entity, it is a part of the participant. One Participant can
have different Roles in different interaction scenarios. An
example can be a Role of the organization unit that
participates in choreography as “buyer” in one and “seller”
in another scenario or a Role of the car engine control,
which can be a “manager” in one, and a “data provider” in
another scenario.

From an implementation point of view, a Role can be
identified with one or more functionalities offered by
Participant. Therefore, a Role must implement sub-entities
for describing each of the functionalities that are included in
it. Since a Participant can use different interface
technologies, a set of dedicated sub-entity types should be
defined, where each type would specify attributes for
describing functionalities according to each of the supported
technologies. In case of AUTOSAR, a Role entity should
consist of functional descriptions defined according to the
AUTOSAR interface. In the case of LISA, a Role should
describe the functionalities based on LISA’s proprietary
technology for accessing applications.

TABLE V MIDDLEWARE EVALUATION RESULTS

Question Feature AUTOSAR LISA

Invocation
support

Functionality access 2 0

Location transparency 1 1

State information 1 1

Message
support

Message format 2 1
Message transformation 2 0

Interaction scenario 1 0
Message

transmission
Protocol support 2 2

Protocol translation 2 2

189Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 209 / 646

Interaction: an entity that represents the exchange of
information between two Roles. Exchange of information
here is used to denote the ordering of one or more message
exchange occurrences that together realize the Interaction.
Call control application, for example, can have a Role of a
service provider and must interact with the verifier, which is
the Role of the subscriber information repository, to verify
that a certain subscriber can use the call service. This
Interaction can be realized with two message exchanges that
occur in a predefined order. First, a provider sends the
message with subscriber info to the verifier. Second, the
verifier processes the message and sends the response back
to the provider.

From an implementation point of view, an Interaction
describes the order of message exchange occurrences
between Roles. When implemented in language, Interaction
is expressed in terms of generic (or predefined) message
exchange scenarios. The idea behind this is that all message
exchange scenarios conform to a single, or a combination,
of generic exchange patterns. Therefore, Interaction entity
implementation depends on which patterns are identified
and used within an industry sector, and how they are
supported by middleware product. In Table III, variants for
Interaction scenarios are proposed.

AUTOSAR communication services recognize two
generic scenarios, client-server and sender-receiver. Here,
the Interaction entity should provide attributes for recording
the two identified patterns. LISA offers no support for
generic scenarios, an entity here can be implemented to
allow unstructured textual description of message exchange
ordering. These descriptions can be used to facilitate
communication and analysis tasks.

Interaction entity implementation depends also on the
implementation of message translation and protocol
translation features. Participants engaged in interaction may
require the translation of message content since the format
in which the information is sent, is not always the format
that the receiving Participant can process. An example can
be a Participant that sends a SOAP message to the
Participant that can receive only SIP messages. Middleware
can provide features for message transformation, and
implementation variants of this feature are proposed in
Table III. Depending on how middleware implements the
feature, Interaction will need to adopt accordingly.

AUTOSAR allows developers to define message
transformations. The language entity, in this case, should
include attributes for linking entities with defined
transformations. LISA offers no such facilities. Including
transformation-related data in an Interaction entity can only
be used for documenting purposes.

Similarly to message transformation, Participants can
use different communication protocols for message
transmission. How middleware implements the protocol
translation feature also influences implementation of the
Interaction entity, and in Table IV, implementation variants
are proposed.

AUTOSAR and LISA provide a feature for protocol
translation, and in both cases, translation is hidden from (or
transparent to) Participants that are interacting. This is

accomplished by the translation feature which is a part of
uniform communication service that is offered by both
middleware products, and used by the Participant for
communication. The Interaction entity therefore doesn’t
need to include attributes for describing translations of the
protocols.

In cases when middleware doesn’t support protocol
translation, this task should be implemented by applications
that realize the Participants. In cases when middleware
implements distinct translation services for each protocol,
the Interaction entity should include attributes for recording
the details necessary for linking the entity with translation
services.

Message Content Type: A message carries the
information that is exchanged between the Roles. The
format of those messages can be different, and each format
specifies the types of data it can carry. Thus, the purpose of
this entity is to describe those message formats.

This entity is part of the Interaction. How it is
implemented in language, depends on the message formats
it must be able to describe. For this reason, in Table III, we
proposed implementation variants for message format
support. In AUTOSAR, messages are standardized, and to
define them, an entity should include only attributes relevant
for the definition of AUTOSAR messages. In LISA,
different message formats are supported. Still, due to the
wrapping technology it uses, for entity implementation, only
attributes for wrapper description should be included.

State Variable: Roles engaged in interaction can have
different states based on the information that is exchanged.
The value of this entity is predefined, and its purpose is to
hold those values. An example of a State Variable can be
“Verification State”. Based on interaction condition, a
variable can hold one of two predefined values, “verification
sent” or “send error”.

As a language entity, the State Variable entity is a part
of the Role, and its implementation depends on state
information provided by the middleware product. In Table
II, we proposed implementation variants for the State
Information feature. These variants express different types
of state variables and influence the implementation of a
language entity. Both AUTOSAR and LISA provide state
information that is relevant for service- and session-level
state descriptions. The language entity should, therefore,
provide attributes with predefined values for capturing those
items of information.

Channel Variable: Its main purpose is to store the
information that is necessary for sending the message. Part
of this information is, for example, the protocol that defines
the rules that must be followed during message
transmission. Since participants involved in interaction can
use different protocols, middleware products should support
them, if seamless message exchange is to be achieved.

As a language entity, the Channel Variable entity is part
of an Interaction entity, and the protocol-related information
that it will include depends on variations in protocol support
of the middleware product. In Table IV, we proposed
implementation variants that are derived based on the
amount of protocol information middleware requires from

190Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 210 / 646

the Channel Variable. In both AUTOSAR and LISA’s case,
protocol details are hidden from (or transparent to) the
Channel Variable by providing uniform communication
services. To transmit a message, only functionality name
and message are required, while the protocol details are
handled by the middleware service.

In Table VI, we summarized how variations in feature
implementation influence on the implementation of the
identified choreography language entities. Depending on the
extent of support the middleware feature provides to
developers, language entity will implement different
combination of sub-entities, attributes, and relationship
multiplicity.

IV. DISCUSSION

Implementation variations of identified middleware
features can influence the implementation (or

supplementation) of a DSL for choreography modeling.
Accordingly, variations represent a valuable source of
information that needs to be considered during DSL
development. There are several reasons why the inclusion of
this information in language can be beneficial from the
software development point of view. The most important
reasons are described in the following text.

Broadening the scope of DSL in the development
process: Choreography DSL is an analytical tool that
specifies the contractual agreement between different sub-
systems. By including middleware-specific data into DSL,
besides being analytical artifacts, specified models become
implementation artifacts as well. A model’s role in
implementation is best visible in the MDE approach, where
a chain of model-to-model transformation events aims to
end with generated source code. To facilitate seamless
transformations, and be in compliance with middleware-

TABLE VI. EVALUATION SYNTHESIS SUMMARY

Identified
Entities

 Identified
Features

Scales
Influence of Feature Implementation Variations on Language Entities

Sub-Entity Attributes Relationship

P
ar

ti
ci

p
an

t Functionality
access

2 No influence Describing standardized interface technology No influence

1
Distinct Type of Sub-Entity
per supported interface
technology

Distinct attribute set per Sub-Entity type for
describing supported interface technology.

One Participant can
have one interface
technology

0 No influence Describing imposed interface technology No influence

Location
transparency

2 No influence Describing criteria for service selection No influence
1 No influence Data for resolving service invocation No influence
0 No influence Data for routing service request to provider No influence

R
o
le

Functionality
access

2
Sub-Entity per functionality
that is included in Role

Describing functionality according to
standardized interface technology

One Role can have one
or more functionalities

1
Sub-Entity per functionality
that is included in Role

Describing functionality according to
Participant’s interface technology

One Role can have one
or more functionalities

0 No influence
Describing functionality according to imposed
interface technology

No influence

In
te

ra
ct

io
n

Interaction
Scenario

2
Sub-Entity for custom
interaction scenario

Description of custom interaction scenario
One Interaction can
have one interaction
scenario

1 No influence
Attribute and predefined values for describing
supported scenario

One Interaction can
have one interaction
scenario

0 No influence No influence No influence

Message
transformation

2 No influence
Attributes for relating Interaction with
transformations elements in middleware

No influence

1 No influence
Attributes for relating Interaction with
transformations elements in middleware

No influence

0 No influence No influence No influence

Protocol
translation

2 No influence No influence No influence

1 No influence
Attributes for relating Interaction with
translation elements in middleware

No influence

0 No influence No influence No influence

M
sg

.
C

o
n

te
n
t

T
y
p

e

Message format

2 No influence Describing standardized message format No influence

1
Distinct Type of Sub-Entity
per supported msg. format

Distinct attribute set per Sub-Entity type for
describing supported msg. formats

Msg. Content Type
have one msg. format

0 No influence Description of imposed message format No influence

S
ta

te

V
ar

ia
b

le

State
information

2 No influence
Attributes and predefined values on functional,
session and service level

No influence

1 No influence
Attributes and predefined values on session
and service level

No influence

0
Attributes and predefined values on service
level

C
h
an

n
el

V

ar
ia

b
le

Protocol

2 No influence No influence No influence

1
Distinct Type of Sub-Entity
per supported protocol

Distinct attribute set per Sub-Entity type for
describing protocol dependent communication.
services

0 No influence No influence No influence

191Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 211 / 646

induced assumptions, choreography DSL should include
middleware-specific information as well.

Facilitation of communication: DSL for choreography
modeling offers concepts and semantics that are needed for
system analysts to agree on global service interactions.
When DSL includes middleware-related information,
completing models requires additional, technical-related,
expertise. This way choreography modeling pulls together
experts from different development areas who are
cooperating on the same model and communicating using
concepts and semantics that are imposed by the DSL.

Easier introduction of new developers: To develop
applications on top of middleware, developers must learn
and follow middleware-induced assumptions. This
represents a cognitive burden for new developers, and
makes modeling error-prone. When middleware concepts,
rules, and constraints are built in DSL, following them
comes naturally since the language itself guides the work
with concepts and prevents the developer from breaking the
middleware imposed rules and constraints.

A. Validity threats

As an approach, the FA-Screening mode has medium
costs in time and resources, but carries a high risk for the
confidence in findings. This is understandable, since the
entire evaluation represents the subjective stance of a single
evaluator, based only on public documentation analysis. To
decrease the risk, several measures were applied during the
research design. The first measure is related to the number
of evaluators. Instead of one, our analysis procedure
included five evaluators. Joint work ensured that the
findings are based, not only on a single person’s stance, but
encompass the opinions of five persons with different
backgrounds and expertise. The second measure is related to
sources of data. Instead of consulting only publically
available documents such as standards or vendor material, in
Step 3 we used company-specific material and an industry
expert’s knowledge.

The authors of this article believe that applying these
measures during study design increased the study
objectivity, and decreased the confidence risk related to
findings. Additionally, researchers worked under NDAs to
assure the confidentiality of company documentation, and
the industry expert was familiar with the issues being
researched and the way company-specific data will be
treated. According to Miles and Huberman [41], described
measures and practices should reduce the validity threats.

Additional drawback is that, during the score analysis
step, we used the meta-model that assumes the usage of
Web-Services. Web Services are only one of several
component technologies that can be used for telecom and
automotive systems development. Still, the model leaves
enough space for customization, and therefore we found it
to be generic enough for discussing choreographies in the
context of other component technologies as well.

V. CONCLUSION AND FUTURE WORK

The application of SOA in an embedded systems domain
appears to continue to grow, and with it the need to model

service interaction aspects is increasing. Using DSLs for
modeling different system aspects has proven to be a good
practice, and, with the growing adoption of MDE, their
significance in development process will continue to grow.
The research presented in this article supports this trend by
focusing on the relations between the development of a DSL
for choreography modeling and the underlying middleware.

Our findings suggest that the implementations of
identified choreography language entities can differ
depending on how middleware features are implemented. In
Table VI, we describe an explanation of how this can be
done. The same table can be used to answer the research
question stated at the beginning. In short, based on feature
implementation variations, identified language entities,
which are Participant, Role, Interaction, Message Content
Type, State and Channel Variable, will be implemented
using different combinations of language constructs such as
sub-entities, attributes, relationships, and value constraints.
Concrete instances of sub-entities, attributes, and values are
specific to industry sector, underlying middleware, and
feature implementation technology and therefore not
discussed in this article.

Future Work: The derived list of middleware features is
certainly not complete. Additional features that are relevant
for choreography modeling can be proposed, for example
the feature for security issues. Furthermore, middleware
analysis is not sufficient for DSL specification. Other
problems and solution space artifacts should be analyzed to
provide the needed expressiveness of the DSL. Lastly, a
case study to collect broader opinions and suggestions from
industry experts regarding Choreography DSL should be
conducted. Future work will, therefore, continue in the
above mentioned directions.

ACKNOWLEDGEMENT

This research has been supported by ITEA2 and TEKES.
The authors are grateful to AMALTHEA partners for their
cooperation and to Sanja Aaramaa, Markus Kelanti, and
Jarkko Hyysalo for their comments and suggestions.

REFERENCES

[1] D. Krafzig, K. Banke, and D. Slama, Enterprise SOA:

Service-Oriented Architecture Best Practices. Prentice Hall

Profesionall, 2005.

[2] A. Scholz, et al. “∈ SOA-Service Oriented Architectures

adapted for embedded networks,” 7th IEEE International

Conference on Industrial Informatics, IEEE, June 2009, pp.

599-605.

[3] L. Bocchi , J. L. Fiadeiro, and A. Lopes, “Service-oriented

modelling of automotive systems,” 32nd Annual IEEE

International Computer Software and Applications

Conference, IEEE, July 2008, pp. 1059-1064.

[4] T. Blum, N. Dutkowski, and S. Magedanz, “Evolution of

SOA concepts in telecommunications,” Computer, vol. 40,

no. 11, Nov. 2007, pp. 46-50.

[5] R. Dijkman and M. Dumas, “Service-oriented design: A

multi-viewpoint approach,” International journal of

cooperative information systems, vol. 13, no. 4, Dec. 2004,

192Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 212 / 646

pp. 337-368.

[6] C. Peltz, “Web services orchestration and choreography,”

Computer, vol. 36, no. 10, Oct. 2003, pp. 46-52.

[7] M. Fowler, Domain-specific languages. Addison-Wesley

Professional, 2010.

[8] F. Leymann, “Web Services Flow Language (wsfl 1.0),”

IBM Software Group, May 2001, [Online]. Available:
http://cin.ufpe.br/~redis/intranet/bibliography/standards/ley

mann-wsfl01.pdf, [Retrieved: Jun, 2013]

[9] WfMC, “Process Definition Interface - XML Process

Definition Language,” Ver. 2.2, WfMC Standard, Doc.

Number WfMC-TC-1025, Aug. 2012.

[10] OASIS, “Web Services Business Process Execution

Language Ver. 2.0,” OASIS Specification Draft, Aug. 2006

[11] OASIS “ebXML Business Process Specification Schema

Technical Specification v2.0.4,” OASIS Standard, Dec. 2006

[12] OMG, “Business Process Model and Notation”, Ver. 2,

Object Management Group specification, Jan. 2011.

[13] J. Zaha, A. Barros, M. Dumas, and A. T. Hofstede, “Let’s

dance: A language for service behavior modeling,” On the

Move to Meaningful Internet Systems: CoopIS, DOA,

GADA, and ODBASESE, Springer, Nov. 2006, pp. 145-

162.

[14] W3C “Web services choreography description language Ver.

1.0,” W3C candidate recommendation, Nov. 2005.

[15] G. Decker, O. Kopp, F. Leymann, and M. Weske,

“BPEL4Chor: Extending BPEL for Modeling

Choreographies,” IEEE International Conference on Web

Service, IEEE, July 2007, pp. 296-303 .

[16] A. Barker, C.D. Walton, and D. Robertson,

“Choreographing web services,” IEEE Transactions on

Services Computing, vol. 2, no. 2, June 2009, pp. 152-166.

[17] G. Bond, E. Cheung, and I. Fikouras, “Unified telecom and

web services composition: problem definition and future

directions,” Proceedings of the 3rd International Conference

on Principles, Systems and Applications of IP

Telecommunications, ACM, July 2009, pp. 1-12.

[18] A. Iwai, N. Oohashi, and S. Kelly, “Experiences with

automotive service modeling,” Proceedings of the 10th

Workshop on Domain-Specific Modeling, ACM, Oct. 2010,

pp. 1-6.

[19] L. Lin and P. Lin, “Orchestration in Web Services and real-

time communications,” IEEE Communications Magazine,

vol. 45, no. 7, July 2007, pp. 44-50.

[20] W3C, “Voice Browser Call Control: CCXML Version 1.0,”

W3C recommendation, July 2011.

[21] W3C, “State Chart XML (SCXML): State machine notation

for control abstraction,” W3C working draft, Aug. 2013.

[22] K. Vandikas and J. Niemoeller, “SCALE - A language for

dynamic composition of heterogeneous services,” Ericsson

AB, Nov. 2010, [Online]. Available:

http://www1.ericsson.com/res/thecompany/docs/journal_con

ference_papers/service_layer/101215_scale.pdf, [Retrieved:

Jun, 2013]

[23] A. J. Paulo, A. Baravaglio, M. Belaunde, P. Falcarin, and E.

Kovacs, “Service Creation in the SPICE Service Platform,”

Proceedings of the 17th Wireless World Research Forum

Meeting, Heidelberg: Wireless World Research Forum, Nov.

2006, pp 1-7.

[24] J. Fiadeiro , A. Lopes, and L. Bocchi, “A formal approach to

service component architecture,” Web Services and Formal

Methods, Springer, Sept. 2006, pp. 193-213.

[25] J. Fiadeiro, A.Lopes, L.Bocchi, and J.Abreu, “The Sensoria

Reference Modelling Language,” Rigorous Software

Engineering for Service-Oriented Systems, Springer, 2011,

pp. 61-114.

[26] B. Tsai, W.T. Huang, Q. Chen, Y. Paul, and R. A. Xiao,

“SOA collaboration modeling, analysis, and simulation in

PSML-C,” IEEE International Conference on e-Business

Engineering, IEEE, Oct. 2006, pp. 639-646.

[27] The official website of AMALTHEA project, [Online].

Avaliable: itea2.org/project/index/view/?project=10015,

[Retrieved: Jun, 2013].

[28] M. Mernik, J. Heering, and A.M. Sloane,” When and How to

Develop Domain-Specific Languages,” ACM Computing

Surveys, vol. 37, Dec. 2005, pp. 316-344.

[29] S. Vinoski, “An overview of middleware,”Reliable Software

Technologies-Ada-Europe, Springer, June 2004, pp. 35-51.

[30] D. C. Schmidt, “Guest Editor’s Introduction: Model-driven

engineering,” Computer, vol. 39, no. 2, Feb.2006, pp. 25-31.

[31] E. Di Nitto and D. Rosenblum, “Exploiting ADLs to specify

architectural styles induced by middleware infrastructures,”

Proceedings of the 21st International Conference on Software

engineering, ACM, May 1999, pp. 13-22.

[32] B. Kitchenham, S. Linkman, and D. Law, “DESMET: a

methodology for evaluating software engineering methods

and tools,” Computing & Control Engineering Journal, vol.

8, no. 3, June 1997, pp. 120 - 126.

[33] V. R. Basili, G. Caldiera, and H.D. Rombach, “The

Goal/Question/Metric approach,” Encyclopedia of software

engineering, John Wiley & Sons, Inc, 1994, pp. 528-532.

[34] L. Aversano, G. Canfora, A. De Lucia, and G. Pierpaolo,

“Business process reengineering and workflow automation:

a technology transfer experience,” Journal of Systems and

Software, vol. 63, no. 1, July 2002, pp. 29-44.

[35] The official website of AUTOSAR, [Online]. Available:

http://www.autosar.org/, [Retrieved: March, 2013].

[36] P. Berander and P. Jonsson, “A goal question metric based

approach for efficient measurement framework definition,”

Proceedings of the 2006 ACM/IEEE international

symposium on Empirical software engineering, ACM, Sept.

2006, pp. 316-325.

[37] W3C, “WS choreography model overview,” W3C working

draft, Mar ch 2004.

[38] AUTOSAR GbR, “Software Component Template,” Ver.

4.2.0, R4.0 Rev 3, AUTOSAR Standard, 2011.

[39] AUTOSAR GbR, “Specification of RTE,” Ver. 3.2.0, R4.0

Rev 3, AUTOSAR Standard, 2011.

[40] AUTOSAR GbR, “Specification of Communication,” Ver.

2.0.1, AUTOSAR Specification, 2007.

[41] M.B. Miles and M.A. Huberman, Qualitative data analysis: a

sourcebook of new methods. Sage, 1984.

193Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 213 / 646

Data Lifecycle Verification Method for

Requirements Specifications Using a Model Checking Technique

Yoshitaka Aoki, Hirotaka Okuda, Saeko Matsuura
Graduate School of Engineering and Science, Shibaura

Institute of Technology,
 Saitama-City, Japan

{nb12101, ma11043, matsuura}@shibaura-it.ac.jp

Shinpei Ogata
Department of Computing, Shinshu University

Nagano-City, Japan
ogata@cs.shinshu-u.ac.jp

Abstract—A key to success in developing high quality software
is to define valid and feasible requirements specifications to
enable the production of high quality source code with minimal
extra development rework. To provide invariable services to
all users at any time, the data lifecycle functions of create, read,
update, and delete (CRUD) are essential for handling
persistent data. These important operations should, therefore,
be verified at the start of development. In UML2UPPAAL, a
support tool that verifies such functions, requirements
specifications written in UML are transformed into finite-state
automata in UPPAAL. UML2UPPAAL enables developers
with knowledge of UML to benefit from the UPPAAL model
checking tool without requiring UPPAAL knowledge. This
paper proposes a data lifecycle verification method that uses
the UPPAAL model checking tool and focuses on CRUD
operations in the requirements analysis phase.

Keywords—Verification; Model Checking; Requirements
Specifications; UML; CRUD

I. INTRODUCTION

A key to success in developing high quality software is to
define valid and feasible requirements specifications to
enable the production of high quality source code with
minimal extra development rework. Requirements
specifications should have a verifiable form to guarantee
their adequateness and completeness in the early stages of
development. However, uncertain and ambiguous software
requirements often make it difficult for developers to
describe requirements specifications in verifiable form
during their analysis. Although it offers insufficient
verification formalization, the Unified Modeling Language
(UML) [1] is a useful, common tool for formalizing
requirements specifications while enabling their description
in natural language. We propose a method of model-driven
requirements analysis [2][3] using UML. Our method
automatically generates a web user-interface prototype from
a UML requirements analysis model written in activity
diagrams and class diagrams. This method enables
developers to confirm the validity of input and output data
for each page and page transition on the system by directly
operating the prototype.

Model checking has been a favored technique for
improving reliability in the early stages of software
development. We therefore propose a verification method in
which the requirements analysis model written in UML

meets essential properties that any system should meet by
using the UPPAAL model checking tool [4].

Enterprise systems typically must provide invariable
services to many users at a given time; therefore, the data
lifecycle functions of create, read, update, and delete
(CRUD) are essential for handling persistent data. These
important operations should be verified at the start of
development. This paper proposes a method of verifying
these essential CRUD functions by using the UPPAAL
model checking tool.

In UML2UPPAAL, a support tool that verifies such
functions, requirements specifications written in UML are
transformed into finite-state automata in UPPAAL.
UML2UPPAAL enables developers with knowledge of
UML to benefit from the UPPAAL model checking tool
without requiring UPPAAL knowledge. This paper proposes
a data lifecycle verification method that uses the UPPAAL
model checking tool and focuses on CRUD operations in the
requirements analysis phase.

The rest of the paper is organized as follows. Section II
discusses the problems of verifying requirements
specifications in terms of formalization and the applicability
of model checking techniques. Section III outlines our
verification method. Section IV explains UML2UPPAAL,
which can be used to implement our method and support
developers who have insufficient knowledge of model
checking techniques. Section V describes case studies and
the effectiveness of our method.

II. REQUIREMENTS SPECIFICATIONS VERIFICATION

PROBLEMS

A. Problems of Writing Requirements Specifications

The primary cause of the failure of IT projects is often
attributed to inadequate and incomplete requirements
analysis [5]. IEEE Std 830 [6] has been recognized as a
standard of requirements specifications construction.
Although developers may create requirements specifications
according to the standard, it is often difficult for them to
fully address the interrelationship among all document
components to achieve adequateness and completeness. This
is because the initial requirements are written in a natural
language and screen images, which are not related to the
other documents in a verifiable way. Formal specification

194Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 214 / 646

techniques, such as the Vienna Development Method (VDM)
[7] and the B-method [8], provide promising approaches to
formalizing requirements specifications. However, uncertain
and ambiguous requirements often make it difficult for
developers to describe requirements specifications in a
verifiable form at the start of analysis.

UML is a promising tool for formalizing requirements
specifications because of its popularity among development
teams. However, step-by-step formalization is insufficient
for verification. We therefore propose a verification method
in which our requirements analysis model written in UML is
specified as a formal description in stages by using a model
checking technique.

B. Problems with Applying a Model Checking Technique

Model checking is regarded as an effective technique for
improving reliability in the early stages of software
development. A model checking tool uses temporal logic to
model a system as a network of automata extended with
integer variables, structured data types, user defined
functions, and channel synchronization. Based on these
properties, a system model and query expressions can be
defined to specify properties to be checked. When the
specified properties are not satisfied, the tool provides
counterexamples that show how the properties can be
falsified. The simulator helps detect the cause of defects by
tracing the processes in which the counterexamples occur.

Model checking is a technique for automatically
verifying a model by exhaustively checking all paths to
detect properties that developers are often apt to overlook.
However, because the path and state formulas should be
defined by items that are used in the model, it is typically
difficult for developers to define an appropriate model and
formulas at all times.

Path formulas can define properties such as reachability,
safety, and liveness. Reachability means that the specified
state will be reached at some point in time. Safety means
that something bad will never happen. Liveness means that
something expected will eventually happen. State formulas
need defining by expressions related to several process IDs
or variables of the state.

In our requirements analysis model, a use case is defined
by an activity diagram comprised of several sequences of
user and system actions representing normal flows and
exceptional flows in the use case. Data used in the activity
diagram are classified by class diagrams for the system
input/output and entity data, as shown in Figure 1. Based on
a lifecycle of these entity data and actions related to them,
we specify a requirements analysis model in strict
descriptions to enable the automatic defining of query
expressions for the model to verify the specified safety
properties.

Figure 1. Verification Method using UML and a Model Checking Tool

Figure 1 shows an outline of our verification method
using a model checking tool. Semi-formal UML models are
automatically transformed into a network of finite automata
and query expressions; these are used for producing
counterexamples when the requirements analysis model has
defects relating to the data lifecycle of all classes.

III. DATA LIFECYCLE VERIFICATION METHOD

A. Requirements Specifications in UML

We have proposed a method of model-driven
requirements analysis using UML [2][3]. We analyze use
cases and functional requirements of services. In particular,
because end user needs obviously appear within the
interaction between a user and system, our method proposes
to clearly model the interaction.

More specifically, we identify business processes as use
cases from the following questions.
 Based on the specified business rules, what types of

input data and conditions are required to correctly
execute the use case?

 To observe the business rule, what types of conditions
should be required when the use case is not executed?
Moreover, how should the system handle these
exceptional cases?

 According to the above conditions, what types of
behaviors are required to execute the use case?

 What types of data are outputted by these behaviors?
Based on the above questions, both business flow and

business entity data, which are required for executing the
target business tasks, are defined in UML by activity
diagrams and a class diagram.

An activity diagram specifies not only normal and
exceptional action flows but also data flows that are related
to these actions. An action is defined by an action node; data
is defined by an object node being classified by a class that is
defined in a class diagram. Accordingly, these two kinds of
diagrams enable specifications of business flows in

195Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 215 / 646

connection with the data. This is one of the features of our
method on how to use activity diagrams and class diagrams.
In particular, the interaction between a user and system
includes requisite various flows and data on user input,
conditions, and output to correctly execute a use case.

The second feature of our method is an activity diagram
that has three types of partitions: user, interaction, and
system. These partitions enable ready identification of the
following activities: user input, interaction between a user
and system caused by the conditions for executing a use case,
and the resulting output.

The third feature is a prototype consisting of web pages
written in HTML that are automatically generated from the
above two diagram types. The prototype, a kind of model of
the final product, enables end users to clearly and easily
confirm the requisite business flows in connection with the
data. The generated prototype describes the required target
system, except for the user interface appearance and internal
business logic processing. Additionally, the prototype
enables developers to confirm and understand the
correspondence between their models and the final system.
Developers define two kinds of diagrams based on
requirements analysis from different viewpoints, such as
action flows, data flows, and structure. The automatically
generated prototype enables them to easily understand the
consistency between their models and the target system. To
facilitate a full understanding of the correspondence between
each diagram and the target system, a prototype can be
generated in the requirements analysis phase whenever the
developer needs it. The requirements analysis model is
defined using the modeling tool Astah [9].

When clients confirm that the prototype satisfactorily
represents their requirements, the confirmation represents
client validation that the specifications meet their
expectations from an actual usage perspective.

B. Data Lifecycle Model Definition in UML

It is important that developers can verify the
specifications to confirm their feasibility. To accomplish this
objective, developers must confirm that a sequence of
actions and data flows within the system partition of the
activity diagrams can produce the expected output data from
the specified input. The system-side prototype helps
developers confirm the following facts.
 Input data being defined by the user can be transformed

into entity data of the system.
 The existing entity data that should be generated via the

other use cases and above-mentioned entity data can
generate the target output data following the specified
action sequence.

As a result of these considerations, developers can
effectively define entity classes. During this confirmation
process, it is not difficult for developers to adjust actions in
the system partition in accordance with CRUD actions.

An object node has the role of a variable that stores an
instance being created by the create action in the activity

diagram. The object of the verb in the CRUD function
description usually relates to the object node. The verbs
shown in Table I represent CRUD functions in an activity
diagram. For example, CRUD functions can be represented
as “create an object,” “delete the object,” “update the
object,” and “get an object.” The target object node for
create and read is located at the next node of the action, as
shown in Figure 2.

TABLE I. VERBS FOR CRUD ACTIONS

Action Type Verbs

Create create, generate
Read read, get, search

Update update, add, insert, change
Delete delete

Figure 2. Relation between Object and Verb in Create and Read Actions

As a result of these adjustments, a sequence of actions in
the activity diagram represents the state of changes of system
entity data over the whole service by these CRUD actions.

 On the other hand, entity data itself should satisfy the
data lifecycle constraint of a class. For example, to update or
delete an object, the object node must be bound in advance to
some concrete instance object.

These essential properties of entity data are defined by
using a state machine diagram in UML, as shown in Figure 3.
A state machine diagram consists of several states that must
be distinguished and transitions among these states. Each
transition is executed by an event, if necessary, when some
guard conditions are satisfied.

In this paper, we intend to distinguish whether or not
each entity data is binding to an instance object, so that the
system defined by the whole of activity diagrams can
guarantee the correct execution of use cases in accordance
with the CRUD data lifecycle.

Figure 3. CRUD Data Lifecycle of a Class

196Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 216 / 646

Figure 3 shows a basic data lifecycle of a class. A state
machine is defined for each class and named by the class.
The initial state of each instance object in Class A is
“unbound.” After create, the state is changed to “bound.” If
the state is “bound,” the instance object can accept actions
such as update, read, and delete. If the state is “unbound”
and the instance object can be obtained by the read action,
the state is changed to “bound.” If it cannot be obtained, the
state remains “unbound.”

 However, classes do not always have the same data
lifecycle. The basic state machines are therefore modified to
meet the specified class. For example, if all instance objects
in a class have read-only status, the data lifecycle is modified,
as shown in Figure 4.

Figure 4. CRUD Data Lifecycle of a Read- Only Class

The states that should be distinguished within a class
must be specified by guard conditions on the flow in the
corresponding activity diagram. Figure 5 shows guard
descriptions when the read action is executed.

Figure 5. Guard Descriptions in an Activity Diagram

As a result, a type of CRUD action term in an activity
diagram equals an event in a state machine diagram of the
object in the action. A guard description equals a sentence of
“<<An object>> is <<a state>>” on the control flow in the
activity diagram, as shown in Tables II and III.

TABLE II. CORRESPONDENCE BETWEEN ACTION AND EVENT

Verbs of Action for an Object in
Activity diagram

Event in State Machine Diagram of all
Objects in a Class

create, generate Create
read, get, search Read
update add insert change Update
delete Delete

TABLE III. CORRESPONDENCE BETWEEN GUARD AND STATE

Guard description for an

<<Object >>in Activity diagram
State in State Machine of all
<<Objects>> in a Class

<Object> is unbound Unbound
<<Object>>t is bound Bound

As mentioned earlier, verifiable forms can be

incrementally introduced to the requirements specifications
in UML. At this point, it can be verified whether or not
there are contradictions between all service flows defined in
all activity diagrams and the data lifecycles of all entity
objects appearing in the system partition of the activity
diagram.

C. Verification Method

This section explains how to transform the requirements
analysis model and specified data lifecycle models from
UML to UPPAAL, and how to generate the query
expressions.

The UPPAAL model consists of several locations and
transition arrows among them, as shown in Figure 6. A
location expresses a state of the system, and the transition
arrow indicates several conditions named Guard and a
sequential processing event during it named Update. In
Figure 6, START, LOC1, and LOC2 are names of each
location. “i1==0” and “i1>0” are Guard expressions and
“flg=true” and “flg=false” represent Update expressions.

Figure 6. Basic Components of the UPPAAL Model

The requirements analysis model includes all use cases of
a target system and a navigation model to integrate them.
Figure 7 shows the entire structure of transforming UML
models into UPPAAL models and query expressions.

197Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 217 / 646

Figure 7. Transformation of UML to UPPAAL

Firstly, each activity diagram corresponding to a use case
is transformed into one system model in UPPAAL. In this
model, a CRUD action is transformed into a transition of
three locations with channel synchronization.

Figure 8 shows the correspondence between a flow in an
activity diagram and a transition in a UPPAAL system model.
All nodes, such as action, object, decision, merge, start, end,
and so on, are transformed into locations in UPPAAL. The
control flow and data flow are each transformed into
transitions, except for CRUD actions.

For example, the create action is transformed into a
transaction sequence of three locations. The first location
represents a pre-state of calling the create action, and the
second location represents a state of creating. The third
location represents a post-state of creating. The first
transition flow has a synchronization channel named “c_C!”
and the second transition flow has a synchronization channel
named “r_C?” “c” denotes “call” and “r” denotes “return,”
respectively.

These synchronization channels synchronize with other
channels in a system being transformed from a state machine
diagram of the corresponding object class. In this case, the
corresponding object means that it is an objective word of
the create action.

Figure 8. Activity Diagram and the Corresponding UPPAAL Model

A state machine diagram in Figure 3 is transformed into
the UPPAAL model in Figure 9.

Two states are transformed into the locations named
“Unbound” and “Bound,” respectively. Each transition is
transformed into a transition sequence of three locations, in
the same way that CRUD actions are transformed. However,
the channel in this model fires by calling from the system
relating to the activity diagram. In this case, the first
transition is fired by the corresponding object channel
“c_C!” After creating, the channel “r_C!” synchronizes the
channel “r_C?” in the caller system.

Figure 9. Transformed Data Lifecycle

A state machine diagram defines the data lifecycle of a
class by using restricted actions, such as CRUD. It specifies
all behaviors that all objects in the class can perform. That is,
it specifies negative properties that should never happen. The
state machine diagram in Figure 3 specifies that the update
and delete operations should not be applied to it if an object
is unbound.

The state that will never happen is then designated in the
transformed UPPAAL model, as shown in Figure 9.
Error_D_U, Error_U_U, and Error_C_B denote the
impossible states. These states are defined for every object
appearing in all activity diagrams.

As a result, we can automatically define query
expressions on safety property in accordance with these
models as follows.

A[] not Error_D_U_<<Object>>
A[] not Error_U_U_ <<Object>>
A[] not Error_C_B_<<Object>>

Because all names of locations in the UPPAAL model

are defined by the original nodes in the activity diagrams,
query expressions for the reachability property can also be
automatically generated.

A navigation model integrates all activity diagrams
according to the pre-conditions and post-conditions, which
are a combination of several labels being added to the start or
end nodes in each activity diagram. According to these
conditions, all system models transformed from the activity
diagrams are integrated as a UPPAAL model.

198Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 218 / 646

IV. UML2UPPAAL

UML2UPPAAL is a support tool that implements the
above-mentioned verification method. Figure 10 shows the
architecture of UML2UPPAAL, which is implemented as a
plugin of the UML modeling tool Astah.

Figure 10. UML2UPPAAL Architecture

Figure 11. UML2 UPPAAL

After defining a requirements analysis model using
Astah, a developer can verify it with the same tool
environment. As shown in Figure 11, the result of the
verification is presented by highlighting the defective items
in the model. The results of executing the query expressions
are shown in the lower part of the screen. During this work,
developers are not required to have knowledge of UPPAAL;
they only need knowledge of UML to use UML2UPPAAL
and obtain the benefits of the UPPAAL model checking tool.

V. CASE STUDIES

A. Outline of Case Studies

We conducted a case study to evaluate the effectiveness
of our method. First, five graduate students modified their
UML models of the following four systems. The
modifications were performed to maintain the rule of the
descriptions of CRUD actions in an activity diagram. The
first two systems are the currently running systems in our
university. Table IV shows the scale of each model.
 Group work support system for project-based learning

(PBL): GWSS
 Learning Management System: LUMINOUS
 University co-op text book sales system: COOP
 Laboratory library management system (two types):

Library1, 2

TABLE IV. SCALE OF MODELS

B. Verification Results

Next, the experimenters defined data lifecycle models for
the specified entity data by using state machine diagrams.
Having minimal knowledge of UPPAAL, they could find 83
defects in their models. The main defects found by this
experiment were:
 Ten omissions of defining proper guard conditions

against the nondeterministic property on the Read
action.

 Two mistakes involving the impossible actions of
Update and Delete being applied to unbounded objects.

 One mistake caused by complicated flows in which
some objects could not create during the service
because the position of the Create action was incorrect.

A navigation model is typically useful for generating a

prototype system so that a user can operate it simultaneously
with the final product. However, there were some cases in
our experiment in which the pre-conditions and post-
conditions affected the state of the object. As a result, at
times there were objects of the same class but from a
different data lifecycle in the activity diagram. A data
lifecycle was defined for each class; however, it was
necessary to adjust the state machine for the effects of the
pre-conditions on the target object.

Moreover, there were instances when a complicated use
case caused defects in the data lifecycle because loops
occurred in an activity diagram at least two times.

It therefore must be considered that the association
between classes affects the data lifecycle.

VI. RELATED WORK

Several researchers have proposed respective formal
approaches to verifying specified features in the early stages
of software development. Yatake [10] verified that all object
states satisfy the invariant conditions between collaborative

Model COOP GWSS LUMINOUS Library1 Library2

Number of Classes 110 162 58 33 45
Number of Attributes 387 157 112 91 125

Number of Use case 7 8 8 5 6

Number of Actions 391 315 183 119 138

Average of Cyclomatic
Numbers

22.9 28.2 14.9 15 12.3

Average of Number of
Flows and Actions

106.5 85.7 56.1 64.3 58

Average of Number of
Model elements

65.5 60.5 39.5 43.5 39.57

199Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 219 / 646

object behaviors by using a theorem-proving system.
However, it requires a large quantity of strict definitions to
clarify all the actions and data relating to the invariant. It is
generally difficult to perform such strict work during a
changeable phase, such as requirements analysis.

It is important to conduct stepwise specifications
refinement by checking several verifiable features in the
early stage of software development. Choi [11] proposed a
verification method of the consistency between the page
transition specification on a web-based system and the flow
chart defining the process streams. We have also proposed a
common verifiable feature in enterprise systems, such as the
conditions for CRUD of entity data. Moreover, we can
automatically generate the query expressions.

Achenbach [12] compared the abstraction techniques in
various model checking tools and applied these tools to real-
world problems. For example, the open/close behavior of the
file I/O stream was modeled using the transition between
states such as open, close, and error. This approach is very
similar to ours. However, unlike our approach, this paper did
not discuss the method on the assumption that the
requirements specifications have been validated by the
clients.

Several researchers have proposed support methods to
effectively use model checking tools [13][14][15].

Trcka [13] proposed a method to verify the nine
predefined query expressions using a Petri net, which can
specify behaviors such as read, write, and delete. This study
may be similar to our method. However, because query
expressions depend on the properties specified by state
machine diagrams, our method can be extended to verify the
other properties.

Several studies [14][15] have proposed a method to
transform UML models into process or protocol meta
language (PROMELA) for using the model checking tool
SPIN. However, because developers need to directly operate
the model checking tool, they are required to have
knowledge of both UML and SPIN. It is convenient that
UML2UPPAAL can be used only with knowledge of UML.

VII. CONCLUSION

This paper proposed a verification method of
requirements specifications in UML in the beginning phase
of development using a model checking technique.
UML2UPPAAL is a support tool for verifying the entity data
lifecycle by transforming requirements specifications written
in UML into finite automata in UPPAAL. A key attribute of
UML2UPPAAL is that developers with knowledge of UML
can benefit from the UPPAAL model checking tool without
having UPPAAL knowledge. We are planning to apply our

method to verify a security policy for requirements
specifications [16] based on the Common Criteria [17] for
Information Technology Security Evaluation, which is an
international standard (ISO/IEC 15408) for computer
security certification.

ACKNOWLEDGMENT

This work has been conducted as a part of the “Research
Initiative on Advanced Software Engineering in 2012”
supported by the Software Reliability Enhancement Center
(SEC), Information Technology Promotion Agency (IPA),
Japan.

REFERENCES
[1] UML, http://www.uml.org/,[retrieved: July, 2013].

[2] S. Ogata, and S. Matsuura, “A UML-based Requirements Analysis
with Automatic Prototype System Generation,” Communication of
SIWN, Vol.3, Jun. 2008, pp.166-172.

[3] S. Ogata. and S. Matsuura, “A Method of Automatic Integration Test
Case Generation from UML-based Scenario,” WSEAS
TRANSACTIONS on INFORMATION SCIENCE and
APPLICATIONS, Issue 4, Vol.7, Apr 2010, pp.598-607 .

[4] UPPAAL, http://www.uppaal.com/, [retrieved: July, 2013]..

[5] Standish Chaos Report, http://blog.standishgroup.com/

[6] IEEE Computer Society, IEEE Recommended Practice for Software
Requirements Specifications, IEEE Std 830 (1998).

[7] VDMTools, http://www.vdmtools.jp/ , [retrieved: July, 2013].

[8] K. Lano and H. Haughton, “Specification in B: An Introduction
Using the B Toolkit”, Imperial College Press, 1996

[9] astah*, http://www.change-vision.com/,[retrieved: July, 2013].

[10] K. Yatake, T. Aoki and T. Katayama, “Collaboration-based
verification of Object-Oriented Models”, Computer Software, Vol.22,
No.1, 2005, pp.58-76. (in japanese)

[11] E. Choi, T. Kawamoto, and H. Watanabe, “Model Checking of Page
Flow Specification”, Computer Software, Vol.22, No.3, 2005,
pp.146-153. (in japanese)

[12] M. Achenbach and K. Ostermann, ”Engineering Abstractions in
Model Checking and Testing”, Source Code Analysis and
Manipulation, Proc. of .SCAM ’09.,2009, pp.137-146

[13] N. Trcka, Wil M.Aalst, and N.Sidorova., “Data-Flow Anti-Patterns:
Discovering Dataflow Errors in Workflows,” Proc. of the CAiSE
2009, 2009, pp.425-439.

[14] P. Bose, “Automated translation of UML models of architectures for
verification and simulation using SPIN,” Proc. of the ASE, 1999,
pp.102-109.

[15] L. Jing, L. Jinhua, and Z. Fangning, “Model Checking UML Activity
Diagrams with SPIN,” Proc. of the CiSE 2009, 2009, pp.1-4.

[16] A. Noro and S. Matsuura, “UML based Security Function Policy
Verification Method for Requirements Specification”, Proc of 2013
IEEE 37th International Conference on Computer Software and
Applications, 2013, pp.832-833.

[17] Common Criteria, “CC/CEM v3.1 Release4”,
http://www.commoncriteriaportal.org/cc/,[retrieved: July, 2013].

200Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 220 / 646

Service Relationships Management for Maintenance
and Evolution of Service Networks

Aneta Kabzeva, Joachim Götze, Thomas Lottermann, and Paul Müller
Integrated Communication Systems (ICSY), University of Kaiserslautern, Germany

Email: {kabzeva, j goetze, t lotterm09, pmueller}@informatik.uni-kl.de

Abstract—The Service-Oriented Architecture (SOA) paradigm
is broadly accepted for the realization of business capabilities.
Hence, the maintenance and evolution of Service Networks (SN)
as systems comprising multiple service-based applications is
becoming a growing issue. The larger a service inventory grows
and the more often services are reused, the more consequences a
service change or fault can cause on related applications in the
SN. While reducing the adaptation complexity of a single solution,
the realization of business processes as service compositions intro-
duces logical relations defined implicitly between the technically
independent services. To preserve the consistency in the whole SN,
maintenance and evolution processes have to consider all relations
to the changing configuration item. We present a framework for
collection, validation, and representation of service relationship
information. Contributions of the proposed solution include a
semi-automatic approach for relationship identification, a mech-
anism for completeness and consistency validation, and a tailor-
made representation of relations according to stakeholder needs.

Index Terms—service-orientation; service networks; service
relationships; maintenance; evolution

I. INTRODUCTION

Nowadays, Service-Oriented Architecture (SOA) is the main
paradigm applied for the flexible integration of heterogeneous
applications. With the introduction of the core concept of a
service, SOA aligns the development of business processes and
the underlying IT infrastructure. From a business perspective,
the decomposition of business processes into reusable services
allows for easy recognition of relevant software components
in case of changing product requirements and better overview
of IT investments for the introduction of new business capa-
bilities. For software architects, the realization of systems as
service compositions means the definition of loosely coupled
units of logic accessible through a standardized interface
[8]. Thus, fast adaptation to changing business requirements
is achieved through the modification or replacement of the
service representing the relevant business task.

While the adoption of SOA reduces the complexity of
single system adaptation, the structural complexity of a Ser-
vice Network (SN) as a system of service systems [5] is
increasing considerably. Therefore, maintenance (the modifi-
cation of a service-based application for fault correcting or
quality improvement changes of existing configuration items)
and evolution (the introduction of new processes, services,
and policies) are growing research issues [19]. Three main
factors are identified for causing the increased complexity: the
increased number of configuration items that can be considered

for maintenance and evolution, the existence of implicitly
defined dependencies, and the restricted administrative control
on some resources within the landscape.

Increased number of configuration items: the decomposition
of software solutions into a number of services and the def-
inition of the expected documents describing their interfaces,
compositions, and regulations increases the set of items which
need change control [23].

Implicit dependencies across applications: the reusability
of services in different processes speeds up new product
implementations. Yet, it leads to an increasing number of
relations between services in the context of these processes.
Each service reuse generates hidden chains of dependencies
[10]. These dependencies are not explicitly defined [16] and
affect the maintenance and evolution of SNs.

Restricted administrative control: the standardized service
access through uniform interfaces allows easy integration of
third-party services. Such integration introduces configuration
items which are under external administrative control and are
needed for the proper functioning of applications. Changes
conducted by the external providers cannot be controlled and
can cause disruptions of client applications [27].

To exploit the agility provided by SOA, SN operators have
to deal with the resulting complexity and assure consistent
landscape state after maintenance and evolution changes. The
loose coupling property of services provides only technical
independence [26]. The modification of a service can still
affect numerous processes and applications using the service.
In the context of SNs, a change can cause not only functional
but also non-functional faults such as the violation of contract
clauses [33]. Proper propagation of an evolutionary or main-
tenance change through the entire Service Network requires
a rigorous knowledge of the relationships resulting from
service composition and reuse. A relationship between two
entities can be a functional dependency or a non-functional
requirement. The relationship management solution proposed
here provides a means for collecting this knowledge, validating
the completeness and consistency of the collected relationship
information, and presenting it in a tailor-made form suitable
for the analysis needs of both business and IT stakeholders.
Based on predefined patterns and constraints, it calls attention
to missing relationships and inconsistencies of specifications,
yet leaves the correcting actions to human interaction. To
achieve this goal, several steps have to be taken [15]:

201Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 221 / 646

• Understand the characteristics of services residing on the
different abstraction layers between business and IT, as
well as the possible relationships between them to provide
a basis for a completeness and correctness check of the
collected information.

• Define a common format for relationship representation
allowing a uniform specification of all identified relation-
ship variations, independent from the heterogeneous spec-
ification languages applied in the realization of service-
based applications.

• Design an architecture capable of supporting the col-
lection, validation, and representation of an appropriate
set of relationships relevant for SNs according to their
stakeholder needs.

This paper focuses on the last step and describes an ar-
chitecture, a prototype, and an exemplary case study for a
relationship management framework. The remainder of the
paper is organized as follows: Section 2 gives an overview of
currently existing solutions for relationships management for
SOA. Section 3 identifies the relationship types considered for
the proposed solution. Section 4 explains the proposed frame-
work architecture. A prototypical realization is presented in
Section 5. Section 6 describes the application of the framework
in an exemplary case study. Finally, Section 7 concludes the
paper with a short summary and an outlook on future work.

II. RELATED WORK

The work on relationships in service-based applications
found in the literature differs according to the purpose for
relationship assessment and the considered set of relation-
ships. Regarding the purpose for relationships, existing ap-
proaches separate in two general groups: providing support
for business-specific purposes [3][24] or for IT-specific pur-
poses [1][6][27][33]. The transfer of business requirements
to the executable IT services [3] and automatic process
model creation [24] are the main goals pursued from the
business perspective. Regarding the type of relationships,
these solutions are mainly interested in the mappings between
business capabilities and the IT services responsible for their
execution. The maintenance and evolution scenarios from the
IT perspective include failure detection and impact analysis
[1][2][12], definition of service level agreements for composed
services [20][33], and governance support [6]. These solutions
extract information mainly on the relationships between exe-
cutable services. While providing some detail on relationships
properties and analysis features for the specific scenario, all
these approaches capture a restricted set of relationships types.
The collected relationship information is not applicable for
additional analysis purposes. The solution proposed in this
paper considers these approaches as a basis to identify what
types of relationships should be supported by the framework
and what validation features are needed.

Infrastructures for generic traceability support are offered in
[30][32]. Similar to our solution, the STraS framework [30]
foresees plug-ins to extract data from heterogeneous specifica-
tions of architectural artifacts. However, the actual capturing of

Fig. 1. Considered relationship types example

the relationships is not established. Stakeholders can query the
ontology-based integrated knowledge representation according
to their needs. Contrary to our approach, constraints and
patterns for the validation of the collected relationships are
not considered as part of the solution. The VbTrace approach
[32] operates on an abstract and technology-specific process
specifications. Based on a specified set of views, the View-
based Modeling Framework (VbMF) produces links between
view models and between elements from different view models
instead of between SOA-specific architectural artifacts. From
the captured relationships, the infrastructure allows code re-
generation of the process implementation that should support
changes in the process-driven SOA landscape. Although it con-
siders the abstract business view on a process, this approach,
and the restricted set of links that it generates, fits only a
software developer’s needs.

Realizing the role of knowledge management for the long-
term success of service-based landscapes, several software
vendor solutions for relationship management have emerged
(e.g., IBM’s WebSphere Service Registry and Repository [7],
Software AG’s SOA governance tool CentraCite [31], or
Oracle’s sCrawler SOA dependency tracker [28]). Typically,
these solutions are built on top of a service registry and work
only in combination with the corresponding vendor-specific
software suite.

III. SERVICE RELATIONSHIPS

The adaptability and flexibility of service-based applications
is realized with the introduction of an additional service ab-
straction layer between business and application logic [8][14].
To structure the representation of both types of logic, the
service layer is divided into several layers [8]. While there
is a common understanding that the service layer comprises
different types of services, there is no clear view what these
types are. Service classification and how the different types
relate to each other is normally dependent on the stakeholders’
background [22]. However, independent from the number

202Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 222 / 646

of abstraction layers defined for the realization of a SN,
the aligned modification of the configuration items lying on
these layers is what grants the success of a SOA and at the
same time complicates its maintenance and evolution. Five
maintenance and evolution challenges are identified according
to the structure of SNs and addressed in the proposed solution:
two address the impact estimation on business and IT change,
two support the recognition of critical and wasted resources,
and one regards the redundancy of services.

Business requirement change management: agile adaptation
to changing requirements is the main reason for initiating a
service-based application. A changing requirement has to be
transferred to the execution services and will initiate changing
processes on the IT side. Since business processes compose a
set of business tasks, a change request for a single business
task will directly trigger a change of a restricted set of services
responsible for its execution. Yet, the proper functioning of
services executing adjacent business tasks - which can also be
part of multiple business processes composing the modified
task - can also be indirectly affected.

Service change management: service quality improvement
or fault correction are possible triggers for service changes
coming from the IT side. Even if the service interface remains
the same, a service change can have implications on the non-
functional properties of the supported business capabilities.
Because of the reuse of services, there can be an n to m
relationship between services and tasks [30]. Multiple business
tasks, and consequently business processes, can be affected.

Detection of critical services: the maintenance process is not
only responsible for the execution of modifications on change
requests, but also for ensuring a high quality application
environment. A service is provided for consumption to an
undefined set of consumers. Its usage after deployment is
unpredictable for the provider. Without information on the
connectivity of a service within the entire SN, it is impossible
to recognize which services are crucial for the business.

Detection of wasted resources: similar to the previous
challenge, service consumption is also impossible to estimate
for unused services without keeping information on their
connectivity. An unused service wastes storage resources or
even monetary resources in the case of a third-party service.
Integrating data from usage accounting can provide informa-
tion about the significance of the resource waste [11].

Service redundancy prevention: a service is redundant if
there is already another service offering the same function-
ality with the same quality for the same business capability.
Services and processes are procured or provided by different
stakeholders shaping the SN. A system architect cannot know
all available services unless there is an explicit documentation
on how the available services relate to business tasks.

To support these challenges, the proposed solution allows
the extraction and explicit documentation of the relationships
described below. Fig. 1 provides an example illustrating their
occurrences. This figure depicts a manually created relation-
ship model of an existing SOA-based stock trading application,
which will later be considered as an exemplary case study.

Task-to-task: This relationship type represents links within
the business process layer. A relationship between tasks dis-
plays the control flow (control relationship) or data flow
(producer-consumer relationship) within an application. This
information is explicitly available in business process descrip-
tions and automatically extractable for relationships within a
single process. A complete task-to-task relationship model for
a task requires reviewing all the processes comprising the
task, which is a time consuming activity without an automated
relationship management solution. Task-to-task relationship
information can be used to automatically map relationships
between services on the executable services layers, which
result in the process context and are not explicitly visible
for software architects. Thus, support for service change
management and the estimation of the connectivity of a service
within the SN will be indirectly provided.

Task-to-service-operation: To be reusable, an executable
service is usually entity-centric, defining a set of operations
on a single business entity. A task within a business process
defines a piece of functionality. Thus, a business task is usually
executed by a single or multiple operations provided by one
or more services. Providing explicit information on task-to-
service operation mappings supports both business require-
ments change management and service change management.
Because of the fine granularity of the relationship not only to
a service but to its specific operation, responsible stakeholders
will be able to better estimate if all related services or tasks
will be affected by a change request. Furthermore, for the
definition of new business processes composing an existing
service task, the corresponding service can be automatically
detected and prevent unwanted service redundancies. Yet, the
collection of these relationships has to happen manually on
the initial service selection from the software architect.

Service-operation-to-service-operation: Links within and
across the executable services layers are displayed by these
relationships. Service-operation-to-service-operation relation-
ships can be captured in two ways. Relationships that are
automatically collected from process services or composed
service specifications residing on higher abstraction layers
indicate functional dependencies (task-subtask relationships)
across layers. Relationships that are automatically calculated
from the combination on the previous two types of relation-
ships inherit the type of the initial task-to-task relation (e.g.,
producer-consumer in Fig. 1). Both types support traceability
for change management and representation of the service
integration within the SN.

Business-process-to-service: Finally, if the logic modeled
within a business process is controlled by an executable
process service, a process-to-service implementation relation
has to be explicitly captured for change management support.

IV. SERVICE RELATIONSHIP MANAGEMENT FRAMEWORK

A. Requirements

To provide a framework for relationship management in
SNs, several requirements have to be taken into account. First
of all, the set of configuration items and their relationships

203Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 223 / 646

have to be dynamically adjustable to the target landscape.
Depending on the maturity of the SOA adoption within an
organization [9], only a subset of the layers pictured in Fig. 1
may be present. A restricted set of service layers will result
in a smaller set of possible relationships. The framework
should not require a specific set of configuration items and
relationships to be available, but adjust to the available infras-
tructure and its rules and constraints. Thus, an organization can
adjust the completeness and correctness validations performed
according to its infrastructural policies.

This leads to the second requirement: the relationship man-
agement solution should be applicable for both existing and
newly forming SNs. To achieve this requirement, the solution
should operate on available documentation without the need
for modification.

Another requirement on the framework is to capture both
direct and indirect (hidden) relationships between the configu-
ration items of a SN. While direct dependencies can be easily
extracted, either manually during design or automatically from
process descriptions indirect dependencies, resulting from
hierarchical service compositions and reuse in multiple pro-
cesses, can be discovered only by tracing multiple descriptions,
originating at different times from different stakeholders.

In highly mature SNs with repeated and augmented service
compositions [9], the collection of all existing relationships
can be a long running process. The more often a service
participates in compositions, the higher the number of its
relationships to other services will be. The more compositions
in a service-based landscape exist, the higher the probability of
hidden relationships. Therefore, once calculated, relationships
models should be cached and re-evaluated only on modifica-
tions. This grants both the freshness of the model and better
performance.

The relationship models acquired with the framework
should be usable for different maintenance and evolution
issues like change management or architecture quality anal-
ysis. Change analysis can be triggered from a modification
request on a single service. A relationship model of interest,
in this case, should visualize all configuration items within
the infrastructure that could be influenced by the service
modification. For an architecture quality analysis, the software
architect can be interested in the topology of the whole
infrastructure to identify business-critical services. Depending
on the purpose of a stakeholder, the content of a relationship
model view will differ. A view-based representation of the
collected relationship information should be prepared from the
framework to improve the usability of the models for different
stakeholder groups.

B. Architecture

The architecture proposed here for relationship management
in SNs comprises three horizontal layers (see Fig. 2): a
relationship collector layer responsible for extracting rela-
tionship information from configuration item descriptions, a
relationship profiler, which calculates additional relationships
based on multiple inputs from the relationship collector, and

a relationship presenter layer, which prepares the relationship
information for stakeholder-specific extraction and visualiza-
tion. A vertical layer, relationship constraints and patterns,
supports the three horizontal layer activities through the defi-
nition of patterns and constraints specific for the structure of
service-based application landscapes. The whole architecture
is positioned on top of the service-based application infras-
tructure to be captured. It works on the basis of existing
items’ descriptions without requiring any specific language or
additional tagging in the specifications, thus addressing the
first two requirements on the desired solution.

The collector layer processes raw data from configuration
item descriptions and transforms it into an uniform specifi-
cation of the configuration item and its direct relationships
according to the item-specific relationship patterns provided
from the vertical layer. To support an extensible set of con-
figuration item types, the collector layer has an extensible,
modular structure. For each type of configuration item, a
specialized collector module is provided that knows what type
of information to search its documentation for. All recorded
dependencies are presented as first-class entities in the uniform
specification format and are passed for further processing to
the relationships profiler layer. To be able to understand differ-
ent modeling notations, like BPMN (Business Process Model
and Notation) [25] or EPC (Event-driven Process Chain) [29]
for business process descriptions, a set of patterns mapping the
notation-specific structures to the unified information model
should be provided to the collector.

The objectives of the profiler layer are the calculation of
indirect relationships and the validation for completeness and
inconsistencies. While a relationship collector processes one
item description at a time, a relationship profiler combines
the information from multiple descriptions. Compared to the
relationship collectors, which have to be language-specific,
a relationship profiler works on a unified set of data and is
thus language-independent. Again, following the extensible
approach advanced by the previous layer, an item-specific
profiler determines how to search for relevant description files
for a calculation. The completeness and consistency checks
are done against item-specific constraints, defined in the ver-
tical architectural layer on the basis of possible relationships.
The completeness of the collected data is dependent on the
content provided in the underlying item specifications, e.g.,
all services invoked in a composed service are captured as
part of the landscape model. To allow for completion of
mandatory information, the collection layer has to notify the
responsible stakeholder and request for missing inputs, e.g.,
initial task-to-service operation record. In case of inconsis-
tency, the framework only notifies the responsible stakeholder.
The goal of the framework is to capture the structure of
an application landscape and not its correction, which is
in itself a complex issue usually requiring human interac-
tion. To map the landscape architecture as it is, inconsistent
relationships have to be kept within the model until their
correction through the modification of the related configuration
items. The modification will trigger a re-calculation of the

204Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 224 / 646

Fig. 2. Architecture of the relationship management framework

relationships in the profiler, which will update the relationship
model. The calculated relationship profiles are finally saved
for stakeholder-based representation and reasoning.

The topmost presenter layer handles the preparation of the
calculated relationship models for representation, according
to the analysis-specific content requirements of a stakeholder.
An automatic selection of the desired subset of relationships
and configuration items needs predefined rules. Based on
their role [9] in the operation of the service-based landscape,
stakeholders can choose what part of a calculated relationship
profile should be shown. Thereby, they should be able to
restrict the visibility of configuration items as well as the type
of relationships between them. The extraction of model views
reduces the complexity of the model and improves its read-
ability for stakeholders by presenting information according
to their domain expertise.

V. REALIZATION

The prototypical implementation of the framework uses the
Service Component Architecture (SCA) programming model
with its Apache Tuscany implementation [18] to support the
development of a flexible service-based framework. The dis-
tribution of the prototype components on the three horizontal
abstraction layers is depicted in Fig. 2.

The collector layer comprises a Collector and a set of
Definition Modules. The collector provides an entry point for
new configuration item descriptions to the framework. It acts
as a central definition hub, which forwards provided definitions
or configuration items deletion requests to the responsible defi-
nition modules, based on the description’s type. The definition
modules have the task to parse definitions of configuration
items and monitor the deletion of already collected ones. The
Parser within a definition module translates the language-
specific description of a configuration item into a generic data
structure which is used within the framework and marks it with

a unique ID for the landscape. It also extracts notation-specific
dependencies when available (e.g., task-to-task dependencies).
The prototype provides definition modules for WSDL (Web
Services Description Language) [4], BPEL (Business Process
Execution Language) [21], BPMN, and EPC. The Deletion
Monitor is polled every time an artifact shall be removed.
When a deletion request arrives, the monitor either grants the
request or throws an exception, depending on the relationship
information found in the landscape model. Since only the
collector is known to external design tools, it is possible to
transparently integrate new definition modules for new types
of configuration items for the stakeholder. No new skills or
client adaptations are required in order to use the framework.

Newly captured configuration items, now represented in
the generic data structure, are forwarded to the Coordinator.
The coordinator is the central controlling unit. It forwards
the configuration items to relevant detection modules for
relationship profile calculation and validation. Then it sends
the new information (relationships and configuration items)
to the query and storage engine, and notifies the presentation
components about the changes.

The functionality of the profiler layer is implemented as a
set of Detection Modules responsible for calculating implicit
relationships. Each detection module consists of a Calcu-
lator and a Validator. A calculator implements a detection
algorithm for an implicit relationship type. The validation is
performed in terms of completeness (whenever a component or
information is missing which is needed to extract mandatory
information) and consistency (whenever a potential problem
embedded within the application landscape is discovered based
on contradicting relationships). Each validation issue generates
a ticket with a priority tag to designate the importance of
its processing. The current prototype gives higher priority
to consistency issues. To implement the collection of the
relationships specified in section three, the prototype provides
three detection modules: a mapping detection module, which
collects and validates task-to-service operation and process-
to-service relationships, an inter-service dependency detection
module, which calculates and validates service-operation-to-
service-operation relationships, and a service classification
detection module capable of classifying and validating an exe-
cutable service automatically. Through a concept of pluggable
detection modules, the insertion of new relationship types is
achieved by simply binding a new module to the coordinator.

The Query and Storage Engine provides an interface to the
data storage containing the captured relationship models. The
prototype saves the data in a DOM tree, which is managed
via JDOM [13], allowing XPath processing.

The presenter layer consists of two types of clients: the
Model View Extractor, which provides a graphical representa-
tion of the collected relationships model (cf. Fig. 3) and the
Designer, which allows the stakeholders to contribute to the
collection process. The model view extractor tool allows stake-
holders to create model views based on XPath expressions and
displays only a specific part of the model as a graph. The
generated graphs are automatically updated whenever their

205Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 225 / 646

Fig. 3. Automatically generated relationships model of the stock trade application

content is affected by modifications in the architecture. The
designer is a tool for manual interaction with the framework
for inserting, changing, and deleting configuration items in
the application landscape. In addition, it interacts with the
detection modules in order to solve the validation issues
recognized by the framework. Thus, the designer tool allows
the framework to extract dependencies which require manual
interaction as well as solve potential problems discovered
within the landscape during validation.

VI. EXEMPLARY CASE STUDY

The proposed framework was applied to collect, validate
and represent the relationships in the service network case
from Fig. 1. The prototype was used to assess and validate the
structure of the SN during an exemplary creation of the stock
trader application. The goal was to observe the framework’s
behavior under conditions like missing or incomplete docu-
mentation and false service classification. For this purpose,
application creation was simulated with the following steps:

1) A business analyst defines a BPMN business process
description for the StockTrader Process.

2) A software developer defines three WSDL descriptions
of the services responsible for the implementation of
the process specified in step 1 - StockQuote Service,
Workflow Service, and StockTrade Service.

3) A software architect defines the executable BPEL pro-
cess specification for the StockTrader Process.

4) A BPEL specification of the StockTrade Service is
imported in the network.

5) The service descriptions for the Authentication Service
and the StockAccount Service composed by the Stock-
Trade Service are added to the network.

The result from the first step was a business process com-
prising three tasks with two explicit task-to-task relationships
between them. Additionally, for each of the three tasks a
notification concerning the missing implementation of the
tasks discovered within the process description was generated.

After the second step three basic services were added to
the model with no relations. Three additional notifications of
unused services were received. The stakeholder was advised to
free unnecessarily used resources or provide, via the Designer
tool, the mapping of which business task is implemented by
which service operation. The notifications were addressed by
providing the implementation relations between the three tasks
and services via the Designer.

The analysis of the BPEL description from step 3 resulted
in adding a process service with three task-subtask and two
producer-consumer relations to the model graph.

The re-validation of the model in step 4 after inserting
a BPEL description for the basic StockTrade Service led
to a classification inconsistency. Also, two unknown service
descriptions referenced in the BPEL specification were re-
ported and asked for their insertion. The analysis of the
BPEL specification resulted in the automatic relocation of the
StockTrade Service to the composition service layer.

Addressing the requests for the service descriptions for the
Authentication Service and the StockAccount Service in step 5
generated the two task-subtask relations from the StockTrade
Service to its composite services. The resulting relations model
(see Fig. 3) was automatically drawn by the framework and
represents all relations from the manual assessment in Fig. 1.
It shows the connectivity of the StockQuote Service (colored
in red) within the network.

206Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 226 / 646

VII. CONCLUSION AND FUTURE WORK

Understanding and explicitly modeling relationships in SNs
is an essential prerequisite for controlled maintenance and
evolution. This paper proposed an architecture for capturing
and validating explicit and implicit service relationships. The
approach considers that the different configuration items in
a Service Network are specified in existing heterogeneous
description languages and applies a language-independent re-
lationship specification model to store the connectivity within
the landscape. Implicitly defined dependencies resulting from
service composition and reuse are captured in an explicit
way, providing information on the relationship type. Applying
predefined rules for relationship obligation and consistency
violation, the proposed solution considers validation of the
captured landscape model for completeness and consistency.
For every validation issue, tickets for stakeholder interaction
are generated and motivate the enhancement of the landscape
infrastructure. Finally, respecting multiple stakeholder roles
from the business and IT domain in a SN, and their different
analysis needs on the service-oriented infrastructure at place,
a view-based representation of the captured information has
been considered as part of the presented framework. The ap-
plication of our solution in an exemplary case study providing
typical descriptions for service-based applications shows that
all relationships identified as helpful for both business ana-
lysts and software architects for the decision making process
during change management are captured automatically by the
framework by complete landscape documentation. Incomplete
documentation is discovered by the framework and reported
to the relevant stakeholders.

Next steps to further improve the relationship management
approach include testing of the framework capabilities and
extending the validation range. Evaluations against the SAP
R/3 [17] processes should assess the behavior of the prototype
in a more complex service-based landscape with hundreds of
processes and services. The EPC definition module necessary
for this purpose is already implemented and integrated within
the prototype. To increase the validation range, an exhaustive
set of relationship patterns and constraints based on the
architectural peculiarities of service-based infrastructures will
be elaborated and integrated in the solution.

REFERENCES

[1] S. Basu, F. Casati, and F. Daniel, ”Toward Web Service Dependency
Discovery for SOA Management,” IEEE International Conference on
Services Computing (SCC 2008), Honolulu, 2008, pp. 422-428.

[2] L. Bodenstaff, A. Wombacher, M. Reichert, and R. Wieringa, ”MaDe4IC:
An Abstract Method for Managing Model Dependencies in Inter-
Organizational Cooperations,” Service Oriented Computing and Appli-
cations, vol. 4, no. 3, 2010, pp. 203-228.

[3] S. Buchwald, T. Bauer, and M. Reichert, ”Bridging the Gap Between
Business Process Models and Service Composition Specifications,” Ser-
vice Life Cycle Tools and Technologies: Methods, Trends and Advances,
2011, pp. 124-153.

[4] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, Web
services description language (WSDL) 1.1, W3C submission, 2001.

[5] O. Danylevych, D. Karastoyanova, and F. Leymann, ”Service networks
modelling: An SOA & BPM standpoint,” Journal of Universal Computer
Science, 2010, pp. 1668-1693.

[6] P. Derler and R. Weinreich, ”Models and tools for SOA governance,”
Lecture Notes in Computer Science, vol.4473. Springer Verlag, Berlin,
Heidelberg, 2007, pp. 112-126.

[7] C. Dudley, L. Rieu, M. Smithson, T. Verma, and B. Braswell, WebSphere
Service Registry and Repository Handbook, IBM Redbooks, 2007.

[8] T. Erl, Service-Oriented Architecture (SOA): Concepts, Technology, and
Design, Prentice Hall, 2005.

[9] T. Erl, S.G. Bennett, C. Gee, R. Laid, A.T. Manes, R. Schneider, L.
Shuster, A. Tost, and C. Venable, SOA Governance, Prentice Hall, 2011.

[10] S. Frischbier, A. Buchmann,and D. Pütz, ”FIT for SOA? Introducing
the F.I.T.-Metric to Optimize the Availability of Service Oriented Archi-
tectures,” Second International Conference on Complex Systems Design
and Management (CSDM 2011), Paris, France, 2011, pp. 93-104.

[11] J. Götze, T. Fleuren, B. Reuther, and P. Müller, ”Extensible and scalable
usage accounting in service-oriented infrastructures based on a generic
usage record format,” 6th International Workshop on Enhanced Web
Service Technologies, ACM, 2011, pp. 16-24.

[12] M.A. Hirzalla, A. Zisman, and J. Cleland-Huang, ”Using Traceability
to Support SOA Impact Analysis,” IEEE World Congress on Services,
Washington, DC, 2011, pp. 145-152.

[13] J. Hunter and B. McLaughlin, JDOM, http://jdom.org/, 2012.
[14] N.M. Josuttis, SOA in Practice, O’Reilly, 2007.
[15] A. Kabzeva and P. Müller, ”Toward Generic Dependency Management

for Evolution Support of Inter-Domain Service-Oriented Applications,”
European Conference on Service-Oriented and Cloud Computing (ES-
OCC 2012) PhD Symposium, Bertinoro, Italy, 2012, pp.35-40.

[16] A. Keller and G. Kar, ”Determining service dependencies in distributed
systems,” IEEE International Conference on Communications (ICC 2001),
Helsinki, Finland, 2001, pp. 2084-2088.

[17] G. Keller and T. Teufel, SAP R/3 Process Oriented Implementation,
Addison-Wesley Longman Publishing Co., Boston, MA, USA, 1998.

[18] S. Laws, M. Combellack, R. Feng, and H. Mahbod, Tuscany SCA in
Action, Manning Publications Co., 2011.

[19] G.A. Lewis and D.B. Smith, ”Service-oriented architecture and its im-
plications for software maintenance and evolution,” Frontiers of Software
Maintenance (FoSM 2008), Washington, DC, 2008, pp. 1-10.

[20] A. Ludwig and B. Franczyk, ”COSMAAn Approach for Managing SLAs
in Composite Services,” ICSOC 2008, Springer-Verlag Berlin Heidelberg,
2008 (LNCS 5364), pp. 626-632.

[21] OASIS, Web Services Business Process Execution Language Ver-
sion 2.0. OASIS Standard, 2007.

[22] P. Offermann, C. Schröpfer, O. Holschke, and M. Schönherr, ”SOA: The
IT-Architecture behind Service-Orientation,” Workshop MDD, SOA and
IT-Management, Oldenburg, Germany, 2007, pp. 1-11.

[23] Office of Governance Commerce (OGC), ITIL v3: Information Technol-
ogy Infrastructure Library Version 3, volume 1-5. London: The Stationary
Office, 2007.

[24] A.M. Omer and A. Schill, ”A Framework for Dependency Based Auto-
matic Service Composition,” Business Process Management Workshops
(BPM 2008), Milano, Italy, 2008, pp. 535-541.

[25] OMG, Business Process Model and Notation (BPMN) Version 2.0, OMG
Specification, 2011.

[26] M.P. Papazoglou, ”Service-Oriented Computing: Concepts, Characteris-
tics and Directions,” 4th International Conference on Web Information
Systems Engineering (WISE 2003), Rome, Italy, 2003, pp. 3-12.

[27] L. Pasquale, J. Laredo, H. Ludwig, K. Bhattacharya, and B. Wassermann,
”Distributed cross-domain configuration management,” Service-Oriented
Computing, Springer, pp. 622-636.

[28] S. Phukan, sCrawler: SOA Dependency Tracker, Oracle Technology
Network, 2009.

[29] A.W. Scheer, O. Thomas, and O. Adam, ”Process modeling using event-
driven process chains,” Process-Aware Information Systems: Bridging
People and Software through Process Technology, 2005, pp. 119-145.

[30] S. Seedorf, K. Nordheimer, and S. Krug, ”STraS: A Framework for
Semantic Traceability in Enterprise-wide SOA Life-cycle Management,”
13th Enterprise Distributed Object Computing Conference Workshops,
2009, pp. 212-219.

[31] Software AG, CentraSite Governance Edition, User’s Guide 7.1, 2011.
[32] H. Tran, U. Zdun, and S. Dustdar, ”VbTrace: Using View-based and

Model-driven Development to Support Traceability in Process-driven
SOAs,” Software and System Modeling, vol. 10, no. 1, 2009, pp. 529.

[33] M. Winkler, T. Springer, E.D. Trigos, and A. Schill, ”Analysing de-
pendencies in service compositions,” Service-Oriented Computing IC-
SOC/ServiceWave 2009 Workshops, Springer, pp. 123-133.

207Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 227 / 646

Architectural Elements of Ubiquitous Systems:

A Systematic Review

Carlos Machado

Informatics Department

UFPB

João Pessoa, Brazil

carlos@ccen.ufpb.br

 Eduardo Silva, Thais Batista, Jair Leite

Computer Science Department

UFRN

Natal, Brazil

eduardoafs@ppgsc.ufrn.br,

{thais,jair}@ufrnet.br

Elisa Yumi Nakagawa

Department of Computer Systems

USP

São Carlos, Brazil

elisa@icmc.usp.br

Abstract—Ubiquitous systems have become an important and

even essential part of our daily life. For instance, smart homes

are good examples where such systems can be found. However,

the design and implementation of ubiquitous systems are hard

tasks, as they involve several areas of computing, as software

engineering, artificial intelligence, and distributed systems.

This task is even harder as there is no general reference

architecture that could be used to guide the development of

such systems. As a consequence, each project solves the same

problem in a different way, some better than others. This

paper aims at exploring, organizing, and summarizing the

common, essential architectural elements of those systems. We

have also investigated reference architectures for this type of

systems, as these architectures are important artifacts for

providing such elements. For this, we conducted a systematic

review that is a technique that provides an overview of a

research area to assess the amount of existing evidences on a

topic of interest. As main results achieved, we have found a set

of eleven elements, which appears in most of the existing

systems and middlewares that can be used to define a general-

use software architecture. This work could certainly contribute

to a more systematized development of ubiquitous systems.

Keywords-ubiquitous computing; systematic review; software

architecture

I. INTRODUCTION

Ubiquitous computing is the term initially coined by
Mark Weiser [1] when referring to computer systems
available everywhere at any time. These systems are often
present in our lives, in form of smart TVs, smart cars, and
even whole smart homes. They are capable of automating
many usual tasks and support our daily live, using concepts
of artificial intelligence and distributed systems.

Lyytinen and Yoo [2] proposed a difference between
ubiquitous computing and pervasive computing by defining
pervasive computing as models with high coupling and low
mobility, while ubiquitous computing are computing models
with high coupling and high mobility. However, this
distinction was not widely accepted in the literature and
some works do not make distinction between these two
terms. It is important to highlight these differences, since
some advances in ubiquitous systems could not be applied in
pervasive computing, and vice versa.

An essential part of a ubiquitous project, as in any
software system, is the software architecture. This

architecture encompasses a set of decisions about the
software organization as its structure, interfaces, behavior,
and definitions of the structural elements [3]. A software
architecture is essential to guide the development of a robust
system, which can evolve and change through its lifetime. To
help the definition of such artifact, the concept of reference
architecture was proposed. A reference architecture is a
special type of software architecture that provides a common
understanding of a given domain, in the case of this work,
the ubiquitous systems domain [4][5].

Although a number of ubiquitous systems have been
proposed and impacted several sectors of the society, there is
no consensus on what are the common, essential elements of
a ubiquitous systems’ architecture. The understanding of
what are these elements is crucial for the systematic
development of new systems, as well as to the maintenance
and quality of existing ones.

In this context, this paper aims to identify the main
elements that constitute the architecture of ubiquitous
systems and whether there is any reference architecture for
this domain. To achieve this goal, we conducted a
systematic review that is a technique originated from the
Evidence-Based Software Engineering (EBSE) [6,7], which
allows to explore, organize, synthetize, and evaluate all the
contributions of a research area. A systematic review allows
us to identify a variety of studies that may involve theories
and concepts, technological development reports,
experimental research results and many others. As main
results, we have observed eleven common elements, which
are present in most of existing systems and middleware, and
that we identified as essential elements. These elements can
be used to define a general-use reference architecture,
aggregating common solutions for common problems in the
ubiquitous systems development.

This paper is organized as follows: Section II presents the
systematic review, from its planning to the analysis of
results, focusing on the architectural elements that
characterize systems for ubiquitous computing. Section III
contains a discussion of the collected data. Section IV
presents the threats to validity of this systematic review.
Finally, Section V presents final remarks and future work.

208Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 228 / 646

II. SYSTEMATIC REVIEW

This systematic review was conducted in the context of
software architectures for ubiquitous computing, aiming at
evaluating relevant studies until March 2013. To conduct this
systematic review, the process was divided into three steps,
as illustrated in Figure 1: Planning, Execution, and
Evaluation. In the first step, we defined the search criteria
and the inclusion and exclusion criteria that were used to
collect related works for ubiquitous or pervasive computing.
This step was also responsible for defining what we expect to
extract from the found studies. The second step consisted in
the execution of the systematic review, in which was
performed the search for the primary studies (i.e., conference
publications, periodicals, thesis, etc.), using the planning
from the first step. The second step also applied the inclusion
and exclusion criteria, in order to filter the results that were
relevant to this review. Finally, in the third step, the results
were evaluated to extract data to formulate the answer for the
research questions.

Figure 1: Systematic Review Steps

A. Planning

This step of the systematic review defines: (i) research

questions, (ii) search strategies and (iii) inclusion and

exclusion criteria.

1) Research Questions

In order to identify the primary studies that present

common, essential architectural elements for ubiquitous

systems, the following Research Questions (RQ) were

defined:

• RQ1: Which are the reference architectures for ubiquitous

systems? Note: This question was formulated in order to

find reference architectures for ubiquitous systems. These

architectures could provide common, essential elements

of ubiquitous systems.

• RQ2: What are the common architectural elements for

ubiquitous systems? Note: This question was defined as a

complement for RQ1, and also intends to identify the

common elements for ubiquitous systems.

2) Search Strategy

To establish the search strategy for the primary studies,

from RQ1 and RQ2, the following keywords were chosen:

“Reference Architecture” and “Ubiquitous Computing”. We

also identified synonyms for these keywords, or similar

contexts: “Reference Architecture” may be referred as

“Reference Model” and it is directly related to “Software

Architecture” or “Architectural Model”. In addition,

“Ubiquitous Computing” is related to “Pervasive

Computing”, as we explained in Section 1. Middleware for

ubiquitous computing were also considered, through the

keywords “ubiquitous middleware architecture” and

“pervasive middleware architecture”. This inclusion had two

goals: (i) to obtain an overview of existing systems, since

middleware are designed to meet a wide variety of

ubiquitous/pervasive applications, and (ii) the identification

of the elements of these middlewares that consist in

important components for ubiquitous systems. Thus, it was

established the following search string: (("Reference

Architecture" OR "Reference Model" OR "Software

Architecture" OR "Architecture Model") AND ("Ubiquitous

Computing" OR "Pervasive Computing" OR "ubiquitous

middleware" OR “pervasive middleware”)). This string was

used in the following publications databases: IEEEXplorer,

ACM Digital Library, Web of Knowledge and

ScienceDirect. The search string was adapted for each

database in order to perform a directed search on title,

abstract, and keywords. Only publications in English were

considered.

The review process was designed as follows: The search

must be performed in digital libraries, which include the

main vehicles where the literature can be published. After

that, the reviewers may read the title, abstract, and keywords

of the found studies, in order to define which studies are

worth reading the full text. After reading them, the answers

of the research questions might be formulated.

3) Inclusion and Exclusion Criteria

To evaluate and select relevant studies, we defined a set

of inclusion and exclusion criteria. These criteria were

applied after each search, to define the relevance of a given

study. The Inclusion Criteria (CI) was used to include

relevant studies in this systematic review, namely:

• IC1: The study proposes, uses or evaluates a

reference architecture for ubiquitous systems; and

• IC2: The study presents a middleware for ubiquitous

computing, explicitly exhibiting its architecture.

The Exclusion criteria (EC) were defined to exclude

studies with no relevance for this review, i.e., studies that do

not contribute to answer RQ1 or RC2. The ECs are:

• EC1: The study is not related to ubiquitous or

pervasive systems;

• EC2: The study is not in English;

• EC3: The study does not have abstract or the full text

is not available;

• EC4: The study consists of a compilation of studies

from conferences or workshops, for example; and

• EC5: The study defines a low-level architecture,

describing hardware or operational elements.

It is worth saying that a relevant study to this systematic

review is defined as a study that does not satisfy any of the

exclusion criteria, satisfying at least one of the inclusion

criteria.

B. Execution Results

Upon concluding the searches, we obtained the results

summarized in Figure 2. This figure shows the number of

papers found by the searching process and the selected

209Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 229 / 646

papers. In the figure, the found papers represent the number

of papers returned by the automatic searching process and

evaluated, i.e., we read their titles, keywords, and abstract.

The selected papers represent papers whose abstracts and

keywords evidenced that they are interesting for our

systematic review and they were selected to be fully read.

Figure 2: Search Results

As illustrated in Figure 2: (i) from 56 results found by

the IEEExplorer search engine, 15 were filtered and 12 were

selected for the second stage; (ii) from 16 results found by

the ACM Digital Library engine, 10 were filtered and six

were selected for the second stage; (iii) from 93 results

found by the Web of Knowledge search engine, 20 were

filtered and eight were selected for the second stage; (iv)

from six results found by the ScienceDirect search engine,

five were filtered and four were selected. Additionally, eight

new studies were found from the evaluation of references of

the selected articles in the first instance, and seven of them

were selected. The total number of selected papers is 37.

After a full analysis of each work and the application of the

inclusion and exclusion criteria, 13 studies were considered

relevant for our study, as listed in Table I.

Among these studies, we highlight the E6, E8, and E11

studies that present surveys on middleware for ubiquitous

computing and cite, among others, precursor architectures,

such as Gaia [17] and Homeros [13]. However, because

these surveys have different goals we used them only as a

source for searching new middlewares. Besides that, E10

presents a systematic review about ubiquitous computing,

but it focuses on the characterization of ubiquitous

computing projects. Note that this study is also interesting

for our systematic review; however, it differs from ours,

because we aim to identify the architectural elements

commonly found in ubiquitous systems, as well as existing

reference architectures.

TABLE I: SELECTED PAPERS LIST

Study Author Year

E1 Jiehan Zhou et al [9] 2009

E2 Yi Liu, Freng Li [10] 2006

E3 Tao Xu, Bertrand David, René Chalon, Yun Zhou [11] 2011

E4 Shriram. R , Vijayan Sugumaran [12] 2007

E5 Seung Wok Han, Yeo Bong Yoon and Hee Yong Youn

[13]

2004

E6 Saeed, A. and Waheed, T. [14] 2010

E7 Chang-Woo Song et al [15] 2013

E8 Eugster, Patrick Th.; Garbinato, Benoît; Holzer, Adrian

[16]

2009

E9 Román, M. et al [17] 2002

E10 Spínola, R. and Travassos, G [8] 2012

E11 Raychoudhury, V., Cão, J., Kumar, M., Zhaung, D. [18] 2013

E12 DA, K., Dalmau, M., Roose, P. [19] 2012

E13 Fernandez-Montes, A., Ortega, J. A., Alvarez, J.A [20] 2009

C. Evaluation Results

We found four studies (E1, E2, E11 and E13) that

present reference architectures for ubiquitous or pervasive

systems: [9], [10] [18], and [20]. The architecture proposed

by Zhou [9] is focused on service composition in pervasive

systems, while the architecture presented by Liu [10] was

defined in a more generic way. Although the authors state

that the work is about pervasive computing, the architecture

of Liu [10] introduces an element of mobility, which is a

typical feature of ubiquitous systems. The architecture

proposed by Raychoudhury [18] was defined to support

comparisons between existing pervasive systems. Thus, it

does not support mobility, and it describes a multi-level

structure, which blends elements of high level of

abstraction, as reasoners, with elements of low abstraction,

such as network protocols. Finally, the architecture

proposed by Fernandez-Montes [20] is focused on building

applications for smart environments, focusing on

requirements for architectural elements.

These works contributed to answer RQ1 about reference

architectures for ubiquitous systems. Using these four

architectures and other studies on middleware for ubiquitous

computing (i.e., studies E3, E4, E5, E7, E8, E9, and E12), it

is possible to identify common elements that are essential

for ubiquitous systems architectures, in order to find

answers to RQ2. Table II describes the elements identified

in the evaluated architectures.

210Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 230 / 646

TABLE II: COMMON ELEMENTS OF UBIQUITOUS SYSTEMS

Element Description Studies

Sensor Hardware element responsible for

providing context information.

E1, E3, E7, E8,

E9, E11, E12

Actuator Hardware element responsible for

changing the environment, giving

feedback to the user.

E3, E8

Context

Service

Service used to recover context

information from sensors. It may

aggregate many sensors.

E1, E3, E4, E7,

E8, E9, E11,

E12, E13

Actuation

Service

Service used to give feedback to

the user. It may aggregate many

actuators

E3, E8, E13

Context

Repository

Data repository for context

information and quality

parameters

E1, E2, E3, E4,

E5, E7, E9,

E11, E12, E13

Event Module Module to support asynchronous

monitoring

E1, E5, E7, E9,

E11, E13

Reasoning

Module

Module that allow the production

of new context information from

existing data

E1, E2, E3, E7,

E8, E9, E11,

E12, E13

Adaptation

Module

Module responsible for changing

the system behavior according to

a preset of rules.

E1, E5, E9,

E11, E12, E13

Coupling and

Mobility
Mechanism

Mechanism that abstracts the

notion of environment, making
the system functional in various

different environments. It uses
tracking mechanisms, service

search and mobile

communications

E2, E4

Aggregation

or
Composition

Module

Module for

composing/aggregating context
information from lower level

information.

E2, E3, E7, E8,

E9, E11, E12,
E13

Security

Module

Module responsible for

implementing protection rules,
such as authentication

mechanisms, access restrictions

and service validation.

E2, E5, E9,

E11, E13

In Table II, the first column names the element, the

second column contains a brief description of the element,

and the third column lists the primary studies that present a

concept similar or equal to the element in question.

Therefore, it can be stated that for the development of

ubiquitous systems, this set of eleven elements may be

included, since they are commonly found in those systems.

Moreover, we can conclude that they are essential elements

in ubiquitous systems architectures.

III. DISCUSSION

In the context of ubiquitous systems, a related work

presented a systematic review that characterized software

projects for ubiquitous systems and intended to understand

how this type of systems affects the life cycle of software

development [8]. This study also identified a list of 10 main

characteristics of ubiquitous systems, as presented in Table

III. In this table, we also observe that the set of the common

architectural elements found by our systematic review is

able to meet the main characteristics mentioned by this

previous systematic review. This table also lists the studies

that present some element that aggregates a given

characteristic.

It is worth highlighting that the establishment of the

relationship between the characteristics and architectural

elements was based on a careful analysis of this domain

literature, focusing on the characteristics and roles of each

element identified by our systematic review. In the next

paragraph, we discuss how each characteristic is associated

to the elements, as shown in Table III.

TABLE III: CHARACTERISTICS OF UBIQUITOUS PROJECTS

ASSOCIATED WITH THE COMMON ARCHITECTURAL ELEMENTS

OF UBIQUITOUS SYSTEMS

Characteristic Element Studies

Service

Omnipresence

Coupling and Mobility

Mechanism

E2, E4

Invisibility Sensor E1, E2, E7, E11,

E12

Actuator E3, E8

Context Service E1, E2, E7, E11,
E12

Actuation Service E3, E8

Context Sensitivity Sensor E1-E3, E7-E9,
E11, E12

Context Service E1, E2, E7, E11,
E12

Context Repository E1-E3, E7-E9,

E11, E13

Reasoning Module E2, E3, E8, E9,

E11-E13

Coupling and Mobility
Mechanism

E8, E9, E11, E13

Adaptable Behavior Context Service E1, E2, E7, E11,
E12

Event Module E5, E7, E9, E11

Adaptation Module E1, E5, E9, E13

Experience Capture Reasoning Module E4, E11, E12

Service Discovery Event Module E1, E9

Function
Composition

Reasoning Module E2, E3, E8, E9,
E11, E12

Coupling and Mobility
Mechanism

E8, E9, E11, E13

Spontaneous

Interoperability

Coupling and Mobility

Mechanism

E2, E4

Heterogeneity of

Devices

Sensor E8, E9

Event Module E5, E11

Fault Tolerance Coupling and Mobility
Mechanism

E4

Event Module E5, E9

Adaptation Module E1, E5, E9

Reasoning Module E12

Context Service E12

Security Module E11

The Service Omnipresence characteristic can be

supported by the Coupling Mechanism and Mobility

mechanism, since it uses mobile communication protocols

that allow access to services anywhere, anytime.

The Invisibility characteristic is related to: (i) the Sensor

element, which captures context information from the

211Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 231 / 646

environment, without any explicit order of the user; (ii) the

Actuator element, which forwards the system’s actions to

the environment; (iii) the Context Service and Actuation

Service, which are the architectural elements that enable

access to sensors and actuators.

Context Sensitivity is a key feature of any ubiquitous

system. Sensors and Context Services are directly related to

this characteristic, allowing the identification of the context

and the execution of operations according to the current

context. The Context Repository is responsible for storing

context information. The Reasoning Module performs

inferences about contextual information and can produce

new information. The Aggregation or Composition module

performs the context information composition.

Adaptable Behavior defines that the system must adapt

to the environment, offering services according to the

current context. The Context Service is essential for the

identification of the context, while the Event Module is

responsible for triggering an event for context changing.

After that, the adaptation can be performed. This

characteristic may also be attributed to the Context

Repository, as in E5. Finally, the Adaptation Mechanism

performs the required adaptation for the new context. The

Experience Capture characteristic consists of capturing

and storing information for future use. It is typically related

to the Reasoning Module, which uses machine learning and

other artificial intelligence techniques. This module has a

role similar to the Aggregation or Composition Module

found in some studies, such as E8. The existing difference

between these modules lies in the fact that the Reasoning

Module is able of generating new context information, while

the Aggregation or Composition Module only groups or

composes the context information. In most studies;

however, these modules are integrated.

Service Discovery is supported, in most studies, by the

Event Module, which is proactive in relation of services,

monitoring and discovering available services, making them

available through a publish-subscribe mechanism. However,

this behavior may be aggregated to the Context Repository,

as in E5.

Service Composition determines the system ability of

providing new services to the final user, based on existing

services. The Reasoning Module is related to this

characteristic, since this module must be able of identifying

the basic services (E2, E3, E8, E9, and E12) and compose

them according to some business rule. The Aggregation or

Composition Module, in some studies (E8, E9, E11), is used

to perform the composition. In addition, the Reasoning

Module can infer new contextual information to provide it

as a new service. However, the new services that may be

offered vary between applications.

Spontaneous Interoperability is the system ability of

using many elements without the need of external

intervention. This characteristic is supported by the

Coupling and Mobility Mechanism, since this element is

responsible for mobile computing protocols and for

handling, in a high abstraction level, environment changes

(E2 and E4).

The Heterogeneity of Devices characteristic defines that

the distinct elements must be uniformly accessed. The E8

and E9 studies discuss the role of sensors in providing

information from heterogeneous sources, as well as the role

of the Event Module to monitor different services in a

transparent way to users.

Regarding the Fault Tolerance characteristic, the

Coupling and Mobility Mechanism is directly related to the

mobile devices used by the users to access the system.

Therefore, this mechanism must be able of handling the

most common problems related to mobile computing, as

connection instability and fluctuations in the data flow (as

shown in E4). The Event Module may trigger many events,

including faults or errors in any of the available services.

The faults can the handled by the Adaptation Mechanism. In

E12, the responsibility of fault tolerance is diffuse, whereas

several elements detect and treat its own inappropriate

behavior. The Security Module also supports this

characteristic, by providing authentication and access

control mechanisms.

In short, it is observed that the common architectural

elements identified by this study adequately meet all the

characteristics of ubiquitous systems stated by Spinola and

Travassos [8].

Note that although only two studies (studies E2 and E4)

explicitly presented the Coupling and Mobility Mechanism,

it was identified that this element type is essential for

ubiquitous systems, since these systems have essentially a

mobility element, to allow the system be accessible

anywhere. The E3 and E7 studies presented a query

mechanism to recover context information from the Context

Repository. However, we chose not to explicitly insert this

element, since it was observed that this element is

commonly implemented as part of the Context Repository,

because it is highly dependent on the format of the stored

context information. Many low-level or very specialized

elements were not considered common architectural

elements. For example, the Operating System and Network

Protocol were not considered, since they were cited only by

studies about low level architecture.

IV. THREATS TO VALIDITY

A major threat to validity of this systematic review refers

to the completeness of this study, i.e., if in fact all the

related papers were included. This problem may have

occurred because relevant studies were not found by the

search mechanisms, for instance, by the technical limitations

of the search mechanisms. Another threat refers to the

results and conclusions presented in the evaluation step. We

tried to minimize those problems by adopting a dual

revision approach for each paper, performed by the different

reviewers of this work. This strategy contributes to reduce

possible bias or misinterpretation. The findings were also

validated by more than one reviewer. These strategies

212Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 232 / 646

ensured that the set of the found architectural elements

cover the essential requirements of an architecture for

ubiquitous systems.

V. CONCLUSION AND FUTURE WORK

The ubiquitous computing enables the use of contextual

information from any environment at any time. Ubiquitous

computing exploits technological advances in pervasive

computing and mobile computing, integrating mobility,

engagement, and distribution. Considering its relevance,

attention to the development of ubiquitous systems is

essential.

This work presented a literature review with the aim of

summarizing the knowledge about reference architectures

and common architectural elements for ubiquitous systems.

As main result, the common, essential elements of

ubiquitous systems were identified, analyzed, and

summarized. This paper also mapped these elements in the

main characteristics of ubiquitous systems. This mapping is

important to verify that the identified elements meet the

essential characteristics of ubiquitous systems. Furthermore,

this set of elements can be considered as basis of any

ubiquitous systems. Therefore, the identification of this set

can be considered an important contribution to systematize

the development of such systems. Moreover, we have

observed that the four reference architectures found in our

systematic review do not comprise all architectural elements

identified in this work. In this scenario, as a future work, we

intend to define a more complete, well-structured reference

architecture. Thus, it is intended that this architecture can

effectively contribute to the development of ubiquitous

systems that have become increasingly important to our

daily lives.

VI. ACKNOWLEDGEMENTS

This work is supported by Brazilian funding agencies

FAPESP, Capes, and CNPq.

VII. REFERENCES

[1] M. Weiser. “The Computer for Twenty-Frist Century”.

Scientific American, September 1991.

[2] K. Lyytinen and Y. Yoo, “Issues and Challenges in

Ubiquitous Computing”. Communications of the ACM. n. 12,

v. 45, 2002. pp. 63-65.

[3] L. Bass, P. Clements, and R. Kazman, Software Architecture

in Practice. Addison-Wesley, Boston, 1998.

[4] R. Cloutier et al, “The Concept of Reference Architectures”.

Systems Engineering, 13. V. 13, n.1, UK, 2010, pp. 14-27.

[5] E. Y. Nakagawa, P. O. Antonino, and M. Becker, “Reference

Architecture and Product Line Architecture: A Subtle but

Critical Difference”. Proc. 5th European Conference on

Software Architecture (ECSA'2011). Essen, Germany, 2011.

pp. 207-211.

[6] T. Dyba, B. Kitxenham, and M. Jorgensem, “Evidence-Based

software engineering for practitioners”. IEEE Software, v. 22,

n. 1, 2005. pp. 58-65.

[7] B. Kitchenham, T. Dyba, and M. Jorgensen, “Evidence-Based

Software Engineering”. Proc. 26th International Conference

on Software Engineering (ICSE). IEEE Computer Society.

Washington, DC, USA, 2004. pp. 273-28.

[8] R. Spínola and G. Travassos, “Towards a framework to

characterize ubiquitous software projects”. Information and

Software Technology. v. 54, 2012. pp. 759-785.

[9] J. Zhou et al., “PSC-RM: Reference Model for Pervasive

Service Composition”. Proc. Fourth International Conference

on Frontier of Computer Science and Technology. 2009. pp.

705-709

[10] Y. Liu and F. Li, “PCA: A Reference Architecture for

Pervasive Computing”. Proc. 1st International Symposium on

Pervasive Computing and Applications, 2006. pp. 99-103.

[11] T. Xu, B. David, R. Chalon, and Y. Zhou, “A context-aware

middleware for ambient intelligence”. Proc. Workshop on

Posters and Demos Track. ACM, NY, USA. 2011. pp. 10:1-

10:2

[12] R. Shriram and V. Sugumaran, “Adaptive middleware

architecture for information sharing on mobile phones”. Proc.

2007 ACM Symposium on Applied computing. ACM, New

York, NY, USA. 2007. pp. 800-804

[13] S. W. Han, Y. B. Yoon, H. Y. Youn, and W. Cho, “A new

middleware architecture for ubiquitous computing

environment”. Proc. 2nd IEEE Workshop on Software

Technologies for Future Embedded and Ubiquitous Systems.

2004. pp. 117-121

[14] A. Saeed and T. Waheed, “An extensive survey of context-

aware middleware architectures”. Proc. IEEE International

Conference on Electro/Information Technology (EIT), 2010.

pp. 1-6

[15] C. Song, D. A. Lee, K. Chung, K. Rim, and J. Lee,

“Interactive middleware architecture for lifelog based context

awareness”. Multimedia Tools and Applications. Springer,

US, 2013. pp. 1-14

[16] P. Eugster, B. Garbinato, and A. Holzer, “Middleware

Support for Context-Aware Applications”. Proc. Middleware

for Network Eccentric and Mobile Applications, Springer,

2009. pp. 305-322.

[17] M. Román, C.K. Hess, R. Cerqueira, A. Ranganathan, R.H.

Campbell, and K. Nahrstedt, “Gaia: A Middleware

Infrastructure to Enable Active Spaces”. Proc. IEEE

Pervasive Computing, 2002, v. 1, pp. 74-83

[18] V. Raychoudhury, J. Cão, M. Kumar, and D. Zhaung,

“Middleware for pervasive computing: A survey”. Pervasive

and Mobile Computing, April 2013, pp. 177–200,

[19] K. Da, M. Dalmau and P. Roose, “WaterCOM: An

Architecture Model of Context-Oriented Middleware”, Proc.

Workshops (WAINA), 2012 26th International Conference on

Advanced Information Networking and Applications, 26-29

March 2012. pp. 53-60.

[20] A. Fernandez-Montes, J. A. Ortega, J. A. Alvarez, and L.

Gonzalez-Abril, “Smart Environment Software Reference

Architecture”. Proc. NCM '09. Fifth International Joint

Conference on INC, IMS and IDC, 25-27 Aug. 2009, pp. 397-

403

213Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 233 / 646

Architectural Decisions in the Development of Multi-Layer Applications

Jose Garcia-Alonso
Quercus Software Engineering Group

Centro Universitario de Merida
Merida, Spain

Email: jgaralo@unex.es

Javier Berrocal Olmeda
Juan Manuel Murillo

Quercus Software Engineering Group
Escuela Politecnica

Caceres, Spain
Email: {jberolm,juanmamu}@unex.es

Abstract—Multi-layer architectures have become one of the
most widely used architectures for enterprise application devel-
opment. Among other reasons, this is due to the proliferation
of development frameworks simplifying the implementation of
applications based on such architectures. However, the software
architect is faced with a significant challenge at the beginning
of the development process with having to decide among the
great number of design patterns and development frameworks
that support these architectures. The present work proposes a
technique to assist the architect in deciding which technologies
are best suited to satisfying both the functional and the non-
functional requirements of the system. This technique forms part
of a broader procedure to facilitate the software architect’s task
of converting a preliminar concept of an application into a specific
design optimized to the project in hand.

Keywords—Multi-layer architectures; design patterns; develop-
ment frameworks; architectural knowledge.

I. INTRODUCTION

A significant proportion of applications being developed
today are targeted at enterprises. They tend to be complex
systems with significant scalability and performance require-
ments. These requirements are further complicated by the
rise in recent years of cloud computing and development
for mobile platforms. When these applications make use of
such environments the non-functional requirements regarding
reliability, performance, integration, security, migratability, etc;
gain even greater relevance [1].

The focus of the present study is on the development of the
back end of these applications – specifically, of those whose
development is based on the use of multi-layer architectures.
Defining and designing the architecture of a system of this
type is an arduous and complex process for the architect.

Firstly, many frameworks and design patterns have been
proposed to simplify the implementation of these architectures
[2]. Currently, the use of development frameworks, and conse-
quently of the design patterns that they help to implement, is
a widely extended practice. Proof of this is the large number
of available frameworks [3], the number of versions released
annually, and the job offers that require their skills [4]. The
great number of existing design patterns and development
frameworks forces architects to devote substantial effort to
learning them. It is not enough to obtain an in-depth knowledge
of a set of them, it is necessary to have adequate knowledge
about all of them, the web of interactions between them [5] and
the use of one or another favouring or penalizing the fulfilment
of certain non-functional requirements.

And secondly, in order to make these decisions prop-
erly, the architect must have a thorough knowledge of the
requirements and of the relations between them. The architect
must extract the knowledge about the system requirements
from the analysis of a series of documents on which, in
many cases, the relationship between functional and non-
functional requirements are not explicitly detailed [6]. The
ability of the architecture to meet the system’s requirements
depends on the interpretation of these documents. Therefore,
any misinterpretation on her part in this complex analysis
implies the inclusion of errors in the architecture.

The combination of these two factors exposes the architect
to situations in which a misinterpretation could lead to the
choice of an inappropriate design pattern or development
framework, with the problems that it would entail [7]. The
present work focuses on the architect’s decision making. Its
principal contribution is a technique which makes use of a
feature model to provide the architect with a catalogue of
the commonest architectural decisions in the development of
framework-based multi-layer applications [8]. The architect
can use that catalogue, alongside the preliminary design of
the application marked with quality attributes [9], as a basis
for orderly decision-making. The decisions actually made by
the architect are also recorded and later they can be used as
design guidelines in developing similar applications [10].

The rest of this communication is organized as follows.
Section 2 presents the motivations for this work. Section 3
gives a complete overview of the proposal. Section 4 details
the proposed decision-making process and the automatisms
provided. Section 5 specifies the tools which support this
proposal. Section 6 gives a review of the most significant
related work. Finally, Section 7 presents the conclusions to
be drawn from the study, and some indications of future work
planned in this line of research.

II. MOTIVATION

During the development of industrial software applications,
the preliminary designs obtained from the requirements are not
usually implemented as such. First, they must be adapted to
the chosen multi-layer architecture [11].

Once the layer architectural pattern [12] has been applied to
the initial design of a system, different design patterns may be
used in each layer. For example, the Data Access Object (DAO)
pattern can be used in the design of a persistence layer and the
Model-View-Controller (MVC) pattern to design a presentation
layer. This kind of multi-layer architecture has become widely

214Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 234 / 646

Fig. 1. Activity diagram (part of the initial design).

accepted in the industry, especially since the introduction of
development frameworks [2].

However, the use of such architectures has its downsides.
Specifically, what was once a clear advantage, nowadays, with
the explosion in the number of frameworks and patterns, has
become an additional risk. The architect needs a depth knowl-
edge about a large number of frameworks and the interrelations
between them. For this reason, the architect’s work becomes
more error prone, and, worse, these are errors that may have
a significant impact on the overall project.

In order to motivate the problems addressed by this work
we present here an example of the design process for an
application’s architecture. Figure 1 shows an activity diagram
of a very common use case in enterprise applications. This use
case allows the system’s users to check a series of elements, to
see detailed information about any one of them, and to modify
that information. The system performs a check on whether or
not the user has permission to perform that operation. If not,
a notification is sent informing of an invalid access attempt.

Establishing the system requirements is the starting point
for architects designing a new architecture. The designed
architecture should maximize the chances of complying with
all the requirements. This is in itself a complicated task. In
many cases systems are asked to meet requirements that are
difficult to combine and the architect should reach a balance
[6].

Once the architect acquires all the information about the
requirements, he or she should start its design. For this, the
architect must take into account the large number of patterns
available. Choosing a particular pattern can lead to different
degrees of requirements being satisfied, especially in the case
of non-functional requirements [13].

Referring the case study, the developed system must meet
certain security and auditing requirements. If the architect
omits, forgets or misinterprets the relation between this re-
quirements, she might try to meet both requirements at the
same time. However, these requirements may conflict making
the architect choice a possible cause of future errors.

This study presents a technique to simplify and record
architectural decisions in the development of multi-layer appli-
cations. Studies such as those of Zimmermann [10], [14] focus
on the architectural decisions making process in a similar way
as discussed in this article. However, to the best of the authors’
knowledge, despite the industrial acceptance of multi-layer
architectures and development frameworks, there has been no
previous work on support for architectural decision making in
framework based multi-layer applications.

This work forms part of a broader proposal that covers
the entire process of designing these applications. In the next
section, we shall briefly describe the complete proposal so as

to provide a clear context for the contribution to be described
in the rest of the paper.

III. MULTI-LAYER ENTERPRISE APPLICATIONS

Figure 2 shows a complete diagram of the process proposed
for the development of framework-based multi-layer applica-
tions.

It shows how the proposed process begins with the pre-
liminar design, normally consisting of a use case diagram and
multiple activity diagrams representing the behaviour of those
use cases. In activity 1 this design has to be refined by the
architect or requirements experts to include information about
the quality attributes of the system.

As mentioned above, usually the relationship between
functional and non-functional requirements are not explicitly
detailed [6]. To make these relationships explicit, the architect
or the requirements expert mark the preliminary design with
information about the quality attributes to be met by the
application. The technique used to accomplish this marking
is described in more detail in another paper by the authors
[9].

Once the architect has the marked design, the next task
is to select the layers into which to split the application,
activity 2 in the diagram. In order to simplify this task, the
process offers to the architect an initial selection of layers.
This initial selection is based on the preliminary design and
the information added by the marks. However, is the architect
who must refine, validate or reject it based on other criteria
such as technological limitations, type of project, client, etc.
This task is done in the activity 3 in the diagram.

Once the layers have been selected, the initial design can
be refined to adapt it to them. This adaptation is performed
by a transformation of the model that takes as input the
initial design and the configuration of the feature model. This
correspond to activity 4.

Feature modeling is one of the most extensively accepted
techniques for modeling variability [15]. The specific model
used in the present work follows the approach of Cardinality
Based Feature Modeling, a widely used technique with proven
usefulness in working with development frameworks [16].

To use a feature model as input or output for models trans-
formations it needs to conform to a clearly defined structure or
some sort of “metamodel”. This structure must, however, be
flexible enough to incorporate both the existing architectural
and technological elements and any new ones that may arise in
the future. For the model to have these features, we performed
a study of some of the most used development frameworks
(including Spring, Hiberate, Struts, JSF, CXF, Axis, DWR,
etc.). More details on the analysis performed for the creation
of the feature model and the decisions made for its creation
may be found in [8].

At this point in the process, the architect must specify the
design patterns and development frameworks on which to base
the final design of the application, activity 5 in the diagram.
To make this selection, the architect uses the information
contained in the feature model, and then must link each
element of the layer design to the architectural decisions that
affect it, activity 6 in the diagram.

215Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 235 / 646

Fig. 2. The multi-layer application development process.

It should be noted that we propose a specific order for
the decision making process, first the layers then the design
patterns and finally the development frameworks. However,
this order is not fixed and the architect can change it to suit
their needs and preferences The abilities exhibited by features
model to allow such flexibility were one of the main motivation
to choose them as our architectural knowledge representation
tool.

Finally, with all the information available, a model trans-
formation is performed to convert the application layer design
obtained previously into a specific design for the architectural
decisions taken by the architect, activity 7 in the diagram. For
this transformation, information is required about the develop-
ment frameworks to be used. This information is included in
the transformation by means of specific models describing the
use of a particular technology.

The present work focuses on the architect’s decision mak-
ing. Specifically, in activities 3 and 5 in the diagram shown
in Figure 2. To accomplish these activities, the architect uses
three elements: the feature model containing information about
the design patterns and the development frameworks that can
be use for the development, the preliminary marked design
that contains information about the relationship between the
requirements and the system’s quality attributes and his or her
own knowledge about the system.

For a better understanding of this technique, we shall
describe an example of how it works. Figure 3 shows the same
activity diagram used previously enhanced with additional
information about the quality attributes that the system must
satisfy. Specifically, the verification of user permissions must
meet security requirements, the notification of invalid access
attempts should communicate with an external system and the
modifications made by users should be auditable.

IV. MAKING ARCHITECTURAL DECISIONS

The elements presented in the previous section compose the
basis for the architect’s decision making. The present section

will describe in detail the activities 3 and 5 in the diagram.

A. Selecting layers

A reasonable way to begin the decision making process
when designing a multi-layer architecture is to choose the lay-
ers that will form part of the application. Many applications of
this type use a common set of layers with similar functionality.
Examples are the persistence, the presentation, and the Web
service layers. The feature model we use contains a set of
common layers, which can be easily expanded by adding new
layers.

To simplify the architect’s work, the information about the
quality attributes added to the application’s preliminary design
can be used to offer an initial suggestion of an appropriate set
of layers that might satisfy those attributes.

The layer suggestion process is based on a relatively simple
set of rules. Specifically, a layer is suggested based on two
criteria.

The first is the presence of certain elements in the pre-
liminary design specific to each layer. The presence of these
elements, which can be detected by querying the preliminary
design model, determines whether a layer is to be proposed to
the architect as part of the application’s architecture. For exam-
ple, the web services layer is suggested when the preliminary
design includes interactions with external systems.

The second criterion is based on the marks with quality
attribute information. Certain quality attributes entail the sug-
gestion of certain layers. The presence of these marks is also
detected by querying the design model. For example, whenever
there appears an activity marked as Auditable the use of a log
layer is suggested.

Table I shows a summary of the main criteria used to
suggest the most common layers.

Technically these criteria consist of a set of model trans-
formations that take as input the preliminary design and the

216Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 236 / 646

Fig. 3. Marked activity diagram.

TABLE I
LAYER SELECTION CRITERIA.

Layer Criteria
Persistence There is direct interaction with a Database or the

same object is used in the activity diagram of more
than one use case

Business logic Always present, included here for further config-
uration at a lower abstraction level

Presentation There is interaction with a human actor
Web services There is interaction with external systems
Security There is a Security mark on one or more of the

elements in the UML diagrams
Log There is a Maintainability mark on one or more

of the elements in the UML diagrams
Test There is a Testability mark on one or more of the

elements in the UML diagrams

feature model. The output of this transformation is another
model with an initial configuration of the feature model in
which the suggested layers are selected.

Applying these criteria to the diagram shown in Figure 3,
the architect is offered a basic initial selection of layers. This
selection is presented in the form of a partial configuration of
the feature model. In the case of the diagram in the figure,
the architect will be proposed the use of the following layers:
persistence because the activity diagram requires information
to be retrieved that was stored in the system earlier and
information to be stored for later use. Presentation because
this layer includes all the elements related to interaction with
the user. Web services because notifying an unauthorized ac-
cess attempt requires communication with an external system.
Security because checking the user’s privileges has to be a
secure task. And log because some of the diagram’s activities
have to be auditable.

An additional layer is suggested that encapsulates the
application’s business logic. This is a standard layer in en-
terprise applications to incorporate elements relating to the
application’s behaviour.

The architect’s next task is to validate the set of suggested
layers, or to modify it as may be deemed opportune. The
final set of layers selected by the architect is registered as
a partial configuration of the feature model and it is used to
perform an initial model transformation. This transformation
gives as output a specific design for the layers in which to
split the application where each activity is represented in the
layers in which it operates. Figure 4 shows a small fragment of
the output of this transformation applied to a the preliminary
design shown previously.

Fig. 4. Fragment of the layer adapted design.

B. Selecting patterns, technologies, and use

The following architectural decisions that have to be made
consist in selecting the design patterns and technologies to use
in the development of each of the layers identified in the pre-
vious section. It is possible, as was done during the selection
of the layers, here too to present the architect with an initial
selection based on the information contained in the initial
design. Now, however, the architect’s decisions have greater
importance. In many situations, the choice of a particular
technology will depend less on the application’s requirements
and more on either the criteria of the firm responsible for the
development or the preferences of the architect. For example,
the experience of the developers is one of the most important
factors when selecting a technology to implement the MVC
design pattern in a presentation layer. There are a number
of frameworks that give full support to this pattern, the one
which is normally used is that with which the architect or the
development team has most experience. However, one should
not forget that the chosen technologies must support the quality
attributes of the application. So, the information about the
quality attributes included in the preliminary design is most
useful to validate the architect’s decisions than to provide
initial suggestions.

217Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 237 / 646

Fig. 5. Fragment of the design pattern adapted design.

Due to this, the weight of this task falls largely on the
architect. It is generally done in two steps. In the first, the
architect selects the design patterns to use in the development
of each layer. To make this choice the architect uses the
list of patterns available in the feature model for each layer
and the preliminary design with the information about the
functional and non-functional requirements of the applica-
tion. Typically, the selection is that which can best fulfill
the application’s functional and non-functional requirements.
However, the architect has the final say on the matter and
can take architectural decision based on different criteria such
us his or her own previous experience or the development
team knowledge about specific technologies. In the example
we are using, the architect could choose the MVC and Web
Remoting patterns jointly for the presentation layer, and the
ReST pattern instead of SOAP for the Web services layer.
With this information, it is possible to apply a new partial
transformation to obtain a more detailed design adapted to the
design patterns chosen by the architect. Figure 5 shows a small
fragment of the result of this transformation after applying the
DAO pattern to an activity in the persistence layer.

In the second step, the architect must select which technol-
ogy or development framework will be used to support each
of the selected design patterns. Again, this set of architectural
decisions is based on the information contained in the feature
model and the preliminary design. The selection will be made
from among the technologies specific to the design patterns
chosen and will depend mainly on the architect experience.
For example, in the case of ReST, the architect must choose
a technology that will support it, omitting consideration of
other Web service technologies. Also, the presence in the
feature model of the constraints mentioned above prevents
the architect selecting incompatible technologies, and provides
suggestions of technologies that are closely related to those
already chosen. With this information, it is possible to apply
the last transformation to obtain design adapted to the architec-
tural decisions. Figure 6 shows a small fragment of the result
of this transformation after using the Hibernate framework to
implement the DAO pattern.

As mentioned above, for clarity reason, in this paper we
show how our proposal supports architectural decisions in
a specific hierarchical order. However, the architect could
choose a different order. The use of feature models to specify
architectural knowledge and the architectural decisions make
it possible whilst the consistence is kept during the transfor-
mation process.

Using the described process provides the architect with
two major advantages. One is that the number of options to
consider when making decisions is pruned, with irrelevant ele-
ments eliminated from the process, and allowing the architect
to focus on the use of just an allowed set. The other advantage

Fig. 6. Model transformation sequence.

is that using the feature model provides a simple mechanism
for storing architectural decisions. Every decision made by the
architect is reflected as a configuration of the feature model,
and these configurations are easily stored for reference and use
in future developments. The firm’s architects will thus have
a set of design guidelines based on successes or failures in
previous projects.

V. SUPPORT TOOLS

In order to validate the techniques proposed in this paper, a
set of tools is under development targeted at providing support
to the entire process described in Section 2.

For tasks related to the architectural decision making, the
core of the present work, a feature model is used that is similar
to that described in Section 3, and which contains information
on more than a dozen of the commonest development tech-
nologies.

Regarding the architectural decisions themselves, the tech-
niques described in this paper are supported by a custom-
designed Eclipse plug-in for the creation of multi-layer ar-
chitecture Java projects. To create one of these projects, the
plug-in needs a feature model such as that mentioned above.
The options that will be presented to the architect for decision
making are obtained from this model. The plug-in configura-
tion allows specification of the URL at which to search for the
feature model. This permits a firm to have a centralized model,
so that any updates to include new technologies or to remove
any that have become outdated are immediately distributed to
all its architects.

Once the feature model to be used has been obtained, the
plug-in presents the architect with the decisions to be taken.
The different decisions are presented to the architect as wizards
pages. We opted for an interface of this kind to simplify the
architect’s task. While feature models are a widely used tool in
the context of product lines, an architect specializing in multi-
layer application development would not necessarily know this
notation, so that its use would impose an additional burden.

VI. RELATED WORK

In the area of architectural decision making, particularly
stand out for their close relationship with our proposal two
works of Zimmermann [10], [14]. They present a framework
for the identification and modeling of recurring architectural
decisions, and for converting those decisions into design
guidelines for future development projects. In particular, Zim-
merman proposes seven identification rules (IRs). These rules
have their counterpart in our proposal. The main difference
between our work and that of Zimmerman is the use made of

218Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 238 / 646

those architectural decisions. In his work, the main objective
is to gather information for use in future projects. Our focus is
on using that information to simplify the process of obtaining
an specific design of the application on which architectural
decisions are made.

In the field of Web application development, Melia &
Gomez [17] propose an extension to the model-driven methods
of Web application development. Their proposal is closely
related to the present work. Both pursue the same goal –
to increase the architect’s reliability when using model-driven
techniques to design the architecture of a Web application.
Nevertheless, their work focuses on RIA development, while
ours is intended to encompass the entire class of multi-
layer applications. Also, unlike our proposal, that of Melia
& Gomez does not allow for control of the technologies used
to implement the application, and neither does it provide any
mechanism to log and store the decisions made by the architect
for later use.

Finally, the studies of Antkiewicz [16] and Heydarnoori et
al. [18] are of particular interest in the area of framework-
based software development. Antkiewicz’s techniques allow
the modeling of specific designs for certain frameworks, and
these models are then used to generate the source code.
Heydarnoori et al. propose a technique for automatically ex-
tracting templates for implementing concepts of development
frameworks. Unlike our work, the proposed techniques are
very code centric, and their creation requires expertise in each
framework employed. Our work is aimed at increasing the
level of abstraction in the sense of being able to start from
a technology-independent design, and progress to obtaining
the final specific design by using the decisions made by the
architect and model transformations.

VII. CONCLUSIONS AND FUTURE WORK

This paper has addressed the problems facing the soft-
ware architect when designing a multi-layer architecture. The
complexity of these architectures, the complex relationship
between functional and non-functional requirements and the
high number of development frameworks and how they affect
the non-functional requirements complicate the architect’s task.
We have proposed a technique for simplifying the architec-
tural decision making process by means of the use of a
feature model and a marked preliminary design. The proposed
technique forms part of a broader procedure to address the
transition from an initial design of an application to a design
adapted to the architecture and technologies selected by the
architect. This is a complex process that requires deep technical
knowledge of the technologies involved. This complexity can
be significantly mitigated by using model-driven development
processes.

The next steps related to the architect’s decision making
will be based on improving the feature model’s constraints.
They can be used to incorporate additional information about
quality attributes of the technologies, such as the performance
of a given framework or the level of integration of two tech-
nologies. This additional information could be used to provide
the architect with fuller and more precise initial suggestions.

ACKNOWLEDGMENTS

This work was partially funded by the Spanish Ministry
of Science and Innovation under Project TIN2012-34945, as
well as by the Autonomous Government of Extremadura and
FEDER funds.

REFERENCES

[1] M. Fowler, Patterns of Enterprise Application Architecture. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2002.

[2] R. Johnson, “J2ee development frameworks,” Computer, vol. 38, no. 1,
pp. 107 – 110, jan. 2005.

[3] T. C. Shan and W. W. Hua, “Taxonomy of java web application
frameworks,” E-Business Engineering, IEEE International Conference
on, vol. 0, pp. 378–385, 2006.

[4] M. Raible, “Comparing jvm web frameworks,” http://static.
raibledesigns.com/repository/presentations/Comparing JVM Web
Frameworks Jfokus2012.pdf, Jfokus, 2012.

[5] N. B. Harrison and P. Avgeriou, “How do architecture patterns and
tactics interact? a model and annotation,” Journal of Systems and
Software, vol. 83, no. 10, pp. 1735–1758, 2010.

[6] L. Chung and J. C. S. do Prado Leite, “On non-functional requirements
in software engineering,” in Conceptual Modeling: Foundations and
Applications, 2009, pp. 363–379.

[7] M. Dalgarno, “When good architecture goes bad,” Methods & Tools,
vol. 17, pp. 27–34, 2009.

[8] J. Garcia-Alonso, J. B. Olmeda, and J. M. Murillo, “Architectural
variability management in multi-layer web applications through
feature models,” in Proceedings of the 4th International Workshop
on Feature-Oriented Software Development, ser. FOSD ’12. New
York, NY, USA: ACM, 2012, pp. 29–36. [Online]. Available:
http://doi.acm.org/10.1145/2377816.2377821

[9] J. Berrocal, J. Garcı́a-Alonso, and J. M. Murillo, “Facilitating the
selection of architectural patterns by means of a marked requirements
model,” in ECSA, ser. Lecture Notes in Computer Science, M. A. Babar
and I. Gorton, Eds., vol. 6285. Springer, 2010, pp. 384–391.

[10] O. Zimmermann, “Architectural decisions as reusable design assets,”
IEEE Software, vol. 28, no. 1, pp. 64–69, 2011.

[11] R. Wojcik, F. Bachmann, L. Bass, P. Clements, P. Merson, R. Nord,
and B. Wood, “Attribute-driven design (add), version 2.0,” Software
Engineering Institute, Tech. Rep. CMU/SEI-2006-TR-023, 2006.

[12] P. Avgeriou and U. Zdun, “Architectural patterns revisited - a pattern
language,” in EuroPLoP, A. Longshaw and U. Zdun, Eds. UVK -
Universitaetsverlag Konstanz, 2005, pp. 431–470.

[13] K.-J. Stol, P. Avgeriou, and M. A. Babar, “Design and evaluation of a
process for identifying architecture patterns in open source software,” in
ECSA, ser. Lecture Notes in Computer Science, I. Crnkovic, V. Gruhn,
and M. Book, Eds., vol. 6903. Springer, 2011, pp. 147–163.

[14] O. Zimmermann, “Architectural decision identification in architectural
patterns,” in WICSA/ECSA Companion Volume, ser. ACM International
Conference Proceeding Series, T. Männistö, M. A. Babar, C. E. Cuesta,
and J. E. Savolainen, Eds., vol. 704. ACM, 2012, pp. 96–103.

[15] K. Czarnecki, S. Helsen, and U. W. Eisenecker, “Staged configuration
through specialization and multilevel configuration of feature models,”
Software Process: Improvement and Practice, vol. 10, no. 2, pp. 143–
169, 2005.

[16] M. Antkiewicz, K. Czarnecki, and M. Stephan, “Engineering of
framework-specific modeling languages,” IEEE Trans. Software Eng.,
vol. 35, no. 6, pp. 795–824, 2009.

[17] S. Meliá, J. Gómez, S. Pérez, and O. Dı́az, “Architectural and technolog-
ical variability in rich internet applications,” IEEE Internet Computing,
vol. 14, no. 3, pp. 24–32, 2010.

[18] A. Heydarnoori, K. Czarnecki, and T. Tonelli Bartolomei, “Two studies
of framework-usage templates extracted from dynamic traces,” IEEE
Transactions on Software Engineering, 2011.

219Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 239 / 646

CREATE: A Co-Modeling Approach for Scenario-based
Requirements and Component-based Architectures

Marcel Ibe, Martin Vogel, Björn Schindler and Andreas Rausch
Technische Universität Clausthal

Clausthal-Zellerfeld, Germany
{marcel.ibe, m.vogel, bjoern.schindler, andreas.rausch}@tu-clausthal.de

Abstract—Requirements engineering and architectural de-
sign are key activities for successful development of software-
intensive systems. Both activities are strongly intertwined and
interrelated. Particularly, in early development stages require-
ments and architecture decisions are frequently changing.
Thus, advanced systematic approaches are needed, which
could minimize the risks of wrong early requirements and
architectural decisions. The fundamental problem addressed
in this paper is the development of inconsistencies at the
advanced approaches for co-evolution of requirements and
architectures. Inconsistencies lead to an incorrect considera-
tion of requirements by the system under development and
consequently to unfulfilled requirements. In this paper, a
domain specific model-based approach is presented, which
supports the co-evolution of requirements and architectures.
The approach provides simplified scenario-based models for
the description of requirements, which are suitable for vali-
dation by stakeholders. Furthermore, the approach provides a
component-based model for a precise and complete description
of architectures. Adequate inter-relations between scenario-
based and component-based models are defined, which support
the consistence maintenance.

Keywords-requirements; architecture; evolution; consistency.

I. INTRODUCTION

Requirements Engineering (RE) and Architectural Design
(AD) are essential for successfully developing high-quality
software-intensive systems. RE and AD activities are in-
tertwined and iteratively performed [2]. The architecture
of a software system must satisfy its requirements, yet
architectural constraints might prohibit certain requirements
to be realized. This might imply a change to the initial
requirements or the selection of a different appropriate archi-
tecture. Further, additional requirements might be discovered
during the development process, leading to changes in the
architecture. Design decisions that are made early in this
iterative process are the most crucial ones, because they
are very hard and costly to change later in the development
process.

In classical development processes, artifacts like, for
instance, the requirements specification or the architecture
are developed sequentially. This is also the case at iterative
process models like the spiral life cycle model of Böhm
[1]. The iterative, concurrent evolution of requirements and
architectures demands that the development of an archi-
tecture is based on incomplete requirements. Also, certain

Level

of

detail

Technology Dependence

low

high

highlow

architecturerequirements

Intermediate

CBSP model

Figure 1. Intermediate model within the twin peaks [3]

requirements can only be understood after modeling or even
partially implementing the system architecture. Nuseibeh [2]
describes an advanced approach, which adapts the spiral
life cycle model and aims at overcoming the often artifi-
cial separation of requirements specification and design by
intertwining these activities in an interactive evolutionary
software development process. This approach is called the
twin peaks model. To map requirements into architectures
and maintaining the consistency and traceability between the
two Grünbacher et al. [3] introduces an intermediate model
called Component Bus System Property (CBSP) (see Fig. 1).
This model maps requirements to architecture elements by
the CBSP model, which allows a systematic way to reconcile
requirements with stakeholders.

Nevertheless, the advanced twin peaks model is kept very
general. For instance, it does not specify the level of detail
of requirements in relation to the architecture [4]. Due to the
fact that there is no concrete advanced approach supporting
the co-evolution of requirements and architecture we were
commisioned by the German armed forces and the German
government to undertake a research project. In order to be
able to consider all required aspects, we made an expert
survey. Therefore, we interviewed staff and leaders of three
medium to big sized development projects with up to 30
project participants on customers and contractors side about
their problems in the field of RE and AD.

220Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 240 / 646

A general mentioned problem was that the developed
systems did not fulfill all requirements of the customers.
The result of the survey was a list of the following reasons
and derived guidelines:

• For the contractor the requirements were to informal,
imprecise and incomplete. Requirements had to be
repeatedly elicited and specified during architecture de-
sign. Hence, requirements on a software system should
be complete and precise.

• At the elicitation process, the reconcilement of more
precise and formal descriptions was to costly. The rea-
son was the need of a detailed explanation by the con-
tractor. For an improved reconcilement requirements
descriptions should be precise as well as comprehensi-
ble. These guidelines are also mentioned by Nuseibeh
[5]. Furthermore, the complexity of the models have to
be manageable for validation by stakeholders.

• The most serious problem was caused by frequently
changing requirements during architecture design.
Changes frequently cause inconsistencies between re-
quirements and architectures. Thus, requirements were
frequently not fulfilled by the developed systems. Ar-
chitectures have to describe how the system under
development fulfills the given requirements by a pre-
cise definition of its structure and behavior. Consis-
tency constraints between requirements and architec-
tures should be defined, which enable an automatic
support of the consistence maintenance.

Starting from this initial situation the target of the project
was the development of a domain specific model-based
approach, which fulfilles the mentioned guidelines. The
subject of this paper is the presentation of the developed
domain specific co-modeling approach CREATE for the
description of requirements and architectures. Furthermore,
the experiences at the application in practice are described.
The presented approach is domain specific for interactive
information systems like web-based systems and modern
communication systems. In Section II, existing model-based
approaches for the co-evolution of requirements and archi-
tectures are considered. In Section IV, the overall approach
is introduced and in Section V the approach is shown at an
example. Section VI contains a description of our experi-
ences at the development and application of the approach
in practice. Section VII includes a discussion of the results
and pending points for future work.

II. RELATED WORK

Existing model-based development approaches for re-
quirements and architectures can be categorized into model-
based approaches for requirements engineering, model-
based approaches for architecture design and combined
approaches.

Representative model-based approaches for requirements
engineering are described in [6]–[8]. In [6], requirements

are described by Unified Modeling Language (UML) [18]
activity diagrams. A formal operational semantics enables
execution of activity diagram specifications. The executed
activity diagram specification serves as prototype for vi-
sualization of requirements. In the approach illustrated in
[7], UML collaboration diagrams are enriched by user inter-
face information in order to specify elicited requirements.
These diagrams are transformed into complete dynamic
specifications of user interface objects represented by state
diagrams. These state diagrams are used for generation of
prototypes. In [8], use case and user interface information are
recorded at stakeholder interviews. Therefore, use case steps
are enriched by scribbled dialog mockups. Prototypes are
created, which visualize dialog mockups of use case steps
in sequence for fast feedback of stakeholders. In general,
these approaches have a well elaborated model structure
for requirements engineering and improve the validation of
requirements by stakeholders. On the other side, the mapping
to the architecture is not precisely enough defined at these
approaches to support a co-evolution of requirements and
architectures.

Representative model-based approaches for architecture
design are described in [9,10]. In Model-Driven Architecture
(MDA) [9], the Computation Independent Model (CIM)
can be used to describe business processes. The Platform
Independent Model (PIM) may describe the structure and
behavior of the software system. Component models like
KobrA [10] are concrete approaches supporting MDA. In
general, these approaches have a well elaborated model
structure for architecture design and enable a detailed de-
scription of the structure and behavior of the software
system. On the other side, these approaches do not support a
co-evolution of requirements and architectures. The mapping
between requirements and architectures is not precisely
enough defined for this field of application.

Representative combined modeling approaches for re-
quirements and architectures are described in [3,11,12]. In
[11], a Requirements Definition Language (RDL) is used,
which allows a structured definition of requirements. Meta
model elements of the RDL are mapped to correspond-
ing meta model elements of the Architecture Description
Language (ADL). The approach described in [3] uses the
intermediate model CBSP to map requirements to archi-
tecture elements. Different subtypes of CBSP elements
allow classification of requirements. Requirements exhibit
overlapping CBSP properties can be split and refined until
no stakeholder conflicts exist. The Software Architecture
Analysis Method (SAAM) [12] describes a method for a
scenario-based analysis of software architectures. In this
method, scenarios and architecture descriptions are devel-
oped iteratively. For each scenario it is determined whether
a change of the architecture is required for execution. Based
on the importance and conflicts of required changes an
overall ranking of the developed scenarios is determined.

221Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 241 / 646

An advantage of these approaches is the combination of
models for the description of requirements and architectures.
On the other side, these approaches are very abstract and
do not specify concrete models and mappings, which fulfill
the conditions defined in the introduction for an adequate
description of requirements and architectures.

Besides the stated existing approaches further approaches
are conceivable, which are based on synthesis approaches
[13] of complete state-based models from scenario-based
models. Scenario-based and state-based models can po-
tentially be used for the description of requirements and
architectures. Consistency is, for instance, a subject of
the approaches described in [14,15]. Unfortunately, these
approaches are generally maintaining a complete consistency
by means of a bijection. Architectures need to describe
more details about the software system. These details have
to be well separated from the requirements. Hence, an
alternating correction of inconsistencies and not a bijection
is required for the support of a co-evolution of requirements
and architectures.

III. CONTRIBUTION

The main contributions of this paper can be summarized
as follows:

• Definition of a domain specific model-based approach
for requirements engineering and architecture design in
the sense of twin peaks. Requirements descriptions have
to be precise and comprehensible. This necessitates
a well-balanced trade-off between expressiveness and
manageability of models for the description of require-
ments. Furthermore, the architecture has to provide a
detailed description of the behavior and the resulting
structure of the software system. In our domain spe-
cific approach, simplified scenario-based requirements
models are defined for the description of requirements
and component-based models for the description of
architectures.

• Definition of consistency constraints which support a
co-evolution of requirements and architectures. Com-
plex dependencies between requirements and architec-
tures cause a high complexity for consistence main-
tenance. Thus, not only for the requirements model,
but also for the inter-relations between requirements
and architecture models a well-balanced trade-off be-
tween expressiveness and manageability is necessary.
In our approach, inter-relations between scenario-based
requirements and component-based architecture models
are provided, which enable an automatic consistence
maintenance.

• This paper presents the results of the evaluation of the
approach at real system development projects. Several
iterations of phases for model definition and practice
tests were required to find the presented solution. The
approach is presented by a case study.

IV. OVERALL APPROACH

Our domain specific model-based approach supports con-
current development of requirements and architectures. An
appropriate process for concurrent development is described
by the twin peaks model [2]. In this model, requirements and
architectures have an equal status and are evolved iteratively.
This is illustrated by twin peaks (see Fig. 2).

Level

of

detail

Technology Dependence

low

high

highlow

requirements

architecture

structure
be

ha
vi
or

inter-

relations

structure be
ha

vi
or

DSD

SD

ID

HRL

DD

ASD

ABD

OD

Figure 2. Co-modeling approach within twin peaks

Our domain specific model-based approach concretizes
twin peaks by defining a concrete description technique.
Diagrams are used for a precise description of requirements
and architectures. These diagrams are illustrated within dia-
monds in the twin peaks model (see Fig. 2). The process flow
of our approach begins with a formal description of inital
requirements. Afterwards, the architecture is developed and
consistence to the requirements is maintained continuously.
Inconsistencies are resolved by changing requirements or the
architecture.

The main contribution of our domain specific approach
is the concrete description technique with well-defined
inter-relations between requirements and architecture de-
scriptions. It is well known that scenarios help to elicit
and validate requirements [13]. A precise description of
elicited requirements can be achieved by scenario-based
models [13]. The co-modeling approach provides simplified
scenario-based models for the description of requirements.
Furthermore, the description is reduced to representative
and concrete scenarios. Hence, the complexity of these
models is manageable for the validation by stakeholders.
The validation is improved by combining these models
with models enabling visualization of requirements by user
interface mockups [8]. During AD, the architecture of the co-
modeling approach is developed. An architecture describes
the behavior and the resulting structure of the software sys-
tem precisely. This description is enabled by a component-
model. Component-Based Software Engineering (CBSE)

222Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 242 / 646

[16] has been continuously improved and successfully ap-
plied over the past years. Systems are composed by existing
software ’parts’ called software components. Component
models enable a precise description of component-based
architectures [17].

In our domain specific model-based approach, diagrams
are used to model structural or behavioral aspects of re-
quirements or architectures. For instance, elicitation and
specification of processes at the domain (e.g., business
processes) is an important aspect at requirements engineer-
ing. In our approach, these processes can be described by
a Scenario Diagram (SD). Thus, the SD is assigned to
the behavior part of the requirements diamond (see Fig.
2). In Section V, the provided diagrams and their inter-
relations are described in detail. Some models, for instance,
the Hierarchical Requirements List (HRL) can be used to
describe structural as well as behavioral aspects. Existing
languages, such as UML [18], include among others struc-
tural and behavioral diagrams for the modeling of systems.
Our domain specific approach uses exemplarily a subset
of UML diagrams and their available model elements to
formally describe requirements and architectures. Additional
models are used to enable a visualization of requirements by
user interface mockups.

Consistence maintenance during the development of re-
quirements and architectures is supported by well-defined
inter-relations between scenario-based requirements models
and component-based architecture models (see Fig. 2). Inter-
relations are also defined within these models. They are de-
fined by associations between model elements and additional
consistency constraints. The defined inter-relations enable an
automatic consistence maintenance by, for instance, check-
ing the consistency constraints and permitting changes not
until detected inconsistencies are solved.

V. MODELING EXAMPLE

Details of the description technique and the consistence
constraints of the domain specific model-based approach are
shown at a case study. The subject is the development of a
library system.

A. Scenario Description

1) HRL: The HRL enables a text-based description of
structural and behavioral requirements. They can be arranged
hierarchically. In this way, it is possible to refine one
requirement by several other requirements. In our example,
the HRL contains some structural information about the
system environment. The requirements list describes the
system under development, the user of the system and an
entity that should be managed by the system (red marked in
Fig. 3 upper left). The requirement show statistics describes
a desired behavior of the system. Manage books is a very
general requirement and is refined by the requirement show
statistics, which is more precise.

2) Domain Structure Diagram (DSD): The domain struc-
ture, e.g., the business structure, can be described by the
DSD. It is based on UML Composition Structure Diagrams
[18]. First, the domain structure consists of systems and
persons as well as their ability to communicate to each other
described by parts and connections of the DSD. The DSD
Library describes the system to develop, the library system
and a person, the employee (see Fig. 3 requirements left).
The connection between the employee and the library system
assumes that they can interact with each other. Furthermore,
the DSD describes the relevant entities by parts. Currently,
there is only one of the type Book. The parts of the domain
structure (e.g., persons) have to be initially mentioned in the
HRL (see gray line in Fig. 3).

3) SD: The description of processes at the domain (e.g.,
business processes) is an important task at requirements
engineering. Processes can be described precisely by the
SD, which is based on scenario-based UML Communication
Diagrams [18]. SD describes representative scenarios at the
domain, which have to be supported by the system under
development. The scenarios are described as a sequence of
messages between instances of the parts introduced in the
DSD. Messages between two instances can only be sent
if a connection exists between the corresponding parts of
the DSD. In our example, the scenario ShowBookStatistic
describes an interaction between an employee m and the
library system with two messages (see gray line in Fig. 3
requirements upper right).

4) Interaction Mockup Diagram (ID): The ID can be
used to visualize requirements to stakeholders. For this, it
describes the messages of the SD by interaction mockups.
Interaction mockups are user interface mockups, which
visualize interactions of the system in general. In the SD, it
is possible to describe the source and target of a message. In
the ID, every message is detailed by exactly one interaction
mockup for visualization. The scenario can be visualized to
stakeholders by showing the interaction mockups step by
step following the sequence of the messages of the SD. In
our example, one interaction mockup shows the summary
of all books of the message 1 in SD ShowBookStatistic (see
gray line in Fig. 3 requirements). Another shows the detailed
view of one book with its statistic.

B. Architecture Design

An architecture is a plan, which describes how a software
system fulfills given requirements. The following architec-
ture models allow a complete description of the behavior and
the resulting structure of the system under development.

1) System Overview Diagram (OD): The OD of the
architecture is based on the UML Use Case Diagram [18]. It
is used to describe the most abstract structure and behavior
of the system and its context by the system boundary and
the associated use cases, which are called functions. The
actors and the system context are derived from the DSD,

223Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 243 / 646

Architecture

DD

ASD

LibrarySystem

OD

ShowBooksStatistic

Requirements

<<component>>

LibrarySystem

<<component>>

Client

<<component>>

BookManager

HRL Library System

1) The library system must be able to manage books.

1.1) The library system must provide the option to show

 statistics about books to the employee.

DSD Library

: Book [0..*]: LibrarySystem [1]

ID ShowBookStatistic

Book overall viewBook overall view

Title Authors Year

Moby Dick H. Melville 1851

Exit

Book StatisticBook Statistic

Overview

Add Edit Delete

Step 1:

„select

statistic“

Statistic

Title Status Date

Moby Dick borrowed 14.04.2013

Return

15.04.2013

Step 2:

„select

overview“

It S. King 1986

ABD ShowBooksStatistic

<<Variable>>

books: Book[]

<<ServiceAction>>

GetAllBooks

<<InterfaceAction>>

ShowBookWindow

<<InterfaceAction>>

ShowBooksStatistics

Statistic

Overview

Exit

books

Employee

title: String

Book

SD ShowBookStatistic

m/ : Employee

/ : LibrarySystem

1 2

: Employee [1..*]

books

Legend

RE-AD inter-relations

other inter-relations

all other lines UML conform

transition to next

scenario step

Figure 3. Requirements models, architecture models and inter-relations

the functions from SD. The OD of the example describes a
system with the function ShowBooksStatistics and the actor
employee (see Fig. 3 architecture upper right). Employee
is connected to the function. This connection also exists
between DSD (Employee) and SD (ShowBookStatistic).
The process of a function is described by an architectural
behavior diagram.

2) Architectural Behavior Diagram (ABD): The ABD
describes the behavior of the software system and is based
on the UML Activity Diagram including data flow. The
ABD describes the process of the functions defined in OD
completely. The function ShowBookStatistic is, for instance,
described by the activity ShowBookStatistic (see gray line
in Fig. 3 right). Within the ABD different action types like
InterfaceAction and ServiceAction are used. A ServiceAction
is performed by the system (e.g., a database call). An In-
terfaceAction describes an interaction of the system with its
environment and is, therefore, associated with an interaction
mockup of the ID. The action ShowBooksStatistics is, for
instance, associated with an interaction mockup (see Fig. 3
right).

3) Data Diagram (DD): At a function described by ABD
data objects can be used by the system. The DD is based

on UML Class Diagrams [18] and describes the data types
of the data objects. For example, the DD describes a type
book, which is the type of the variable books of the ABD
ShowBooksStatistics (see gray line in Fig. 3 architecture
left). The data objects to be processed by the system are
derived from the entities of DSD. The DD describes these
entities in more detail. If there is a connection between two
parts within the DSD, a relation must exist between the types
of the parts and the corresponding data types in DD.

4) Architectural Structure Diagram (ASD): The ASD is
based on UML Component Diagrams [18] and describes
the internal components of the system under development
and their offered interface as a black-box view. Subse-
quently, the components are further decomposed to refine
their internal structure. The ASD LibrarySystem describes,
for instance, the internal structure of LibrarySystem of the
OD (see gray line in Fig. 3 architecture bottom). The
internal structure is derived from the actions of the ABD.
Hence, each component must be associated with an action
of an ABD. The component LibrarySystem is refined by
a component BookManager, which is associated with the
action GetAllBooks of the ABD as well as the component
Client.

224Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 244 / 646

C. Consistence constraints

The consistence maintenance is supported by the defini-
tion of inter-relations between requirements and architecture
models. Inter-relations between models of the scenario-based
requirements and the component-based architecture (e.g.,
between HRL and DSD) are described in Section V-A and
V-B (see gray lines in Fig 3). Essential for the concurrent
development are the inter-relations between requirements
and architectures (see red lines in Fig 3). Inter-relations are
defined in the term of associations and additional consistency
conditions. A violation of a consistency condition means an
inconsistency. We defined all necessary inter-relations. In the
following, a subset of these inter-relations are exemplarily
introduced, which is most suitable to explain the dependen-
cies between our requirements and architecture descriptions:

• (1) The existence of an entity in the DD implies the
existence of a corresponding type in the DSD.

• (2) The existence of a type in DSD whose part is
directly connected with the part of the system to build
implies the existence of a corresponding actor in the
OD.

• (3) Every interaction mockup in the ID must be mapped
on exactly one InterfaceAction in an ABD.

Probable changes during the development of concurrently
evolved requirements and architectures are illustrated in
Fig 4. While modeling the architecture it was noticed, that
the system has not only to handle books. Also magazines
should be managed. Hence, a new entity Magazine was
added to the DD. As a consequence, the entity Media,
as a generic term was introduced. Respectively two new
inheritance relations were added. After this, the consistency
condition (1) is violated. The DSD doesn’t contain any
corresponding element to these two new entities from the
DD (arrows (1) in Fig. 4). A change in the requirements
model was necessary, when it became clear that the manager
needs other statistics about a book, then an employee. Hence,
the manager as a new part of the system environment is
added. In consequence, the condition (2) is violated. The
manager is directly connected to the system but there is no
corresponding actor in the OD (arrow (2) in Fig. 4). Because
of the new needs of the manager, the scenario also has to
be adapted. Depending on who uses the system, the shown
information about a book varies. Thus, a new interaction
mockup for the manager has to be added. This violates again
the condition (3). The new interaction mockup is not mapped
on an InterfaceAction from the ABD (arrow (3) in Fig. 4).

To correct these inconsistencies, a few further changes
have to be made. It is necessary to add the entities Media
and Magazine to the DSD. After this consistency condition
(1) holds again (see arrows (1) in Fig. 5). To comply
with the second condition, a new actor for the manager
has to be introduced into the OD (arrow (2) in Fig. 5).
Finally, a mapping from the added interaction mockup to

an InterfaceAction is missing. One could map the new
interaction mockup to an existing InterfaceAction or extend
the ABD by a new InterfaceAction. By extending the ABD
by the InterfaceAction ManagerStats the interaction mockup
can be mapped on it (arrow (3) in Fig. 5). The new action
may be processed by a new component ManagerClient at the
ASD. By making these changes all consistency conditions
were restored. As shown above, checking the consistency
conditions helps to detect inconsistencies. An automatic
support of the consistence maintenance can, for instance, be
realized by permitting changes not until all inconsistencies
are solved.

VI. EVALUATION

The development of the co-modeling approach took place
at research projects in cooperation with a public institution
over a period of four years. At these research projects, we
gave advice and supported to system development projects
in order to test our results in practice. The goal of the
overall approach is to support consistence maintenance of
requirements and architectures in early development phases.
The goal of the evaluation was to test the usability and the
inconsistence prevention of our approach. At a first step,
we developed the component-based architecture model for
a precise description of the architecture. For reconcilement
with stakeholders we developed a prototype generator, which
is able to interpret the developed models. The stakeholders
should validate the architecture and the consistence to their
requirements with the aid of the prototypes. This approach
was tested at a system development project over a period
of one year. The subject of this project was a commu-
nication system. At this project, a model was developed
comprising 20 system functions, 253 activity nodes and
35 data types. Conclusive it revealed that the usability of
the approach has to be improved. The number of possible
states described by the component-based architecture leads
to less comprehensibility to stakeholders. They were not able
to agree to the developed specifications. Consequently, the
consistence maintenance of requirements and architectures
could not be supported by this approach. Based on the results
of this practice test we extended the approach by scenario-
based models. This extended co-modeling approach, which
is introduced in this paper, was tested in practice at a
further system development project with a similar subject
over a period of one year. In this period, the usability was
significantly better. Stakeholders were able to agree to the
visualized and scenario-based requirements. Furthermore,
they were able to give helpful feedback, which leads to a
big number of changes. We measured at three milestones
the number of changes, the detected errors and especially
remaining inconsistencies. Between these milestones we
documented 500 changes and 67 errors. 8 of these errors
were inconsistencies. The rate of inconsistencies to changes
is low. For an indication, at a study described in [19], change

225Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 245 / 646

Architecture

ABD ShowBooksStatistic

<<Variable>>

books: Book[]

<<ServiceAction>>

GetAllBooks

<<InterfaceAction>>

ShowBookWindow

<<InterfaceAction>>

ShowBooksStatistics

Statistic

Overview

Exit

booksbooks

DD

ASD

LibrarySystem

OD

ShowBooksStatistic

Requirements

<<component>>

LibrarySystem

<<component>>

Client

<<component>>

BookManager

DSD Library

: Book [0..*]: LibrarySystem [1]

Employee

: Employee [1..*]

Book StatisticBook Statistic

Overview

Title Status Date

Moby Dick borrowed 14.04.2013

Return

15.04.2013

count

56

ID ShowBookStatistic

Boo...Boo...

Add

Title

Moby

Boo...Boo...

Overview

HRL Library System

1) The library system must be able to manage books.

1.1) The library system must provide the option to show statistics about books to the employee.

2) The library system must provide the option to show the number of borros of each book to the

manager.

: Manager [1]

title: String

Media

Magazine Book

(2)

(1)

(1)

(3)

Legend
RE-AD inter-relations check

all other lines UML conform

(..)

transition to next scenario step

Figure 4. Changes at the requirements and architecture model

Architecture

DD

ASD

LibrarySystem

OD

ShowBooksStatistic

Requirements

<<component>>

LibrarySystem

<<component>>

Client

<<component>>

BookManager

DSD Library

: LibrarySystem [1]

ABD ShowBooksStatistic

<<Variable>>

books: Book[]

<<ServiceAction>>

GetAllBooks

<<InterfaceAction>>

ShowBookWindow

<<InterfaceAction>>

ShowBooksStatistics

Statistic

Exit
books

Employee

: Employee [1..*]

ID ShowBookStatistic

title: String

Media

Magazine Book

(1)

(1)

Manager

:Media[0..*]

: Book [0..*]

1) The library system must be able to manage books.

1.1) The library system must provide the option to show statistics about books to the employee.

1.2) The library system must manage media: books and magazines.

2) The library system must provide the option to show the number of borros of each book to the

manager.

(2)

HRL Library System

: Manager [1]

books

<<InterfaceAction>>

ManagerStats

<<component>>

ManagerClient

: Magazine [0..*]

Book StatisticBook Statistic

Overview

Title Status Date

Moby Dick borrowed 14.04.2013

Return

15.04.2013

count

56

Boo...Boo...

Add

Title

Moby

Boo...Boo...

Overview

(3)

Overview Overview

Legend
RE-AD inter-relations check

all other lines UML conform

(..)

transition to next scenario step

Figure 5. Changes to solve the inconsistencies

226Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 246 / 646

data of requirements documents are analyzed. In this study,
88 changes, 79 errors, and 16 inconsistencies were detected.

VII. CONCLUSION AND FUTURE WORK

The fundamental problem addressed in this paper was the
development of inconsistencies at the advanced approaches
for co-evolution of requirements and architectures. In this
paper, a domain specific model-based approach was intro-
duced, which supports a co-evolution of requirements and
architectures. The approach uses a scenario-based model for
a precise description of requirements and a component-based
model for the description of architectures. Well-defined
inter-relations enable an automatic consistence maintenance.

A frequently stated argument is the entailment of high
costs for the development of precise requirements and archi-
tecture models at a software project. This can be countered
by the fact that an incorrect consideration of requirements
not uncommonly leads to complete project failures. Thus,
maintaining the consistency at the co-evolution of require-
ments and architectures is important. Supporting this task
by models enabling an automatic consistence maintenance
reduces the risk of a project failure and costs for consistence
maintenance. Furthermore, the developed models can be
reused for automatic generation of code, test cases and
documents like, for instance, requirements specifications.
Nevertheless, the usage of formal models at a development
project should, among others, be made conditional on the
size of the project. At the beginning of a development
project, the advantages and disadvantages of using formal
models have to be weighed.

As future work, a further evaluation is planned to com-
pare the effectivity of the co-modeling approach to other
model-based approaches for requirements and architectures.
Furthermore, it is planned to develop a tool for automatic
consistence maintenance.

REFERENCES

[1] B.W. Böhm, ”A spiral model of software development and
enhancement”, IEEE Computer Society Press, vol. 21, May
1988, pp. 61–72.

[2] B. Nuseibeh, ”Weaving Together Requirements and Architec-
tures”, IEEE Computer Society Press, vol. 34, March 2001,
pp. 115–117.

[3] P. Grünbacher, A. Egyed, E. Egyed, and N. Medvidovic,
”Reconciling Software Requirements And Architectures With
Intermediate Models” in Software and Systems Modeling.
Springer, 2003, pp. 202–211.

[4] R. Ferrari and N. H. Madhavji, ”The Impact of Requirements
Knowledge and Experience on Software Architecting: An Em-
pirical Study” in Working IEEE/IFIP Conference on Software
Architecture (WICSA), 2007, pp. 44–54.

[5] B. Nuseibeh and S. Easterbrook, ”Requirements Engineering:
a roadmap” in Proceedings of the Conference on The Future of
Software Engineering (ICSE), ACM Press, 2000, pp. 35–46.

[6] C. Knieke and U. Goltz, ”An executable semantics for UML
2 activity diagrams” in Proceedings of the International Work-
shop on Formalization of Modeling Languages (FML), ACM
Press, 2010, pp. 3:1–3:5.

[7] M. Elkoutbi, ”Automated Prototyping of User Interfaces based
on UML Scenarios” in Journal of Automated Software Engi-
neering, vol. 13, Kluwer Academic Publishers, 2006, pp. 5–40.

[8] K. Schneider, ”Generating fast feedback in requirements elic-
itation” in Proceedings of the 13th international working con-
ference on Requirements engineering: foundation for software
quality (REFSQ), Springer-Verlag, 2007, pp. 160–174.

[9] A. G. Kleppe, J. Warmer, and W. Bast, ”MDA Explained: The
Model Driven Architecture: Practice and Promise”, Addison-
Wesley Longman Publishing Co. Inc., 2007

[10] C. Atkinson, J. Bayer, and D. Muthig, ”Component-Based
Product Line Development: The KobrA Approach” in Software
Product Line Conference, Denver, Kluwer Academic Publish-
ers, 2000, pp. 289-309.

[11] R. Chitchyan, M. Pinto, A. Rashid, and L. Fuentes, ”COM-
PASS: Composition-Centric Mapping of Aspectual Require-
ments to Architecture” in Transactions on AspectOriented
Software Development, 2007, pp. 3–53.

[12] R. Kazman, G. Abowd, L. Bass, and P. Clements, ”Scenario-
Based Analysis of Software Architecture” in IEEE Softw., vol.
13, IEEE Computer Society Press, Nov. 1996, pp. 47–55.

[13] H. Liang, J. Dingel, and Z. Diskin, ”A comparative survey of
scenario-based to state-based model synthesis approaches” in
Proceedings of the 2006 international workshop on Scenarios
and state machines: models, algorithms, and tools (SCESM),
ACM Press, 2006, pp. 5–12.

[14] Y. Bontemps, P. Schobbens, and C. Löding, ”Synthesis of
Open Reactive Systems from Scenario-Based Specifications”
in Proceedings of Application of Concurrency to System
Design, 2003, pp. 41–50.

[15] V. Garousi, L. Briand, C. Lionel, and Y. Labiche, ”Control
Flow Analysis of UML 2.0 Sequence Diagrams” in Model
Driven Architecture Foundations and Applications, 2005, pp.
160–174.

[16] C. Szyperski, ”Component Software: Beyond Object-Oriented
Programming”, Addison-Wesley Longman Publishing Co. Inc.,
2002.

[17] A. Rausch, R. Reussner, R. Mirandola, and F. Plasil, ”The
Common Component Modeling Example: Comparing Software
Component Models”, ser. Springer Lecture Notes in Computer
Science, vol. 5153, 2008.

[18] OMG, ”UML, Version 2.2. OMG Specification Superstructure
and Infrastructure”, 2009.

[19] V. R. Basili and D. M. Weiss, ”Evaluation of a software
requirements document by analysis of change data” in Pro-
ceedings of the 5th international conference on software engi-
neering, IEEE Press, 1981, pp. 314–323.

227Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 247 / 646

Reasoning About UML/OCL Models Using
Constraint Logic Programming and MDA

Beatriz Pérez
Department of Mathematics and Computer Science,

University of La Rioja,
Logroño, Spain.

Email: beatriz.perez@unirioja.es

Ivan Porres
Department of Information Technologies,

Åbo Akademi University,
Turku, Finland

Email: ivan.porres@abo.fi

Abstract—The widespread adoption of Model Driven Engi-
neering approaches has made of models to be cornerstone com-
ponents in the software development process. This fact requires
verifying such models’ correctness to ensure the quality of the
final product. In this context, the Unified Modeling Language
(UML) and the Object Constraint Language (OCL) constitute
two of the most commonly used modeling languages. We propose
an overall framework to reason about UML/OCL models based
on Constraint Logic programming (CLP). We use Formula as
model finding and design space exploration tool. We show how
to translate a UML model into a CLP program following a Meta–
Object Facility (MOF) like framework. We enhance our proposal
by identifying an expressive fragment of OCL, which guarantees
finite satisfiability and we show its translation to Formula. We
complete our approach by providing a Model Driven Architecture
(MDA) based implementation of the UML to Formula translation.
Our proposal can be used for software model design reasoning by
verifying correctness properties and generating model instances
of the modeled designs, using Formula.

Keywords—UML; OCL; CLP; reasoning; verification

I. INTRODUCTION

The widespread adoption of Model Driven Engineering
(MDE) approaches has made of models to be cornerstone
components in the software development process. This fact
requires verifying both the completeness and correctness of
such models to ensure the quality of the final product, reducing
time to market and decreasing development costs. In this
context, UML and OCL constitute two of the most commonly
used modeling languages. The Unified Modeling Language
(UML) [11] has been widely accepted as the de–facto standard
for building object-oriented software. The Object Constraint
Language (OCL) [10], on the other hand, has been introduced
into UML as a logic-based sublanguage to express integrity
constraints that UML diagrams cannot convey by themselves.

Unfortunately, in some occasions, possible design flaws
are not detected until the later implementation stages, thus
increasing the cost of the development process [4]. This
situation requires a wide adoption of formal methods within the
software engineering community. In this line, there have been
remarkable efforts to formalize UML semantics to solve am-
biguity and under specification detected in UML’s semantics.
The formalization and analysis of the specific UML modeled
artifacts can be done by carrying out a semantic–preserving
translation to another language [4]. The resulted translation
can be used to reason about the software design by checking
predefined correctness properties about the original model [4].

In this paper, we advocate for using the Constraint Logic
programming (CLP) paradigm as a complementary method for
UML modeling foundations, including models’ satisfiability
and inspection. More specifically, we focus on UML class
diagrams (CD), annotated with OCL constraints, which are
considered to be the mainstay of Object-Oriented analysis and
design for representing the static structure of a system. Consid-
ering CD/OCL models as model representation, we propose an
overall framework to reason about such models based on CLP.
In particular, as model finding and design space exploration
tool we use Formula [6], which stands on algebraic data
types (ADT) and CLP, and which has been proved to provide
several advantages, including more expressivity, over using
other tools [7]. The defined framework is two–fold. Firstly,
we have conceptually defined a proposal for the translation of
CD/OCL models to Formula. Secondly, we have used a Model
Driven Development (MDA) based approach [9] to automati-
cally generate the Formula specification from a CD. As for the
first contribution, we give a proposal for the translation of a
UML model into a Constraint Satisfaction Problem following
a multilevel Meta–Object Facility (MOF) like framework. We
enhance our proposal by identifying a fragment of OCL which
guarantees finite satisfiability, while being, at the same time,
considerably expressive. We also show how to translate such
OCL fragment to Formula, by giving, as an intermediate step,
a representation of the OCL constraints as First-Order Logic
(FOL) expressions. As for the second contribution, we use a
model-to-text transformation tool to automatically transform
a CD to Formula. Our framework can be used for software
model design reasoning by checking correctness properties and
generating model instances automatically using Formula, thus
contributing to software designs’ validation and verification.

The paper is structured as follows. Section II gives a brief
introduction to Formula. An overview of our framework is
presented in Section III. Section IV presents the translation of
a CD to Formula, while Section V describes the chosen OCL
fragment and its representation into Formula. The automatic
MDA–based translation of a CD to Formula is presented in
Section VI. Section VII summarizes the strengths and weak-
nesses of our approach and discusses related work. Finally,
Section VIII covers our main conclusions and future work.

II. A BRIEF OVERVIEW OF FORMULA

Formula distinguishes three units for modeling the prob-
lem: domains, models and partial models. A Formula domain

228Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 248 / 646

FD is the basic specification unit in Formula for an abstraction
and allows specifying ADTs and a logic program describing
properties of the abstraction. The logic programming paradigm
provides a formal and declarative approach for specifying
such abstractions [6], which in Formula are represented by
rules and queries. A Formula model FM is a finite set of
data type instances built from constructors of the associated
domain FD, and which satisfies all its constraints [6]. Formula
allows to specify individual concrete instances of the design-
space or parts thereof, in a specific Formula unit called partial
model [6]. A Formula partial model FPM is a set of instance-
specific facts placed along with some explicitly mentioned
unknowns, which correspond to the parts of the model FM
that must be solved. FPMs allow unknowns to be combined
with parts of the model that are already fixed [6].

domain extends

primitive
primitive

conforms

Figure. 1: An extract of a Formula domain.

Basically, a Formula domain consists of abstract data
types, rules and queries. Firstly, abstract data types constitute
the key syntactic elements of Formula. Based on the defined
data types, a number of rules and queries are specified as logic
program expressions, ensuring the remaining constraints [6].
Roughly speaking, rules specify implications and queries
restrict the valid states by specifying forbidden states.

Abstract data types. They are defined by using the operator
::=, indicating in the right hand side their properties by means
of fields. A data type definition can be labeled with the
primitive keyword, denoting that it can be used for the
extension of other type definitions. Otherwise, the data type
results in a derived constructor. As a way of example, in line
3 of Figure 1 we define the Class data type representing
the UML Class meta–element constructor. The derived type
Classifier, on the other hand, is defined as the union of
the Class and Association types (see line 5 of Figure 1).

Around data types, Formula defines different categoriza-
tions of the structural elements as building blocks for defining
Formula expressions. These elements are mainly Formula
terms and predicates. As an example of a term, in line 7 of Fig-
ure 1 we show Association(name1,_,_,_,_,_,_), which
represents all instances of the Association term, where the
first parameter is set to the name1 property. The other fields
of this type are filled with a do not-care symbol (‘ ’), so that
Formula will find valid assignments. Terms are the basis for
defining predicates, which constitute the basic units of data,
used for defining queries and rules. An example of a predicate
is a1 is Association(name1,_,_,_,_,_,_) (see line 7),
where the variable a1 is bound to the Association type.

Rules. Rules are specified by the operator :-, indicating, in
the left hand, a simple term and, in the right hand, the list of
predicates specifying the rule. A rule behaves like a universally

quantified implication; whenever the relations on the right hand
hold for some substitution of the variables, then the left hand
holds for that same substitution [7]. The intuition of rules is
production; they create new entries in the fact-base of Formula,
populating previous defined types with facts representing the
members in the collection presented in the rule.

Queries. Corresponding to rules where left hand side is a
nullary construction [7]. A query behaves like a propositional
variable that is true if and only if the right hand side of
the definition is true for some substitution [7]. Queries are
constructed by the operator :=, and can be also used like
propositional variables to construct other queries. In particular,
Formula defines in every domain the conforms standard
query, where all constraints come together and which defines
how a valid instance of the domain have to look like. Based
on the existential quantification semantics of queries, the uni-
versal quantification can be achieved by verifying the negation
of a query representing the opposite of the original predicate.
For example, to ensure that upper bounds of associations’
multiplicities are >= than lower bounds, we firstly need
to define a query representing the existence of associations
verifying the opposite (see line 6 of Figure 1). With this query,
we are considering such incoherent situation as a valid state.
Thus, to verify that such situation is invalid, we include the
negation (‘!’) of the query in the conforms query (line 9).

Finally, to explore the design–space, Formula loads the
specification of the domains and the partial models defined
for the specific problem and executes the logic program. The
execution finds all intermediate facts that can be derived from
the given facts in the partial model, and tries to find valid
assignments for the unknowns. This step is carried out by the
Formula solver, which, in case it finds a solution that satisfies
all encoded constraints, will reconstruct a complete instance
model from this information made of known facts [6][7].

III. ENCODING UML/OCL MODELS INTO FORMULA

As described previously, our proposal follows a MOF-like
metamodeling approach, based on the framework the develop-
ers of the Formula tool give in [7]. Their framework provides
a representation in Formula of part of the key concepts defined
both at the MOF meta–level [11], representing the M2 level,
and at the instance–level [11], representing the M1 level for
the object diagram. The resulted Formula expressions are
grouped in an only Formula domain, which is used by the
Formula solver to find, if it exists, a valid set of instances
of arbitrary class diagrams at the M1 level (conforming with
their MOF meta–level representation) and its corresponding
instances at the M0 level (conforming with their instance–level
representation). We note that the authors in [7] do not give a
specific approach for the translation of OCL constraints.

Based on this proposal, we have extended and modified it
giving weight to four main aspects. Firstly, we have mainly
focused on obtaining a more faithful representation of the
MOF structural distribution, specifying a richer metamodeling
framework. Our extended proposal is materialized into four
different Formula units distributed along the MOF meta levels,
which ease the application and the understandability of our
approach, while promoting units reutilization. Secondly, we
provide an approach based on the CLP paradigm for analyzing

229Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 249 / 646

parents
*

Person

name: String
age: Integer
gender: Gender

children * family

* Company

name: String
activity: String

Contract

salary: Real
startDate: Date

1..*

employee employer Gender

male
female

<<enumeration>>

Figure. 2: Case study.

model instances of specific CDs, and not arbitrary ones as
authors in [7] do, which we consider not enough when needed
to reason about specific CDs. Thirdly, in contrast to [7], we
give an approach for translating OCL constraints to Formula
by; (1) identifying a significantly expressive fragment of OCL,
and (2) providing its translation into Formula. Finally, we have
implemented part of our translation approach based on MDA.

Each Formula unit defined in our approach contains two
blocks of Formula expressions, related to the translation of the
CD structural aspects (see Section IV) and its OCL constraints
(see Section V), respectively. Our approach is illustrated with
the case study of Figure 2, designed for explanation purposes
covering basic aspects. It describes both the contractual rela-
tionship between a “Company” and a “Person”, and the family
recursive relationship connecting the class “Person”.

IV. TRANSLATION OF A CD’S STRUCTURAL ELEMENTS

This section presents a brief introduction of the rules we
have defined to transform a class diagram (CD), conforming
with the UML metamodel [11] (M), into Formula. Due to
space reasons, in this paper we focus on a set of basic struc-
tural UML CD features (UML class, attribute, association)
for being frequently used for modeling structural aspects of
systems. Next, we briefly explain their translation classifying
the generated Formula instructions into the different MOF
levels. For the explanation, we lean on Table I.

Level M2. For each meta model element Class, Association
or Property ϵ M, we define a primitive Formula data type
with the same name and with specific fields (see level M2 in
Table I). For example, in the case of classes, we define the data
type Class(;) ϵ CPS, with two String fields (name and
isAbstract). The definition of these data types allows For-
mula to create Formula instances representing specific UML
classes, associations and types of properties, respectively, at the
M1 level. In the case of the Property element ϵ M, we define
a type for each build-in type, called typeNameProperty,
with specific fields (see Table I). In addition to Integer,
String and Boolean, included in [7], we also give support
to Real, LiteralNull and UnlimitedNatural types. The
data type HasProperty(;)ϵ CPS is also defined to represent
the possession of a property by a classifier.

Level M1. Two groups of expressions are defined at this level.
[M1a.] Each specific class, association and property ϵ CD, is
represented by a Formula instance of the corresponding con-
structor (Class, Association or Property ϵ CPS defined
at level M2). By these Formula instances, we are explicitly
representing, in contrast to [7], not arbitrary classes in a
class diagram but specific ones. For example, the elements
ClassPerson and family defined in M1a of Table I corre-
spond to two Formula instances of the constructor Class and
Association, respectively, defined at M2. In particular, spe-
cific properties ϵ CD are represented by a Formula instance of

the corresponding Property constructor (e.g., namePersonP
is StrProperty(...) in M1a of Table I), and by an in-
stance of the data type HasProperty ϵ CPS, representing the
property’s ownership (see Table I).

[M1b.] In order that Formula is able to generate instances of
specific class, association and property ϵ CD to explore the
concrete design–space, we need to create specific Formula data
types representing each type of instance. For their definition,
we have based on the description of the Instances package [11],
in particular, on the InstanceSpecification element, for classes
and associations, and on the Slot element, for properties. On
the one hand, the definition of the UML InstanceSpecification
element includes the classifier of the represented instance and
the associated InstanceValue [11]. Taking this into account, for
each class c ϵ CD, we define a primitive Formula data type
called Instancec.name(;)ϵ CPS, with two fields, represent-
ing the associated classifier and instance value, respectively
(see level M1b in Table I). As a way of example, see the
primitive data type InstancePerson in Table I. When the
classifier is an association, the UML instance specification
describes a link [11], so in this situations we name the created
data types with the Link prefix. Since links connect class
instances [11], for each association a ϵ CD, we define a
primitive Formula data type called Linka.name(;;;) ϵ CPS,
which includes, additionally, the instance specifications of the
associated classes (see for example LinkFamily in Table I).
So that Formula can generate property’s specific values, we
define specific data types representing the property’s slots,
based on the specifications of the Slot element [11]. Taking
this into account, for each property ϵ CD, we define a primitive
type called p.name+p.owner.nameSlot(;;) ϵ CPS (e.g.,
namePersonSlot in Table I), which registers the owner, the
property type and its value.

Level M0. Finally, in order that Formula can reason and
search for valid instances of the specific classes, associations
and properties of the source class diagram, we include the
Introduce(f,n) command (used to add n terms of the
element type f) with the corresponding Instancec.name,
Linka.name or p.name+p.owner.nameSlot data type, as f,
and a specific number as n, to indicate the number of valid
instances of such data type we want Formula to generate as part
of the resulted object class diagram. For example, we define the
[Introduce(InstancePerson,2)] command, so that For-
mula searches two valid instances of InstancePerson (see
level M0 in Table I).

Finally, the Formula expressions resulted from the trans-
lation of a CD are grouped in four different Formula units.
On the one hand, Formula expressions defined at the meta–
model level (M2) are included into a Formula domain called
MetaLevelFD. Since the representation of the meta–level M2
is the same whatever CD is considered, this Formula domain
is defined once and used for each CD. An excerpt of the
MetaLevelFD domain has been presented in Figure 1. On the
other hand, Formula expressions defined at the model level
(M1) are distributed into two different units; the CDModelFM

model, which is constituted by the Formula expressions defined
in M1a, conforming with the MetaLevelFD domain, and the
InstanceLevelFD domain, constituted by the expressions de-
fined in M1b. Finally, the Formula expressions at the instance
level (M0) are included in the CDInstanceFPM partial model.

230Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 250 / 646

TABLE I: Excerpt of the CD to Formula mapping.

primitive Association ::= (name: String,
srcType: Class, srcLower: Natural, srcUpper: UpperBound,
dstType: Class, dstLower: Natural, dstUpper: UpperBound).

Translation pattern:

a.name is Association(“a.name”,

Class("a.memberEnd.at(1).type.name", a.memberEnd.at(1).type.isAbstract

a.memberEnd.at(1).lowerValue, a.memberEnd.at(1).upperValue,

Class("a.memberEnd.at(2).type.name", a.memberEnd.at(2).type.isAbstract

a.memberEnd.at(2).lowerValue, a.memberEnd.at(2).upperValue)

Example:

family is Association(“family”,Class(“Person”,false), 0, 2,
Class(“Person”,false), 0, star)

Translation pattern:

primitive Linka.name ::=(id: Integer, type: Association,

a.memberEnd.at(1).name: Instancea.memberEnd.at(1).type.name,
a.memberEnd.at(2).name: Instancea.memberEnd.at(2).type.name).

Example:

primitive LinkFamily::=(id:Integer,type:Association,
child:InstancePerson, parent:InstancePerson).

Formula instructions pattern:

[Introduce(Linka.name, number)]

Example:

[Introduce(LinkFamily,2)]
Example of the Formula generated instances:

LinkFamily(5,
Association(“family”,Class(“Person”,false),0,2,

Class(“Person”,false),0,star),
InstancePerson(93, Class(‘‘Person’’,false)),
InstancePerson(96, Class(‘‘Person’’,false)))

primitive Class ::= (name: String,
isAbstract: Boolean).

Translation pattern:

Classc.name is Class(“c.name”, c.isAbstract)

Example:

ClassPerson is Class(“Person”, false)

Translation pattern:

primitive Instancec.name ::= (id: Integer,

type: Class).
Example:

primitive InstancePerson::=(id: Integer,
type: Class).

Formula instructions pattern:

[Introduce(Instancec.name, number)]
Example:

[Introduce(InstancePerson,2)]
Example of the Formula generated instances:

InstancePerson(93,Class(“Person”,false))
InstancePerson(96,Class(“Person”,false))

primitive StrProperty::=(name:String, def:String,
lower:Natural, upper:UpperBound).

...
primitive LiteralNullProperty::=(name: String, def: Null,...).
primitive UnlimitedNaturalProperty::=(name:String, def: UpperBound,.)
Property::= StrProperty + ...+ userDataTypeProperties.
primitive HasProperty ::= (owner: Classifier, prop: Property).

Translation pattern:

p.name+p.owner.nameP is p.typeProperty(“p.name”,p.default,

p.lowerValue,p.upperValue)

HasProperty(Class("p.owner,.name", p.owner.isAbstract),

p.typeProperty(“p.name”,p.default, p.lowerValue,p.upperValue))

Example:

namePersonP is StrProperty(“name”,“”,1,1)
HasProperty(Class(“Person”,false),StrProperty(“name”,“”,1,1))

Translation pattern:

primitive p.name+p.owner.nameSlot ::= (owner:Element,

prop:p.typeProperty, value: valueType)

Example:

primitive namePersonSlot::= (owner: Element, prop: StrProperty, value:String).

Formula instructions pattern:

[Introduce(p.name+p.owner.nameSlot, number)]

Example:

[Introduce(namePersonSlot,2)]
Example of the Formula generated instances:

namePersonSlot(InstancePerson(93,Class(“Person”,false)),
StrProperty(“name”,“”,1,1),202)

namePersonSlot(InstancePerson(96,Class(“Person”,false)),
StrProperty(“name”,“”,1,1),201)

Level Class Association Property

M2

M1

a

b

M0

Starting from these units, Formula can reason about the valid
object class diagram, represented as instances of the elements
of the InstanceLevelFD domain, conforming the given CD,
represented by means of the CDModelFM model.

V. TRANSLATION OF CLASS DIAGRAM’S CONSTRAINTS

OCL integrity constraints undecidability has been tackled
in the literature by defining methods that allow UML/OCL
reasoning at some level. Examples of such methods are [4],
[13]; (1) those which allow only specific kinds of constraints,
(2) those which consider restricted models, (3) methods which
do not support automatic reasoning, or (4) those which ensure
only semi–decidable models. Our approach, which would fit
within the first type, identifies a significantly expressive frag-
ment of OCL and provides its translation to Formula for OCL
constraints’ decidable reasoning. In this section, we show that
our OCL fragment can be formally encoded in Formula, thus,
we guarantee finite reasoning for every OCL CD’s constraint
expressed using the constructors of our OCL fragment. Next,
we introduce the chosen OCL fragment and give the main idea
of its translation to Formula. Due to space reasons, we translate
a simple OCL constraint, which will serve as a reference
explanation for the remainder elements of our OCL fragment.

Introduction to the chosen OCL fragment. We consider
the OCL invariant context C inv: expr(self), where C
is the class ϵ CD to which the invariant is applied and
expr(self)is an OCL expression resulting in a Boolean value
for each self ϵ C. An OCL expression can be defined as a
combination of navigation paths with OCL operations, which
specify restrictions on those paths. A navigation path can
be defined as a sequence of roles’ names in associations
(such as p.children, being p a Person instance in Figure 2),
attributes’ names (such as c.name, being c a Company instance
in Figure 2), or operations (for example, c.hireEmployee(p)).
Taking this into account, in Figure 3 we represent the syntax of
our specific fragment, where OCLExpr is defined in a recursive
manner. For example, an OCLExpr can be the result of applying
relational operations to AddExpr expressions. Additionally, an
OCLExpr can be the result of applying a boolean operation
BoolOper to a Path, or a Path to which a SelectExpr is

OCLExpr RelExpr |Path BoolOper |Path SelectExpr

 not OCLExpr | OCLExpr1 and OCLExpr2

OCLExpr1 or OCLExpr2

Path PathItem | PathItem.Path

PathItem role | classAttr | operation

roleName.role | roleName.classAttr

roleName.oper | roleName.transClosuOper

RelExpr AddExpr <,<=,>,>=,=,!= AddExpr

AddExpr MulExpr | AddExpr +/- AddExpr

MulExpr Path | MulExpr * Path | MulExpr/Path

SelectExpr -> select(OCLExpr) BoolOp|

 -> select(OCLExpr) SelectExpr

BoolOper -> size()| -> forAll(OCLExpr)

Figure. 3: Syntax of the OCL fragment.

applied. An OCLExpr can be also constituted by boolean
combinations of these OCL expressions (not, and and or).
A Path expression represents the structural way of defining
navigation paths, starting from a PathItem, by combining
roles’ names, attributes’ names or operations, with the dot
operator. For an explanation of OCL, we refer to [10].

Our Translation Approach. Formula does not have a concept
similar to that of OCL invariants but gives the possibility of
defining queries, which provide a way to represent invariant se-
mantics. As way of example of our approach, in this section we
introduce the basic rule for translating OCL invariants where
the OCLExpr corresponds to a simple relational expression
RelExpr. We explain this rule by applying it to the invariant
context Person inv: self.age >=18, which formalizes the
constraint “The people working on a company must be older
than 18 years old” (see Table II).

First–step. This step is carried out by means of an interpre-
tation function FOL(), which translates each OCL expression
expr(self) defined in an instance self ϵ C, into a First–Order
Logic (FOL) formula defined in the variable self (see label (1)
in the first step of Table II). Basis in first order logic states that
the universal quantifier corresponds to a negated existential,
so the previous expression is equivalent to the one label (1’),
where FOL(not expr(self)), corresponds to the mapping of
not expr(self) into First–Order Logic (FOL).

Second–step. Each constraint logic program P can be trans-
lated into FOL according to its Clark Completion P∗ [8].

231Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 251 / 646

TABLE II: Translation of an invariant and example of use.

Translation of a RelExpr invariant
OCL Invariant: context C inv: expr(self)

First–step: ∀self ∈ C FOL(expr(self)). (1)
¬(∃self ∈ C FOL(not expr(self)). (1’)

Second–step: ¬(FOL∗(C) FOL∗[FOL(not expr(self))]) (2)
Third–step: query:=CLP(FOL∗[FOL(not expr(self))])

conforms := ! query. (3)
Example of application
OCL Invariant: context Person inv: self.age >=18

First–step: ∀self ∈ Person age(self)>=18. (1)
¬(∃self ∈ Person age(self)<18). (1’)

Second–step: ¬(∃ ageSlot(self,def,val) val<18).(2)
Third–step: query:=ageSlot(self,_,val), val<18.

conforms := ! query. (3)

Roughly speaking, the Clark Completion of an atom or
predicate symbol can be represented as a combination of
term expressions and rules, evaluated in variables, giving a
true result. The inverse translation, that is, from the FOL
representation of P (P∗) to P, can be carried out by apply-
ing inverse versions of the Clark Completion algorithm [3],
which compile specifications into the logic program it directly
specifies. Taking this into account, the second step is devoted
to represent the semantics given by the affirmative evalua-
tion of FOL(not expr(self)) in the collection of instances
self ∈ C, by means of Formula expressions. Since paths in
OCL are defined in terms of instances of the class diagram,
and in our approach such instances are defined by means
of the data types defined in the CDInstanceFPM partial
model, such Formula expressions are written in terms of
the InstanceclassName, LinkassociationName and/or proper-
tyName+ownerNameSlot data types. Based on this premise,
in this second step we rewrite the FOL expression FOL(not

expr(self)) in terms of Formula expressions by applying a
second function called FOL∗(). This function FOL∗() basi-
cally represents the predicate FOL(not expr(self)) by using
the corresponding Formula terms and predicate symbols ∈
InstanceLevelFD, and Formula constraints, in such a way that
the resulted expression is evaluated to true (see step labeled
(2) in Table II). In particular, the application of this step to
our constraint consists of representing age(self)<18 in terms
of the ageSlot whose val property is less than 18.

Third–step. Taking into account the semantics of queries in
Formula, the FOL expression given in the second step is finally
represented by means of the definition of a query and the
verification of its negation in the conforms query (see step
labeled (3) in Table II). This step is materialized by means of
the application of the function CLP(), which basically rewrites
the terms resulted from (2), and joins them by ‘,’.

Thus, the translation of an invariant is carried out by means
of the composition of the three defined functions. Next, we
make some remarks regarding the translation of the remainder
elements in our OCL fragment (see Table III). In particu-
lar, excluding the select and transitive closure elements,
whose translation requires extra attention, we consider that
the translation of the remainder OCL elements can be easily
understood by considering our previous explanations.

Select operation. Since this operation refers to obtaining a
subcollection from a set of elements, its translation consists
of defining a new Formula data type and populate it with
the facts representing the members in the collection we

TABLE III: Translation of part of our OCL fragment.

OCL expression Translation approach
E1 and E2 CLP(FOL∗(FOL(E1)))&CLP(FOL∗(FOL(E2)))
E1 or E2 CLP(FOL∗(FOL(E1)))|CLP(FOL∗(FOL(E2)))
not E CLP(FOL∗(FOL(not E)))
C-> size() count(CLP(FOL∗(FOL(C)))).
C-> query:=CLP(FOL∗(FOL(not exp(c)))).
forAll(c|exp(c) conforms:= ! query.
C-> SC,exprType::=(self:Tself,sele:Tsele)
select(c|exp(c) SC,exprType(self,sele):-

CLP(FOL∗(FOL(exp(c))))

want to select (see the first and second lines, respectively,
of the translation of the select operation in Table III).
As a way of example, if we want to collect the female
employees of a company, we define the type: FemaleEmp::=

(self: InstanceCompany, sele:InstanceEmployee), and
populate it by means of the rule: FemaleEmp(self,sele) :-

LinkContract(_,_,sele,self),genderPSlot(sele,_,val),

val=female., which gathers only female employees.

Transitive closure. Transitive closure is normally needed to
represent model properties which are defined in a recursively
fashion. The translation of closures is not straightforward since
they are not finitely axiomatizable in first order logic, and OCL
also does not support them natively [2]. Nevertheless, it is
possible to define the transitive closure of relations which are
known to be finite and acyclic. In particular, for its translation
we have based on both, the definition of transitive closure
provided in [2], and the representation in CLP of acyclicity
constraints provided in [7] (page 3), and proposed a translation
based on defining Formula rules, considering the fact that CLP
exposes fixpoint operators via recursive rules. Additionally, the
translation of this operation allows us to support aggregation.

Finally, the Formula model resulted from the translation of
a CD model annotated with OCL constraints (that is, the 4
Formula units including the Formula translation of the OCL
constraints), is used by Formula for reasoning about it. More
specifically, the tool inspects the Formula model looking for
a valid and non–empty instantiation of the CD/OCL model
to proof its satisfiability. If the result is empty, the defined
CD/OCL model is not satisfiable. Otherwise, Formula proposes
a conforming instantiation model of the defined CD/OCL
model, according to the desired software system settings.

VI. AUTOMATIC TRANSLATION

In order to manually transform a CD into the Formula
language, a professional with both UML and Formula skills
may be required. Also, such an encoding process may entail
a big effort depending on the CD used. The challenge is to
perform such a transformation in a viable and cost–effective
way. The complexity of some software designed models to-
gether with their possibility of change over time, make the
manual transformation of every CD into the input language
of a model finder tool a cumbersome and costly endeavor. To
overcome these challenges, we use an MDA tool-approach,
which allows us to automatically carry out the transformation
from the CD to Formula. Among the large amount of MDA-
based tools in the literature, we are interested in those with
support for customizable model–to–text transformations. The
idea is to define only one set of transformations for all CDs.
Finally, we have chosen the MOFScript Eclipse plug-in [5],
which we have already used in previous works [12]. In our

232Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 252 / 646

particular case, we use the UML 2.0 metamodel and the
specific CD as the model, defined using the UML2 Eclipse
plug-in [5]. As far as the Formula program generation is
concerned, we have defined several MOFScript transformation
scripts that generate the different Formula units with the
translation of the structural CD elements. In particular, we
have defined a set of MOFScript transformation rules, grouped
into different MOFScript files, employed to produce the print
Formula structures that constitute the three Formula units in
our approach, which depend on the specific CD.

VII. DISCUSSION AND RELATED WORK

As described previously, the formalization and analysis of
UML CDs can be done by means of translating the model to
other language that preserves its semantics, and finally, using
the resulted translation to reason about the design. Taking into
account that there is not an only language for materializing
such translation, and that several translation approaches can
be established using a same language, a discussion about the
semantic support of the language, together with the strengths
and weaknesses of the particular translation approach, is
worthwhile. Our work bets on using Formula for the semantics
preserving translation of the models to be verified. As for
the use of Formula instead of other analyzers, in particular,
Formula authors present in [7] a comparison with other tools,
both SAT (Boolean Satisfiability) solvers and alternatives such
as ECLiPSE and UMLtoCSP, focusing mainly on Alloy [1],
for being the closest tool to Formula. Although the Formula
authors provide a careful comparison with Alloy in [7], it
is worth noting the strengths of Formula, such as a more
expressive language or its model finding problems, which are
in general undecidable.

Our approach follows a multilevel MOF-like framework
based on the one proposed in [7]. On the one hand, we propose
a more faithful representation of the basic UML metamodel
and instance domain elements [11]. We consider that providing
a translation which captures the structural distribution of the
MOF architecture can contribute to ease the application and
understandability of the representation of a CD/OCL model
into Formula. We also give support for the translation of more
metamodel elements (such as full support to generalization,
property types other than Integer, String and Boolean, includ-
ing user defined data types, property’s multiplicities, etc.), thus
providing a richer framework. Additionally, we enhance the
proposal given in [7] by identifying an expressive fragment
of OCL, which guarantees finite satisfiability and providing a
formalization of the transformations from such OCL fragment
to Formula. At this respect, several related works can be cited,
being one of the most complete proposals the one given in [13].
In [13] the authors define a fragment of OCL called OCL–lite,
and prove the encoding of such a fragment in the description
logic ALCI, so that Description Logic techniques and tools
can be used to reason about CD annotated with OCL–lite
constraints. A difference of this approach with ours is the
fact that, although the chosen fragment is quite similar than
ours, we have tried to identify a simplest fragment so that no
element included in it can be inferred from other constructors
in the fragment by applying direct OCL equivalences (such as
the implies operator). In our particular case, there are sev-
eral OCL operations and expressions whose representation in
Formula is straightforward by applying equivalences (such as

the exists, isEmpty/notEmpty, xor, or reject). Finally,
there are other operations (such as oclIsTypeOf, considered
in [13]) that can not be represented into Formula, but we
give support to other not straightforward operators, such as
transitive closure, not normally included in related works.

VIII. CONCLUSION AND FUTURE WORK

We present an overall framework to reason about
UML/OCL models based on the CLP paradigm, using For-
mula. Our framework provides a way to translate a UML
model into Formula, following a MOF-like approach. We also
identify an expressive fragment of OCL, which guarantees
finite satisfiability and we provide an approach for translating
it to Formula. Our proposal can be used for model design
reasoning by verifying correctness properties and generating
model instances automatically using Formula. We provide an
implementation of our CD to Formula proposal, being the
implementation of the OCL fragment a remaining work.

ACKNOWLEDGMENTS

This work has been partially supported by the Academy
of Finland, the Spanish Ministry of Science and Innovation
(project TIN2009-13584), and the University of La Rioja
(project PROFAI13/13).

REFERENCES

[1] K. Anastasakis and B. Bordbar and G. Georg and I. Ray, “UML2Alloy:
A Challenging Model Transformation,” Proc. of the 10th International
Conference on Model Driven Engineering Languages and Systems
(MoDELS’07), LNCS, vol. 4735, 2007, pp. 436-450.

[2] T. Baar, “The Definition of Transitive Closure with OCL - Limitations
and Applications,” Proc. of the 5th Andrei Ershov International Confer-
ence in Perspectives of System Informatics (PSI’03), LNCS, vol. 2890,
2003, pp. 358-365.

[3] A. Bundy, “Tutorial Notes: Reasoning about Logic Programs,” Proc. of
the 2nd International Logic Programming Summer School (LPSS’92),
LNCS, vol. 636, 1992, pp. 252-277.

[4] J. Cabot and R. Clarisó and D. Riera, “Verification of UML/OCL
Class Diagrams using Constraint Programming,” Proc. of the 2008 IEEE
International Conference on Software Testing Verification and Validation
Workshop (ICSTW’08), IEEE Computer Society, 2008, pp. 73–80.

[5] Eclipse Modeling Project, Available at:
http://www.eclipse.org/modeling/. Last visited on August 2013.

[6] Formula - Modeling Foundations, Website: http://research.microsoft.com/
en-us/projects/formula. Last visited on August 2013.

[7] E. K. Jackson and T. Levendovszky and D. Balasubramanian, “Automat-
ically reasoning about metamodeling,” Software & Systems Modeling,
February, 2013, doi:10.1007/s10270-013-0315-y.

[8] J. Jaffar and M. J. Maher and K. Marriott and P. J. Stuckey, “The
Semantics of Constraint Logic Programs,” J. Log. Program., vol. 37,
1998, pp, 1-46.

[9] OMG, OMG Model Driven Architecture, Document omg/2003-06-01,
2003, Available at: http://www.omg.org/. Last visited on August 2013.

[10] OMG, Object Constraint Language OCL, OMG Specification, Version
2.2, 2010, OMG Document Number: formal/2010-02-01. Available at:
http://www.omg.org/spec/OCL/2.2. Last visited on August 2013.

[11] OMG, UML 2.4.1 Superstructure Specification, Document formal/2011-
08-06. Available at: http://www.omg.org/. Last visited on August 2013.

[12] B. Pérez and I. Porres, “Authoring and Verification of Clinical Guide-
lines: a Model Driven Approach”, Journal of Biomedical Informatics,
vol. 43, num. 4, 2010, pp. 520-536.

[13] A. Queralt and A. Artale and D. Calvanese and E. Teniente, “OCL-
Lite: A Decidable (Yet Expressive) Fragment of OCL*,” Proc. of the
25th International Workshop on Description Logics (DL’12), Description
Logics, vol. 846, 2012, pp. 312-322.

233Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 253 / 646

Figure 1: PassiveFTP interaction Diagram

Weaving Crosscutting Concerns into Inter-process Communications (IPC) in
AspectJ

Ali Raza, Dr. Stephen W. Clyde
Computer Science Department

Utah State University
Logan, Utah, USA

ali.raza@aggiemail.usu.edu

Abstract—Implementing crosscutting concerns for message-
based inter-process communications (IPC) are difficult, even
using aspect-oriented programming languages (AOPL) such
as AspectJ. Many of these challenges are because the context
of communication-related crosscutting concerns is typically
a conversation consisting of message sends and receives.
Other challenges stem from the wide variety of IPC
mechanisms, their inherent characteristics, and the many
ways in which they can be implemented, even using a
common communication framework. Additionally, current
AOPL do not provide pointcuts for weaving of advice into
high-level IPC abstractions like conversations. This paper
describes an extension to AspectJ, called CommJ, with which
developers can implement communication-related concerns
in cohesive and loosely coupled aspects.

Keywords-modularity; aspect-oriented programming
(AOPL); crosscutting concerns; AspectJ; software reuse and
maintenance.

I. INTRODUCTION
Inter-process communications (IPC) are ubiquitous in

today’s software systems, yet they are rarely treated as
first-class programming concepts. Instead, developers
typically have to implement communication protocols
indirectly using primitive operations, such as connect,
send, receive, and close. The sequencing and timing of
these primitive operations can be relatively complex. For
example, consider a distributed system that uses the
Passive File Transfer Protocol (PFTP) to move large data
sets from a client to a server. The server would enable
communications by listening for connection requests on a
published port, e.g., 21. A client would then initiate a
conversation, i.e., an instance of the PFTP protocol, with a
connection request to the server on that port. Figure 1
shows a typical sequence of messages following the initial
connection request.

Neither the client’s nor the server’s side of the
conversation is simple. In fact, to ensure responsiveness
for end users and to handle multiple simultaneous clients,
both the client and server might execute parts of a single
conversation on different threads, making it even harder to
follow concurrent conversations dynamically. A system
using PFTP could be further complicated by
communication-related requirements not central to
primary objective of moving large amounts of data, such
as logging, detecting network failures, monitoring

congestion, and balancing load across redundant servers.
From a communications perspective, these concerns

(and many others not listed above) are what Aspect-
oriented Software Development (AOSD) refers to as
crosscutting concerns, because they pertain to or cut
through multiple parts of core or base concepts. Directly
implementing these concerns in a typical system can cause
the scattering and tangling of code. Scattering occurs
when the same or very similar logic exists in multiple
places in the software. Tangling occurs when single
software component is complicated by logic for secondary
concerns. Scattering and tangling often occur together.

 AOSD, which first started to appear in the literature in
1997 [12, 25], reduces scattering and tangling of code by
encapsulating crosscutting concerns in first-class
programming constructions, called aspects [15]. In
strongly typed languages, an aspect is an Abstract Data
Type (ADT) with all of the same capabilities as an object
class. However, an aspect can also contain advice methods
that encapsulate logic for addressing crosscutting concerns
and pointcuts for describing where and when the advice
needs to be executed. More specifically, a pointcut
identifies a set of join points, which are temporal places in
the execution of the system for where and when weaving
of advice takes place [15].

AspectJ is an AOPL that extends Java for aspects [14-
17]. It allows programmers to weave advice into join
points that correspond to constructor calls or executions,
methods calls or executions, class attribute references, and
exceptions.

It is possible for skilled software developers to create
reusable, well-encapsulated crosscutting concerns in a
traditional object-oriented programming language OOPL.

234Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 254 / 646

Figure 2: CommJ Architectural Block Diagram

However, the difference between AOPLs and\an OOPLs is
that AOPLs offer convenient mechanisms for separating
crosscutting concerns from core functionality and for
following a principle called obliviousness [18]. Although
perhaps poorly named, obliviousness is the idea that core
functionality should not have to know about crosscutting
concerns [13].

The problem is that AspectJ, like other AOPLs, does
not support the weaving of advice into high-level
communication abstractions, such as conversations. Our
work, called CommJ, extends AspectJ so developers can
weave crosscutting concerns into IPC in a modular and
reusable way, while keeping the core functionality
oblivious to those concerns. See Section II for a high-level
overview. Section III describes a conceptual model that
provides a theoretical foundation for CommJ, namely its
message event joint points (see Section IV) and event
tracking (see Section V). Section VI describes base
aspects central to CommJ’s implementation. To validate
CommJ, we have created a library of reusable aspects for
common communication crosscutting concerns and have
applied them to a variety of sample systems (see Section
VII). Then, Section VIII discusses how application
programmers can write their own communication aspects.
Related work is presented in Section IX. Finally, Section
X summarizes the current state of CommJ and outlines our
future work.

II. HIGH-LEVEL OVERVIEW
Overall CommJ enables the partitioning of a complex

communication problem into manageable cohesive
concepts and promotes greater reuse with better
maintainability. Figure 2 shows an architectural block
diagram that represents relevant conceptual layers and
their dependencies. The following paragraphs describe the
high-level components and their dependencies.

In general, a universe model is a formal description of
a closed universe of things, as well as their relationships,
properties, interactions, and behaviors. Figure 3 shows part
of our universe model for IPC, which we refer to as the
UMC or Universe Model of Communication. Section III
describes a portion of UMC in more detail.

CommJ is an AspectJ library that implements message-
event join points and keeps track of conversations. A
software developer that wants to use communication-

related aspects simply has to include this library. Sections
IV - VI explain how CommJ implements the join points,
keeps track of conversations, and base abstractions for the
application programmers, respectively.

The Reusable Aspect Library (RAL) is a toolkit-like
collection of communication aspects that application
programmers should find useful for in many different
kinds of applications. They include aspects for measuring
turn-around times, tracing conversations, and introducing
behaviors into complex, multi-step protocols, like PFTP.
Section VII describes this library in more detail.

Application-level Aspects are those written by the
application programmers, either by using the abstractions
provided by CommJ or by specializing the aspects in RAL.
Section VIII discusses how these application-level aspects
can encapsulate complex crosscutting behaviors in an
understandable and maintainable way, without sacrificing
obliviousness or flexibility.

III. UNIVERSE MODEL FOR COMMUNICATIONS
The UMC establishes a conceptual framework for

discussing and reasoning about network-based
communications. Figure 3 shows a portion of this model,
namely the part that deals with message concepts. The full
UMC includes other concepts, like connections, that we do
not discuss here for brevity.

The central idea of the portion presented in Figure 3 is
that of a Message Event, which is the “happening” of a
message being sent (i.e., Sent Event) or a message being
received (i.e., Received Event). It is a time point related to
a particular message and is part of a Conversation
following a Protocol. Every Received Event must have a
corresponding Message Received object, which is simply a
message in the role of having been received. Similarly,
every Sent Event must have a Message Sent object. Also,
consistent with theoretical foundations for IPC [28], all the
Message Events in a system form a partial ordering; the
events on a single thread are totally ordered; and a
message’s Sent Event always comes before its Received
Event(s).

Message in Figure 3 is an abstraction that represents
data sent from one process to another as part of
conversation. Each Message can be associated with at
most one send and possible many receive events, which is
the case for multicasts or broadcasts. The Message class
contains abstract reflection methods for retrieving message
identifying information (MII), which consists of message,
conversation, and protocol identifiers. Application
developers implement these methods for their specific
types of messages and then CommJ uses those
implementations in keeping track of conversations. Since
these methods are abstract and are implemented in the
application, developers remain in full control of their
message structure.

Even though the UMC focuses on communications, it
includes Channel, Thread, Node, and Process classes to
help provide context information for the individual
messages and conversations

235Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 255 / 646

Figure 3: A conceptual model for UMC

Figure 4: Conversations in CommJ

IV. MESSAGE EVENT JOIN POINTS
Communication join points fall into two general

categories: message related and connection related. Since
this paper is focusing on Message Events, we only discuss
the former here.

 As mentioned earlier, join points represent places and
times where/when advice can be executed. In AspectJ,
they correspond to constructors, methods, attributes, and
exceptions. Advice can be executed before, after, or
around these various contexts. CommJ adds conversations
to the list of possible contexts, but unlike the advice
contexts in AspectJ, a conversation is not tied to a single
programming language construct. Instead, a context in
CommJ can be either:

A - an entire conversation from a process’s
perspective (see Figure 4)

B - any sequence of message send or receive events
in the conversation as seen by a process

C - a single send or receive event in a conversation

The green boxes in Figure 5 are CommJ classes that
implement join points for these different kinds of contexts.

MultiStepConversationJP represents join points for entire
conversations, as well as joints points for sequences of
events within a conversation. RRConversationJP (i.e.,
request-request conversation join points) also represents
join points for complete conversations, but only those that
follow request-reply protocols. MultiStepConversationJP
could be used for the same, but RRConversationJP
includes optimizations for this common type of
conversation. SendEventJP and ReceiveEventJP
implement joint points for individual message events.

A developer can implement crosscutting concerns,
define conversation-related pointcuts, and weave advice
into any of above join points by specializing the
corresponding abstract CommJ aspects, shown in yellow in
Figure 5.

V. EVENT TRACKERS AND REGISTRIES
Behind the scenes, CommJ uses JoinPointTrackers,

which are monitors [22] that perform pattern matching on
communication events, to track individual events and to
organize them into high-level conversation contexts. Since
the monitoring of communications is itself a crosscutting
concern, JoinPointTrackers are implemented as aspects
that weave the necessary monitoring logic into places
where communication event may take place. Although
CommJ can support many different kinds of
JoinPointTrackers, Figure 5 only shows one special kind
of tracker, namely MessageJoinPointTracker, which has
been specifically designed for send and receive events on
standard JDK sockets and channels.

When a MessageJoinPointTracker discovers a relevant
communication event, it creates a join point instance, e.g.,
a SendEventJP, correlates it with other events in the same
conversation, and then adds it to a registry, namely the
MessageJPRegistry shown in Figure 5. Advice in a
communication aspect can access these join point objects
to obtain context information, like the conversation’s start
time, channel, or the protocol.

236Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 256 / 646

public abstract aspect MessageAspect{
 public pointcut MessageSend(SendEventJP jp) ...
 public pointcut MessageRecieve(ReceiveEventJP jp) ...
}

Figure 6: Pointcuts in MessageAspect

Figure 5: CommJ Message Event Join Points and Aspects

VI. BASE ASPECTS
All communication aspects are ultimately derived from

abstract MessageAspect, which provides concrete
pointcuts that dynamically track send and receive events
(See Figure 6 for more details). For space considerations,
the full definitions of the pointcuts are not shown, and are
not necessary for understanding their purpose. However,
it is important to note that they take join point objects as
parameters, because this is how advice based on these
pointcuts can access communication contexts.

The four specializations of MessageAspect in Figure 5
correspond to four different kinds of conversation
contexts, as mentioned earlier, and extend MessageAspect
with pointcut abstractions that are meaningful to those
contexts (see Figures 7a-7d). Developers can create their
own application-level communication aspects that inherit
from these aspects and include advice based on these
pointcuts.

The OneWaySendAspect is relatively trivial because it
represents a simple one-message conversation from the
message sender’s perspective. Similarly, the OneWay-
ReceiveAspect represents a one-message conversation
from the message receiver’s perspective.

The RRConversationAspect extends MessageAspect
with pointcuts for conversation beginnings and
conversation ends. Developers can use this aspect to
weave advice before, after, or around simple request-reply
conversations, either from a conservation initiator or
responder perspective.

The MultistepConversationApsect is the most complex
of the four. In addition to pointcuts for conversation

beginnings and ends, it provides a way for applications to
specify arbitrarily complex communication protocols,
which define the message patterns that comprise
conversations. A process can participate in a conversation
with one or more ProcessRoles. See Figure 8.

The key to working with complex protocols is that an

aspect developer can formally define them in terms of
ProcessRoles and then ProcessRoles in terms of finite
state machines (see State Machine in Figure 9.) For
example, consider a communication protocol that involves
three processes, A, B, and C, and where A starts a
conversation by sending a message to B and waits for a
response. When A receives a response B, it then sends a
message to C and waits for a response. When A receives a

public abstract aspect OneWaySendAspect
 extends MessageAspect{
 public pointcut ConversationBegin(SendEventJP jp)....
}

Figure 7(a): OneWaySend aspect in RAL

public abstract aspect OneWayReceiveAspect
 extends MessageAspect{
 public pointcut ConversationEnd(ReceiveEventJP jp)....
}

Figure 7(b): OneWayReceive aspect in RAL
public abstract aspect RRConversationAspect
 extends MessageAspect{
 public pointcut ConversationBegin(RRConversationJP jp)
 public pointcut ConversationEnd(RRConversationJP jp)

}

Figure 7(c): RRConversation aspect in RAL

 public abstract aspect MultistepConversationAspect
 extends MessageAspect{
 public pointcut ConversationBegin(MultistepConversationJP jp)....
 public pointcut ConversationEnd(MultistepConversationJP jp)....
 ….
}

Figure 7(d): MultistepConversation aspect in RAL

237Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 257 / 646

Figure 8: Process participation in conversations by roles and role

defines by state machines
response from C it sends a final message to both B and C.
Figure 9 shows a finite state machine for the A
ProcessRole of this protocol. The B and C ProcessRoles
are considerably simpler and are not shown here.

The CommJ StateMachine class includes a
buildTransitions method that allows developers to define
state machines in terms of states and message-event
transitions. Figure 10 shows the implementation of this
method to define a StateMachine for the sample
ProcessRole shown in Figure 9.

VII. REUSABLE ASPECTS LIBRARY
Aspects in the RAL are also derived from the base

aspects in CommJ. They represent general crosscutting
concerns commonly found in applications with significant
communication requirements. Table 1 lists some of the
aspects currently in the RAL and Figure 11 shows part of
the implementation of first one, TotalTurnAroundTime-
Monitor. Note how the advise in this aspect follows the
Template Method pattern [29]. This allows developers to
quickly adapt it to the specific needs of their application
by overriding the Begin and End methods. Other aspects
in the RAL make use of this and other reuse techniques to
easily integrate them into existing or new applications.

We expect that RAL will continue to grow as new
generally applicable communication aspects are
discovered, implemented, and documented.

VIII. APPLICATION-LEVEL COMMUNICATION ASPECTS
As mentioned, aspect developers implement and add

application-level aspects into core application logic by
either reusing RAL aspects or specializing the base aspects
in CommJ. As an example, this section describes the
implementation of an application-level aspect that weaves
performance measurements in the multistep protocol,

public aspect TotalTurnAroundTimeMonitor
 extends MultistepConversationAspect{
 private long startTime = 0;
 private long turnAroundTime = 0;
 before(MultistepConversationJP jp):
ConversationBegin(jp){
 startTime = System.currentTimeMillis();
 Begin(jp);
 }
 after(MultistepConversationJP jp): ConversationEnd(jp){
 long turnaroundTime = (System.currentTimeMillis() –
 startTime)/1000;
 End(multiStepJP);
 }
 public getTurnAroundTime { return turnAroundTime; }
 protected void Begin(MultistepConversationJP jp){
 // Specialization of this aspect should override the
method
 }
 protected void End(MultistepConversationJP jp){
 // Specialization of this aspect should override the
method
 }
 …
}

Figure 11: A code snippet of TurnAroundTimeAspect

Figure 9: Sample Process Role

public class SampleProcessRole extends StateMachine{

 @Override
 public void buildTransitions(){
 addTransition("Initial", 'S', "M1", "WaitingRspFromB");
 addTransition("WaitingRspFromB ", 'R', "M2", " ReceivedRspFromB");
 addTransition("ReceivedRspFromB", 'S', "M3", " WaitingRspFromC");
 addTransition("WaitingRspFromC", 'R', "M4"," ReceivedRspFromC");
 addTransition("ReceivedRspFromC", 'S', "M5"," Final");
 }

....
}

Figure 10: State Machine configuration for sample Process Role

TABLE I. SIX OF THE ASPECTS IN THE RAL AND THEIR DESCRIPTIONS
Aspect Name Description

TotalTurnAroundTimeMonitor Provides virtual helper methods for conversations which help programmers to override RAL aspects in their
applications

MessageLoggingByConversation Log messages by conversations in a developer-defined format and repository
MessageEncryption Add session-level encryption/decryption to communication protocols
NetworkNoiseSimulator Allows developers to add noise, message log, and message duplication to network communications, which is

useful for system testing
NetworkLoadBalancer Helps programmers balance message loads across two more communication channels
VersionControlAspect Helps programmers manage multiple version of messages structures for their applications

238Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 258 / 646

introduced in the previous section. For discussion
purposes, assume that the performance measurements are a
rolling window of throughput and average-conversation
turn-around time statistics. Also, assume that the core
application considers a unit of work to be the completion
of a conversation that follows this protocol. So, we can
measure throughput for a unit of time, say 1 minute, by
simply counting the number of these conversations
completed in that minute. The average turn-around time is
the average of timespans from conversation start times to
conversation end times. The rolling window keeps track
of these statistics for the current minute and 10 previous
minutes. Figure 12 in the next page shows the key snippets
of an aspect that implement this performance measure
crosscutting concern.
First notice how this advice is derived from TotalTurn-
AroundTimeAspect and in doing so, it can reuse its
implementation of the conversation turnaround time

concept directly. Then, it adds the Stats array for holding
the rolling window of statistics and some additional
behavior to the ending of a conversation to compute the
statistics.

IX. RELATED WORK
We found many papers that talk about using aspect-

oriented technology for communication-related cross-
cutting concerns, such as replication [5], persistence [9],
synchronization [8, 16], and remote pointcuts [6]. To date,
we have not found any other work that extends the
possible contexts and join points for aspects to
conversations or sequences of events in a specific
conversation. The closest idea discusses the composition
of communication abstractions by separating out definition
of communications from the definition of other aspects [7].
Although this work is of value, we believe that CommJ
enables better modularity while preserving obliviousness.

Marco, et al., describe a Java-based communication
middleware, called AspectJRMI, that applies AOPL
concepts to modular design and the implementation of
RMIs [27]. Their primary contribution is the
decomposability of RMI into small crosscutting concerns.

Other related ideas deal with the definition of reusable
communication constructs in languages, like Erlang,
which is based on processes communicating via
asynchronous message passing [26, 21]. However, these
approaches do not inherently encourage the separation of
crosscutting concerns from core application requirements.

Gary, et al., describe an approach for building
customized protocols using Cactus – a system in which
micro-protocols are implementing individual attributes of
transport [1]. More complex protocols can then be
composed from these micro-protocols. Dirk, et al., show
how to separate the definition of communication from the
definition of other system functionality [2]. A paper on
extensible client-server software by Coady, et al., talks
about requiring a clear separation of core services from
those that should be customizable [3]. Remi, et al., talk
about concurrent event-based AOPL and define an
approach of writing concurrent aspects [11]. All these
works address research objectives different from CommJ
and only indirectly related to our research.

X. SUMMARY AND FUTURE WORK
This paper introduced the notation of communication

aspects and discussed an AspectJ framework, i.e., CommJ,
for weaving aspects into inter-process communications. It
then describes the design and implementation of some of
CommJ key components, namely the base aspects. It also
provides an overview of a toolkit that consists of reusable
communication aspects and doubles as a proof of concept,
since these aspects can be directly applied to a wide range
of existing applications.

Based on preliminary evidence, we believe that
CommJ is capable of encapsulating a wide range of
communication-related crosscutting concerns in modular
aspects. However, more research and experimental
evidence is needed. We plan to conduct real world

public aspect MyAppPerformanceMonitor
extends TotalTurnAroundTimeMonitor{

 private Stats[] statsList = new ArrayList[11];
 private int currentStatsIndex = 0;

 @Override
 protected void End(MultistepConversationJP jp) {
 // Get number of elapsed minutes since beginning of current
Stats
 long elapsedMinutes = Min(Stats[currentStatsIndex].
getMinutesSinceStartTime(), 10);
 // Roll Stats window forward, if necessary
 for (int i=0; i<elapsedMinutes; i++){
 currentStatsIndex++;
 if (currentStatsIndex>10)
 currentStatsIndex=0;
 Stats[currentStatsIndex].Reset();
 }
 currentStats.addCompleteConversation(getTurnaroundTime);
 }
}

class Stats{
 private long startTime;
 private int completeConvCount;
 private double avgTurnaroundTime;

 public Stats{
 Reset();
 }

 public Reset(){
 startTime = currentTime;
 completeConvCount = 0;
 avgTurnaroundTime = 0;
 }
 public long getMinutesSinceStartTime() {
 // using current time, compute and return the number of
minutes since the start time of this Stats object. A zero means
we still in the same minute
 }

 public void addCompleteConversation(double
newTurnaroundTime) {
 avgTurnaroundTime =
((completeConvCount*avgTurnaroundTime) +
newTurnaroundTime)/(++completedConvCount);
 }
}

Figure 12: performance measure crosscutting concern

239Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 259 / 646

experiments using CommJ to verify its benefits in software
reuse and maintenance. We also hope to gather more
empirical evidence of CommJ value by increasing the
number of aspects in the RAL and by continuing to expand
the number and types of applications that use CommJ.

Those interested in trying out CommJ or contributing
to it can obtain a copy of the framework from
http://commj.cs.usu.edu.

REFERENCES
[1] Wong G., Matti A. and Richard D., “A Configurable and

Extensible Transport Protocol,” IEEE/ACM Transactions on
Networking, Vol 15, No 6, 2007.

[2] Heuzeroth D., Lowe W., Ludwig A., and Amann U., “Aspect-
Oriented Configuration and Adaptation of Component
Communication,” Proceedings of the Third International
Conference on Generative and Component-Based Software
Engineering GCSE 01.

[3] Coady Y., et al., “Can AOP Supports extensibility in Client-Server
Architectures,” In Proceedings, ECOOP Aspect-Oriented
Programming Workshop 2001.

[4] Bergmans L., Tekinerdogan B., Glandrup M. and Aksit M.,
“Composing Software from Multiple Concerns: A Model and
Composition Anomalies,” ICSE00.

[5] Nishizawa M., Chiba S., “Jarcler: Aspect Oriented Middleware for
Distributed Software in Java,” Research Report Computer Science
Department, Tokyo Institute of Technology (2002).

[6] Nishizawa M., Chiba S., and Tatsubori M., “Remote Pointcut – A
Language Contruct for Distributed AOP,” AOSD 2004.

[7] Daniel L., et al., “Explicitly distributed AOP using AWED,”
AOSD 2006.

[8] Carlos A., Sobral L., and Miguel P., “Reusable Aspect-Oriented
Implementations of Concurrency Patterns and Mechanisms,”
AOSD06.

[9] Soares S., Laureano E., and Borba P., “Implementing Distribution
and Persistence Aspects with AspectJ,” OOPSLA 2002.

[10] Antunes M., et al., “Separating Replication from Distributed
Communication: Problems and Solutions,” International
Conference on Distributed Computing Systems Workshop, 2001.

[11] Douence R., Botlan D., Noye J., and Sudholt M., “Concurrent
Aspects,” (GPCE 2006).

[12] Kiczales, G., et al., “Aspect-oriented programming,” (ECOOP),
1997, 220--242.

[13] Bergmans L., Tekinerdogan B., Glandrup M., Aksit M.,
“Composing Software from Multiple Concerns: Composability and
Composition Anomalies,” ICSE’2000.

[14] AspectWorkz2, http://aspectwerkz.codehaus.org/, last updated on
August 14, 2013.

[15] ApectJ, http://www.eclipse.org/AspectJ/, last updated on August
14, 2013.

[16] JBoss AOP, http://www.jboss.org/jbossaop, last updated on
August 14, 2013.

[17] Spring AOP, org.springframework, last updated on August 14,
2013.

[18] Clifton C., Gary T., “Obliviousness, Modular Reasoning, and the
Behavior Subtyping Analogy,” SPLAT 2003.

[19] Shigeru C. “Load-Time Structural Reflection in Java,” (ECOOP
'00).

[20] Tennent R., “The Denotational Semantics of Programming
Languages,” Communications of ACM 1976.

[21] Farchi E., Nir Y., and Ur S., “Concurrent bug patterns and how to
test them,” Parallel and Distributed Processing Symposium 2003.

[22] Douence R., Motelet O., and Sudholt M., “A formal definition of

crosscut,” MISC 2001.
[23] Block Diagram, wikipedia.org/wiki/Block_diagram, last updated

on February 09, 2013.
[24] Shaw M., Garlan D., “Software Architecture: Perspective on an

Emerging Descipline”, Publication Date: April 12, 1996, ISBN-
10: 0131829572.

[25] Lopes, C. “D: A Language Framework for Distributed
Programming”. PhD Thesis, Northeastern University, 1997.

[26] Christakis M., and Sagonas K., “Detection of Asynchronous
Message Passing using Static Analysis”, PADL'11.

[27] Tulio M., et al.. “An aspect-oriented communication middleware
system”, (OTM'05)

[28] Dollimore J. et al.. “Distributed Systems: Concepts and Design,”
(4th Edition); ISBN-10: 0132143011

[29] Gamma E., Helm R., Johnson R., and Vlissides J., “Design
Patterns: Elements of Reusable Object-Oriented Software,”
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA. 1995.

240Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 260 / 646

Systematic Modeling of Workflows in Trace-Based
Software Debugging and Optimization

Salman Rafiq and Adriaan Schmidt
Fraunhofer Institute for Embedded Systems and Communication Technologies ESK

Munich, Germany
Email: {salman.rafiq, adriaan.schmidt}@esk.fraunhofer.de

Abstract—Tracing is a tool frequently used in the debugging
and optimization of software. While there exist different tracing
solutions, each of them comes as a tightly coupled trace collection,
analysis and visualization bundle, and thus, it can only be used
to answer a narrow range of questions. Due to this limitation
and the complex nature of software workflow in the embedded
domain, we believe that tracing and the analysis of traces have to
be flexible and extensible. In this paper, we propose a methodology
of trace processing. We introduce a generic model of describing
traces and operations that are performed on them, irrespective of
the tracing solutions being used. Also, with the help of our model,
one can describe new processes and workflows that involve trace
data from a combination of sources. To present the use of our
methodology, we systematically model four use cases that solve
complex debugging and analysis tasks. At the end, we show how
one of these use cases fits into a modular framework using a
prototype implementation.

Keywords—Tracing; trace-processing; workflow modeling; de-
bugging; multicore.

I. INTRODUCTION

With the ever-increasing complexity of hardware and
software systems, the task of programming and maintaining soft-
ware has become more and more challenging. This is especially
true when considering parallel systems, i.e., multicores and
Systems-on-Chip (SoCs). To debug and optimize these systems,
classical debugging tools and methods are often insufficient.

Tracing, that is the recording of data on the dynamic
behavior of a software system, has been introduced with great
success in some problem domains, e.g., performance optimiza-
tion in High-Performance Computing (HPC) or debugging of
embedded and real-time systems. So far, however, existing
trace solutions cover only few specific use cases at a time. The
technologies of trace collection and visualization are customized
to these cases. In HPC, tools are specialized to deal with highly
parallel programs, typically using the message passing model
of programming. Trace analysis and graphical visualization
is tailored to the task of performance optimization of such
applications. In the area of embedded computing, we will
find tools that can record a system’s execution with hardware
assistance, at a cycle-accurate level, without changing the timing
behavior of the target. This data is then used for debugging
and analysis purposes. Due to its non-intrusive behavior, this
method is suitable for debugging timing related issues in real-
time systems.

Existing trace solutions, such as [1, 2, 3], collect a
vast amount of data, which is then processed and presented
to the developer. However, these products mostly come as

integrated solutions, tightly coupling trace collection, analysis
and visualization.

With the afore-mentioned increased complexity in systems,
we believe that tracing and the analysis of traces need to be
flexible and easy to handle and extend. For instance, tools have
to be extensible to fit complex debugging and optimization tasks.
Keeping these properties in mind, we introduce a methodology
to describe traces and operations on them. This methodology
can be used to model different elements of a trace-based analysis
and debugging workflow. Moreover, it provide ways to model
complex processes that use the trace data from different tools or
sources. We also present how different debugging and analysis
use cases can be efficiently modeled using our methodology. By
modeling a use case, dependencies between different trace data
involved, and the interfaces between different tools become
obvious, which helps during concrete implementation. At the
end, we show how one of the modeled workflows can be
mapped on to a modular framework, as part of our prototype
implementation.

Previously, there has been some work on languages describ-
ing event traces. Auguston [4] suggested FORMAN language,
which is used to describe computations over event traces. It
uses an event grammar to define intended program behavior
during debugging or testing of programs. Boroday et al. [5]
presents a generalized formal framework to model event traces
in a distributed system. Another language called Tiddle is
proposed by Sadowski and Yi [6] to test dynamic analyses by
generating concurrent benchmarks. However, these languages
do not provide a way to define complex analysis workflows, that
involve trace data from different sources. Also, these modeling
techniques cover specific use cases, e.g., communication, or
concurrency bugs, rather than being generic and scalable to
other use cases as well.

Visualization tool by McGavin et al. [7] describes a
methodology to explore large sets of execution traces. It
gives control to the user to filter events and get on-demand
information related to a particular object, after loading all the
trace data into the tool. Whereas with our modular framework
consisting of transformation modules, pre-filtering of trace
data can be done before loading it into an output module, i.e.,
visualization or analysis tool. Hamou-Lhadj and Lethbridge [8]
discuss different analyses and visualization tools for Object-
Oriented systems, and the possibility to combine features from
each tool into a common framework as their future work.
The discussion centers on trace exploration and compression
techniques to reduce the volume of generated traces.

241Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 261 / 646

The remainder of this paper is structured as follows. In
Section II, we present a brief introduction to tracing and an
overview of the current tracing, analysis and visualization
technologies. In Section III, we describe our model and
methodologies for trace data manipulation and workflow
description. Section IV presents use cases which utilize our
model to describe complex trace-analysis workflows. Section
V shows the mapping of one of the modeled use case to a
modular framework, before Section VI concludes this paper.

II. SURVEY OF TRACING TECHNOLOGIES

Tracing can be seen as directly derived from one of the
oldest methods in debugging: the use of print statements to
output program state at runtime. The method has, however,
evolved, and the use of tracing techniques yields a much more
systematic approach to debugging than the simple insertion of
print statements. Especially in complex parallel systems, the
messages produced by manually printing program state will be
hard to read and interpret. This is where tracing solutions offer
graphical visualization that helps the developer to comprehend
the recorded trace data.

In this section, we present a brief overview of trace-
collection methods. We show the basic sources of trace events
that are used as inputs to our trace-processing workflows.

A. Instrumentation-Based Tracing

One important method of tracing is instrumentation: addi-
tional code is added to the software at points of interest, which
causes the target itself to generate event traces. These are then
stored or transmitted for later analysis. There are different
ways of instrumenting the target software. The most basic is
manual insertion of instrumentation code by the developer.
Alternatively, the insertion can be automated, often with the
help of the compiler. Another class of tools performs dynamic
instrumentation of the target application, that is, they change
the code at run time.

The recording of event traces with the help of instru-
mentation can be performed in different components of a
system. Aside from the application itself, instrumentation
placed within the operating system can produce valuable
information on system execution, capturing the interaction of
several applications, together with global resources like device
drivers.

Instrumentation-based trace techniques are used in different
domains, and several specialized solutions are available: in
the area of HPC, tools like [1, 2, 3] together with their
respective visualization front-ends, are popular to optimize the
performance of highly parallel applications. Instrumentation of
the operating system kernel is used in debugging, but also on-
line monitoring of systems. Solutions are available for numerous
platforms, including Linux [9], Windows [10], BSD or QNX
[11]. Also for embedded systems, specialized solutions are
available, e.g., for low-overhead collection of events for timing
analysis [12].

The advantage of using instrumentation to collect trace
events is that it allows good control on the type and number of
events to be collected. In this way, the volume of the generated
trace can be limited to the events actually needed. Manual

instrumentation of the application is easy to use, and can
access application-specific data. Common examples would be
the indication of program states, or the value of internal program
variables.

However, instrumentation does influence the run-time be-
havior of the target application. So, in debugging timing-related
issues, the target may exhibit a changed behavior due to the
instrumentation, and the results may be useless. Also in systems
that are already operating at the limit of CPU utilization may
not be suitable for instrumentation, as the additional overhead
may render the system dysfunctional.

B. Hardware-Based Tracing

Modern processors implement hardware interfaces that
generate execution traces. Here, event traces are generated
by the hardware and are typically on a low level, i.e., the
execution of single machine instructions. The generated data is
transferred off-chip via a high-speed serial interface, e.g., Serial
Wire Debug (SWD) [13]. To receive the trace data, usually
another hardware device (hardware debugger) is needed that
decodes the event stream and transfers the data to a debugger
application on the host computer. Examples of such solutions
are [14, 15, 16].

A hardware trace contains detailed data on the execution of
all software. In contrast, an instrumentation-based trace captures
events only in the parts of the system that are instrumented,
so it captures events only the developer expected. To also
see unexpected events like hardware interrupts or unexpected
memory accesses due to corrupted pointers, a hardware trace is
much more useful. Another great advantage of hardware-based
tracing is that it does not influence the timing behavior of
the target system. This means that it is also suitable to debug
timing issues in real-time systems.

The transfer of a target-system trace to a host computer
can require extremely large bandwidths. If we take the ARM
platform as an example, this can lead to a required bandwidth
of 1 Gbit/s per core for a simple instruction trace and up to 16
Gbit/s per core for a complete data trace [17]. When considering
multicores and SoCs with many on-chip trace sources, one
quickly sees limitations in the amount of trace data that can be
transported from the target to the development host. Obtaining a
complete execution trace of a multicore processor is at the least
challenging, and often impossible due to bandwidth limitations.

Realizing this, hardware vendors have started the integration
of more-flexible tracing logic into their chips. Examples are
ARM CoreSightTM [18], or Infineon’s MCDS [19]. With its
help, it is possible to program flexible triggers and filters, and
thus reduce the volume of the trace data and the bandwidth
needed to transfer it.

While typically hardware-based trace solutions capture data
from the processor cores, and thus data specific to the software
being executed, other devices can be traced as well. Examples
include traces of on-chip buses and interconnects [20] or
peripheral devices [21].

C. Other Data on Dynamic System Behavior

Apart from traces collected using dedicated software or
hardware solutions, there exist many other useful sources of

242Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 262 / 646

source

transformation

sink

visualization

analysis

user input

report

trace aspect

scope

level of detail

x

A

B

0 5 10

Trace

Figure 1: Elements used in the graphical representation of trace processing
workflows.

data on the runtime behavior of a system. Some of them can
be useful in an analysis to provide a context in which the
software was executed. This is especially valuable when dealing
with embedded systems that have close interaction with their
surroundings.

Examples are traces of communication links, which can be
captured externally using a network monitor or a bus analyzer,
or information from external sensors and actuators. Also other
existing sources of data present in software can be exploited
in trace analysis, e.g., existing log files, providing a high-level
view of the system’s activities.

III. METHODOLOGY OF TRACE PROCESSING

In this section, we introduce a model to describe traces
and operations on them. Our objective is to provide a basis
on which to argue about transformations, analyses, and the
graphical visualization of trace data. Our approach can be used
to describe workflows of trace processing in an abstract way,
independent of a particular trace-collection technology. With
the help of our methodology, complex applications in the area
of trace analysis can be systematically described.

Throughout this paper, we use a simple graphical represen-
tation to visualize applications of our model. An overview of
elements is shown in Fig. 1. They are described in detail in
this section.

A. Trace Features

Traces are the central artifact of our model representation.
Our model annotates a trace with three features: the Aspect
captured by the trace, the Scope of the trace data, and its Level
of Detail. We do not model the details of the trace data itself,
or impose any restrictions on trace formats and representations.
For the purpose of our model description, a basic definition of
traces is sufficient. Thus, we define a “trace” to be an ordered
sequence of events. The order may be established by associating
a timestamp with each event. Additionally, trace events may
contain arbitrary data; again, there is no restriction imposed by
our methodology.

We do not provide a formal language for the description
of trace features in our model, but rather focus on the high-
level representation of traces using plain English. It is up to
the developer, how detailed this description should be. In our
graphical representation, a trace is depicted as a rectangular box
with three fields, one for Aspect, Scope and Level of Detail.

1) Trace Aspect: The trace Aspect describes which prop-
erties of the target system are captured in the trace data. It is
the most important of our three properties, as it describes the
nature of the respective trace. The Aspect of a trace determines
which questions can be answered by interpretation of the trace
data, and it is often closely linked with the method of trace
collection.

Examples of trace Aspects can be “program execution
flow, i.e., which instructions or functions were executed at
which time”, “program state, i.e., the values of variables over
time”, “packets seen on a network link”, “transactions on
an internal bus”, “performance metrics”, and “inter-process
communication”.

2) Trace Scope: The Scope of a trace describes which parts
or which components of a system are covered by the trace.
Components of a system may be hardware devices, such as
CPU cores or communication interfaces, or software entities,
such as applications, threads, or objects.

In trace analysis, it is important that the trace data captures
the right scope. For efficient operation, the trace should not
contain more or less information than is needed to answer
the developer’s questions. If the scope is too broad, it may
be difficult to grasp the essential information, and if it is too
narrow, interactions between several components may be lost
from the trace.

As the selection of a Scope for a trace defines which subset
of the set of all available events is contained within the trace, it
directly influences the volume of the resulting trace. Thus, the
trace Scope determines the bandwidth required for transmission
of the trace, or the capacity needed for its storage. The possible
values of the Scope feature naturally depend on the Aspect
captured by the trace. When considering a trace of the program
execution flow, the Scope may be, for example, “instructions
executed by application A”, “instructions executed in interrupt
service routines”, or “instructions executed on Core n”. In
contrast, a trace of network packets or protocols may have
scopes like “TCP, HTTP, or telnet session”, “connection in a
client-server scenario” or “communication link”.

3) Level of Detail: The Level of Detail (LoD) gives
information on the resolution or precision of the trace. It can
be described as a set of information captured to fulfill the
requirements in achieving a certain trace Aspect.

Similar to the Scope feature, the LoD in a trace depends
upon the trace Aspect. Also it influences the trace volume as in
the case of a Scope. Carefully choosing the LoD can simplify
the trace collection, transmission, and storage in cases where
the lower LoD is tolerated by the analysis in question.

For example, a trace Aspect “execution flow” may have
LoD like “complete set of instructions”, “only branches”, or
“only function entries and exits”. On the other hand trace Aspect
“data values” can have LoD like “modifying a certain memory

243Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 263 / 646

location”, “reader or writer process/thread”, or “reads/writes
within a specific region of the code”.

B. Basic Trace Transformations

A trace transformation is a step of processing, which takes
one or more traces as input, and based on them generates one
or more traces as output. Within our model, a transformation
always affects at least one of the three trace properties.

The effects of some operations are easy to capture and
understand. For example, filtering operations will usually
either narrow the Scope of a trace, or lower its Level of
Detail. Examples would be the processing of a hardware trace
containing all executed instructions through a filter, which
reduces the data to include only the executed calls and returns,
thus yielding a lower LoD (function entry/exit instead of
instruction accurate). Also, a reduction in Scope is common,
and can be seen as a filter operation performed on the trace. An
example is the filtering of a trace of scheduling events of the
operating system, to extract only those events related to a certain
application. These two operations are easily implemented as
filters, extracting some events from a trace and discarding the
others.

Other transformations are more complex. Among them are:
broadening of a Scope; which combines traces with distinctive
features. This combination of different traces with distinctive
features has the potential of substantially increasing the value
of tracing. In systems with complex interactions of different
components, it is often necessary to combine data from many
different sources to track down the origin of a software failure. If
this integration of data sources can be performed systematically,
as opposed to the developer switching back and forth between
tools, debugging and optimization can be greatly simplified.

Changing the Aspect of a trace is another complex trans-
formation, which can require some more-elaborate analysis
and processing. A complete trace of program execution could
be processed, such that instead of the execution flow of the
application it reflects the value of certain variables over time.

In the processing of hardware traces, there is a commonly
used transformation that increases the level of detail. The trace
unit of modern CPUs compresses the trace data to reduce
bandwidth. Usually, only the branch instructions are captured,
knowing that from this information the instructions executed
between branches can be reconstructed. This step is implicitly
performed by the host-side tracing tools.

C. Trace Sources and Sinks

To model trace-processing workflows, it is not only nec-
essary to describe trace transformations, but also to specify
where traces come from (their sources) and what eventually
happens to them (their sinks). Trace sources are means of trace
collection, of which we already described several in Section II.
We distinguish two kinds of sinks: visualization and analysis.

The trace sources are the point where traces enter our
modeled workflows. The trace-collection method determines
the features of the trace at this point. Multiple trace sources
can be employed in one workflow, e.g., combining traces that
capture different Aspects or Scopes of the same system.

It is important to mention that workflows described by our
model can have many processing steps, not all of which will
be actually implemented in software. It is possible for some of
the steps to be implicitly performed in hardware, e.g., on-chip
filtering of trace events. In these cases it is up to the developer,
whether this implicit processing step is modeled, or whether
the model uses the already filtered data as a trace source.

A visualization presents the trace data to the user, showing
the trace events on a time line. On the other hand, an analysis
takes a trace as input and generates results in arbitrary form.
Their semantics differ from the transformations described
earlier, in that their output is not a new trace. Thus, the analysis
result, which might take the form of a textual or graphical report,
lies outside the scope of our model. Examples of analyses are:
timing properties like average execution times of functions or
distributions of response times, analysis of lock contention, or
analysis of data accesses to detect race conditions.

Both visualization and analysis can present data to the
developer in an interactive way. It may be possible to “browse”
the trace graphically, scroll, zoom, etc. User interaction can
influence the processing inside the modeled workflow. By
selecting elements from the analysis or visualization, the
user could change the parameters of certain transformations,
causing a re-calculation of the results. Such an influence on
the processing of traces is represented by a dashed arrow in
our graphical representation.

IV. MODELING OF TRACE-ANALYSIS WORKFLOWS

In this section we present four examples, how our method-
ology can be applied to model certain analysis workflows. In
addition to describing complex workflows, our methodology
can be utilized to constitute a flexible modular framework. The
sources providing trace data as an input, translate into input
modules. Also the user interaction becomes part of an input
module. The sinks utilizing trace data for visualization and
analysis are mapped as output modules. Finally, trace transfor-
mations that involve processing of traces are implemented as
transformation modules.

In the following section, we present the prototype framework
implementation using one of the described examples. For the
rest of the examples, our model documents trace-processing
workflows in an abstract way, and does not concern itself with
concrete implementations.

A. Combination of Application and Kernel Trace

Manually instrumenting a target application is an effi-
cient way of collecting trace data. The developer can select
instrumentation points, and can thus easily create a trace
containing application state, phases in program execution, and
values of important variables. However, one weakness of this
approach is that it can capture only the single application
that is instrumented. Especially in embedded systems, this is
often insufficient, and instead the developer needs a view of
the complete system, showing interactions between different
applications, and between applications and the operating system.

The first use case of our methodology addresses this
issue, by processing separately collected traces from the user
application and the operating system kernel, and integrating

244Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 264 / 646

application
 trace

kernel
trace

execution flow

application(s)

function entry/
exit, markers

 execution flow

kernel

kevents, syscalls

 execution flow

process(es),
thread(s)

scheduling, irq’s
syscalls

application
details

x

A

B

0 5 10
(t2)

(t1)

execution flow

application(s),
scheduling

func. entry/exit,
markers, scheduling,
irq’s, syscalls

(a) Use case described in Section IV-A. Combination of application and kernel traces.

x

A

B

0 5 10

hardware
trace

instruction/data flow

CPU(s)

instruction/data
trace events

data value trace

application(s)

variable reads/writes,
reader/writer info.

(t1)
(t2)

(t3)

data value trace

locks

variable reads/writes,
reader/writer info.

data value trace

objects

statistics

lock/object
mapping

resource analysis

variable reads/writes,
reader/writer info.

(b) Use case described in Section IV-B. Modeling of trace features for data-centric analysis.

x

A

B

0 5 10(t1) (t2)

data value trace

variable (s)

variable reads/writes,
memory addresses
for variables

application (s)

instruction/
data flow

instruction/
data trace events

instruction/
data flow

CPU (s)

instruction/
data trace events

hardware
trace

program state

(c) Use case described in Section IV-C. Modeling analysis workflow of memory related issues.

x

A

B

0 5 10

Cnt2

Cnt1

hardware
trace

instruction flow

CPU(s)

instruction trace,
performance
counters

bus activity

on-chip bus

read/write
accesses

program flow,
bus stalls

application(s)

function entry/
exit, bus counter

bus activity

application(s),
on-chip bus

load/store instruc-
tions, read/write
accesses

application A

function entry/
exit, bus counter

program flow,
bus stalls

application B

function entry/
exit, bus counter

program flow,
bus stalls

(t1) (t2)

(t3) contention, conflicts, stalls
bus trace

(d) Use case described in Section IV-D. Integration of on-chip bus trace for enhanced analysis.

Figure 2: Example use cases 245Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 265 / 646

them into one combined view. The workflow is shown in Fig.
2a.

The essential transformation (t2) in this workflow performs
a “broadening” of trace Scope by combining the execution
flow of the application with the relevant scheduling events
from the kernel trace. This way, the application’s timing can
be displayed in the context of the complete system, and in
case of timing anomalies a picture of the system state with the
current constellation of running applications and occurrences
of interrupts is available.

While the application trace is directly used by transfor-
mation (t2), the kernel trace first undergoes some filtering:
from a kernel trace containing a multitude of different events,
we extract only events related to scheduling, system calls, and
interrupts that affect our target application as shown by transfor-
mation (t1). This transformation also uses auxiliary application
information that helps in mapping of target application to kernel
trace.

Note that the trace Aspect remains unchanged by all
transformations. We always consider the program execution
flow. Also, the Level of Detail is largely kept unchanged. All
processing and analysis is done on a relatively high level of
abstraction, considering program phases and single scheduling
events, but not further details on instructions executed.

B. Extraction of Data-Centric Trace Information

In object oriented programs, it can become useful to keep
track of an object’s lifetime. It starts from the object creation,
different processes/threads accessing it, interactions with other
objects, and finally deletion of the object. Moreover, the
inclusion of locks to protected shared objects makes interactions
more complex and difficult to analyze. With the help of such
an analysis, one can find anomalies in software like data races
(simultaneous access to an object with at least one of them
being a write operation), locking violations, contention for
guarded shared objects, and memory leaks (objects created but
never deleted).

Hardware tracing allows the developer to generate cycle-
accurate event traces. It can include a complete set of instruc-
tions, and reads and writes to memory addresses. This use case
of our methodology uses hardware tracing as a source, and
reduces the LoD to specific objects and locks with the help of
the developer. The workflow is shown in Fig. 2b.

The transformation (t1) filters the Scope of the hardware
trace from the CPU to the target application. Furthermore,
(t1) also performs an important transformation of Aspect of
the trace to “data value trace”. This is achieved by extracting
the selected LoD from instruction and data-trace events, e.g.,
memory reads and writes, and reader/writer process or thread
information.

Later, the transformations (t2) and (t3) are performed,
generating new traces with similar Aspects as before, i.e., data
value trace. These transformations reduce the LoD to specific
shared objects and locks inside the application, rather than a
complete set of variables. From this point on, the transformed
trace can be used as an input to the trace-analysis tool. The user
may also provide auxiliary information regarding the relation
between a lock and an object to analyze them over time. This

mapping helps to find any problems with regard to simultaneous
accesses from different writers/readers and the locks guarding
them.

The trace data with object as a Scope can then be used as
an input to the visualization tool for a graphical representation
of the object’s lifetime. The dotted arrow (user input) from the
analysis tool to the visualization sink shows that the user can
also influence the graphical time line of an object of interest.

C. Backtracing of Memory Issues

Root causes of memory-related faults become more difficult
to find, especially when software is running on a multicore
system with shared memory resources. Consider a case where
an incorrect value is being assigned to a memory location,
causing the program to become dysfunctional. It can be of
great help if a backward chain of calculations can be analyzed
to know the source code location causing that faulty write. To
achieve this, it requires the program state to be maintained
by the tool for that point in time. This use case addresses
workflow-modeling of a similar scenario.

For example, the event traces of specific variables are
visualized in a tool showing data values being assigned to them
over a time period. The tool allows the user to inquire about
the incorrect value on demand. This interaction from the user
triggers the backward analysis by inquiring the program state
being maintained by the analysis tool. Finally, an interactive
report provides the instruction writing the wrong value to the
variable. Fig. 2c explains the steps involved to model such an
analysis with the help of a hardware trace source.

It is important to mention that transformation (t1) may be
implicitly performed by configuring a hardware trace-recording
tool to record events related to a single application only.
In this case the model will directly contain trace data with
“application” as the Scope. Information like memory addresses,
data reads/writes, and program-counter values acquired from
instruction and data trace are used by the analysis tool to
maintain the program state.

The next transformation (t2) changes the Aspect of the
trace to “data-value trace” and filters the Scope to a particular
variable in an application using variable reads/writes, address
of variable in memory etc. as LoD. Finally, the visualization
tool uses this trace to show variable data values over time.

The dotted line from the visualization tool represents the
user interaction. The analysis report from the program state
further represents the subpart of the analysis tool that is
interactive and allows the user to influence the transformation
(t2) for a refined visualization.

D. Incorporation of Data from on-chip Bus Trace

Since embedded systems are composed of a set of different
components, traces from buses, peripherals, and controllers can
add value for a comprehensive analysis. Specially by combining
an event trace containing all bus transactions with an instruction
trace can provide information related to program read and write
accesses, thus also broadening the Scope.

The only problem with such a combination is that it requires
the target to export all the required information to clearly map

246Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 266 / 646

load/store instructions to read and write accesses. This can
become difficult with limited bandwidth of trace ports.

This use case presents a similar scenario where combining
hardware and bus traces can help the user to investigate unusual
bus activities. The user can interactively examine a region in
the visualization tool that shows a high number of average
bus stalls. This inquiry leads to the analysis tool which, with
the help of the combined trace, maintains reports related to
program read and write accesses, contention among different
bus transactions or any conflicts. For instance, the user may
find the application or source-code location that is causing the
extra stalls by holding the bus, after looking into this analysis
report. Moreover, it can be used to find if the CPU is waiting
for a response from a peripheral device that also shares access
from another application. Fig. 2d provides the model of this
workflow.

Hardware trace in this case contains an extra LoD: Per-
formance counters, which are hardware registers commonly
available in most CPUs for measuring performance metrics
like cache misses, instruction count, cycle count, bus stalls and
so on. The transformation (t1) changes the Aspect of the trace
from “instruction flow” to “program flow” by extracting the
data events related to executed calls and returns, thus lowering
the level of detail to function entry/exit.

Transformation (t2) further filters down the trace to selective
target applications and their respective LoD, i.e., function en-
try/exit and counter values for bus stalls. The visualization tool
then can be used to graphically present function entries/exits,
along with the average bus-stalls histogram for the duration of
the function execution. A similar workflow can also be modeled
using instrumentation-based tracing as a source only.

In case of higher bus-stall cycles causing longer executions
for a function, the user can select that region from the histogram
for a detailed analysis. This is shown by the dotted line from
the visualization tool which influences the information used as
input to the analysis tool.

The transformation (t3) takes data like load and store
instructions from the instruction trace and maps this information
with bus transactions to get the trace with application-specific
reads and writes. The analysis tool uses this trace data to provide
a more-detailed analysis related to any conflicts, contention,
and stalls over the system bus. Moreover, the user can influence
the transformation (t3) for a refined analysis represented by
the dotted arrow from the analysis tool.

V. CASE STUDY IMPLEMENTATION:
INTEGRATED APPLICATION AND KERNEL TRACING

The objective of this section is to present how a modeled
workflow can be translated into a modular framework applica-
tion. In order to support this mapping, we implemented the first
example described in the previous section as a prototype. This
example integrates different trace sources, not only to broaden
the scope but also to provide a comprehensive visualization for
the developer. It shows how this improved visualization can
help to find sporadic errors in an application.

A. Prototype implementation

As a proof of concept, we began with the implementation of
combined application and kernel tracing. We chose VampirTrace

[1] for the application and LTTng [9] for kernel tracing
respectively. Event traces from VampirTrace were stored in the
Open Trace Fromat (OTF) [22], and in the Common Trace
Format (CTF) [23] from LTTng.

We manually instrumented two applications using Vampir-
Trace for entry and exit of different phases (functions). One of
these applications was periodic with timing constraints (soft-
RT) task, while the other was non-periodic and without timing
requirements (GPtask). For the soft-RT task, a marker API
was also added to get the events for the cases in which the
application may miss any deadline. Both of these applications
were scheduled on separate cores (core affinity). At the same
time with the help of LTTng, kernel events (system calls,
interrupts and scheduling) were recorded.

The OTF streams generated by the applications were then
fed as an input to the VAMPIR [24] visualization tool to
visualize the program execution flow. Fig. 3 shows a time slice
of soft-RT and GP application events.

9.3585 s 9.3590 s 9.3595 s 9.3600 s 9.3605 s

GP_compute GP_transmit

Soft-RT Task

GP Task

missed deadline

Figure 3: VAMPIR screen-shot: Visualization of application traces for real-time
and general-purpose tasks.

The two different colors in soft-RT task’s timeline represent
different functions being executed, whereas the periodic nature
of the task can be seen from invocations of these two functions
at distant time intervals. Also, there is a triangle on top of one
of the invocations, indicating a missed deadline. The lower
time line indicates two different phases of the GP task. With
this view in the visualization tool, it is difficult to speculate
about any reason for the missed deadline.

For our prototype framework implementation, we used a
modular approach in mapping sources, transformations, and
sinks. Since the trace data in this use case comes from different
sources with different trace formats, we chose OTF as an
internal format for the framework. For this reason, the kernel
trace which is stored in the CTF format is converted into the
OTF format.

The input module provides CTF traces depicting the
execution flow of both applications to the transformation
module. It then performs the necessary processing to reduce the
Scope of the trace to application specific kernel events. This
module also correlates the kernel and application traces with
the help of timing information, and converts the kernel trace
from CTF to OTF. After the conversion, another independent
transformation module merges the application trace (input
module) with the transformed kernel trace, in order to prepare
it for the output module (VAMPIR tool).

Fig. 4 shows a screen shot from the tool with integrated
kernel tracing using the transformed trace information, as shown
previously in Fig. 2a. The additional two time lines indicated

247Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 267 / 646

9.35934 s 9.35935 s 9.35936 s 9.35937 s 9.35938 s 9.35939 s

Soft-RT Task

GP Task

Core 1

Core 0

work RT_transmit

GP_compute GP_transmit

RT-Running soft_irq_1 RT_SwitchedOut

GP-Running

Application
Traces

Kernel Trace
showing Scheduling
and Interrupts

Hardware interrupt causing missed deadline

Figure 4: VAMPIR screen-shot: Combined application and kernel scope with
zoom-in view for missed deadline.

by Core 1 and Core 0 represent the actual mapping of tasks
onto the hardware. In this specific case, the soft-RT task was
scheduled on core 1 and the GP task on core 0. Moreover,
it can be seen that now the timeline shows extra events like
hardware/software interrupts and scheduling events, e.g., thread
switch in/out during the same execution period. In other words,
the correct notion of function execution time is being depicted
using kernel trace data.

Finally, by looking into the integrated view, the user can
now identify the actual reason behind the soft-RT task missing
its deadline, which in this case is caused by a hardware interrupt
being serviced by Core 1.

VI. CONCLUSION AND FUTURE WORK

The methodology introduced in this paper can be used
to systematically describe complex analysis workflows. The
possibility of constructing methods for complex workflows,
which can utilize trace data from multiple sources, can be
used to develop flexible tools for trace-based debugging and
optimization. Our goal is to encourage the use of existing
sources of trace data.

With the help of provided modeling notations, one can
document the new processes and workflows in an abstract way.
By modeling a workflow, the dependencies between different
trace data involved and the interfaces between tools become
transparent for the implementation. Our methodology can be
used not only for modeling purposes, but also for providing
a basis for mapping the modeled workflow to a flexible and
extensible framework. We have shown this by translating one
of the use cases to a modular framework in our prototype
implementation.

As part of our future work, we intend to extend the
framework with an internal format other than the OTF. Also,
the trace features and transformations that are modeled using
simple graphical notations will be described formally with
the help of a machine-readable language. Furthermore, the
details about the trace data (events and their semantics) will
be represented using our model. These additions will help
in automation of the trace processing. Finally, the modeled
workflows will support automatic generation of “glue code” for
a framework implementation.

REFERENCES

[1] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber,
H. Mickler, M. S. Müller, and W. E. Nagel, “The vampir
performance analysis tool-set,” in Tools for High Performance
Computing. Springer, 2008, pp. 139–155.

[2] V. Pillet, J. Labarta, T. Cortes, and S. Girona, “Paraver: A tool
to visualize and analyze parallel code,” WoTUG-18, pp. 17–31,
1995.

[3] F. Wolf, B. J. Wylie, E. Abrahám, D. Becker, W. Frings,
K. Fürlinger, M. Geimer, M.-A. Hermanns, B. Mohr, S. Moore
et al., “Usage of the scalasca toolset for scalable performance
analysis of large-scale parallel applications,” in Tools for High
Performance Computing. Springer, 2008, pp. 157–167.

[4] M. Auguston, “Building program behavior models,” Engineering
Automation for Reliable Software, p. 35, 2000.

[5] S. Boroday, H. Hallal, A. Petrenko, and A. Ulrich, “Formal
modeling of communication traces.” in ISTA. Citeseer, 2003,
pp. 97–108.

[6] C. Sadowski and J. Yi, “Tiddle: a trace description language for
generating concurrent benchmarks to test dynamic analyses,” in
Proceedings of the Seventh International Workshop on Dynamic
Analysis. ACM, 2009, pp. 15–21.

[7] M. McGavin, T. Wright, and S. Marshall, “Visualisations of
execution traces (vet): an interactive plugin-based visualisation
tool,” in Proceedings of the 7th Australasian User interface
conference-Volume 50. Australian Computer Society, Inc., 2006,
pp. 153–160.

[8] A. Hamou-Lhadj and T. C. Lethbridge, “A survey of trace
exploration tools and techniques,” in Proceedings of the 2004
conference of the Centre for Advanced Studies on Collaborative
research. IBM Press, 2004, pp. 42–55.

[9] M. Desnoyers and M. R. Dagenais, “The lttng tracer: A low
impact performance and behavior monitor for gnu/linux,” in OLS
(Ottawa Linux Symposium). Citeseer, 2006, pp. 209–224.

[10] I. Park and R. Buch, “Event tracing- improve debugging and
performance tuning with etw,” MSDN magazine, p. 81, 2007.

[11] T. Beauchamp and D. Weston, “Dtrace: The reverse engineer’s
unexpected swiss army knife,” Blackhat Europe, 2008.

[12] N. Merriam, P. Gliwa, and I. Broster, “Measurement and tracing
methods for timing analysis,” International Journal on Software
Tools for Technology Transfer, vol. 15, no. 1, pp. 9–28, 2013.

[13] M. Williams, “Low pin-count debug interfaces for multi-device
systems,” 2009.

[14] (2013, August) LAUTERBACH Development Tools. [Online].
Available: http://www.lauterbach.com/

[15] (2013, August) PLS Development Tools. [Online]. Available:
http://www.pls-mc.com/

[16] (2013, August) iSYSTEM. [Online]. Available: http://www.
isystem.com/

[17] W. Orme, “Debug and trace for multicore socs,” ARM Limited,
White Paper, 2008.

[18] “CoresightTM components technical reference manual,” ARM
Limited, Tech. Rep., 2009.

[19] N. Stollon, “Infineon multicore debug solution,” in On-Chip
Instrumentation. Springer, 2011, pp. 219–230.

[20] “Amba ahb trace macrocell (htm) technical reference manual,”
ARM Ltd., San Jose, CA, Tech. Rep. ARM DDI 0328E.

[21] “Usb event tracign for windows,” Microsoft, White Paper, March
2010.

[22] A. Knüpfer, R. Brendel, H. Brunst, H. Mix, and W. E. Nagel,
“Introducing the open trace format (otf),” in Computational
Science–ICCS 2006. Springer, 2006, pp. 526–533.

[23] (2013, August) Common trace format (ctf). EfficiOS. [Online].
Available: http://www.efficios.com/ctf

[24] W. E. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and K. Solchen-
bach, VAMPIR: Visualization and analysis of MPI resources.
Citeseer, 1996.

248Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 268 / 646

A Pattern-based Approach towards Expressive
Specifications for Property Concepts

Geert Delanote, Jeroen Boydens and Eric Steegmans
KU Leuven, Dept. of Computer Science

Leuven, Belgium
{geert.delanote, jeroen.boydens, eric.steegmans}@cs.kuleuven.be

Abstract—In Object-Oriented programming, a significant
effort has been made in recent years to increase the expressiveness
of programming constructs for the production of code. Developers
can implement more functionality in less lines, and with more
compile-time guarantees. We have not seen such a similar
evolution in the design and specification of code. Support for
code specification remains a feature that is rarely integrated
in the language itself (e.g., Eiffel), and is too often migrated
to ad hoc language additions (e.g., annotations). The lack
of such first-class, language-integrated support leads to (1)
developers who are forced to write ad-hoc code specifications in
a non-standardized manner, often ex-post and time-permitting,
and (2) to situations in which other developers, who reuse that
code, are tempted to read the code itself (if available) rather
than the specification, in order to understand what the code
actually does. In this paper, we take an evolutionary approach to
language-integrated specification constructs, with the ambition
to enhance the overall expressiveness of specifications in object-
oriented languages. We start from existing best practices and
propose improvements through specification patterns that not
only enhance the expressiveness of specifications, but also aid
developers in specifying their code through concrete “structures”
in order to avoid ad-hoc, non-standardized specifications. Finally,
we also propose language constructs that help aim to increase
the level of abstraction, by shielding developers from boilerplate
specification as much as possible.

Keywords—Pattern; Specification; Property; Language Construct.

I. INTRODUCTION

Object oriented programming languages use classes as
abstract data types [1][9]. A class is a blueprint for a collection
of objects with identical characteristics and behavior. Encap-
sulation hides the technical details of the data fields used in
the implementation to describe those characteristics. Generally,
several requirements have to be enforced for those characteris-
tics. Examples of such requirements are: the balance of a bank
account must not exceed the credit limit, a single transaction
must not change the balance with more than e1000 and the
holder of a bank account must be adult. Programming language
constructs lack expressiveness to describe those requirements
in an integrated way.

In this paper, we present a pattern to implement charac-
teristics with their requirements in Java. We identify different
kinds of requirements and show how they are implemented
by the pattern. The pattern is only worked out for properties
in this paper. However, with some adaptations to meet the
specific needs, the pattern can also be used for (bidirectional)
associations. We will show how the pattern improves the

quality of the code. Finally, we will also show a new language
construct that can replace the pattern.

This paper is structured as follows. Section II defines the
quality objectives we want to improve. Section III presents
some general programming principles to improve the quality.
The different kind of requirements related to the development
of properties are described in Section IV. Section V shows
how the different requirements are developed in the pattern
and how the pattern improves the quality of the code. In the
last paragraph, a Language Construct that improves the ex-
pressiveness of a programming language is presented. Section
VI presents related work. We conclude in Section VII with a
view on future research roadmap.

II. OBJECTIVES

Object-Oriented languages were initially built to increase
the quality of software applications [6]. Software quality is a
combination of several factors [1]. Using software patterns is
an important way to increase the quality of software systems
[2]. We believe that more expressive language concepts can
help to further improve the quality of software systems.
Therefore, we believe that, as a second step, patterns should
be transformed as much as possible into language concepts
to avoid known drawbacks from patterns like implementation
overhead (boiler plate code) and reusability (the programmer
is forced to implement the pattern over and over again) [5].
Software quality factors break down in external and internal
factors. In this paper, we mainly focus on the internal factors:
factors perceptible for programmers. In the end, only external
factors count, but the internal factors make it possible to obtain
them [1]. We have centered the specification and development
of our pattern along the following quality factors.

O1 - Correctness. Software must perform its task as de-
fined by the specification. The pattern defines specific methods
to work out the different aspects of the implementation of a
characteristic forcing the developer to think about each aspect
in isolation.

O2 - Extendibility. Software must be adaptable to future
changes of the specification. These changes can be in space
(through adding a subclass that redefines some aspects) or
in time (changes to specification in the future). The pattern
provides the necessary hook methods to be able to change the
specification easily. The pattern also guides the developer to
specify and implement each aspect only once.

O3 - Testability. Testing the correctness of software must
be as easy as possible. Different aspects of the implementation

249Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 269 / 646

of a characteristic are worked out in separate methods. The
methods are designed in such a way that they can be tested in
isolation.

O4 - Understandability. A programmer must understand
as easy as possible the source code of a software system.
Dividing a big problem into smaller problems is a well-known
strategy to make a problem easier to understand. The pattern
separates the code, the developer has to write, from boilerplate
code to make the code more readable.

O5 - Reusability. Software should be usable in different
applications. Extendibility already mentions the provided hook
methods to change the specification easily. These methods
make it also easy to reuse the software in a (slightly) adapted
form in another application.

O6 - Expressiveness. The ease for a developer to write
software. By forcing the developer to implement the different
methods, the pattern also guides the developer through the
different aspects of implementing the characteristic. This way
the developer can think more on what must be implement
instead of on how he can accomplish it.
We raise the ambition level for each of these objectives when
compared to the current state of the practice (throughout this
paper, we will refer to these objectives using their codes). Our
language concept, resulting from this pattern, also meets these
objectives.

III. PRINCIPLES AND NOTATION

In this paper, we will follow the principles and notations
introduced in the book Object Oriented Programming with
Java [9]. The book presents three different paradigms to
deal with exceptional circumstances: nominal, defensive and
total programming. Nominal programming uses preconditions
to prohibit method invocations under exceptional conditions.
Defensive programming uses exceptions to signal that methods
have been invoked under exceptional conditions. Total pro-
gramming turns exceptional conditions into normal conditions.
We have chosen to work out the examples in this paper in
a defensive way. Transformation to the other paradigms is
straightforward.

P1 - Inspector-mutator principle. An important principle
is that we make a clear distinction between inspectors and
mutators. Inspectors return information about the state of some
objects. Mutators change the state of some objects. We try to
avoid methods that combine both aspects: inspectors should
not change the observable state of one or more objects and
mutators should not return a result. We further distinguish
between basic queries and derived queries. A basic query
returns part of the state of an object. The state of an object is
determined by the set of all basic queries. The result of derived
queries and the effect of mutators is directly or indirectly
specified in terms of basic queries. This principle improves
the quality factors described in objectives O2, O3, O4, O6.

P2 - Steady versus Raw state. We distinguish between a
steady state and a raw state for objects. An object in steady
state satisfies all its invariants. An object in raw state is not
guaranteed to satisfy all its invariants. Unless explicitly stated
otherwise all objects must be in the steady state upon entry
to and exit from a method. The general principle in defining

methods is to assume that all objects are in the steady state.
However, in some specific situations we want to use methods
that involve objects that are in raw state. A typical example of
such a situation is construction. While not yet in a steady state
we sometimes want to use other methods during the initializing
process. This principle acts as a contract between the developer
and user of a method and by doing so helps to improve quality
factors O1, O3, O4, O6.

P3 - Liskov Substition Principle. Changes to the defi-
nition of inherited methods must obey the Liskov Substition
Principle [3]. Broadly speaking, the principle states that it must
always be possible to substitute an object of a superclass by
an object of its subclasses. Next to changes to the signature of
inherited method, changes to the specification can be made if
the superclass does not provide a deterministic specification of
the result. Non-determinism plays a crucial role in our pattern.
This principle supports all objectives O1-O6.

P4 - Complete business logica. All business rules should
be worked out in specification and implementation. For enforc-
ing business rules we never rely on the underlying persistence
level. Integrity constraints, non-null constraints, foreign keys,
etc., can be enforced by a database, but should (also) always be
enforced by the application. This principle improves objectives
O1, O3, O4, O5.

Notation. In Java, the contract of a class is worked out in
documentation comments, which can be processed by javadoc
[15]. Tags structure the different pieces of the specification in
the documentation. The specification of a class is described
both formally and informally. The informal specification is
written in natural language, while Java boolean expressions are
used to write the formal specification. Writing the specification
formally improves the objectives O1, O3, O4. The following
tags are used in the code snippets throughout this paper:

- @basic: denotes a basic query
- @effect: specifies the semantics of a mutator in terms of

another mutator
- @invar: denotes a class invariant
- @post: specifies a postcondition of a mutator
- @raw: denotes an object in a possible raw state
- @return: specifies the result of a derived query
- @throws: specifies the exception that must be thrown when

the specified assertion evaluates to true

IV. REQUIREMENTS

Business rules can be generally described using three types
of requirements: (1) Value Requirements, (2) State Require-
ments and (3) Transition Requirements.

Value Requirements. (VR) These requirements are used
to specify the most basic kind of business rules in that they
restrict the range of values that a characteristic, property or
association, can have. Meeting its value requirements is a
necessary condition for an object to be in a steady state (P2). A
value requirement never takes into account other characteristics
of the class at stake. For properties a value requirement
restricts the set of values offered by its type further. A value
requirement is for instance used to enforce that the credit
limit of a bank account always needs to be below 0. For
associations a value requirement restricts the multiplicity of

250Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 270 / 646

an association. The requirement that a bank card always needs
to be linked with a bank account is a value requirement (this
type of requirement is also know as existential dependency).
Considering generalization/specialization, a redefinition that
restricts the kind of objects a specialization can be linked
with is a also a value requirement. The requirement that
current accounts and savings-accounts, specializations of bank
account, have the right specialization of bank cards attached
to it is enforced with a value requirement.

State Requirements. (SR) Mostly, business rules restrict
possible values for a characteristic when considered in com-
bination with values from other characteristics. State require-
ments are by nature symmetric. A state requirement involving
characteristics α and β is always a state requirement for
both characteristics. Meeting its state requirements is the other
necessary condition for an object to be in a steady state (P2).
The union of all value requirements and state requirements
describe all the invariants of a class. The business rule stating
that the balance of a bank account must never be below the
credit limit is specified by a state requirement.

Transition Requirements. (TR) These very specific re-
quirements specify the business rules that restrict the evolution
of values of characteristics. It’s perfectly possible that a (new)
value for a characteristic meets all value and state requirements
but is not acceptable because of the current state of the object.
The business rule imposed by a bank limiting the amount of
money that can be withdrawn from a bank account is transition
requirement. Although 1.000 euro is a correct balance, it’s not
an acceptable balance after a withdraw operation when the
current balance is 10.000 euro and the withdraw limit is 5.000
euro.

In the remainder of this paper, we will show how our
pattern implements the value, state and transition requirements.
We will prove how distinguishing between these kinds of
requirements together with the pattern with its specific methods
meets the targeted objectives. We will also discuss how Java
(and other object-oriented programming languages) can be
extended with new language concepts to capture value, state
and transition requirements.

V. PROPERTIES

In this section, we build the pattern for properties, step
by step. These steps already give a good indication of what
an iteration of the development process can consist of. It is
possible to elaborate the different requirements independent
of each other (O1, O3, O4, O6). Typically a pattern contains
boilerplate code, we will highlight those parts in the code
listings. The code editor should generate this code (O1, O6).
In Eclipse [17], custom templates can be defined to generate
skeletons of methods. Due to space limitations we omit the
informal specifications. Steegmans illustrates in [9] how infor-
mal specifications should be added.

The example used throughout the next paragraphs describes
a class of bank accounts. Each bank account has two character-
istics, namely a balance and a credit limit. Both characteristics
are decimal values and the balance must never be less than
the credit limit. The amount of money that can be deposited
or withdrawn in a single transaction must be restricted to
1000. To explain the pattern in the context of inheritance,

we introduce a class of junior bank accounts, a subclass of
bank accounts. The balance and credit limit of junior bank
accounts are restricted to integer values. At the level of the
subclass, two new characteristics are introduced: each junior
bank account has an integer value as upper limit and a blocked
state (boolean). While the credit limit can no longer be less
than -1.000, the upper limit must at least be 1.000 and must not
exceed 10.000. The upper limit is an immutable characteristic.
Of course, the balance is not allowed to exceed the upper limit.

Representation. Each observable characteristic is part of
the state of an object and is revealed by a basic query. The
basic query can be compared with the getter from Enterprise
JavaBeans (EJB) [10], [16]. The return type of the basic query
reveals the chosen type for the characteristic. The characteristic
can internally be stored using one or more instance variables
with the same or different types. The implementation of the
basic query has to perform necessary transformations between
stored and observable information. Like EJB, we introduce also
a setter to change the characteristic to a given value. The basic
query and this setter are the only two methods that are allowed
to access the instance variables that represent the characteristic.
By consequence, we limit the optional transformations between
internal representation and observed value of a characteristic
to these methods (O1 - O6). When clients of a class are not
allowed to change the value of a characteristic directly and
need to manipulate the characteristic through more complex
mutators, the latter mutators must be implemented in terms
of this setter. When there exists a default value for the
characteristic then that value is always explicit added to the
declaration, even if that value is the default value of the type
of the internal representation. Thus, absence of a default value
in the declaration means this characteristic must always be
initialized during construction (O4). Figure 1 illustrates the
internal representation with default value, basic query and
setter for the characteristic balance. As the stored and observed
values are equal the implementation of both methods is trivial.
The basic query is annotated @Raw because we also want to
be able to observe the state of the property balance when the
object is not in a steady state.

1 p r i v a t e BigDecimal b a l a n c e =BigDecimal . ZERO;
2
3 /∗ ∗
4 ∗ Re tu rn t h e b a l a n c e o f t h i s bank a c c o u n t
5 ∗ /
6 @Basic @Raw
7 p u b l i c BigDecimal g e t B a l a n c e (){
8 re turn b a l a n c e ;
9 }

10
11 /∗ ∗
12 ∗ S e t t h e g i v e n b a l a n c e as t h e b a l a n c e o f
13 ∗ t h i s bank a c c o u n t
14 ∗ @post new . g e t B a l a n c e () == b a l a n c e
15 ∗ /
16 p u b l i c vo id s e t B a l a n c e (BigDecimal b a l a n c e){
17 t h i s . b a l a n c e = b a l a n c e ;
18 }

Fig. 1: Representation of the property balance

Value Requirements. For each property, a Boolean in-
spector is introduced to validate the value requirements. This
inspector is the only place where these requirements are
specified and implemented (O1 - O6). Because the result
of this inspector is by definition independent of the state

251Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 271 / 646

1 /∗ ∗
2 ∗ @return i f ((c r e d i t L i m i t ==n u l l) | |
3 ∗ (c r e d i t L i m i t . s ignum () >= 0))
4 ∗ t h e n r e s u l t == f a l s e
5 ∗ /
6 p u b l i c s t a t i c boolean i s P r o p e r V a l u e F o r C r e d i t L i m i t (
7 BigDecimal c r e d i t L i m i t){
8 re turn (c r e d i t L i m i t != n u l l) &&
9 (c r e d i t L i m i t . signum () < 0) ;

10 }
11
12 /∗ ∗
13 ∗ @post new . g e t C r e d i t L i m i t () == c r e d i t L i m i t
14 ∗ @throws I l l e g a l A r g u m e n t E x c e p t i o n

15 ∗ ! i s P r o p e r V a l u e F o r C r e d i t L i m i t (c r e d i t L i m i t)
16 ∗ /
17 p u b l i c vo id s e t C r e d i t L i m i t (BigDecimal c r e d i t L i m i t)
18 throws I l l e g a l A r g u m e n t E x c e p t i o n {
19 i f (! i s P r o p e r V a l u e F o r C r e d i t L i m i t (c r e d i t L i m i t))
20 throw new I l l e g a l A r g u m e n t E x c e p t i o n () ;
21 t h i s . c r e d i t L i m i t = c r e d i t L i m i t ;
22 }

Fig. 2: Value Requirement of the property credit limit

of the object, the inspector is a class method (static in
Java). By convention, the name of the inspector checking the
VR for a property α is isProperValueForα(T α) (O4,
O6). According to P4, all business rules must be enforced
in the application. Calling the setter with an actual argument
that violates the VR is an exceptional situation and must
be signaled. The setter is adapted accordingly. Figure 2 il-
lustrates the inspector and setter for the characteristic credit
limit. The specification of the inspector is worked out in
a non-deterministic way. It specifies only which values are
certainly not acceptable as value for the credit limit of a bank
account. Notice however that the signature of the inspector
isProperValueForCreditLimit() implies that only
true or false can be returned as result. This way subclasses
can decide to further restrict possible values or to explicitly
confirm what values are always acceptable (O2, O5).

State Requirements. A state requirement describes a
constraint that restricts acceptable value combinations of char-
acteristics. Each SR is described by a Boolean inspector.
This inspector is again the only place to specify and im-
plement the SR at stake (O1 - O6). The inspector has an
argument for each characteristic involved in the SR. Thus, this
inspector is also a class method. Obviously, the value from
each involved characteristic must meet the VR to have an
acceptable combination of values. By convention, the name
of a SR involving properties α and β is isProperαβ(T1
α, T2 β) (O4, O6). Each characteristic can be involved in
multiple SR. We will illustrate in the paragraph about transition
requirements how these inspectors are integrated in the setter.
Figure 3 illustrates the SR between the properties balance
and credit limit. The specification of this inspector is also
non-deterministic; it is, however, also possible to close the
specification and make it deterministic.

Invariant. The invariants for a class are described by the
union of all VRs and SRs. We say that a characteristic α
meets its invariants if it meets the VR and all the SRs it is
involved in. For each characteristic α, we introduce a Boolean
inspector to check whether a given value meets its invariants

1 /∗ ∗
2 ∗ @return i f (! i s P r o p e r V a l u e F o r B a l a n c e (b a l a n c e))

3 ∗ t h e n r e s u l t == f a l s e

4 ∗ @return i f (! i s P r o p e r V a l u e F o r C r e d i t L i m i t (

5 ∗ c r e d i t L i m i t))

6 ∗ t h e n r e s u l t == f a l s e
7 ∗ @return i f (c r e d i t L i m i t . compareTo (b a l a n c e)>0)
8 ∗ t h e n r e s u l t == f a l s e
9 ∗ /

10 p u b l i c s t a t i c boolean i s P r o p e r B a l a n c e C r e d i t L i m i t (
11 BigDecimal b a l a n c e , BigDecimal c r e d i t L i m i t){
12 re turn i s P r o p e r V a l u e F o r B a l a n c e (b a l a n c e) &&
13 i s P r o p e r V a l u e F o r C r e d i t L i m i t (c r e d i t L i m i t) &&
14 (c r e d i t L i m i t . compareTo (b a l a n c e) <= 0) ;
15 }

Fig. 3: State Requirement between balance and credit limit

with respect to the current state of the object. By convention,
the name of this inspector is canHaveAsα(T α). As this
method is the sum of the VR for α and all SRs where α is
involved in, this method can be generated as a whole (O1, O4,
O6). With respect to the property α, the object is in a steady
state if the current registered value for α meets its invariants.
The inspector hasProperα() specifies the invariant for α.
This method can also be generated (O1, O4, O6). Figure

1 /∗ ∗
2 ∗ @invar hasProperBa lance ()
3 ∗ /
4 p u b l i c c l a s s BankAccount {
5 . . .
6 /∗ ∗
7 ∗ @return r e s u l t ==canHaveAsBalance (g e t B a l a n c e ())

8 ∗ /

9 @Raw
10 p u b l i c f i n a l boolean h a s P r o p e r B a l a n c e (){
11 re turn canHaveAsBalance (g e t B a l a n c e ()) ;
12 }
13
14 /∗ ∗
15 ∗ @return i f (! i s P r o p e r V a l u e F o r B a l a n c e (b a l a n c e))

16 ∗ t h e n r e s u l t == f a l s e

17 ∗ @return i f (! i s P r o p e r B a l a n c e C r e d i t L i m i t (

18 ∗ balance , g e t C r e d i t L i m i t ()))

19 ∗ t h e n r e s u l t == f a l s e

20 ∗ /

21 @Raw
22 p u b l i c boolean canHaveAsBalance (BigDecimal b a l a n c e){
23 re turn i s P r o p e r V a l u e F o r B a l a n c e (b a l a n c e) &&
24 i s P r o p e r B a l a n c e C r e d i t L i m i t (
25 b a l a n c e , g e t C r e d i t L i m i t ()) ;
26 }
27 }

Fig. 4: Invariant from the property balance

4 illustrates these methods for the property balance. The
inspector canHaveAsBalance is non-deterministic to allow
new SRs in future subclasses (O2, O5). If new SRs are
undesired the developer of this class can declare the inspector

252Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 272 / 646

final and make the specification deterministic. The inspector
specifying the SR between balance and credit limit will be used
in both the invariant inspector for balance and credit limit.
By writing each SR in its own inspector, we avoid the need
to duplicate that specification and implementation (O1 - O6).
Both inspectors are annotated @Raw. Indeed, even when an
object does not meet its invariants we want to be able to check
if a given value meets its invariants.

Transition Requirements. A new value for a property
must at least always meet the requirements described by
the invariant. But often specific requirements restrict possible
transitions when we take into account the current value of
that property. The Boolean inspector canHaveAsNewα(T
α) checks whether the given α is an acceptable new value with
respect to the current state of the object (O2, O3, O4, O5, O6).
First of all, the new value must meet its invariants. The extra
TRs are added on top of them. The setter uses this inspector
as guard for new values. Figure 5 illustrates this inspector and

1 /∗ ∗
2 ∗ @return i f (! canHaveAsBalance (b a l a n c e)

3 ∗ t h e n r e s u l t == f a l s e
4 ∗ @return l e t BigDecimal d i f f e r e n c e =
5 ∗ g e t B a l a n c e () . s u b t r a c t (b a l a n c e) . abs () i n
6 ∗ r e s u l t == d i f f e r e n c e .
7 ∗ compareTo (MAX DELTA)<=0
8 ∗ /
9 p u b l i c boolean canHaveAsNewBalance (

10 BigDecimal b a l a n c e){
11 re turn canHaveAsBalance (b a l a n c e) &&
12 (g e t B a l a n c e () . s u b t r a c t (b a l a n c e) . abs () .
13 compareTo (MAX DELTA)<=0);
14 }
15
16 /∗ ∗
17 ∗ @post new . g e t B a l a n c e () == b a l a n c e

18 ∗ @throws I l l e g a l A r g u m e n t E x c e p t i o n

19 ∗ ! canHaveAsNewBalance (b a l a n c e)

20 ∗ /

21 p u b l i c vo id s e t B a l a n c e (BigDecimal b a l a n c e)
22 throws I l l e g a l A r g u m e n t E x c e p t i o n {
23 i f (! canHaveAsNewBalance (b a l a n c e))
24 throw new I l l e g a l A r g u m e n t E x c e p t i o n () ;
25 t h i s . b a l a n c e = b a l a n c e ;
26 }

Fig. 5: Transition requirement of the property balance

the adapted setter. Often a public setter will not be desired,
mutators like withdraw and deposit are preferred above
setBalance. It suffices to change the access modifier to
protected (private doesn’t allow subclasses to define
custom mutators) and custom mutators can easily be specified
in terms of this setter.

Construction. Construction is an event with very specific
semantics. After the complete construction process an object
must be in a steady state. Because that is also the first state
of the object we don’t have the compare the initial value of
a characteristic with its previous value (there isn’t one). Even
when there is value assigned in the declaration to the instance
variable, we don’t consider that value as a ‘previous’ value. An
immediate consequence is that we can’t use the setter in the

constructor. Because we still want to restrict the manipulating
of the instance variable(s) to a single method we need to
introduce a more basic setter: registerα(T α) (O1, O2).
Figure 6 illustrates the basic setter for the property balance.
Because this setter will be used in the constructor only the VR

1 /∗ ∗
2 ∗ @post new . g e t B a l a n c e () == b a l a n c e

3 ∗ @throws I l l e g a l A r g u m e n t E x c e p t i o n

4 ∗ ! i s P r o p e r V a l u e F o r B a l a n c e (b a l a n c e)

5 ∗ /

6 @Raw
7 p r o t e c t e d void r e g i s t e r B a l a n c e (
8 BigDecimal b a l a n c e)
9 throws I l l e g a l A r g u m e n t E x c e p t i o n {

10 i f (! i s P r o p e r V a l u e F o r B a l a n c e (b a l a n c e))
11 throw new I l l e g a l A r g u m e n t E x c e p t i o n () ;
12 t h i s . b a l a n c e = b a l a n c e ;
13 }

Fig. 6: Basic setter for the property balance

is checked in this setter. This setter is also necessary when
we want to introduce a complex mutator that manipulates two
via SRs related properties. The developer will have to build a
custom transition checker for that mutator but that is a rather
trivial task as all building blocks are available. Indeed, each
VR and SR is specified in its own inspector (O1, O2, O5, O6).

A steady state after construction means that all VRs and
SRs must be met. Unfortunately, we can not use the inspector
canHaveAsα(T α) because this inspector assumes all other
properties β, γ,... already have their value. As there is no
order in the different assertions of the specification, using
them is impossible. So, we are forced to repeat the invariant

1 /∗ ∗
2 ∗ @ e f f e c t r e g i s t e r B a l a n c e (b a l a n c e)

3 ∗ @ e f f e c t r e g i s t e r C r e d i t L i m i t (l i m i t)

4 ∗ @throws I l l e g a l A r g u m e n t E x c e p t i o n

5 ∗ ! i s P r o p e r B a l a n c e C r e d i t L i m i t (ba lance ,

6 ∗ c r e d i t L i m i t)

7 ∗ /

8 p u b l i c BankAccount (
9 BigDecimal b a l a n c e , BigDecimal c r e d i t L i m i t)

10 throws I l l e g a l A r g u m e n t E x c e p t i o n {
11 i f (! i s P r o p e r B a l a n c e C r e d i t L i m i t (b a l a n c e ,
12 c r e d i t L i m i t))
13 throw new I l l e g a l A r g u m e n t E x c e p t i o n () ;
14 r e g i s t e r B a l a n c e (b a l a n c e) ;
15 r e g i s t e r C r e d i t L i m i t (c r e d i t L i m i t) ;
16 }

Fig. 7: Construction of a bank account

conditions in the specification of the constructor. Fortunately,
we can describe the semantics of the constructor in terms of
other mutators, more in particular the basic setter, through
the @effect-tag. This way we reduce the complexity of the
specification and implementation (O1, O4, O6). So we only

253Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 273 / 646

need to list all SRs in the @throws-clause. Figure 7 illustrates
the constructor for the class of bank accounts.

Inheritance. On the one hand, a subclass can specialize a
superclass. The subclass can adjust the semantics of inherited
features. The Liskov Substitution Principle (LSP) [3] acts as a
guideline to describe allowed adjustments. On the other hand
a subclass can extend the superclass with new features. We
will illustrate how the pattern copes with specialization and
extension. A subclass may want to redefine the VR of a prop-
erty. This means we need to be able to override the inspector
checking the VR. Because the inspectors checking the VR are
class methods and Java does not allow to override static
methods the way a VR is implemented in the pattern needs
to be adapted. Clearly, these inspectors need to be instance
methods but on the other hand they have class semantics as
their result is defined independent of the state of the object.
Therefore, we move these methods to a static inner class. This
static inner class implements the Singleton Pattern [2]: the
object of the static inner class represents the outer class. The
marker interface [4] ClassObject designates the static inner
class. Figure 8 illustrates the inner class for the class of bank

1 p u b l i c c l a s s BankAccount {
2 p u b l i c s t a t i c c l a s s COBankAccount
3 implements C l a s s O b j e c t {
4 p r i v a t e s t a t i c COBankAccount i n s t a n c e ;
5
6 p r o t e c t e d COBankAccount (){}
7
8 p u b l i c s t a t i c COBankAccount g e t I n s t a n c e (){
9 i f (i n s t a n c e == n u l l)

10 i n s t a n c e = new COBankAccount () ;
11 re turn i n s t a n c e ;
12 }
13
14 p u b l i c boolean i s P r o p e r V a l u e F o r B a l a n c e (. . .)
15 { . . . }
16
17 p u b l i c boolean i s P r o p e r V a l u e F o r C r e d i t L i m i t (. . .)
18 { . . . }
19
20 p u b l i c boolean i s P r o p e r B a l a n c e C r e d i t L i m i t (. . .)
21 { . . . }
22 }
23 }

Fig. 8: ClassObject inner class for the class BankAccount

accounts. The methods with class semantics can be moved
without modification to the inner class. The specification and
implementation of the instance inspectors using these methods
can easily access them through the singleton object. A first
advantage of moving the inspectors with class semantics into
an inner class is that although they are instance methods can
easily be identified as methods with class semantics (O4).
A second advantage is that they make it impossible for the
developer to use the state of the object erroneously (O6). A
third advantage is that it is still possible to test these methods
without needing an instance of the outer class (O3). If class B
is a subclass of A, then the inner class of B must be a subclass
of the inner class of A to be able to override methods from
the inner class of A. Figure 9 illustrates the redefinition of the

1 p u b l i c c l a s s Jun io rBankAccoun t
2 ex tends BankAccount{
3 p u b l i c s t a t i c c l a s s COJuniorBankAccount
4 ex tends COBankAccount{
5 /∗ ∗
6 ∗ @return i f (! s u p e r . i s P r o p e r V a l u e F o r B a l a n c e (

7 b a l a n c e))

8 ∗ t h e n r e s u l t == f a l s e
9 ∗ @return i f (b a l a n c e . s c a l e () ! = 0)

10 ∗ t h e n r e s u l t == f a l s e
11 ∗ /
12 @Override
13 p u b l i c boolean i s P r o p e r V a l u e F o r B a l a n c e (
14 BigDecimal b a l a n c e){
15 i f (! super . i s P r o p e r V a l u e F o r B a l a n c e (b a l a n c e))
16 re turn f a l s e ;
17 re turn b a l a n c e . s c a l e () == 0 ;
18 }
19 }
20 }

Fig. 9: Redefinition of the VR of the property balance

inspector checking the VR for the property balance. An extra
constraint is added on top of the constraints defined in the class
of bank accounts. The application, now, has two versions of the
inspector checking the VR. The pattern must always use the
right version. More in particular, the inspector must be invoked
against the right ‘class object’. Dynamic binding ensures using
the right version of an instance method. Therefore, an instance
method is introduced to retrieve the right ‘class object’. Figure
10 illustrates how the right VR inspector is invoked through
‘dynamic binding’. Adding new properties to the subclass is

1 p u b l i c c l a s s BankAccount {
2 p u b l i c COBankAccount g e t C l a s s O b j e c t (){
3 re turn COBankAccount . g e t I n s t a n c e () ;
4 }
5
6 p u b l i c boolean canHaveAsBalance (
7 BigDecimal b a l a n c e){
8 re turn g e t C l a s s O b j e c t () .
9 i s P r o p e r V a l u e F o r B a l a n c e (b a l a n c e) &&

10 g e t C l a s s O b j e c t () .
11 i s P r o p e r B a l a n c e C r e d i t L i m i t (b a l a n c e ,
12 g e t C r e d i t L i m i t ()) ;
13 }
14 }
15
16 p u b l i c c l a s s Jun io rBankAccoun t ex tends . . . {
17 @Override
18 p u b l i c COJuniorBankAccount g e t C l a s s O b j e c t (){
19 re turn COJuniorBankAccount . g e t I n s t a n c e () ;
20 }
21 }

Fig. 10: ‘Dynamic binding’ of a ‘class method’

now straightforward. If a SR involves a property α from the
superclass, the inspector canHaveAsα(T α) needs to be
redefined at the level of the subclass. Figure 11 illustrates how
the new SR between the properties balance and upper limit
is added to the inspector checking the invariant constraints for
balance. Lines 5-6 and 13-14 can be generated (O1). Figures 9

254Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 274 / 646

and 11 prove that redefinitions are easily developed (O2 - O5).
VRs, SRs and TRs can independent of each other be redefined.

1 p u b l i c c l a s s Jun io rBankAccoun t ex tends . . . {
2 /∗ ∗
3 ∗ @return i f (! s u p e r . canHaveAsBalance (b a l a n c e))

4 ∗ t h e n r e s u l t == f a l s e ;
5 ∗ @return i f (! i s P r o p e r B a l a n c e U p p e r L i m i t (ba lance ,
6 ∗ g e t U p p e r L i m i t ()))
7 ∗ t h e n r e s u l t == f a l s e
8 ∗ /
9 @Raw @Override

10 p u b l i c boolean canHaveAsBalance (BigDecimal b a l a n c e){
11 i f (! super . canHaveAsBalance (b a l a n c e))
12 re turn f a l s e ;
13 re turn g e t C l a s s O b j e c t () . i s P r o p e r B a l a n c e U p p e r L i m i t (
14 b a l a n c e , g e t U p p e r L i m i t ()) ;
15 }
16 }

Fig. 11: A SR involving the balance and the upper limit

Pattern skeleton. To summarize, Figure 12 shows a skele-
ton from the pattern for a property without specification.
Given this generated code (O1, O6) the developer has only
to (1) complete the inspector checking the VR (2) add an
inspector for each SR in the inner class and extend the
canHaveAsα to invoke the introduced inspector (3) complete
the inspector checking the TR.

Language Construct. Figure 12 proves that an inherent
problem with patterns is that it generates quite some boilerplate
code. The need for patterns signals a lack of expressiveness of
programming languages. Therefore, we present an extension
to increase that expression power. Figures 13 and 14 illustrate
how the example is completely worked out with a new lan-
guage construct Property.

1 /∗ ∗
2 ∗ The b a l a n c e o f t h i s bank a c c o u n t
3 ∗ @Value b a l a n c e != n u l l
4 ∗ @State b a l a n c e . compareTo (c r e d i t L i m i t) >= 0
5 ∗ @Trans b a l a n c e . s u b t r a c t (new . b a l a n c e) .
6 ∗ abs () . compareTo (MAX DELTA) <= 0
7 ∗ /
8 Property BigDecimal b a l a n c e i sRe la tedWith
9 c r e d i t L i m i t ;

10
11 /∗ ∗
12 ∗ The c r e d i t l i m i t o f t h i s bank a c c o u n t
13 ∗ @Value c r e d i t L i m i t != n u l l
14 ∗ @Value c r e d i t L i m i t . s ignum () < 0
15 ∗ /
16 Property BigDecimal c r e d i t L i m i t i sRe la tedWith
17 b a l a n c e ;

Fig. 13: The class of bank accounts

The importance of specification is upgraded, by making it an
integral part of the construct. The specification describes the
different kinds of requirements. They act as guards to validate
values in an update operation. Three new tags are introduced
to specify the semantics of a property, one for each kind
of requirement we identified in section IV. The assertions
used in the specification are Boolean expressions. (1) Each
VR is preceded with a @Value-tag. A VR may be split over

1 p u b l i c c l a s s Foo {
2
3 p u b l i c Foo (T α) throws I l l e g a l A r g u m e n t E x c e p t i o n {
4 r e g i s t e rα (α) ;
5 }
6
7 p r i v a t e T α ;
8
9 @Basic @Raw

10 p u b l i c T g e tα (){
11 re turn α ;
12 }
13
14 @Raw
15 p r o t e c t e d void r e g i s t e rα (T α)
16 throws I l l e g a l A r g u m e n t E x c e p t i o n {
17 i f (! g e t C l a s s O b j e c t () . i s P r o p e r V a l u e F o rα (α))
18 throw new I l l e g a l A r g u m e n t E x c e p t i o n () ;
19 t h i s .α = α ;
20 }
21
22 @Raw
23 p u b l i c boolean canHaveAsα (T α){
24 i f (! g e t C l a s s O b j e c t () . i s P r o p e r V a l u e F o rα (α))
25 re turn f a l s e ;
26 }
27
28 p u b l i c boolean canHaveAsNewα (T α){
29 i f (! canHaveAsα (α))
30 re turn f a l s e ;
31 }
32
33 @Raw
34 p u b l i c f i n a l boolean h a s P r o p e rα (){
35 re turn canHaveAsα (g e tα ()) ;
36 }
37
38 p u b l i c vo id s e tα (T α)
39 throws I l l e g a l A r g u m e n t E x c e p t i o n {
40 i f (! canHaveAsNewα (α))
41 throw new I l l e g a l A r g u m e n t E x c e p t i o n () ;
42 r e g i s t e rα (α) ;
43 }
44
45 p u b l i c COFoo g e t C l a s s O b j e c t (){
46 re turn COFoo () ;
47 }
48
49 p u b l i c s t a t i c c l a s s COFoo
50 implements C l a s s O b j e c t {
51 p r i v a t e s t a t i c COFoo i n s t a n c e ;
52
53 p r o t e c t e d COFoo (){}
54
55 p u b l i c s t a t i c COFoo g e t I n s t a n c e (){
56 i f (i n s t a n c e == n u l l)
57 i n s t a n c e = new COFoo () ;
58 re turn i n s t a n c e ;
59 }
60
61 p u b l i c boolean i s P r o p e r V a l u e F o rα (T α){
62 re turn . . . ;
63 }
64 }
65 }

Fig. 12: The pattern for a property α

255Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 275 / 646

multiple tags. (2) Each SR is preceded by a @State-tag.
Each property can be involved in an unlimited number of
SRs. (3) Finally, a TR is preceded by a @Trans-tag. A SR
is always symmetric, which means it applies equal to all
properties involved. Despite of this symmetry, the specification
doesn’t need to be duplicated. Relations between properties
need to be mentioned explicitly. The characteristics a property
is related with are added to a list following the keyword
isRelatedWith in the signature of the property. This
implies that the specification of the semantics of a property
can be spread over multiple properties. We don’t consider this
as a drawback though because to understand a requirement
involving two properties, one has to understand the semantics
of both properties anyway. This list also identifies clearly
on which properties changes to the specification can have
an impact on. By avoiding the duplication we fully support
Parnas’ principle [8] saying that each fact must be worked out
in one, and only one, place. The specification is by definition
non-deterministic. The semantics of an assertion Γ in a VR,
SR or TR is:

if !(Γ)
then result == false
else result == Undefined

Thus, when the assertion Γ evaluates to false, the submitted
value not acceptable. On the other hand, when the assertion

1 /∗ ∗
2 ∗ The b a l a n c e o f t h i s j u n i o r bank a c c o u n t
3 ∗ @Value b a l a n c e . s c a l e () == 0
4 ∗ @Trans ! i s B l o c k e d
5 ∗ /
6 @Override
7 Property BigDecimal b a l a n c e i sRe la tedWith
8 c r e d i t L i m i t , uppe rL imi t , i s B l o c k e d ;
9

10 /∗ ∗
11 ∗ The c r e d i t l i m i t o f t h i s j u n i o r bank a c c o u n t
12 ∗ @Value c r e d i t L i m i t .
13 ∗ compareTo (new BigDecimal (−1000)) >= 0
14 ∗ @Value c r e d i t L i m i t . s c a l e () == 0
15 ∗ /
16 @Override
17 Property BigDecimal c r e d i t L i m i t i sRe la tedWith
18 b a l a n c e ;
19
20 /∗ ∗
21 ∗ The b l o c k e d s t a t e o f t h i s . . .
22 ∗ /
23 Property boolean i s B l o c k e d i sRe la tedWith
24 b a l a n c e ;
25
26 /∗ ∗
27 ∗ The upper l i m i t o f t h i s bank a c c o u n t
28 ∗ @Value u p p e r L i m i t >= 1000
29 ∗ @Value u p p e r L i m i t <= 10000
30 ∗ @State b a l a n c e . compareTo (
31 ∗ new BigDecimal (u p p e r L i m i t))<=0
32 ∗ /
33 @Immutable
34 Property i n t u p p e r L i m i t i sRe la tedWith
35 b a l a n c e ;

Fig. 14: The class of junior bank accounts

evaluates to true the value may be acceptable. The semantics
of the VRs of credit limit in Figure 13 is that non-effective

positive or zero decimal numbers are certainly not a good
value for a credit limit. Negative values can be good values.
Subclasses are allowed to further specify the open part.
The requirements specified in a subclass are added to the
requirements specified in the superclass. The VR of the
credit limit in the class of junior bank accounts for instance
now specifies that only strictly negative integer numbers are
acceptable values.

Evaluation. Up to now, the pattern has only been
applied to academic problems. These experiments show
that about 70% of the code for defining properties is
boilerplate code. As an example the full definition of class
of bank accounts counts 360 lines of Java code. About
250 of these lines are boilerplate code. The typical Java
programmer is not tempted to write all these lines in original
definitions of classes. In particular, he will not be eager to
encapsulate the different kind of requirements in Boolean
inspectors such as isProperValueForBalance(),
canHaveAsBalance(), canHaveAsNewBalance(),
etc. This either leads to duplicate code because the same
requirement is repeated over and over again in different parts
of the class definition, or it compromises adaptability in time
and space. We therefore believe that more advanced language
constructs are needed to introduce properties in classes. We
still need to experiment with this pattern in the scope of
industrial software systems. We expect the same results with
respect to the mere definition of properties in such large
systems. The pattern gives the programmer the opportunity to
focus more on the business at stake.

VI. RELATED WORK

The central idea of Model Driven Architecture (MDA) [11],
[12] is to automate transformations between models. To enable
this transformations the specification should be defined in a
formal way. MDA uses Design by Contract (DBC) [13] to
specify the semantics of models formally. DBC was developed
by Bertrand Meyer as part of the Eiffel programming language
[1], [18]. DBC is based amongst others on Hoare-logic [7] that
already introduced concepts like preconditions and postcon-
ditions. Other object-oriented languages with native support
for DBC are for instance Sather [20], Nice [19] and Spec#
[21]. Commonly used languages like Java, C++ [14] and C#
[22] have no support for DBC. However, several third-party
tools have been developed for those languages. Tools for java
are for example: Contract4J [23], JContractor [24]. The Java
Modeling Language [25] is a behavioral interface specification
language that can be used to specify the behavior of Java
modules. B AMN [26] and UML-RSDS [27] present similar
concepts. In UML-RSDS correct operations can be synthesized
from invariants (VR and SR constraints in this paper) in many
cases. In B, a TR can be expressed as an abstract pre-post
specification which is correctly refined by a more concrete
operation that ensures the TR constraints.

VII. CONCLUSION AND FUTURE WORK

In Object-Oriented programming, a significant effort has
been made in recent years to increase the expressiveness of
programming constructs for the production of code. However,
we have not seen such a similar evolution in the design and

256Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 276 / 646

specification of code. Developers are often forced to write ad-
hoc code specifications in a non-standardized manner. In this
paper, we therefore took an evolutionary approach to language-
integrated specification constructs. We started from existing
specification constructs (@pre, @post, ...) with the ambition to
enhance the overall expressiveness of specifications in object-
oriented languages.

We have identified three types of requirements that can
occur in program specifications: Value Requirements (VR),
State Requirements (SR), and Transition Requirements (TR).
Value Requirements are used to specify the most basic kind
of business rules in that they restrict the range of values that
a characteristic, property or association, can have. A state
requirement describes a constraint that restricts acceptable
value combinations of (a set of) properties. Transition Re-
quirements, then, specify the business rules that restrict the
evolution of property values.

Besides that, we feel that also need to help developers in
correctly using these constructs. Therefore, we have introduced
a ”boilerplate pattern” that showcases the inspector methods
required for validating the VR, SR and TR in a specification.
But a pattern is, according to us, not sufficient as a solution,
because (1) it involves too much boilerplate code and (2) there
remains a risk of incorrectly implementing (a part of) the
pattern, which would still lead to ill-defined specifications.

Therefore, we have integrated a Specification Language
extension in Java. By means of the @value, @state and @trans
tags, developers can better capture the Specification of their
code, while outsourcing all technicalities to a code generator.
We have also introduced the isRelatedWith construct in order
to further minimize the risk of duplicate specifications. As
an additional benefit, the formal specifications are compile-
time checked, since they are injected in the Java code in the
background, before compilation.

We recognize that this is the first step in our roadmap to
develop a fully integrated, expressive Specification language,
and would like to conclude by giving the reader a view
of our upcoming research, which has two important future
directions. Next to our Specification-to-Code generator, we
also want to build a detailed formalization of the Specification
language, in order to identify opportunities to further enhance
the expressiveness of the concepts. A second direction is
to further increase the expressiveness and action radius of
the concepts. For instance, we are currently working to add
determinism to our Specification constructs, for which a
prototype definition is currently available, but too preliminary
for this paper. Another example is that we are defining
more finegrained rules on when properties may be added or
removed to the isRelatedWith-list. These rules are currently
still based on informal guidelines.

Acknowledgements We especially thank Sven De Labey for
his advice. We thank the anonymous reviewers for their
insightful comments. This research is funded by the the Fund
for Scientic Research (FWO) in Flanders.

REFERENCES

[1] B. Meyer, Object-oriented software construction, second edition ed.,
Prentice Hall, 1997.

[2] E. Gamma, and R. Helm, and R. Johnson, and J. Vlissides, Design pat-
terns: elements of reusable object-oriented software, Addison-Wesley
Longman Publishing Co., Inc., 1995.

[3] B. H. Liskov and J. M. Wing, A behavioral notion of subtyping, ACM
Trans. Program. Lang. Syst. 0164-0925 (1994), pp. 1811–1841.

[4] J. Bloch, Effective java, Java Series, Pearson Education, 2008.
[5] J. Bosch, Design patterns as language constructs, Journal of Object-

Oriented Programming 11 (1998), pp. 18–32.
[6] M. Feathers, Working effectively with legacy code, Prentice Hall PTR,

Upper Saddle River, NJ, USA, 2004.
[7] C. A. R. Hoare, An axiomatic basis for computer programming,

Communications of the ACM 12 (1969), no. 10, pp. 576–580.
[8] D. L. Parnas, On the criteria to be used in decomposing systems into

modules, Commun. ACM 15 (1972), no. 12, pp. 1053–1058.
[9] E. Steegmans, Object oriented programming with java, Acco, 2011.

[10] A.L. Rubinger and B. Burke, Enterprise javabeans 3.1, O’Reilly Media,
2010.

[11] D. Frankel, Model driven architecture: Applying mda to enterprise
computing, OMG Press, Wiley, 2003.

[12] A. G. Kleppe, and J. Warmer, and W. Bast, Mda explained: The model
driven architecture: Practice and promise, Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2003.

[13] R. Mitchell, and J. McKim, and B. Meyer, Design by contract, by
example, Addison Wesley Longman Publishing Co., Inc., Redwood
City, CA, USA, 2002.

[14] S. B. Lippman, and J. Lajoie, and B. E. Moo, C++ primer, 5th edition
ed., Addison-Wesley Professional, 2012.

[15] Javadoc Tool Home Page, http://java.sun.com, retrieved: 08, 2013
[16] Enterprise JavaBeans Technology, http://java.sun.com, retrieved: 08,

2013
[17] Eclipse project, http://www.eclipse.org, retrieved: 08, 2013
[18] Eiffel Software, http://www.eiffel.com/, retrieved: 08, 2013
[19] The Nice Programming Language, http://nice.sourceforge.net, retrieved:

08, 2013
[20] Sather, http://www1.icsi.berkeley.edu/ sather, retrieved: 08, 2013
[21] Microsoft Research Spec#, http://research.microsoft.com/en-

us/projects/specsharp, retrieved: 08, 2013
[22] C# Programming Guide, http://msdn.microsoft.com/en-

us/library/vstudio/67ef8sbd.aspx, retrieved: 08, 2013
[23] Contract4J, http://www.polyglotprogramming.com/contract4j, retrieved:

08, 2013
[24] M. Karaorman, and U. Holzle, and J. Bruno, jcontractor: A reflective

java library to support design by contract, Tech. report, Santa Barbara,
CA, USA, 1999.

[25] G. T. Leavens and Y. Cheon, Design by Contract with JML,
http://www.eecs.ucf.edu/ leavens/JML//jmldbc.pdf, retrieved: 08, 2013

[26] J.-R. Abrial, The B-book - assigning programs to meanings, Cambridge
University Press, 2005.

[27] K. Lano and S. K. Rahimi, Synthesis of Software from Logical Con-
straints, ICSOFT, 2012, pp. 355-358.

257Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 277 / 646

Applying Questionnaire to Assess the Lessons Learned Process in Software Project

Management: a Case Study at GAIA

Marco Ikuro Hisatomi, Anderson de Souza Góes, and Rodolfo Miranda de Barros

Department of Computing

State University of Londrina (UEL)

Londrina, PR – Brazil

marco.hisatomi@gmail.com, andersonsouzagoes@gmail.com, and rodolfo@uel.br

Abstract — In order to obtain benefits from the Lessons

Learned Process in Software Project Management it is

necessary to assess the process periodically. To avoid failures,

assessments can be conducted based on questionnaires duly

appropriate for each organisation or segment of the software

project under development. Studies of Lessons Learned and

Software Project Management have increased the assessments

techniques and have guided the construction of assessment

criteria in organisations. In this paper, we present a

questionnaire template with different alternatives that offer

different scores and axes of efficiency to enhance the

assessment. We intend to demonstrate that this questionnaire

template establishes parameters for accurate measurements of

the assessment of the Lessons Learned Process.

Keywords – Lessons Learned, Software Project Management,

Assessment Questionnaire.

I. INTRODUCTION

Through research on the organisation itself and with the
participation of the people involved in software development
projects, it is possible to maintain an information database
called Lessons Learned [1]. The content of this database is
the result of activities performed within an organisation.
Throughout the project, the experiences are accumulated in
an organised way to form the Lessons Learned of the project
team.

Structuring Lessons Learned Processes in an organisation
is not always fast and there should be a constant discussion
of the subject for all people involved. The benefits of
Lessons Learned should be pursued by those involved in the
development of a software project [2], in the life cycle of the
software development process. This paper aims to identify
the main points that can be improved for this organisation,
either through classification of information, its source or
characteristic, or by its complexity.

Aiming at the success of the project, the application of
Lessons Learned in the organisation is one of the techniques
that contribute to this goal [3]. The goals must be constantly
pursued in spite of the diversity of resources involved, the
complexities and restrictions required during the project.
Therefore, in order to facilitate the decision during the
project, the Lessons Learned is fundamental to promote
assertiveness in these decisions.

The maintenance of Lessons Learned contributes
positively to the successful delivery with the expected
quality [3], even with the numerous innovative techniques in
project management [4]. In this paper, the advantages offered

by the Lessons Learned Process are proposed through the
development of six axes of efficiency. The development of
these axes intends to determine the level of efficiency of the
maintenance of Lessons Learned Process that is being
practised in the organisation.

By using the Lessons Learned Process in Software
Project Management, organisations intend to guarantee
effective collaboration in building the best software
development techniques. Therefore, assessments should be
conducted to measure the efficiency of this process. With
that in mind, in this paper, we designed an assessment
questionnaire to measure the efficiency of Lessons Learned
for the main axes of the management process.

The present article is organised as follows: in Section 2,
there is a literature review of the main bases of this project –
Lessons Learned, Project Management and related work. In
Section 3, we present the assessment based on the
questionnaires at GAIA – Software Factory, as a case study.
In Section 4, the process evaluation of Lessons Learned in
Project Management. The results are presented in Section 5,
and finally, the conclusion and future work are presented in
Section 6.

II. LITERATURE REVIEW

We conducted [2] several studies for the literature review
focusing on two areas: Project Management and Lessons
Learned. The survey was developed from several documents
with relevant and current issues in these areas. The study of
related work also helped to consolidate the assessment
proposed in this article.

A. Lessons Learned

The Lessons Learned Process includes organised
activities for the recorded experiences of the people involved
in a particular project and has great value as knowledge.
Both positive and negative experiences are considered
equally important in Lessons Learned, e.g., a variation of the
technique of software testing can be positively considered;
but if this variation results in failure, it can be considered as
negative.

In [5], a Lesson Learned is considered as so when it has
an impact on daily operations. Basically, adverse experiences
are observed and used to improve the organisation or a
particular member of staff. In all cases, the result should be,
among others, a significant reduction of effort, an
improvement in design, and an optimisation of computer
resources.

258Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 278 / 646

Among the several applications of Lessons Learned, with
beneficial impacts to the organisation, some can be cited
according to [3]:

• Time saved in solving problems, since the solutions
of common problems are centralised in one location
for easy access by members.

• Reduction or elimination of costs from avoiding the
same work to be done again when correcting
discovered defects.

• Encouragement of the use of best practices within
the organisation, which increases the likelihood of
success of the projects.

Narratives that explicit knowledge or understanding
gained through experience – both positive and negative – can
still be characterised as a lesson learned. The lesson relates
what was expected to happen, the facts and deviations that
happened, the analysis of the causes of these deviations and
what might be learned during the process [6].

The record of the lessons learned is an excellent way to
avoid the same mistakes previously made and to replicate the
successes achieved in the past to future projects. According
to [7], five points are listed for a successful implementation
of the process of documentation of the lessons learned:

1) Training of members of the organisation – it is

necessary to change the paradigm that the collection and

recording of lessons learned is a waste of time, and to bring

to knowledge the benefits that information sharing has in an

organisation. For this process to work, it is very important

that the manager is able to generate motivation and

involvement of all. According to [8], to make full use of the

practices of knowledge management in a company, one of

the key factors is the involvement of both stakeholders and

workforce – which involves a change of habits.

2) Collection and recording of experiences – this task is

considered to be costly and demands great effort from the

staff. This task should be performed using practices and

oriented towards an easy method of items relevant for the

organisation; also, it is important that these items are

organised following a set pattern.

3) Analysis of successes and failures – it is not enough

that the lessons learned are simply recorded and catalogued;

they also must be understood and analysed. After the

identification of the activities that resulted in good results or

failures, these records must be part of the knowledge basis.

In that way, the Lessons Learned Process becomes an

opportunity for analysing facts and for adopting measures for

a continuous improvement.

4) Dissemination of knowledge – Simply archiving these

lessons is not enough; they should also be disclosed

throughout the organisation. This disclosure must take into

account the direction and prioritisation of such information

in accordance with the interests of each group.

5) Updated records – It is very important to understand

that the register of the Lessons Learned should be cyclical,

i.e., it must be constantly updated.

B. Project Management

Software development has been one of the major
technological advances of our days, in the information age.
All products built based on projects have shown positive
results and measurable improvements in the future [4]. For
that, project management is an activity largely applied to
software development, which has improved significantly
with less effort.

The most widely accepted definition for the term
"project" is presented by the Project Management Body of
Knowledge (PMBOK), and characterised as "a temporary
endeavour undertaken to create a product, service or result
only". In the same line, [9] defines it as "a unique venture to
produce a set of results according to constraints of time, cost
and quality clearly defined".

The great amount of software projects in progress, the
number of people involved in these tasks and the tight
delivery deadlines increases the complexity of these projects
[10]. Therefore, there is a growing practice of Project
Management (PM) for new software projects, whether new
products or changes in systems already developed.
According to [11], PM is used by organisations to manage
the innovations in their processes. Thus, encouraging the
creation and dissemination of organisational management
techniques in these organisations is fundamental to improve
products and processes services.

According to [12], there is the PM-specific branch of the
organisation’s activity, because it includes various
techniques in different business areas, such as: general
administration, military organisation and engineering, among
others. The activities involved in PM are multidisciplinary
and require a lot of expertise and the participants'
commitment to its implementation. The growth of project
management refers to topics such as roles and
responsibilities, organisational structures, delegation of
authority, decision-making and especially corporate
profitability [13].

Thus, the project management "is the application of
knowledge, skills, tools and techniques to project activities to
meet project requirements". Once the characteristics of the
delivery products (and services) [4] [9] are defined, the
activities must meet these objectives in an explicit – and not
implicit – way. Throughout their development, the projects
are organised according to their life cycle and divided in two
classes: the projects that involve the activities of PM and the
products that include the activities of product development
[12].

During the development of a product, the tasks may vary
according to the branch of industry (software,
pharmaceutical, manufacturing, etc.), while the PM is
independent from the segment. They can be classified into
groups (called stages), such as initiation, definition,
planning, execution, controlling, and closing. Each stage
brings together activities with similar purposes, but with
their own features and goals.

C. Related Work Process and Lessons Learned

The Process Management of the Lessons Learned is
increasing, especially in the area of Information Technology,

259Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 279 / 646

aiming at consolidating this process in software projects. For
example, [14] proposes an architectural model for managing
Lessons Learned in the testing phase. Although there are
studies reporting the importance of this process, none of
them includes the assessment questionnaire.

In the work of [15], the authors developed a guide
containing major errors in the Lessons Learned. This subject
was widely discussed by National Aeronautics and Space
Administration (NASA) especially after the incident with the
space shuttle Columbia. These authors’ proposal is to
consider the following key steps: the collection of lessons
learned, their management and application in future projects.

According to [16], Lessons Learned Process is used to
develop and maintain an organisational memory for a
technology centre that develops high risk systems. In this
centre, through interviews, decomposition and reintegration
of tacit knowledge with explicit information, including the
information gathering and dissemination, they managed to
establish a process and obtained good results after its
implementation.

In software engineering, the process of knowledge
dissemination is based on Lessons Learned [17] in order to
maintain a community of interest. This work describes the
operation of the engineering centre software based on
Commercial Off-The-Shelf (COTS) and how the Lessons
Learned is used. It also includes a detailed description of a
repository Lessons Learned and a planning evolution for it.

As previously mentioned, the use of Lessons Learned
Process has clear aims in project management, which in turn
requires the assessment of this process so that improvements
can take place. Several studies focus on Lessons Learned
Process, highlighting its necessity and advantages. However,
the formal and effective assessment of this process is not
always correctly explained.

In this paper, a formal assessment with the aim of
improving Lessons Learned Process is proposed through a
questionnaire applied to all involved in the project. Based on
the results of this questionnaire, the organisation can decide
how to employ its resources for each level of need indicated
by the axes of efficiency.

III. ASSESSMENT OF LESSONS LEARNED PROCESS BASED

ON A QUESTIONNAIRE

There are several methods of gathering information to
meet an internal process in the organisation. In [18], one of
them includes the collaboration of the team members that
participated in this survey, so the accuracy of the information
given is associated to the participants’ commitment.
Following this principle, a questionnaire was developed to be
applied to all members of the software development team.

An assessment was conducted, as a case study, at GAIA
Software Factory of the Department of Computing, State
University of Londrina. This organisation was chosen
because it develops software of various scopes for the
university itself and, specially, because it is formed by
undergraduate and postgraduate students that – after their
graduation – leave the Factory, leading to knowledge loss.
Other important factors were listed in this case study:

• An environment focused on software development;

• The team works with procedures, attributes and
templates that can be reused;

• An organisation focused on a continuous
improvement of its processes;

• The development software process includes
integration at several software engineering area and
governance in Information Technology (IT);

• Specialists in knowledge management;

• Experienced staff in project management.
In the work of [19], a method was used for multiple-item

development of a questionnaire. The main objective of this
method was the measurement of a universe through issues
that represent reality. Alternatives distributed between
strong, weak and staggered tend to result in accuracy. Thus,
the questionnaire represents a powerful tool for the
measurement of a situation.

In order to obtain a broad and complete picture, the
questionnaire was built with objective questions, containing
qualitative and quantitative alternatives. Beyond the issues
that were considered in the axes of efficiency that lead to
good practices for each process involved in the use of
Lessons Learned Process. The axes of efficiency show trends
for each of the items considered [20].

As illustrated in Figure 1, these axes represent the main
features to use effectively the resources from Lessons
Learned in a Software Development organisation. Through
these axes of efficiency it is possible to focus on a specific
feature, facilitating the management of Lessons Learned
Process.

Figure 1. Axes of efficiency in Lessons Learned Process (adapted from

[20])

Each question was elaborated with the objective of
indicating the need of improvement. Also, it was considered
getting a diagnosis for the applicability of the process related
to the efficiency of Lessons Learned Process, according to
the axes of efficiency. Each alternative indicates the level of
this applicability, which can be achieved by the weight
associated to each axis of efficiency, due to the impact that
this response will provide to the axis.

The weight of the efficiency as a function of the sum is
generally a multiplication, with values ranging from 0 to 3,
in which 0 represents ‘no influence’, 1 ‘low influence’, 2
‘medium influence’ and 3 ‘high influence’. To this levels of
influence is added either the signs (+) or (–) determining,
respectively, a positive or negative influence. The
alternatives suggest that the participant will be framed
according to their degree of participation in the Lessons

260Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 280 / 646

Learned Process. As an example, Figure 2 shows the
possible alternatives for the two issues.

In Figure 2, the answer to each question consists in an
alternative, which will be chosen by those involved in the
development project. In the questionnaire, the participant
answers the questions without knowing neither the
correspondent weights nor the axes of efficiency. However,
for each answer, it will be computed in a general sum and the
representativeness of a participant’s answer will be given by
their answer multiplied by its respective weight.

Figure 2. Issues, alternatives, effiency and weights (Produced by the

authors)

For example, the question "Is there a documented
procedure for the dissemination of L.L. (Lesson Learned)?"
has five alternatives and each one represents gradually the
position of the organisation. It is possible that the weights
were assigned to each alternative along an axis of efficiency.
In spite of the fact that the weights of each answer have a
simple score calculation, this format leads to results more
accurately dependent on the granularity of each alternative.

Different weights were attributed for the axis
"Dissemination of Lessons Learned": ‘3’ to the alternative
"Strong, there is a documented procedure for dissemination
of L.L. and it is periodically assessed for its improvement",
which indicates a high positive impact to this issue. And so
on, up to the weight ‘–3’ for the option "Weak, there is no
documented procedure and there are no plans to define this
procedure", indicating that there is a high negative impact.

IV. ASSESSMENT OF LESSONS LEARNED PROCESS IN PM

Based on the proposal and on the issues raised and
described in Figure 2, we conducted a case study about the
advantages that its use can provide to the application of the
Lessons Learned Process as part of software development
project management. Then, we explain three main
advantages of the questionnaire with axes of efficiency in the
assessment of the Lessons Learned Process ([1], [3], [14],
[21]). These themes were established according to the studies
conducted in the organisational environment of systems
development, in which there is collaboration for project
management.

The benefits of each axis of efficiency lie on the results
that each of them will provide for the development of
systems and especially for the process of software

development with Lessons Learned Process. For a positive
result in project management it is necessary that the analysis
[22] for each axis be part of the process. Thus, each axis of
efficiency will demonstrate the contribution to the whole
process.

A. Explanation of Lessons Learned

Knowledge is valid for people when the development of
a task can be controlled by them, and adapted to specific
needs, i.e., when it becomes a Lesson Learned. That, in turn,
may or may not be spelled out for future use or shared with
others [23]. Sharing a Lesson Learned with a software
project development team becomes an advantage that can
result in minimisation of effort or improvement of the final
product.

The possibility of having an organisational integration of
knowledge management and, as a consequence, gaining a
competitive advantage in the market [21], represents the
importance of explaining Lessons Learned. When described,
a Lesson Learned becomes reference for use, association or
improvement of a given process or task within the
organisation.

In order to complete the cycle of information, according
to [23], knowledge must transit between tacit and explicit, in
phases of socialisation, externalisation, combination and
internalisation. On the other hand, [24] states that before the
storage of information, knowledge must be made explicit,
classified and integrated, so it can contribute to
improvements and add new information. Thus, the axis of
Explanation of the Lessons Learned is considered essential to
a formal process; without which it would be impossible to
continue the treatment and use of acquired knowledge.

B. Ease of search

The models and materials surveyed do not offer an
explicit description of the minimum criteria that would
facilitate the recovery of the Lessons Learned stored.
Capability Maturity Model Integration (CMMI) reports that
the recovery of a Lesson Learned should have criteria to
facilitate this process; however, it does not show how this
procedure should be done.

The tool used to storage the Lessons Learned facilitates
the search and access, encouraging the practice of the
process as a whole [20]. Besides that, the design is optimised
in time, considering that several people access several times
the knowledge repository. If for each survey the time can be
optimised, then the time of the task can also be reduced.

The easy access to a Lesson Learned is a major factor
that drives the effective use of this process. Since a Lesson
Learned is explicit, it should be made available in a simple
way for the consultation process. Some keywords are
fundamental to enable this search by those involved in the
project. Still, according to [24], this question must have the
correct rating to have the assertiveness and adequate
categorisation also highlighted by [27]. With the
combination of these practices, naturally, one can predict that
the good explanation and ease of use will boost the
dissemination of Lessons Learned.

261Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 281 / 646

C. Configuration Management

One of the most important activities in software
development is the responsibility of the project manager to
control revisions and versions. In this process, all changes
are controlled in an organised and predictable way [26],
which can be envisaged for specific versions for each project
phase. The great advantage in the use of configuration
management is the control of the record of Lessons Learned,
for a more efficient decision-making. Comparing a Lesson
Learned at the exact moment in which its use is being
analysed [16] ensures the manager an effective decision for
its application or not.

This article aims to contribute to the studies analysed
with an approach in an appropriate format and customisable
for the assessment of Lessons Learned Process at a software
development organisation. The axis of efficiency
Configuration Management will complement the stability to
use the Lessons Learned Process, along with the other axes.
The collaboration of this axis is directly related to the axes of
Policy of the Access Control and the Dissemination of
Knowledge. Through proper configuration of each item a
Lesson Learned will enable the correct version of the item
according to the responsibility of the project member giving,
therefore, greater security and reliability of the information
to the project manager.

V. RESULTS

The organisation’s choice to conduct the questionnaire
was crucial because the GAIA has development model
components that are organised and trained to act in this
segment. In GAIA, there are three groups: specialists, non-
specialists, and project manager. In this way, it becomes
feasible to conduct the questionnaire, and because all are
involved, daily, in the development software process.

Following the process, proposed by [21], as a
methodology for collecting results, research was targeted at
the three groups of the software development team in order
to obtain the recognition of the assessment questionnaire
proposed by this article. The team involved and engaged
belongs to the project GAIA – a Software Factory, a research
and extension project of the Department of Computing, State
University of Londrina (UEL). People were classified into
three groups: project manager, specialists, and non-
specialists. In the first group, there were those who know and
perform project management; in the second, experts of
Knowledge Management; and in the third group, the other
participants of the software development team.

The statements were designed in accordance with the
suggestions of the participants of the software development
team, based on guidelines found in the literature ([21], [25]).
The statements, presented in Table I, are essential to the
targeting of objectives of knowledge management and
assessment of Lessons Learned Process. In order to prepare
Table I with the statements, we initially prepared questions
about GAIA’s Lessons Learned and we conducted it to the
three assessment groups. The questionnaire was designed
considering the axes of efficiency, treated in Section 3, for a
more effective assessment.

TABLE I. LIST OF THE ASSESSORS’ CLAIMS

No. Statements

01
Lessons Learned Process is initiated by explicit knowledge,

supporting the possibility for use and improvements.

02
With the management of Lessons Learned participants will

have greater confidence to use and work with the repository.

03

Lessons Learned explained and managed becomes part of the

organisation and is not restrict to the expert who wrote it

anymore.

04
Participants will have the greatest stimulus in the use of

Lessons Learned when it is easy to use.

05
Saving versions of changes in Lessons Learned will enable

checking the evolution of its use.

06
Lessons Learned is not available without access control,

which will maintain its integrity in a controlled way.

07
It is possible to measure the efficiency of use from the reach

of a Lesson Learned to the ones involved in the project.

08
The questionnaire will direct the evolution of the quality of

the process of Lessons Learned.

09
Through the questionnaire containing the axes of efficiency,

the margin of safety in the assessment of the Lessons Learned

Proces will be increased.

10
The weights allocated to each of the answers indicate greater

importance in the application of Lessons Learned.
a. Produced by the authors.

In Table I, we present the advantages of completing the

assessment of the Lessons Learned framework with the axes
of efficiency. The efficiency of the proposed process is
depicted in Table II, which shows a positive assessment,
with scores close to the maximum. The great advantage –
presented in this paper – of the assessment methodology
using the questionnaire is specifically the objectivity to
validate each point represented by the axes, the contribution
to the effectiveness and efficiency in project management in
a software development organisation.

The applicability of the questionnaire for assessing the
Lessons Learned Process was presented and submitted in the
organisation model of software development GAIA, among
the three groups. Based on the model presented in Figure 2,
the questionnaire aimed to assess whether it is possible to
have positive results for assessment of Lessons Learned
Process in a software development organisation.

Each group – specialist, non-specialist and project
manager – analysed the problems with their weights,
responding according to the applicability in the development
environment GAIA. Data were collected after each
participant gave a score between 1 and 5, in which 1 means
‘strongly disagree’, 2 means ‘partially disagree’, 3 means
‘agree’, 4 means ‘partially agree’ and 5, ‘fully agree’,
consistent with the proposed assessment. Finally, the
optimistic result is expressed in Table II.

TABLE II. TABULATION OF SCORES OF ASSESSORS

b. Produced by the authors.

262Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 282 / 646

The assessment of this work is very satisfactory, since
the percentage among the assessors numbered 90.8%
(4.54/5.00) at the final average, as demonstrated in Table II,
ensuring effective use of the questionnaire. For a good
Lessons Learned Process management, it is possible that a
software development company measure through the
questionnaire process, with axes of efficiency and weights
for each alternative of the question.

In this summary, we have demonstrated that 50% of
project managers pointed favourably for the use of this
methodology, giving evidence that the results are satisfactory
for the Lessons Learned Process in software development.
With this favourable outcome, the process becomes an
opportunity for improvement in software development,
boosting the possibility of investing in the assessment and
improvement of Lessons Learned Processes.

VI. CONCLUSIONS

The main objective in the Lessons Learned Process will
be achieved in a collaborative way among project
participants when sharing experiences about several criteria
that are being met. It will not be possible to achieve a
positive benefit of a Lesson Learned unless the different
parts of the process are seen as complementary.

Although methods for assessing a process aim at
measuring the efficiency and effectiveness within a
determined period of time, a survey conducted using the
questionnaire has the advantage of obtaining accurate results
with a specialisation according to the organisation.
Depending on the questionnaire, whether it is prepared with
the axes of efficiency and alternatives on scales, the results
may be precise and reliable.

In this article, it is evident that the interrelationship
among the axes of efficiency, with the intention of Lessons
Learned, will be essential to this process. To ensure that the
axes are kept in balance, there is a need to plan and execute a
periodic assessment [5]. The ongoing assessment will ensure
that all improvements will be identify to maintain the
balance among the axes of efficiency aiming at maintaining
the Lessons Learned Process. If one of the axes suffers
greater positive change, the other must also be revised so that
they are all levelled.

Much of the evolution of these processes – including
Lessons Learned – is improved from constant assessment.
According to [28], conducting questionnaires in assessment
processes has advantages for both the staff and the process.
Likewise, this advantage was verified by the assessment of
team project GAIA, mainly by specialists and project
managers, certifying that this questionnaire model is valid to
maintain and improve the Lessons Learned Process in
software development organisations.

Without the questionnaire it would be impossible to
identify the possible need for changes in the Lessons
Learned Process. Each member who answered the
questionnaire can review how the Lessons Learned Process
can impact the quality of software development. When
answering the questionnaire, the member of the development
team reflects on their performance before the alternatives of

the questions. This reflection is notice in accordance with the
objective of pushing the Lessons Learned Process.

Following the good results of the questionnaire model we
envisage, in a future work, the application of the same model
in private companies in the North region of the State of
Paraná. This region has several technology companies, with
the potential of producing high quality software and diversity
training for more than three hundred professional graduates
every year. The application of this model in organisations of
various industries will demonstrate that the results are
significant for more secure conclusions on the use of Lessons
Learned within this market segment.

REFERENCES

[1] A. de Souza Goes and R. M. de Barros, “Gerenciamento do
conhecimento em uma fábrica de software: Um estudo de
caso aplicando a ferramenta GAIA – L.A.”, In Conferencia
Latinoamericana en Informática (CLEI), 2012.

[2] A. de Souza Goes, M. I. Hisatomi, B. M. Omena, and R. M.
de Barros,, “Applying Lessons Learned as an Improved
Methodology for Softtware Project Management”,
International Conference Information Systems (IADIS), 2013,
pp 302-306.

[3] T. H. Roe, “Establishing a Lessons Learned Program:
Observation, Insights and Lessons”, Center for Army Lessons
Learned: USA, 2011, pp. 88.

[4] PMBOK, “Um Guia do Conhecimento em Gerenciamento de
Projetos”, Quarta Edição, Project Management Institute, Inc,
Newtown Square, Pennsylvania EUA, 2008.

[5] MPS-BR (Lições Aprendidas), “Associação para Promoção
da Excelência do Software Brasileiro”; “Melhoria de Processo
do Software Brasileiro Guia Geral Sumário”, SOFTEX, 56p.,
2011.

[6] B. H. Reich, A. Gemino, and C. Sauer, “Knowledge
management and project-based knowledge in it projects: A
model and preliminary empirical results”, International
Journal of Project Management, 2012, pp. 663-674.

[7] M. G. Aldenucci, “Um modelo de maturidade para o processo
de gerenciamento de riscos”, Dissertação de Mestrado,
Pontifícia Universidade Católica: PUC-PR, 2009.

[8] K. F. Brett and D. Dressler, “The 24 Keys to high
performance”, Frontline Group Organizational Learning
Division, 2000.

[9] J. Westland, “The Project Management Life Cycle: Complete
Step by Step Methodology for Initiating, Planning, Executing
& Closing a Project Successfully”, Philadelphia, PA: Kogan
Page, 2006.

[10] P. C. Torreão, “Ambiente Inteligente de Aprendizado para
Educação em Gerenciamento de Projetos”. Dissertação de
mestrado, Universidade Federal de Pernambuco. Recife:
UFPE, 2005.

[11] L. V. Martins, “Gestão Profissional de Projetos”. Revista
TecHoje. Belo Horizonte: ITEC, 2003.

[12] P. C. Dinsmore and J. Cabanisbrewin, “The AMA Handbook
of Project Management”, Second Edition. New York:
AMACOM, 2006.

[13] H. Kerzner, “Project Management: A systems Approach to
Planning, Scheduling and Controlling”, Eighth Edition.
Hoboken, New Jersey: John Wiley & Sons, 2003, pp. 211.

[14] J. Andrade, J. Ares, M.-A. Martinez, J. Pazos, S. Rodríguez, J.
Romera, and S. Suárez, “An architectural model for software
testing lesson learned systems, Information and Software
Technology”, vol. 55, n. 1, 2013, pp. 18-34.

263Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 283 / 646

[15] E. W. Rogers, R. L. Dillon, and C. H. Tinsley, “Avoiding
Common Pitfalls in Lessons Learned Processes that Support
Decisions with Significant Risks”, Aerospace Conference,
2007, pp. 1-7.

[16] D. Mendoza and R. Johnson, “Using a Lessons Learned
Process to Develop and Maintain Institutional Memory and
Intelligence”, Aerospace Conference, 2006, pp. 1-10.

[17] I. Rus, M. Lindvall, C. Seaman, and V. Basili, “Packaging
and Disseminating Lessons Learned from COTS-Based
Software Development”, Proceedings of the 27 th Annual
NASA Goddard/IEEE Software Engineering Workshop,
2003, pp. 131-138.

[18] H. Günther, “Como Elaborar um Questionário”, 2003, pp. 01-
14.

[19] Y.-Y. Chen and H.-L. Huang, “Knowledge management fit
and its implications for business performance: A profile
deviation analysis”, Knowledge-Based Systems, 2012, pp.
262-270.

[20] G. U. Briganó, “Um framework para desenvolvimento de
governança de TIC. 2012. 155. Dissertação de Mestrado em
Ciência da Computação – Universidade Estadual de Londrina,
Londrina, 2012, pp. 18, 29-55.

[21] S. Rautenberg, A. V. Steil, and J. L. Todesco, “Modelo de
Conhecimento para mapeamento de instrumentos da gestão
do conhecimento e de agentes computacionais da engenharia
do conhecimento” Perspectivas em Ciência da Informação,
v.16, n.3, 2011, pp. 26-46.

[22] P. Carrillo, K. Ruikar, and P. Fuller, “When will we learn?
Improving lessons learned practice in construction”,
International Journal of Project Management, 2013, pp. 567-
578.

[23] I. Nonaka, R. Toyama, and N. Konno, “SECI, Ba and
Leadership: a Unified Model of Dynamic Knowledge
Creation”, Leadership, vol. 33, 2000, pp. 5-34.

[24] J. Xue and Z. Zhang, “The Research on the Application
Strategies of Information and Communication Technologies
to Promote the Knowledge Transfer in Regional Innovation
System”, 2006, pp. 138-145.

[25] B. Cakici and M. Boman, “A workflow for software
development within computational epidemiology”, Journal of
Computational Science, 2011, pp. 216-222.

[26] ITIL Version 3 Service Transition, pp. 65 – 68.

[27] E. Serna M., “Maturity model of Knowledge Management in
the interpretativist perspective”, International Journal of
Information Management, 2012, pp. 365-371.

[28] F. E. A. Horita, M. I. Hisatomi, F. H. Gaffo, and R. M. de
Barros, “Maturity Model and Lesson Learned for improve the
Quality of Organizational Knowledge and Human Resources
Management in Software Development”, International Journal
os Software Engineering and Knowledge Engineering, 2013,
pp. 552-555.

264Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 284 / 646

Refactoring to Static Roles

Fernando Barbosa

Escola Superior de Tecnologia

Instituto Politécnico de Castelo Branco

Castelo Branco, Portugal

fsergio@ipcb.pt

Ademar Aguiar

INESC TEC and Departamento Informática

Faculdade de Engenharia da Universidade do Porto

Porto, Portugal

ademar.aguiar@fe.up.pt

Abstract— Roles can be used to overcome some composition

limitations in Object Oriented Languages and contribute to a

better code reuse, reducing code replication and improve code

maintenance. Therefore, the refactoring of legacy code to roles

is an important step in maintaining and evolving this code. In

this paper, we present refactorings to convert a system to roles

We also present some refactorings that enable roles to be even

more reusable.

Keywords- roles; refactoring; code reuse; code maintenance

I. INTRODUCTION

The “tyranny of the dominant decomposition” states that
a single decomposition strategy cannot capture all possible
views of a system [1], so there are always concerns that
cannot be adequately decomposed and are scattered among
the various modules. Several decomposition alternatives
have been proposed: mixins [2], traits [3], features [4],
aspects [5] and both dynamic [6][7] and static roles [8].

We use static roles as defined by Riehle in [6]. We do not
use roles as dynamic entities that can be attached or detached
from objects. There is much work on dynamic roles [7][9]
[10] so this is mentioned to avoid confusion. Our static roles
model concerns that are a subset of a class responsibility:
those that are not the class main concept. Roles compose
classes by adding their code to the class. The class interface
can be seen as a whole or as a union of all the methods
offered by the roles it plays. To program with roles we use
JavaStage, an extension to Java. For more information on
static roles and JavaStage we refer to [8].

Our experience with the use of static roles showed that
they provide better decomposition when compared to class
decomposition [8]. We would improve legacy systems if we
make them use roles. The use of roles would provide a better
way to reuse code, eliminate code replication, enhance the
systems’ modularization and easy maintenance.

Refactoring [11][12] is program transformation where
the program maintains its behavior but is improved in non-
functional qualities like readability, reuse or changeability.
We can use refactorings as a way to transform a system
without roles into a system with roles. There is not, however,
a catalogue for role related refactorings. To fill this gap we
present, in this paper, a collection of role related refactorings.

In these refactorings we use the JavaStage language [8]
because it is backward compatible with Java and JVM
compliant. Existing systems can be upgraded to roles in a
transparent way to their users.

The refactorings were developed using our experience
using roles to reduce code replication in several systems,
including those referred in [8], and also when developing
design patterns using roles [13]. The proposed refactorings
may not be complete but they provide a starting point for a
role refactoring catalogue. Our experience has been
transforming existing systems into roles and not developing
and maintaining systems with roles, so there may be some
refactorings that only deal with roles yet to be discovered.

The rest of the paper is organized as follows: Section II
shows a refactoring example. Section III presents the
advantages of refactoring to roles. Section IV presents the
proposed refactorings. Section V deals with related work and
Section VI concludes the paper.

II. A FIRST EXAMPLE

Consider the example of Figure 1 which shows an
excerpt of an Abstract Figure class that is a superclass for all
the figures in a drawing application. The figure must warn
the view whenever it is changed so the view can be updated.
An Observer [14] is used for this purpose. We can argue that
being a subject is not the class’s main concern. From this we
can say that the code from lines 7 to 20 should not be in the
class. We can put that code into a FigureSubject role by
using Extract Role. The outcome is shown in Figure 2.

A role may define methods and fields with access levels
(lines 11-26). To play a role the class uses a plays directive
and gives the role an identity (line 2). A class playing a role
is called a player of the role. When a class plays a role all the
non private methods of the role are added to the class.

Looking at the role we can see that to use it in other
situations we could just use another observer type. Ignoring
methods names, for now, we could apply the Replace Type
with Generic refactoring and build the role in Figure 3.

We can observe that what prevents this role from being
reusable for other instances of the observer pattern are the
methods names. The methods that require the use of Make
Method Name Configurable are the methods that add and
remove observers, the fire methods and the update methods.

The JavaStage language allows the configuration of a
method name. It can also require certain collaborators to
have specific methods. These features are used in the Make
Method Name Configurable refactoring.

Each configurable method name may have three parts: a
configurable one and two fixed (optional). The configurable
part is bounded by # as in fixed#config#fixed. Configuration
is done by the class playing the role in the plays clause.

265Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 285 / 646

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

public class AbstractFigure implements Figure {

 private Color color;

 public void moveBy(int dx, int dy) {

 fireFigureMoved(); }

 public void setColor(Color c){

 fireFigurePropertyChanged(); }

 private Vector<FigureObserver> observers =

 new Vector<FigureObserver>();

void addFigureObserver(FigureObserver o){

 observers.add(o); }

void removeFigureObserver(FigureObserver o){

 observers.remove(o);}

 protected void fireFigureMoved(){

 for(FigureObserver o : observers)

 o.figureMoved();

 }

protected void fireFigurePropertyChanged(){

 for(FigureObserver o: observers)

 o.figurePropertyChanged();

 }

}

Figure 1 An excerpt of an AbstractFigure class doing work outside its

main concern

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

public class AbstractFigure implements Figure {

 plays FigureSubject figSubject;

 private Color color;

 public void moveBy(int dx, int dy) {

 fireFigureMoved();

 }

 public void setColor(Color c){

 fireFigurePropertyChanged();

 }

}

public role FigureSubject {

 private Vector<FigureObserver> observers =

 new Vector<FigureObserver>();

void addFigureObserver(FigureObserver o){

 observers.add(o); }

void removeFigureObserver(FigureObserver o){

 observers.remove(o); }

 protected void fireFigureMoved(){

 for(FigureObserver o : observers)

 o.figureMoved();

 }

protected void fireFigurePropertyChanged(){

 for(FigureObserver o : observers)

 o.figurePropertyChanged();

 }

}

Figure 2 The class from Figure 1 now refactored to roles.

1

2

3

4

5

6

7

8

9

role Subject<ObserverType> {

 private Vector<ObserverType> observers =

 new Vector<ObserverType>();

void addObserver(ObserverType o){

 observers.add(o); }

void removeObserver(ObserverType o){

 observers.remove(o); }

// ...

}

Figure 3 The role from Figure 2 using other types of observers

JavaStage has a multiple method version feature. It is
possible to declare several versions of a method using
multiple definitions of the configurable name. Methods with
the same structure are defined once. Using these features we
can develop the role and class that are depicted in Figure 4.

III. REASONS TO REFACTOR TO ROLES

In this section we present the advantages of refactoring a
system to roles.

1) Refactor to Reuse Code. Delegation and inheritance
may be used to reuse code. A class represents a concept
others reuse by using instances of the class. If some classes
have a common behavior we put that behavior in a class and
make those classes inherit from it. However, with single
inheritance, classes that are part of another hierarchy cannot
reuse the common behavior. Multiple inheritance has many
problems so many recent languages do not support it.

If we place the common behavior in a role we can reuse
that role whenever we need, since they have not the multiple
inheritance problems neither have single inheritance
limitations. A class can play many roles and even play the
same role more than once without duplicated field conflicts.
The fact that roles are tailorable for a particular task, due to
method renaming and type configuration allows a wider
range of reuse not available with inheritance or delegation.
The GenericSubject role shows how reusable a role can be.

2) Refactor to Remove Code Clones. Programmers
sometimes reuse solutions by copying code and modifying it
to fit a new purpose. This leads to code cloning as several
fragments of a system will be identical or very similar. This
can have immediate advantages like reduced development
time, but in the long run a system with code clones is more
difficult to maintain [15][16] and more error prone [16].

Code clones can be eliminated by better design [17] or
refactoring [11][18][19]. Traditional refactoring used to deal
with clones are: Extract Method, Pull Up Method, Extract
Superclass, Extract Class and Form Template Method. We
extend these refactorings by proposing to refactor to roles.

To eliminate duplicated code using roles we need to
develop a role providing the replicated behavior. This way a

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

role Subject<ObserverType> {

requires ObserverType implements

 void #Event.update#();

Vector<ObserverType> observers =

 new Vector<ObserverType>();

public void add#Observer#(ObserverType o){

 observers.add(o); }

void remove#Observer#(ObserverType o) {

 observers.remove(o); }

protected void fire#Fire#(){

 for(FigureObserver o : observers)

 o.#Fire.update#();

}

}

public class AbstractFigure implements Figure {

 plays Subject<FigureObserver>

 (Fire=FigureMoved, Fire.update=figureMoved,

 Fire = FigurePropertyChanged,

 Fire.update = figurePropertyChanged

 Observer = FigureObserver) figSubject;

 private Color color;

 public void moveBy(int dx, int dy) {

 fireFigureMoved();

 }

 public void setColor(Color c){

 fireFigurePropertyChanged();

 }

}

Figure 4 A subject role and an AbstractFigure class playing it.

266Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 286 / 646

class does not need to replicate the code, just play the role.
3) Refactor to Enhance Modularization. A single

decomposition strategy cannot adequately capture all the
system’s details [1]. The result are crosscutting concerns,
that appear when several modules deal with the same
problem because one cannot find a single module
responsible for it. This leads to replicated code as each class
must implement the code on its own.

With roles however, we can place the crosscutting
concern in a role. The concern is thus neatly modeled.
Because there is a role-player interface they can be seen as
independent modules. Roles are used to compose classes but
they are also independent of the classes so we can argue that
roles provide a better modularization.

4) Refactor to Ease Maintenance. If a module deals with
a problem that is spread by several others then changes to
the code will, probably, affect other modules. Independent
development is compromised. Evolution and maintenance
are a nightmare because changes to that code needs to be
done in all modules. If a role is used to model that concern
then all changes are made in the role alone.

IV. ROLE REFACTORINGS

This section presents the role refactorings we propose.
We present in tables 1 and 2, for each refactoring, the name,
a summary of the situation in which the refactoring is useful
and a summary of the recommended actions.

We grouped the refactorings in two categories:
refactorings to extract concerns into roles (shown in table 1)
and refactorings to improve role reuse (shown in table 2).
We recommend that the role extraction refactorings should
be used first. After the role is in place it is easier to find how
we can refactor it to make it more reusable. We can also
detect that some roles are similar and refactoring them so
they become identical and we can leave just one.

We will present, for each refactoring, a motivation and a
discussion of the mechanics. Due to space constraints we
cannot present the full details but will cover the main
problems and variations. We do not state where to compile
and test and rely that readers are aware that these steps are
crucial in refactoring. Also due to space constraints we will
not present step by step snippets of code or even code
samples for each refactoring but will present examples that
show how several refactorings are used.

A. Refactorings to extract concerns to roles

These refactorings are intended to extract concerns to
roles so classes can deal with their main concern only. There
are top level refactorings like Extract Role and low level
ones as Move Method Between Class and Role.

1) Extract Role. We use this refactoring whenever we
feel that a class is doing work that falls outside the class
main concern. The motivation is thus the same as for the
Extract Class from [11].

The mechanics are simple: Create a role with a name that
indicates the concern it deals with; Move each field and
method that are related to that concern to the role by using
Move Field From Class to Role and Move Method From
Class to Role; Make the class play the role.

a) Extract Role vs Extract Class. Extract Class can be

replaced by Extract Roles. This way classes do not need to

create delegation methods, just play the role. Which one to

use depends on the code nature. If it is a standalone concept

it should be put into a class, otherwise it should be put into a

role. This follows the role definition that a role is an

observable behavioral aspect of a class. In Figure 1 the code

reflects only a partial behavior, an entity that maintains an

observer list and informs them, so role use is better.

b) Extract Role vs Extract Superclass. This refactoring

could be used instead of Extract Superclass. Again the

decision is based on the concept the code represents. If it is

better modeled by a class and inheritance is adequate then

Extract Superclass should be used. If the concept is better

modeled by a role then Extract Role should be used. Extract

Superclass forces classes to be in an inheritance hierarchy.

In contrast, Extract Role does not require player classes to

be related. On the other hand, Extract Superclass can take

advantage of polymorphic code and roles cannot.

2) Move Method from Class to Role. Moving a method
to a role is different than moving a method to a class, so we
included this refactoring. When a class plays a role it
obtains the role methods, thus we do not need delegate
methods. Figure 2 shows the outcome of this refactoring for
the add, remove and fire methods.

The simplified mechanics are: Apply Move Method to
the method always removing the delegate method; If the
method makes references to the player object replace that
object with the performer keyword; For each method that is
called on the player place it in the requirements list.

3) Move Field Between Class and Role. As with moving
methods, moving a field to a role is somewhat different
from moving it between classes so we decided to include a
new refactoring. The main difference is that a role cannot
access the player fields nor the class can access role fields.

The simplified mechanics are: If the field is used by the
class from which it is being moved then use Encapsulate
Field; Use Move Field on the field and Move Method on the
getters and setters. Figure 2 shows the outcome of this
refactoring for the vector of observers.

4) Replace Superclass with Role. Inheritance is a good
way to get a default implementation for a concern. But this
cannot be used just for code reuse, the classes must have
something in common than just code. The benefits of
reusing implementations, however, are so great that
inheritance is used just the same. Roles provide another way
of reusing implementations and can be used in this situation.
Figure 5 shows such an example.

For this refactoring the simplified mechanics involve:
Use Make Class a Role on the superclass; Replace every
extends for the superclass with a plays for the role.

5) Make Class a Role. When a class only provides
behavior meant to be used by other classes then it is not a
class but a role (see examples in Figure 6). We use Make
Class a Role by: creating a new role; Copy the code of the
class into the role; If the code has references to the client
type then make them refer to the Performer type; If the code

267Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 287 / 646

has references to the client object then substitute those
references to performer. For every client method referred to
in the role add it to the requirements list.

6) Replace Delegation with Role Playing. A class may
be used by others just to provide an implementation for
some features, where the client class just delegates the job.
We can have the same effect by placing the implementation
in a role and the client playing the role (see Figure 6). The
mechanics for this are: If the class is used in this way by all

clients then use Make Class a Role; If the delegated class is
used in another way by other clients consider using Extract
Role on the delegated class to extract its behavior into a
role; Make the class play the new role; Remove all
references to the class; Remove all delegate methods.

7) Inline role. A class that plays a role has become a
more suitable implementation as its concern has evolved to
include that of the role, or the role is played by just one
class and has an insignificant amount of behavior.

We can Inline Role by: Copying every field and method
from the role to the class; If a role field has the same name of
a class field Rename one so that there is not a name clash; If
a class method has the same signature of a role method then
do not copy that method from the role, except if the class
explicitly calls that method, in which case you must Rename
the role method so there is not a name clash; Delete the plays
clause; Delete the role.

8) Move Method from Role to Class. This is different
from Move Method From Class to Role, because of the
steps involved: If the method is configurable them use the
refactoring Name a Configurable Method first; If the
method uses generics in the role but not on the class apply
Replace Generic with Type; Apply Move Method to the
method; If the method makes references to role fields use
accessor methods. If the method calls other role methods
make the calls explicit by using the role identity.

9) Replace Role Playing with Superclass. Classes that
play the same role may be related by inheritance instead.
The mechanics are: Verify if classes that use the same role
using the same configurations should be related by

TelephoneHolder

number

getNumber()

setNumber()

Person Person

<<plays>>

TelephoneHolder

<<role>>

number

getNumber()

setNumber()

Figure 5 Replace Superclass with Role

TelephoneHolder

number
getNumber()

setNumber()

Person

Person

<<plays>>

TelephoneHolder

<<role>>

number
getNumber()

setNumber()

phoneHolder

getNumber()

setNumber()

1

Figure 6 Replace Delegation with Role Playing

Table 1. SUMMARY OF REFACTORINGS TO EXTRACT CONCERNS TO ROLES

Refactoring name Situation summary Typical Action Summary

Extract Role You have a class doing work outside its main concern
Create a role and move the relevant fields and methods to

the new role

Move Method from Class to Role
A method is used or using more features from a role than

the class on which it is defined

Create a new method with a similar body in the role and

remove it from the class

Move Field Between Class and Role
A field is used by a role or class more than it is used by

the class or role on which it is defined

Create a new field in the role or class, encapsulate it and

change the class or role to access the field trough methods

Replace Superclass with Role
A superclass is used by its subclasses for reuse purposes

only

Create a new role with similar code of the class and make

subclasses play the role instead of inheriting from the class

Make Class a Role You have a class that represents only a partial behavior Make the class a role

Replace Delegation with Role Playing
A class has a number of delegating methods to another

class

Create a role with similar code of the delegated class. Make

the delegating class play the role instead.

Inline role You have a role that only one class plays Move the role code into the class

Move Method from Role to Class
A method is used or using more features from a class

than the role on which it is defined

Create a new method with a similar body in the class and

remove it from the role

Replace Role Playing with Superclass
Classes that are related trough inheritance are using role

playing instead

Create a class that plays the role and make subclasses

inherit from the class.

Table 2. SUMMARY OF THE REFACTORINGS TO IMPROVE ROLE REUSE

Refactoring name Situation summary Typical Action Summary

Replace Type with Generic
A role is bound to a type but could be used with another

type as well

Turn the type into a generic and instantiate the type when

playing the role

Make Method Name Configurable
A method name is too general to be of use in several

instances of a role

Use the renaming scheme to provide a configurable name

and let players configure its name.

Rename Role Method The name of a role method does not reveal its purpose Change the name of the method

Name a Configurable Method A method name is configurable when it should be fixed
Remove the configurable part of the name and give the

method a suitable name

Replace Generic with Type
A generic type is used in the role but players always use

the same concrete type
Replace the generic type with the concrete type

268Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 288 / 646

inheritance; Create a new Class with a suitable name; Make
the new class play the role using the same configurations as
it subclasses; Make all classes extend the new class;
Remove the plays in all subclasses.

B. Refactorings to Improve Role Reuse

We can make a role more reusable if we can expand its
possible players, whether by making the types it uses more
general or by making its methods configurable by the player.

1) Replace Type with Generic. Generics can be used as
a place holder for the real type. The real type is defined
when the code is actually being used. We suggest that if a
type used by a role can be replaced by a generic it should.

Problems arise when we intend to call methods on those
generic types. Java can bound a generic to certain types. For
example, class Sample<T extends SuperType>, bounds T to
be a subclass of SuperType. The problem when using roles is
that these boundaries can be restricting. For example, in an
Observer subject observers can be of any type and their
interfaces are different. Roles have a requirements list that
takes care of this problem.

We recommend the use of generic types instead of a
concrete type. This is how to do it: Identify which types can
be made generic so the role may be more reusable; Substitute
each type by a generic; For each method that is called on the
generic type place it in the requirements list; If the method
name is not general use Rename Role Method or consider
using Make Method Name Configurable.

An example is presented in Figure 3, where the
FigureSubject role of Figure 2 has its FigureObserver type
replaced by the generic ObserverType.

2) Make Method Name Configurable. Meaningful
method names can be difficult to achieve. Role developers
do not know the concrete context where the role will be
used so use names that are generic. The player developer
knows which names would fit the concrete use but cannot
rename them because it could break other players.

To Make a Method Name Configurable: Identify which
part of the method is more likely to change; Consider other
methods that may have similar name parts so they can all be
altered with this refactoring; Give a suitable configurable
part for each method; If a method is used by the role then
rename it in every place it is called and in the requirements
list; The role name may also be Renamed to accommodate
its wider use; Configure each player of the role so that they
give the configurable methods the same names as before.

An example is presented in Figure 4. The FigureSubject
role from Figure 2 is renamed to Subject and its methods are
made configurable so players can choose a proper name for
the add and remove methods and for each fire method.

3) Rename Role Method. Renaming a role method is
trickier than renaming a class method, because the name
may be configurable. If a name is not configurable then the
mechanics of renaming the method is equal to Rename
Method, with the difference that we must check every client
of every player class. When the method is configurable the
renaming is done thus: If the renaming affects only the
configurable part then change it in all the role code that uses
the method; Change the configurable part in all the plays

clauses for that role. If the renaming affects the fixed part of
the name replace it in every occurrence in the role. For each
player class check if the renamed method is overridden and
if it is decide if the class should not rename its own method;
Change each client of each player to use the new name.

4) Name a Configurable Method. Configurable role
methods allow the method name to be adequate in several
situations, but sometimes we can make names configurable
where a single name is suitable for every use. To Name a
Configurable Method: Check if all players use the same
name for the method or the name suits all players; Check if
any player uses a multiple version of this method; In the role
rename the method to the fixed name; In the role update all
references to the method with the new name; In each player
delete the configuration of the method from the plays clause
if this was the only method to use that configurable part.

5) Replace Generic with Type. When developing
generic roles we know we overdue the use of generics if all
clients use the same concrete type. This refactoring makes
the role simpler to use. The mechanics are: Replace all
occurrences of the generic with the concrete type in the role;
If the generic has entries in the requirement list delete them;
In each player remove the instantiation of the concrete type.

V. RELATED WORK

There is much work related to Object Oriented
refactorings [11][12] and we adapted some of those to roles,
but to our knowledge there is no published work that
concerns refactoring to roles. This includes the works of
dynamic roles and not just static roles. Static roles have been
used in the work of VanHilst and Notkin in [20] where they
proposed to use roles in the C++ language. Dynamic role
approaches as EpsilonJ [21] and PowerJava [10] have been
around for a while but no refactorings to dynamic roles have
been published. We believe that our adaptation of code
smells to roles can also benefit these role related approaches.

Object Teams in its project home page [22] mentions the
adaptation of Extract Method, Move Method, Pull Up, Pull
Down and Rename to the objects teams specific relationships
(implicit role inheritance, team nesting, role-base bindings
and method bindings). They also support new role related
refactorings like Extract Callin and Inline Callin. But, there
is not a presentation or mechanics of these refactorings.

The role object pattern [23] is used for representing
objects that expose different properties in different contexts.
Steimann and Stolz [24] describe a way to refactor code to
this pattern that provides lightweight role objects with a
leaner code than the previous approaches. They also softened
the preconditions on when to apply the refactoring.

 There are other approaches to class compositions, like
Traits [3], Multi-dimensional separation of concerns [1].
Package Templates (PT) [25], Caesar and its Virtual classes
[26], Jiazzi and its Units [27]. To our knowledge none of
these approaches tackled the problem of refactoring legacy
code. We consider Traits to be the most related approach to
static roles, as we can see a trait as a role without state. We
believe, therefore, that some role refactorings can be used in
Traits, namely Extract Role could be used as an Extract Trait

269Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 289 / 646

as long as we removed the part related to moving fields and
replaced it with Encapsulate Field.

Feature Oriented Programming (FOP) decomposes the
system into features [3]. Features reflect user requirements
and incrementally refine each other. In [28], Liu et al
propose a theory of Feature Oriented Refactoring (FOR),
which is the process of decomposing a program into features,
thus recovering a feature based design and giving it an
important form of extensibility. Since a feature’s
implementation can vary between systems, the authors
developed an algebraic theory of FOR that exposes the
highly regular structure that features impose on programs.
They also supply a methodology and a tool based on the
theory. This work, however, can be applied only to FOP.

Aspect-Oriented Programming as used in AspectJ [5] is
an approach that tries to modularize crosscutting concerns.
There is work on refactorings systems to aspects [29]. Due to
the renaming capability of JavaStage we can include some
refactorings related to method names, while in AOP we
cannot.

VI. CONCLUSIONS AND FUTURE WORK

We showed that refactoring a system to roles brings
benefits to the system like a higher reusability, better
modularization, among others.

We proposed a series of refactorings based on our studies
with converting OO systems to roles and design pattern
implementation using roles. These refactorings provide a
way to convert legacy code to role code. Some refactorings
deal with the problem of making the role more general
purpose thus enhancing code reuse.

For future work we intend to develop a tool to give these
refactorings some automatic support. We also intend to carry
on our studies concerning role development so we can
discover new refactorings that involve role development and
use, not just upgrading roles and refactoring to roles. This
will contribute to a more complete role refactoring catalogue.

REFERENCES

[1] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton Jr., “N
degrees of separation: multi-dimensional separation of
concerns”, Proc. International Conference on Software
Engineering, 1999, pp. 107-119.

[2] G. Bracha and W. Cook, “Mixin-based inheritance”. Proc.
OOPSLA/ Proc. ECOOP, 1990, pp 303-311.

[3] S. Ducasse, N. Schaerli, O. Nierstrasz, R. Wuyts and A.
Black, “Traits: a mechanism for fine-grained reuse”.
Transactions on Programming Languages and Systems. vol.
28, no. 2, March 2006, pp. 331-388.

[4] S. Apel and C. Kästner, “An overview of Feature-Oriented
Software Development”, in Journal of Object Technology,
vol. 8, no. 5, July–August 2009, pp 49–84.

[5] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W.G. Griswold, “An overview of AspectJ”. Proc. ECOOP
2001, pp 327-353.

[6] D. Riehle and T. Gross, “Role model based framework design
and integration”, Proc. OOPSLA ’98. 1998, pp. 117-133.

[7] F. Steimann, “On the representation of roles in object-oriented
and conceptual modeling”, Data & Knowledge Engineering,
vol. 35, no. 1, 2000, pp 83–106.

[8] F. Barbosa and A. Aguiar, (2013), “Using roles to model
crosscutting concerns”, Proc. Aspect Oriented Software
Development (AOSD13), March 2013, pp 97-108.

[9] S. Herrmann, “Programming with Roles in ObjectTeams/
Java”. AAAI Fall Symposium: Roles, An Interdisciplinary
Perspective, 2005.

[10] M. Baldoni, G. Boella and L. van der Torre, “Interaction
between objects in power-Java”, Journal of Object
Technologies, vol 6, 2007, pp 7 – 12.

[11] M. Fowler. “Refactoring – Improving the Design of Existing
Code”, Addison Wesley, 2000.

[12] W. Opdyke, “Refactoring Object-Oriented frameworks”,
Ph.D. thesis, Univ. of Illinois at Urbana-Champaign, 1992.

[13] F. Barbosa and A. Aguiar, “Generic roles, a test with
patterns” Proc. Pattern Languages of Programs, 2011.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design
Patterns: elements of reusable Object-Oriented software”,
Addison-Wesley, 1995.

[15] I. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier,
“Clone detection using abstract syntax trees”, Proc. of the Int.
Conf. on Software Maintenance, Nov. 1998, pp 368-377

[16] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner,
“Do code clones matter?”, Proc. Int. Conf. on Software
Engineering, IEEE Computer Society, 2009, pp 485-495

[17] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and K.
Kontogiannis, “Measuring clone based reengineering
opportunities”. Proc. International Software Metrics
Symposium, Nov. 1999, pp 292-303

[18] R. Fanta and V. Rajlich, “Removing clones from the code”.
Journal of Software Maintenance: Research and Practice, vol.
11, no 44, August 1999, pp 223-243.

[19] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue.
“Refactoring support based on code clone analysis”. Proc.
International Conference on Product Focused Software
Process Improvement, 2004, pp 220-233.

[20] M. VanHilst and D. Notkin, (1996) “Using role components
to implement collaboration-based designs”. Proc. OOPSLA
’96, 1996, pp 359-369.

[21] T. Tamai, N. Ubayashi, and R. Ichiyama, “Objects as actors
assuming roles in the environment”, in Software Engineering
For Multi-Agent Systems V: Research Issues and Practical
Applications, Lecture Notes In Computer Science, vol. 4408.
Springer-Verlag, 2007, pp 185-203

[22] http://www.eclipse.org/objectteams/features.php, last access
in Jan. 2013.

[23] D. Bäumer, D. Riehle, W. Siberski, and M. Wulf, “The role
object pattern”, Proc. PLoP1997, 1997. pp 15-31

[24] F. Steimann and F. U. Stolz,. “Refactoring to role objects”,
Proc. International Conference on Software Engineering,
2011, pp 441-450.

[25] S. Krogdahl, B. Møller-Pedersen, and F. Sørensen,
“Exploring the use of Package Templates for flexible re-use
of Collections of related Classes”, Journal of Object
Technology, vol. 8, no. 7, Nov. – Dec. 2005, pp 59-85.

[26] E. Ernst, K. Ostermann, and W. R. Cook. “A virtual class
calculus”, Conference record of the 33rd Symposium on
Principles of Programming Languages. 2006, pp 309-330.

[27] S. McDirmid, M. Flatt, and W.C. Hsieh, “Jiazzi: new-age
components for old-fashioned Java”, Proc. OOPSLA 2001, pp
211-222.

[28] J. Liu, D. Batory, and C. Lengauer, “Feature oriented
refactoring of legacy applications”. Proc. Inter. Conference on
Software Engineering (ICSE '06), 2006, pp 872-881.

[29] M. Monteiro and J. Fernandes. “Towards a catalog of aspect-
oriented refactorings”. Proc. Int. Conf. on Aspect-Oriented
Software Development, 2005, pp 111–122.

270Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 290 / 646

Linking E-Mails and Source Code Using BM25F

Raffaele Branda, Anna Tolve, Licio Mazzeo, and Giuseppe Scanniello
University of Basilicata, Potenza, ITALY

Email: raf.bran@gmail.com, anna.tolve@tiscali.it, licio.mazzeo@gmail.com, giuseppe.scanniello@unibas.it

Abstract—Existing approaches to recover links between e-
mails and software artifacts are based on text search or text
retrieval and reformulate link recovery as a document retrieval
problem. We refine and improve such solutions by leveraging
the parts of which an e-mail is composed of: header, current
message, and previous messages. The relevance of these parts is
weighted by a probabilistic approach based on text retrieval. We
implemented our novel solution exploiting the BM25F model. The
results of an empirical study conducted on a public benchmark
indicate that the new approach in many cases outperforms the
baseline approaches chosen. In addition, the proposed approach
is easy to use and it is accurate enough to be worth the costs it
may introduce in the corpus preprocessing and indexing.

Keywords - Empirical Study; Probabilistic Approach;
Traceability Recovery

I. INTRODUCTION

Maintenance operations are carried out for several reasons
and are typically classified as corrective, perfective, and adap-
tive [1]. Whatever is the maintenance operation, the greater
part of the cost and effort is due to the comprehension of
source code [2]. Pfleeger and Atlee [3] estimated that up to
60% of software maintenance is spent on the comprehension
of source code. There are several reasons that make source
code comprehension even more costly and complex and range
from the size of the subject software to its overall quality.
Other reasons are related to the knowledge of a subject system
that is implicitly expressed in software artifacts (i.e., models,
documentation, source code, e-mails, and so on) [4]. This
knowledge is very difficult to retrieve and it is very often
enclosed in non-source artifacts [5].

Among non-source artifacts, those composed of free-form
natural language (e.g., documentation, wikis, forums, e-mails)
are intended to be read by stakeholders with different experi-
ence and knowledge (e.g., managers, developers, testers, and
end-users). This kind of artifacts often implicitly or explicitly
references to other forms of artifacts, such as source code
[6]. Linking e-mails and source code could improve software
comprehension and could help to understand the justification
behind decisions taken during the design and development [7].
Then, links between e-mails and source code are worthwhile
within the entire software lifecycle and in software mainte-
nance, in particular (e.g., [4], [8]).

Several approaches have been proposed to recover links
among software artifacts (e.g., [9], [10], [11]). Only a couple
of them are concerned with e-mails [12], [13] and can be
classified as: rule-based and Information Retrieval (IR) based.

Rule-based. To detect latent links between emails and
source code entities hand-code specific rules (i.e., sets of
regular expressions) have to be specified. These rules are in
turn triggered whenever they match with a portion of email

text (e.g., [6]). For example, if the identifiers in the source
code repository follows the CamelCase naming convention,
we basically know that each identifier is either a single or a
compound name (i.e., a sequence of unseparated single names).
In the case of class names, all the single names start with a
capital letter. Therefore, we can define a regular expression
so that every time we find a string in an e-mail of the form
Foo, FooBar, FooBarXYZ, etc., we can mark it as a link
between the source code and the e-mail. This kind of approach
is computationally lightweight for small/medium corpora (e.g.,
repositories with a small number of e-mails) and easy to
implement. Conversely, they lack of flexibility since they are
strictly programming-language-dependent. Even more, they do
not provide any ranking score associated with the discovered
link (i.e., information about a link is binary: a link is either
present or not).

IR-based. These approaches reformulate the problem as
a particular instance of the more general document retrieval
problem. They use IR techniques to compare a set of source
artifacts (software entities) with a set of target artifacts (e-
mails). Each source code entity (e.g., the class name) is used
as the query to retrieve the set of most relevant e-mails.
Candidate links are then devised by inspecting the ranked list
of retrieved e-mails. Relevance between any pair of source
and target artifacts (i.e., source code entity and email) can
be determined by their textual/lexical similarity, which is
computed by using a specific IR model in conjunction with
a particular term-weighting score (e.g., cosine similarity using
tf-idf vector space model) [14]. The main advantage of IR-
based approaches is that they are more flexible and associate
each discovered link with a ranking score.

In this paper, we propose an IR-Based approach that refines
and improves existing solutions by leveraging the parts of
which an e-mail is composed of, namely the header, the
current message (from here on, body), and the sentences from
previous messages (quote). The relevance of these parts has
been weighted by means of a text retrieval probabilistic model.
In particular, we implemented our novel solution exploiting
the BM25F model [15], [16]. This model is based on a term
weighting scheme which takes into account the fact that semi-
structured documents from a corpus can be composed of fields
[17]. These fields differently contribute to the representation
of documents and then to the accuracy of the links retrieved.
To assess the validity of our proposal, we have conducted
an empirical study on the public benchmark proposed by
Bacchelli et al. [12].

Structure of the paper. We illustrate our approach in
Section II. In Section III, we present the design of the empirical
evaluation, while we discuss the achieved results in Section IV.
Final remarks conclude the paper.

271Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 291 / 646

II. THE APPROACH

IR-based traceability recovery approaches reformulate
traceability recovery as a document retrieval problem. We
refine and improve such solutions by leveraging header, body,
and quote of e-mails. We describe the steps of our approach
in the following subsections.

A. Creating a Corpus

Each e-mail results in one document in the corpus. Each
document has three well defined fields: header, body, and
quote. The header field contains the subject of an e-mail,
while the body the sentences of the current message. All
the sentences from previous messages are within the quote
field. In particular, it includes a chain of messages (e.g.,
ideas, opinions, issues, or possible solutions) exchanged among
stakeholders (mostly developers) linked in the sequence in
which they espoused that discussion. We also consider the
quote because IR approaches produce better results when a
huge amount of lexical information is available [14]. Moreover,
the body and the quote fields are separately considered since
the lexical information within the body is on the current focus
of a discussion, while the quote field includes text that might
provide useful information on the entire discussion thread.

B. Corpus Normalization

The corpus is normalized: (i) deleting non-textual tokens
(i.e., operators, special symbols, numbers, etc.), (ii) splitting
terms composed of two or more words (e.g., first_name
and firstName are both turned into first and name),
and (iii) eliminating all the terms within a stop word list
(including the keywords of the programming languages: Java,
C, ActionScript, and PHP) and with a length less than three
characters. We applied these normalization rules because they
have been widely applied in IR-based traceability recovery
approaches (e.g., [11]).

Splitting identifiers could produce some noises in the
corpus. For example, if the name of a class is FileBuffer,
it is possible that a software engineer talks about FileBuffer
in an e-mail rather than File and Buffer. However, if the
identifiers are not split the things could go from bad to worse:
the class name is not in the text of the e-mails (e.g., [12]
and [13]), while that name is used as the query. To deal with
this issue, we apply the same normalization process on both
the corpus and the queries and use the “AND” operator to
formulate each query.

Differently from the greater part of the traceability recovery
approaches (e.g., [9], [11]), we did not apply any stemming
technique [14] to reduce words to their root forms (e.g., the
words designing and designer have design as the
common radix). This is because we experimentally observed
that the use of a Porter stemmer [18] led to worse results. Also,
in [12] the stemming was not used for similar reasons.

C. Corpus Indexing

We adopt here a probabilistic IR-based model, namely
BM25F [15]. This model extends BM25 [16] to handle
semistructured documents from a corpus. The BM25 model
was originally devised to pay attention to term frequency and

document length, while not introducing a huge number of
parameters to set [19]. BM25 showed very good performances
[16] and then widely used specially in web document retrieval
applications [17], [20]. BM25F was successively proposed to
build a term weighting scheme considering the fact that doc-
uments from a corpus can be composed of fields (e.g., [17]).
Each document is in the corpus and contains information on
the contained fields. Then, the fields of a document differently
contribute to the document representations. We used BM25F
because it has been successfully used on very large corpuses
[20] in terms of both scalability and quality of retrieved
documents [21]. The use of other probabilistic models could
lead to different results. This point is subject of future work.

In both “vector space” and “probabilistic” IR methods,
an information retrieval scheme is built for considering each
document as a point in a multi-dimensional geometrical space.
Therefore, BM25F is based on the bag-of-words model, where
each document in the corpus is considered as a collection of
words disregarding all information about their order, morphol-
ogy, or syntactic structure. A word could appear in different
fields of the same document. In this case, that word is dif-
ferently considered according to the field in which it appears.
Applying BM25F, each e-mail in the corpus is represented by
an array of real numbers, where each element is associated
to an item in a dictionary of terms. BM25F does not use a
predefined vocabulary or grammar, so it can be easily applied
to any kind of corpora.

BM25F works on the occurrence of each term in the fields
of all the documents in the corpus. These occurrences are used
to build a term-by-document matrix. In the current instantiation
of this step we modified the original definition of BM25F to
better handle the problem at hand. In the model, a generic
entry of the table is computed as follows:

id f (t,d) = log(
N−d f (t)+0.5

d f (t)+0.5
+1)∗weight(t,d) (1)

where N is the total number of documents in the corpus, while
d f is the number of documents where the term t appears.
The weight of the term t with respect to the document d is
computed by weight(t,d) as follows:

weight(t,d) = ∑
c in d

occursd
t,c ∗boostc

((1−bc)+bc ∗ lc
avlc

)
(2)

lc is the length of the field c in the document d; avlc is the
average length of the field c in all the documents; and bc is
a constant related to the field length; and boostc is the boost
factor applied to the field c. occursd

t,c is the number of terms
t that occur in the field c of the document d. This equation is
dependent on the field and document relevance and it is similar
to a mapping probability. This is because BM25F is considered
a probabilistic IR-based model. Regarding the constants of (1),
we chose 0.75 as the value for bc, while 1 is the boost value
applied to each field (i.e., header, body, and quote). These
values were experimentally chosen and are customary in the
IR field [21].

In the original definition of BM25F [20], if a term occurs
in over half the documents in the corpus, the model gives
a negative weight to the term. This undesirable phenomena
is well established in the literature [14]. It is rare in some

272Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 292 / 646

applicative contexts, while it is common in others as for an
example in the recovery of links between e-mails and source
code. In such a context, in fact, e-mails quote sentences from
previous messages and then the difference among e-mails (in
the same discussion thread) is not that great with respect to
the terms contained. To deal with this concern, we modified
the computation of id f . The adopted solution is that shown in
the equation (1), which is based on that suggested in [22]. The
main difference with respect to the canonical computation of
id f is that 1 is added to the argument of the logarithm.

D. Query Formulation

In the traceability recovery field, source artifacts are used
as the query [9]. The number of queries is then equal to the
number of source artifacts. In this work, we used source code
entities as the source artifacts and applied the following two
instantiations for Query Formulation: (i) class names and (ii)
class and package names. We opted here for that solution
because we wanted to compare our novel approach with some
baselines (included those in [12]) on a public benchmark [13].
In addition, this solution allowed us to automatically formulate
“semi-structured” queries directly parsing the source code1.

The queries are normalized in the same way as the corpus.
When the textual query is composed of more than one term
(e.g., ArgoStatusBar), the boolean operator “AND” is used
with the individual terms of that query (Argo, Status, and
Bar). This implies that all the individual terms have also to
exist anywhere in the text of a document.

E. Ranking Documents

For a probabilistic IR method, the similarity score between
a query with a document in the corpus is not computed by
the cosine similarity, but by a different formula motivated by
the probability theory [14]. In this work, we used a formula
based on a non-linear saturation to reduce the effect of term
frequency. This means that the term weights do not grow
linearly with term frequency but rather are saturated after a
few occurrences:

score(q,d) = ∑
t in q

id f (t)∗ weight(t,d)
k1 +weight(t,d)

(3)

where q is the textual query and d is a document in the corpus.
The values for id f (t) and weight(t,d) are computed as shown
in the equations (1) and (2), respectively. The parameter k1
usually assumes values in the interval [1.2,2]. We used 2 as
the value because experiments suggested that it is a reasonable
value [14] to maximize retrieval performances.

F. Examining Results

A set of source artifacts is compared with set of target arti-
facts (even overlapping). Then, all the possible pairs (candidate
links) are reported in a ranked list (sorted in descending order).
The software engineer investigates the ranked list of candidate
links to classify them as actual or false links.

1Different kinds of queries can be formulated automatically or not. For
example, the source code content could be also used as the query. We
experimentally observed that the use of this kind of query leads to worse
results with respect to the other two kinds of query we prose here. Therefore,
we did not consider this instantiation for the Query Formulation step. This
result is in line with that of Bacchelli et al. [12].

III. EMPIRICAL EVALUATION

Based on the above instantiation of our approach, we
implemented an Eclipse plug-in, named Linking e-mAils and
Source COde (LASCO). This plug-in has been described in a
previous tool demo paper [23]. To asses both the approach
and the plug-in, we conducted an empirical study (i.e., an
experiment). The presentation of that study is based on the
guideline suggested in [24].

A. Definition

As suggested in [24], the goal of our study has been
defined using the Goal Question Metrics (GQM) template [25]:
Analyze traceability recovery links between e-mails and source
code for the purpose of evaluating the use of BM25F on
header, body, and quote with respect to the accuracy of the
retrieved links from the point of view of the researcher and
the practitioner in the context of open source systems.

To this end, we then formulated and investigated the
following research question: Does our proposal outperform
baseline approaches based on text search or text retrieval
methods? We considered in this study the following baselines:

1. BM25F with the “OR” operator: We apply the BM25F
model and the “OR” operator in the step Query Formulation.
The Corpus Indexing step is executed by considering the e-
mails as composed of header, body, and quote. The only
difference with respect to our proposal is that the “OR”
operator is used against the “AND” operator;
2. BM25F considering body and quote together: We apply
the BM25F model and the operators “AND” and “OR”. Fur-
thermore, the Corpus Indexing step is performed considered
two fields: (i) header and (ii) body and quote together;
3. Lucene with “AND” and “OR” operators: In the Corpus
Indexing step, we use Lucene. It uses a combination of Vector
Space Model (VSM) and the Boolean model to determine how
relevant a document is to a query. We here apply both the
operators “AND” and “OR”. Since Lucene is based on VSM,
more times a query term appears in a document relative to the
number of times the term appears in all the documents in the
corpus, the more relevant that document to the query is;
4. VSM: It represents the documents in the corpus as term
vectors, whose size is the number of terms present in the
vocabulary. Term vectors are aggregated and transposed to
form a term-document matrix. To take into account the rel-
evance of terms in each document and in all the corpus, many
weighting schema are available. In our empirical evaluation,
we employed the tf-idf (term frequency - inverse document
frequency) weighting;
5. LSI: Even for a corpus of modest size, the term-document
matrix is likely to have several tens of thousand of rows
and columns, and a rank in the tens of thousands as well.
LSI is an extension of VSM developed to overcome the
synonymy and polysemy problems [26]. SVD (Singular Value
Decomposition) is used to construct a low-rank approximation
matrix to the term-document matrix [27]. In LSI there is no
way to enforce Boolean conditions [14];
6. Lightweight linking technique (LLT) - case sensitive
(CS): To reference software entities from e-mails, the names
of the software entities are used as text search queries. There
exists a link between a software entity and an e-mail, when

273Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 293 / 646

there is a case sensitive match on the entity name;
7. LLT - mixed approach (MA): In case the name of
software entities are compounded words, they are split (e.g.,
ClassName becomes Class Name). The compounded
words are then used for the case sensitive match on the entity
name, otherwise it is used a regular expression based on class
and package name;
8. LLT - MA with regular expression (RE): This approach
is based on that above. A different regular expression is
used to better handle non-Java systems. Further details about
Lightweight linking techniques can be found in [12].

The baselines from 1 to 5 are different instantiations of
the recovery process shown in Section II, while the others are
lightweight approaches based on regular expressions. In all the
IR-based baseline approaches, with the exception of the first
and second one, the corpus was indexed considering together
header, body, and quote.

B. Planning

1) Context: Many IR-based traceability recovery ap-
proaches depend on users’ choices: the software engineer
analyzes a subset of the ranked list to determine whether each
traceability link has been correctly retrieved. It is the software
engineer who makes the decision to conclude this process.
The lower the number of false traceability links retrieved,
the better the approach is. The best case scenario is that all
the retrieved links are correct. IR-based traceability recovery
methods are far from this desirable behavior [9]. In fact, IR-
based traceability recovery approaches might retrieve links
between source and target artifacts that do not coincide with
correct ones: some are correct and others not. To remove
erroneously recovered links from the candidate ones, a subset
of top links in the ranked list (i.e., retrieved links) should be
presented to the software engineer. This is possible by selecting
a threshold to cut the ranked list (e.g., [11], [28]).

There are methods that do not take into account the
similarity between source and target artifacts: Constant Cut
Point, it imposes a threshold on the number of recovered
links, and Variable Cut Point, it consists in specifying the
percentage of the links of the ranked list to be considered
correctly retrieved. Alternative possible strategies for threshold
selection are based on the similarity between source and target
artifacts: Constant Threshold, a constant threshold is chosen,
Scale Threshold, a threshold is computed as the percentage
of the best similarity value between two vectors, and Variable
Threshold, all the links among those candidate are retrieved
links whether their similarity values are in a fixed interval. In
our experiment, we used the Constant Threshold method. This
is the standard method used in the literature [9]. We applied
this method employing thresholds assuming values between 0
and 1. The increment used was 0.01.

For each software entity, the Query Formulation step was
instantiated using either the original class name or the concate-
nation of class and package names. Many of the design choices
have been taken because our main goal was to compare the
results of our solution with those presented in [12].

2) Variable selection: The traceability links retrieved by
applying both our approach and the baselines are analyzed
in terms of correctness and completeness. Correctness reflects

the fact that an approach is able to retrieve links that are
correct. To measure the correctness, we used (as custom-
ary) precision (precision = |T P|

|T P|+|FP|). On the other hand,
completeness reflects how much the set of retrieved links is
complete with respect to the all actual links. Recall is used
to measure this aspect (recall = |T P|

|T P|+|FN|). where T P (true
positives) is the set of links correctly retrieved. The set FN
(false negatives) contains the correct links not retrieved, while
FP (false positives) the links incorrectly presented as correct.

When the e-mails in the benchmark do not have any
reference to source code artifacts, the union of T P and FN
is empty (i.e., |T P|+ |FN|= 0). In all these cases, we cannot
calculate the values for the recall measure. The values for
precision could not be computed in case the approach found
no link between an e-mail and the source code. Similar to
[12], we avoided these issues calculating the average of |T P|,
|FP|, and |FN|, on the entire dataset. We then computed the
average values for precision and recall. Precision and recall
assume values in the interval [0,1]. The higher the precision
value, the more correct the approach is. Similarly, the higher
the recall value, the better the approach is.

To get a trade-off between correctness and completeness,
we applied the balanced F-measure (i.e., F1 =

2∗precision∗recall
precision+recall).

F1 was used to estimate the accuracy of the approach. This is
the main criterion we considered in the study. This measure has
values in the interval [0,1]. When comparing two approaches,
the one with higher F1 value is considered the best, namely
the most accurate.

3) Instrumentation: To estimate our approach and to com-
pare it with the baselines, we used the benchmark proposed
in [13]. For each system and all the threshold values, we
computed the values of precision, recall, and F1. To compare
our approach with the baselines, we selected the constant
threshold that produced the best accuracy.

IV. RESULTS AND DISCUSSION
A. Results

The results achieved by applying our approach are shown in
Table I. The table also reports the results achieved by applying
the “OR” operator. The results are grouped according to the
two different instantiations of the step Query Formulation: (i)
class name and (ii) class and package names. The last row
reports the average values for each measure. Better average
accuracy was achieved using class and package names and the
“AND” operator (F1 = 0.44). With respect to each individual
system, we obtained the higher accuracy for Habari, namely
the system implemented in PHP (F1 = 0.59). On that system,
the higher value of correctness was also obtained (precision =
0.77). It is worth mentioning that the results for that system are
the same both using class name alone and class and package
names together. This is because PHP 5 did not have packages.
Namespaces (i.e., packages) where only introduced in PHP
5.3. The same held for Augeas (the C software system).

Table II shows the results achieved by indexing the corpus
using: (i) header and (ii) body and quote together. With respect
to accuracy, better results were achieved using the operator
“AND” and class and package names. The best average accu-
racy value was 0.41. Among the analyzed software systems,
the best accuracy was obtained for Habari (F1 = 0.61).

274Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 294 / 646

TABLE I. BM25F RESULTS INDEXING THE CORPUS USING: (i) HEADER, (ii) BODY, AND (iii) QUOTE
Class Name + “AND” Class Name + “OR” Class and Package Names + “AND” Class and Package Names + “OR”

System Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

ArgoUML 0.32 0.53 0.40 0.05 0.55 0.10 0.41 0.72 0.52 0.04 0.48 0.07
Freenet 0.23 0.49 0.31 0.03 0.23 0.06 0.30 0.52 0.39 0.02 0.40 0.05
JMeter 0.32 0.41 0.36 0.10 0.41 0.16 0.49 0.62 0.55 0.06 0.43 0.10

Away3D 0.31 0.51 0.39 0.15 0.24 0.18 0.39 0.44 0.41 0.12 0.24 0.16
Habari 0.77 0.48 0.59 0.29 0.35 0.32 0.77 0.48 0.59 0.29 0.35 0.32
Augeas 0.12 0.27 0.16 0.04 0.32 0.08 0.12 0.26 0.16 0.04 0.32 0.08

Average value 0.35 0.45 0.37 0.11 0.35 0.15 0.41 0.51 0.44 0.10 0.37 0.13

TABLE II. BM25F RESULTS INDEXING THE CORPUS USING: (i) HEADER AND (ii) BODY AND QUOTE TOGETHER
Class Name + “AND” Class Name + “OR” Class and Package Names + “AND” Class and Package Names + “OR”

System Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

ArgoUML 0.34 0.51 0.41 0.07 0.58 0.12 0.40 0.46 0.43 0.05 0.55 0.09
Freenet 0.22 0.54 0.31 0.08 0.45 0.14 0.29 0.62 0.40 0.07 0.5 0.13
JMeter 0.29 0.45 0.36 0.14 0.41 0.21 0.34 0.66 0.45 0.12 0.45 0.19

Away3D 0.29 0.76 0.42 0.21 0.24 0.22 0.37 0.44 0.40 0.16 0.23 0.19
Habari 0.74 0.52 0.61 0.46 0.45 0.46 0.74 0.52 0.61 0.46 0.45 0.46
Augeas 0.11 0.35 0.17 0.10 0.17 0.13 0.11 0.35 0.17 0.06 0.35 0.10

Average value 0.33 0.52 0.38 0.18 0.38 0.21 0.38 0.5 0.41 0.15 0.42 0.19

TABLE III. LUCENE RESULTS
Class Name + “AND” Class Name + “OR” Class and Package Names + “AND” Class and Package Names+ “OR”

System Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

ArgoUML 0.32 0.50 0.39 0.06 0.50 0.11 0.39 0.47 0.43 0.03 0.53 0.06
Freenet 0.20 0.59 0.30 0.07 0.47 0.11 0.27 0.64 0.38 0.05 0.56 0.10
Jmeter 0.27 0.46 0.34 0.10 0.36 0.15 0.34 0.70 0.46 0.07 0.49 0.13

Away3D 0.29 0.77 0.42 0.17 0.22 0.19 0.37 0.44 0.40 0.13 0.24 0.17
Habari 0.61 0.55 0.58 0.45 0.40 0.43 0.61 0.55 0.58 0.45 0.40 0.42
Augeas 0.10 0.27 0.15 0.05 0.21 0.08 0.10 0.27 0.15 0.05 0.20 0.08

Average value 0.30 0.52 0.36 0.15 0.36 0.18 0.35 0.51 0.40 0.13 0.40 0.16

TABLE IV. RESULTS BY BACCHELLI et al. [12]
VSM with t f − id f LSI LLT - case sensitive LLT - mixed approach LLT - mixed approach with RE

System Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

ArgoUML 0.25 0.34 0.29 0.60 0.48 0.53 0.27 0.68 0.38 0.64 0.61 0.63 0.35 0.68 0.46
Freenet 0.15 0.25 0.19 0.62 0.43 0.51 0.17 0.70 0.27 0.59 0.59 0.59 0.27 0.69 0.39
JMeter 0.21 0.34 0.26 0.52 0.40 0.45 0.15 0.73 0.25 0.59 0.65 0.62 0.30 0.72 0.42

Away3D 0.35 0.31 0.33 0.35 0.33 0.34 0.32 0.74 0.44 0.40 0.54 0.46 0.41 0.72 0.52
Habari 0.34 0.39 0.36 0.36 0.41 0.38 0.40 0.41 0.41 0.83 0.09 0.17 0.49 0.38 0.43
Augeas 0.10 0.20 0.14 0.10 0.28 0.14 0.09 0.72 0.15 0.14 0.02 0.04 0.15 0.64 0.24

Average value 0.23 0.31 0.26 0.43 0.39 0.39 0.23 0.66 0.32 0.53 0.42 0.42 0.33 0.64 0.41

The results achieved with Lucene are shown in Table
III. The best average accuracy value was reached using the
operator “AND” and class and package names (i.e., 0.40). The
better accuracy was achieved for Habari (F1 = 0.58).

Table IV summarizes the results presented in [12], instan-
tiating Query Formulation step with class name. As mentioned
before, the results for class and package names together are not
reported for VSM and LSI because the authors observed that
better results were achieved using only class names. Table IV
also shows the results for the lightweight linking techniques.

The results indicate that our proposed technique is more
accurate than BM25F using two fields (header and body and
quote together) on all the Java systems with the exception of
Freenet (the F1 values were 0.39 and 0.40, respectively). On
the non-Java systems, the use of BM25F indexing the corpus
with three or two fields did not produce remarkable differences
in accuracy (see Table I and Table II).

Our approach using class and package names as the queries
is more accurate than VSM. Similar results were achieved for
Lucene using both the operators and class name and class and
package names together as the queries. Indeed, our proposal
did not outperform Lucene only on Away3D when using the
“AND” operator and class name as the query. The F1 values
were 0.41 and 0.42, respectively.

As far as LSI, our approach is more accurate on all the non-
Java system and Jmeter. For ArgoUML the difference in favor
of LSI was negligible (the F1 values was 0.52 with respect to
0.53). A larger difference in accuracy was obtained for Freenet.

Our proposal outperformed LLT-CS in accuracy on all the
systems with the exception of Away3D (the F1 values were
0.44 and 0.41, respectively). BM25F with three fields was on
average more accurate than LLT MA with and without RE
(see the average values of F1). With respect to LLT MA, we
achieved better F1 values results on Habari and Augeas (0.59
vs. 0.17 and 0.16 vs. 0.04, respectively). On the Java systems
LLT MA was more accurate than our approach. For LLT MA
RE, we reached better results on the Java systems and Habari.

Regarding the correctness and completeness of the re-
trieved links, we can observe an interesting pattern in the data:
our approach mostly allowed obtaining a more complete set of
retrieved links that are correct. This result is desirable when
you are interested in the recovery of links among software
artifacts (e.g., [9]).

B. Discussion

1) IR-Based recovery: For Java systems, LSI outperformed
other approaches based on IR techniques with respect to the
accuracy of the retrieved links. A reason is that each e-mail in
the corpus quotes a large number of sentences from previous

275Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 295 / 646

messages. This is the best scenario for using LSI [14]. In
fact, this technique is used to disclose the latent semantic
structure of a corpus and to recognize its topics, so dealing with
synonymy and polysemy problems. Further, each document
in the corpus has a large size as compared with the entities
used as the queries. This might also represent another possible
reason for having achieved better results on Java systems.
The considerations above and the fact that LSI outperformed
our approach in terms of accuracy only on Freenet (this
difference was 0.04, while this difference was in favor of our
approach on ArgoUML and JMeter and was 0.01 and 0.1,
respectively) suggest that BM25F represents an alternative also
when dealing with large documents in the corpus.

In the case that e-mails in the corpus quote a small
number of sentences from previous e-mails our approach out-
performed other baseline approaches based on IR techniques.
This happened for all the non-Java systems. For the Habari
system, the e-mails were very short and then BM25F made
the difference also considering the information in the body
and quote together.

For the system implemented in C (i.e., Augeas), the ap-
plication of the IR-Based approaches mostly produced worse
results in terms of correctness, completeness, and accuracy. As
also suggested in [12], a possible justification is related to the
names of the entities. However, our approach outperformed the
IR based baselines. Again, indexing the e-mails considering
two or three fields did not produce remarkable differences.

The instantiation of the Query Formulation step with class
and package names improved the correctness and completeness
when our technique was used. Then, it is possible that the
choice of the source artifact can make the difference in the
accuracy of the links recovered.

The use of a stemming technique in the Normalization step
produced worse results. Then, this technique seems useless in
the recovery of links between source code and e-mails, when
using BM25F (with two and three fields) and Lucene. On these
instances, the use of the “AND” operator led to better results
in terms of accuracy and correctness of the retrieved links
with respect to the “OR” operator. This result held for all
the systems. For completeness, the results achieved with the
“AND” operator were mostly better than those achieved with
the “OR” operator. Only in four cases the use of the “OR”
operator led to better recall values.

The use of source code (program statements and/or source
code comment) as the query was also analyzed. The results
revealed that this kind of instantiation for the Query Formu-
lation step led to worse results with respect to the other two
kinds of queries considered here. This result is in line with that
shown in[12] and has the following implication: it is better to
use class name and class and package names as the queries.

We also performed an analysis to get indications on
whether BM25F might introduce scalability issues. We used a
laptop equipped by a processor Intel Core i7-2630QM with
4 GB of RAM and Windows Seven Home Premium SP-
1 64bit as operating system. This analysis was performed
on each system and the baseline processes implemented for
our experiment (see Section III-A). The results indicated that
the time to build, normalize, and index the e-mails of the
entire benchmark was twice when using three fields (i.e., 5033

milliseconds) with respect to the use of two fields (i.e., 2668
milliseconds). For Lucene, the average execution time on all
the systems in the benchmark was 2660 milliseconds. For the
Query Formulation step, nearly the same pattern was observed.
Further details are not provided for space reason.

2) Lightweight Approaches: Regarding the accuracy of the
retrieved links, LLT MA outperformed the other lightweight
techniques and our approach on the Java systems. On the non-
Java system with the exception of Away 3D, LLT MA did not
outperform our approach and the differences in the F1 values
were significant (0.59 vs. 0.17 and 0.16 vs. 0.04, respectively).
The difference on Away3D was small (F1 values were 0.41 and
0.44, respectively). Similarly, LLT MA did not outperform LLT
MA RE on the non-Java systems. The achieved results suggest
that our approach and LLT MA RE are more independent from
the kind of documents in the corpus. Since our approach was
more accurate, we can then conclude that it is the best and can
be applied without making any assumption on the mailing list
and the programming language of the understudy system. The
same did not hold for lightweight techniques based on regular
expressions because they heavily rely on common conventions
and intrinsic syntactical characteristics of the corpus [12].

C. Lesson Learned

The accuracy of our approach increased when e-mails con-
tain a huge amount of text and the entity names are carefully
chosen and naming conventions are used. Furthermore, when
e-mails did not contain a huge amount of text, the application
of BM25F on two or three fields did not produce noteworthy
differences. Then, BM25F on header, body, and quote with the
operator “AND” is the best alternative.

We experimentally observed that, in terms of accuracy, our
approach outperformed on 5 out of 6 systems the lightweight
technique that is more independent from the kind of e-mails
in the corpus (i.e., LLT MA RE) [12]. To apply our approach,
any assumption on the system understudy has to be made and
any particular configuration setting is required. Therefore, our
approach is easier to use than lightweight approaches and it is
accurate enough to be worth the costs it may introduce in the
corpus preprocessing and indexing phases. Furthermore, IR-
based approaches, such as the one we introduce here, are more
scalable. They are more efficient than lightweight techniques
when the number of e-mails in the corpus increases. Finally,
lightweight techniques return documents without any ranking:
an e-mail either matches or not a regular expression. As a
consequence, all the retrieved links have to be analyzed. In
addition, incremental processes cannot be used to keep only
relevant links (e.g., [29]).

1) Pieces of evidences: We distilled our findings and lesson
learned into the following pieces of evidence (PoE):
PoE1. Accuracy increases when using class and package
names as the queries;
PoE2. Applying our approach on three fields (i.e., header,
body, and quote) improves the results when the corpus contains
e-mails with a huge amount of text and the entity names are
carefully chosen by developers;
PoE3. Using the “AND” operator leads to better results in
terms of correctness, completeness, and accuracy;
PoE4. The corpus normalization by using stemming techniques
reduces the accuracy of the recovered links;

276Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 296 / 646

PoE5. Our approach scales reasonable well also when the
number of documents in the corpus increases;
PoE6. Our approach is more independent from the mailing list
than lightweight approaches.

D. Threats to Validity

To comprehend the strengths and limitations of our study,
we present here the threats that could affect the validity
of the results and their generalization. Although our efforts
in mitigating as many threats as possible, some threats are
unavoidable. A possible threat is related to the used benchmark
that is built on human judgement. The use of open source
software represents another threat to validity. Although many
large companies are using open source software in their own
work or as a part of their marketed software, it will be worth
replicating the study on real project. These replications will
help us to confirm or contradict the achieved results. The
instantiation of Query Formulation is another possible threat.
We used class names or class and package names to compare
our approach with those in [12].

V. CONCLUSION

We proposed, implemented [23], and evaluated an approach
to recover links between e-mails and source code. The ap-
proach is based on text retrieval techniques combined with
the BM25F probabilistic model. To assess the validity of our
proposal, we conducted an empirical evaluation using a public
benchmark [13]. Based on this benchmark, we performed a
comparison between our approach and 8 baselines. The results
indicated that our approach in many cases outperformed the
IR-based baseline approaches and the lightweight techniques
proposed in [12].

REFERENCES

[1] E. B. Swanson, “The dimensions of maintenance,” in Proc. of Interna-
tional Conference on Software Engineering. IEEE CS Press, 1976, pp.
492–497.

[2] A. V. Mayrhauser, “Program comprehension during software mainte-
nance and evolution,” IEEE Computer, vol. 28, pp. 44–55, 1995.

[3] S. Pfleeger and J. Atlee, Software Engineering - Theory and Practice.
Pearson, 2006.

[4] A. De Lucia, F. Fasano, C. Grieco, and G. Tortora, “Recovering
design rationale from email repositories,” in Proc. of the International
Conference on Software Maintenance. IEEE, 2009, pp. 543–546.

[5] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram, “Advancing candidate
link generation for requirements tracing: The study of methods,” IEEE
Trans. Software Eng., vol. 32, no. 1, pp. 4–19, 2006.

[6] A. Bacchelli, M. Lanza, and M. D’Ambros, “Miler: a toolset for
exploring email data,” in Proc. of the International Conference on
Software Engineering. ACM, 2011, pp. 1025–1027.

[7] A. Bacchelli, T. Dal Sasso, M. D’Ambros, and M. Lanza, “Content
classification of development emails,” in Proceedings of the 2012
International Conference on Software Engineering. IEEE Press, 2012,
pp. 375–385.

[8] N. Bettenburg, B. Adams, A. E. Hassan, and M. Smidt, “A lightweight
approach to uncover technical artifacts in unstructured data,” Proc. of
the International Conference on Program Comprehension, vol. 0, pp.
185–188, 2011.

[9] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Recovering trace-
ability links in software artifact management systems using information
retrieval methods,” ACM Trans. Softw. Eng. Methodol., vol. 16, no. 4,
2007.

[10] S. K. Sundaram, J. H. Hayes, A. Dekhtyar, and E. A. Holbrook,
“Assessing traceability of software engineering artifacts,” Requir. Eng.,
vol. 15, no. 3, pp. 313–335, 2010.

[11] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,
“Recovering traceability links between code and documentation,” IEEE
Trans. Software Eng., vol. 28, no. 10, pp. 970–983, 2002.

[12] A. Bacchelli, M. Lanza, and R. Robbes, “Linking e-mails and source
code artifacts,” in Proc. of International Conference on Software Engi-
neering. ACM, May 2010, pp. 375–384.

[13] A. Bacchelli, M. D’Ambros, M. Lanza, and R. Robbes, “Benchmarking
lightweight techniques to link e-mails and source code,” in Proc. of
Working Conference on Reverse Engineering. IEEE Computer Society,
2009, pp. 205–214.

[14] C. D. Manning, P. Raghavan, and H. Schtze, Introduction to Information
Retrieval. New York, NY, USA: Cambridge University Press, 2008.

[15] S. Robertson, H. Zaragoza, and M. Taylor, “Simple bm25 extension
to multiple weighted fields,” in Proc. of International Conference on
Information and Knowledge Management. ACM, 2004, pp. 42–49.

[16] S. Robertson and H. Zaragoza, “The probabilistic relevance framework:
Bm25 and beyond,” Found. Trends Inf. Retr., vol. 3, pp. 333–389, April
2009.

[17] K. Y. Itakura and C. L. Clarke, “A framework for bm25f-based
xml retrieval,” in Proc. of International Conference on Research and
Development in Information Retrieval. ACM, 2010, pp. 843–844.

[18] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14,
no. 3, pp. 130–137, 1980.

[19] K. S. Jones, S. Walker, and S. E. Robertson, “A probabilistic model of
information retrieval: development and comparative experiments,” Inf.
Process. Manage., vol. 36, pp. 779–808, November 2000.

[20] J. R. Pérez-Agüera, J. Arroyo, J. Greenberg, J. P. Iglesias, and V. Fresno,
“Using bm25f for semantic search,” in Proc. of the International
Semantic Search Workshop. ACM, 2010, pp. 2:1–2:8.

[21] J. Pérez-Iglesias, J. R. Pérez-Agüera, V. Fresno, and Y. Z. Feinstein,
“Integrating the Probabilistic Models BM25/BM25F into Lucene,”
CoRR, vol. abs/0911.5046, 2009.

[22] L. Dolamic and J. Savoy, “When stopword lists make the difference,”
J. Am. Soc. Inf. Sci. Technol., vol. 61, no. 1, pp. 200–203, Jan. 2010.

[23] L. Mazzeo, A. Tolve, R. Branda, and G. Scanniello, “Linking e-mails
and source code with lasco,” in Proc. of the European Conference on
Software Maintenance and Reengineering. IEEE Computer Society,
2010.

[24] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering - An Introduction.
Kluwer, 2000.

[25] V. Basili, G. Caldiera, and D. H. Rombach, The Goal Question Metric
Paradigm, Encyclopedia of Software Engineering. John Wiley and
Sons, 1994.

[26] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and
R. A. Harshman, “Indexing by latent semantic analysis,” Journal of the
American Society of Information Science, vol. 41, no. 6, pp. 391–407,
1990.

[27] J. K. Cullum and R. A. Willoughby, Lanczos Algorithms for Large
Symmetric Eigenvalue Computations, Vol. 1. Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics, 2002.

[28] A. Marcus and J. I. Maletic, “Recovering documentation-to-source-
code traceability links using latent semantic indexing,” in Proc. of the
International Conference on Software Engineering. IEEE CS Press,
2003, pp. 125–137.

[29] A. De Lucia, R. Oliveto, and P. Sgueglia, “Incremental approach and
user feedbacks: a silver bullet for traceability recovery,” in Proc. of the
International Conference on Software Maintenance. IEEE Computer
Society, 2006, pp. 299–309.

277Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 297 / 646

IR based Traceability Link Recovery Method
Mining

Takeyuki Ueda, Shinpei Ogata, Haruhiko Kaiya, Kenji Kaijiri
Shinshu University

Nagano, Japan
Email: ueda, ogata, kaiya, kaijiri@cs.shinshu-u.ac.jp

Abstract—Traceability link recovery is an important process in
software development, and several researches are done, but the
generality of adequate methods is not considered. The target of
traceability link recovery includes several kinds of documents, so
the adequacy of recovery methods depends on the characteristics
of these documents, for example, an average similarity, a kind
of document pair, document size, and so on. We propose the
traceability link recovery method mining, which identifies a
kind of adequate recovery method based on the characteristics
of target documents by using knowledge base consisting of
(a method, characteristics, and performance). This knowledge
base shows which pair (a method, characteristics) is good at
performance. Our target traceability link recovery method is IR
based method, which is major method of automated traceability
recovery. Some experiments based on the traceability reference
data sets are done and the potential of our method is shown.

Keywords-traceability; mining; information retrieval

I. I NTRODUCTION

In experimental software engineering, especially in estimat-
ing software quality factors, several methods are proposed
and the effectiveness of these methods is evaluated. However
external validity of these evaluations is not validated, because
there are a variety of target domains and these objective
artifacts have a variety of characteristics. Therefore an ex-
perimental result for some artifacts is not applied to another
artifacts, but validation of external validity is indispensable
for application to real software artifacts. Wohlin [1] said
that threats to external validity are conditions that limit our
ability to generalize the results of our experiment to industrial
practice.

Zhimin [2] proposed a method mining technique for error
prone module prediction. In error prone module prediction,
predictors are constructed based on training data by using
some mining algorithm and software metrics, so these factors
must be determined before applying prediction. There are
many researches about this domain and several proposals for
adequate algorithms, metrics, and training data have been
done, but these results are not generally validated, that is,
threats to validity about external validity is not solved. Zhimin
[2] constructed a knowledge base about the adequate set for
prediction, and by using this knowledge base, the adequate
algorithm and the training data are estimated. Zhimin’s main
idea is to reuse the performance data based on the similarity
of characteristics.

On the other hand, traceability link recovery is the important
research topic in software maintenance. Traceability link is
the relation between software artifacts, for example, require-
ment statements and design statements, design statements
and source code, functional requirements and nonfunctional
requirement. These links may be missed during development,
so their reestablishment is needed. This reestablishment is
the objective of traceability link recovery. Asuncion [3] cat-
egorizes traceability link recovery into two categories: retro-
spective traceability and prospective traceability. The former
is automated approach and Information Retrieval(IR) based
method is the representative and it recovers the traceability
link based on the document automatically. The latter is semi
automated or manual approach. The retrospective traceability
is more available than the prospective traceability, but it is not
so precise. So improvement and guarantee of preciseness are
the main research topic in IR based traceability link recovery.
There are many researches [4]–[12], and several methods are
proposed, but the best method is not identified. The adequacy
of method is considered to be dependent on the characteristics
of target document pair.

In this paper, we propose the application of Zhimin’s
method to IR based traceability link recovery. In this case,
the triple (a method instance, characteristics, performance) is
training data, the tuple (a method instance, characteristics) is
test data. A method instance is a certain combination of a vari-
ety of traceability link recovery techniques. Performance is the
measure of how good this method instance is. Characteristics
are factors which may affect the performance. We suppose that
an average similarity, a kind of document pair, document size,
and so on are candidates for the characteristics.

We also propose new cosine similarity, which reflects link
semantics. Several experiments using reference data set pro-
vided in CoEST [13] are done and the effectiveness of new
cosine similarity and our mining method is shown. Our main
contributions are as follows:

• A traceability recovery method mining method is pro-
posed.

• The accuracy of the selected traceability link recovery
method is assured.

• Asymmetrical cosine similarity is proposed.

In Section 2, we describe the traceability link recovery prob-

278Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 298 / 646

lem and in Section 3, we discuss the application of the method
mining model to traceability domain. In Section 4, we describe
the experiment and the result, and show the effectiveness of
this method. In Section 5, we consider threats to validity, and
in Section 6, we compare with related researches. We conclude
our paper and consider future work in Section 7.

II. IR BASED TRACEABILITY LINK RECOVERY

Traceability link means the relation between some software
components within several software documents. A software
project has several kinds of documents and these documents
consist of several components; for example, a software project
has requirement document, design document, source code
and test document, and each of these documents have their
own components (the requirement document consists of many
requirement statements and the source code consists of many
class files).

There are several approaches about traceability link recovery
[4] and the most possible method is IR based method. In IR
based method, each component is modeled as a term vector,
and the similarity between components is measured by using
the cosine similarity of these term vectors. Traceability link
will be identified by using these similarity values. These term
vectors are aggregated into a term document matrix. There are
several variations of construction methods of a term document
matrix:

1) Term extraction and preprocessing: Stemming, stop word,
Camel case

2) Kind of value for term vector: True/False, frequency, term
frequency-inverse document frequency(TF-IDF)

3) Link candidate judgment method by using similarity
value: threshold value (top n%) or rank (top n pairs)

4) Modification of term document matrix: Latent Semantic
Indexing(LSI)

These are traditional variations for IR based method. We
consider a further variation, which is specific for software link
recovery, asymmetric cosine similarity. The cosine similarity
treats each component symmetrically, but several kinds of
relations are proposed in software traceability [14], [15], for
example, Ramesh [14] proposed the following four kinds of
link:

• Satisfaction link
• Evolution link
• Rationale link
• Dependency link

These relations are not necessarily symmetric, so we define
asymmetrical cosine similarity as follows:
X × Y/(|X| ∗ |Y |) (1)

if Xi == 0 then the correspondingYi is not considered.
where X and Y are term vectors and X=(X1,,,,Xn) ,
Y=(Y1,,,,Yn)

Asymmetrical similarity considers only how much X is
covered by Y, for example, X=(0,0,1,1,0) and Y=(1,0,1,1,0),
then symmetrical similarity(X,Y) = 2/(sqrt(2)*sqrt(3))=0.816,
and asymmetrical similarity(X,Y)=2/(sqrt(2)*sqrt(2))=1.0.

We apply this variation as the 5th variation.
There are several other variations, for example, the gran-

ularity of components, ontology, etc. The treatment of these
alternatives is the future research theme.

Each traceability recovery method selects one alternative
from each variation. The following is an example:

• stemming is used
• stop word is eliminated
• camel case word is decoupled
• value of term document matrix is TF-IDF
• link candidate is judged with threshold value (0.3)
• LSI is applied
• symmetrical cosine similarity is applied

We call these alternatives as method instances. Selection of
adequate method instances for each data is the main target of
our research.

We afford the following research questions:

• RQ1: Is it possible to identify the adequate method
instance for each project data?

• RQ2: Is it possible to assure the accuracy of the selected
method instance?

• RQ3: Is the asymmetric similarity is effective for trace-
ability link recovery?

III. T RACEABILITY LINK RECOVERY METHOD MINING

We show the traceability link recovery method mining in
Figure 1. In order to do traceability link recovery, an adequate
method instance has to be identified, and we supposed that
the adequacy is dependent on the characteristics of target
documents, so it must be possible to identify the adequate
method instance candidate by using these characteristics. We
use data mining approach proposed by Zhimin [2] for this
identification. For this purpose we need to select the adequate
characteristics. In this paper, we use CoEST [13] data set
as a reference data set. Each document consists of two
component sets and link between these component. We select
the following characteristics which can be extracted from these
documents:

• Average similarity
• Number of components
• Total term count
• Used language
• Type of document relation

These characteristics may be insufficient and the adequacy
needs to be further considered.

As shown in Figure 1, the following training data and test
data are needed:

• Training data: (a method instance, characteristics, perfor-
mance)

• Test data : (a method instance, characteristics)

Performance is transformed into true/false value based on
the traceability link criterion which is defined by using preci-
sion and recall. There are a few reports about the traceability
link criterion. Hayes [16] described that adequate recall value
is from 60 to 69% and adequate precision value is from 20 to

279Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 299 / 646

Fig. 1. Outline of traceability link miner selection

29% based on enterprise experiences. We use these values as
objective values, and adjust these values based on conditions.

We show the procedure for traceability link recovery method
mining.

1) For each method instance and each data in reference data
set

a) Do traceability link recovery
b) Based on the traceability link criterion, judge the

adequacy of recovery result

2) Training data is generated
3) Do method mining by using training data
4) If the identification performance is below the identifi-

cation criterion, lower the traceability link criterion and
repeat from step 2

5) By using this data, we construct a method miner
6) Construct test data
7) Do method mining by using (method minor, test data)

pair
8) If no method is mined, lower the traceability link criterion

and repeat from step 2
9) Do traceability link recovery by using the selected method

instance
Step 3 and 4 are for the examination of adequacy of the

selected training data. If the traceability link criterion becomes
too small in step 8, it means that reasonable traceability
link recovery is impossible for this test data. There are the
following reasons:

• Training data is inadequate for test data.
• A variety of method instances are insufficient.
• Method mining method is insufficient.
• The quality of the document is too low.
We define two criteria:
• Traceability link criterion

There must be adequate accuracy value in traceability

link recovery, and it is the traceability link criterion.
We use Hayes proposed value for this criterion, that is,
precision > 0.3 and recall > 0.7, but there are several
cases for this adequacy, so we may adjust this criterion.
We further call the pair (precision, recall), which is the
result of traceability link recovery, as traceability link
recovery performance. We call a method instance, which
satisfies this criterion, as a candidate method instance.

• Identification criterion
The selected method instance needs to assure the satis-
faction of the given traceability link criterion. We use the
following precision for this purpose

(| CMIS |) ∩ (| SMIS |)
| SMIS |

(2)

where CMIS is a set of candidate method instances,
and SMIS is a set of selected method instances. This
criterion is computed for each project, that is, a pair of
documents. For example, if the identification criterion
is 0.8, then 80% of the selected method instances are
supposed to satisfy the traceability link criterion. We call
the result of traceability link recovery method mining as
identification performance. It only shows possibility, that
is, the satisfaction of the traceability link criterion is only
exemplified using training data, so if the test data has
similarity with the training data, this possibility is high,
but if the test data has no similarity, then this possibility
is low.

IV. EXPERIMENTS

We used the subset of the reference data set provided by
CoEST [13]. The details of the used data sets are shown
in Table I. The third column presents the numbers of each
component (source component and destination component),
the fourth column contains the average number of correct

280Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 300 / 646

TABLE I
REFERENCEDATA SET

project document
pair

of com-
ponents

average #
of links

of
candidate
method
instances

eAnci UC CC 140,55 3.10 0
Gantt high low 17,69 4.00 0
SMOS UC CC 67, 100 15.58 0
WV CCHIT Requirements-

Regulatory
code

116, 1064 5.06 0

EasyClinic CC TC 47,63 4.34 0
EasyClinic ID CC 20, 47 3.45 89
EasyClinic ID TC 20, 63 4.15 37
EasyClinic ID UC 20, 30 1.30 13
EasyClinic TC CC 63, 47 3.24 0
EasyClinic UC CC 30, 47 3.10 47
EasyClinic UC ID 30, 20 0.87 15
EasyClinic UC TC 30, 63 2.10 16
Waterloo grp01 high,low 58, 26 0.52 0
Waterloo grp02 high,low 42, 13 1.24 0
Waterloo grp03 high,low 70, 28 1.34 0
Waterloo grp05 high,low 54, 30 0.87 2
Waterloo grp06 high,low 39, 21 1.41 0
Waterloo grp08 high,low 85, 22 1.08 0
Waterloo grp09 high,low 30, 19 1.77 0
Waterloo grp10 high,low 76, 8 0.91 0
Waterloo grp11 high,low 79, 9 0.89 0
Waterloo grp13 high,low 43, 8 0.72 0
Waterloo grp14 high,low 46, 5 0.72 24
Waterloo grp15 high,low 69, 27 1.35 0
Waterloo grp17 high,low 57, 7 0.89 0
Waterloo grp18 high,low 53, 8 0.66 78
Waterloo grp19 high,low 61, 15 2.03 0
Waterloo grp20 high,low 93, 14 1.49 0
Waterloo grp21 high,low 36, 26 1.14 25
Waterloo grp23 high,low 32, 20 1.06 12
Waterloo grp24 high,low 51, 29 1.10 0
Waterloo grp30 high,low 48, 20 0.73 0
Waterloo grp32 high,low 86, 21 1.57 0
Waterloo grp33 high,low 65, 11 0.94 0
Waterloo grp34 high,low 28, 16 0.64 0

links, and the fifth column contains the number of method
instances, which identify link candidates withprecision > 0.3
andrecall > 0.7.

The detailed experimental results are too large, so we store
the results in http://cwww.cs.shinshu-u.ac.jp/ICSEA/ and show
only the summarized results.

We used seven threshold values (10%, 20%, 30%, 40%,
50%, 60%, 70%) and four rank values (5, 10, 15, 20) with
the five kinds of variation described in Section II, so the total
number of method instances is 1056.

We did three experiments by using the data mining tool
Weka [17] in order to evaluate the effectiveness of our method.

A. Experiment 1: Traceability link recovery evaluation for the
35 data

We did 1056 runs (method instances) for each data: total
36960 (1056 × 35) runs. Each run calculates candidate link
set and the accuracy is evaluated by using the given answer
link set.

TABLE II
THE RESULT OFTRACEABILITY LINK RECOVERY

precision recall f-measure
average 0.196 0.520 0.171
standard devi-
ation

0.228 0.376 0.128

We evaluated the effectiveness of each method instance
for each data. We show the number of candidate method
instances, whose traceability link performance satisfies the
traceability link criterion, in Table I and the statistic values
in Table II. In this experiment, the traceability link criterion
is precision > 0.3 and recall > 0.7. The deviation of the
number of candidate method instances are large, that is, in 24
out of 35 data, the number of candidate method instances is
zero, but EasyClinic IDCC has 89 candidate method instances
and Waterloo grp18 has 78 candidate method instances. The
standard deviations of performance values (precision, recall, f-
measure) are also large, so there must be adequacy of method
instances for each data set. We show the scatter plot diagram
in Figure 2. The horizontal axis is the index of each method
instance and the vertical axis is the number of occurrences in
the top 3 method instances with f-measure.

Fig. 2. Scatter plot diagram top 3 method instances

This figure also shows that there is no unique method
instance, which has the best performance, that is, plots
are dispersed. The O and P column of exp1.xlsx in
http://cwww.cs.shinshu-u.ac.jp/ICSEA/ show the traceability
link recovery result with f-measure. F-measure for asymmetri-
cal similarity is better than symmetrical similarity for 14 data,
but worse for only one data, so in some cases, asymmetrical
similarity is better method.

From experiment 1, the necessity of the adequate method
instance selection and the effectiveness of asymmetrical sim-
ilarity become clear.

B. Experiment 2: Cross Validation

Experiment 2 is the traceability link recovery method min-
ing experiment. First we try cross validation in order to
evaluate the possibility of our proposed method. We integrated
the results of the experiment 1 into one data (weka format file)
and did 10 fold cross validation by using several algorithms.

281Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 301 / 646

TABLE III
THE IDENTIFICATION PERFORMANCE(CROSS VALIDATION)

algorithm p=0.5
r=0.7

p=0.3
r=0.7

p=0.2
r=0.6

p=0.1
r=0.5

precision J48 0.92 0.87 0.89 0.96
precision Naive

Bayes
0.04 0.08 0.15 0.37

precision Logistic 0.62 0.58 0.55 0.64
precision Random

Forest
0.72 0.75 0.80 0.95

recall J48 0.54 0.68 0.82 0.99
recall Naive

Bayes
0.69 0.78 0.75 0.96

recall Logistic 0.09 0.06 0.08 0.46
recall Random

Forest
0.54 0.62 0.74 0.95

We show the identification performance for several trace-
ability link criteria in Table III. Precision and recall in the
first column mean the precision and recall of identification
performance, and p and r in the first row mean the precision
and recall of traceability link recovery performance.

We got acceptable precision values for each traceability link
criterion, so the potential of our method becomes clear, but the
dependency on algorithms is very high. Even for the objective
traceability link criterion (precision > 0.3 andrecall > 0.7),
the precision is 0.87 in J48 and 0.75 in Random Forest, but
0.08 in Naive Bayes. These experiments only show the average
performance, and in order to show the possibility for each data,
the next experiment is needed.

C. Experiment 3: Identification performance check for each
data

Our training data contains 1056 data for each project, that
is, 36960 data. In cross validation these 36960 data is divided
into ten subsets, and the combination of nine subsets is used as
training data and the remaining one subset is used as test data,
so the training data includes many data whose project is the
same as the data in the test data. In the objective traceability
link criterion, the number of candidate method instances is
358, that is only 1% (358/36960), and the number of projects
which have candidate method instance is 10 (total is 35), so
the bias between training data and test data may exist. As
the result of this condition, identification performance may
be overestimated, so we evaluate the performance for each
project.

We constructed training data from N-1 data, and test data
from the remaining data. In our experiment, N=35, so we
constructed 35 pairs. We show the summarized result in
Table IV and the detailed result in http://cwww.cs.shinshu-
u.ac.jp/ICSEA/exp3.xlsx. 11 kinds of traceability link criterion
are tested and the results are shown in Table IV.

For the objective traceability link criteria (precision > 0.3
andrecall > 0.7), identification performances are low, that is,
only one data satisfies the identification criterion (precision >
0.7). In almost all data, precision is zero even for very low
traceability link criteria. We can get only the reasonable
value, that is, identification performance (precision > 0.7)

TABLE IV
THE IDENTIFICATION PERFORMANCE(BY PROJECT VALIDATION)

precision recall # of data
in which
the trace-
ability link
recovery
perfor-
mance
satisfies
the
criterion

of
projects
whose
identi-
fication
precision
is greater
than 0.7

of
projects
whose
identi-
fication
precision
is greater
than 0.5

0.7 0.7 4 0 0
0.6 0.7 20 0 0
0.5 0.7 87 1 1
0.4 0.7 164 0 1
0.3 0.7 358 1 1
0.3 0.6 655 2 4
0.2 0.7 1195 2 5
0.2 0.6 1873 3 4
0.1 0.5 9807 21 26
0.1 0.4 11238 23 27
0.05 0.5 16985 26 31

and traceability link recovery performance (precision > 0.3
and recall > 0.7) in the case of EasyClinic IDCC, and
traceability link recovery performance (precision > 0.3 and
recall > 0.6) in the case of EasyClinic UCID.

This result can not show the potential of our method, so we
did further experiments in order to consider the reasons and
the possibility to improve identification performance.

We considered the following reasons:

• The number of candidate method instances is too small.
As shown in Table I, the number of candidate method
instances is too small compared with the number of tested
method instances (1056) and deviation is large. In the
case ofprecision > 0.3 andrecall > 0.7, 11 out of 35
projects have the value zero, and further the percentage
of the candidate method instances are low, that is, the
most high case is for EasyClinic IDCC and the value is
8% (89/1056). Training of succeeful pair based on a few
succeeded data is very difficult, so better traceability link
recovery methods or customization are needed in order
to augument the number of candidate method instances.

• Each data has special link characteristics. For example,
in SMOS the average number of link is especially larger
than others, and in WVCCHIT the number of destination
components is larger than others, so the adequacy of
method instance is a little different from each other and
as the result of this difference the training data generated
from such inadequate data becomes inadequate.
We did method mining experiments for SMOS and
WC CCHIT by using selected training data in order to
evaluate the matching of a training data and a test data.
The detailed results are shown in http://cwww.cs.shinshu-
u.ac.jp/ICSEA/ and summarized result is in Table V,
which shows only the top two results. “all” in training
data means the original experiment 3. # of T means the
number of candidate method instances. The first 4 rows

282Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 302 / 646

show that the identification performance is 0.145 for the
case of using all data, but is 0.687 (0.466) for the case of
using EAnci UC CC (Waterloo grp09). This result shows
that the adequate training data improves the identification
performance, that is, the identification performance by
using adequate training data is larger than the case of
the integrated training data. This adequacy may depend
on the data characteristics, but the identification of these
characteristics is now an open problem.

V. THREATS TOVALIDITY

Regarding the internal validity, the variation of alternatives
and the characteristics of documents are not sufficient. This
research is still ongoing, and the main objective of this paper
is to show the potential of the proposed method, so the
result is not sufficient. The following method options and
characteristics are to be considered:

• Further method options

– Latent Dirichlet Allocation(LDA) and/or ontology
application [18]

– Granularity factor (How to divide a document into
components)

– What kind of term is to be used

• Document (pair) characteristics

– Variance of similarity
– Refined classification of document pair (in Easy-

Clinic data set, there are four kinds of documents)
– Language information ([7] shows that the English

version and the Italian version have different result)
– Development member variation
– Estimated value of the number of traceability links

Regarding the external validity, the used data sets are not
sufficient. We did not test all of the CoEST data set. Also real
software documents have many variation (plain text, office
document, CAD based document, etc) and have language
problems. Granularity of components is the important factor,
but CoEST data set is already separated as link unit, so other
granularity is not tested. Our result only shows the availability
of proposed method ming, so in order to apply to some
real softwares, the corresponding knowledge base needs to be
constructed.

VI. RELATED RESEARCH

There are many researches about traceability recovery and
there are several methods categories: rule base, IR base, and
format base. IR based method has wide availability because
it entails no constraint to developers, but as the result of
this weak constraint, accuracy is not so good. For IR based
method, in order to improve accuracy, several methods are
proposed and evaluated [4]–[12], [19]. Lucia [8] evaluated the
effect of term identification methods. Wiese [10] considered
the stemming effect, and Mahmoud [11] considered how
to construct a term-document matrix. Capobianco [6], [7]
and Lormans [20] compared several IR based traceability
recovery methods: Jenson-Shannon Method(JS), Vector Space

Model(VSM), LSI, LDA. Lormans said that the adequacy of
these methods are dependent on the kind of document.

Several criteria are used for traceability link candidate
judgment. Lormans [20] compares the following five methods
and concludes that the adequacy is dependent on the kind of
document:

• Cut point: we select top k links with similarity value
• Cut percentage: we select k percentage of the ranked list
• Constant threshold: we select those links that have a

similarity measure greater than k
• Variable threshold: we select those links that have a

similarity measure greater than k, where k is calculated
according to a percentage of the total similarity measures

• Scale threshold: we select links according to k = c *
MaxSimilarity where0 ≤ c ≤ 1

There are many researches which evaluate several methods,
but external validity is not considered sufficiently, so engineers
cannot select/use the adequate method for their projects.

VII. C ONCLUSION AND FUTURE WORK

We proposed traceability link recovery method mining in
order to select adequate method instances and to assure the
traceability link criterion. Our experimental result shows the
potential of our proposed method, but the accomplished iden-
tification performance is not sufficient. Regarding the research
questions (RQ1 and RQ3), the answer is yes for some projects,
but no for the other projects. It shows the heavy project
dependency. In order to resolve this dependency, we need
to improve both traceability link recovery performance and
identification performance. For the former improvement, the
following alternatives are planned:

1) LDA and statistic model
2) Candidate link judgment. Lormans [20] defined five judg-

ment methods. We only used two, so the remaining three
methods are to be evaluated.

3) There may be several categories about the document link
properties, so the similarity functions which are adequate
for these links are needed.

For the latter improvement, the followings are planned;

1) There exist several reference data, which are not evalu-
ated, so we do further experiments using those data and
consider the matching of training data and test data.

2) The used characteristics are not sufficient, so we consider
the characteristics which are more related with document
link properties.

Regarding the research question (RQ2), the answer is almost
yes, but the relation between the effectiveness and the docu-
ment characteristics is not clear. Further consideration about
this relation is needed.

REFERENCES

[1] C. Wohlin, P. Runeson, M. Hoest, M. C. Chisson, B. Reqnell, and
A. Wessln, Experimentation in Software Engineering. Springer, 2012.

[2] Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang, “An investigation on
the feasibility of cross-project defect prediction,” Automated Software
Engineering, vol. 19, no. 2, 2012, pp. 167–199.

283Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 303 / 646

TABLE V
THE IDENTIFICATION PERFORMANCE FORSMOSAND WV CCHIT

test data precision recall # of T training data precision recall # of T identification
performance
(precision)

SMOS 0.05 0.3 137 all - - - 0.145
SMOS 0.05 0.3 137 EAnci UC CC 0.05 0.4 187 0.687
SMOS 0.05 0.3 137 Waterloo

grp09
0.1 0.5 164 0.466

SMOS 0.05 0.2 279 all - - - 0.506
SMOS 0.05 0.2 279 EAnci UC CC 0.05 0.3 296 0.781
SMOS 0.05 0.2 279 EasyClinic

CC TC
0.1 0.5 262 0.665

WV CCHIT 0.05 0.3 136 all - - - 0.111
WV CCHIT 0.05 0.3 136 EasyClinic

ID CC
0.2 0.7 164 0.402

WV CCHIT 0.05 0.3 136 waterloo
grp23

0.2 0.6 110 0.359

WV CCHIT 0.05 0.2 258 all - - - 0.376
WV CCHIT 0.05 0.2 258 EasyClinic

CC TC
0.1 0.5 262 0.607

WV CCHIT 0.05 0.2 258 EasyClinic
ID CC

0.2 0.6 224 0.550

[3] H. U. Asuncion, A. U. Asuncion, and R. N. Taylor, “Software traceabil-
ity with topic modeling,” in ICSE, ACM, 2010, pp. 95–104.

[4] A. Abadi, M. Nisenson, and Y. Simionovici, “A traceability technique
for specifications,” in ICPC, 2008, pp. 103–112.

[5] M. Borg, K. Wnuk, and D. Pfahl, “Industrial comparability of student
artifacts in traceability recovery research,” in CSMR, 2012, pp. 181–190.

[6] G. Capobianco, A. D. Lucia, R. Oliveto, A. Panichella, and S. Panichella,
“On the role of the nouns in ir-based traceability recovery,” in ICPC,
2009, pp. 148–157.

[7] G. Capobianco, A. D. Lucia, R. Oliveto, A. Panichella, and S. Panichella,
“Traceability recovery using numerical analysis,” in WCRE, 2009,
pp. 195–204.

[8] A. D. Lucia, M. D. Penta, and R. Oliveto, “Improving source code
lexicon,” IEEE Tr. on S.E., vol. 37, no. 2, 2011, pp. 205–227.

[9] A. D. Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Recovering trace-
ability links in software artifact management systems using information
retrieval methods,” TOSEM, vol. 16, no. 4, 2007, pp. 1–50.

[10] A. Wiese, V. Ho, and E. Hill, “A comparison of stemmers on source
code identifiers for software search,” in ICSM, 2011, pp. 496–499.

[11] A. Mahmoud and N. Niu, “Source code indexing for automated tracing,”
in TEFSE, 2011, pp. 3–9.

[12] R. Oliveto, M. Gethersy, D. Poshyvanyky, and A. D. Lucia, “On the
equivalence of information retrieval methods for automated traceability
link recovery,” in ICPC, 2011, pp. 68–71.

[13] “Center of excellence for software traceability.” http://www.coest.org/.
08.01.2013.

[14] B. Ramesh and M. Jarke, “Toward reference models for requirements
traceability,” IEEE Tr. on S.E, vol. 27, no. 1, 2001, pp. 58–93.

[15] W. Jirapanthong and A. Zisman, “Supporting product line development
through traceability,” in APSEC, 2005, pp. 1–9.

[16] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram, “Advancing candidate
link generation for requirements tracing: The study of methods,” IEEE
Tr. on S.E., vol. 32, no. 1, 2006, pp. 4–19.

[17] I. H. Witten and E. Frank, Data Mining - Practical Machine Learning
Tools and Techniques. Morgan Kaufman, 2005.

[18] Y. Zhang, R. Witte, J. Rilling, and V. Haarslev, “An ontological ap-
proach for the semantic recovery of traceability links between software
artifacts,” Software, IET, vol. 2, no. 3, 2008, pp. 185–203.

[19] A. Marcus, “Recovery of traceability links between software documen-
tation and source code,” International Journal of Software Engineering
and Knowledge Engineering, vol. 15, no. 5, 2005, pp. 811–836.

[20] M. Lormans and A. van Deursen, “Can lsi help reconstructing require-
ments traceability in design and test?,” in CSMR, IEEE, 2006, pp. 1–10.

284Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 304 / 646

Towards Identifying the Factors for Project Management Success in Global
Software Development: Initial Results

Mahmood Niazi a, b, Sajjad Mahmood a, Mohammad
Alshayeb a, Abdul Majid Qureshi a, Kanaan Faisal a

a Department of Information and Computer Science, King
Fahd University of Petroleum and Minerals, Saudi Arabia
b Faculty of Computing, Riphah International University

Islamabad, Pakistan
{mkniazi, smahmood, alshayeb, g201105290,

kanaan}@kfupm.edu.sa

Narciso Cerpa
Faculty of Engineering, Universidad de Talca, Chile

ncerpa@utalca.cl

Abstract – Global Software Development (GSD) is a
collaborative development where one company (client) contracts
out all or part of its software development activities to another
company (vendor), which provides services in return for
remuneration. In today’s world of high cost commitments and
limited budgets, GSD provides a viable option for developing lower
cost product with a relatively better quality. However, this comes at
the cost of overcoming various challenges of managing a project,
which is geographically distributed. The objective of this paper is
to identify a set of factors that contributes to the success of
project management in GSD. We have performed a Systematic
Literature Review (SLR) by applying customized search strings
derived from our research question. We have identified success
factors, such as organizational structure, project managers’ skills,
communication, requirement specification, cultural awareness,
and trust building. Our ultimate aim is to develop a model in order
to measure organizations’ project management readiness for GSD
activities.

Keywords- Global software development; Software Project
Management; Systematic Literature Review; Empirical Study.

I. INTRODUCTION
Low cost software development has always been the

preamble of many organizations. If this low cost
development comes with the added advantage of the high
quality product then it adds to increase long term benefits for
the organizations [1]. The search for the high quality and low
cost development has led many organizations to use Global
Software Development (GSD) model [2]. GSD is the process
where a company either has its software developed by
geographically distributed teams or contracts all or part of its
software development activities in return for remuneration
[3]. Majority of companies have adopted GSD to gain
several perceived benefits, such as reduced software
development time, access to skilled human resources at
relatively low cost and increase in product quality [2,4].
GSD is significantly changing the economic drivers of
software industry due to round the clock availability of
skilled personals at lower cost.

Despite GSD benefits, the cultural differences associated
with geographically distributed teams and different time-
zones have caused problems for GSD-based projects [5,6].
The key GSD challenges are: lack of client involvement,

hidden costs, lack of trust among the outsourcing companies,
lack of coordination mechanisms and communication issues
[5,6,7]. One of the major challenges is that many
organizations endorse global contracts prior to testing their
project management readiness for the global development
activity. Despite the importance of this issue, little research
has been carried out to improve organizations project
management readiness for GSD. We believe that a better
understanding of the factors associated with successful GSD
project management can assist in improving organizations’
project management readiness for GSD projects.
 The advances in GSD have not been matched by equal
advances in the development of new research and practices
in academia and software industry, which has resulted in a
gap between the software industry and academia. The up-to-
date research in this area can help to fill this gap.

 In this paper, we aim to identify success factors via SLR
that impact project management in GSD projects. Identifying
these factors will assist GSD organizations in better
preparing for challenges associated with project
management. Our long term research goal is to develop a
global project management readiness framework to assist
software development organizations in measuring and
improving their project management readiness prior to
starting global activities. To achieve this, we intend to
address the following research question in this paper:

RQ: What factors are essential for the success of project
management in GSD?

The organization of this paper is as follows: Section 2
provides the background. The research methodology is
explained in Section 3. In Section 4, we present and discuss
the initial results. Finally, we present the conclusion in
Section 5.

II. BACKGROUND
Client organizations benefit from offshore outsourcing

because vendors in developing countries (offshore vendors)
typically cost one-third less than onshore vendors and even
less when compared with in-house operations [4]. Among
many other reasons for outsourcing, generally, client
organizations outsource their software development work to
offshore locations to: gain cost and quality advantages,
improve their skills’ access leading-edge technologies, and
focus on their core competencies [8]. It is professed that

285Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 305 / 646

offshore outsourcing vendors can add significant value to
their clients’ supply chains [9]. Conversely, quite apart from
the outsourcing benefits, there are many risks in the
outsourcing process, such as temporal incompatibility,
cultural differences and hidden costs [5,6]. IT Week
magazine reported that eight out of every ten firms that
outsourced their software development project to an offshore
vendor faced major problems due to insufficient preparation
and poor management by both client and vendor
organizations [10].

There are many reasons for these problems [10,11]. One
of the major issues is that many clients endorse global
contracts with their vendors prior to testing their project
management readiness for the global activity [1]. For
example, a recent SLR concluded that the Global Software
Engineering field is still nascent and comparatively very few
empirical studies have been conducted, which can help to
resolve the problems in this domain [12]. Understanding
issues related to organization’s global project management
readiness will help to ensure the successful outcome of
projects and to maintain long lasting relationships between
clients and vendors in different geographical locations [3].
Hence, in this paper we conduct a SLR to identify project
management challenges in GSD projects. The collected data
focuses on factors that are essential for the success of project
management in GSD.

III. RESEARCH METHODOLOGY
A SLR process [13] was used as the approach for data

collection. SLR is a defined and methodical process of
identifying, assessing, and analyzing published primary
studies in order to investigate a specific research question.
Systematic reviews differ from ordinary literature surveys in
being formally planned and methodically executed. In
finding, evaluating and summarizing all available evidence
on a specific research question, a systematic review may
provide a greater level of validity in its findings than might
be possible in any one of the studies surveyed in the
systematic review. A systematic review protocol was written
to describe the plan for the review. The major steps in our
methodology are:

• Constructing search strategy and then perform the
search for relevant studies.

• Perform the study selection process.
• Apply study quality assessment.
• Extract data and analyze the extracted data.
This paper focuses on identifying the factors for

successful project management in GSD, and therefore, we
intended to address the following research question:

RQ: What factors are essential for the success of project
management in GSD?

A. Search Strategy
The search strategy has been based on following steps:
• Derive the major terms from Population,

Intervention, and outcome.

• Find synonyms and similar spellings of the derived
terms obtained above.

• Verify these terms in various academic databases
• Use Boolean operators (AND operator is used to

connect major terms. OR operator is used to connect
synonyms and similar spellings).

Based on the above search strategy, we have constructed
the following search terms:

• POPULATION: Global Software Development
(GSD) organizations.

• INTERVENTION: Project management success
factors.

• OUTCOME OF RELEVANCE: Factors for
successful project management of GSD.

• EXPERIMENTAL DESIGN: SLRs, empirical
studies, theoretical studies and expert opinions.

We test our terms in various academic databases and the
following terms show potential relevance to the topic:

• GLOBAL SOFTWARE DEVELOPMENT: Global
Software Development OR GSD OR distributed
software development OR multisite software
development OR multi-site software development
OR global software teams.

• PROJECT MANAGEMENT: Software Project
Management OR Software Development
Management OR Software Process Management.

• FACTORS: Factors OR causes OR agents OR
elements OR aspects OR determinants OR
constituents OR ingredients.

• CONTRIBUTE: Contribute OR furnish OR provide
OR supply.

• SUCCESS: Success OR advance OR progress OR
favorable OR effective.

• IMPLEMENT: implement OR apply OR utilize OR
device OR mechanize.

• PRACTICE: procedure OR form OR method OR
perform OR exercise.

The final search string is a combination as follows:
{Global Software Development OR GSD OR distributed

software development OR multisite software development
OR global software teams} AND {Factors OR causes OR
agents OR elements OR aspects OR determinants OR
constituents OR ingredients} AND {Contribute OR furnish
OR provide OR supply} AND {Success OR advance OR
progress OR favorable OR effective}

B. Digital Libraries used
Based on the available access, the following digital

libraries were used:
• ACM Digital Library.
• IEEE Explore.
• Science Direct.
• Google Scholar
• ISI Web of Science.
• Springer Link.

286Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 306 / 646

C. Inclusion and Exclusion Criteria
Since these libraries differ in their search mechanism and

capability, we tailored our search strings accordingly.
The following inclusion criteria were used:
• Conference Proceedings, Magazines, and Journals

published after 1980.
• Papers published in any of the primary or secondary

resources mentioned previously.
• Studies focus on answering our research question.
The following exclusion criteria were used:
• Papers published before 1980 are excluded since

Internet starts after that date.
• Manuscripts written in non-English language are

excluded.
• Technical reports and white papers are excluded.
• Graduation projects, master theses and PhD

dissertations are excluded
• Textbooks whether in print or electronic are

excluded from this systematic review.

D. Selection Process
The planned selection process had two parts: an initial

selection from the search results of papers that could
plausibly satisfy the selection criteria, based on a reading of
the title and abstract of the papers, followed by a final
selection from the initially selected list of papers that satisfy
the selection criteria, based on a reading of the entire papers.
In order to reduce the researcher’s bias, we have performed
the inter-rater reliability test.

TABLE I. QUALITY ASSESSMENT

Criteria Notes
Are the findings and results clearly stated in the
paper?

Yes =1
No =0

Is there any empirical evidence on the findings? Yes =1
No =0

Are the arguments well- presented and justified? Yes =1
No =0

Is the paper well referenced? Yes =1
No =0

For any paper to pass the selection process, a quality
assessment was done. Four quality criteria were prepared as
shown in Table I. We have finally selected 118 articles,
which meet our inclusion and quality criteria.

E. Data extraction
From the finally selected papers, we have extracted data

in order to address our research question. The following data
was extracted from each paper: publication type, authors,
publisher, publication name, publication date, organization
size, project size, success factors and best practices.

IV. INITIAL RESULTS AND DISCUSSION
The total number of articles retrieved after using the

search terms in the five electronic databases are shown in
Table II. After the initial round of screening by reading the
title and abstract, 292 studies relating to five different
electronic databases were selected. After full text readings in

the second screening, 118 primary studies were finally
selected.

We have grouped the papers found through SLR into
three broad study strategies, which are commonly used in the
empirical software engineering, as shown in Table III. Most
of the articles have used survey research method. These
study strategies were initially identified by one researcher
during the data extraction process. However, second
researcher has validated these study strategies.

TABLE II. SEARCH EXECUTION

Resource Total Results Initial Selection Final
Selection

IEEE Xplore 639 238 92
ACM 29 14 7
Science
Direct 27 10 4

Springer Link 28 13 7
John Wiley 31 17 8
Total 754 292 118

TABLE III . STUDY STRATEGIES USED

Study Type Count
Case Studies 43
Systematic Literature Reviews (includes literature reviews) 23
Survey (includes interviews, experience reports, Delphi
studies) 52

Total 118

In Table IV, we show the countries where research was

conducted for the papers included in our SLR study. Not
surprisingly, the maximum number of studies (a total of 43)
was carried out in the United States. This might be due to the
fact that most of the multinational giants in the United States
prefer GSD mode of development in collaboration with third
world countries like India and China.

On the other hand, many studies have also been carried
out in eastern countries like India, China, and Pakistan as
these countries are providing vendor services in GSD
projects. Other geographic locations include Netherlands,
Ireland, and United Kingdom, where the communication is
carried out in English language and culturally these countries
are more or less similar.

TABLE IV. STUDY COUNTRIES

Country Count Country Count
Australia 4 New Zealand 1
Brazil 5 Latvia 3
Canada 2 Malaysia 2
China 5 Netherlands 5
Singapore 1 Croatia 1
Finland 5 Pakistan 1
Germany 3 South Africa 1
Hawaii 4 Spain 2
India 10 Sweden 1
Iran 1 Saskatoon 1
Ireland 9 United Kingdom 5
Berlin 3 USA 43

287Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 307 / 646

In total, 18 factors that lead to the success of project
management in GSD projects have been identified as shown
in the table V. Initially, we have identified 29 success
factors. After a few iterations, these factors were reduced to
18 as many factors had similar meaning. These factors have
been arranged in decreasing order of their frequencies
(frequency here is a measure of the number of times each
factor has been suggested/mentioned in the selected study).

In our study, the most common project management
success factor in GSD is the ‘organizational structure’
(62%). The organizational structure includes the entire
dynamics of the GSD is risk-prone and hence require special
as processes and people. GSD organizations follow different
structures in order to successfully manage global projects as
shown in Figure 1 [14]. Figure 1 contains an organizational
structure to develop and implement a new software tool in
five countries with all program managers located in the UK.
The software is developed in three countries (project
manager is located in the UK and the project team members
are located in the UK, Singapore and Mexico). The pilot
implementation project is in the UK. The local
implementation projects in the United Arab Emirates,
Singapore, Mexico and Canada. In such complex project
structures, it is important that organizations make strategic
IT investments by improving enterprise architecture in order
to ensure that IT infrastructure is integrated and
standardized to be effectively used in GSD.

Our results show that organizational structure plays an
important role in the success of GSD project management.

Table V shows that more than half of the articles have
cited “project managers’ skills” as a project management
success factor in GSD. A highly skilled and experienced
project manager is essential for monitoring and controlling
projects [15]. GSD is risk-prone and hence requires special
set of leadership and decision making skills by the project
manager or the project management team on the whole.
Project management team’s prior experience in handling
GSD projects plays a prominent and imminent role for the
project success.

The ‘communication’ (54%) is the third frequently
mentioned success factor in our study. Since the
development sites are spread across geographical
boundaries, communication between different sites is very
important. Different studies have described the impact of
communication on GSD projects: Tsuji et al. [16] concluded
that communication capabilities have a significant impact on
the results of GSD projects; Ericksen and Ranganathan [17]
described the case of one offshore software development
outsourcing project, which completely failed due to the lack
of adequate communications. Communication is generally
of two types, i.e., synchronous and asynchronous. By
synchronous communication, we mean face-to-face
meetings and discussion with team members and client. As
GSD is different from a collocated development due to the

geographically distributed teams, communicating face-to-
face is not possible unless team members travel between
development sites. Lack of face to face meetings can impact
on other project management challenges like
misunderstanding of requirements, lack of team awareness
and lack of trust in GSD [7,18]. Hence, GSD relies on other
synchronous and asynchronous communication channels,
such as e-mail, voice mail, instant messenger,
teleconferencing, and web conferencing to promote
communication.

TABLE V. LIST OF FACTORS

Factors Freq.
(n=118) %

Organizational structure 73 62
Project managers’ skills 69 58
Communication 64 54
Requirement specification 48 41
Cultural awareness 47 40
Trust building 41 35
Collaboration 40 34
Work dynamics 38 32
Shared Knowledge 34 29
Team commitment and structure 31 26
Time-zone difference awareness 27 23
Cost assessment 23 19
Roles and responsibilities 17 14
Shared goals 14 12
Customer awareness 11 9
Training 10 8
Time to delivery 9 8
Incremental cycles 7 6

Requirements specification factor has been mentioned by

41% of the articles. We consider requirements specification
important because it is an official statement of the system
requirements for customers, end-users, software-developers,
system test engineers and system maintenance staff. Indeed,
the requirements document can act as a contract between
customers and developers. The key to requirements
specification is to present the idea of a shared
understanding. In other words, all parties should be able to
read this document as if it is their own.

In our study, 40% of the articles have mentioned ‘cultural
awareness’ as one of the project management success
factors in GSD projects. This is due to the fact that in a
global software environment the development sites are
spread across the globe, which invites cultural challenges
for the project manager to handle. Due to cultural
differences it is always difficult for both the client and
vendor organizations to communicate with each other as the
native language will, generally, not be the same [19].
Messages can be misinterpreted by different cultures, which
can cause confusion and misunderstandings between
different teams [20]. Hence, we can deduce that cultural
awareness can improve other project management success
factors, such as communication and trust, etc.

288Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 308 / 646

One of the project management success factors in GSD
projects is creating confidence and trust among different
teams [3,5]. This has been depicted in our SLR study where
35% of the articles have mentioned this as a project
management success factor in GSD projects. In general,
researchers agree that trust refers to an aspect of a
relationship between client and vendor in which parties are
willing to establish a relationship that will result in a
positive desired outcome. It is always difficult to create such
a relationship unless one is fully familiar with all members
of the globally distributed team.

Figure 1 Local program of global projects [14]

Collaboration has been mentioned in about 34% of the
articles. The main reason for this factor is the difference in
time zone between different development sites [21]. The
other reasons for this factor include geographical and socio-
cultural distance [22]. This factor can have impact on other
project management factors in GSD projects such as change
management activities, trust and conflict management.

Other challenges are less frequently mentioned as shown
in Table V. In work dynamics, there is a continuous change
and progression in the work activities, which may lead to a
better outcome. This success factor has been mentioned in
32% of the articles. About 29% of the articles have
described shared knowledge as a project management
success factor in GSD projects. This is a very important
factor as knowledge sharing is essential for any kind of
project transition [20]. Since staff turnover is generally high
in offshore locations, improper knowledge sharing can lead
to project management issues, such as poor quality of

software artifacts and documents and lack of team
awareness.

V. CONCLUSION AND FUTURE WORK
The GSD is a modern software engineering paradigm.

Many companies are adopting GSD to reduce software
development cost and improve quality. Vendor
organizations are struggling to compete internationally in
attracting software development projects. Due to the
increasing trend of GSD we are interested in discovering
project management challenges in GSD projects. In this
paper, we identified a list of success factors for project
management in GSD. Among the 18 identified factors, we
found that organizational structure, project manager’s skills
and communication and are the most common success
factors.

The second phase of this research involves conducting an
empirical study with the software industry to validate our
findings and to provide a set of best practices, which can be
used to implement these factors. The overarching objective
of this research work is to develop a global project
management framework to assist software development
organizations in measuring and improving their project
management readiness prior to starting any GSD activities.

VI. ACKNOWLEDGEMENT
The authors would like to acknowledge the support

provided by the Deanship of Scientific Research at King
Fahd University of Petroleum and Minerals, Saudi Arabia,
under Research Grant 11-INF2152-04.

 REFERENCES
[1] S. U. Khan, M. Niazi, and R. Ahmad, "Factors influencing
clients in the selection of offshore software outsourcing vendors:
an exploratory study using a systematic literature review," Journal
of Systems and Software, vol. 84, no. 4, (2011), pp. 686-699.
[2] A. A. Bush, A. Tiwana, and H. Tsuji, "An Empirical
Investigation of the Drivers of Software Outsourcing Decisions in
Japanese Organizations," Information and Software Technology
Journal, vol. 50, no. 6, (2008), pp. 499-510.
[3] M. Ali-Babar, J. Verner, and P. Nguyen, "Establishing and
maintaining trust in software outsourcing relationships: An
empirical investigation," The Journal of Systems and Software,
vol. 80, no. 9, (2007), pp. 1438–1449.
[4] L. McLaughlin, "An eye on India: Outsourcing debate
continues.," IEEE Software, vol. 20, no. 3, (2003), pp. 114-117.
[5] S. U. Khan, M. Niazi, and A. Rashid, "Barriers in the selection
of offshore software development outsourcing vendors: an
exploratory study using a systematic literature review," Journal of
Information and Software Technology, vol. 53, no. 7, (2011), pp.
693-706.
[6] D. Damian, L. Izquierdo, J. Singer, and I. Kwan, "Awareness in
the Wild: Why Communication Breakdowns Occur," International
Conference on Global Software Engineering, (2007), pp. 81-90.

289Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 309 / 646

[7] M. Niazi, N. Ikram, M. Bano, S. Imtiaz, and S. U. Khan,
"Establishing trust in offshore software outsourcing relationships:
an exploratory study using a systematic literature review," IET
Software, vol. in press for publication, no. (2013), pp.
[8] A. Stetten, v., D. Beimborn, E. Kuznetsova, and B. Moos, "The
Impact of Cultural Differences on IT Nearshoring Risks from a
German Perspective," in Proceedings of the 43rd IEEE Hawaii
International Conference on System Sciences, (2010), pp. 1-10.
[9] B. Shao, David, J.S., "The impact of offshore outsourcing on IT
workers in developed countries.," Communications of the ACM,
vol. 50, no. 2, (2007), pp. 89 - 94.
[10] L. Mary, and R. Joseph, "Effects of offshore outsourcing of
information technology work on client project management,"
Strategic Outsourcing: An International Journal, vol. 2, no. 1,
(2009), pp. 4-26.
[11] N. B. Moe, D. Smite, and G. K. Hanssen, "From Offshore
Outsourcing to Offshore Insourcing: Three Stories," IEEE Seventh
International Conference on Global Software Engineering
(ICGSE), (2012), pp. 1-10.
[12] D. Smite, C. Wohlin, T. Gorscheck, and R. Feldt, "Empirical
evidence in global software engineering: a systematic review,"
Empirical Software Engineering, vol. 15, no. 1, (2010), pp. 91-118.
[13] B. Kitchenham, and C. Charters, Guidelines for performing
Systematic Literature Reviews in Software Engineering. Keele
University and Durham University Joint Report - EBSE 2007-001,
EBSE 2007-001 (2007).
[14] J. Binder, Global project management – communication,
collaboration and management across borders. Gower.(2010).
[15] S. U. Khan, M. Niazi, and R. Ahmed, "An empirical
investigation of success factors for offshore software development
outsourcing vendors," IET Software, vol. 6, no. 1, (2012), pp. 1-15.

[16] H. Tsuji, A. Sakurai, K. Yoshida, A. Tiwana, and A. Bush,
"Questionnaire-Based Risk Assessment Scheme for Japanese
Offshore Software Outsourcing," SEAFOOD07, Springer, (2007),
pp. 114-127.
[17] J. M. Ericksen, and C. Ranganathan, "Project Management
Capabilities: Key to Application Development Offshore
Outsourcing," IEEE 39th Hawaii International Conference on
System Sciences, (2006), pp. 199b.
[18] G. Aranda, N., A. Vizcaíno, and M. Piattini, "A framework to
improve communication during the requirements elicitation
process in GSD projects," Requirements engineering, vol. 15, no.
4, (2010), pp. 397-417.
[19] H. Christiansen, Munkebo, "Meeting the challenge of
communication in offshore software development," Software
Engineering Approaches for Offshore and Outsourced
Development. Lecture Notes in Computer Science, vol. 4716, no.
(2007), pp. 19-26.
[20] I. Musio, "IBM Industry Practice: Challenges in Offshore
Software Development from a Global Delivery Center," Software
Engineering Approaches for Offshore and Outsourced
Development. Lecture Notes in Business Information Processing,
vol. 35, no. (2009), pp. 4-13.
[21] A. Begel, and N. Nagappan, "Global Software Development:
Who Does It?," IEEE International Conference on Global Software
Engineering, (2008), pp. 195,199.
[22] P. Bannerman, E. Hossain, and R. Jeffery, " Scrum Practice
Mitigation of Global Software Development Coordination
Challenges: A Distinctive Advantage?," 45th IEEE International
Conference on System Science (HICSS), (2012), pp. 5309 - 5318.

290Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 310 / 646

A DSL for Multi-Scale and Autonomic Software Deployment

Raja BOUJBEL, Jean-Paul ARCANGELI
Université de Toulouse UPS - IRIT

France
Raja.Boujbel@irit.fr, Jean-Paul.Arcangeli@irit.fr

Sébastien LERICHE
Université de Toulouse ENAC

France
Sebastien.Leriche@enac.fr

Abstract—In this paper, we present an ongoing work which
aims at defining and experimenting a Domain-Specific Language
(DSL) dedicated to multi-scale and autonomic software deploy-
ment. Autonomic software deployment in open environments
is an open issue. There, the topology of target hosts is not
always known due either to unforeseen hardware failures or
limitations (network links, hosts, etc.) or to device arrival and
disappearance. In a previous work, we proposed to describe de-
ployment constraints using a DSL and then to satisfy them using
a middleware for autonomic deployment, rather than classically
building and executing a deployment plan. As deployment of
multi-scale distributed systems demands the expression of specific
constraints related to dimensions and scales, it is necessary to
think over and define a new Domain-Specific Language. In this
paper, we propose a new DSL designed to support the expression
of constraints and properties related to multi-scale and autonomic
software deployment.

Index Terms—Deployment, Multi-Scale, DSL, Component-
Based Software System

I. INTRODUCTION

Pervasive computing, on the one hand, and cloud comput-
ing, on the other hand, are central topics in several recent
research studies. Contributions in both domains have reached
a good level of maturity. Nowadays, new research works have
identified the need to make pervasive and cloud computing
systems collaborate, so to build systems which are distributed
over several scales, called “multi-scale” systems.

The INCOME project [1] aims at designing software solu-
tions for multi-scale context management, not only in ambient
networks but also in the Internet of Things and clouds, able to
operate at different scales and to deal with the passage from a
scale to another one. Context management is a complex service
in charge of the gathering, the management (processing and
filtering), and the presentation of context data to applications,
which realization is distributed on the different devices which
compose the system. So, context managers are open multi-
scale applications which must be deployed, i.e., made and kept
available for use, in a situation of mobility and variability of
the quality of the resources. In this project, our work focuses
on software deployment and our goal is to develop a frame-
work for supporting the deployment of multi-scale applications
such as context managers. Deployment strategies should take
into account the multi-scale aspects like geography, network,
device, and user, as well as non functional properties such as
efficiency and privacy. In multi-scale systems, decentralization,
autonomy and adaptiveness are essential features.

In this paper, we present an ongoing work which aims
at defining and experimenting a Domain-Specific Language

(DSL) dedicated to multi-scale and autonomic software de-
ployment.

The paper is structured as follows. Section II introduces
the two main aspects of our working context: multi-scale dis-
tributed systems and software deployment. Section III provides
an example of deployment of a multi-scale software system,
analyses the requirements, and proposes to use a DSL to
support autonomic deployment. Section IV discusses related
work on DSL for software deployment. Our DSL is presented
in Section V using the example presented in Section III.
Section VI concludes and discusses some perspectives.

II. CONTEXT OVERVIEW

This section introduces the novel concept of multi-scale
system and provides an overview of software deployment.

A. Multi-scale distributed systems

The term “multi-scale system” is present in several recent
research papers [2], [3], [4]: in these works, authors consider to
make collaborate very small systems (objects from the Internet
of Things paradigm as, for example, swarms of tiny sensors
with very low computing capabilities) with very big systems
(such as those found in cloud computing). They agree that
new issues arise, mainly those related to huge heterogeneity.

In [5], authors argue that the multi-scale nature of a dis-
tributed system should be analyzed independently in several
specific dimensions such as geography, network, device, data,
user, etc. Thus, a distributed system can be described as multi-
scale when, for at least one dimension, the elements of its
projection onto this dimension are associated with different
scales. Fig. 1, extracted from [6], shows an example of scales
in the “Device processing power” dimension.

Fig. 1: Scales in the “Device processing power” dimension

However, the concept of “multi-scale system” is not actually
mature. The construction of future multi-scale distributed
systems will necessitate a new kind of languages, middleware
and patterns, allowing to take in consideration the multi-scale
aspects of the systems.

291Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 311 / 646

B. Software deployment

Software deployment is a post-production process which
consists in making software available for use and then keeping
it operational. It is a complex process that includes a number of
inter-related activities such as installation of the software into
its environment (transfer and configuration), activation, update,
reconfiguration, deactivation and deinstallation [7]. Fig. 2
represents the sequence of the activities. Software release and
software retire are carried out on the “producer site”, while
the other activities are carried out on the “deployment site”,
some of them at runtime.

Fig. 2: Software deployment life cycle

Deployment design is handled by an engineer called “de-
ployment designer”. He has to gather information not only
about the software system to deploy and the properties of each
of its components but also about the distributed organization
of the software at runtime. Designing deployment may consist
in expressing properties (commands, requirements, etc.) and
constraints. For instance, the deployment designer may express
that a particular software component should be installed on
some specific devices or on any device, even on incoming
ones in case of dynamic systems, while satisfying a set
of constraints. As a concrete example, consider a software
component C which should be deployed on each smartphone
which runs Android, has the GPS function active, and is
connected by WiFi.

A deployment plan is a mapping between a software system
and the deployment domain, increased by data for configura-
tion. The deployment domain is a distributed set of machines
which host the software system and provides resources to it.
The ultimate purpose of deployment design is to produce a
deployment plan which complies with the expressed properties
and constraints. Usually, this task is undertaken by a human
actor.

At runtime, software must be deployed on the domain
according to the deployment plan, this task being possibly

undertaken or controlled by an operator called “deployment
operator”. Automatization of deployment aims at avoiding (or
limiting) human handling in the management of deployment.

Fig. 3 shows the timeline of deployment.

Fig. 3: Software deployment timeline

III. DEPLOYMENT OF MULTI-SCALE SOFTWARE SYSTEMS

In this work, we focus on the design phase of the deploy-
ment process, and precisely on the ways for a deployment
designer to express deployment properties and constraints.

Here is an example, in order to illustrate our aim. Let’s
consider a software system made of different components,
each of them having specific individual runtime requirements
(memory, OS, etc.). The deployment designer may want to
express not only these requirements, but also some other ones
related to the distribution of the components. For instance, the
deployment designer may want that (C1. . . C5 are software
components):

• a resource-consuming component C1 runs on a cloud,
• C2 runs on several machines in a given geographical area,

e.g., a city,
• C3 runs on the same device than C1,
• C4 runs on any smartphone of the domain,
• C5 runs on the same network than C4,
• C4 runs on any new smartphone entering in the domain

at runtime.
Moreover, some components may have constraints to run

properly, such as:
• C1 requires that the component C0 is installed and

activated locally,
• C2 must run on a Linux OS and an Arduino (single-board

microcontroller) must be connected to the hosting device,
• C3 requires 40M of free RAM at activation time (Con-

str1),
• C5 requires a 100G hard drive (Constr2).
Fig. 4 illustrates such an example.
This section analyses the problem of software deployment

of multi-scale systems from the design point of view, and
then motivates the use of a Domain-Specific Language which
supports the expression of multi-scale deployment properties
and constraints.

A. Analysis

Software deployment in large-scale and open distributed
systems (such as ubiquitous, mobile or peer-to-peer systems)
is still an open issue [8]. There, existing tools for software
deployment are reaching their limits: they use techniques

292Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 312 / 646

Fig. 4: Example of multi-scale deployment

that do not suit the complexity of the issues encountered in
such infrastructures. Indeed, they are only valid within fixed
network topology and do not take into account neither host
and network variations of quality of service nor failures of
machines or links which are typical of these environments.

In addition, users of the deployment tools are required
to manage manually the deployment activities, which needs
a significant human involvement, possibly out of reach of
concerned end-users (for example, in case of personal devices
like smartphones): for large distributed component-based ap-
plications with many constraints and requirements, it is too
hard and complicated to accomplish the deployment process
manually. Consequently, there is a need for new infrastructures
and techniques that automate the deployment process and
allow a dynamic reconfiguration of software systems with few
or without human intervention.

Additionally, in our opinion, decentralization, openness and
dynamics (mobility, variations of resources availability and
quality, disconnections, failures) are in favour of autonomy:
the autonomic computing approach [9], where the system self-
manages some properties (self-configuration, self-healing),
may support solutions which satisfy the requirements of dis-
tributed multi-scale software systems deployment. This idea
lead us to “autonomic software deployment” [8].

B. Our approach

Instead of directly expressing a statically defined deploy-
ment plan, we propose to express deployment constraints and
properties from which the deployment plan can be computed.
In this paper, we focus on the expression of the constraints
and properties, not on the construction of the plan. For this
last point, our idea is use a constraint solver, supplying it with
an up-to-date description of a domain (available hosts and their
properties).

So, in order to build the plan, and moreover to allow
management of deployment at runtime, data about the domain
must be collected. Thus, a system of probes should run and
collect data ranging from the domain properties such as free
RAM to more abstract ones related to multi-scale (dimensions
and scales). Relations between probes and properties can be
made explicit at the same level as the deployment properties
and constraints in order to allow the specification of the system
of probes at the deployment design time.

C. Towards a DSL for autonomic software deployment of
multi-scale systems

In this ongoing work, our aim is to provide a solution for the
expression of the deployment design, concerning in particular
the dimensions and other significant properties of multi-scale
software systems.

Deployment is a specific operation on software. Its design
requires particular skills. Thus, we think that the deployment
designer could benefit from a dedicated language when stating
the properties and constraints. So, we propose a DSL dedicated
to the description of deployment constraints and properties.
DSLs present several advantages: they use idioms and ab-
stractions of the targeted domain, so they can be used by
domain experts; they are light, so easy to maintain, portable,
and reusable; they are most often well documented, coherent
and reliable, and optimized for the targeted domain [10], [11],
[12].

IV. RELATED WORK ON DSL FOR SOFTWARE
DEPLOYMENT

Existing deployment platforms propose several formalisms
to express deployment constraints, software dependencies,
and hardware preferences of software to deploy. Usually, the
formalisms include architecture description languages (ADL),
deployment descriptors (like XML descriptor deployment),
and dedicated languages (DSL). In this section, we overview
some works on software deployment that propose the use of
a DSL.

Dearle et al. [13], [14] present a framework for autonomic
management of deployment and configuration of distributed
applications. To facilitate the work of the deployment designer,
they define a DSL, Deladas. Using it, a set of available
resources and a set constraints are specified. These defi-
nitions permit to generate an applicable deployment plan.
The constraint-based approach avoids the deployment designer
specifying precisely the location of each component, and then
rewriting all the plan in case of problems with a resource.
Deladas does not allow to express multi-scale properties and
constraints. Openness is neither taken into account, the set
of hosts is statically defined in a file by the deployment
manager. Deployment is still autonomic: at runtime, when
the deployment middleware detects a constraint violation
(dependencies between components), it tries to solve it by a
local adaptation. The new deployment plan is computed by a
centralized management component called MADME.

293Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 313 / 646

Matougui et al. [8] present a middleware framework de-
signed to reduce the human cost for setting up software
deployment and to deal with failure-prone and change-prone
environments. This is achieved by the use of a high-level
constraint-based language and an autonomic agent-based sys-
tem for establishing and maintaining software deployment. In
the DSL (called j-ASD), some expressions dedicated to deal
with autonomic issues are proposed. But they target large-scale
or dynamic environments such as grids or P2P systems, only
within the same network scale.

Sledviewsky et al. [15] present an approach that incorporate
DSL for software development and deployment on the cloud.
Firstly, the developer defines a DSL in order to describe a
model of the application with it. Secondly, this model is
translated into specific code and automatically deployed onto
the Cloud. This approach is specific to deployment on the
cloud. It highlights the need to facilitate the work of the
deployment designer, and that using DSL is a solution for
that.

V. PROPOSITION OF A DSL

In this section, we describe by means of an example our
proposition of a DSL dedicated to the autonomic deployment
of multi-scale distributed systems. Tokens and keywords are
presented further and the grammar is defined in EBNF syntax.
The grammar is available at http://www.irit.fr/∼Raja.Boujbel/
ebnf-jasd.html.

A. Example

We give below (Listing 1) a full example of code for
the deployment of the multi-scale distributed software system
presented in Section III. Then, we use this code to present and
explain the main elements of the language.

1 Include "base.jasd"
2 //base.jasd defines some probes
3 //like OS, RAM, CPU, Network, and HD

5 Component C0 {
6 Version 1
7 URL "http://test.fr/plopC0.jar"
8 }

10 Component C1 {
11 Version 1
12 URL "http://test.fr/plopC1.jar"
13 Require C0
14 DeploymentInterface fr.enac.plop.DIimpl
15 }

17 Probe Arduino {
18 ProbeInterface fr.irit.arduino.DIimpl
19 URL "http://irit.fr/INCOME/arduinoProbe.jar"
20 }

22 Constraint AliveArduino {
23 Arduino Exist, Alive
24 }

26 Constraint LinuxCstr {
27 OS.Name = "Linux" //OS probe
28 }

31 Constraint Constr1 {
32 RAM.FreeSpace >= 40 //RAM probe
33 }

35 Constraint Constr2 {
36 CPU.Load < 80 //CPU probe
37 Network.BandWith > 1024 //Network probe
38 }

40 Constraint Constr3 {
41 HD.size > 100 //HD probe
42 }

44 Component C2 {
45 Version 1
46 URL "http://test.fr/plopC2.jar"
47 DeploymentInterface fr.enac.plop.DIimpl
48 Constraint Constr1, LinuxCstr, AliveArduino
49 Soft Constraint Constr2
50 }

52 Component C3 {
53 Version 1
54 URL "http://test.fr/plopC3.jar"
55 DeploymentInterface fr.enac.plop.DIimpl
56 Soft Constraint Constr1
57 }

59 Component C4 {
60 Version 1
61 URL "http://test.fr/plopC4.jar"
62 DeploymentInterface fr.enac.plop.DIimpl
63 Soft Constraint Constr1, Constr2
64 }

66 Component C5 {
67 Version 2
68 URL "http://irit.fr/plopC5.jar"
69 Constraint Constr3
70 }

72 MultiScaleProbe Geography {
73 MultiScaleProbeInterface
74 eu.telecom-sudparis.GeographyProbeImpl
75 URL "http://it-sudparis.eu/INCOME/GeoProbe.jar"
76 }

78 //other MultiScale probes are described
79 //the same way
80 //{...}

82 Deployment {
83 AllHosts LinuxCstr

85 C1 @ Constr2, Device.Cloud
86 C2 @ 2..4 Geography.City("Toulouse")
87 C3 @ SameValue Device(C1)
88 C4 @ All Device.SmartPhone
89 C5 @ SameValue Network.MAN(C4)
90 }

Listing 1: Example of code for the deployment of the multi-scale distributed
software system

B. Elements of the language

1) Component: The keyword Component defines a com-
ponent. The Version field is useful for the update activity.
The URL field specifies the address where the component
is reachable for download. The DeploymentInterface
field specifies the interface of the component, necessary for
the interactions with the deployment system: the latter must

294Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 314 / 646

interact with the component, for configuring and starting
it, for managing it at runtime, and for stopping it. The
Require field lists required components: at installation time
of the component, if the required component is not installed,
the deployment system must install it on the device. The
Constraint field lists hardware and software constraints
of the component. By default, these constraints are hard, i.e.,
they must be satisfied both when generating the deployment
plan and at runtime (so, the deployment system must check
that there is no constraint violation). For the keyword Soft,
see 6).

2) Probe: The keyword Probe defines a probe. A probe
has two mandatory fields. The first one, the Probe-
Interface, specifies the interface of the probe. This in-
terface is needed for interactions with the deployment system
for information retrieval. The second one, the URL, specifies
the address where the probe is reachable for download.

3) Constraint: The keyword Constraint defines a con-
straint on a component. It has one kind of field, a probe value
test. There can be several tests in a Constraint, like in
Constr2 (line 35). A probe value test is composed by two
or three parts. If the constraint is related to the existence or
the liveliness of a hardware or a software component, the
probe value test is composed by the probe name and keywords
Exists or Alive. These keywords are defined for any probe
interface. For example, at line 23, the used probe is Arduino,
and the constraint uses default methods Exists and Alive.
If the constraint is about a value, the probe value is composed
by the probe name, a method call, a comparator, and a value.
There, the method is probe specific, and defined in the probe
interface For example, at line 27, the used probe is OS, the
information method used is Name, and its value is compared
to the string "Linux".

4) Multi-scale Probe: The keyword MultiScaleProbe
defines a multi-scale probe, useful for the deployment. Like
Probe, it has only two fields. The first one, MultiScale-
ProbeInterface, specifies the interface of the probe. The
second one, URL specifies the address where the implemen-
tation of the probe is reachable for download. In our current
solution, scales are defined in the implementation of probes,
and the probes allows to identify the scale of a given device.

5) Deployment: The keyword Deployment defines
the deployment properties and constraints. The keyword
AllHosts allows to specify and delimit the deployment
domain: line 83 expresses that the deployment covers all hosts
which satisfy the constraint LinuxCstr. The operator @
allows to specify deployment constraints specific to a com-
ponent. These constraints can take several forms: the device
hosting the component C1 must satisfy Constr2 and be on
the scale Cloud on the dimension Device (line 85); the
component C2 must be deployed on 2 to 4 devices, in the city
Toulouse (line 86); the component C4 must be deployed
on all devices of the dimension Device.Smartphone, i.e.,
on all smartphones of the domain (line 88). The keyword
SameValue expresses that the component must be in the
same dimension or scale as a referred one: the component C3

(line 87) must be deployed on one device (implicit) which
has the same value in the dimension Device as the device
hosting C1 (in other words, C3 should be deployed on the
same device as C1); the component C5 must be deployed on
a device which is situated in the same medium area network
(MAN) as the device hosting C4 (line 89).

6) Dynamics and openness: Some constructions of the DSL
are particularly well-adapted for the expression of properties
related to dynamics and openness. By default, the constraints
should be satisfied during the entire application runtime, and
so must be checked dynamically. The keyword Soft is used
to specify that a constraint should be satisfied initially by
the generated deployment plan, but maybe not satisfied at
runtime. When specifying the Deployment, the keyword
All allows to specify that a component should be deployed
on a subdomain which satisfies (even dynamically) a property
or a constraint. In the example, the component C4 should be
deployed on every smartphone of the domain, including those
which enter in the domain at runtime; so, the deployment
plan evolves dynamically depending on entering and leaving
devices.

The file must have at least one definition of a component and
one expression of the deployment. Other fields are optional. As
the code can be split in several files, the keyword Include
permits to include other files (line 1).

VI. CONCLUSION AND FUTURE WORK

In this paper, we present the first version of a DSL for
multi-scale and autonomic deployment, and explain the various
elements of the language by means of an example. This DSL
allows to express the deployment constraints of a multi-scale
software system and its components. These constraints drive
the computation of the deployment plan, and are used by the
autonomic deployment system do detect (and possibly repair)
any constraint violation at the application runtime.

Another part of our work concerns the realization of this
autonomic deployment system. We are designing it as a
middleware, on the same basis than first experiments described
in our previous work [8]. This middleware will enable deploy-
ment in multi-scale environments. It will provide the probes
needed to gather informations about the hosts.

We believe that a DSL is the best way for a deployment
designer to describe deployment constraints. A DSL has much
more expressiveness than any Markup Language (such as
XML), and is more efficient since the deployment designer
expresses (and read) directly concepts of its field of expertise.
Moreover, modern tools for making DSL allows their design-
ers to integrate several level of validation (not only syntactic
but also semantic).

Presently, the DSL targets the installation and activation
activities. Other activities and features, as constraint infringe-
ment at application runtime, are hard coded in the deployment
manager system. In the future, we can move some of them
at the DSL level, to increase expressiveness and flexibility
when designing deployment. For example, we can add in the
grammar the keyword on-deinstall or on-update to

295Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 315 / 646

define actions to perform when deinstalling or updating a
component.

Focusing on multi-scale systems, we do need a sound and
extensible vocabulary to describe the dimensions and their
scales. In the INCOME project, another ongoing work aims at
defining an ontology for multi-scale distributed systems. We
plan to integrate these concepts in our DSL.

Besides, we are currently working on a toolchain for our
DSL. Using Xtext and Xtend frameworks [16], we have real-
ized an Eclipse plugin for the edition of the DSL that makes
it multi-platform compliant and easy-to-use for a deployment
designer. The DSL and the Eclipse plugin are part of the
deliverables of the INCOME project.

ACKNOWLEDGMENTS

This work is part of the French National Research Agency
(ANR) project INCOME [17] (ANR-11-INFR-009, 2012-
2015). The authors thank all the members of the project that
contributed directly or indirectly to this paper.

REFERENCES

[1] J.-P. Arcangeli, A. Bouzeghoub, V. Camps, C. M.-F. Canut, S. Chabri-
don, D. Conan, T. Desprats, R. Laborde, E. Lavinal, S. Leriche,
H. Maurel, A. Péninou, C. Taconet, and P. Zaraté, “INCOME - Multi-
scale context management for the internet of things,” in AmI, ser.
Lecture Notes in Computer Science, F. Paternò, B. E. R. d. Ruyter,
P. Markopoulos, C. Santoro, E. v. Loenen, and K. Luyten, Eds., vol.
7683. Springer, 2012, pp. 338–347, doi:10.1007/978-3-642-34898-3.

[2] G. Blair and P. Grace, “Emergent middleware: Tackling the interoper-
ability problem,” Internet Computing, IEEE, vol. 16, no. 1, pp. 78–82,
Jan.-Feb. 2012, doi:10.1109/MIC.2012.7.

[3] M. Kessis, C. Roncancio, and A. Lefebvre, “DASIMA: A flexible man-
agement middleware in multi-scale contexts,” in Information Technol-
ogy: New Generations, 2009. ITNG ’09. Sixth International Conference
on, April 2009, pp. 1390–1396, doi:10.1109/ITNG.2009.338.

[4] M. van Steen, G. Pierre, and S. Voulgaris, “Challenges in very large
distributed systems,” Journal of Internet Services and Applications,
vol. 3, no. 1, pp. 59–66, 2012, doi:10.1007/s13174-011-0043-x.

[5] S. Rottenberg, S. Leriche, C. Lecocq, and C. Taconet, “Vers une
définition d’un système réparti multi-échelle,” in Journées francophones
Mobilité et Ubiquité (UBIMOB). Cépaduès Editions, 2012, In French.

[6] S. Rotteneberg, S. Leriche, C. Taconet, C. Lecocq, and T. Desprats,
“From Smartdust to Cloud: The emergence of multiscale distributed
systems,” 2013, Unpublished.

[7] A. Carzaniga, A. Fuggetta, R. S. Hall, D. Heimbigner, A. Van Der Hoek,
and A. L. Wolf, “A characterization framework for software deployment
technologies,” DTIC Document, Tech. Rep., 1998.

[8] M. E. A. Matougui and S. Leriche, “A middleware architecture
for autonomic software deployment,” in ICSNC ’12 : The Seventh
International Conference on Systems and Networks Communications.
Lisbon, Portugal: XPS, 2012, pp. 13–20, 12619 12619 . [Online].
Available: http://hal.archives-ouvertes.fr/hal-00755352

[9] J. O. Kephart and D. M. Chess, “The vision of autonomic
computing,” Computer, vol. 36, no. 1, pp. 41–50, 2003,
doi:10.1109/MC.2003.1160055.

[10] A. Van Deursen, P. Klint, and J. Visser, “Domain-specific languages:
An annotated bibliography,” ACM Sigplan Notices, vol. 35, no. 6, pp.
26–36, 2000.

[11] M. Strembeck and U. Zdun, “An approach for the systematic develop-
ment of domain-specific languages,” Software: Practice and Experience,
vol. 39, no. 15, pp. 1253–1292, 2009, doi:10.1002/spe.936.

[12] J.-P. Tolvanen and S. Kelly, “Integrating models with domain-specific
modeling languages,” in Proceedings of the 10th Workshop on Domain-
Specific Modeling, ser. DSM ’10. New York, NY, USA: ACM, 2010,
pp. 10–1, doi:10.1145/2060329.2060354.

[13] A. Dearle, G. N. C. Kirby, and A. J. McCarthy, “A framework for
constraint-based deployment and autonomic management of distributed
applications,” in ICAC, ser. 1st International Conference on Autonomic
Computing (ICAC 2004), New York, NY, USA. IEEE Computer
Society, May 2004, pp. 300–301, doi:10.1109/ICAC.2004.3.

[14] A. Dearle, G. N. C. Kirby, and A. McCarthy, “A middleware frame-
work for constraint-based deployment and autonomic management of
distributed applications,” CoRR, vol. abs/1006.4733, 2010.

[15] K. Sledziewski, B. Bordbar, and R. Anane, “A DSL-based approach to
software development and deployment on cloud,” in AINA, ser. 24th
IEEE International Conference on Advanced Information Networking
and Applications, AINA 2010, Perth, Australia, 20-13. IEEE Computer
Society, April 2010, pp. 414–421, doi:10.1109/AINA.2010.81.

[16] M. Eysholdt and H. Behrens, “Xtext: implement your language faster
than the quick and dirty way,” in SPLASH/OOPSLA Companion,
ser. Companion to the 25th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
SPLASH/OOPSLA 2010, Reno/Tahoe, Nevada, USA, W. R. Cook,
S. Clarke, and M. C. Rinard, Eds. ACM, October 2010, pp. 307–309,
doi:10.1145/1869542.1869625.

[17] “INCOME,” http://anr-income.fr, February 2012, last access 2013.

296Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 316 / 646

Characterization of Techniques and Tools of Visualization Applied to Software

Comprehension

A Systematic Mapping

Marllos Paiva Prado

Instituto de Informática

Universidade Federal de Goiás, UFG

Goiânia-GO, Brazil

e-mail: marllosprado@inf.ufg.br

Fabrízzio Alphonsus A. de M. N. Soares

Instituto de Informática

Universidade Federal de Goiás, UFG

Goiânia-GO, Brazil

e-mail: fabrizzio@inf.ufg.br

Guilherme Pereira de Paula

Instituto de Informática

Universidade Federal de Goiás, UFG

Goiânia-GO, Brazil

e-mail: guilhermepaula@inf.ufg.br

João Carlos Silva

Instituto de Informática

Universidade Federal de Goiás, UFG

Goiânia-GO, Brazil

e-mail: jcs@inf.ufg.br

Lucas Carvalho Lima

Instituto de Informática

Universidade Federal de Goiás, UFG

Goiânia-GO, Brazil

e-mail: lucaslima@inf.ufg.br

Auri Marcelo Rizzo Vincenzi

Instituto de Informática

Universidade Federal de Goiás, UFG

Goiânia-GO, Brazil

e-mail: auri@inf.ufg.br

Felipe César

Instituto de Informática

Universidade Federal de Goiás, UFG

Goiânia-GO, Brazil

e-mail: kamuie4ever@hotmail.com

Hugo Alexandre Dantas do Nascimento

Instituto de Informática

Universidade Federal de Goiás, UFG

Goiânia-GO, Brazil

e-mail: hadn@inf.ufg.br

Juliano Lopes de Oliveira

Instituto de Informática

Universidade Federal de Goiás, UFG

Goiânia-GO, Brazil

e-mail: juliano@inf.ufg.br

Thiago Fernandes

Instituto de Informática

Universidade Federal de Goiás, UFG

Goiânia-GO, Brazil

e-mail:hidekownz4@hotmail.com

Abstract—This study aimed to make a characterization about

how information visualization has been applied on software

comprehension with relation to techniques and tools proposed

by literature. Systematic Mapping was adopted as the method

to guide the investigation process. The findings, although not

being definitive, points direction over important questions such

as what kind of artifacts and life-cycle phase have been more

considered. It was also investigated how these studies have

been evaluated, how they evolved in the main digital libraries

over the last decade, and what points deserves further

attention, through new research.

Keywords – Systematic; Mapping; Visualization; Sofware

Comprehension

I. INTRODUCTION

Information Visualization applied to Computer Science is
committed to the visual representation of abstract data
handled by computer and to interaction as a way of
magnifying the cognition [1]. Data to be modeled does not
necessarily need to have an intrinsic geometry shape
previously associated [2]. This research field aims to develop
and apply visual models to explore the human cognitive
abilities of recognizing and deriving information from
graphics of important data and their relationships [3].

One of the best ways to minimize the complexity of
creating/maintaining a system is to simplify its
understanding. At this point, an adequate visualization of the
artifacts and information generated in the development

297Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 317 / 646

process can be a favorable factor. The reason is that human
vision has advantageous attributes such as the power to
capture a high amount of information in parallel, considering
a short period of time, and also the capacity to focus
attention in a object’s fragment of interest while not losing
the attention of what happens at its surrounding [4].
Therefore, the characterization of manner and goals in which
these proposals have been applied is a way of better knowing
the existing solutions and what research opportunities are
opened in this field.

Experimental Software Engineering provides guidance in
a well standard and organized conduction of software
engineering experiments. As mentioned by Wohlin et al. [5],
experimental studies let one object of interest to be evaluated
by different people and environments. The more an
experiment is repeated, considering different contexts, the
more information is obtained about the object of study, so
that the results are more significant.

Two kinds of experimental studies have been
disseminated in the research community: systematic review
[6] and systematic mapping [7]. Both are secondary
experimental studies and differ subtly. While the systematic
mapping focuses at mapping the related research to some
question of interest through a detailed categorization of
primary related study, the systematic review is more
restrictive, as a way to identify, evaluate and compare
qualitatively all the relevant research to a research question.

The next five sections of this paper present the definition,
execution and results obtained from a systematic mapping to
characterize the visualization applied to the software
comprehension. The adopted process on this work followed
the definitions of Petersen, Feldt, Mujtaba and Mattsson [7]
and Kitchenham [8] once these works target the definition of
parameters for experimental studies applied to software
engineering themes. Paper organization follows the sequence
order adopted at StArt tool [9]. Section II describes the
method and the parameters adopted in the planning and
definition of a study. Description of the intermediate steps
and results gotten from the investigation conduction as stated
in the pre-established plan is defined and related at Section
III. Section IV presents results reached after extraction step
in the systematic review and gather relevant information
observed from the analysis. Section V raises question about
threats of validity concerning this study. Section VI
concludes this paper and discusses future research.

II. PLANNING

Systematic Mapping planning is composed by goals
definition, protocol, research strategy and
inclusion/exclusion criteria to be adopted. Protocol consists
of research question definition, population, intervention,
control, results and application. These parameters were
specified as follows.

A. Research Goals

This research consists of characterizing how visualization
has been used at software comprehension, through the
identification of papers which discuss tools and techniques
applied to software comprehension.

B. Main Questions

Based on the defined goal, the following research
questions were formalized:

• R.Q.1. How publications about visualization tools
and techniques, applied to software comprehension,
have been evolved in the main digital libraries?

• R.Q.2. How visualization tools and techniques,
applied to software comprehension, have been
evaluated?

• R.Q.3 What is the profile of visualization tools and
techniques, applied to software comprehension,
considering the artifacts represented, life-cycle phase
and training?

C. Population

The population considered was composed by researchers
and developers, who use/propose information visualization at
software comprehension and publish them at indexed
electronic databases.

D. Intervention

The observed characteristic was the application of tools
and visualization techniques to the software comprehension.
Characteristic Observation was made from software
engineering researchers’ point of view.

E. Control

A total of four relevant papers [10] [11] [12] [13] were
previously set by experts to be used as the control for the
search string. The search result shall be considered adequate
in case of returning all these papers in the considered
databases.

F. Results

The expected result in the end of the systematic mapping
is the characterization of relevant information about
visualization tools/technique application at software
comprehension.

G. Application

Systematic mapping results should collaborate to a better
understanding of how visualization has been applied until the
moment at software comprehension, so it lets the
identification of weakness and opportunities in this research
field.

H. Research Strategy and Search String

Most bibliographic studies, including systematic
mapping and reviews, are made through an automatic search
over digital libraries and using a pre-defined search string.
This string is a set of combined key-words which reflects the
search to be made, organized in a way to guarantee that the
returned results of the search be closer as possible from the
scope. According to the formulated research questions, the
following search string was used:

• Q0: ("technique*"OR "tool*") AND
("visuali*ation") AND ("comprehension"OR
"understanding") AND ("software"OR "program")

298Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 318 / 646

Following the recommendations from Kitchenham [8],
besides key-words, specific synonymies and spelling
variations to our research question were considered. This
approach was employed to increase the number of returned
papers and to avoid that important papers to our research
question were neglected because of synonymy word, e.g.,
“understanding” instead of “comprehension”.

I. Tools and Instrumentation

The digital libraries adopted to do the search in this
systematic mapping were: “IEEE Xplore”, “ACM” and
“Science Direct”. Additionally, it was applied a manual
search to complement it, that is, a search made at Google
website, using some terms of the search string and applying a
case by case analysis to decide if the paper would be
pertinent or not.

During the execution step, all returned papers after
applying the search string in the digital libraries should be
first considered as relevant and added to the StArt tool [9],
for classification aftermost. The same has occurred in the
manual search. This approach was followed because StArt
tool divides the execution process in three phases:

1. Study Identification: Phase to when the automatic
and manual returned papers are added to the tool.
Information such as name, title, author, abstract,
publishing source and year of the paper are
organized to make reviser work easier, so the study
conduction can become a less costly work.

2. Selection: Phase when an initial search is made. At
this step, revisers are responsible for the abstract
reading and to approve or reject the paper to the next
step. This step is of great relevance, since it is the
first phase which eliminates from the whole paper
set, those that clearly are not part of the research
scope.

3. Extraction: Phase when the selected papers from
previous step are read and decision to accept or not
the article to the final step is definitive. Besides that,
the tool lets pre-defined classification studies on the
plan to be verified. These data are after used in the
automatic generation of statistics which will serve as
the bases to the final conclusions of the study.

J. Inclusion and Exclusion Criteria

The following restrictions were adopted to eliminate
papers considered not relevant to the study, on selection step:

• R.1. Studies which are not written in English
Language.

• R.2. Studies which were not published in conference
proceedings or journals.

• R.3. Studies prior to the year 2003.
Besides restrictions described, the following inclusion

criteria (I.C.) and exclusion criterion (E.C) were adopted on
the selection and extraction phase, related to the papers
content:

• I.C.1. Addresses the application of visualization
tools in the software comprehension.

• I.C.2. Addresses the application of visualization
techniques in the software comprehension.

• I.C.3. Experimental studies about visualization
techniques or tools in the software comprehension.

• E.C.1. Does not address the application of
visualization tools or techniques in the software
comprehension.

To answer the research question it is needed to analyze
data collected by study conduction. These data, in turn, are
obtained observing the classification criteria. Therefore,
these classification criteria should represent objective and
coherent properties to the parameters intervention defined in
the plan. To each criteria established, the value “not
adequate” was created to classify papers which do not meet
any of the pre-defined values to the referred criteria, or
cannot be considered a primary study. The latter intended to
avoid that properties of a specific classification criterion
could count for a work whose technique has a secondary
focus, for example. In this study, the following classification
criteria (C.C.) were adopted:

• C.C.1 – Source: Responsible to register the study
source: (i) IEEE; (ii) ACM; (iii) Science Direct.

• C.C.2 – Focus: Responsible to register the study
focus. Options: (i) Tools; (ii) Technique; (iii) Study
– In the case that paper reports an experimental
study about tools and/or technique application in
software comprehension.

• C.C.3 – Evaluation Context: Responsible to register
tests and results presented on the study. Options: (i)
Tested in production context; (ii) Tested in academic
environment; (iii) Does not show any evaluation
result; (iv) Not Adequate.

• C.C.4 – Analysis Criterion: Responsible to register
the way tool/technique generates the visualization.
Options: (i) Static Analysis; (ii) Dynamic Analysis;
(iii) Both; (iv) Not Adequate.

• C.C.5 – Object of Analysis: Responsible to register
the object(s) represented in the visualization.
Options: (i) Source Code; (ii) Execution Tracing;
(iii) Documentation; (iv) Memory; (v) UML
Diagram; (vi) Graphical Interface; (vii)
Communication Register; (viii) Threads; (ix) Other
artifacts; (x) Not Adequate.

• C.C.6 – Representation Type: Responsible to
register the type of representation used in the
visualization. Options: (i) 2-D; (ii) 3-D; (iii) Both;
(iv) Not Adequate.

• C.C.7 – Life Cycle Scope: Responsible to register
the knowledge focus of application of the
visualization tool/technique. Options (i)
Requirements; (ii) Construction; (iii) Test; (iv)
Quality; (v) Maintenance; (vi) Design; (vii)
Multiples; (viii) Not Adequate..

• C.C.8 – Learning Aided: Responsible to register if
the tool/technique used the visualization to help the
learning/training of beginners. Options: (i) Yes; (ii)
No; (iii) Not Adequate.

• C.C.9 – Specific Platform or Language: (i) Name of
the specific platform or language of the tool. (ii) Not
Adequate

299Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 319 / 646

• C.C.10 – Tool Name: Responsible to register the
tool name.

III. MAPPING CONDUCTION

The following subsections present the results of
extraction and selection phases of systematic mapping based
on the defined plan. This study was realized between
November 2012 and February 2013.

During the Study Identification phase, the searches were
applied and returned papers were added to the StArt [9] tool
for analysis. Summing the total of returned papers by the
automatic and manual search, it was obtained a total of 449
papers. From this total, 116 were considered duplicated and
removed automatically by the tool. So, it was left a set of 333
papers to be evaluated.

A. Selection

At selection phase, 333 papers were submitted to analysis
process. This process was defined in the following way:
Initially, each paper’s abstract, title and key-words were read
by two revisers, in a way that determination made (inclusion
and exclusion criteria) would be enough safe decided. Then,
each reviser gives its advising. If both voted for the paper
rejection, the paper was automatically rejected. If both voted
for its preliminary acceptance, the paper was accepted until
the next phase, when decisions made would be final. In case
of divergent opinions, i.e., one reviser voted for its exclusion
and the other for its inclusion, the paper was set as accepted,
to be read on the next phase. Additionally, there were cases
when two or more papers of the same author and describing
the same technique were found. In this case, only the most
recent paper was considered.

Applying the analysis process, the 333 papers were pre-
classified. From this total, 228 (68%) of the papers were
rejected (eliminated) and 105 (32%) of the papers were
accepted and passed to the next step.

B. Extraction

During the extraction phase, each of the 105 papers
identified on the previous phase were read and classified
permanently according to the inclusion and exclusion
criteria. As it can be observed in Table I, from the 105
studies, 3 were considered duplicated, 27 were rejected and
75 were accepted.

TABLE I. PAPER STATUS X MAPPING PHASE

Phase
Status

Duplicated Rejected Accepted

Identification

and Selection

116 228 105

Extraction 3 27 75

Total 119 225 75

Percentage 26% 57% 17%

All the accepted papers were also evaluated to the

classification criteria so it could be possible to make the
study analysis, presented in the next section.

IV. DATA ANALYSIS AND CHARACTERIZATION

This section is dedicated to analyze data and answer the
research questions based on the individual analysis of the
mapping results and crossing data provided by classification
criteria.

A. Use of Papers and Evaluation of Selection Quality

Figure 1 (a) presents results of the number of occurrence
along the defined period of time, between before-selection
and after-extraction phases. Observing the dark gray portion
of the graphic it is possible to observe that the amount of
papers selected after mapping kept fairly constant over the
years. The observation of the difference between the light
and dark area allows it to be noted that there was a follow-up
between the evolutions of returned items and selected articles
in the period analyzed and the difference was maintained
between approximately 30 and 60 occurrences. Two
observations can be made based on this information: (i) the
Search String was compatible with the defined inclusion and
exclusion criteria. That is, even before the application of the
criteria, the oscillation of total papers returned along the
years is almost similar to the oscillation of papers which
relate to the research question in fact; (ii) the use of articles
at the end of the mapping was 16% compared to the initial
total. However, over the 449 initial papers, 116 were
duplicated, that is, about 25%. Therefore, the actual use is
approximately 22%.

B. Research Questions

The answers to the established research questions
presented at Section II are discussed bellow.

R.Q.1. How publications about visualization tools and

techniques, applied to software comprehension, have been
evolved in the main digital libraries?

Figure 1 (b) presents a comparison of papers separated by

digital library obtained from search string application before
selection phase and after extraction phase. Analyzing the
solid lines of the graphic, it can be observed that both before
(light gray) and after (dark gray) criteria application, IEEE is
the digital library with the largest amount of publications
related to the search string and research questions along the
years. It is interesting to notice the small difference between
both solid lines, once it indicates the search string and
criteria were well adjusted to this digital library. Another
interesting feature to be observed is the oscillation along the
years between IEEE and ACM, that is, periods when IEEE
has a growth on the number of publications related to the
research question, ACM had a decrease and vice-versa, and
that this cycle recurred year after year.

The study identified 56% (42/75) papers as related to

visualization tools which help at software comprehension.
One was classified as experimental study. The others 32
relate to techniques, some with prototypes already
implemented others still in conception stage. Crossing
“Source” classification criterion (C.C.1) data with the
“Focus” (C.C.2), it can be noted, at Figure 2 (a), that IEEE

300Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 320 / 646

Figure 1. Graphic (a): Total ocurrence of paper before selection and

after extraction phase; Graphic (b): The same information separated by

digital library.

0

10

20

30

40

50

60

70

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

(a)

Before Selection Phase After Extraction Phase

-2

0

2

4

6

8

10

12

2002 2004 2006 2008 2010 2012 2014

O
cu

rr
e

n
ce

 o
f

p
a
p

e
r

Year

(b)

ACM Bef.

ACM

IEEE Bef.

IEEE

Science D.

Bef.

Science D.

and ACM tool papers prevailed over those about technique,
and Science Direct obtained the same quantity for both tool
and technique. The only experimental study identified related
to the research question [14] was published at IEEE.

R.Q.2. How visualization tools and techniques, applied to

software comprehension, have been evaluated?

A total of 27% (20/75) of the tools/techniques does not
demonstrate any kind of results of a practical evaluation, i.e.,
they do not indicate if the tool/technique proposed was tested
to verify its efficacy/viability. From the others 73% (54/75),
only 15% (11/75) were tested in a real development
environment. Only 1.33% (1/75) paper was considered “Not
Adequate”. The other 58% (43/75) were tested in academic
environment and had documented results.

Figure 2 (b) shows the values for “Evaluation Context”
(C.C.3) along the years. Observing the prevailing area in
light gray, it can be noted that evaluation context in
academic environment (EAE) corresponds to the
predominant form of evaluation, being followed by the non-
evaluation of the proposal (NE). The evaluation in
production context (EPC) remained modest, not exceeding
20% of the work until 2011.

This scenario reveals two important findings: (i) the
studies need further validation to its practical viability; (ii)
the test in academic environment has been the evaluation
environment adopted in more than half of the studies but is
not enough to represent the reality of a production
environment which can mean a limitation on the external
validity [15] of these proposals.

R.Q.3 What is the profile of visualization tools and

techniques, applied to software comprehension, considering
the artifacts represented, life-cycle phase and training?

More than half of the studies, 55% (41/75), considered

the “Source Code” as the artifact used to generate the
visualization. The Crossing between “Object of Analysis”
(C.C.5) and “Analysis Criterion” (C.C.4) – Figure 2 (c) –
allows identifying that “Static Analysis” corresponds to the
kind of analysis most used, and the type of object that
employs more this criterion in its representation is the
“Source Code”. The “Execution Tracing” corresponds to the
object which most applies the “Dynamic Analysis” criterion.
Also, few proposals of visualization apply both analyses.

A percentage of 81% (60/75) of tools/techniques defined
corresponds to two-dimensional visualization, 18.7% (14/75)
corresponds to tree-dimensional representations, 2.67%
(2/75) employ both kinds of representation and one study
was classified as “Not Adequate”.

A total of 90.6% (68/75) of tools/techniques does not
show any functionality to help the learning/training of new
developers. Among other works, 8% (6/75) have focused on
learning and one paper, 1.33%, is “Not Adequate” to any of
the past options.

Observing the Graphic 6, generated by the crossing
between “Representation Type” and “Learning Aided”, it is
possible to verify that the more used representation is the
two-dimensional (2-D), which is about five times more
employed than the tree-dimensional (3-D). Few visualization
models adopt both types of representation, and regardless of
the representation considered the learning aid remains little
employed.

During the reading of the papers it could be observed that
several tools/techniques identified do not allow the adequate
scalability of the visualization. This problem attenuates when
the tree-dimensional representation is used. The third
dimension solves one of the problems of two-dimension
visualization which is the lack of space. However, it seems to
add a lot of complexity to the adopted visualization. Many
were the times which was done the question “would this
really help at software comprehension?” since exhibited
examples are, generally, of hundreds of thousands of lines of
code visualized in a small window. This may seems to be
only a detail, considering the gains that these
tools/techniques brings by its own existence, but the absence
of this detail also is a limiting factor for an effective
experience in user interaction.

301Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 321 / 646

Figure 2. Criteria crossing for each graphic: (a) C.C.1 x C.C.2;

(b) C.C.3 x Year; (c) C.C.4 x C.C.5; (d) C.C.6 x C.C.8.

0 5 10 15 20 25 30

ACM

IEEE

Science D.

(a)

Exp. Study Technique Tool

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

(b)

EPC EAE NE Not Adequate

0

5

10

15

20

25

30

35

40

45

50

Static Dinamic Both N/A

(c)

Not Adequate

Threads

Communication Register

Other Artifacts

Graphical Interface

UML Diagram

Memory

Documentation

Execution Tracing

Source Code

0

10

20

30

40

50

60

2D 3D Both N/A

(d)

Learning Aided: YES Learning Aided: NO Not Adequate

These information can be used to delineate the profile of
the papers: great part of these tools/techniques makes the
static analysis of the source code, visualized in two-
dimensional graphics with focus at help maintaining
software. The reasons for the predominance of this pattern
over others reveal an opportunity of research in this question,
considering the causes involved. The few incidences of
works with learning aid, reveals a deficiency and at the same
time a potential research field. Aside it consists of a key
factor for the acceptance of the new proposal by the starter
user, the learning aid can accelerate and facilitate the training
and conduction of experimental studies which evaluate, for
example, the effectiveness of the same proposals, enabling
their evolution.

V. THREATS OF VALIDITY

There are some threats of validity to our study. One of
them is the fact the searches were made at only three digital
libraries, which can restrict, in some aspects, the results.
Some relevant digital libraries to the software engineering
[16] were not consulted, due to time constraints imposed for
the preliminary conduction of this mapping. In addition, the
searches considered only results published in the last 10
years, and important papers may have been ignored even
assuming these work evolutions were published inside the
time window adopted. This approach was followed because
the objective were to search tools/techniques which are being
used currently, and it was considered that 10 years would be
time enough to reach this objective.

It is also possible that we have chosen a search string
which does not cover the whole set of relevant works. The
software visualization field is somewhat wide and some
important works, such as [17] [18], were not observed, due
the fact of these papers do not use the key-words
“comprehension” or “understanding” directly, for instance.
The choose of classification criteria, although has been
thought in a way to cover the high number of properties
which characterizes this theme, can had ignored another
characteristics as important and which collaborates to
decrease threats related to the validity construction of the
results [15]. It is also understandable that some papers, even
adopting these terms, consider software visualization as a
secondary focus on the software comprehension. Anyway, it
was decided to follow with this string, once it returned the
papers of control used, and so to guarantee that the results
reflect our expectancy: papers about visualization focusing
directly at software comprehension.

VI. CONCLUSIONS AND FUTURE WORK

As presented, this mapping work was divided in three
parts: Planning, Conduction and Analysis. Conduction in
turn, was subdivided in Study Identification, Selection and
Extraction steps. The searches considered three important
databases: ACM, IEEE and Science Direct and have
identified initially 449 studies, from which only 75 were
taken after applying the restrictions and selection criteria
from Selection and Extraction phases. The data analysis lets
the verifying of important information regarding how this
research field has positioned with relation to the investigated

theme. It was possible to identify, for example, a lack of
tools/techniques of these works to support the training as
well as the experimental validation of the pre proposes in the
production environment. The preference for two-dimensional
representation against three-dimensional and the lack of
interest to questions related to interaction, considering the
three-dimension, such as the question of the scalability, was
another important point of this characterization. In addition,

302Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 322 / 646

it was observed that the great majority of the proposes of
visualizations adopts static analysis combined to source-code
as software artifacts to be represented, which motivates the
achievement of new experimental studies to investigate
factors which influences these characteristics.

This work relates similarly to Bassil and Keller [13] in
the sense that both are quantitative study, considering
visualization tools related to software comprehension. Both
works characterize some similar gaps and benefits in the
field such as the importance of interaction issues and the
visualization of source code aspects as being majority. The
main differences are related to the considered source of
information and the method applied. While the present work
considers a systematic mapping, applied by software
engineering researchers over scientific papers, the other was
conducted as a survey with more than 100 participants
(among researchers/users from industry) and considered a set
of approximately 40 pre-defined tools.

This characterization study does not intend to be
conclusive about the research questions investigated,
considering the large extent of the covered theme and
because we understand that some parameters of the protocol
adopted such as the number of databases considered,
researchers point of view, time windows established and
other factors may let bias to the results. However, it can
provide characteristic which still opened or are already
consolidated and raises clues about cause-effect relations to
the theme which deserves to be investigated.

In order to evolve the present work to future qualitative
investigation, it should be considered visualization
techniques to understand the importance and relationship of
selected contributions to the research questions. Examples
are the visualizations of co-authorship networks, citation
graph, and impact ranking of author/paper.

Finally, this is a study based on an experimental process,
yet established which lets the magnification/consolidation of
the results through its replication. Artifacts generated in this
study can be accessed in the following address [19].

ACKNOWLEDGMENT

The authors would like to thank the Instituto de
Informática - INF/UFG, Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior - CAPES - Brasil, and
Fundação de Amparo à Pesquisa do Estado de Goiás -
FAPEG - Brasil, which support this work.

REFERENCES

[1] S. K. Card, J. Mackinlay, and B. Shneiderman, Readings in

Information Visualization: Using Vision to Think. San

Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,

1999.

[2] R. Spence, Information Visualization: Design for Interaction,

2nd ed. London, England: Pearson Education Limited, 2007.

[3] P. R. G. Luzzardi, C. R. Andrade, and C. M. D. S. Freitas, "

An Extended Set of Ergonomic Criteria for Information

Visualization Techniques," in 7th Conference on Computer

Graphics and Imaging, Kauai,Hawaii, 2004, pp. 236-241.

[4] C. Ware, Visual Thinking: For Design. San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc., 2008.

[5] C. Wohlin, et al., Experimentation in Software Engineering.

Springer, 2012.

[6] J. Biolchini, P. G. Mian, A. C. C. Natali, and G. H. Travassos,

"Systematic Review in Software Engineering," PESC-

COPPE, UFRJ, Rio de Janeiro, Tech. Rep. ES-679/05, 2005.

[7] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson,

"Systematic mapping studies in software engineering," in 12th

International Conference on Evaluation and Assessment in

Software Engineering, Bari, Italy, 2008, pp. 68-77.

[8] B. A. Kitchenham, "Guidelines for performing systematic

literature reviews in software engineering," Keele University,

Tech. Rep. EBSE-2007-01, 2007.

[9] E. Hernandes, A. Zamboni, and S. Fabbri, "Using GQM and

TAM to evaluate StArt a tool that supports," CLEI Electronic

Journal, vol. 15, no. 1, Apr. 2012, pp. 13-25.

[10] R. Wettel, M. Lanza, and R. Robbes, "Software systems as

cities: a controlled experiment," in Proceedings of the 33rd

International Conference on Software Engineering (ICSE '11),

New York, NY, 2011, pp. 551-560.

[11] M. Lanza, S. Ducasse, H. Gall, and M. Pinzger,

"CodeCrawler: an information visualization tool for program

comprehension," in Proceedings of the 27th international

conference on Software engineering, St. Louis, MO, USA,

2005, pp. 672-673.

[12] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and

R. Koschke, "A Systematic Survey of Program

Comprehension through Dynamic Analysis," Software

Engineering, IEEE Transactions on, vol. 35, no. 5, 2009, pp.

684-702.

[13] S. Bassil and R. K. Keller, "Software visualization tools:

survey and analysis," in IWPC 2001. Proceedings. 9th

International Workshop on, Toronto, Ont. Canada, 2001, pp.

7-17.

[14] A. R. Teyseyre and M. R. Campo, "An Overview of 3D

Software Visualization," IEEE Transactions on Visualization

and Computer Graphics, vol. 15, no. 1, Feb. 2009, pp. 87-105.

[15] T. D. Cook and D. T. Campbell, Quasi-experimentation:

design & analysis issues for field settings, 3rd ed. Rand

McNally College Pub. Co., 1979.

[16] P. Breretona, B. A. Kitchenham, D. Budgenb, M. Turnera,

and M. Khalilc, "Lessons from applying the systematic

literature review process within the software engineering

domain," Journal of Systems and Software, vol. 80, no. 4,

Apr. 2007, pp. 571-583.

[17] U. Erra, G. Scanniello, and N. Capece, "Visualizing the

Evolution of Software Systems Using the Forest Metaphor.,"

in Information Visualisation (IV), 2012 16th International

Conference on, Montpellier , 2012, pp. 87-92.

[18] M. Risi, G. Scanniello, and G. Tortora, "MetricAttitude: a

visualization tool for the reverse engineering of object

oriented software," in AVI '12, New York, NY, USA, 2012,

pp. 449-456.

[19] INF/UFG. (2013, Oct.) Systematic Mapping Files. [Online].

http://www.inf.ufg.br/~auri/icsea-mv/

303Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 323 / 646

Managing IT Service Releases in a Systematic Way:
A Case Study Approach

Marko Jäntti
School of Computing

University of Eastern Finland
P.O.B 1627, 70211 Kuopio, Finland

Email: marko.jantti@uef.fi

Antti Suhonen
School of Computing

University of Eastern Finland
P.O.B 1627, 70211 Kuopio, Finland

Email: antti.suhonen@uef.fi

Mika Kurenniemi
School of Computing

University of Eastern Finland
P.O.B 1627, 70211 Kuopio, Finland

Email: mika.kurenniemi@uef.fi

Abstract—Release management is responsible for planning,
scheduling and controlling the deployment of releases to test and
live environments. In many IT service provider organizations,
the IT service release management is a very actual improvement
target. Process frameworks, such as IT Infrastructure Library
(ITIL), are often used as a basis of the process improvement.
The research problem of this study is: How IT service releases
can be managed in a systematic way? The main contribution of
this paper is to present results of a case study with a Nordic IT
service provider organization.

Keywords—IT service; release management; process

I. INTRODUCTION

A release is a collection of hardware, software, documen-
tation, processes or other components required to implement
one or more approved changes to IT services [1]. Releases
can be categorized into major releases, minor releases and
patches. Release management activities should be conducted
within the release management process that is coordinated
by a release manager. A systematic approach for release
management provides the following business benefits:

• delivering changes faster and at optimum cost and
minimized risk [1]

• fewer releases to be rolled out to customers [2]

• releases are promoted successfully, are stable and meet
expectations [3]

• releases are delivered according to agreed release
policy and planned release cycles

There are three key challenges related to release manage-
ment improvement from IT service management perspective.
First, release management is often not seen as a process
but is conducted in the form of separate activities, such as
installations and packaging. This causes challenges for people
who would like to improve the process because they cannot
just go to employees and ask how they perform release
management because employees do not know what is included
in managing releases. Second, IT service organizations often
lack the consistent understanding what is a release and how it is
related to projects, service requests and change requests. Lack
of understanding may lead to the following types of questions:

• Does a release cover installations required by a service
request handling?

• Can we consider the project outcome of a deployment
project as a release?

• Should every change implementation be treated as a
release?

Third, a weak release management process typically leads to
a fact that information on installations or releases is stored
somewehere else than release records such as in change
management.

Because ITIL is a best practice framework and not a
standard, IT companies may aim at certifying their service
management based on ISO/IEC 20000 standard family. The
most popular parts of the standard family are ISO/IEC 20000-
1:2010 Part 1: Service management system requirements [4]
and ISO/IEC 20000-2:2011 Part 2: Guidance on the application
of service management systems [5]. ISO/IEC TS 15504-8:2012
process assessment model [6] can be used to measure or
improve the service management process capability. 15504-
8:2012 provides the following base practices for release man-
agement [6]:

• Establish requirements for releases.

• Plan releases of services or service components.

• Design releases.

• Test releases.

• Deploy releases.

• Assure integrity of hardware, software, and other
service components during deployment of the release.

• Reverse or remedy unsuccessful releases.

• Communicate release information to interested parties.

Much has been written about service management from
service operation perspective. However, surprisingly few of
studies have dealt with release management practices in IT
service provider companies There are some studies that have
focused on software release management such as the study
of van Der Hoek and Wolf [7] that addresses requirements
for release management: ...The release process should involve
minimal effort on the part of the developer...The scope of
a release should be controllable.... Jansen and Bringkemper
[8] discuss common misconceptions about product software
release management.

304Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 324 / 646

Jokela and Jäntti [9] have identified challenges in release
management process from product portfolio management per-
spective. They report that challenges were related to unclear
release and deployment management and/or product portfolio
management process roles, lack of process for product portfo-
lio release and deployment management, lack of communica-
tion between product managers and lack of resources and time
for product portfolio integration, testing and reviewing. There
are studies that use the term patch management instead of
release management, such as the study of Liu et al. [10] which
presents methods for effective patch management. Jäntti and
Sihvonen [11] have examined the patch management within
release management. They observed that challenges exist es-
pecially in release management concepts and classifications.
Patch management can be seen as a subprocess of release
management.

A. Our Contribution

The main contribution of this study is

• to show how release management activities are per-
formed in a Finnish IT service provider organization,

• to provide lessons learnt from release management
process improvement.

The results of this study might be useful for release and
deployment managers, installation team managers and other
IT service management process managers. The remainder of
the paper is organized as follows. In Section II, the research
methods of this study are described. In Section III, case study
results are presented. Section IV is the analysis of findings.
The discussion and the conclusions are given in Section V.

II. RESEARCH PROBLEM & METHODOLOGY

The case study was conducted during KISMET (Keys to
IT Service Management and Effective Transition of Services)
research project in May - June 2013. The research problem
of this study is: How IT service releases can be managed in
a systematic way? The research problem was divided into the
following research questions:

• Which factors trigger the release management?

• How release management activities are performed in
the case organization?

• What types of releases exist in the organization?

• How release management should be implemented with
an IT Service Management tool?

A case study research can be defined as ”a research strategy
focusing on understanding the dynamics present within single
settings”[12]. Runeson and Höst [13] state that studies can
be categorized into four types: 1) exploratory studies that
focus on finding out what is happening, seeking new insights
and generating ideas and hypotheses for new research, 2)
descriptive studies that focus on portraying a situation or
phenomenon, 3) explanatory studies focusing on seeking an
explanation of a situation or a problem and 4) improving
studies that aim to improve a certain aspect of the studied
phenomenon. Our study could be classified as an exploratory

Fig. 1. The context of the case study

and improving case study. A case study research method with
a single case was used to answer the research problem. Figure
1 shows the context of the case study.

A. The Case Organization and Data Collection Methods

Our case organization Alpha is a Nordic IT service provider
company that provides IT outsourcing services and IT consult-
ing services in Finland, Sweden, Norway and Denmark. Alpha
has around 800 employees. The case study focused on explor-
ing release management activities especially in workstation
management service area. The company uses IT Infrastruc-
ture Library -based service management processes in incident
management, problem management and change management.
Release management was a natural choice for the improvement
target because it is responsible for implementing changes.

The case study started with a kick-off meeting in May
2013 where improvement goals were discussed. The main
objectives of the improvement pilot were to explore how
release management activitities can be performed in practice,
how release management could be implemented to the ITSM
system and describe the process from a change to a release
that is delivered to a customer.

Yin’s [14] data collection principles were used to increase
the quality of the data collection: Data was collected by three
researchers using multiple sources of evidence in Alpha’s
facilities. A case study datastore was established and main-
tained during the study. Because NDAs were signed between a
research team and the case organization, only three researchers
were able to investigate the case study material. A chain of
evidence was established by recording data sources (persons
and their roles, date of data collection, document name) and
linking findings to data sources. The following sources of
evidence were used:

• Documentation (change plan, change task models, a
list of standard changes, application package order
form, image order form, workstation management
service descriptions).

• Archives (Change request records, service request
records)

• Interviews/discussions (change process owner, 2
change managers, CSI manager, release packaging
team member)

305Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 325 / 646

• Participative observation (release management meet-
ings)

• Direct observation (a Change Advisory Board meet-
ing)

• Physical artefacts (Installation manager tool demon-
stration, access to development environment of the
ITSM tool)

B. Data Analysis Method

The case study data was collected and analyzed by three re-
searchers using a within case analysis technique [12]. Research
findings were validated in two meetings with the representative
of the case organization. The within-case analysis resulted in
a case study writeup that was delivered to the case organiza-
tion. The document summarized the case study findings and
improvement actions.

III. IT SERVICE RELEASE MANAGEMENT: CASE STUDY
FINDINGS

Next, a summary of the case study results is presented. In
this paper, we focus on release management activities although
the case provided a lot of findings related to the change
management process.

A. Which factors trigger the release management?

We consider a Change Advisory Board and change man-
agers as primary triggers for release management. The Change
Advisory Board is a group of people that advises the change
manager in the assessment, prioritisation and scheduling of
changes [1]. Regarding authorization of changes we observed
that change managers bring all the normal changes to CAB.
In ITIL it is possible that a change manager may authorize the
change without CAB meetings.

New standard changes are brought to CAB for preautho-
rization like in ITIL. After that they are typically handled in
a service request fullfilment process. We observed that some
installations are triggered by application package orders (Order
form for application packages). A customer manager usually
fills the form together with a customer and delivers the form to
the service desk that submits the form to the packaging teams’s
queue. The order form for application packages defines the
following details of the application to be packaged:

• Application name

• Number of users

• Application super user

• Application provider

• Description of application

• Storage for application media

• Installation code

• Language version

• Release method

• Operation system requirements

• Details of application package testing

• Target of release

• Change plan

Although these installations look like releases, it may be
wise to exlude them from release management scope and
record them as a part of request fullfilment process. However,
normal changes that are processed by CAB could be scheduled
and linked to a release. The case organization also seemed to
lack the major change concept. We interpreted that a change
with a major impact is equivalent to a major change.

There is a statement in ISO/IEC 20000-1 standard [4] that
requests for change classified as having the potential to have a
major impact on the services or the customer shall be managed
using the design and transition of new or changed services
process. A major change may occur in case of a new customer,
a new customer for an existing service or a change that affects
a certain number of users. Additionally, we may interpret that
an emergency change is a change that receives the highest
urgency level. We found an emergency change procedure in
change management process description.

B. How release management activities are performed in the
case organization?

The following observations were captured from the release
management interviews with the case organization’s employ-
ees:

• Change managers shall prepare the changes for the
Change Advisory Board, a change manager can also
reject a change.

• The biggest challenge is that there is no owner infor-
mation regarding the computer the release should be
delivered to.

• Customer might buy computers where we cannot put
any images on.

• The request for a new release package may come
from a customer through the service desk (application
package form).

• If the form is poorly filled, a packaging team member
shall retrieve the information.

• At the moment, Alpha does not have a change calen-
dar.

• There are two tools used for installing software pack-
ages. The new one enables centralized installations,
the old one requires establishment of customer site.

• Regarding the reports, customers are mainly interested
in software usage level and application inventory (how
many computers have a specific application version).

• Change and release schedules are agreed with cus-
tomers by a customer manager / project manager /
service delivery manager.

• Alpha has a small packaging team, thus a lot of issues
shall be solved by discussions.

306Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 326 / 646

• An unsuccessful release is a release that fails to be in-
stalled to the computer. In case of a more complicated
product, a user may inform the service desk that the
application does not work.

• Major release updates shall be tested with all applica-
tions that need the update

• Alpha does not have a release note but information is
stored in configuration management tool.

The following lifecycle for an installation was defined by
the research team:

• Alpha’s customer indicates the need for software dis-
tribution to a customer manager, or directly contacts
the Service Desk (SD).

• Alpha’s customer manager fills the billing information
and submits the form to SD or SD fills out the order
form based on the information given by a customer.

• SD controls the order of the packaging team queue in
the ITSM tool (if the form has information gaps, the
packaging group specialist calls for more information).
packaging group builds a software package and tests
it before using it.

• In order to deploy a release, the packaging group
distributes the software package initially only specified
customer (test) persons.

• If the distribution goes successfully to customers and
they do not report any problems, then after a pre-
defined time period distributions shall be done for all
computers.

C. What types of releases exist in the organization?

Two different tools were used in the case organization
to install software packages to customers. The research team
participated in the demonstration of the new installation tool
and identified the following types of releases:

• Audit (for example, google chrome updates)

• Configuration (java runtime environment, disable /en-
able java update)

• Critical updates (windows critical updates)

• Deploy (Windows program removal tool)

• Feature Pack (Windows patches, platform update)

• Hotfix (update for .Net framework)

• Microsoft unsupported (no more official support avail-
able for these releases)

• Rollup (collection of product updates)

• Security Advisory (single security updates)

• Security Hotfix (vulnerabilities in MS application)

• Security Update (application security updates)

• Service Pack (includes updates)

Fig. 2. The draft version of the release record

D. How release management should be implemented with an
IT Service Management tool?

The organization had recently changed their ITSM tool
and had implemented incident management, service request
management and change management to the new tool. How-
ever, the release management module had not been in use.
One of the research team’s tasks was to explore how release
management could be implemented with a tool. Researchers
spent a lot of time to look at change management module and
its operational behavior.

Main observations from the tool side were the release
module requires, for example, a button that enables creating
a release from a change request, a user interface element that
shows which change requests are related to a particular release,
a release type field, release tasks that follow the release man-
agement process phases (for example, in planning, in testing)
and finally hiding the Features. A Feature was a tool-related
concept initially visible in release management user interface.
A consultant from the tool provider side recommended hiding
the concept to make the process simpler.

At the beginning, the difference between release items and
release tasks was a little bit unclear to the research team.
We interpreted that release items referred to the structure of
releases and release tasks to the release management activities.
Figure 2 shows the draft version of the release record.

At the end of the improvement pilot, the research team had
a meeting with the ITSM tool development team. The result
of the discussion was that most of the improvement ideas that
the research team had suggested were implementable. The tool
development team advised researchers to create RFCs to the
Change Advisory Boad of the ITSM tool.

IV. ANALYSIS

A within-case analysis technique was used in this study.
This study showed that release management process improve-
ment in IT service provider context is far away from a simple
case. Release management process improvement is typically
based on best practices of ITIL. It seems that the release
management process is easier to be adopted by software

307Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 327 / 646

providers than IT service providers. The following lessons
learnt were derived from the case study.

Lesson 1: Strong change management affects the role
of release management. When a change management process
is deployed before release management, this may lead to a
situation where change management may become relatively
stronger process area than release management. There is a risk
that keeping release management as a subpart of change man-
agement process, decreases the visibility of release manage-
ment aspects. In our case, the most release-related information
was stored in change tasks because there was no release record
available.

Lesson 2: Transition of new or changed services is a
complicated area. Transition of new or changed services is
a process area in ISO/IEC 20000 standard [5]. This process
area is related to release management in the following way:
...The transition of services should include the build, test and
acceptance of the new or changed services followed by making
the new or changed services operational through the release
and deployment management process.... We observed that both
design and transition of new or changed services would have
required clarification. We aim to clarify this issue by stating
that building of a new service can seen as a major change. The
implementation of a major change should be carried out as a
project the outcomes of which form a release.

Lesson 3: Establish a release record. In early phase,
we observed that there was no release record or release
note practice in use. The release record could be visible to
customers and show for example which incidents have been
resolved by the particular release. In order to get change
management and release management to support better ITSM
best practices, a change record should have a field that allows
the creation of a release. This Release button should be set
visible not until the CAB has authorized the change. Basically,
the button works in a same way than creating a problem record
based on an incident.

The release type field may include four simple categories
as a starting point: Major Release, Minor Release, Patch, and
Fix. The release record should also guide the user to implement
release according to predefined release tasks. The ITSM tool
can be configured in such a way that a task needs to be
completed before a new task can begin. To create traceability
between installation tool and ITSM tool, one could add an
action id of the installation to the release record of an ITSM
tool.

Lesson 4: Implement a release schedule. One of our find-
ings was that there was no clear release schedule that would
show the frequency of releases. The research team recom-
mended implementing a release schedule and communicating it
to customers and staff such as service desk workers. There was
evidence that some service areas in the case organization used
maintenance windows that were communicated to customers.

Lesson 5: Define an emergency release procedure. The
ISO/IEC 20000 standard requires that there is a documented
procedure for managing emergency releases. We defined a very
abstract level procedure:

• The need for emergency release is identified

• Every employee can make a decision on building an
emergency releases

• Emergency releases shall be tested in a very light
mode

• Emergency release shall be deployed to live environ-
ment

• Emergency release information shall be recorded in
the ITSM system

• Emergency change shall be approved afterwards

Lesson 6: Assign a release manager role. According to
our findings the organization does not have a release manager.
Process managers have important roles both in ensuring that
the process runs smoothly and monitoring and measuring the
process. Sharifi et al. [15] have explored why ITIL imple-
mentations fail. One of the factors was not assigning process
owners. The case organization should clarify who is respon-
sible for the whole release management process. This role
should be responsible for [2]: producing management reports,
creating and maintaining release and deployment policies,
providing reports on the progress of releases and ensuring that
release management follows the organization’s procedures and
policies. A smaller organization might combine the role with
a change or configuration manager role.

The above mentioned list is based on our findings from the
case organization Alpha and lessons learnt are not presented
in a priority order. This was the second case study on release
management improvement with the case organization. In our
first case study [9], the case organization had product-oriented
business focus compared to Alpha that is a service provider.
However, we observed same type of challenges, such as
difficulties in defining a release policy. The main difference we
observed was that in the product-oriented release management
releases are defined by product features while in IT service
release management releases are defined by requests of change.

V. CONCLUSION

The research problem of this study was: How IT service
releases can be managed in a systematic way? The main
contribution of this study was to explore release management
activities in a Nordic IT service provider organization. The key
improvement ideas we identified were related to classification
of releases, understanding the difference between a release
and a change request, release management coordination by
a release manager, and implementing a release record to the
ITSM tool.

This case study included certain limitations. First, data
were collected by using qualitative case study research meth-
ods from one service area. Quantitative case study methods
could have been applied to examine the number of failed
changes and releases. Second, we used a convenience sampling
as a case selection criteria. The research team had easier
access to the case organization because they were an industrial
partner of the research team. Further research could explore the
release management interfaces with other service management
processes such as configuration and change management.

308Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 328 / 646

ACKNOWLEDGMENT

This paper is based on research in KISMET project funded
by the National Technology Agency TEKES (no. 70035/10),
European Regional Development Fund (ERDF), and industrial
partners. Special thanks to the case organization’s staff for
providing feedback, material and facilities to the research team.

REFERENCES

[1] Office of Government Commerce(c), ITIL Service Transition. The
Stationary Office, UK, 2007.

[2] Office of Government Commerce, ITIL Service Delivery. The Station-
ary Office, UK, 2002.

[3] COBIT 5, Control Objectives for Information and related Technology:
COBIT 5: Enabling Processes. ISACA, 2012.

[4] ISO/IEC 20000:1, Part 1: Service management system requirements.
ISO/IEC JTC 1 Secretariat, 2010.

[5] ISO/IEC 20000:2, Part 2: Guidance on the application of service
management systems. ISO/IEC JTC 1 Secretariat, 2011.

[6] ISO/IEC TS 15504-8:2012, Information technology - Process assess-
ment -Part 8: An exemplar process assessment model for IT service
management. ISO/IEC TC JTC1/SC7 Secretariat, 2012.

[7] A. van der Hoek and A. L. Wolf, “Software release management for
component-based software,” Softw. Pract. Exper., vol. 33, no. 1, pp.
77–98, 2003.

[8] S. Jansen and S. Brinkkemper, “Ten misconceptions about product soft-
ware release management explained using update cost/value functions,”
in Proceedings of the International Workshop on Software Product
Management. Washington, DC, USA: IEEE Computer Society, 2006,
pp. 44–50.

[9] K. Jokela and M. Jäntti, “Challenges and problems in product port-
folio release and deployment management,” in Proceedings of the 9th
International Conference on Service Systems and Service Management
(ICSSSM12). Shanghai, China: IEEE, 2012.

[10] S. Liu, R. Kuhn, and H. Rossman, “Surviving insecure it: Effective
patch management,” IT Professional, vol. 11, no. 2, pp. 49 –51, march-
april 2009.

[11] H.-M. Sihvonen and M. Jantti, “Improving release and patch man-
agement processes: An empirical case study on process challenges,”
Proceedings of the International Conference on Software Engineering
Advances (ICSEA 2009), vol. 0, pp. 232–237, 2010.

[12] K. Eisenhardt, “Building theories from case study research,” Academy
of Management Review, vol. 14, pp. 532–550, 1989.

[13] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Software Engineer-
ing, no. 14, pp. 131–164, 2009.

[14] R. Yin, Case Study Research: Design and Methods. Beverly Hills,
CA: Sage Publishing, 1994.

[15] M. Sharifi, M. Ayat, A. A. Rahman, and S. Sahibudin, “Lessons learned
in ITIL implementation failure,” in Information Technology, 2008. ITSim
2008. International Symposium, vol. 1, aug. 2008, pp. 1–4.

309Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 329 / 646

Pivots and Architectural Decisions: Two Sides of the Same Medal?
What Architecture Research and Lean Startup can learn from Each Other

Jan Salvador van der Ven
University of Groningen

Groningen, the Netherlands
mail@jansalvador.nl

Jan Bosch
Chalmers University of Technology

Gothenburg, Sweden
jan.bosch@chalmers.se

Abstract — Software architecture research has gained
maturity over the last decades. It focuses on architectural
knowledge, documentation, the role of the architect and rationale
for the architecture decisions made. It is widely recognized that
considering architecture decisions as first class entities helps in
designing and maintaining architectures. In the entrepreneurial
and new product development space, the lean startup movement
is gaining momentum as one of the most notable ways to develop
products. During new product development in highly uncertain
environments, speed is the most important factor. Speed to get on
the market, speed to learn from your customers, but also speed to
tackle technological risks. Because the runway for new product
development is short, it is important to experiment and make
decisions quickly. The pivot plays a crucial role as a business
decision for new product development. Both pivots and
architectural design decisions can be seen as highly influential
aspects for a product. In our research, we investigate what the
fields of architecture research and lean startup could learn from
each other. We focus our research on the two most important
aspects of these movements: the architecture decision and the
pivot, and show that they can be seen as two sides of the same
medal representing the technical and the business side of the
product.

Keywords—Pivot; Architectural Decision; New Product
Development; Lean Startup; Software Architecture.

I. INTRODUCTION
Every company changes direction multiple times during its

lifetime. In the past, it took a company months or even years
to change direction, especially in larger industry settings. In
the last decade, the speed in which a company can adapt to
changes has become one of the most competitive qualities [1].
The place where this effect is amplified is in new product
development, either in small startups or in larger, established
companies. Because these projects typically have a short
runway to being successful, making decisions quickly is
crucial.

Architects have the important role to align business
strategy to the software architecture of the products [2].
Especially in the domain of new product development, this
balance is an enormous challenge, because on the one hand the
time to market is essential, and on the other hand the
continuation of product and company is dependent on the
solidity of the architecture. In new product development, there
is also a bootstrapping problem. You need experiments with
the Minimal Viable Product (MVP) in order to be able to
validate your business assumptions, while you also need to
have a piece of architecture to be able to create this MVP. This

tension exists in many projects involving new product
development.

As a software company, one of the most important aspects
of your product is the software architecture, as it highly
influences the capabilities (quality attributes) of the product.
This architecture is formed by the decisions made during the
development and maintenance [3]. Various authors emphasize
the importance of these architectural decisions in software
development [4, 5]. Models [6], classifications [7] and
reasoning structures [8] have been posed to manage these
decisions. Key concepts that are used in software architecture
are: decision topic, rational, alternatives, choice, and risk.

Research literature studying new product development and
startups [9, 10, 11] identifies a key type of decision that is
extensively (and explicitly) used, the pivot. A pivot is the
result of a business decision that is made to change the
direction of the product. These decisions are based on
different kinds of implicit or explicit experiments [1], in order
to validate hypotheses about the product, its users or its
business case. For the research described in this paper, we
investigated what kind of decisions these pivots are, and what
the relationships between pivots and the architectural
decisions are. We currently focus on the pivots made at
startups, because:

- At a startup, the runway is short, so the evolution of
the architecture of the system is very high. Effects of
pivots and architectural decisions are visible very
quickly, and have a very high effect on the company's
success.

- Larger companies are adopting startup techniques [1]
to increase their own time-to-market, especially for
new product development. This makes our research
relevant as learning for large companies seeking new
product development.

The contribution of this paper is threefold. First, we
introduce a conceptual framework for new product
development as an experiment system with pivots and
architecture decisions as first class entities. Second, we
identify the key concepts for architecture research and new
product development, and identify the gaps between them.
Third, we provide guidelines for the two fields that describe
what they could learn from each other, based on the
conceptual model and the identified concepts from both fields.

This paper is organized as follows. First, we introduce our
conceptual framework. Then, we sequentially describe the
concepts of software architecture (Section III) and new
product development (Section IV) from a research and a

310Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 330 / 646

practical perspective. In these sections, the key concepts are
identified. Then, we describe the differences and similarities
of the two as analysis in Section V. Based on this we present
our guidelines for both fields. This paper ends with related and
future work and some concluding words.

II. CONCEPTUAL MODEL
The premise of this paper is that this experimentation, both

in the business domain and the technical domain, is a critical
technique to increase the chances of success in new product
development. Based on our literature findings, we have
constructed a conceptual framework for running new product
business as a set of decisions. In Fig. 1, our conceptual
framework is visualized. On the top, two essential risks are
shown as input for the business: market risk and technology
risk. Which risks are most important depends on the context:
the problem addressed, the market, the competitors, the
solution chosen, the technical possibilities, etc. Based on
which risks are most eminent, hypotheses are formulated to
reduce uncertainty of the associated risk. To test each
hypothesis, one or more experiments are performed. These
experiments can be explicit (e.g., conducting a planned usage
test, running a Proof of Concept, predict usage statistics), or
implicit (e.g., a coincidental encounter, different product use
by end-users). Then, based on the results of the experiments,
decisions are made for the direction of the product. These
decisions steer the direction of the product and the associated
business, affecting the market and/or the software architecture,
and in the end the product itself. In new product development,
pivots are illustrative examples of these decisions. Therefore,
the naming of the decision types is based on the phases
described by Maurya [11]. In the initial Problem / Solution
(P/S) fit stage, the decisions don’t affect the system at all,
since there is typically no product yet. In the second, Product /
Market (P/M) fit stage, the focus of the experiments is to
validate the Minimal Viable Product. This can result in pivots
that influence the business as well as the product. For these
decisions, the market fit is the most important; so, the
architectural impact is subordinate. In the following phase,
assuming that the product / market fit is validated, still
experiments need to be conducted to figure out how to scale
the product when usage (e.g., number of users or usage per
user) grows. Aside from direct business requirements, in each
stage software architecture decisions need to be made, for
example to support increasing scale, reduce technical debt or
support an alternative use case after a solution pivot. This

paper focuses on pivots as decisions that arise from
experiments that affect the business as well as the architecture
of a product.

The validation speed is very important in this context.
Validating a hypothesis takes time and effort. This effort
should result in new insights in the product or the market. If
the product changes direction later (a pivot, or abandoning a
pivot), the effort should pay itself by what is learned by it. So,
it is important to keep validation speed short, and create
hypothesis focused on learning. This is why validation speed it
essential in our model.

When looking at product development through our
conceptual model, it is possible to see that pivots and
architectural decisions are actually the ways to mitigate risks
by experimentation. However, they both have a different risk
they are addressing, while affecting each other constantly. So,
they can be seen as two sides of the same medal, one side
showing the market challenges, while the other side shows the
associated technological risks. It is virtually impossible to
encounter one without the other, as market risks are typically
tackled with technological solutions (e.g., the business drivers
for the architecture), and technology always affects the
business.

In the following sections, we will describe how this model
can be used in both software architecture and new product
development.

III. SOFTWARE ARCHITECTURE

A. Software Architecture Research
Software architecture has been researched extensively in

the last decades [12, 13, 14]. In this research, architectural
knowledge [6, 15] and more specifically architectural
decisions [5, 16, 17] play a vital role. What we can distill from
this research is that creating architectures is essentially a risk-
mitigation process where the balance has to be found between
non-functional requirements (e.g., quality attributes), business
risks and technological challenges. Often the long-term view
is more important then short-term project goals for making the
right architectural decisions. In high-pressure situations (e.g.,
deadlines), it is easy to give in on these long-term issues,
causing design erosion [18], technical debt [19] or even worse,
project failure. In the next section, three cases are described
that show how architecture decisions are used in practice.
From this, we identify key concepts for comparing
architectural decisions and pivots.

B. Cases
In order to be able to compare software architecture

practices to lean startup movement, we have to identify what
parts are eminent for both fields. To do this for the software
architecture space, we have conducted a literature research
combined with our experience as participant researchers in
several cases. We have analyzed the practices of software
architecture in new product development in several cases [7].
In this paper, we summarize the cases that contain relevant
information about how software architecture is used in
practice. The cases are anonymized to protect the companies
and customers involved. The cases are not selected at random.
From the experience of the authors, other cases could have
been chosen. However, as Eisenhardt [20] poses, in case study

Fig. 1. Graphical representation of the conceptual framework for

decision-based new product development.

311Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 331 / 646

research it is ”neither necessary nor preferable to randomly
select cases”. We have chosen to discuss the cases that
considered new product development, while being large
enough to be relevant as industrial cases. A more extensive
description of these cases can be found in our previous work
[7], where we focused on the role of the architect in the
software development process. In this work, we describe our
findings of these cases that consider pivots and architectural
decisions.

Case Alpha involved the construction of a software system
that had to replace a legacy Geographic Information System
(GIS) for a large harbor. The new system had to be coupled
with several legacy backoffice systems. The customer, a large
harbor company in the Netherlands, initiated the project. The
solution was service oriented, and consisted of several systems
communicating with each other through an Enterprise Service
Bus. Most of the software was written in Java. The coupling
was one of the most challenging issues in the project. This
case consisted of a pilot and a realization phase, three and six
months, respectively. Ten to twenty people were involved
during the various phases of the project.

Case Alpha was a typical example of a project that was
driven by risk management in order to get the architecture of
the system right. Several techniques were used to experiment
in order to mitigate risks. In the pilot phase, the time was
fixed, and the goal was to show the most important (technical)
risks could be tackled. This resulted in a biweekly iteration
that focused on tackling the top-priority risk. In this phase, a
PoT (Proof of Technology) and a PoC (Proof of Concept)
were made, involving many architectural decisions. Both the
PoT and the PoC were demonstrated to the customer as well as
the end-users to validate critical assumptions.

Case Beta was conducted at a medium sized product
company in the Netherlands. The project involved a new
administrative software system for specific departments in
Dutch hospitals. Changing regulations and different working
environments needed to be taken into account. The project
was executed by a multidisciplinary team of seven people,
assisted by the architect from the company. A Java stack (JSF,
Spring, Eclipselink) was used for creating this product from
scratch, while a different team of approximately seven people
developed a part of the backend separately. This separate
development was one of the most challenging architectural
parts of the project. The development of the product took
place for a period of 12 months.

In case Beta, several architectural experiments were
conducted, the major one consisting of how to manage the
introduced complexity of the platform. A prototype was
constructed early on. Also, interviews were held with key
users in the field. However, often the experiments were
conducted ad-hoc without a concrete hypothesis to validate.
The architectural question if the generic backend part of the
system could be reused was validated continuously by using
this component in another project, too.

A small startup company working on a web based product
for the consumer market was the scene for case Gamma. The
project contained high-risk technological challenges, where
the architecture needed to be flexible in the beginning, to be

able to handle the expected high number of users. The
application was created in Ruby on Rails1 with a NoSQL
backend based on MongoDB2 and Redis3. The main
architectural challenges were to be able to potentially scale up
the application when lots of consumers are using the system,
while being able to adopt the system to changing requirements
from the customers.

Case Gamma consisted of constant experimentation. As
the product of the company was being developed, several
hypotheses were considered, resulting in either small pivots
(e.g., users would like to see the results in a stream-like view),
or architectural decisions (e.g., the graph database could be
best modeled in Redis). However, again the experiments were
setup implicitly, e.g., without forming a hypothesis or
validating if the results were expected.

We have seen the experimental nature in all of these cases.
Also, in all of the cases a clear Build, Measure, Learn (BML)
loop [10] was used. In cases Alpha and Beta, this loop was
used implicitly (never mentioned), while in case Gamma the
BML loop was known and explicitly used.

C. Key concepts
Several key concepts come back in most of the research

about architectural decisions [21]:
- Architecture Design decision. Design decisions are

the building blocks for software architecture. These
decisions consist of the following parts:

- Decision topic. The decision topic is the actual
problem that needs to be solved. Often, these topics
arise from previous decisions (we decided to base our
application on NoSql technology, which specific
database product are we going to use?), or from non-
functional requirements (how are we going to ensure
our up- time is high enough?)

- Choice. The choice, or decision, is the result of the
decision process. Often, this is the only part that is
communicated (discussed or documented).

- Alternatives. A typical decision has more than one
alternative to chose from. Alternatives can be just
named (e.g., different component names), or
sometimes architecture parts are considered as
alternatives (different styles or patterns, or comparing
specific implementations of components). In rare
cases, the alternatives are realized and compared as a
Proof of Concept or Proof of Technology.

- Rationale. The rationale of a decision describes,
often in plain text, why the chosen alternative(s)
solve(s) the problem at hand, and why the chosen
decision is the best solution.

Based on our case material, we have seen two other key
concepts that are important around software architecture
design decisions:

- Risk. Decisions are often made to mitigate a risk. So,
in order to address a concrete market or technological
risk, certain decisions need to be made. Risks can be
seen as triggers for decision topics.

1 http://rubyonrails.org/
2 http://www.mongodb.org/
3 http://redis.io/

312Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 332 / 646

- Experimentation. To make sure you make the right
decisions often, besides the rationale already
discussed, experiments are conducted to make viable
that the suggested solution is correct. This can be
done either as a PoT, PoC or something else.

In the following section, we will describe what the nature
of new product development is and how the lean startup
movement influences it.

IV. NEW PRODUCT DEVELOPMENT

A. Research
Experimentation in Research and Development (R&D) as

a basis for decision-making is the normal approach in a variety
of domains, including the manufacturing, automotive,
mechanical engineering, medical, and pharmaceutical industry
[22]. From the experiential perspective, frequent iterations of
products in terms of prototypes or multiple design iterations,
testing, and more frequent milestones are associated with
faster product development [23]. In the software industry,
innovation through experiments with customers is becoming
more and more discussed [24], primarily in the web 2.0 and
Software as a Service (SaaS) fields. However, in the software
industry, these experiments are currently primarily performed
in pilot stages for validating architectural decisions or on
feature optimization.

B. Interview Setup
We have conducted interviews with founders and

architects of startup companies, to identify what pivots were
made in new product development, and what the nature was of
these decisions. In our interviews, we have chosen to focus on
pivots as an entrance to talk about the most important
decisions and the decision process. We interviewed
representatives of the five different companies. In these
interviews, we discussed a total of nine pivots. Two of the
companies were located in the Netherlands, two in the USA,
and one in Sweden. All the companies were product
companies, delivering web-based software.

As our research has an exploratory nature, we have chosen
to use semi-structured interviews for acquiring our data. The
interviews lasted from one to two hours. We have recorded all
of the interviews to be able to listen again to the conversations
during the analyses phase. In addition to this, the interviewer
made notes during the interview. Based on the notes and the
recordings a log is created with results after the interview.
These logs were the basis for our analyses.

The interviews were structured as follows. First an
introduction was given about the current status and the goal of
the research. The interviewee was asked permission to publish
about the results and if it was okay that the interview was
recorded. Then general questions about the company and
terminology was asked, after which the interviewee was asked
to tell about several pivots he was involved in. The interviews
in the Netherlands were done face-to-face in Dutch, while the
interviews with Sweden and the USA were done via
videoconference in English.

We have used interview questions as guidance through our
open-ended interviews. First, basic questions about the
interviewee and company were asked, including if the
company worked according to lean startups principles and if

the architecture of the system was considered explicitly. In
order to relate the results of the different interviewees to each
other, we have asked them to describe what they mean by
three key terms in our research: pivot, architecture, and
architecture decision. Then, we used a set of questions to let
the interviewees reason about the their pivot. As we wanted to
focus on the decision process around pivots, we have not
extensively questioned the technical details, but focused on the
decision part of the pivots. The interview questions that were
used are shown in Table I.

TABLE I. INTERVIEW QUESTIONS

Question

Can you give a short description of the pivot?

Who were involved in the decision process?

What triggered the pivot?
Did you validate the success / results of the pivot? How did you do that?
How long did it take to do this validation?
Were there any alternatives evaluated? If so, what alternatives?

What were the results of the pivot?

Did the pivot affect the (software) architecture of your system / product?

What were the results on the architecture?

These questions were used as a baseline for the interview.

Where viable, additional questions were asked, or explanation
was asked for. In some cases, when the answer to a question
was already told or when the question was irrelevant for the
context, the question was skipped and later noted based on the
recordings and notes.

For our research to be generic, we have selected a variety
of interviewees and companies. On the other hand, we had to
narrow our research in order to make sure the interview results
would be comparable. We used the following criteria for
selecting the companies:

- Companies from software industry in the startup
phase, or a close startup origin.

- Companies at least one year in business at the time of
the discussed pivot(s).

- Companies that produce a product or service (no
consulting).

- Companies with more than one employee.

TABLE II. OVERVIEW OF COMPANIES

Company Location Role Domain Size
Voys NLD Founder Voice over IP,

telecom for small
business

~23

Certive USA Lead
Engineer

Enterprise analytics
software

~20

Data-
provider

NLD Founder Data ~10

Burt SWE Chief
Architect

Analytics for
publishers

~28

Zevents USA Lead
Engineer

Local search
advertising

~50

This resulted in the selection of a set of 5 companies, as

shown in the Table II. In the columns, the Company name, the

313Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 333 / 646

geographical location, the role of the interviewee, the domain
of the company and the size of the company (number of
employees) is described. From each of the companies, we
interviewed one of the key persons involved in the pivot(s)
that occurred.

C. Interview results
First, we had to identify our interviewees’ point of

reference. To do this, we asked them about what three key
terms in this research mean to them.

- Pivot. Even thought the term pivot is widely used in
software industry, there was some difference in the
explanations about what a pivot is. Two points came
back in all interviews: that it is a radical interruption
against the ‘previous’ way of working/thinking and
that often, different users/customers were targeted
after a pivot. So, the business strategy of a company
changed. One person emphasized that layoffs are
often the result of a pivot, making it ‘scary’ for
employees when a pivot occurs.

- Software Architecture. The traditional view on
architecture was dominant at the interviewees. All of
them identified connectors/interfaces as one of the
most important parts of architecture. Also, the

mapping of business (requirements) on the technical
design of the system was mentioned often.

- Architectural Design Decision: One of the
interviewees had no idea what an architectural
decision meant. The others noted that it is a conscious
decision, where a specific direction is chosen for the
architecture of a system (a branch-point).

We have summarized the results from the interview in
Table III. In this table, after the name of the company and a
short description of the pivot, the risk that was tackled by the
pivot is described. The next column describes what
experiments were conducted to validate the pivot. This
information was derived from what the interviewees discussed
based on the interview questions (e.g., the trigger for the pivot
and the alternatives evaluated). Then, evaluated alternatives
are shown, and in the last column of the table the results on
the architecture are described.

Although Ries [10] identifies ten different types of pivots,
he does not discuss the effects that pivots have on the
architecture. From our interviews we have found that it is
possible to typify pivots by the impact they have on the
architecture, as described in our conceptual framework.
Business (product/market fit) pivots were found in six of the
pivots and scale pivots were identified in three of the pivots.
Although all interviewees stressed the fast-paced, dynamic

TABLE III. OVERVIEW OF PIVOTS

Comp. Pivot / Decision Prioritized risk (type) Experiments and validation Alternatives
evaluated

Results on architecture

P1 Voys Business model
change

Unknown Accidently showing
internally used functionality
to a customer.

None The architecture became more
of a 'Christmas tree'

P2 Voys Architecture
reconstruction

Maintainability
decrease

Technological exploration 1) Buy functionality
from other suppliers
and 2) merging with
other company

Reworked architecture, the
system was now manageably
growing

P3 Voys Change of product
packaging

Customers misused the
product

Usage testing and measuring None Unknown (currently in
progress)

P4 Certive Radical change in
business

Unknown Demonstrating a mock-up to
potential customers at a
conference

Unknown Moved more to hosted and
cloud-based services

P5 Data-
provider

Scaling the
indexing
possibilities

Technical possibility
to scale product

Technological pilots,
automated performance
validation

All different kinds of
NoSql solutions were
evaluated

Possible to index sites at a high
speed.

P6 Data-
provider

Enhance defect
efficiency

Data not accurate
enough

Usage Measuring and
experimentation at customer
site

1) External provider
for data and 2) buying
data from others

Not much, the major change is
in the way the application was
used (the customer can decide
the error rate)

P7 Burt Change of
customers from
advertisers to
publishers

Advertiser market is
uncertain business

Usage measuring and
discussion

1) Stay on advertisers
and 2) move to both
publishers and
advertisers

Better distributed scalable
architecture. Many principles
were decided on (e.g., start
with two on anything)

P8 Burt Change in product
from advertiser
tool to analysis
tool for
advertisers

Customers are not able
to judge the market
value of product

Prototype, Demonstrate to
potential customers

Several prototypes of
different ideas were
tried

Change from desktop to web
based platform

P9 Zevents Change in focus
on search instead
of publisher
oriented site

Business of publisher
sites was going down.

Discussion, prototypes Lot of discussion
about other
alternatives tool place.
One alternative was
offering 'deals' to for
local companies.

Architecture and tooling
became more 'generic', making
it harder for the company to
distinguish itself against others.

314Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 334 / 646

and uncertain nature of new product development, the
importance of employing a structured, systematic approach to
decision making was recognized as important.

D. Key Concepts
The following key Concepts involving new product

development are extended from the literature:
- BML / Experiment. The basis of the lean startup lies

in the Build Measure Learn (BML) loop, as described
by Ries in [10]. This means that in order to find a
sustainable business, one has to continuously execute
experiments (build), measure the effects, and learn
from the results.

- MVP. The Minimal Viable Product (MVP) is the first
version of the product that can be used to start the
BML loop. This can be a first version of a product,
but it can also be something else (e.g., a landing page,
video) as long as the hypotheses about the product
can be validated.

- Hypotheses. In order to be able to know if one goes
in the right direction, you have to know where you
want to go. This is posed in a hypothesis that can be
tested by experimentation.

- Validation. Key to understanding the results of a
build step is to identify how to validate or invalidate a
hypothesis.

- Measuring. Even though validation is concerned one
of the most important parts of the BML loop, the
measuring is always an arduous part. Measuring can
be done either qualitative (e.g., interviews), or
quantitative (surveys, usage measuring, A/B testing).

- Pivot. A pivot is a key concept in the lean startup
movement as a decision to change direction for a
product. Several types of pivots have been identified
by Ries [10].

Based on the interviews, an additional concept comes
back:

- Risk. Most of the pivots that were discussed in the
interviews mentioned that they were done in order to
mitigate some risk. The identification of this risk was
often the starting point for the pivot.

V. ANALYSIS
In this section, we summarize what similarities and

differences are between the architecture research space and the
startup spaces, by comparing the most characteristics aspects
of both: architectural decisions and pivots. The introduced
concepts of both software architecture and lean startup / new
product development are compared in Table IV.

One of the biggest differences is the focus. As the
architecture community focuses on long-term non-functional
requirements, the lean startup community focuses on rapid
validation of business assumptions (hypotheses). This also has
a cost implication. For lean startups, the speed of validation is
the most important aspect. So, the experiments should be as
fast and cost-efficient as possible, to be able to change
direction quickly if market or technology demands that. This
contrasts the approach of the architecture community where
the focus is much more on making correct decisions to reduce
cost later in the development.

Several parts come back in both worlds. Both consider
risks as primary triggers for making a decision, and both have
an explicit description of what needs to be solved, the decision
topic and the hypothesis. Further, both parts use
experimentation to see if the decision is correct, even though
these experiments have different forms. The minimal version
to validate your decision is correct also comes in different
forms, in architecture this is often a technological proof while
in new product development this typically involves customers
and end-users.

Further, as can be seen from the table, several concepts
from one field seem to be nonexistent in the other field. The

TABLE IV. COMPARING CONCEPTS

Architecture
Decision Concept

Lean Startup
Concept

Software Architecture New Product Development

Architectural Design
Decision

- First class entity for the architecture -

- Pivot - Radical change in business model
Decision topic Hypotheses Decision topics are typically hierarchical (caused by

previous decisions), or caused by arising or expected risks.

Choice - Often referred to as the decision self, this is the selection of
the best alternative

The choice is not explicitly mentioned in new
product development space.

Alternatives - Are often made explicit in documentation Alternatives are rarely made explicit.
Rationale - Existing in the heads of the developers, or (ideally) written

down explicitly
Less relevant as the results are measured quickly.

Risk Risk Often the focus is on technological risks. Is addressed by
reasoning, often the cause of an decision topic and thus a
design decision

Focus is on the business risks. Is addressed by
experimentation

Experimenation BML /
Experimentation

Automated testing (e.g., performance tests), Research,
Discussion

Interviews, Usage measuring, Demonstration,
Discussion, Prototyping, Research, Usage testing

PoC / PoT Minimal Viable
Product

In order do address certain risks, PoCs or PoTs are
conducted. Main goal is to validate the viability of the
concept or the technology, not the business

One of the main goals for a product under
development. Main goal is to start validating the
business model as quick as possible.

- Measuring Rarely done Measuring is the only way to validate the
hypotheses

- Validation Is often not done, if it was done, it was done by reasoning. It
is often hard to validate a NFR

Direct business validation. Often the existence of
company validates pivot.

315Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 335 / 646

explicit parts of the decision in the software architecture field
(Choice, Alternatives, Rationale) do not exist in the Lean
startup field. Alternatives are evaluated (as seen in the
interviews) and rationale is used to argument decisions or
pivots, but decisions as first class entities are not common in
the lean startup field. On the other side, the measuring and
validation that is key in the lean startup is not considered in
the architecture space.

A. Threats to Validity
This research is based on a limited set of cases and

interviews. To a certain extent interviews bare some
subjectivity in them, because it is a conversation between two
individuals. Because of the exploratory nature of our research,
using semi-structured interviews was a good way to validate
our model. However, this research could be extended by more
interviews, and by gathering more quantitative data based on
surveys, as described in the future work.

For interview validity reasons, we have not presented our
framework or model to our interviewees. This would have
biased our interviewees, and perhaps changed the way they
described the pivots, and answered the questions.

VI. GUIDELINES
In addition to confirming the conceptual framework, the

data presented in this paper allowed us to derive a set of
guidelines about what the field of software architecture and
new product development could learn from each other.

A. Solve both business and architecture as experiments
For new product development, explicit experimentation is

common. Architects can learn from this by doing similar
explicit experiments to validate the architectural decisions at
hand. This helps architects to speed up development and
develop business quicker.

B. Business as a set of decisions
As shown in our conceptual model new product

development can be treated as an iterative process of running
market and technology experiments. The experiments are
driven by the risks that need to be tackled, and the result of the
experiments is a set of decisions that form the business and the
product. As we have shown that an architecture can be seen as
a set of decisions, we think this view can be extended when
considering pivots as business decisions. In this view, the
business can actually be seen as the set of taken decisions
based on the results of experiments.

By making the decisions in new product development
more explicit, it is possible to piggyback on the experience
that the software architecture research already developed. It
can for example be used to trace the decision process, change
decisions when the situation changes, and see the
dependencies that decisions have on each other.

C. Creative validation of architectural decisions
Even though some efforts are made to validate

architectural decisions, the field of software architecture could
benefit much from the creative way that lean startups validate
their hypotheses. Of course, the horizon for both decisions is
not always the same, but the tendency to validate an
architectural decision by reasoning could be enhanced by

more objective ways of validation (e.g., usage statistics, A/B
testing).

D. Sometimes, architecture can be added later
We have seen that in highly uncertain environments pivots

affect the balance in the development of new products. Since
p/m pivots put the emphasis on validating the business, the
architecture of the product is often minimal supported. This
can cause design erosion and technical debt. However, we
have seen that there are several strategies used at our
investigated companies to overcome this:

• Pivot away. The first strategy we identified was that
in some cases the pivot was so radical, that the
current architecture was thrown away. So, no matter
how unbalanced the scale was, the complete business
changed and the complete architecture of the system
changed too. Off course the experience of the team
and the business knowledge is reused, but the system
itself was largely or completely rebuild. Sometimes a
complete new technology stack was adopted (P2, P4,
P8), while in other cases existing components were
reused (P1, P5, P7).

• Add architecture later. When a product/market fit is
found, but the architecture of the system is unable to
facilitate the next phase (scale, as described in [11]),
then architecture needs to be added later. So, in order
to handle certain (non-functional) requirements for
scaling, like performance or changeability, the
architecture of the system need to be improved. As
we have seen in our interviews (P2, P5), this is
possible even though it can be expensive.

VII. RELATED WORK
Although the field of new product development is not new,

lean startup is quite new, and within the research community
there has not been much research about this topic. The basis
for our model, experimentation, lies in the work of Thomke
[25] and Davenport [24]. This was extended with the
methodologies from the lean startup community [9, 10, 11].
From our own work on architectural design decisions, we
generalized the idea of running a business as an explicit set of
decisions [7], based on the experiments [1].

The relationship between business and architecture has
been extensively studied from the product line perspective, for
example BAPO [2]. We have shown that two types of
decisions are extremely important in new product
development: business (e.g., pivot) and architecture decisions.

VIII. FUTURE WORK
Based on the encouraging results from our research, we are

planning to extend it in several ways. First, we are planning to
interview more people, to extend our data set and further
validate and refine our findings. For example, we have not had
any of the interviewees talk about hypotheses, even though the
literature emphasizes hypothesis-based experimentation.
Second, we are planning to extend our question set to a
questionnaire that can be send to a larger group of people for a
more quantitative validation.

Also, we are planning to test the usage of our model in
industrial settings. For this, we are planning to conduct case

316Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 336 / 646

studies at several companies, where we would guide the
company into using the conceptual model, and reflect on the
efficiency. This could sharpen our framework and it would
give further validation of the viability of our proposed work.

Last, we would like to extend our guidelines to even more
actionable guidelines that could be used in the various stages a
product can be in.

IX. CONCLUSIONS
In this research, we have shown that new product

development is based on two types of decisions: architectural
decisions and pivots. We have presented a conceptual
framework that addresses both decisions in the context of an
experimental risk-based process. This framework can help
practitioners to structure their new product development
process. From our interviews we derived a set of guidelines
that emphasized the importance of decisions in experiments.
Both architectural decisions as well as pivots play a vital role
in the development of new products, as two sides of a medal
representing the technical and the business part of a decision.

ACKNOWLEDGEMENTS
We would like to thank the following interviewees for

taking the time to talk with us about their pivots: Mark Vletter,
Gordon Rios, Christian Branbergen and Theo Hultberg.

REFERENCES
[1] J. Bosch, “Building Products as Innovation Experiment

Systems”, in ICSOB, Springer, 2012, pp. 27-39.
[2] F. van der Linden, J. Bosch, E. Kamsties, K. Känsälä, and J. H.

Obbink, “Software Product Family Evaluation”, in SPLC,
Springer Verlag, 2004, pp. 110-129.

[3] A. G. J. Jansen and J. Bosch, “Software Architecture as a Set of
Architectural Design Decisions”, in Proceedings of the 5th
IEEE/IFIP Working Conference on Software Architecture
(WICSA 2005), IEEE Computer Society, 2005, pp. 109-119.

[4] J. S. van der Ven, A. G. J. Jansen, P. Avgeriou, and D. K.
Hammer, “Using Architectural Decisions”, in Second
International Conference on the Quality of Software
Architecture (Qosa 2006), Karlsruhe University Press, 2006, pp.
1-10.

[5] P. Kruchten, “An Ontology of Architectural Design Decisions in
Software Intensive Systems”, in 2nd Groningen Workshop
Software Variability, 2004, pp. 54-61.

[6] R. C. de Boer, R. Farenhorst, P. Lago, H. van Vliet, V. Clerc,
and A. Jansen, “Architectural knowledge: getting to the core”, in
Proceedings of the Quality of software architectures 3rd
international conference, 2007, Springer-Verlag, 2007, pp. 197-
214.

[7] J. S. van der Ven and J. Bosch, “Architecture Decisions: Who,
How and When?”, in ASA, Agile Software Architectures (to be
published), Elsevier, 2013, pp. unknown.

[8] D. Tofan, M. Galster, and P. Avgeriou, “Reducing Architectural
Knowledge Vaporization by Applying the Repertory Grid
Technique”, in Proceedings of the 5th European Conference on
Software Architecture (ECSA), Springer LNCS, 2011, pp. 244-
251.

[9] S. Blank, “The Four Steps to the Epiphany: Successful
Strategies for Products that Win”, Lulu.com, 2008.

[10] E. Ries, “The Lean Startup: How Constant Innovation Creates
Radically Successful Businesses”, Penguin Books Limited,
2011.

[11] A. Maurya, “Running Lean: Iterate from Plan A to a Plan That
Works”, O'Reilly Media, Incorporated, 2012.

[12] J. Bosch, “Design and use of software architectures: adopting
and evolving a product-line approach”, ACM Press/Addison-
Wesley Publishing Co., 2000.

[13] C. Hofmeister, R. Nord, and D. Soni, “Applied Software
Architecture”, Addison-Wesley, 2000.

[14] P. Clements, D. Garlan, L. Bass, J. Stafford, R. Nord, J. Ivers,
and R. Little, “Documenting Software Architectures: Views and
Beyond”, Pearson Education, 2002.

[15] P. Kruchten, P. Lago, and H. V. Vliet, “Building up and
Reasoning about Architectural Knowledge”, in in Proceedings
of the Second International Conference on the Quality if
Software Architectures (QoSA), Springer-Verlag, 2006, pp. 43-
58.

[16] J. Tyree and A. Akerman, “Architecture Decisions:
Demystifying Architecture”, in IEEE Softw., vol. 22 (2), 2005,
pp. 19-27.

[17] J. S. van der Ven, A. Jansen, J. Nijhuis, and J. Bosch, “Design
Decisions: The Bridge between Rationale and Architecture”,
Rationale Management in Software Engineering, Springer,
2006, pp. 329-348.

[18] J. van Gurp and J. Bosch, “Design erosion: problems and
causes”, in J. Syst. Softw., vol. 61 (2), 2002, pp. 105-119.
[19] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical Debt:
From Metaphor to Theory and Practice”, in IEEE Software, vol.
29 (6), 2012, pp. 18-21.

[20] K. M. Eisenhardt, “Building Theories from Case Study
Research”, in Academy of Management Review, vol. 14 (),
1989, pp. 532-550.

[21] J. S. van der Ven, “Making the Right Decision: Supporting
Architects with Design Decision Data”, in Software Architecture
- 7th European Conference, ECSA, Springer, 2013, pp. 176-183.

[22] S. Thomke, “Enlightened Experimentation: The New Imperative
for Innovation (HBR OnPoint Enhanced Edition)”, Harvard
Business Review, 2001.

[23] K. M. Eisenhardt and B. N. Tabrizi, “Accelerating Adaptive
Processes: Product Innovation in the Global Computer
Industry”, in Administrative Science Quarterly, vol. 40 (1),
1995, pp. 84-110.

[24] T. H. Davenport, “How to Design Smart Business Experiments”,
in Harvard Business Review, vol. 87 (2), 2009, pp. 68-76.

[25] S. H. Thomke, “Experimentation Matters: Unlocking the
Potential of New Technologies for Innovation”, Harvard
Business School Press, 2003.

317Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 337 / 646

Moonlighting Scrum: An Agile Method for Distributed Teams with Part-Time

Developers Working during Non-Overlapping Hours

Philipp Diebold, Constanza Lampasona

Fraunhofer Institute for Experimental Software Engineering

Kaiserslautern, Germany

{philipp.diebold, constanza.lampasona}@iese.fraunhofer.de

Davide Taibi

Software Engineering Research Group

University of Kaiserslautern

Kaiserslautern, Germany

taibi@cs.uni-kl.de

Abstract—Scrum and several agile development processes are

becoming increasingly popular since they offer the ability to

manage volatile requirements. This applies to many types of

projects and teams. In case of development teams with

moonlight developers working for at most ten non-overlapping

hours per week, not all Scrum practices can be applied. In this

paper, we introduce Moonlighting Scrum, an adaptation of

Scrum aimed at optimizing effectiveness and efficiency by

minimizing the amount of communication to the least

necessary and maximizing the time invested in development.

Our aim is to accomplish this by modifying Scrum practices to

achieve a trade-off between development and communication

effort to produce the best final results, given the available

resources and time. An application of Moonlighting Scrum

took place in a real cooperative project and provided

interesting results.

Keywords-agile software development; Scrum; distributed

development

I. INTRODUCTION

The adoption of agile software development processes
has increased over the years. Agile methodologies are
known for being lightweight, which implies moving from
heavyweight processes to methods allowing shorter
development cycles and more intensive customer
involvement. For this reason, many companies have been
moving from plan-based development to agile development.

As mentioned by Boehm and Turner [3], these two
approaches to software development are considered as
opponents. Software development teams often need to stick
to one specific process with a defined name and tailor it to
their own needs [3]. We believe that the choice of a specific
process should be based on tailoring the most advantageous
practices from agile and plan-based approaches that best fit
the respective team’s and project’s needs. To answer the
issue with which we are confronted, we need such tailoring
and a combination of approaches.

We encountered this issue during a software
development project we are currently involved in and where
requirements evolve over time, which suggested that we use
an agile approach. Moreover, our developers are mainly
students or researchers doing development in addition to
their main activities (study or research), with part-time
contracts for at most eleven hours per week without time
constraints. Because they are developers in their second job,
we call them moonlighters.

In addition to the short time they have available to invest
in the project, there is the problem that they are working
during different time slots, which makes daily meetings very
difficult and pair programming impossible. This suggested
the use of a less agile process.

Nonetheless, and although they work part-time, there is
still the need for coordinating their work and monitoring
project progress.

All these variables in the context of our development
projects led us to research the following questions:

RQ1: How much communication is needed to

achieve a project’s goals? (Effectiveness)

RQ2: How much communication is needed before

communication overhead becomes too large?

(Efficiency)
Our goal is to find an adequate balance or combination

of plan-based and agile approaches which best fits the
context of our development projects: distributed
moonlighters working during non-overlapping times. The
proposed development approach is an adaptation of Scrum,
which integrates existing development methods into an agile
environment. It addresses a process “to produce best end
results, given the current resources and time available” [9,
pg. 25]. The approach should be helpful for teams in a
similar context because such a constellation is very common
in software development, e.g., for open source project or at
German universities.

In Section II, we discuss different methodological
approaches to software development and their advantages
and disadvantages for our development context. In Section
III, we introduce an adaptation of a distributed Scrum
method that fits our needs, called Moonlighting Scrum. In
Section IV, we show how we applied the process in a real
project and the measurement plan we applied. Finally, in
Section V, conclusions and future work are presented.

II. RELATED WORK

Today’s software development processes range from
heavy weight plan-based development, such as the waterfall
model [15], to incremental and lightweight agile
methodologies, such as Extreme Programming [1]. The
spiral model combines some aspects of the waterfall model
and introduces risk management as a regular step during the
process. Unlike the waterfall model, the spiral model
iterates through several steps during the entire product
development. On the opposite side, agile methodologies

318Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 338 / 646

include some aspects of iterative models allowing for fast
reaction to changes in requirements (Figure 1).

Figure 1. Spectrum of software development processes

Nevertheless, no process fits well to every project

context and therefore several other processes have appeared
in the literature. In this work, we will introduce the most
important approaches we took into account during the
design of our model: plan-based development in general and
agile development processes such as Scrum, Distributed
Scrum, and Extreme Programming.

A. Plan-based Development

Plan-driven development approaches (also known as
document-centered approaches) such as the waterfall [15],
V-Modell XT [7], iterative, or spiral process models [4] are
mainly document-centered approaches differing in their
execution of the different Software Engineering (SE) phases
and have several common requirements on assuring good
software quality in their performance. Normally, they are
performed for larger projects with larger teams, but with
smaller teams the amount of project management stays
almost the same [5]. Additionally, plan-based projects try to
avoid refactoring because it is very expensive [2], even in a
large project, as changes can influence many parts of the
product. In contrast to other approaches, plan-based
development covers current and future requirements in the
architecture. However, this also implies early stable
requirements. The developers using such an approach need
to work in a plan-oriented manner and have adequate skills
or access to external knowledge. The customers of products
developed with such plan-based development need to be
collaborative, representative, and empowered, since they are
mainly involved at the beginning when it comes to making
decisions about the requirements.

Plan-based approaches have several disadvantages for
the project we want to perform because we only have a
small team where all team members are distributed and
work during different time slots. In addition, most of the
requirements are not stable – and might even not be finished
at the beginning of the project. This might lead to a
considerable number of refactoring steps, which are
expensive in plan-based development.

B. Scrum

The vast majority of Scrum practices are not new to SE.
Scrum was developed at Easel Corporation in 1993 [1],
basically with the same idea behind Barry Boehm’s Spiral
Model [4].

Scrum speeds up the requirements adaptability of the
spiral model with some agile practices from Extreme
Programming [13], such as pair programming and daily
meetings.

Scrum is a lightweight, iterative, and incremental
development model based on three principles: transparency,
inspection, and adaptation.

Moreover, Scrum prescribes formal practices for
inspection and adaptation:

• Sprint Planning Meeting
• Daily Scrum: daily meeting where each member

answers three questions:
o What did I do yesterday that helped the

team meeting the sprint goal?
o What will I do today to help the team meet

the sprint goal?
o Do I see any impediment that prevents me

or the team from meeting the sprint goal?
• Sprint Review
• Sprint Retrospective
Because of the practical requirements, we cannot apply

Scrum directly in our team but need to adapt it in a
distributed way.

C. Distributed Scrum

Distributed teams always face different issues when
applying development models. If we increase team
distribution, we need to introduce a classification in
cooperative SE using globally distributed teams [11]:

• Collocated: Team members are all in the same
location.

• Collocated Part-Time: Team members are usually all
in the same location but some of them occasionally
work off-site. They face similar issues as distributed
teams even if they have the opportunity to meet face
to face.

• Distributed with Overlapping Work Hours: Team
members have a few hours during the workday in
which they interact with each other. Scrum meetings
can be held during the overlapping time. Sprint
planning meetings are more difficult and tend to be
less efficient.

• Distributed with No Overlapping Work Hours:
Teams have no interaction during their working
hours.

In addition to the different levels of distributed teams,

we also have to take into account different models that can
be considered when using Scrum with distributed teams [17]
(Figure 2):

• Isolated Scrums: Teams are isolated across
geographies.

• Distributed Scrum of Scrums: Scrum teams are
isolated across geographies and integrated by a
Scrum of Scrums that meets regularly across
geographies.

• Totally integrated Scrums: Scrum teams are cross-
functional with members distributed across
geographies. Additionally, each team has members
in several locations and has its own Scrum Master.

319Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 339 / 646

Figure 2. Strategies for distributed Scrum teams [10]

Several works report on the application of Scrum with
one of these three categories [8][10][12][13][16].

Sutherland reports on two examples of project
management with distributed Scrums of Scrums and fully
distributed Scrums [17][18]. These works led to the
conclusion that distributed teams can be as productive as
small collocated teams if the entire set of teams works as a
single team with a global development infrastructure
(repository, tracking and reporting tool, and daily meetings).
Unlike our work, all teams were composed of several
developers working full time and focused on team
interaction with daily meetings.

However, not much work has been done to date
regarding how to reduce the effort for each team member in
teams working during non-overlapping hours.

D. Extreme Programming

Extreme Programming [1] is another lightweight
software development methodology, which also arose from
the need for agility in the development process. Its main idea
consists of taking best development practices to the extreme
by eliminating anything that might interfere with
productivity. The methodology emphasizes incremental
development as a response to changing customer needs. Its
creator Beck claims that it is especially suitable for small to
medium-sized teams. The main practices include pair
programming, refactoring, and simple design.

Extreme Programming has been criticized because of its
lack of emphasis on design and documentation, which would
encourage hacking [9]. It also requires pair programming,
which suggests that it might require more effort. People also
criticize that it requires constant customer availability and
very disciplined teams, which could make its adoption more
difficult.

For our context, Extreme Programming is the least
suitable methodology, as the team members work only part-
time and during different time slots.

TABLE I. COMPARISON OF DEVELOPMENT PROCESSES

 Requirements

and SE

Practices

Meetings and

Communication
Roles

Location and Working

Hours

R
eq

u
ir

em
en

ts
 c

h
an

g
e

d
u

ri
n
g

 p
ro

je
ct

R
ef

ac
to

ri
n

g

P
ai

r
p

ro
g

ra
m

m
in

g

D
ai

ly
 m

ee
ti

n
g

R
ev

ie
w

 a
n

d
 r

et
ro

sp
ec

ti
v

e

P
la

n
n
in

g
 m

ee
ti

n
g

In
it

ia
l

m
ee

ti
n

g

S
cr

u
m

 m
as

te
r

D
ev

el
o
p
er

s

P
ro

d
u

ct
 o

w
n
er

/C
u

st
o

m
er

P
ro

je
ct

 m
an

ag
er

C
o
ll

o
ca

te
d
 d

ev
el

o
p
er

s

C
o
ll

o
ca

te
d
 p

ar
t-

ti
m

e
d
ev

el
o

p
er

s

D
is

tr
ib

u
te

d
 t

ea
m

s,
 o

v
er

l.
 h

o
u

rs

D
is

tr
ib

u
te

d
 t

ea
m

s,
 n

o
n

-o
v

er
l.

 h
o
u

rs

D
is

tr
ib

u
te

d
 d

ev
el

o
p
er

s.
 n

o
n

-o
v
er

l.
 h

o
u

rs

Plan-Based x x x x x x x x x

Moonlighting Scrum x x (x) x x x x x x x

Scrum x x x x x x x x x x x x x

XP x x x x x x x x

III. MOONLIGHTING SCRUM

Distributed teams with part-time developers working
during non-overlapping hours are used in several projects.
Moreover, at the University of Kaiserslautern,
development is often assigned to students with part-time
contracts, which requires them to work for a small
number of hours per week, in their spare time.

Applying the existing development processes to these
teams is always challenging. Table I compares some of
the most important development methodologies with
Moonlighting Scrum. As we can see from Table I, plan-
based development and XP cannot be applied at all, while
Scrum has some points in common.

Moonlighting Scrum is a Scrum extension that helps
developers to structure the development process with the

320Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 340 / 646

goal of releasing the best product possible with the
available resources in time.

Just like Scrum, Moonlighting Scrum requires sprint
planning meetings, sprint reviews, and retrospectives
(Figure 3). During the meetings, the whole team and the
product owner must meet in person or via video
conference.

In Scrum, sprints last from two to three weeks,
whereas in Moonlighting Scrum they last from one to two
weeks.

Because of the physical distribution and the non-
overlapping time for the developers, pair programming
cannot be applied and the daily meetings prescribed by
Scrum cannot be attended in person.

Figure 3. Moonlighting Scrum process schema

Code quality and inspection are the responsibility of
the Scrum master, who is in charge of checking overall
quality and help the developers preserve a minimum
amount of code quality. Moonlighting Scrum is thought to
deliver the highest quality possible if limited resources are
available.

Therefore, as reported in [12], we substituted morning
meetings with an online forum by creating a thread for
every six working hours to which each developer posts
his/her comments by replying to three questions:

 What have you completed, with respect to the
sprint goal, since the last daily meeting?

 What specific tasks, with respect to the sprint goal,
do you plan to accomplish until the next daily
meeting?

 What obstacles got in the way of completing this
work?

The Scrum Master also has to take care of

communication efficiency by reducing or increasing the

online reporting interval, and is in charge of increasing or

decreasing the reporting time based on the team’s

efficiency.

For this reason, the team members must also answer

two additional questions in their online report:

 When did you work (start-end)?

 How much time did you spend on writing this
report?

The developers are working for at most ten hours per
week and are requested to work for at least two hours
continuously. Consequently, the time needed to write the
report at the beginning and at the end of their work might
take up an important percentage of their working time.

In classical Scrum, daily meetings take 15 minutes.
Taking into account 40 working hours per week, daily
meetings should take up approximately 3% of the
working time.

 In contrast, Moonlighting Scrum requires an online
report, which usually takes from 5 to 8 minutes, every
four to six working hours [12], with at least one report per
week. If the developers work for more than six hours per
week, they are requested to report twice. The estimated
working time used for both cases is 3.5%.

TABLE II. EFFORT REQUIRED

Hours/

week

Weeks/

sprint

Hours/

meeting

Minutes/

daily report

Scrum 40 2-3 4 15

Moonlighting

Scrum
4-10 1-2 2 8

Sprint planning, review, and retrospective meetings in

Scrum take four hours per sprint, with sprints lasting from
two to three weeks and effort ranging from 3.3% to 5%
[12][14].

In Moonlighting Scrum, meetings take suggested two
hours with an approximate effort ranging from 6.6% to
12.5% (Table II).

Taking into account the communication issues in a
highly distributed team with non-overlapping hours,
communication time does not grow significantly, ranging
from a maximum of 8% in Scrum to a maximum of
15.5% in Moonlighting Scrum (Table III).

TABLE III. ESTIMATED COMMUNICATION

Moonlighting Scrum is applicable to a wide range of

projects, from university- and research-based projects to
open source projects. In general, the process requires
more relative effort for communication than Scrum but
allows developing code in a controlled and structured
way. The process is applicable whenever we are faced
with distributed developers working during non-
overlapping hours.

IV. APPLICATION OF MOONLIGHTING SCRUM

Moonlighting Scrum has been applied for the initial
development of the software project Technology
Repository and Process Configuration Framework [6].
The development started in February 2013 and the first
version of the tool was released at the end of May 2013.

 Meeting time
Reporting

time
Overall time

Scrum 3.3% - 5% 3% 6.3%-8%

Moonlighting

Scrum
6.6%-12.5% 3% 9.6%-15.5%

321Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 341 / 646

A. Team Organization

The development team is composed of six people.
Some of them are employees of Fraunhofer Institute for
Experimental Software Engineering IESE, while the
others work for the “Software Engineering Research
Group - Processes and Measurement” of the University of
Kaiserslautern. All developers have an intermediate level
of experience in software development, while none of
them has any experience with agile methodologies.

The developers work part-time, with weekly working
hours ranging from four to ten, and together spent a total
of 39 hours per week on this project.

In order to manage the whole project, from
development to communication aspects, we adopted a
development infrastructure covering several aspects. The
team meets in person during the sprint meeting or, in
exceptional cases, via video conference, whereas online
reports are recorded in a forum by creating a post for each
report.

Sprint retrospectives, planning, and retrospective
discussions are led by means of an online integrated tool
[19], which allows us to record sprint reports, manage
product backlog, and draw burn-down charts.

In addition to this infrastructure and in order to
increase collaboration between team members, we also set
up a Subversion [13].

B. Process Measurement and Improvements

In order to answer the research questions (RQ1 and
RQ2), we defined a Goal-Question-Metric measurement
plan that allowed us to derive appropriate productivity
and communication metrics that impact on effectiveness
and efficiency (Table IV).

To define a usable measure for productivity, we
considered User Stories (US) as the basic measurement
unit.

Since the development is carried out by means of a
Rapid Application Development (RAD) Tool (Microsoft
Visual Studio 2012), we do not collect code metrics such
as lines of code, code complexity, or other metrics
because the vast majority of the code is generated
automatically by the RAD tool; however, we did define
metrics.

Communication time is expressed in terms of time
needed to write the online reports and attend the sprint
meetings. Total communication time is calculated
summing up these two per person. As an example, the
training sprint meeting lasted 120 minutes but considering
that five people attended the meeting, the total time for
the training sprint was 600 minutes (10 hours).

As shown in Table IV, we managed to achieve a sprint
meeting duration of two hours or less, except for sprint 1
where the vast majority of topics involved training issues
related to the previous training sprint. Total
communication time (without reading the online reports)
decreased and became stable after two sprints, with effort
ranging from 13% to 18%.

On average, communication time required 17% of the
total time: 16.4% for the sprint meetings, 0.6% for the

online reports, and 83% for development. As a result of
this experiment, communication time was slightly higher
(17%) than expected (9.6%-15.5%).

TABLE IV. MOONLIGHT SCRUM COLLECTED DATA

Productivity Communication

#
 d

a
y

s
p

e
r

S
p

r
in

t

T
o

t
w

o
r
k

in
g
 h

o
u

rs

#
A

ss
ig

n
e
d

 U
se

r

S
to

r
ie

s

#
C

o
m

p
le

te
d

 U
se

r

S
to

r
ie

s

O
n

li
n

e
r
e
p

o
r
t

ti
m

e

(m
in

u
te

s)

S
p

r
in

t
m

e
e
ti

n
g

 t
im

e

(m
in

u
te

s)

C
o

m
m

u
n

ic
a

ti
o

n

ti
m

e/
to

ta
l

ti
m

e
(%

)

Training

Sprint
10 16 3 3 8 120 63%

Sprint 1 9 50 4 3 26 150 26%

Sprint 2 10 56 6 5 30 120 18%

Sprint 3 14 78 7 6 22 120 14%

Sprint 4 15 84 7 5 27 90 13%

Sprint 5 10 56 5 4 16 120 14%

Sprint 6 11 61 7 5 18 120 17%

Sprint 7 11 61 5 4 26 120 17%

Sprint 8 12 67 3 2 24 120 17%

The application of this process will continue for another

three months for project maintenance.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a solution aimed at finding
an adequate process for distributed teams with part-time
developers working during non-overlapping hours who
only have a small amount of effort available per week (ten
or less hours per week). Our idea consists of making a
trade-off between plan-based and agile development
processes. The proposed process is an adaptation of
Scrum aimed at optimizing the effectiveness and
efficiency of the developers. This means that our goal is
to optimize productivity by minimizing the amount of
communication to the minimum necessary and
maximizing the time invested in development. Our aim is
to achieve this with the following instruments:

• Sprint planning, sprint reviews, and retrospective
meetings are done in person or via video
conference;

• Developers must work for a minimum of two
continuous hours;

• Daily meetings are replaced by writing a report in
an online forum every six working hours;

• Developers voluntarily report the effort they invest
into development and reporting;

• Scrum Master performs code reviews.

The application of Moonlighting Scrum on a real

project confirmed that the process can be successfully

322Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 342 / 646

applied in the university context and helps to keep track
of the development steps and to maintain low
communication effort.

The project where we applied Moonlight Scrum will
continue for another three months for the maintenance
phase.

As expected, the process helped us keep track of the
development progress. After some initial training and
after resolving some technology issues resulting from the
new activities required from our developers as well as
from the complexity of the domain infrastructure (cyber-
physical systems), we were able to maintain low
communication overhead.

In future, we will encourage our colleagues working
on similar projects to use Moonlighting Scrum process to
obtain more evidence to improve it. This should also be
done with some open-source development as well as
industrial projects to generalize the results.

In addition to this generic aspect we will also try to
improve the approach by using other collaboration tools
or improving the communication with an online-chat
conference system.

ACKNOWLEDGMENT

This paper is based on research being carried out in the
ARAMiS (BMBF O1IS11035Ü) project funded by the
German Ministry of Education and Research (BMBF).

REFERENCES

[1] K. Beck andC. Andres,“Extreme programming explained.
Embrace change” Addison-Wesley Boston, ed. 2, 2005, pp.
64-69.

[2] B. Boehm,“Get ready for agile methods, with care”
Computer, vol. 35(1), Jan. 2002, pp. 64-69, doi:
10.1109/2.976920.

[3] B. Boehm and R. Turner,“Balancing agility and discipline.
A guide for the perplexed” Addison-Wesley Boston, 2004.

[4] B. Boehm,“A spiral model of software development and
enhancement” IEEE Computer, vol. 21(5), May 1988, pp.
61-72, doi:10.1109/2.59 .

[5] M. Ceschi, A. Sillitti, G. Succi, and S. De Panfilis,“Project
management in plan-based and agile companies” IEEE
Software, vol. 22(3), May-June 2005, pp. 21-27,
doi:10.1109/MS.2005.75.

[6] P. Diebold, “How to configure SE development processes
context-specifically?”Proc. International Conference on
Product-Focused Software Development and Process
Improvement (PROFES), Springer LNCS, June 2013, pp.
355-358, doi:10.1007/978-3-642-39259-7_33.

[7] German Federal ministry of the Interios, „V-Model XT.
Definition and Documentation on the Web.”Online,
http://www.v-model-xt.de, July 2013.

[8] I. Gorton and S. Motwani,“Issues in cooperative software
engineering using globally distributed teams” Information
and Software Technology, vol. 38(10), Jan. 1996, pp. 647-
655, doi:10.1016/0950-5849(96)01099-3.

[9] J. Hunt,“Agile software construction”Springer London,
2005.

[10] J. Kontio, M. Hoglund, J. Ryden, and P. Abrahamsson,
“Managing commitments and risks: challenges in
distributed agile development” Proc. International
Conference on Software Engineering (ICSE), IEEE Press,
May 2004, pp.732-733, doi:10.1108/ICSE.2004.1317510.

[11] M. Korkala, and P. Abrahamsson, “Communication in
distributed agile development: a case study”Proc.
EUROMICRO Conference on Software Engineering and
Advanced Applications, IEEE Press,Aug. 2007, pp. 203-
210, doi:10.1109/EUROMICRO.2007.23.

[12] L. Lavazza, S. Morasca, D. Taibi, and D. Tosi, “Applying
SCRUM in an OSS Development Process: Empirical
Evaluation.” Proc. International conference on Agile
Software Development (XP), Springer LNBI, June 2010,
pp 147-159, doi:10.1007/978-3-642-13054-0_11.

[13] N. Sridhar, M. RadhaKanta, and M. George, “Challenges of
migrating to agile methodologies.” Communications of the
ACM – Adaptive complex enterprises (CACM), vol. 48,
May 2005, pp. 72-78, doi:10.1145/1060710.1060712.

[14] M. Paasivaara, S. Durasiewicz, and C. Lassenius, “Using
scrum in a globally distributed project: a case study.”
Software Process: Improvement and Practice – Global
Software Development, vol. 13(6), Nov. 2008, pp. 527-544,
doi:10.1002/spip.v13:6.

[15] W. Royce, “Managing the development of large software
systems: concepts and techniques” Proc.Technical Papers
of Western Electronic Show and Convention
(WESCON),IEEE Press, Aug. 1970, pp. 1-9.

[16] J. Sutherland,“Agile development: lessons learned from the
first Scrum”Cutter Agile Project Management Advisory
Service: Executive Update, vol. 5, 2004, pp. 1-4.

[17] J. Sutherland, G. Schoonheim, and M. Rijk, “Fully
distributed scrum: replicating local productivity and quality
with offshore teams.” Proc. Annual Hawaii International
Conference on System Sciences (HICSS), IEEE Press, Jan.
2009, pp. 1-8, 2doi:10.1109/HICSS.2009.225.

[18] J. Sutherland, A. Viktorov, J. Blount, and N.
Puntikov,“Distributed Scrum: agile project management
with outsourced development teams.” Proc. Annual Hawaii
International Conference on System Sciences (HICSS),
IEEE Press, Jan. 2007, pp. 274a.

[19] RallyDev http://www.rallydev.com (Last access July 2013)

323Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 343 / 646

An Agile Maturity Model for Software Development Organizations

Felipe Santana Furtado Soares
UFPE/CIn – Informatics Center – Federal University of

Pernambuco
C.E.S.A.R - Recife Center of Advanced Studies and

Systems
Recife, Brazil

furtado.fs@gmail.com

Silvio Romero de Lemos Meira
UFPE/CIn – Informatics Center – Federal University of

Pernambuco
Recife, Brazil

srlm@cin.ufpe.br

Abstract—The transition from traditional methods to agile
methods and the changes needed to achieve real benefits from
them are difficult to reach. The change affects not only the
software development team, but also several areas of an
organization and, first and foremost, requires a cultural
change. In this context, this paper sets out to define a maturity
model that will guide the setting up and running of agile
methodologies, based on the Capability Maturity Model
Integration (CMMI), in software development organizations.
Given the research question considered, the method chosen is a
systematic review of the literature, followed by a field study in
software development companies. Thus, it is hoped that higher
rates of success will be achieved when agile development
values, principles and practices are adopted.

Keywords-Agile metodologies; Maturity Model; Scrum;
Lean; CMMI.

I. INTRODUCTION
In recent years, substantial transformations have been

taking place in the software industry, driven by the demands
of the market. Given this backdrop, there has been a demand
for organizations to pay special attention to improving their
software processes in the pursuit of greater competitiveness
and productivity. Therefore, one of the challenges these
organizations face is to acquire maturity in their development
processes by setting up and running quality models that
receive worldwide recognition [1].

At the same time, the market itself imposes deadlines that
are more and more competitive and require great agility and
high productivity from teams when using processes that
bring these about and identifying activities that do not add
value to the final product [2].

The challenge then becomes even more complex, as it
includes meeting the requirements of a mature model,
without spiking productivity, which is based heavily on the
control variables of a software development project, while
adopting practices of agile processes.

Capability Maturity Model Integration (CMMI) is an
approach to improve processes that provides elements that
are essential for an effective process. It brings together best
practices that address development and maintenance
activities, thus covering the entire lifecycle of a product from
conception to delivery and maintenance [1].

In the late 90s, several agile methods emerged, including:
Adaptive Software Development [34], Crystal [33], Dynamic
Systems Development [35], Extreme Programming (XP)
[36], Feature Driven Development (FDD) [37] and Scrum.

All these methods use agile principles such as iterative
cycles, rapid delivery of software that works and simplicity,
as defined in the Manifesto for Agile Development [11].

Some authors advocate using the agile approach for
managing projects that are conducted in complex
environments characterized by many initial uncertainties,
and in which there are difficulties in defining the scope and
drawing up comprehensive plans, besides a high degree of
changes and constant pressures to deliver results within short
periods of time. However, the authors claim that the
hindsights offered by the traditional project management
methods should not be set aside but rather should be
combined with the new practices put forward by agile
methods [4].

However, some companies still have difficulties in
implementing methodologies, either for lack of knowledge,
or due to their difficulty in adapting these methodologies to
the context of their projects [16]

In this context, after having obtained the correct
definition of a maturity model, the expectation is that agile
methodologies will be implemented in a systematic and
organized way, with more likelihood of their being
undertaken successfully. Thus, the main objective of this
research is to define a maturity model so as to guide the
setting up and running of agile methodologies, based on the
CMMI maturity model, in software development
organizations, thus resulting in higher success rates when
agile development values, principles and practices are
adopted.

The paper is divided as follows: Section 2 presents the
background overview of CMMI; Section 3 focuses on
describing the main agile methodologies and its benefits;
Section 4 presents an initial discussion about a maturity
model and agile methodologies, showing the difficulties in
the transition to agile methods, a technical analysis and an a
initial maturity model definition to guide the setting up and
running of agile methodologies, based on the CMMI
maturity model; The last section concludes this work in
progress and presents the next steps.

II. MATURITY MODELS
According to Prado [5], maturity can be defined as "a

way to measure the stage that an organization is at in its
ability to manage its projects."

The positive and expected results for the company,
arising from its growth and maturity, will not come simply
from the immediate application of techniques, tools and

324Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 344 / 646

dissemination of concepts, nor should the best results be
expected in the short term. All organizations undergo a
maturation process, and this process has to precede
excellence. The learning curve for maturity is measured in
years [6].

CMMI lays down guidelines to improve the processes of
an organization and its ability to manage the development,
purchase and maintenance of products and services [3]. The
model defines a path towards continuous improvement in
terms of five levels of organizational maturity.

The CMMI-based improvement of processes has been
accompanied by excellent quantitative results in costs,
schedules, productivity, return on investment (ROI),
customer satisfaction and product quality [7].

III. AGILE METHODOLOGIES
In the last ten years, agile methodologies have been

gaining ground in the Information Technology and
Communication market. Several studies have shown the
good results achieved by these companies [12].

A. The main agile methodologies
Scrum is a framework for planning and monitoring a

project that follows the principles of the Agile Manifesto.
Since it is iterative and incremental, it works well in an
environment of constant change. It supplies self-managing
teams and proposes a form of flexible and adaptable work,
not only in relation to the scope and requirements of a
project, but also with regard to the exchange of teams, tools,
programming languages, etc. [14].

XP is an agile methodology targeted on Software
Engineering, and pays greater attention to programming than
to management, as the former is the focus of Scrum, which is
the reason why these methodologies are normally used
together [15]. It was created by Kent Beck in 1996 and seeks
to improve a software project by using five essential values:
communication, simplicity, feedback, respect and courage.

Large numbers of tools and techniques have been
developed to enable organizations to apply Lean concepts
and ideas, many of which emerged from TPS (the Toyota
Production System), for example, Kanban, JIT (Just in
Time), Jidoka, Kaizen, etc. [23].

FDD is an agile methodology for management and
software development that combines agile project
management practices with a complete approach to object-
oriented Software Engineering [24].

B. Benefits of Agile Software Development
Cohn [16] consolidated some surveys conducted in 2008

on the benefits of adopting agile software development
related to the following matters: cost and productivity,
employees’ commitment and job satisfaction, time to market,
product quality, and stakeholder satisfaction:

 A study conducted by Mah [25] of QSMA has been
collecting metrics on productivity and quality for
more than 15 years. He conducted a rigorous
comparison between 26 agile development projects
and a database of 7,500 development projects,

mostly traditional ones. The agile projects studied
ranged in size from 60 to 1,000 people;

 An extensive survey conducted by Rico [26] on agile
projects summarizes 51 studies and academic
research papers and gives the main percentage
improvements in productivity, cost, quality,
scheduling, customer satisfaction and return on
investment;

 A survey conducted by the company Version One
[13] with more than three thousand people. This is
the largest ever survey on the state of adopting agile
development. It is international in scope and is the
most comprehensive overview of the use of agile
development practices;

 A survey conducted by Scott Ambler in February
2008 with 642 people [12];

Regarding the comparison on productivity, research by
Mah [25] reports that agile projects are 16% more
productive with a confidence level which is statistically
significant. These results were corroborated by the research
studies below:

 Among the participants in the VersionOne survey
[13], 73% found that being agile had improved
processes (50%) or had significantly improved them
(23%);

 Among the participants in the Ambler survey [12],
82% found that productivity was higher or much
higher than before when agile methods were used
and only 5% thought that productivity was lower or
much lower.

In line with the above research, Rico [26] showed that the
average increase in productivity was 88% and the average
savings in development costs was 26%.

Regarding the time-to-market, agile teams tend to launch
their products faster than traditional teams. VersionOne [13]
reported that 64% of participants said that the time-to-market
improved (41%) or significantly improved (23%). Mah [25]
compared 26 agile projects to the QSMA database which has
7,500 projects and showed that their time-to-market is 37%
faster.

IV. A MATURITY MODEL AND AGILITY
Methods, practices and agile techniques for software

development promise to increase customer satisfaction [17]
by producing higher quality software and accelerating
development time [10]. Therefore, organizations that put
great effort into improving their processes based on CMMI
also believe that agile approaches can supply incremental
improvements [20][18].

A. Difficulties in the transition to agile methods
The transition to agile methods and the changes

necessary to obtain the benefits are difficult to attain. The
change affects not only the software development team, but
also several areas of the organization; for example, the
commercial, marketing and financial areas [16].

Shore [27] and Fowler [28] point out that one of the
failures when adopting agile methodologies is related to

325Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 345 / 646

people: "it is the team that brings success or failure". He also
points to the need to use some concepts. For example, for
Scrum and XP to be applied together and not just one or the
other, given that the former deals with management aspects,
while the latter deals with engineering techniques of the
product.

Anderson [8] points out that one of the difficulties when
adopting these methodologies is associated with the way
they are conducted by organizations.

B. Technical Analysis
When a technical analysis is made of models like CMMI

and agile methodologies such as Scrum, for example, it is
important to note that the perspectives they take are not the
same. While maturity models feature a perspective of
continuous improvement based on more abstract processes,
and aim at meeting the objectives, agile methodologies are
more focused on certain contexts and offer a greater level of
detail on how to develop a software project.

Maturity models have a broad organizational vision,
since they recommend a "path" for continuous improvement,
defined in maturity levels. Each level involves various
process areas, which include managerial and engineering
matters. Conceptually, to be considered as adhering to one of
these levels, an organization must meet the goals established
for each process area. In addition to the objectives to be met,
practices are recommended for each process area that, after
having been well performed, immediately lead to goals being
achieved.

To reach a CMMI maturity level, the organization must
comply with all the process areas of the desired level. CMMI
states that "The only required component of the model is the
statement of the specific or generic goal”. This makes it clear
that the processes defined do not need to do exactly what is
described in typical working products, subpractices and
practices. The only requirement is achieving the goals of the
process area [1].

C. Agile Maturity Model
Methods, practices and techniques for agile software

development promise to increase customer satisfaction [18]
by producing higher quality software and accelerating
development time [10]. Therefore, organizations that have
made a large effort to improve their processes based on
CMMI, now also believe that agile approaches can supply
incremental improvements [20][18].

Turner [29] comments that, despite the characteristics
between agile methods and CMMI being distinct, both have
specific plans for software development and pursue what is
best so that the organization may produce quality software.
Davis [30] reports that despite there being great controversy
about the compatibility of Agile Development Methods
(ADM) and CMMI, they are not mutually exclusive. He
complements this by explaining that there is a place for
ADM in CMMI and, more importantly, those who have
adopted CMMI may consider adding ADM to their
processes.

Paulk [19], lead author of the initial version of the SW-
CMM, assessed XP in relation to 18 key process areas of the

original SW-CMM. He concluded that XP partially or
completely covers 10 of the 13 areas required to achieve
Level 3, and is not an obstacle for the other three.

Boehm [17] presented the view that agile and disciplined
processes exist on a continuum and can be combined as
appropriate based on the risk factors specific to a project.

Jeff Sutherland, co-author of Scrum, reported on a highly
productive project and claims that the combination of Scrum
and CMMI is more powerful than each of them separately,
and he includes guidelines on combining Scrum and CMMI
[31].

According to Anderson [9], the way to achieve greater
agility with CMMI is to realize that the practices are
primarily consultative or indicative, and that to correspond to
a CMMI evaluation, an organization must demonstrate that
the goals of a process area are being achieved by evidence
coming from practices.

In 2008, the Software Engineering Institute (SEI)
published a technical report advocating the idea that agile
development methods and CMMI best practices are not in
disagreement with each other, and that the approaches can be
combined successfully [32]. In 2010, the SEI published a
book describing case studies that show the integration
between CMMI and agile software development [21], but
this book did not propose a new maturity model.

According to Marçal [22], it is possible to live peacefully
with agile and maturity approaches. Challenges, however,
exist and are focused on meeting principles contained in the
two approaches. If on the one hand, practices of the maturity
model may be added that are not considered in agile
methodologies, the essence of these methods should not be
unduly shaken. Of course, what the organization should keep
in mind is the success of its projects in terms of time, cost
and quality. To reach these goals, the flexible and conscious
use of maturity models and agile methodologies is valid,
provided this is based on an architecture of processes aligned
to these goals and the organizational culture.

In this context, the main objective of this study is to
define a maturity model so as to guide the setting up and
running of agile methodologies, based on the CMMI
maturity model, in software development organizations,
which result in higher rates of success when agile
development values, principles and practices are adopted.

This model is divided into five levels of maturity as
follows:

 Level 1: initial stage where organizations do not use
any methodology and their processes are
unpredictable and reactive;

 Level 2: the stage where processes are characterized
by project. There are processes for planning and
monitoring a project, but the organization's vision is
by project, i.e., there is no portfolio management of
projects. At this level of maturity, setting up agile
methodologies starts with Scrum (a focus on
managing projects and prioritizing requirements) and
a part of the methodology of FDD;

 Level 3: the stage where the processes are well
defined and characterized by the Organization. There
is a standard process with well-defined criteria to

326Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 346 / 646

instantiate them at every context of a new project.
Engineering processes are implemented with the
focus on XP, FDD and Kanban;

 Level 4: the stage where the processes are managed
quantitatively with the focus on the agile metrics
defined in Kanban and FDD;

 Level 5: the stage where the process is often
optimized, with the focus on continuous
improvement of the processes using the principles of
Lean Software Development.

V. CONCLUSION AND FUTURE STUDIES
It was some years ago that agile methodologies became

popular in organizations that were seeking environments that
conduct software development in a faster and more flexible
way. With the purpose of improving the results of software
development projects, many organizations choose to
introduce agile methods into their development processes.
However, many do so in a disorganized way.

This work is part of a proposal for a doctoral thesis and
its research methodology is divided into two stages. The first
step uses the research instrument called an 'exploratory
study', its main objectives being to validate (i) that agile
methodologies and maturity models can be used together;
(ii) and that there is a need for software development
organizations to use a maturity model so as to implement
agile methods. This is being undertaken by making a
systematic review of the joint use of agile methodologies and
maturity models together with a field survey with a view to
validating this approach by means of interviews and
questionnaires conducted with appropriate staff in some
companies that are using agility with the CMMI maturity
model.

The second phase will set out to validate the proposal for
creating a maturity model for implementing agile
methodologies. The main challenge of this validation is
related to the possibility of applying the model in a software
development company and defining what metrics can be
collected before and after adopting the model. Furthermore,
the challenge is about isolating the variables before and after
measurement to assess whether, in fact, the use of the model
contributed to the successful implementation of agile
methodologies.

REFERENCES
[1] CMMI-DEV, CMMI for Development, V1.3 model, CMU/SEI-2010-

TR-033, Software Engineering Institute, 2010.
[2] B. Boehm, “A View of 20th and 21st Century Software Engineering”,

In Proceedings of the 28th international conference on Software
engineering (ICSE), ACM, New York, NY, USA, 12-29.
DOI=10.1145/1134285.1134288, 2006.

[3] B. Chrissis, M. Konrad, and S. Shrum, “CMMI Guidelines for
Process Integration and Product Improvement”, Second Edition,
Addisson-Wesley, EUA, 2007.

[4] M. Dias, “Um novo enfoque para o gerenciamento de projetos de
desenvolvimento de software”, São Paulo, 2005. Portuguese Version
Only.

[5] D. Prado, “Gerenciamento de Projetos nas Organizações”, 2 ed. Belo
Horizonte: Editora de Desenvolvimento Gerencial, 2003. Portuguese
Version Only.

[6] G. Levin and H. Nutt, “Achieving excellence in business
development: the business development capability maturity model”,
[S.I]: ALLPM, 2005, White paper, Available at:
http://www.allpm.com, 10/10/2013.

[7] D. Gibson, R. Dennis, and K. Kost, “Performance Results of CMMI-
Based Process Improvement.” In: CMU/SEI-2006-TR-004, ESC-TR-
2006-004, Pittsburgh, PA: SEI, CMU, 2006.

[8] D. Anderson, “Agile Management”:
http://www.agilemanagement.net, 10/10/2013.

[9] D. Anderson, "Stretching Agile to fit CMMI Level 3", Agile 2005
Conference, Denver, July, 2005.

[10] D. Anderson, “Agile Management for Software Engineering -
Applying the Theory of Constraints for Business Results”, Prentice
Hall, 2003.

[11] K. Beck, et al., “Manifest for Agile Software Development”,
http://agilemanifesto.org/, 2001, 10/10/2013.

[12] S. Ambler, “Agile adoption rate survey”.
http://www.ambysoft.com/surveys/, 2008, 2010, 10/10/2013.

[13] VersionOne, "State of Agile Development Survey Results",
http://www.versionone.com, 2008, 10/10/2013.

[14] K. Schwaber and M. Beedle, “Agile Software Development with
Scrum”, New Jersey: Prentice Hall, 2001.

[15] H. Kniberg, "Scrum and XP from the Trenches". Estocolmo:
C4Media Inc., 2007.

[16] M. Cohn, “Succeding with Agile: Software Development with
Scrum”, Bookman, 2011.

[17] B. Boehm and R. Turner, “Management challenges to implementing
agile processes in traditional development organizations”, IEEE
Software, September/October, 2005, pp. 30-39.

[18] B. Boehm and R. Turner, “Balancing Agility and Discipline: A Guide
for the Perplexed”, AddisonWesley, 2003.

[19] M. Paulk, “Extreme Programming from a CMM perspective”. IEEE
Software, November, 2001, pp. 19-26.

[20] P. McMahon, "Extending Agile Methods: A Distributed Project and
Organizational Improvement Perspective," CrossTalk, The Journal of
Defense Software Engineering, vol. 18, issue 5, 2005, pp. 1619.

[21] P. McMahon, “Integrating CMMI and Agile Development: Case
Studies and Proven Techniques for Faster Performance
Improvement” (SEI Series in Software Engineering), 2010.

[22] A. Marçal, B. Freitas, F. Furtado, T. Maciel, and A. Belchior,
“Estendendo o Scrum segundo as Áreas de Processo de
Gerenciamento de Projetos do CMMI”. CLEI, San José, 2007.
Portuguese Version Only.

[23] M. Poppendieck. and T. Poppendieck, “Lean Software Development:
An Agile Toolkit”, Addison-Wesley, Longman Publishing Co., Inc.,
Boston, MA, USA., 2003.

[24] J. Luca, “Solutions That Make A Difference”,
http://www.nebulon.com/articles/index.html, 2008, 10/10/2013.

[25] M. Mah, “How agile projects measure up, and what this means to
you”. Cutter Consortium Agile Product & Project Management
Executive Report 9, 2008.

[26] D. Rico, “What is the ROI of agile vs. traditional methods? An
analysis of extreme programming, test-driven development, pair
programming and Scrum”, 2008.

[27] J. Shore and S. Warden, “The Art of Agile Development”. O'Reilly
Media, Inc., Sebastopol, CA, EUA, 2008.

[28] M. Fowler, “FlaccidScrum”. http://www.martinfowler.com, 2009.
[29] R. Turner and A. Jain, "Agile Meets CMMI: Culture Clash or

Common Cause," In proceedings of the Second XP Universe and
First Agile Universe Conference on Extreme Programming and Agile
Methods XP/Agile Universe, 2002, pp. 153-165.

[30] C. Davis, M. Glover, J. Manzo, and D. Opperthause, “An Agile
Approach to Achieving CMMI”, http://www.agiletek.com, March
2007, 10/10/2013.

327Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 347 / 646

[31] J. Sutherland, C. Ruseng, and K. Johnson., “Scrum and CMMI Level
5: The Magic Potion for Code Warriors”, The 12th annual European
Systems and Software Engineering Process Group Conference
European SEPG 2007 11-14th June, Amsterdam, 2007.

[32] H. Glazer, J. Dalton, D. Anderson, M. Konrad, and S. Shrum,
“CMMI or Agile: Why Not Embrace Both”. CMU/SEI-2008-TN-003,
November, 2008.

[33] A. Cockburn, “Crystal Clear: A Human-Powered Methodology for
Small Teams”, 1st edition, Addison-Wesley Professional, 2005.

[34] J. A. Highsmith, "Adaptive Software Development: A Collaborative
Approach to Managing Complex Systems", New York, NY, Dorset
House Publishing, 2000.

[35] J. Stapleton, "DSDM: Dynamic Systems Development Method: The
Method in Practice", Addison-Wesley, Boston, MA, 1997.

[36] K. Beck, "Extreme Programming Explained: Embrace Change", 2nd
Edition, Boston, MA, Addison-Wesley Professional, 2005.

[37] S. R. Palmer and J. M. Felsing, "A Practical Guide to Feature-Driven
Development", NJ, Prentice Hall, 2002.

328Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 348 / 646

Using the Analytical Hierarchy Process as a Ranking Tool for
User Story Prioritization Techniques

Sultan Alshehri and Luigi Benedicenti
Software Systems Engineering
University of Regina, Regina

Regina, SK, Canada
Email: aljumais@uregina.ca, luigi.benedicenti@uregina.ca

Abstract— The Analytic Hierarchy Process (AHP) has been
applied in many fields and especially to complex engineering
problems and applications. AHP is capable of structuring
decision problems and finding mathematically determined
judgments built on knowledge and experience. This suggests
that AHP should prove useful in agile software development,
where complex decisions occur routinely. This paper provides
a ranking approach to help stakeholders select the best
prioritization technique for prioritizing the user stories. A case
study demonstrated the effectiveness of this approach.

Keywords-Extreme Programming; User Stories; Analytic
Hierarchy Process.

I. INTRODUCTION
The quality of Extreme Programming (XP) development

results from taking 12 core practices to their logical extremes
[1]. One such practice is the planning game, in which
customers and developers cooperate to develop requirements
that produce the highest value for customers as rapidly as
possible. This is accomplished as follows. Customers write
system requirements as user stories. User stories are defined
as “short descriptions of functionality told from the
perspective of a user that are valuable to either a user of the
software or the customer of the software” [2]. Developers
review the stories to ensure domain-specific information is
sufficient for their implementation. Developers evaluate user
stories using story points to identify the complexity and cost
of their implementation. Then, user stories are broken down
into small tasks. Finally, customers and developers
collaborate in prioritizing user stories based on their value
and other relevant factors.

To reconcile conflicting opinions among them, customers
and developers often adopt a prioritization technique [3,4,5];
but, this adoption process is usually not formalized. In this
paper, the Analytical Hierarchy Process (AHP) is utilized as
a well-structured multi-criteria decision making tool to help
XP software development teams rank six prioritization
techniques: 100-Dollar Test (Cumulative Voting), MoSCow,
Top-Ten Requirements, Kano Model, Theme Screening,
Relative Weighting.

This paper is organized as follows: Sections 2 to 6
describe the AHP method; the six prioritization techniques

are presented in Section 7; four criteria for ranking the
prioritization techniques are proposed in Section 8; a case
study, its results and its findings are presented in Section 9
and 10, and Section 11 concludes the paper.

II. RELATED WORK
There is no consensus in the literature on the most

important factors determining the priority of system
requirements. However, almost all the factors taken into
consideration aim to maximize the value delivered to the
customer. Bakalova et al. proposed to use project context,
effort estimation, dependencies, input from the developers,
learning experiences and external change [6]. Hoff et al.
relied on four factors: cost-benefit to the organization,
impact of maintenance, complexity and performance effects
[7]. They also considered fixed errors, requirement
dependencies, complexity, and delivery data/schedule as
ancillary factors. Somerville and Sawyer prioritize
requirements based on the viewpoint approach that
represents information about the system requirements from
different perspectives representing different types of
stakeholder [8]. Davis used Triage as an evaluation process
considering time, available resources, and requirements
interdependencies [9]. Lutowski prioritized the requirements
based on the importance or immediacy of need [10]. Bhoem
considered the cost of implementing the requirement as the
most important factor for prioritization [11]. In Bhoem’s
work, cost is related to the technical environment,
complexity, quality, timeframe, documentation, availability
reusable software, participant competencies, and stability of
requirements. Berander and Andrews surveyed the literature
and found common aspects in prioritizing requirements such
as penalty, cost, time, risk and volatility [12]. The authors
added that other aspects like financial benefits, competitors,
release theme, strategic benefit, competence/resource, and
ability to sell should also be considered.

In the agile methodology domain, Patel and
Ramachandran prioritized user stories based on business
functionality, customer priority, core value, market values,
implementation cost, and business risk [13]. Many well-
established prioritization technique available are applicable

329Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 349 / 646

to requirements prioritization: Ping Pong Ball, Pair-Wise
Analysis, Weighted Criteria Analysis, Dot Voting, Binary
Search Tree, Ranking, Numeral Assignment Technique,
Requirements Triage, Wieger’s Matrix Approach, Quality
Function Deployment, Bucket technique, Cumulative
Voting, Round-the-Group Prioritization, Theory-W, and
Theme Scoring [14,15].

Changes to requirements in a plan-based environment
are difficult and costly. Thus, a change the user considers
simple may translate into a painful process for the
developers. By definition, this is not the case for
requirements in agile methods. This fundamental difference
may have an impact on the optimal choice of prioritization
technique.

Mead conducted a case study to determine the most
suitable requirements prioritization methods to be used in
software development [5]. This study compared three
common methods: Numeral Assignment Technique,
Theory-W, and AHP. The prioritization method comparison
was based on five aspects: clear-cut steps, quantitative
measurement, high maturity, low labor-intensity, and
shallow learning curve. The results indicated that the AHP
ranked the highest score of 16, while the Numeral
Assignment Technique scored a 12, and Theory-W scored
an 8.

III. METHODOLOGY
The primary objective of this study is to investigate how

the AHP can be used to rank the user stories prioritization
techniques. The methodology used in this study is the case
study methodology described in [16].

The following research questions provided a focus for
our case study investigation:

 (1) How does the AHP help select a prioritization
technique for user stories?

(2) How do the AHP results affect the relationships
among developers relation and their performance?

The units of analysis for this study derive from these

research questions. The main focus is to rank several tools
that can be used to prioritize user stories. Accordingly,
ranking and the evaluation process are two the units of
analysis for this study. Also, we consider the developers
view of how the AHP benefits each XP practice. As result,
our study is designed as multiple cases (embedded) with two
units of analysis.

IV. DATA COLLECTION AND SOURCES
In the beginning of the study, we found the criteria

affecting the ranking process and helping to examine the
AHP tool ability and benefits. This data was collected from
literature review and previous studies. To increase the
validity of this study, data triangulation was employed. The
data sources in this study were:

1. Archival records such as study plans from the
graduate students.

2. Questionnaire given to the participants when
developing the XP project.

3. Open-ended interviews with the participants.
4. Feedback from the customer.

V. CASE STUDY
The case study was conducted in the Advanced Software

Design course offered to graduate students in Fall 2012 at the
University of Regina. The participants were 12 Master’s
students and a client from a local company in Regina.
Participants have various levels of programming experience
and a good familiarity with XP and its practices. The
students background related to the case study included
several programming languages such as Java, C, C#, and
ASP.net. All participants had previous project development
experience. The study was carried out throughout 15 weeks;
the students were divided into two teams. Both teams were
assigned to build a project called “Issue Tracking System”
brought in by the client along with a set of requirements
compatible with current industry needs. The project evolved
through 5 main iterations and by the end of the semester, all
software requirements were implemented. The students were
requested to try all requirements in each prioritization
technique before applying AHP to rank them. Participants
were given detailed lectures and supporting study materials
on Extreme Programming practices that focused on planning
game activities which included writing user stories,
prioritizing the stories, estimating process parameters, and
demonstrating developers commitments. The students were
not new to the concept of XP, but they gained more
knowledge and foundation specifically in the iteration plan,
release planning and prioritizing the user stories. In addition,
the students were exposed to the AHP methodology and
learned the processes necessary to conduct the pairwise
comparisons and to do the calculations. Several papers and
different materials about AHP and user stories were given to
the students to train them and increase their skills in
implementing the methodology. Finally, a survey was
distributed among students to get further information about
their personal experiences and knowledge.

VI. THE ANALYTICAL HIERARCHY PROCESS
AHP is a systematic approach for decision-making that

involves the consideration of multiple criteria by structuring
them in a hierarchical model. AHP reflects human thinking
by grouping the elements of a problem requiring complex
and multi-aspect decisions [17]. The approach was
developed by Thomas Saaty as a means of finding an
effective and powerful methodology that can deal with
complex decision-making problems [8]. AHP comprises the
following steps: 1) Structure the hierarchy model for the
problem by breaking it down into a hierarchy of interrelated
decision elements. 2) Define the criteria or factors and
construct a pairwise comparison matrix for them; each
criterion on the same level of the decision hierarchy is
compared with other criteria in respect of their importance to
the main goal. 3) Construct a pairwise comparison matrix for
alternatives with respect to each objective in separate
matrices. 4) Check the consistency of the judgment errors by

330Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 350 / 646

calculating the consistency ratio. 5) Calculate the weighted
average rating for each decision alternative and choose the
one with the highest score. More details on the method,
including a step-by-step example calculation, are found in
[17].

Saaty developed a numerical scale for assigning the
weight for criteria or alternative by giving a value between 1
(equal importance) and 9 (extreme importance) [18]; see
Table 1 for details.

TABLE 1. AHP NUMERICAL SCALE DEVELOPED BY SAATY..

Scale Numerical
Rating

Reciprocal

Equal importance 1 1
Moderate importance of one

over other
3 1/3

Very strong or demonstrated
importance

7 1/7

Extreme importance 9 1/9
Intermediate values 2,4,6,8 1/2, 1/4, 1/6,

1/8

VII. PRIORITIZATION TECHNIQUES
There are several methods for prioritizing the system

requirements; the six most commonly used can be
summarized as follows:

1) The 100-Dollar Test (Cumulative Voting)

This is a straightforward technique described by
Leffingwell and Widrig where each stakeholder gets 100
imaginary units (money, hours, etc) to distribute among the
given requirements [19]. If the requirements are too many, it
is recommended to use more units of value for more freedom
in the prioritization [20]. After distributing the units on the
requirements, stakeholders calculate the total for each
requirement and rank the requirements accordingly.

2) MoSCoW

This is one of the methods for prioritization originating
from the Dynamic Software Development Method (DSDM)
[21]. The requirements are classified into four groups
depending on the importance of the functional requirements
[22]:

• M: MUST have this. It is the highest priority and
without it the project considered a failure.

• S: SHOULD have this requirement if possible.
Customer satisfaction depends on this requirement.
But we cannot say its absence causes a project to
fail.

• C: COULD have this requirement if it doesn’t affect
anything else.

• W: WON’T have the requirement this time but
WOULD like to in the future.

This technique helps understand customer needs. The
problem with this method is the difficulty of distinguishing
the terms “Must” and “Should” as they both express a
customer preference or desire..

3) Top-Ten Requirements
In this approach, the stakeholders select their top ten

requirements without giving them a specific priority [23].
This is to avoid the conflict between stakeholders that may
arise from the desire to support specific requirements.
However, if stakeholder alignment is low, it is possible that
none of the choices for some stakeholders will appear in the
aggregated top priority requirement list.

4) Kano Model

This method was established for product development by
Noriako Kano in 1987 to classify the requirements into five
categories based on the answers to two questions about every
requirement: 1) functional question: “How do you feel if this
feature is present?”; 2) dysfunctional question: “How do you
feel if this feature is NOT present?” [24].

The customer has to choose one of the five possible
options for the answers [25]:

1. I like it.
2. I expect it.
3. I’m neutral.
4. I can tolerate it.
5. I dislike it.

5) Themes Screening
This is a technique employed when stakeholders have

many relevant user stories that need to be grouped together.
While writing the stories, stakeholders eliminate similar
stories or ones that have already been covered by others.
Then they follow the steps below [26]:

1. Identify 5-9 (approximately) selection criteria that
are important in prioritizing the themes.

2. Identify a baseline that is approved and understood
by all the team members.

3. Compare each theme to the baseline theme for each
criterion. Use “+” for themes that rank “better than”
the baseline theme, “-” for themes that rank “worse
than” the baseline theme and “0” for themes that
rank “equal” to the baseline theme.

4. Calculate the “Net Score” by summing up all the
plusses and minuses. Rank as number one the
theme that received the highest Net Score.

6) Relative Weighting
This technique involves the evaluation of each

requirement based on the effect of its presence and its
absence. A scale from 0 to 9 is identified for each
requirement, 0 being a low effect and 9 being a high effect.
Stakeholders will give every feature a value for its presence
as well as a penalty for its absence and estimate its
implementation cost. The priority is calculated by dividing
the total value by the total cost to generate a prioritization
indicator [26].

VIII. PROPOSED CRITERIA FOR RANKING
To rank each technique, it is necessary to determine the

most important criteria that affect the participants when
choosing a prioritization process. The resulting criteria will

331Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 351 / 646

be compared among each other. Finally, the prioritization
techniques will be compared against each of the criteria [27].
In this paper, we propose four prioritization criteria that
emerged during the course of the case study we conducted,
but the method described in this paper can be applied to any
set of criteria. The criteria shown below are simply
illustrative of the prioritization method.

1. Simplicity: What is the simplest prioritization
technique in terms of ease of understanding and
application?

2. Time: Which one of these techniques will save the
most time when the team applies it to the user
stories?

3. Accuracy: Which one of these techniques will give
the most accurate results?

4. Collaboration: Which one of these techniques will
achieve the highest degree of collaboration among
the stakeholders and the XP team in general?

IX. AHP IN PRACTICE
The first step in the Analytic Hierarchy Process is to

structure the problem as a hierarchy. In this paper, such a
hierarchy includes three levels. The top level is the main
objective: ranking the prioritization techniques. The second
level is the prioritization criteria: simplicity, time, accuracy,
and collaboration. The third level is the alternatives: 100-
Dollar, Top-Ten, Kano Model, Theme Screening, Relative
Weighting, and MoSCow. Fig. 1 illustrates the AHP
hierarchy we chose for this paper.

Then, the hierarchy is used to generate appropriate AHP
tables. All team members receive these tables, which
shortens the time to fill them and facilitates the comparison
process. A cover page dedicated to collecting general
information of each team member including experience,
type, and level of programming skills is also handed out. A
matrix is then used to compare the four prioritization
criteria.

Accordingly, we required all students to use the
prioritization techniques throughout the project to
experience their advantages and disadvantages. Then, we
asked the students to evaluate these techniques based on the
prioritization criteria. To accomplish this, we provided them
with the AHP tables and cover page described above.

Figure 1. AHP Structure for Ranking the Prioritization Techniques

The students first compared the criteria among each
other using the Saaty scale, ranging from 1 to 9. The
students used a checklist with the following questions:

• Which is more important: simplicity or time and by
how much?

• Which is more important: simplicity or accuracy
and by how much?

• Which is more important: simplicity or
collaboration and by how much?

• Which is more important: time or accuracy and by
how much?

• Which is more important: time or collaboration and
by how much?

• Which is more important: accuracy or collaboration
and by how much?

After finishing the criteria comparisons, the students had
to evaluate all the prioritization techniques against each
other based on each criterion every time. An example
follows:

• In term of simplicity, which is simplest: 100-Dollar
or Top-Ten and by how much?

The same questions and comparisons were repeated for
all prioritization techniques and criteria.

X. FINDINGS AND RESULTS
Each student individually evaluated the prioritization
techniques based on the criteria mentioned earlier. The
Expert Choice software [28] was used to calculate the
aggregation results for the entire two teams.

The results for Team 1 show that the highest rank was
given to the relative weighting technique, followed by
MoScoW, Theme Screening, Kano, Top-Ten and 100-
Dollar. Table 2 provides the relative scores of each ranking
as percentages.

The software also allows us to examine the importance
of each criterion as perceived by Team 1 (Fig. 2). It appears
that accuracy was the most relevant criterion for the team,
followed by simplicity, collaboration and time.

TABLE 2. PRIORITIZATION TECHNIQUE RANKING FOR TEAM 1

Technique Scores
Relative Weighting 24.39%
MoScoW 20.38%
Them Screening 17.70%
Kano 15.81%
Top-Ten 12.75%
100-Dollar 8.97%

332Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 352 / 646

TABLE 3. PRIORITIZATION TECHNIQUE RANKING FOR TEAM 2

Technique Scores
Relative Weighting 32.67 %
Top-Ten 26.12 %
MoScoW 15.44 %
Theme Screening 15.35 %
100-Dollar 7.15 %
Kano 3.27 %

The results for Team 2 paint a somewhat different

picture: the Relative Weighting technique is still on top, but
it is followed by Top-Ten, MoScoW, Theme Screening,
100-Dollar and finally Kano. Table 3 provides the relative
scores of each ranking as percentages.

As for the importance of each criterion as perceived by
Team 1 (Fig. 3), it appears that accuracy was still the most
relevant prioritization criterion, followed by time,
collaboration and simplicity.

XI. OBSERVATIONS

a) AHP Ranking Result
• When all the criteria were considered together, the

Relative Weighting technique was ranked the
highest by both teams. The MoScoW technique
was ranked in the second position by Team 1 and
third position by Team 2. The 100-Dollar
technique was ranked in the last position by Team
1 and in the second to last position by Team 2.

• Both teams considered accuracy as the most
important criteria. Simplicity in Team 1 and time in
Team 2 respectively were considered to be the
second highest important criterion.

• When the prioritization techniques were ranked
considering each criterion individually, we found
that for Team1 the MoScoW technique was ranked
the highest in terms of simplicity and time criteria.
Relative weighting was ranked the highest in terms
of accuracy and collaboration criteria. Results
related to Team2 are slightly different: the Top-Ten
technique ranked the highest in terms of simplicity
and time criteria. Relative weighting ranked the
highest in terms of accuracy and collaboration
criteria.

• These results are indicative of different choices
made in each team. Although the ranking was
achieved through individual comparisons, the
group behavior was consistent as reflected in the
consistency scores, which allowed the software to
aggregate results from team members.

b) Interview Results

The interview was conducted after showing the
participants the results of the AHP evaluation for all the XP
practices. Some of the results were surprising and others
were expected. The interview included open questions to
obtain the students’ general opinions about AHP, the
advantages and disadvantage of the using AHP, and the best
experience of AHP among all the XP practices. As noted
previously, the data was collected in the form of
handwritten notes during the interviews. These notes were
organized in a folder for the sake of easy access and
analysis.

From the interviews, we found very positive feedback
from the participants regarding AHP. It was felt that AHP
resolved any conflicting opinions and brought each team
member’s voice to the decision in a practical way. AHP also
emphasized the courage of the team by letting every opinion
be heard. The time and the number of comparisons were the
main concerns of the participants. All of them recommended
using AHP in the future with XP. There were a few
additional recommendations as well, such as developing an
automated tool to reduce the time required for the AHP
calculation, adding the mobility features, performing cost

Fig.2 The Importance of the Criteria by Team 1

Fig. 3 The Importance of the Criteria by Team 2

333Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 353 / 646

and risk analysis, and trying AHP in other XP areas and
studying the outcomes.

c) Questionnaires

Questionnaires were also given to the participants in
order to obtain their perceptions of and experiences with
AHP. The questionnaires were divided into two main parts.
The first part contained questions about AHP as a decision
and ranking tool. The second part contained questions
regarding the direct benefits of the XP practice and
investigated the participants’ satisfaction. We used a seven-
point Likert scale to reflect the level of acceptability of the
AHP tool as follows:

1. Totally unacceptable
2. Unacceptable.
3. Slightly unacceptable.
4. Neutral.
5. Slightly acceptable.
6. Acceptable.
7. Perfectly Acceptable.

Once the participants completed the questionnaire, we
aggregated the responses and presented the total percentage
of the acceptability for each statement.

The total percentage of the acceptability was calculated
as follows:

d) The total percentage of acceptability (TPA)
= The average of the score for each team * 100 / 7.
e) The average of the score for each team =

= The sum of the scores given by the team members /
number of the team.

The following percentages show the acceptability level
for the AHP as a ranking tool:

• Improving team communication: Team 1 scored
83% and Team 2 scored 86%.

• Creating a healthy discussion and learning
opportunities: Team 1 scored 74% and Team 2
scored 93%.

• Clarifying the ranking problem: Team 1 scored
86% and Team 2 scored 93%.

• Resolving conflicting opinions among members:
Team 1 scored 78% and Team 2 scored 93%.

• Increasing team performance: Team 1 scored 74%
and Team 2 scored 88%.

XII. VALIDITY
Construct validity, Internal Validity, External Validity

and Reliability describe common threats to the validity of
the study [29]. “Empirical studies in general and case
studies in particular are prone to biases and validity threats
that make it difficult to control the quality of the study to
generalize its results” [30]. In this section, relevant validity
threats are described. A number of possible threats to the
validity of this work can be identified.

a) Construct validity
Construct validity deals with the correct operational

measures for the concept being studied and researched. The
major threat to this study is the small number of participants
in each case study.

This threat was mitigated by using several techniques in
order to ensure the validity of the findings.

• Data triangulation: A major strength of case
studies is the possibility of using many different sources of
evidence [29]. This issue has been taken into account
through the use of surveys and interviews with different
types of participants from different environments with
various levels of skills and experiences, and through the use
of several observations as well as feedback from those
involved in the study. By establishing a chain of evidence,
we were able to reach a valid conclusion.

• Methodological triangulation: The research
methods employed were a combination of a project
conducted to serve this purpose, interviews, surveys, AHP
results comparisons, and researchers’ notes and
observations.

• Member checking: Presenting the results to the
people involved in the study is always recommended,
especially for qualitative research. This is has been done by
showing the final results to all participants to ensure the
accuracy of what was stated and to guard against researcher
bias.

b) Internal validity
Internal validity is only a concern for an explanatory

case study [29], and it focused on establishing a causal
relationship between Students and educational restraints.

This issue can be addressed by relating the research
questions to the study’s propositions and other data sources
providing information regarding the questions.

c) External validity

External validity is related to the domain of the study
and the possibilities of generalizing the results. To provide
external validity to this study, we will need to conduct an
additional case study in the industry involving experts and
developers and then observe the similarities and the
differences in the findings of both studies. Thus, future
work will contribute to accrue external validity.

d) Reliability

Reliability deals with the data collection procedure and
results. Other researchers should arrive at the same case
study findings and conclusions if they follow the same
procedure. We address this by making the research
questions, case study set up, data collection and analysis
procedure plan available for use by other researchers.

334Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 354 / 646

XIII. CONCLUSIONS
After using AHP to rank the common requirement

prioritization techniques used in XP development to
prioritize the user stories, AHP was found to be a relevant
and useful tool that affords very good vision to stakeholders
when they want to decide on which prioritization technique
is the most suitable. Considering simplicity, time, accuracy
and collaboration when selecting a prioritization technique
could bring many advantages to the XP team, including the
stakeholders. The relative weighting technique was the most
preferred method for both teams in our case study, but the
procedure we followed is general and thus the ranking can
change depending on the team. More importantly, though,
AHP helped students evaluate each prioritization technique
from different viewpoints. In addition, they could
mathematically reconcile the conflict of opinions among
them. AHP introduces a cooperative decision making
environment, which accelerates the XP development process
and maximizes the effectiveness of the software developed.

REFERENCES
[1] K.Beck, “Extreme Programming Explained: Embrace Change,”

2nd edition, Addison Wesley, 2000.
[2] M.Cohn. “Advantage of User Stories for Requirements,

Information Network,” (October 2004)
[3] K.Wiegers, “Software Requirements,” Microsoft Press,

Redmond, In Engineering and Managing Software
Requirements,2003.

[4] Lawson. “Software Requirements-Styles and Techniques,”
Pearson Education, Essex, 2002.

[5] R. Mead, “Requirements Prioritization Introduction,” Software
Engineering Institute, 2006-2008 Carnegie Mellon University.

[6] Z. Bakalova, M. Daneva, A. Herrmann, and R. Wieringa,
“Agile Requirements Prioritization: What Happens in Practice
and What Is Described in Literature,” In D. Berry & X. Franch
(Eds.), Requirements engineering: Foundation for software
quality, LNCS, vol. 6606, 2011, pp. 181-195. Heidelberg,
Germany: Springer Berlin Heidelberg.

 [7] G. Hoff, A. Fruhling, and K.Ward, “Requirements
Prioritization Decision Factors for Agile Development
Environments,” University of Nebraska at Omaha, 2008.

[8] I. Sommerville and P. Sawyer, “Requirements Engineering: A
Good Practice Guide,” John Wiley & Sons Ltd, Chichester,
England, 1997.

[9] A. Davis, “The Art of Requirements Triage,” IEEE Computer,
Vol. 36, No. 3, March 2003, pp. 42- 49.

[10] R. Lutowski, “Software Requirements,” Auerbach
Publications, Boca Raton, 2005.

[11] B. Boehm, “The High Cost of Software,” Practical Strategies
for Developing Large Software Systems, Addison- Wesley,
Reading MA, 1975.

[12] P. Berander and A. Andrews, "Requirement Prioritization," in
Engineering and Managing Software Requirements, Berlin,
Deutschland, 2005.

[13] C. Patel and M. Ramachandran, “Story Card Based Agile
Software Development,” in International Journal of Hybrid
Information Technology, vol. 2, no. 2, April.2009.

 [14] Z. Racheva, M. Daneva, and L. Buglione, “Supporting the
Dynamic Reprioritization of Requirements in Agile
Development of Software Products,” Second International
Workshop on Software Product Management, 2008.

[15] Q. Ma, “The Effectiveness of Requirements Prioritization
Techniques for a Medium to Large Number of Requirements: A
Systematic Literature Review,” thesis for a degree of master of
Computer and Information Sciences, Auckland University of
Technology, 2009.

[16] K. Yin, “Case Study Research: Design and Methods,” Second
Edition, SAGE Publications, 1994.
[17] N. Tiwari. “Using the Analytic Hierarchy Process (AHP) to

Identify Performance Scenarios for Enterprise Application”
(2006)

[18] T. Saaty, “The Analytic Hierarchy Process,” McGraw-Hill,
New York, 1980.

[19] D. Leffingwell and D. Widrig, “Managing Software
Requirements: A Use Case Approach,” 2nd ed. Addison-
Wesley, Boston (2003).

[20] P. Berander and C. Wohlin, “Different in Views between
Development Roles in Software Process Improvement – A
Quantitative Comparison,” In: Proceedings of the 8th
International Conference on Empirical Assessment in Software
Engineering (EASE 2004). IEE, Stevenage, 2004, pp. 57-66.

[21] K. Waters, “Prioritization Using MoSCoW,” Agile Planning,
(12 January 2009)

[22] The MoSCoW Prioritization Technique, LMR Technologies,
Agile Practices: Scrum, XP, Lean, Kanban:
www.lmrtechnologies.com [retrieved: October, 2013].

[23] K.Wiegers, First Things First: Prioritizing Requirements,
Software Development, vol. 7, no. 9, September 1999.

[24] E. Zultner, H. Mazur. The Kano Model: Recent
Developments, Richard QFD Institute, Austin, Texas,2006.

[25] A. Hand, “Applying the Kano Model to User Experience
Design,” UPA Boston Mini-Conference,May 2004.

[26] M. Cohn, “User Stories Applied for Agile Software
Development,” Addison-Wesley Professional; 1 edition (March
11, 2004)

[27] T. Saaty, “How to Make a Decision: the Analytic Hierarchy
Process,” Interfaces, vol. 24, no. 6, 1994, pp.19-43.

[28] Expertchoice for Collaborative Decision Making:
http://www.expertchoice.com [retrieved: October, 2013].
[29] R.K. Yin, Case Study Research – Design and Methods, 3rd

edition, Sage Publications, London, 2003.
[30].R. Lincke, “How do PhD Students Plan and Follow-up their
Work? – A Case Study,” School of Mathematics and Systems
Engineering, University Sweden.

335Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 355 / 646

Expert Estimation and Historical Data: An Empirical Study

Gabriela Robiolo
Universidad Austral

Av. Juan de Garay 125

Buenos Aires, Argentina

grobiolo@austral.edu.ar

Silvana Santos
Universidad Nacional de La Plata

Calle 50 y 20

La Plata, Argentina

silvanasantos@gmail.com

Bibiana Rossi
Univ. Argentina de la Empresa

Lima 717

Buenos Aires, Argentina

birossi@uade.edu.ar

Abstract— Expert estimation is the estimation strategy which

is most frequently applied to software projects; however, this

method is not very much reliable as the accuracy of the

estimations thus obtained is always influenced by the level of

experience of the expert. As part of the experts’ experience is

made up by the information they obtain from historical data,

we wanted to learn about the value such historical data has

for an expert estimator. To do so, we designed an empirical

study. We compared the accuracy of the estimations made

with several estimation methods based on productivity, size,

and analogies which use historical data, to that obtained with

expert estimation. We used two similar applications; one was

used as the target application and the other one was used to

obtain historical data. The results show that the accuracy of

expert estimation is affected by the expert’s work experience,

the level of experience he/she has in the technologies to be

used to develop the applications, and his/her level of

experience in the domain of the applications. The use of

historical data may improve the intuitive expert estimation

method when the work experience, the experience in the

technologies to be used to develop the application, and the

experience in a given domain is low, as well as when the team

velocity is unknown.

 Keywords—Expert; Expert Estimation; Effort Estimation;

Empirical Study; Historical Data.

I. INTRODUCTION

Expert estimation is the estimation strategy which is
most frequently applied today to estimate the effort
involved in the development of software projects, and this
is so because there is evidence in favor of using it [1].
However, the estimations thus obtained are far from being
as accurate as we would like them to be so, if we expect to
improve estimation accuracy, further research should be
carried out in order to understand how the estimation
process works.

 With this goal in mind, we found out that the
compilation of information about cost estimation made by
Jørgensen and Shepperd [2] in 2004 is extremely valuable,
since they systematically reviewed papers already written
on cost estimation studies and they provided
recommendations for future research. They found out that
there are few researchers working in this field and that
there is no adequate framework to develop high quality
research projects that may lead to concluding evidence.
Consequently, they suggested the following
improvements in the field of research: (a) deepen the
study of the basic aspects of software estimation, (b)
widen the research on the current, most commonly used
estimation methods in the software industry, (c) perform
studies that support the estimation method based on expert

judgment, instead of replacing it with other estimation
methods and (d) apply cost estimation methods to real
situations.

As we completely agree with their diagnosis, we
believe research on expert estimation has become
mandatory, if more accurate estimations are to be
obtained.

As far as we know, expert estimation may be said to
be based on both intuition, which is acquired by the
developer through his daily work experience, and analogy.
In fact, such analogy will be made by using both the
information the estimator has in his memory and the
historical data he may obtain [2]. Although all experts are
expected to have some experience, the types of experience
they have may be very different, and their estimation
performances will surely be different too. Besides, even in
cases in which the expert is supposed to have wide
experience, there will be factors that will undoubtedly
affect his estimations. For example, the domain where the
software estimation must be made could be new to him,
the team he would work with may have been recently
created or the technological environment may not have
been previously used.

 In Agile contexts, in particular, there is another
critical aspect to be dealt with: not knowing the velocity at
which the developing team works. Actually, Cohn [3]
suggested that one of the challenges when planning a
release is estimating the velocity of the team. He
mentioned three possible ways to estimate velocity.
Firstly, estimators may use historical averages, if
available. However, before using historical averages, they
should consider whether there have been significant
changes in the team, the nature of the present project, the
technology to be used, and so on. Secondly, estimators
may choose to delay estimating velocity until they have
run a few iterations. Cohn thinks that this is usually the
best option. Thirdly, estimators may forecast velocity by
breaking a few stories into tasks and calculating how
many stories will fit into the iteration.

 Bearing in mind the present working conditions, as
described in the two previous paragraphs, and in order to
deepen our knowledge about expert estimation, as
recommended by Jørgensen and Shepperd [2], we decided
to research on the importance of historical data when
performing expert estimations in agile contexts in which
the project domains and the technological environments
are new to the team, and the teams -with little experience
in Agile contexts- have recently been created, so the team
velocity is unknown.

336Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 356 / 646

In this scenario, we tried to answer the following
research question: when may the accuracy of an expert
estimation made in a context of agile software
development be improved by using historical data? The
results we obtained through our empirical study have led
us to conclude that historical data may improve the
accuracy of an intuitive estimation made by an expert
when the estimator has limited experience in the job to be
performed, the technologies to be used and the domain to
be dealt with, and when the team velocity is unknown.

In section two, we will introduce three estimation
methods: Expert Estimation (ExE), Analogy-Based
Method (AbM), and Historical Productivity (HP). In
section three, we will describe an empirical study and
analyze the results obtained. In section four, we will
investigate related work to see if there is any other
evidence of improvement in expert estimation accuracy
when using historical data, and finally, in section five, we
will draw conclusions as regards the evidence of the
benefits of using historical data.

II. ESTIMATION METHODS

This section will describe the three estimation methods
used in our empirical study: ExE, AbM and HP. However,
before doing so, it is important to focus on the definition
of certain expressions used to define such methods. For
example, when defining expert, Jorgensen [1] used a
broad definition of the phrase, as he included estimation
strategies that ranged from unaided intuition (“gut
feeling”) to expert judgment supported by historical data,
process guidelines, and checklists (“structured
estimation”). In his view, for an estimation strategy to be
included under the expert estimation category, it had to
meet the following conditions: first, the estimation work
must be conducted by a person recognized as an expert in
the task, and second, a significant part of the estimation
process must be based on a non-explicit and non-
recoverable reasoning process, i.e., “intuition”. In our
study, however, a narrower definition of the concept of
expert was used: that which refers only to intuition. This
way, we made a difference between intuitive ExE, and the
methods that involve the use of historical data: AbM and
HP. It is important to note that in our study, when we used
Planning Poker –an ExE method-, no historical data was
taken into account.

To further clarify the terms used, we must say that by
AbM we meant the estimation performed by an expert,
who is aided by a database containing information about
finished projects [4]. As regards HP, which is another way
of using historical data, it is worth mentioning that in our
empirical study we focused on the size characteristic of
the products, as suggested by one of the authors that
inspired this article [4].

A. Expert Estimation Method (ExE)

 When estimating the effort of a software development
task, an expert estimation may be obtained either by a
single expert, whose intuitive prediction will be
considered an expert judgment, or by a group of experts,
whose estimation will combine several experts’
judgments.

A very frequently used way to obtain group expert
judgment is called Planning Poker, a technique that
combines expert opinion, analogy, and disaggregation. It
is based on the consensus that is reached by the group of
experts who are performing an estimation; in fact, it is
considered a manageable approach that produces fast and
reliable estimations [3][5][6]. This method was first
described by James Greening [8] and it was then
popularized by Mike Cohn through his book “Agile
Estimating and Planning” [3]. It is mainly used in agile
software development, especially in Extreme
Programming [7]. To apply Planning Poker, the
estimation team should be made up of, ideally, all the
developers within the team, that is, programmers, testers,
analysts, designers, DBAs, etc. It is important to bear in
mind that, as this will happen in Agile contexts, the teams
will not exceed ten people [3]. In fact, Planning Poker
becomes especially useful when estimations are taking too
long and part of the team is not willing to get involved in
the estimation process [8]. The basic steps of this
technique, according to how Grenning described them,
are:

“The client reads a story and there is a discussion in
which the story is presented as necessary. Then, each
programmer writes his estimation on a card, without
discussing his estimation with anyone else. Once every
programmer has written down his estimation, all the cards
are flipped over. If everybody has estimated the same,
there is no need for discussion; the estimate is registered
and the next story is dealt with. If the estimates are
different, the team members will discuss their estimates
and try to come to an agreement” [8].

Mike Cohn further developed this technique: he added
a pack of cards especially designed to apply this technique
and he shaped the whole process: each estimator is given
a pack in which there are cards that have numbers
written on them Those numbers represent a valid
estimation, such as 0, 1, 2, 3, 5, 8, 13, 20, 40, and 100.
Each pack has to be prepared before the Planning Poker
meeting and the numbers should be big enough to be seen
from the other side of the table. There is a raison d’être for
the estimation scale presented above. There are studies
which have demonstrated that we are better at estimating
things which fall within one order of magnitude [9][10],
so these were the cards that were employed when
Planning Poker was used in the empirical study reported
in this article. It should be noted that no historical data
was used when estimating with Planning Poker for our
study.

B. Analogy-Based Method (AbM)

The idea of using analogy as a basis to estimate effort
in software projects is not new: in fact, Boehm [11]
suggested the informal use of analogies as a possible
technique thirty years ago. In 1988, Cowderoy and
Jenkins [12] also worked with analogies, but they did not
find a formal mechanism to select the analogies.
According to Shepperd and Schofield [13], the principle is
based on the depicting of projects in terms of their
characteristics, such as the number of interfaces, the
development methodology, or the size of the functional
requirements. There is a base of finished projects which is

337Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 357 / 646

used to search for those that best resemble the project to
be estimated.

So, when estimating by analogy, there are p projects or
cases, each of which has to be characterized in terms of a
set of n characteristics. There is a historical database of
projects that have already been finished. The new Project,
the one to be estimated, is called “target”. Such target is
characterized in terms of the previously mentioned n
dimensions. This means that the set of characteristics will
be restricted to include only those whose values will be
known at the time of performing the prediction. The next
step consists of measuring similarities between the
“target” and the other cases in the n-dimensional space
[14].

 Such similarities may be defined in different ways,
but most of the researchers define the measuring of
similarities the way Shepperd & Schofield [13] and
Kadoda, Cartwright, Chen & Shepperd [14] do: it is the
Euclidean distance in an n-dimensional space, where n is
the number of characteristics of the project. Each
dimension is standardized so that all the dimensions may
have the same weight. The known effort values of the case
closest to the new project are then used as the basis for the
prediction.

In our empirical study, we applied AbM in its simplest
version. The participants compared the user stories of two
projects: one considered “historical” and the other one
“target”. The Estimated Effort (EE) of the user story of
the target project was, in fact, the Actual Effort (AE) of
the “most similar” user story of the historical project.
Actually, no specific characteristics of the user stories
were specially taken into account.

C. Historical Productivity

Jørgensen, Indahl, and Sjøberg [4] defined
Productivity as the quotient of Actual Effort (AE) and
Size, and the EE as the product of Size and Productivity.
In this empirical study, COSMIC [15] was used as a
measure of Size, and EE was calculated as the product of
Size and Historical Productivity (HP). The HP is the value
of productivity of the project to be used as historical
project, that is, the quotient of the AE and the Size of the
historical project.

To measure size, COSMIC was selected because it is
an international standard [16] that is widely recognized in
the software industry, and also because there is a previous
study that used it in an Agile context [17]. With the
COSMIC software method, the Functional User
Requirements can be mapped into unique functional
processes, initiated by functional users; in fact, user
stories are actually used in this paper. Each functional
process consists of sub-processes that involve data
movements. A data movement concerns a single data
group, i.e., a unique set of data attributes that describe a
single object of interest. There are four types of data
movements: a. an Entry moves a data group into the
software from a functional user, b. an Exit moves a data
group out of the software to a functional user, c. a Read
moves a data group from persistent storage to the
software, and d. a Write moves a data group from the
software to persistent storage.

In the COSMIC approach, the term “persistent
storage” denotes data (including variables stored in central
memory) whose value is preserved between two
activations of a functional process.

The size expressed in CFP is given by the equation
CFP = Entries + Exits + Reads + Writes, where each term
in the formula denotes the number of corresponding data
movements. So, there is no concept of “weighting” a data
movement in COSMIC, or, equivalently, all data
movements have the same unit weight.

III. DESCRIPTION OF OUR EMPIRICAL STUDY

 Our empirical study is described in this section,
considering its conception, how it was planned, the
particularities of its execution and the results obtained.

A. Definition

This empirical study was designed in order to establish
when the accuracy of an expert estimation made in a
context of agile development, under the circumstances
that will be described below, may be improved by using
historical data. Such circumstances are: the project
domain and the technological environment must be new to
the estimator, and the team would have recently been
created, so that the team velocity will be unknown.

The development steps of this empirical study may be
summarized as follows:

 The study was developed in the context of graduate
education for IT practitioners from different educational
and work backgrounds. The participants attended a
workshop which had two objectives, one oriented to the
subjects and another one oriented to the development of
this empirical study. The workshop gave the participants
the opportunity to: a. understand both how a historical
database is built, and under which circumstances such
database will give value to the estimation process, b.
estimate using three methods and c. compare their results
with other participants’ results. Later on, the same
workshop was conducted for undergraduate students.

The workshop participants were asked to re-estimate
the first spring of an application that had been previously
developed by a group of undergraduate students who did
not participate of the workshop. The selected application
had been developed using a development language
unknown by the workshop participants and the application
belonged to a domain the latter knew little of. The original
team velocity was not reported to the participants, to
simulate that it was unknown.

The re-estimations were made using three different
estimation methods: ExE, based on the participants’
intuition, and two other methods which use historical data.
The historical data was obtained from a similar
application that had been developed by a third
undergraduate group –a group that had neither developed
the original application nor participated of our empirical
study-.

To guarantee the best results, we followed the
recommendations of Juristo and Moreno [18] and Wohlin
et al. [19] in order to develop this empirical study. To
report it, we took into account Jedlitschka, Ciolkowoski

338Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 358 / 646

and Pfahl’s guidelines for reporting empirical research in
software engineering [20].

As previously stated, the objective of this empirical
study was to analyze when the accuracy of an estimation
made by an expert, based on his personal intuition, may
be improved by using historical data. This objective was
achieved by comparing the estimation errors obtained by
two different groups: undergraduate students and
practitioners, when estimating using three different
methods: ExE, AbM, and HP.

In fact, the hypotheses to be tested were:

H0: The mean value of the MRE calculated with the
ExE is equal to the mean value of the MRE obtained when
calculating with AbM or HP.

H1: The estimated mean value of the MRE calculated
with the ExE is lower than the mean value of the MRE
obtained when calculating with AbM or HP.

B. Planning

The experimental subjects were IT graduate students
and undergraduate advanced students of Informatics
Engineering. In fact, all of the graduate students were
practitioners. So, in this paper, when we say “participants”
we mean both the graduate and undergraduate students,
and by “practitioners” we refer only to the graduate
students.

The participants were asked to give some information
about themselves regarding the following aspects:

 If graduate or undergraduate student

 Professional experience (they had to state the
number of years they had worked in software
development)

 Experience with COSMIC

 Experience with user stories (they had to inform the
number of user stories that they had written/read
(fewer than 20, 20-100, more than 100)

 Experience with Ruby [21] language.

 Experience in Database development

 Experience in working in Agile development
contexts.

 Level of prior knowledge about the productivity of
the teams that developed the experimental objects
(high, medium, low)

 Level of experience in the technologies used to
develop the experimental objects (high, medium,
low)

 Level of experience in the domain of the
experimental objects (high, medium, low)

The experimental objects were two similar
applications (P1 and P2), which were social networks.
The first application was a system through which users
may conduct surveys. The system classifies users into
several categories, builds different groups and instantly
surveys those users who fall within the right categories. It
was developed by a team of undergraduate students who
registered the estimated and actual hours using the
Scrumy tool [22], and who were supervised by two
professors.

The second application, which we identified as the
“target project”, was a network where different types of

events may be published. For example, an event may be a
party, a meeting or a football game. Events are the core
elements in this application, not people. It works with
event and friend suggestion algorithms and gives the
option of buying a ticket for an event online.

The data corresponding to the experimental objects are
displayed below. Table 1 shows the user stories of P1 and
the Actual Effort (AE) of each user story measured in man
hours. As some user stories were not functional processes,
they were discarded. Table 2 shows the user stories of P2,
which are the user stories of only the first sprint, as it was
the only sprint for which effort was estimated.

As regards the counting of the man-hours worked on
P1 and P2, one of the tasks within the assignment the
undergraduate students that developed the projects had to
undertake was to register the hours worked. These two
groups did not participate in the empirical study; in fact,
they were undergraduate students from a university
different from the one where the undergraduate
participants studied. The applications were developed in
an Agile context, as an assignment in a practical subject.
They first estimated the work to be done and then
compared their estimations to their real effort. Two
professors supervised these tasks. This empirical study
used the actual effort of P1 and P2 and the estimated
effort of P2 (obtained by the original development group),
so that they may be compared to the participants’ results.

 The aspects of the development process that were
controlled to facilitate such comparison were:

 Similarity: Two similar applications that had been

developed in Agile contexts were selected as

experimental objects. They had been developed in

an academic context by advanced undergraduate

students, who had been requested to develop an

application for an assignment in which a company

environment was simulated.

 Experience in team velocity: Since in Agile

contexts developers learn from previous

estimations, and in this case the estimators were

expected to have no previous experience, only the

first sprint of the target application could be

estimated in order to be compared to the actual

effort estimation of P2, as it was only for the first

sprint that the original P2 estimators did not have

experience in team velocity.

 Language experience: Participants with experience

in Ruby language, in Agile contexts, and / or

COSMIC were equally distributed.

In order to obtain comparable results in this study,
man-hours had to be used to unify the unit of
measurement of effort, as the historical values had been
previously measured in man-hours, instead of in story
points or ideal hours, which are the measures usually used
to make effort estimations with Planning Poker in Agile
contexts [3].

The workshop was run following these steps:

1) The participants were given a set of materials that

included: Brief Vision Documents [23] of P1 and P2, the

339Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 359 / 646

professor’s slides explaining the empirical study, and an

Excel file where each sheet was a step of the empirical

study.

TABLE I. DATA OF THE APPLICATION TO BE USED AS HISTORICAL

INFORMATION

P1 Actual Effort

[man-hours]

Create survey 18

Sign up 15

See user’s profile 9

Answer survey 9

Log in/Log out 6

Comment on survey 12

Search for survey 9

Eliminate user 3

Edit personal data 6

Search for user 9

Generate and publish statistics 30

Follow user 30

Select user segment 18

Sort the content according to date 18

Upload pictures 21

UPR (User Popularity Ranking) 36

TABLE II. USER STORIES OF THE TARGET APPLICATION

P2

Create, Modify and Eliminate User

Log in (Log out)

Create event

Search for event

2) Each one of the empirical study steps was

explained to the participants. The participants were

trained to perform each activity. Also, two examples of

COSMIC measurement were included.

It is important to note that the participants worked
with an Excel file that was designed to facilitate the
understanding of the activities, and the sequence in which
they had to do them. The following are the activities
presented sequentially in each one of the sheets in the file:

a) Perform the expert estimation, based on their
intuition, they estimated the man hours to be worked on
the target application (P2). Based on the Vision Document
of P2, the participants estimated the EE of each user story
described in Table 2.

b) Build the historical database. The participants
measured the size of the user stories of the historical
application (P1) by using COSMIC, as shown in Table 1.
The Excel sheet automatically calculated the Historical
Productivity (HP) of P1 as the quotient of AEP1 and
SizeP1, where AEP1 is equal to the sum of the AE of each
user story of P1, and SizeP1 is equal to the sum of the Size
of each user story of P1. The data movements of P1 were
indentified for each user story, based on: the information
included in the Vision Report, the name of the user story,
and the explanation given by the leader of the workshop
when asked for it. The measurement of the user stories,
using COSMIC, was performed in a way similar to that of
[17].

c) Measure the size of the target application (P2),
by using COSMIC to measure the size of the user stories.

These size values were automatically used to calculate
EEP1, which was calculated as the product of SizeP1 and
Historical Productivity (HPP2).

d) Estimate the effort for the target application (P2)
using AbM. The participants had to select for each one of
the user stories in P2 the most similar user story from the
set of user stories in P1 -though based on their
characteristics, not on their size- and then assign to the
Estimated Effort (EE) of each user story in P2 the AE of
the similar user story in P1.

e) Individually compare and analyze the EE values
obtained using ExE, AbM, and HP methods. The Excel
sheet automatically presents a Table which displays the
three EE values –those obtained by applying the three
different estimation methods- for each user story in P2.

3) The participants estimated the effort of the target

application following the steps listed above, and
completed the worksheets.

4) The data was collected and the results were
analyzed with the participants. A rich discussion about the
comparison of the MRE obtained by applying the three
estimation methods (ExE, HP and AbM) was conducted
by the leader of the empirical study.

C. Execution

The characteristics of the participants are described in
Table 3.

Forty nine undergraduate students, who were
distributed in fourteen groups of 3-4 students, participated
in the two workshops. The median work experience of the
students was three years. No one had experience using
COSMIC, and they had little experience with user stories.
All of them had approved the course “Database” and only
8 had experience in working in an Agile context, that is to
say, a small proportion of them. The Level of experience
of the development teams in the technologies to be used
and in the domain of the experimental objects was low. In
one of the workshops, fourteen practitioners worked on
their own. The median work experience of the
practitioners was fourteen years. No one had experience in
using COSMIC, and five of them had experience with
user stories.

Their median experience in “Database” was ten years
and only three of them had experience in working in an
Agile context, which is a small proportion. The Level of
experience in the technologies and in the domain of the
experimental objects was medium-low.

Table 4 shows the effort estimation values of the target
project, obtained by the two groups applying the three
estimations methods: ExE, HP, and AbM. Moreover, the
AE of the student group that developed the target
application (P2) was 35 man-hours.

Figure 1 shows the boxplots of the residuals and
Figure 2 the boxplots of the MRE for the target project.
To obtain the MRE, the actual value registered for the first
sprint of P2 by the group that actually developed the
project was used as AE.

340Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 360 / 646

 TABLE III. WORKSHOP PARTICIPANTS

The boxsplots show the different results obtained by
each group of participants. The undergraduate participants
obtained better estimation results when applying the
AbM, rather than the ExE and HP methods. Figure 2
shows the median values, but it must be noted that a more
significant difference was observed when comparing the
values obtained for the mean MRE in the undergraduate
group: AbM: 69.80, ExE:151,43 and HP:175,04. On the
other hand, the practitioners group obtained the best
results when applying ExE, instead of HP and AbM, as
shown by the boxplots. Also, their mean values were ExE:
29.09, HP: 205.16, and AbM: 87.14.

D. Threats to validity

The difference in background of the experimental
subjects is the major weakness of this empirical study.
However, this drawback may be transformed into a
strength if we consider that in this empirical study the
experience of the expert is stressed, showing that the
accuracy of an expert estimation depends on the
estimator’s expertise, which is measured by his work
experience, his level of experience in the technologies
used to develop the experimental objects and his level of
experience in the domain of the experimental objects.

Another threat is that the expert estimations were
made in two different manners: either alone or in groups.
The practitioners worked alone and the undergraduate
students formed groups of three or four persons and used
Planning Poker to obtain the expert values. However, we
think that this combination of expert methods, that is,
using Planning Poker or not, did not introduce bias in this
study, in accordance with what was reported in [24].

Unfortunately, only a brief explanation about
COSMIC was given to the undergraduate students, since it
was not possible to give an extensive explanation, as there
was not enough time to do so (the whole workshop was
three hours long). Thus, the little available time was
devoted to those COSMIC characteristics that were
necessary for them to know in order to make a correct
measurement. However, this did not seem to be a big
problem, as the concept of data movement is quite
intuitive for all the participants and the medians of the
errors shown in both Figure 1 and 2 for the HP method are
similar.

Fig. 1. Boxplots of the residuals of the target project

Fig. 2 Boxplots of the MRE of the target project

Also, the use of examples and previous training in
Function Points made it easier for the participants to
understand how to use this measuring method. On the
other hand, the practitioners had been previously trained
in COSMIC, so they presented no difficulty. Besides, if
anybody had any doubts, the person who led the empirical
study would give further explanations.

The order in which the estimations were performed
could have introduced bias in the result, so it would have
been more convenient if the participants had not
performed the estimations in the same order, except for
ExE, which must always be performed in the first place.

Type Number Work

Expe-

rience

(Years)

Expe-

rience

using

COSMIC

Number of

User Stories

[<20,

20<US<100,

>100]

Database

Experience

Experience

with Ruby

Language

Work

expe-

rience

in Agile

context

Experience
in the

technologies

Expe-
rience in

the
domain

Under
graduate

49
(14

groups)

[0-13]
Median:

3

No one <20: 44
20<US<100: 3

>100: 2

All had
approved

the Course

“Database”

No one Only 8 Low: 47
Average: 2

High: 0

Low: 43
Average: 4

High: 2

Practi-
tioners

14 [4-36]
Median:

14

No one <20: 9
20<US<100: 3

>100: 2

Database
experience

measured

in years
[0-36]

Median:10

Only one Only 3 Low: 9
Average: 5

High: 0

Low: 11
Average: 3

High: 0

341Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 361 / 646

The selection of a similar application to make up the
historical database is clearly an advantage in order to
obtain a better estimation, but the problem is that
sometimes the estimator does not have data about similar
applications at hand, so she or he has to use an application
from a different domain. This circumstance may vary the
results obtained in this empirical study.

The experimental subjects were identified either as
undergraduates or practitioners. However, it may be
argued that more categories would have been necessary,
as some of the practitioners had more experience in the
domain or in the technologies than some others.
Consequently, to obtain more evidence of the benefit of
using historical data, it is necessary to have a bigger
number of estimators, which would allow us to identify
different levels of expertise, for example, three expertise
levels for practitioners and three for undergraduates.

To conclude, as the experimental objects used in the
empirical study came from a particular environment and
the experts’ experience did not cover the big spectrum of
expertise that exists, general conclusions cannot be drawn
because there may be different estimation problems in
different environments and experts’ performances.

IV. DATA ANALYSIS AND INTERPRETATION

To answer the research question posed above, it is
important to understand the circumstances under which
the use of historical data may improve the expert
estimation accuracy. In this empirical study, two types of
experts were involved: we called them undergraduate and
practitioner participants. Consequently, each group will be
separately analyzed first, then the statistical significance
of the results will be dealt with, and afterwards, the
research question will be answered. Finally, this will be
completed with the discussion of aspects omitted in the
previous sections.

A. Result analysis

1) Undergraduate
We noticed that there were three aspects that affected

the intuitive expert estimation: the work experience, the
level of experience in the technologies used to develop the
experimental objects, and the level of experience in the
domain of the experimental objects. The undergraduate
participants’ work experience measured in years varied
from 0 to 13, with a median of 3. This shows that the
“experts” had little experience in estimations and also,
that the level of experience in the technologies used and in
the domain was low.

Their best result was obtained when using AbM: the
MRE median was 63% within a [37%-183%] range. The
lack of experience, in this case, was compensated for by
the historical data.

By using HP, the MRE dispersion was increased: the
MRE values ranged from [99%-272%]. The MRE of the
14 groups had a median of 189% and a standard deviation
of 54%.

2) Practitioners
When compared to the undergraduate participants, the

most significant difference was their work experience:

TABLE IV. EE OF THE TARGET PROJECT

Participants Number of

estimations

ExE

%

HP

%

AbM

%

Undergraduates 14
(made by

groups of 3-4

undergraduate
students)

161.00 110.00 57.00

61.00 74.70 57.00

34.00 76.30 60.00

65.00 69.72 48.00

207.00 84.12 48.00

85.00 106.13 55.00

173.00 90.21 66.00

68.00 102.84 57.00

79.00 101.15 57.00

56.00 101.44 51.00

51.00 72.00 57.00

32.00 130.15 57.00

105.00 108.93 99.00

Practitioners 14 11.00 108.94 11.00

30.00 173.22 24.00

21.00 84.77 20.00

30.00 122.15 60.00

9.00 90.55 9.00

64.00 85.96 39.00

30.00 120.61 105.00

29.00 111.87 86.00

16.00 72.88 32.00

30.00 105.05 95.00

40.00 88.93 57.00

40.00 97.07 94.00

49.00 92.37 70.00

57.00 140.94 57.00

measured in years, it varied from 4 to 36, with a median
of 14. Ten practitioners were project leaders or managers,
three were senior developers and only one was a junior
developer. This shows that these “experts” had experience
in project management and, of course, in estimations.

The practitioners’ level of experience in the
technologies used to develop the experimental objects and
the level of experience in the domain of the experimental
objects was medium-low. These characteristics justify the
results obtained when using ExE.

During the study, three of them did not perform the
expert estimation because they considered that they were
no “experts”, while two of them assigned to the expert
estimation the same value they had assigned to the AbM
estimation. Seven of the eleven practitioners that applied
pure expert estimation estimated with an MRE lower than
25%.

The estimation by AbM had a MRE median of 70 % in
a range result of [8.57%-200%], which is a result similar
to that obtained by the undergraduates.

By using HP, the MRE dispersion was increased:
[108.22%-384.91%]. The MRE of the 14 practitioners had
a median of 189% -similar to that of the undergraduate
value-and a big standard deviation of 75%, which may
have been caused by the subjectivity introduced by
COSMIC, originated by the practitioners’ different
backgrounds.

3) The statistical significance of the results
The Wilcoxon rank test, at a significance level of 0.05,

was used to analyze the statistical significance of the

342Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 362 / 646

results. This non-parametric test was selected because the
distributions of the variables were not normal. It was
applied to test the accuracy of ExE versus that of HP or
AbM, according to the results obtained by each group
(practitioners and undergraduate participants). The MRE
and the absolute residuals were used. Table 5 shows the p-
value of each subset, when using the MRE. The results
obtained when using the absolute residuals are not shown
because there is no significant difference.

TABLE V. STATISTICAL SIGNIFICANCE

Groups ExE vs: MRE

Undergraduate HP 0.162

AbM 0.948

Practitioners HP 0.000

AbM 0.022

When analyzing the MRE obtained by:

 the practitioners, when comparing ExE to HP, it
was possible to reject H0 in favor of H1.

 the practitioners, when comparing ExE to AbM,
once again, it was possible to reject H0 in favor of
H1.

 the undergraduates, when comparing the ExE
method to HP, it was not possible to reject H0 in
favor of H1.

 the undergraduates, when comparing the ExE
method to AbM, it was not possible to reject H0 in
favor of H1.

It should be noticed that the three practitioners who
did not use the method, as they did not consider
themselves to be “experts”, were also included in the
table. However, later on, the Wilcoxon rank test was also
computed, but this time only for the eleven practitioners
who made the estimations, and the results did not vary.

Now we can answer the research question: When may
the accuracy of an expert estimation made in a context of
Agile software development be improved by using
historical data?

These results show that the expert estimation was not
improved by the use of historical data when the expert had
some work experience, and his level of experience in the
technologies used to develop the application, and his level
of experience in its domain were medium-low.

However, we found out that historical data may
improve the expert estimation when the estimator’s work
experience, his level of experience in the technologies
used to develop the application, and his level of
experience in the domain of the application to be
developed is low.

4) Discussion
There are some aspects that have not been mentioned

yet, but it is worth doing so now. One of them is the little
experience in Agile development contexts that the two
groups had. We think that this fact did not affect the
results obtained because, as the work experience of the
undergraduate group was small, their experience in Agile
contexts was small too. On the other hand, practitioners
were experienced in project management and estimations,
so this compensated for their little experience in Agile

contexts. On top, as the empirical study was designed to
only use the first sprint of a software product
development, no estimations were made for the rest of the
sprints -which would be usually done when using an Agile
method- so their little experience in Agile contexts had no
impact on our study.

Another interesting aspect is that most of the effort
calculations proved to be underestimated, which may be
seen in Figure 1. This could be explained by the fact that
almost all the participants did not have previous
experience with the Ruby language. On the contrary, the
group that developed the target application had previous
knowledge of the velocity that they could achieve because
they had done a Ruby on Rails tutorial before.
Consequently, the level of experience of this group in the
technologies used to develop the target application and the
level of experience in the target application domain was
medium-high, which justifies the accuracy of the
estimation: 3% MRE, which was high. At the same time
the group that developed the target application had a
higher velocity than the group that developed the
historical application. Obviously, the bigger the difference
in the velocity, the bigger the error in the effort
estimation.

One question that may arise is: how would the
participants be able to make meaningfully expert
estimations if they did not have any knowledge about the
developers? This condition was part of the scenario that
we were simulating; as it was stated in the introduction of
this paper, the team velocity was unknown.

Figure 2 shows that the medians obtained by the two
groups when estimating with HP were similar, but their
standard deviations were not: the standard deviation of the
MRE for the undergraduate group was 53.7 and 75 for the
practitioners. This is a consequence of the subjectivity
introduced by the COSMIC measurement of both the
historical user stories and the user stories to be estimated.
The estimation was affected by the subjectivity of the
measurements and by the difference between the historical
productivity of P1 and the actual productivity of P2.

Figure 2 shows that the MRE medians obtained when
the two groups used the AbM method were similar but
their MRE distributions were quite different. It was
surprising to see that the results obtained by the
practitioners using the AbM were worse than those
obtained by the undergraduates. As the AbM is based on
the selection of a “similar” user story, we may conclude
that the undergraduate participants had a comparable
concept of “similarity” to that of the original
undergraduate group that developed the target application.

The estimation results obtained with the AbM and HP
method would have been better if the historical data had
been obtained from a similar project –one developed
using Ruby on Rails- , but unfortunately, there was none
available. Besides, the fact that the user stories that were
not functional processes were discarded may have also
influenced the results. In addition, another interesting
factor that may have been considered is team size.

In our study, the empirical objects were two similar
applications, but what would have happened if they had

343Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 363 / 646

not been similar? Obviously, the results of the
undergraduate group would have been affected, as their
best results were obtained using the AbM. The reason is
that such method is based on analogy, so if the degree of
similarity between the application from where the
historical data was to be obtained and that of the target
application had been low, the accuracy of the estimation
would have been poor too.

Moreover, although we only used the estimates of the
first sprint of the target application this time, we believe
the estimates of the following sprints could be used in
future replications to evaluate if (and to what extent)
expert estimations improve while participants gain
knowledge of the projects (while AbM and HP are
expected to yield constant accuracy throughout the
sprints).

Finally, we may wonder about the participants’
characteristics included in Table 3 and the reason why
other characteristics were not included. To begin with,
database experience is related to work experience, so it
was necessary to check it because the COSMIC
measurement would have been affected if experience in
database had been small. In fact, the experience in using
COSMIC was defined as a controlled variable. Moreover,
the number of user stories the participants had
written/read was included because it is related to their
work experience in Agile contexts: in fact, there was a
correlation between the number of user stories
read/written and their experience in Agile contexts, which
proved the consistency of the information. In addition, the
level of experience with Rugby language and the level of
experience in the technologies to be used had to be tested
in order to verify if the participants fit our empirical study.
Besides, the impact of the level of experience in the
application domain was previously analyzed by [25]. We
think that these characteristics have made the main
differences between the two groups clear.

V. RELATED WORK

Apparently, this has been the first article to have been
written about whether using historical data in an agile
context improves expert estimation.

However, regarding expert estimation in general, there
are some authors that have already reported evidence
about the importance of the developers’ level of maturity
when evaluating the accuracy of estimations, which is in
line with the conclusions of our study. For example,
SCRUM pioneers believe it is acceptable to have an
average error rate of 20% in their results when using the
Planning Poker estimation technique, but they have
admitted that this percentage depends on the level of
maturity of the developers [25]. Another study [26] agrees
with this statement, as it indicates that the optimism bias
which is caused by the group discussion diminishes or
even disappears as the expertise of the people involved in
the group estimation process increases.

 On the other hand, another study [27] has already
examined the impact of the lack of experience of the
estimators in the domain problem, as well as that in the
technologies used in a software development project. In
fact, what was studied was the accuracy with which the

effort of a given task was estimated. Such estimation was
performed by a single expert by comparing the estimated
and the actual efforts. The reason for researching on this
aspect is that, occasionally, organizations do not have in
their staff experts that have relevant prior experience in
some business or technology related aspect of the project
they are working on. This research investigates the impact
of such incomplete expertise on the reliability of
estimates.

It is important to note that Jorgensen [1] has both
defined a list of twelve “best practices”, that is to say,
empirically validated expert estimation principles, and
suggested how to implement these guidelines in
organizations. One of the best practices he proposed is to
use documented data from previous development tasks
and another one is to employ estimation experts with a
relevant domain background and good estimation records.
Actually, our article headed in the same direction; we
focused on historical data and we analyzed the impact of
the difference in experts’ skills.

An aspect that should be taken into account when
performing expert estimations is excessive optimism, as it
is one of the negative effects that influences the most
when a software project fails. Jørgensen and Halkjelsvik
[28] have discovered something that seems to be
important to understand what may be leading estimators
to excessive optimism: the format used to word the
question that asks about effort estimation. The usual way
to ask about effort estimation would be: “How many
hours will be used to complete task X?”. However, there
are people who would say: “How many tasks could be
completed in Y hours?”. Theoretically, the same results
should be obtained by using any of the two formats.
Nevertheless, according to Jørgensen and Gruschke [29],
when the second option is used, the estimations which are
thus obtained are much lower than those obtained when
the traditional format is used, that is to say, the time to
fulfill a task will be shorter, and consequently, the
estimation will be much more optimistic. Thus, in our
study, the expert estimations were made using the usual
question. In fact, the final recommendation of this study is
that the traditional format should always be used, as this
does not contain any deviation imposed by the clients who
ask the developers for more than they can pay for.

VI. CONCLUSION AND FUTURE WORK

This paper specifically focuses on an agile context in
which the project domain and the technological
environments are new to the estimators, the teams have
recently been created, and the team velocity is unknown.
As under these circumstances historical data may become
important, we tried to answer the following research
question: when may the accuracy of an expert estimation
made in a context of agile software development be
improved by using historical data? To find out whether
there is any advantage in using historical data when the
historical velocity is unknown, an empirical study was
developed in an Agile software development context.

Historical data seems to be valuable when the work
experience, the level of experience in the technologies to
be used to develop an application, and the level of

344Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 364 / 646

experience in the domain of the application to be
developed are low.

So, for estimators who have the restrictions described
above, and who have no option but to work with them, we
may suggest the following:

 Use intuitive expert estimations when your work
experience, your level of experience in the
technologies to be used to develop the application,
and your level of experience in the domain of the
application to be developed are not low.

 Use historical data when your work experience,
your level of experience in the technologies to be
used to develop the application, and your level of
experience in the domain of the application to be
developed are low.

In order to generalize this conclusion, a replication of
this empirical study is recommended, especially if
different software life cycle models [30], application
domains, expert profiles, and levels of performance are
included. Also, different estimation methods, such us
linear regression or Analogies –next time, using the size
characteristic- may be used. Finally, in order to enrich this
empirical study, it would also be convenient to compare
the estimation performed by an expert who has deep
knowledge of this domain, and also knows the team
velocity, to the estimations obtained by the participants of
our study.

AKNOWLEDGMENTS

Our thanks to the Research Fund of Austral
University, which made this study possible, and to Luigi
Lavazza for his opportune comments.

REFERENCES

[1] M. Jorgensen, “A review of studies on Expert estimation of software
development effort,” Journal on System and Software, Vol. 70, No.
1-2, 2004, pp. 37-60.

 [2] M. Jorgensen, and Shepperd, “A systematic review of software
development cost estimation studies,” IEEE Transactions on
Software Engineering, Vol. 33, No. 1, January 2007, 2007, pp. 3-
53.

 [3] M. Cohn, Agile Estimating and Planning. Addison-Wesley, 2005.

 [4] M. Jørgensen, U. Indahl, and D. Sjøberg, “Software effort
estimation by analogy and regression toward the mean,” Journal of
Systems and Software, 68(3), 2003, pp. 253-262.

 [5] T.J.Bang, “An Agile approach to requirement specification,” Agile
Processes in Software Engineering and Extreme Programming,
SE:35, VL:4536, Lecture Notes in Computer Science, G. Concas,E.
Damiani, M. Scotto, G.Succi, Eds., Springer Berlin Heidelberg,
2007, pp. 193-197.

[6] J. Choudhari and U. Suman, “Phase wise effort estimation for
software maintenance: an extended SMEEM model,” in
Proceedings of the CUBE International Information Technology
Conference, ACM, 2012, pp. 397-402,

[7] N.C. Haugen, “An empirical study of using Planning Poker for user
Story estimation,” Proceedings of AGILE 2006 Conference,
Computer Society, IEEE, 2006, 9 pp. – 34.

[8] J. Grenning,. “Planning Poker or how to avoid analysis paralysis
while release planning,” 2002, DOI=, http://sewiki.iai.uni-
bonn.de/_media/teaching/labs/xp/2005a/doc.planningpoker-v1.pdf:
August, 2013.

[9] E. Miranda. “Improving Subjective estimates using paired
comparisons,” IEEE Software, 18(1), 2001, pp. 87–91.

[10] T. Saaty, Multicriteria decision making: the Analytic Hierarchy
Process. RWS Publications, 1996.

[11] B. Boehm. Software Engineering Economics. Prentice Hall. 1981.

[12] A.J.C. Cowderoy and J.O. Jenkins, “Cost estimation by analogy as
a good management practice,” in Proc. Software Engineering 88.
Liverpool: IEE/BCS, 1988, pp. 80-84,

[13] M. Shepperd, and C. Schofield, “Estimating Software Project Effort
Using Analogies,” IEEE Trans. on Software Eng., vol. 23, no. 11,
1997, pp. 736-743.

[14] G. Kadoda, M. Cartwright, L. Chen, and M. Shepperd. Experiences
using Case-Based Reasoning to predict software project effort.
Empirical Software Engineering Research Group Department of
Computing Bournemouth University Talbot Campus Poole, BH12
5BB, UK. 2000.

[15] COSMIC – Common Software Measurement International
Consortium, 2009, The COSMIC Functional Size Measurement
Method - version 3.0.1. Measurement Manual (The COSMIC
Implementation Guide for ISO/IEC 19761: 2003).

[16] ISO (2011) ISO/IEC19761:2011, Software Engineering --
COSMICFFP– A Functional Size Measurement Method, ISO and
IEC.

[17] J. Desharnais, L. Buglione, and B. Kocatürk,. “Using the COSMIC
method to estimate Agile user stories,” in Proceedings of the 12th
International Conference on Product Focused Software
Development and Process Improvement, ACM, New York, 2011,
pp. 68-73.

[18] N. Juristo and A.M. Moreno, Basics of Software Engineering
Experimentation. Kluwer Academic Publishers., 2001.

[19] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, and A.
Wesslen, Experimentation in Software Engineering: an
Introduction. Kluwer Academic Publisher, 2000.

[20] A. Jedlitschka, M. Ciolkowoski and D. Pfahl, “Reporting
experiments in Software Engineering,” in Guide to Advanced
Empirical Software Engineering, Section II, 2008, pp. 201-228.

[21] Ruby on Rails. http://rubyonrails.org/: August, 2013.

[22] Scrumy, http://www.scrumy.com: August, 2013

[23] K. Bittener and I. Spence. Use case Modeling. Addison Wesley,
2003.

[24] K. Molokken-Ostvold, N.C. Haugen and Benestad, H.C., “Using
planning poker for combining Expert estimates in software
projects,” Journal of Systems and Software, 81 (12), 2008, pp.
2106-2117.

 [25] O. Ktata, and G. Lévesque, “Designing and implementing a
measurement program for Scrum teams: what do agile developers
really need and want?,” in Proceedings of the Third C* Conference
on Computer Science and Software Engineering (C3S2E '10),
ACM, New York, NY, USA, 2010, pp. 101-107.

[26] V. Mahnič and T. Hovelja, “On using planning poker for estimating
user stories,” J. Syst. Softw. 85, 9 (September), 2012, pp. 2086-
2095.

[27] S. Halstead, R. Ortiz, M. Córdova, and M. Seguí, “The impact of
lack in domain or technology experience on the accuracy of Expert
effort estimates in software projects,” in Proceedings of the 13th
international conference on Product-Focused Software Process
Improvement (PROFES'12), Springer-Verlag, Berlin, Heidelberg,
2012, pp. 248-259.

 [28] M. Jorgensen, and T. Halkjelsvik, “The effects of request formats
on judgment-based effort estimation,” Journal of Systems and
Software, 83 (1), 2010, pp. 29-36.

[29] M. Jorgensen and M. Gruschke, “The Impact of lessons-learned
sessions on effort estimation and uncertainty assessments,” IEEE
Transactions on Software Engineering, Jan. IEEE computer
Society Digital Library. IEEE Computer Society, 2009, pp. 368 -
383.

 [30] A. M Davis, E. H. Bersoff and E. R. Comer, “A strategy for
comparing alternative software development life cycle models”,
Software Engineering, IEEE Transactions on (Volume: 14 , Issue:
10), 1988, pp. 1453 – 1461.

345Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 365 / 646

Agile-User Experience Design: an Agile and User-Centered Process?

Lou Schwartz
Public Research Centre Henri Tudor

Luxembourg, Luxembourg
lou.schwartz@tudor.lu

Abstract—Agile-User Experience Design, also called Agile-UX,
is a trend of the last decade that mixes values and practices
from the Agile software engineering methods and the User-
Centered Design. Several practitioners have proposed different
processes to organize the work between development and
design. After a short reminder of the values of Agile and User
Centered Design methods, this paper presents five processes
proposed in the literature. The processes are discussed with
regards to their respect of the Agile and User Centered Design
values. This comparative study concludes that not one process
totally covers the Agile and User Centered Design values: they
all make a trade-off and could be completed by practices and
by a state of mind and a willingness adopted by the team.

Keywords-Agile; Agile-UX; Agile Software Techniques;
Software Engineering; User-Centered Desing;

I. INTRODUCTION
Since a decade, several software companies, or only at

the teams’ level, try to integrate Agile software development
methods and User Centered Design (UCD) [6][8][14][19].
This integration, called Agile-User Experience Design or
Agile-UX, is bound on the one hand to the interesting
performance of Agile methods to quickly provide software
that answers the users’ needs with a certain level of quality,
and on the other hand it results in the observation that this
software quality is relative, particularly related to Human
Computer Interactions aspects [3][18]. Based on this
observation, several practitioners tried to integrate UCD in
their Agile process with various degrees of success. After a
reminder of Agile and UCD methods in section II and III,
this paper will present processes used to integrate Agile and
UCD, often addressed in the literature in section IV and
discuss them regarding their respect of the agile and UCD
values in section V.

II. AGILE METHODS
The Agile methods’ goal is to enhance the value of the

delivered product in order to satisfy the customer’s
requirements. Agile methods adopt the following four values
defined in the Agile Manifesto [1]:

• Individuals and interactions over processes and tools
• Working software over comprehensive

documentation.
• Customer collaboration over contract negotiation.
• Responding to change over following a plan.
The Agile movement was instigated and pioneered by

software developers in reaction to a frustration emerging
from history of delayed projects, budget overruns and

stressful jobs [2]. For the Agile Manifesto founders, these
problems have their origin in a too big analysis, specification
and design done before code writing that enables volatile or
useless requirements and incompleteness. With the Agile
methods, customers would obtain faster working software
that corresponds better to their real requirements, thanks to
the flexibility provided to the development process [2].

Agile methods are focused on the developers’ work and
on the development quality [4]. Even if the aim of Agile
methods is to satisfy the product owner’s (who is the
representative of stakeholders: customers and end-users)
requirements, they define neither method nor good practices
to achieve this objective, particularly for the needs elicitation
or the design part. The needs elicitation is done by the
product owner, based on his own knowledge of the domain
or of the work done by users. He can use the methods he
wants, including involving the users (e.g., by interviews,
context inquiries, etc.). The user interface design depends on
the openness to ergonomics of developers, customer and
users. So there is no guarantee about it. [4]

The use of the UCD principles and methods is one way to
ensure answering to users' needs. Based on these
assessments, Agile teams can benefit from the integration of
UCD methods with Agile to improve, in particular, the needs
elicitation and the design part.

III. USER-CENTERED DESIGN
UCD focuses on producing usable software that satisfies

real end-users and customers. This method, described by the
standard ISO 9241-210 [9] defines the process to follow to
produce software that meets the users’ requirements. It
includes in particular the design and the validation stages.

Figure 1. UCD process as described by the standard ISO 9241-210 [9].

346Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 366 / 646

Four activities compose the UCD process (see Figure 1.):
• Understanding and specifying the context
• Specifying the user needs
• Produce design solutions to meet user requirements
• Evaluate the designs against requirements
The principles of the UCD are listed below [9]
• The design is based upon an explicit understanding

of users, tasks and environments
• Users are involved throughout the design and the

development
• The design is driven and refined by user-centered

evaluation
• The process is iterative
• The design addresses the whole user experience
• The design team includes multidisciplinary skills

and perspectives
Even if some Agile concerns could prevent a UCD

attitude [4] (the focus is often more on programming
techniques and programmers, automated tests, very short
iterations and fast increments) a reconciliation of both
approaches is possible and has often been implemented
[6][8][11][12][14][15][19]. The integration of both methods
implies focusing more on design activities. It results to a
redefinition of the process to organize the activities dedicated
to the design and the process dedicated to the development.

IV. REVIEW OF THE AGILE-UX PROCESSES PRESENTED IN
THE LITERATURE

A major issue listed in the literature about Agile-UX is
the organization of the work between development tasks and
UCD tasks in respect to the Agile and UCD values. Among
the existing work, five propositions of process design are
studied in this section.

A. Parallel tracks
To manage exchanges and to organize the work to carry

out between developers and usability experts, Sy [19]
proposes that they work in parallel tracks after the planning
iteration also called iteration “0”. It enables usability experts
to keep ahead of the developers, to have enough time to
gather users’ data, to analyze that data and to propose design
solutions. For that, designers and developers work with one
to two iterations of delay (see Figure 2.). During the iteration
i, designers:

• Gather user and context data for the iteration i+2

• Work on the designs for the iteration i+1
• Help developers for the implementation of the

designs of the iteration i
• Evaluate the software developed during the iteration

i-1
The principle of parallel tracks is well acclaimed by

usability experts who test it [6][15][19] thanks to the
proactive attitude given to them. As any method, the Sy’s
process has advantages and potential issues.

The advantages of working ahead of the development
team [14] are:

• Better definition of the conditions of satisfaction
(test acceptance criteria)

• Better planning the design
• Better inclusion of designs in the global users’

process
• Designers can be more concentrated on exceptions

rather than trying to produce the best design right the
first time.

The potential issues of parallel tracks are [14]:
• Sensation of not being one team that can give a

vision of inequality
• Exclusion or self-exclusion of usability experts of

some meetings
• Risks of the lack of communication which could

lead to misunderstanding and resentment
• Forget to rectify issues noted during previous

iteration’s tests.
To avoid these issues two solutions are proposed [14]:

encourage communication, build common channels of
communication; and give helpful assistance to developers as
soon as possible when a design is not understood.

This iterative process covers the four UCD activities and
it also respects the following UCD principles:

• Understanding of users, tasks and environment: the
activities of gathering data on user and context are
scheduled.

• Users’ involvement: users can be involved for the
gathering of data and for design, but they are
particularly consulted to test the developments.

• Evaluation: software tested by users.
• Iterative: intrinsic to the process.
• Multidisciplinary: by the involvement of designers,

developers and stakeholders.

Figure 2. Sy’s parallel tracks of work [19].

347Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 367 / 646

B. Design work done on parallel levels
Armitage [2] proposes another type of parallel work that

concerns only the designers’ work organization. The design
work is done on three parallel levels (see Figure 3.) from unit
to global level:

• Provide detailed designs for the requirement
developed in the current or next iteration.

• Redesign software developed in previous releases (a
release is a set of several iterations).

• Provide overall product vision, to keep a global
coherence throughout the project and developed
software.

Figure 3. Parallel design tasks presented in [2].

This process covers the four UCD activities. The
evaluation of designs against requirements is supported by
the redesign activities and an overall product vision.

This process respects the following UCD principles:
• Understanding of users, tasks and environment: the

focus is on the design in this process, that encloses
the respect of this principle

• Iterative: the process is iterative on each level
• Multidisciplinary: involvement of designers.
• However it is not clear if the evaluation of the

designs are driven and refined by users (third UCD
principle) or if the users are involved (second UCD
principle) but there is no counter-argument to respect
these principles.

C. Sequence of an iterative design phase and an iterative
development phase
Deuff et al. [8] present another proposition of process for

Agile-UX that gives a good place to an upfront designing
(see Figure 4.). They justify this iterative design phase by the
fact that time is necessary before development to build the
context (gather data on users, their tasks, the context, etc.)
and make the first design propositions. But, the time is not
available in classical Agile processes. So usability experts
have to juggle between too much tasks (gather the necessary
data, define the design, test) while trying to maintain a global
vision during iterations. To resolve this issue they propose to
cut the project in 3 phases: Design, Development and Final
test. The design and the development phases are iterative.
Even if a Final test is planned, several users’ tests are done
during the first and second phase.

This process covers the four UCD activities if the phase 1
is dedicated to understanding and specifying the context of
use, specifying the user and organizational requirements and
producing design solutions. But the description of the
process is not deep enough to ensure that phase 1 covers

these activities. The evaluation of designs against
requirements is covered by Phase 3 and by the regular tests
done throughout the project.

Figure 4. Deuff’s process proposal [8].

This process respects the following UCD principles:
• Understanding of users, tasks and context: notably

through phase 1 of designing
• Users’ involvement: users are involved throughout

the project in particular thanks to regular testing.
• Evaluation: design and software are iteratively

evaluated by users and it is enhanced by phase 3
which plans a final users’ test

• Multidisciplinary: designers and users involvement.
The fourth (iterative) UCD principle is more or less

respected since the first and second phases are iterative but a
global loop is missing.

D. Big upfront design
Agile methods do not encourage a big upfront design

[4][14][15]. Or more precisely this upfront design is out of
the scope of the Agile methods. In fact an analysis conducted
by the product owner is necessary to define the product
backlog, but no best practice is defined to support the
product owner for this task, which is done before the start of
the development Agile process. To support the product
owner for this task, some usability experts propose to
conduct a big analysis up front. Others are against this
practice and prefer to use the iteration called “zero” to
conduct a short analysis and then go deeper throughout the
project according to the needs of analysis. Big upfront design
in Agile-UX has supporters and opponents (see TABLE I.),
their arguments are presented bellow.

1) Supporters of a big upfront design: Chamberlain [6]
in his principle 4 for integration UCD and Agile
development insists on a big upfront design before any
development: “UCD practitioners must be given ample time
in order to discover the basic needs of their users before any
code gets released into the shared coding environment.” This
time is necessary to capture users’ needs, usability goals,
context of use and design criteria. It is also used to define
users or to build personas. In some cases, at least a part of
the designs is defined in this step which is not recommended
by Nodder [14]. It's even risky according to Blomkvist [4]
and Deuff [8] to engage a project in a development without
this initial analysis and design. Agile methods are intensive
during iterations, so that usability experts do not always have
time to ask questions or to take a global view and ensure the
homogeneity and consistency of the solution.

For Brown [5], long research projects are sometimes
necessary to devote more time in analysis in order to gather
the necessary data.

348Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 368 / 646

TABLE I. REPARTITION OF OPPONENTS AND SUPPORTERS OF A BIG UPFRONT DESIGN AND THEIR ARGUMENTS

 [2] [4] [6]
Prj. I

[7] [5] [8] [11] [14]
Prj. PV

[15]
Prj. 1 Prj. 2 Prj. 3 Prj. 4

Supporters Do first analysis and
design X X X X X X X

Avoid risks X X
Have a global vision X X X X

 X X

Opponents Avoid risks (time &
money consuming) X X X X

Respect Agile values:
accept changes X X X X

Big upfront analysis
reduce quality X

Figure 5. One iteration in Usage-Centered Design adapted to Agile methods [7].

2) Opponents of a big upfront design: In opposition, for
Armitage [2] it is too risky and time and money-consuming
to design deeply beforehand and it is totally against Agile
practices which encourages “trial and error to reduce the risk
of building the wrong thing”. A big upfront design might
reduce quality of the software and its design [2]. Another
problem is the difficulty to accept changes later when a big
upfront design was done, which goes against the Agile
values “Responding to change over following a plan” and
“Working software over comprehensive documentation”
[2][11][15]. For Brown [5], gathering data or needing design
validation is not a justification for an upfront design phase:
these tasks can be conducted throughout the project thanks to
the planning of regular meetings with users. These meetings
can serve to discuss all the elements already built
(wireframes, personas, software, etc.) with users but also to
gather data on their tasks etc.

3) Conclusion: For Brown [5], it is a myth that no
upfront design is allowed in Agile-UX. In fact, Agile
developers all work with a kind of high-level plan also called
a roadmap. It is also necessary for usability experts to
develop a kind of roadmap in the form of, e.g., a simple
sketch, a workflow diagram, wireframes or Post-its. This
way the team has to take the time to build this global vision
while taking care not to spend too much time and fall into the
track of a design phase that never ends. This is necessary to
identify proactively technical impediments.

This process covers only three of the four UCD activities:
understanding and specifying the context of use, specifying
the user and organizational requirements, and producing
design solutions. Furthermore it depends on the tasks done in
this big upfront design phase: in fact the proposition of
designs is not always included, sometimes it is diluted in the

iterations following this first phase. So a big upfront design
is not enough to ensure that designs will meet the users’
requirements.

This process does not ensure the second (users’
involvement), the third (evaluation), the fourth (iterative) and
the sixth (multidisciplinary) UCD principles even if they are
recommended to ensure a better design. In fact the goal of
this process is to answer to the first UCD principle:
understanding of users, tasks and context.

E. Usage centered design
Constantine [7] proposes another approach, which is the

integration of Usage-Centered Design, and not User-
Centered Design, and Agile (see Figure 5.).

Usage-Centered Design is more focused on roles than on
users and on usage scenarios also knew as task cases. Roles
and tasks are identified by stakeholders (domain experts,
business people, designers, developers, users, etc.) thanks to
brainstorming. The process is composed of iterations that are
all composed of these succeeding steps: (1) Inventory roles;
(2) Refining roles; (3) Prioritizing roles; (4) Inventory tasks;
(5) Prioritizing tasks; (6) Describing tasks; (7) Organizing
tasks; (8) Paper prototype; (9) Refining of prototype. During
this time developers develop the back-end components.
When the prototype is refined, they develop the interface.

This process covers only three of the four UCD activities:
understanding and specifying the context of use, specifying
the user and organizational requirements, and producing
design solutions. The evaluation of designs against
requirements is not covered; it goes against the third UCD
principle [16].

As stakeholders are consulted to define roles and tasks,
the second (users’ involvement) and sixth (multidisciplinary)
UCD principles are respected. The process is intrinsically
iterative (principle 4.). The good definition of roles and tasks

349Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 369 / 646

answers to the first UCD principle, even if the process does
not ensure the understanding of the environment.

V. DISCUSSION
The facing of the presented Agile-UX processes to the

UCD activities shows that they respect generally the four
UCD activities (see TABLE II.). However the activity of
evaluation is not covered by the big upfront design or by the
Constantine’s process: they have to be completed.

None of the presented processes ensures the fifth UCD
principle (see TABLE II.), this principle aims to improve the
whole user experience by addressing the support of users in
their use of the product. This can be addressed by all
processes if the willpower to care about it exists in the
project and in the team. Sy’s, Deuff’s and Constantine’s
processes clearly involve users at least to support the
evaluation of designs and software and/or to define the
context and the needs (see TABLE II.). Armitage’s and the
big upfront design processes do not ensure this involvement
and evaluation, but the respect of these UCD principles is
recommended to improve the designing and the meeting of
the users’ needs (see TABLE II.). Sy’s, Armitage’s and
Constantine’s processes are strongly iterative (see TABLE
II.). Deuff’s process is more or less iterative, this is due to
the introduction of an upfront analysis separated from the
development phase, but each phase is iterative (see TABLE
II.). For the big upfront process it is recommended to make it
iterative but it is not ensured (see TABLE II.). Finally, all

presented processes involve at least designers (see TABLE
II.), and even if some of them do not ensure the involvement
of developers or stakeholders, including the end-users, it is at
least recommended.

Evaluate these Agile-UX processes under the Agile
values is not an easy task. Firstly, as they are processes they
can go instead of the first Agile value (Individual and
interactions over processes and tools) (see TABLE II.). We
can understand that processes promote a separate analysis
and design phase, as Deuff’s and big upfront design, are
certainly more rigid and thus do not encourage the third
Agile principle (Customer collaboration over contract
negotiation) by fixing the designs before development and
the discovery of impediments (see TABLE II.). As the
separate design phase aims to produce designs, we can
deduct that both processes do not promote the second
(Working software over comprehensive documentation) (see
TABLE II.). The more iterative attitude of the Sy’s,
Armitage’s and Constantine’s processes respects better the
third Agile principle (see TABLE II.). Sy and Constantine
both insist on the necessity to reduce documentation by
doing designs (as paper prototypes) but only when it is
essential for communication and exchange or to support
specification of the user stories, in the respect of the second
Agile value (see TABLE II.).

Finally, respecting the Agile values is more a question of
attitude adopted by the team, a question of culture, that
something intrinsic to the Agile-UX emerging processes.

TABLE II. AGILE-UX PROCESSES FACING TO UCD ACTIVITIES AND PRINCIPLES AND TO AGILE VALUES

 Sy’s process Armitage’s
process

Deuff’s process Big upfront
design

Constantine’s
process

UCD
Activities

1. Specify context X X X X X
2. Specify users’ needs X X X X X
3. Design X X X X X
4. Evaluate X X X NO NO

UCD
principles

1. Design based on explicit
understanding of users, tasks
and environment

X X X X X

2. Users involved X Not ensured X Not ensured but
recommended X

3. Design driven and refined by
user-centered evaluation X Not ensured X Not ensured but

recommended NO

4. Iterative process X X More or less Not ensured but
recommended X

5. Process addresses the whole
user experience Not ensured Not ensured Not ensured Not ensured Not ensured

6. Team includes
multidisciplinary skills X X X Not ensured but

recommended X

Agile
Values

1. Individual and interactions
over processes and tools Not ensured Not ensured Not ensured Not ensured Not ensured

2. Working software over
comprehensive documentation

Not ensured but
promoted Not ensured Not ensured Not ensured Not ensured but

promoted
3. Customer collaboration over
contract negotiation Not ensured Not ensured Not ensured Not ensured Not ensured

4. Responding to change over
following a plan X X More or less NO X

350Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 370 / 646

VI. CONCLUSION AND FUTURE WORK
Even if the parallel tracks process is generally accepted,

some other processes are proposed. This echoes Brown [5]
who explains that one myth of Agile-UX is to believe that
there is only one way to do it. Every team has to find its
proper way to process Agile-UX because “different
challenges require different solutions”. This corresponds
perfectly with Agile values, notably “Individuals and
interactions over processes and tools”.

Following the analysis of the different Agile-UX
processes proposed in literature, we can observe that no one
covers entirely all the UCD activities, UCD principles and
Agile values. To ensure the respect of all these principles,
each analyzed process should be completed by practices or
by cultural aspects. For instance Constantine’s process
should be completed by tests. Armitage’s process works
more on the global vision than the other processes, it may be
associated with Sy’s process to improve it. Deuff’s process
makes a major contribution on the organization of the tests
(not detailed in this paper) but the separation of an analysis
phase and a development phase are in contradiction with
Agile that fights against upfront analysis and design phase by
its fourth principle (Responding to change over following a
plan). This analysis brings out questions to investigate in
future work:

• Which practices are necessary to complete the Agile-
UX processes?

• What can be an Agile-UX process that respects all
UCD and Agile principles?

• How may the people and the cultural question
enhance the Agile-UX processes?

• How to ensure the respect of the fifth UCD
principle: process addresses the whole user
experience?

ACKNOWLEDGMENT
Many thanks to my colleagues (in particular Sylvain

Kubicki) who support my work on Agile-UX through
exchanges and experimentations and those who have helped
me in particular to write this paper: Muriel Foulonneau and
Jocelyn Aubert.

REFERENCES
[1] A. Alliance, Agile manifesto, 2001, Online at http://www.

agilemanifesto.org, 08.01.2013.

[2] J. Armitage, Are Agile methods good for design?, interactions, 11(1),
2004, pp. 14-23.

[3] A. Bankston, Usability And User Interface Design In XP, 2003,
White Paper, http://www.ccpace.com/resources/documents/usability
inxp.pdf, 08/01/2013.

[4] S. Blomkvist, Towards a model for bridging Agile development and
user-centered design, In Human-Centered Software Engineering—
Integrating Usability in the Software Development Lifecycle, 2005,
pp. 219-244, Springer Netherlands.

[5] D. D. Brown, Five Agile UX Myths, Journal of Usability Studies,
8(3), 2013, pp. 55-60.

[6] S. Chamberlain, H. Sharp, and N. Maiden, Towards a framework for
integrating Agile development and user-centred design, In Extreme
Programming and Agile Processes in Software Engineering, 2006, pp.
143-153, Springer Berlin Heidelberg.

[7] L. L. Constantine and L. Lockwood, Process agility and software
usability: Toward lightweight usage-centered design, Information
Age, 8(8), 2002, pp. 1-10.

[8] D. Deuff, M. Cosquer, and B. Foucault, Méthode centrée utilisateurs
et développement Agile: une perspective «gagnant-gagnant» au
service des projets de R&D, In Conference Internationale
Francophone sur I'Interaction Homme-Machine. Sept. 2010, pp. 189-
196, ACM.

[9] I. DIS, 9241-210: 2010, Ergonomics of human system interaction-
Part 210: Human-centred design for interactive systems, 2009,
International Organization for Standardization (ISO), Switzerland.

[10] Extreme Programming: a gentle introduction, http://www.
extremeprogramming.org/, 08.01.2013.

[11] J. Ferreira, J. Noble, and R. Biddle, Up-front interaction design in
Agile development, In Agile Processes in Software Engineering and
Extreme Programming, 2007, pp. 9-16, Springer Berlin Heidelberg.

[12] Z. Hussain, W. Slany, and A. Holzinger, Current state of Agile user-
centered design: A survey. In HCI and Usability for e-Inclusion,
2009, pp. 416-427. Springer Berlin Heidelberg.

[13] D. Kane, Finding a place for discount usability engineering in Agile
development: throwing down the gauntlet, In Agile Development
Conference, 2003, ADC 2003, Proceedings of the, Jun. 2003, pp. 40-
46. IEEE.

[14] P. McInerney and F. Maurer, UCD in Agile projects: dream team or
odd couple?, Interactions, 12(6), 2005, pp. 19-23.

[15] C. Nodder and J. Nielsen, Agile usability: best practices for user
experience on Agile development projects, Nielsen Norman Group,
2010.

[16] A. Nummiaho, User-Centered Design and Extreme Programming, In
Software Engineering Seminar, 2006, pp. 1-5.

[17] D. Rawsthorne and D. Shimp, Scrum In A Nutshell, SCRUM
alliance, http://www.scrumalliance.org/articles/151-scrum-in-a-nut
shell , 08.01.2013.

[18] A. Seffah, J. Gulliksen, and M. C. Desmarais, Human-Centered
Software Engineering - Integrating Usability in the Software
Development Lifecycle, 2005, p. 32, Springer

[19] D. Sy, Adapting usability investigations for Agile user-centered
design, Journal of usability Studies, 2(3), 2007, pp. 112-132.

351Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 371 / 646

Distributed Agile Software Development Challenges and Mitigation Techniques: A

Case Study

Abdullah Saad Alqahtani, John David Moore, David K Harrison, and Bruce M Wood

School of Engineering and Built Environment, Glasgow Caledonian University, Glasgow, United Kingdom
{abdullah.alqahtani, j.d.moore, d.harrison, b.wood} @gcu.ac.uk

Abstract—There is a growing interest in applying Agile

development methods alongside global software development

in order to reap the benefits of both approaches. With this said

however, research has shown that software companies are

encountering significant challenges when attempting this due

to the contradiction between Agile values and the global

development environment. This paper focuses on the

challenges encountered with this kind of development and

discusses several techniques via which these challenges can be

addressed. It presents a case study and applies interviews with

a software development company adopting the distributed

Agile approach. From this study it can be seen that the

communication barriers are the biggest development

challenge. The development teams and product owners need to

work hard to increase the level of communication between

them by having a daily, regimented communication schedule.

Flexibility with the working hours and location is an important

practice with regards to limiting the barriers of the distributed

development.

Keywords-distributed Agile; global Agile; global software

engineering; Agile software development.

I. INTRODUCTION

Increased globalization has led to greater competition
between software development companies around the world.
The software development industry is seeing a shift from co-
located software development to Global Software
Development (GSD), which involves multiple distributed
development teams from different locations. GSD facilitates
competitive software development prices by using teams
from countries that have an abundance of IT developers
available at relatively low cost. In addition, research has
shown that software companies are interested in applying
Agile Software Development (ASD) to develop the software
by global teams to have the combined advantages of ASD
and GSD [1][2]. The combination of Agile development
methods and GSD is known as Distributed Agile Software
Development (DASD). Venkatesh defined Distributed Agile
Development as: “Distributed Agile, as the name implies, is
a model in which projects execute an Agile Methodology
with teams that are distributed across multiple geographies”
[3]. This combination has shown signs of providing IT
companies with the ability to meet the critical success factors
of the software industry, such as quality, time, and cost.
Sutherland et al. [4] detail their experience of applying a
distributed Scrum approach and report several advantages
such as the high increase of team productivity, an increase in
the transparency between team members, better building of
trust, and increased project visibility. However, although the

potential advantages of GSD are clear, research has shown
that software companies are encountering significant
challenges by applying this approach. Developers are not
always able to apply Agile practices successfully due to
challenges introduced through the global development
environment including distance and time zone differences
[5].

This paper presents the results of a qualitative study
involving a company which employs the DASD approach.
The study focuses on the challenges of adopting the DASD
and discusses some possible techniques to address and
minimise those challenges.

This paper is structured as follows: first, the related work
will be reported. Following this, the research method will be
discussed and explained. Section III will describe the
investigated company, before the strategy of development
for the investigated company is reported. Results and
discussion will be presented in Section VI, whilst the final
section contains the summary and conclusion.

II. RELATED WORK

A systematic review studied applying Scrum practices in
global software development using 27 literature studies and
analyzed the challenges into three categories:
communication, coordination, and control [6].

The challenges of using Agile with distributed national
teams can be categorized into three types of lack:
communication, trust, and control [2].

The effective communication within distributed Agile
software development is a huge challenge. The reasons that
create the communication challenges could be summarized
into four categories: a lack of communication tools, time
zone differences, a lack of English language, and a lack of
teamwork. Those barriers may limit and decrease the
communication in a distributed development [7].

There are current needs for more studies to understand
how to adopt Agile methods with global software
development. There is a lack of theoretical models of
distributed Agile. More studies are needed to address the
literature gap by investigating the geographical, cultural, and
temporal challenges [8].

Previously, we conducted a systematic literature review
focused on the challenges of applying DASD [9]. One of the
significant findings of that review was that most of the
DASD studies cover the technical perspective of the
development and lack coverage of the human perspective.
The review also reported that: “The human perspective needs
to immediately search to explore the effect of the cultural
differences on the relationship between the stakeholders and

352Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 372 / 646

the development process” [9]. The present case study aims to
address this issue by exploring the challenges and techniques
of applying DASD from the developers’ point of view (i.e.,
human perspective).

III. RESEARCH METHOD

The research presented in this paper is from a single
descriptive case study. Data was collected by structured
interviews. The interviews were face-to-face and were
recorded with a voice recorder. Also, notes of the main ideas
and answers were taken during the interviews. The data was
transcribed from verbal form to textual form. The transferred
documents were then compared to the notes from the
interviews, to ensure the reliability of the data. Following
this, a thematic analysis was applied, which is an approach to
identify the themes and patterns from the collected
qualitative data [10], [11]. In addition, the data-driven
method was selected for the thematic analysis of this study.
The data-driven method regarding Asnawi can be
summarized into five steps, as follows: “(i) reducing the raw
information, (ii) identifying themes within subsamples, (iii)
comparing themes across subsamples, (iv) creating a code,
and (v) determining the reliability of the code” [12]. Finally,
to ensure the validity and the reliability of the study’s
qualitative analysis and to identify any elements of bias by
the researcher, two procedures were applied. Firstly, after the
final code was developed, it was tested by other researchers,
who applied it to the raw data to ensure that the code and
theme analyses were correct. The second procedure was
having the transcripts rigorously checked by other
researchers, comparing them to the verbal records and the
notes that had been taken. The aim was to identify any
transcription errors or mistakes [12].

IV. THE INVESTIGATED COMPANY

The interviews were carried out at a large, global IT
development company. The company has 27 offices
distributed throughout 11 countries around the world:
Australia, Brazil, Canada, China, Germany, India, Singapore,
South Africa, Uganda, the United Kingdom and the United
States. The company provides software design and delivery
services, as well as development consulting services. It also
produces customized software products as tools to support
distributed Agile software development, thus helping the
development teams to communicate, share information and
track progress. The company applies Agile methods in order
to develop its global software projects and has been involved
in the software industry for the past 20 years. The company
required to be anonymous within this study.

Three interviewees with good experience of Agile
methods and the distributed development approach agreed to
participate in this study. Participant-1 has experience
working with more than 15 teams from the entire world
covering the east and the west side including countries such
as India, USA, UK, and Australia. Participant-2 has 4 years
of experience including a special course in Agile
development during his Master degree, and significant
experience when it comes to with working with stakeholders
from different cultures including people from China, Europe,

UK, USA, and Middle East. Participant-3 acquired a vast
amount of experience before joining this company as he
developed a project while both the product owner and
business analyst were away from the development team. He
also has experience working with customers from different
countries including New Zealand, Australia, and USA.

V. THE DEVELOPMENT STRATEGY

The investigated company applies a development
strategy which goes through different stages before starting
to develop the software. The first phase is the design phase.
The project starts with meetings and the gathering of all
participants in one place for a few days to finalize the
requirements and estimate the deadline of the project. The
inspection phase will come next where all the tasks should be
broken into small stories. This involves the Project Manager
(PM), the Quality Assurance (QA), the Business Analyst
(BA) and software developers. The next stage is the analysis
phase. The development stories need to be investigated
during this stage to provide a better understanding of these
tasks and create links between them. The BA plays a main
role in this phase. The development then begins, by applying
a weekly iteration to show the development case and update
the other stakeholders. Each development team needs to have
a daily meeting to track the development and identify any
development issues.

VI. RESULTS AND DISCUSSION

The results of the thematic analysis classify the
development challenges into four main themes:
communications, cultural differences, management and
control, and Agile skills

A. Communication and Collaboration Challenges

1) Lack of communication and losing the ability to make

immediate decisions (A1): Agile methods require

interactive, daily communication among stakeholders. This

is difficult to provide within the global environment. The

lack of communication and collaboration is a significant

issue within the DASD approach [13]. Team members were

not able to make immediate decisions, because of the

distance between the participants and the lack of

communication. As mentioned by Participant-3: “We lose

the ability to have an immediate decision. If we were here at

11am and we wanted to know something straightaway the

earliest we could hear from our product owner will be 3pm

and that's only if he's got up very early.”

2) Time zone differences (A2): The time zone

differences is one of the main reasons that cause DASD’s

communication challenges [7]. The distance and time zone

differences among stakeholders could reduce the available

overlap of working hours of distributed teams. Participant-3

reported the issue of having no overlap of working hours by:

“I think if you had two teams where their working days

didn't overlap at all, so if you had the UK and the East

353Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 373 / 646

Coast of Australia where there's something like a 10 hour

difference, I don't think that would work”.

3) The lack of English language skills (A3): In most

cases, the English language is not the mother tongue of the

offshore team members. The lack of proficiency in English

could pose a major challenge for the development teams.

The different levels of English among the stakeholders

could create misunderstandings [14], in the event of people

trying to express or indicate meaning by a hint and

expecting the others to understand them. Participant-3

reported that: “If you're having a discussion and there’s a

thing that you don't say and you assume the other person

knows and it's implied, that's where you get the chance for

errors”.
Participant-2 who is not a native English Language speaker
described his experience with communication with people
with different level of English as hard. Participant-2 stated
that: “The other thing which might be hard is that different
people have different levels of English knowledge.”. Also,
Participant-2 mentioned some difficulties with
understanding native speakers who are speaking with a
difficult accent or speaking in a fast way: “Sometimes it's
hard to understand people who are speaking English as
their mother language, as well”.

B. Communication and Collaboration Techniques

1) Find a time and a way for synchronised

communication (B1): It is important to create an overlap of

working hours among the distributed teams. The overlap

hours will be used as available time for synchronised

communication. Participant-3 reported there should be at

least 2 hours of overlapping: “If you have two teams in

different time zones their working days have to have some

overlap and if they don't have some overlap and if they don't

have some overlap then you need to change the working

hours of one of those teams so there is an overlap. I think

there needs to be, I would say, at least two hours overlap

between those two teams so they can talk face-to-face”.
With some cases that require staying late, the project
manager and the business analyst could stay late to
communicate with the other stakeholders. Participant-1
stated that: “PM or BA or whoever needs to showcase
something to the client, they need to stay for a while.”.

2) Flexibility regarding working from home (B2):

Working hours should be flexible; therefore, the team

members should be able to work from home when

necessary. This flexibility could help to create overlapping

hours among teams. Participant-1 reported that: “Yeah so

the company gives you the opportunity and flexibility to

work from home. They also provided the broadband. ”.

Participant-2 stated as well: “The people are free to do and

people are getting flexible times to do work from home or

work from somewhere else when they are away from the

office”.

3) The communication schedule should be regimented

(B3): The development stakeholders should have a daily,

regimented communication schedule. Such a schedule

would help to increase the communication level.

Participant-3 reported that: “I think you need to do what

we're doing here at this company and have a very

regimented communication schedule”. The product owner

should make himself available to communicate with the

development team as Participant-3 said: “I'd say from our

product owner's point of view he's got to make sure that he's

very involved and he keeps himself aware with what we're

up to”. Communication, as reported earlier, is the main issue

with the DASD development, so it is necessary to increase

the level of communication among the distributed teams.

Participant-3 summarised that by: “You've got to make sure

that you communicate well with the stakeholders”.

4) Ask people to speak clearly and be explicit (B4):

Regarding the different levels of English skills among the

stakeholders, there is a need to speak clearly and to be

explicit about what is wanted. Participant-3 mentioned that:

“It's much better to be explicit and to really make clear what

you want”.

5) Apply multi-channels for communication (B5): There

is a need to have multi-channels for communication. There

should be a choice of method and use of the one best suited,

such as phone calls, video Skype calls, voice over IP and

texting. Participant-2 reported that: “We are using voice

over IPs and the video services. We use Skype, we use

GoToMeeting, we have an internal voice over IP device

here”, and reported as well: “we use our own internal

service for chatting”. In addition, software to share the

screen and knowledge helps teams to share information and

increase the visibility of the development. Participant-2

mentioned that: “So, I can say, tools are really important in

distributed systems”.

Figure 1. Communication with DASD challenges and techniques

Figure 1 illustrates the recommended techniques to
address communication and collaboration challenges. It links
the challenges with the techniques in order to provide better
understanding of them. For example, to address challenge
A1, techniques B3 and B5 can be employed.

A1

A2

A3

B1

B2

B3

B4

B5

B- Techniques
A- Communication

Challenges

354Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 374 / 646

C. Cultural Differences Challenge

The cultural differences of the stakeholders could create

certain misunderstandings [14]. Participant-2 reported that:

“There are a lot of different things in a culture. Like, in

some countries, people really like to talk about politics”.
Cultural differences could limit the communication between
development participants in order to avoid any
misuderstandings. Participant-2 stated: “I feel I know, if
somebody from a different culture joins our team, how to
behave and then how to find the limits on paid
programming, how to speak to people, what sort of
questions to ask, what sort of questions not to ask. So, these
are the things which we learn”.

D. Techniques to Address the Cultural Differences

1) Creating an open culture within the development

teams (D1): There is need to promote an open culture

among the project’s stakeholders, encouraging people to be

free, flexible and liberal. Team members should accept

other cultures and try to understand them. Participant-1

mentioned that: “our culture rules are very liberal, free,

there is no dress code. The people are free to do and people

are getting flexible times to do work from home or work

from somewhere else when are they away from the office. So

this flexibility provides a lot of appreciation to the

developers and all the people”. Participant-2 also stated that

there is need to be flexible within the people from different

cultures: “people who are working in a distributed team, I

guess should be more flexible than people who are working

on a one - centralised process”.

2) Move the developers between the teams (D2):

Providing the team members with the opportunity to move

between global offices could help them to discover and

explore other cultures. Participant-1 mentioned that by:

“there is a global assignment program which runs every

year and it gives a chance to people to work round in any

office in the world. So it's a very diverse culture in the

company”.

3) A training course for new members (D3): New team

members should have a special training course to provide

them with the required Agile skills and make them aware of

other cultures. The investigated company has a multi-

cultural training centre in Bangalore, India. This could help

new members to understand different cultures as reported by

Participant-1: “Once you hire anyone, if it's a fresh then he's

a graduate. We send them to a university. There is a

university which runs in India, in the Bangalore office”.

And Participant-1 mentioned as well: “All the students

around the world gather with a different culture in India.

They do works together on the same project for three

months. After that we send them across different global

assignments”.

4) Choose people who fit in with the distributed

development culture (D4): Before hiring new people, they

should be interviewed to ensure that they fit in with the open

culture of the DASD. Participant-1 stated that: “Always

choose the people who actually fit with the culture. We don't

choose people who don't fit with the culture”.
In addition, new members should have a qualifying

period of a few months, to make sure they fit in with the
development culture and environment as reported by
Participant-1: “Even after that, there is a probation of three
months, okay. So in the three months itself it is enough time
to know the person's attitude and whether - how he is
behaving in all the steps. So if he doesn't fit in the culture
then we don't extend their assignment”.

5) Flexible working hours and places (D5): This

practice was mentioned when addressing communication

issues and could also help to increase trust between the

company and its employees, one of the cultural issues

within the DASD. Participant-1 stated that: “They do - they

know all right that the company the flexibilities providing to

them it come with a trust. So the company's putting trust on

them so they, of course, need to do the work properly and

they also need to put the trust in the company”.

Figure 2. Cultural difrencess with DASD challenges and techniques

Figure 2 illustrates the recommended techniques to
address the cultural differences challenges. Techniques D1 to
D5 have been applied by the company to minimize the
impact of the cultural differences to the development. The
cultural differences could reduce the communication as
reported early within this section and limit the collaboration
between the team members.

E. Management and Control Challenges

1) Updating the developed story on the online wall (E1):

Development participants with the DASD approach usually

apply an online story wall to track progress. In some cases,

they have issues with not updating the developed story on

the online wall. This could lead to duplication when

developing the required functions/stories. Participant-2

declared that: “So, sometimes, you - when you get into a

story and then it finishes the phase and you start another

story, you may forget to move it on the electronic wall”.

2) Estimation difficulties (E2): The second management

challenge is with estimation. Large teams could have

difficulties with estimating their stories. Participant-2

explained this issue by: “Estimation for example is one

C- Cultural

differences

challenges

D1

D2

D3

D4

D5

D- Techniques

355Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 375 / 646

thing that it's hard. So when you have 20 people online and

you have 20 people here and you want to estimate stories!!”.

F. Management and Control Techniques

1) Increase communication (F1): There is a need to

increase the level of communication in order to manage the

work and to resolve any misunderstandings. Participant-3

mentioned that the communication is required to better

apply DASD: “If we do a lot of communication then we can

apply all the practice of Agile globally”. Participant-2

reported that as well: “There should be a lot of

communications between the teams as well”. In addition,

Participant-1 stated the same thing to manage the distributed

Agile development: “Any company you go there would be

the challenge to manage such a vast distributed work, right?

It requires a lot of communications; it requires a lot of co-

ordinations between all the offices to work together right”.

2) Use software management tools (F2): Using software

management tools is required to apply different Agile

practices within the distributed development environment.

Those tools support the development, make it more visible

and easier to track. The tools usually have an online wall for

the development stories, which is required to keep it

coordinated with the normal story wall. Participant-3

declared that: “So we have story wall, but that's all

replicated in an online tool and we make sure that we keep

those two in sync so that the product owner at any time can

look at our entire story wall and see what's in progress”.

And Participant-2 mentioned the same as well: “is really

important and there are not - and you should be able to first

of all, be responsible for updating the electronic wall”.

3) Split large teams (F3): Having a large number of

participants could make it difficult to apply some Agile

practices, such as estimation. Therefore, splitting large

teams could be a solution. However, this requires a lot of

communication and coordination between the divided

teams. Participant-2 agreed with that by: “You split the

team, you have two PM, you split the number of developers,

you will add a new BA. But there should be a lot of

communications between the teams as well”.

4) Estimation cards (F4): This practice aims to address

the estimation issue. The participants would have a card to

estimate each story and they would then show their cards

and discuss issues. Participant-2 mentioned that technique

by: “we talk about the story and we count to three and

everybody should show a card, or show their hands”.

Figure 3. Mmanagment with DASD challenges and techniques

Figure 3 links the management challenges with the
recommended techniques in order to provide better
understanding of them.

G. Agile Level Challenges

1) Lack of a close relationship (G1): The distributed

development could result in losing the main aspect of Agile,

which is the close relationship between the development

participants. Participant-3 mentioned that by: “I think the

main problem with global is - with Agile it's very important

to maintain a close relationship to your customers”.

2) Working with traditional organisations/ customers

(G2): Traditional organisations/customers may not accept

the Agile way of development. They may be used to

traditional development approaches, such as the waterfall

model [4]. This could decrease the Agility level of the

development. For instance, traditional organisations may

take their time to allow the developers access to their

database or to the necessary information. Participant-2

reported that: “We speak a lot with tech team, with

manager's team, with anyone who can - but they are

traditional companies. They have a lot of paperwork for

just getting one server, access to one server, or access to a

database. But, in an agile company you just ask for

something. In our company if you need to access

anything…we just ask and we get it as soon as we can. But

it's sometimes in other, in client side, in the companies

which we are working for they have their own database

team which we - a manager should give you permission”.

And Participant-2 stated that as well: “There have been

problems with those things. Like database is the obvious

one that we can say, you don't get the access to them. You

need to go through their process”.

3) Difficulty in applying some Agile practices (G3): The

global development setting could make it difficult to apply

some Agile practices [14]. For example, the stand up daily

meeting is difficult within the distributed Agile

development, because of the large number of participants

and the lack of visibility among the meeting attendees.

Participant-2 reported that by: “I guess the whole point of

stand up is visibility so that you can see somebody and you

can ask a question”, and by: “So imagine if 100 people want

E1

E2

F1

F2

F3

F4

F- Techniques

E-Management

Challenges

356Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 376 / 646

to talk for one minute each, it would be a bout two hours

while people are standing”.
Furthermore, applying the retrospective practice with the

distributed development is difficult as well. Participant-2
stated that: “Retrospectives are getting affected. Because
retrospectives in an agile team are, I guess I feel it's the most
physical thing happens because what we do is that we
practice different type of RETROS. So what we do is that
every iteration that we have RETROS we change them. So
we try a lot - because we don't want to make it boring”

H. Techniques for the Agility Level

1) Use software tools to enable some Agile practices

(H1): Usually, development teams adopt various software

tools to help them to apply Agile practices. Participant-3

reported that: “We've done some remote pair programming

with him. We use tmux which is a UNIX tool for sharing

terminals and we used a VNC client called Chicken and we

also use Skype and SSH to set up the connection. So with a

combination of those we can have a live pair programming

session and that worked quite well”. In addition, Participant-

2 stated that as well: “Tools are really important,, learning

how to work with tools are taking time. You may need more

efforts”.

2) Dealing with the issues of traditional organisations

(H2): Sometimes, IT development companies avoid

working with a traditional product owner who is not able to

understand Agile values. Sometimes, they try to provide the

traditional product owner with some training about the

Agile approach before the project begins. Participant-2

mentioned that: “So the way that we work is that we try not

to accept projects in our company that clients don't give us

the chance of working in a way that we want. But some

projects it happens that we try - so in some projects when

the clients accept that we work for them, but they are not

working in agile way. So usually we try to teach, teach the

team which we are going to work with them. We

communicate a lot, we talk a lot, we have lots of meetings in

our team. So we try to settle these things before accepting a

project”.

3) Practice for the stand up daily meeting (H3): Practice

includes throwing a ball during the meeting. The member

who has the ball is the one who is allowed to speak. This

practice aims to manage the meeting by allowing one person

to speak at a time. In addition, they hold computer tablets,

such as iPads, during the meeting to see the distributed

members. This practice reported by Participant-2 as: “we

use iPad and we ask them to be online and they talk about

it. So we have a ball as a token. We throw it to each other

when someone is going to talk.”.

4) Apply simple documentation (H4): One of the

techniques in the DASD approach is doing simple reports to

share information from the meetings with participants who

were not able to attend. Participant-2 declared that by:

“Usually one person writes a simplify - a very simple report

that this happens, this decision has been made. This is the

reason that we make this decision. So we just read that

email every night for example and we get updated about

what's happening. If we don't like it, we can state it the day

after, or we can send an email and discuss it”.

Figure 4. Agile challenges and techniques with DASD

Figure 4 reports the Agile challenges and links them with
the recommended techniques to award better apply for Agile
methods with the distributed development.

VII. SUMMARY AND CONCLUSION
The reported results suggest that communication barriers

are the biggest challenge faced when employing the DASD
approach. A number of techniques were reported by the
participants to address the known communication issues with
this approach. Most of the issues related to the lack of
communication between stakeholders. The development
teams and product owners need to work hard to increase the
level of the communication between them.

The other main issue was the lack of Agile skills and
knowledge from the developers and the product owners. The
global setting makes this issue more clear because of the
distance between the stakeholders. There is need to improve
the Agile knowledge by applying training courses and Agile
coaching to ensure the sufficient application of Agile
practices.

The management issues are also related to the distance
and the size of the development teams. Improving the
communication level and Agile skills could reduce the
management difficulties. Splitting the team may be applied
with teams which have a large number of developers.

The issue of cultural differences is the least important
problem because most of the stakeholders are aware of the
other cultures and have the ability to work with different
people. However, some misunderstanding could arise,
particularly with the lack of communication. Thus, it is
essential that the development participants are clear, flexible,
and open with other cultures. The experience with DASD
from the investigated company helped to understand the
cultural differences challenges. The applied techniques such
as training courses help to minimize the cultural differences
issues. Moving the team members around the development
teams throughout the world will help them to better
understand the other cultures and could address this issue.

In conclusion, this case study highlighted some of the
major challenges of applying DASD. It has also listed
development practices to award a more effective application
of this development approach. The discussion showed that

G1

G2

G3

H1

H2

H3

H4

 H- Techniques

G- Agile Challenges

357Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 377 / 646

the study findings are in agreement with existing literature
for most of the investigated points.

 Future work will involve further investigation in order to
develop a better understanding and guidance towards
applying Agile practices within a global setting.

VIII. ACKNOWLEDGMENT

This work is supported by the University of Dammam,
the Ministry of Higher Education, Kingdom of Saudi Arabia,
(PhD scholarship).

REFERENCES

[1] M. Nisat and T. Hameed, “Agile methods handling offshore
software development issues,” 8th International: Multitopic
Conference, Proceedings of INMIC, 2004, pp. 417-422.

[2] A. Szőke, "Optimized feature distribution in distributed agile
environments," Product-focused software process
improvement, 2010, pp. 62-76.

[3] U. Venkatesh, Distributed Agile: DH2A - The proven Agile
software development approach and toolkit for geographically
dispersed teams. New Jersey: Technics publications LLC.,
2011.

[4] J. Sutherland, G. Schoonheim, N. Kumar, V. Pandey, and S.
Vishal, "Fully distributed scrum: Linear scalability of
production between San Francisco and India," Agile
conference, IEEE, 2009, pp. 277-344.

[5] E. Hossain, M. Babar, and H. Paik, “Using Scrum in global
software development: A systematic literature review,”
Fourth IEEE International Conference on Global Software
Engineering, 2009, pp.175-184.

[6] E. Hossain, P. Bannerman, and D. Jeffery, "Scrum practices
in global software development: A research framework,"
Product-focused software process improvement, pp. 88-102.,
2011.

[7] S. Dorairaj, J. Noble, and P. Malik, “Bridging cultural
differences: A grounded theory perspective,” Proceedings of
the 4th India Software Engineering Conference, ACM, 2011,
pp. 3-10.

[8] D. Smite, N.B. Moe, and P.J. Agerfalk, "Agility Across Time
and Space: Summing up and Planning for the Future," Agility
Across Time and Space. Springer Berlin Heidelberg, 2010,
pp. 333-337.

[9] A.S. Alqahtani, J. Moore, D. Harrison, and B. Wood, “The
challenges of applying distributed Agile software
development: A systematic review,” International Journal of
Advances in Engineering & Technology, Vol. 5, Issue 2,
2013, pp. 23-36.

[10] R. Boyatzis, Transforming qualitative information: Thematic
analysis and code development. SAGE publications
incorporated. 1998.

[11] C. Dawson, Introduction to research methods: A practical
guide for anyone undertaking a research project. Oxford: How
To Books Ltd. 2009.

[12] A. Asnawi, A. Gravell, and G. Wills, “Emergence of Agile
methods: Perceptions from software practitioners in
Malaysia,” AGILE India, 2012, pp. 30-39.

[13] M. Paasivaara and C. Lassenius, “Using Scrum Practices in
GSD Projects,” Agility Across Time and Space. Springer
Berlin Heidelberg, 2010. pp. 259-278.

[14] M. Kajko-Mattsson, G. Azizyan, and M.K. Magarian,
“Classes of distributed agile development problems,”
The Agile 2010 Conference, IEEE, 2010, pp. 51-58.

358Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 378 / 646

Agile-User Experience Design: With or Without a Usability Expert in the Team?

Lou Schwartz

Public Research Centre Henri Tudor

Luxembourg, Luxembourg

lou.schwartz@tudor.lu

Abstract— In the past decade, numerous experiments of Agile-

User Experience Design (also called Agile-UX) have been

carried out. Through these experiments it remains unclear who

should be in charge of the usability in an Agile-UX project

development. After a review of the literature about the

involvement of usability expert(s) in Agile-UX, this paper

repeats two experiments which explore the necessity to involve

usability experts in the team. The first experiment is based on

the statement that developers should be able to manage the

User-Centred Design (UCD) and conduct the related methods

without the intervention of a usability expert, in order to

respect agile practices. The second one is based on the

statement that integration of a usability expert in project teams

ensures better implementation of UCD and better results.

Results of both experiments are discussed to validate research

hypotheses for future work.

Keywords- Agile-UX; team composition; use case

I. INTRODUCTION

Agile-UX is a project management principle for
software development based on the Agile values and
principles in respect to User-Centred Design (UCD) and
supported by UCD good practices and methods. Nowadays,
no official definition of Agile-UX exists, but a lot of
experiments demonstrate its value [2][3][4][5][7][8]
[9][10][12]. In the literature, Agile-UX is implemented with
the involvement of usability expert(s) in the Agile process
and the use of methods from UCD. But, in Agile principles,
intervention of experts is not encouraged [5]: dissemination
of skills is preferred to the intervention of experts. We test
both approaches through two qualitative experiments. The
first one fully respects the principles of Agile project
management: developers should be able to manage
themselves, UCD and conduct the related methods without
the intervention of a usability expert. The second option
integrates a usability expert in the project team to ensure
better implementation of UCD and better results. Results of
both experiments are discussed to elicit future research
questions for future work.

After a review of the literature on the involvement of
usability experts in an Agile-UX development process in
Section II, the paper will present two qualitative
experiments in order to validate the relevancy of our
hypotheses in Section III. Then the suitability of our
hypotheses will be discussed in regard to the experiments’
results in Section IV.

II. USABILITY EXPERT(S) INVOLVEMENT IN AGILE-UX

Though numerous experiments of Agile-UX, the
question of “who is in charge of UCD” often comes [2][3][4]

[5][6][7][9][10][12]. Different options are exposed, but they
are often the same, which we can regroup in 4 categories as
explained below.

A. One usability expert

Only a couple of experiments advocate the integration of

only one person in charge of UCD in Agile-UX ([4] project

1 & 3, [5] project PV, [9]). Often in this case, the UCD

designer is also the product owner (project 1[4]) or

developer (project 3 [4]).

B. A parallel team of several usability experts

In most cases, a parallel team of several usability experts

is dedicated to the project ([2][3], Project 2 [4], [6][7][12]).

But, they organise the exchanges and work between

developers and designers differently. In Agile methods, it is

possible to dedicate a spike (an iteration to focus on a

particular problem like test a new technology) to usability

exploration. But, it is not a good solution to maintain a

constant pace [7]. Some projects also involved occasionally

UCD experts on some particular points (projects MG & PV

in [5]); this is close to an organisation by spikes. But, for

McInerney [5], it is important that the usability expert is

available “on call” at all times, which may be impossible if

the usability expert works on several projects

simultaneously. Some other projects integrate usability in

the iteration without real planning (see [P3.290] in [4]).

Sy [12] proposed a parallel tracks organisation of work:

designers work with one or two iterations ahead of

developers. To implement this proposition, several usability

experts are needed, because of the amount of work and to

respect best practices, which recommends that it should not

be the same person who designs and evaluates the

developed software.

C. UCD expert as product owner

In regards to the UCD expert’s responsibilities and

product owner’s responsibilities, it is sometimes preferable

to merge both roles (Project 1 [4], Project TB [5], for Beck

in [6][10][12]). The product owner has the following

responsibilities:

 Define the features of the product, decides on release
date and content [11]. In this case, a UCD expert will
be based on the gathered data of the users, on
context and on tasks in order to define the user
stories to develop [10].

 Be responsible for the profitability of the product
(ROI) [11]: for this, the usability expert goes by the

359Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 379 / 646

context studies and the exchange with the
organisation on the needs and the attempted
profitability.

 Prioritize features according to market value [11]:
this prioritization is done thanks to the exchanges
with users and developers [10].

 Can change features and priorities every 30 days
[11]: UCD expert accepts changes and modifies
designs when it is necessary. He can modify user
stories and prioritization according to new analysis.

 Accept or reject work results [11]: through the users’
tests, expert validations and participation to the
acceptance tests writing.

 Negotiate with all stakeholders [10].

 Communicate with the users and train the users [10].
Furthermore, some observations show that the product

owner is often submerged by the marketing and sales

concerns. He often does not have the skills to manage a

user-centered design, and, as a consequence, he may lose

focus on a user experience vision [10].

Sometimes, two product owners are appointed: one as

the usability product owner and the other as the

conventional product owner [10]. In this case, they

commonly specify the needs and prioritize the work to do.

This is an answer to some observations concluding that

usability tasks are often not a priority because working

software is still preferred to usable software and usable

software is more expensive in terms of efforts and time.

D. Team member(s) as responsible of the UCD process

 The last possibility explored is to take on the

responsibility of the UCD process. It is also the more closed

one of the Agile vision: do not involve a usability expert,

but give this responsibility to one or more team members

(Project 3 [4] & in part Project PV [5]).

In all these experiments, usability experts are involved in

the Agile-UX projects. But in Agile principles, intervention

of experts is not encouraged [5]. This can raise the following

question: is it necessary to involve usability expert(s) in the

team or is involving team members with some knowledge on

usability sufficient? This is what we tested in the

implemented experiments.

III. EXPERIMENTS

After the literature review and several exchanges with

Agile professionals, we focused on the question of the

usability expert involved in the team. We propose the

following statements to test:

 S1: without usability expert, if the project team has
sensitivity and some knowledge in HCI, Agile-UX
works.

 S2: with usability expert involved in the project
team, usability of the produced product is better than
in S1.

 S3: the dynamic of the project team is better when a
usability expert is involved.

We retrospectively and qualitatively question these
statements through two experiments. We focus only on the
usability of the final product, laying aside any potential cost
overhead induced by the involvement of a UCD expert.

A. Context of the experiments

The method used consists of a retrospective and

qualitative analysis of two experiments that tested two

versions: the first, without a usability expert in the team (S1,

S3), the second one, with one UCD expert in the team (S2,

S3). The observations made will help us to better define the

issues related to “who should play the role of the usability

expert in Agile-UX?”

Both experiments are instantiations of Agile-UX and

aim to develop a mobile application prototype, in order to

demonstrate the interest of mobile touch-based applications

for construction site-related activities.

The implemented prototype allows taking photos

localized by Global Positioning System (GPS) on a

construction site. The user can highlight parts of a photo

(e.g., add an arrow to the default on a wall) and add textual

or vocal notes about the entire photo or about the

highlighted parts on the photo. The user can also register

some construction sites by indicating their localisation on a

map. Then the photos are automatically attached to a

construction site according to their localisation. The user

can also find his photos in his calendar since the photos are

automatically attached to events in his Google® calendar

based on the shooting date. Finally the user can share a set

of photos with additional comments.

Two phases of development were planned to experiment

two different implementations of Agile-UX. We have

chosen Scrum as Agile method for both.

B. Case #1 – Agile-UX without UCD expert

1) Statement and composition of the team: In the first

experiment, the team was composed of a full-time

developer, a Scrum master (part-time), and a business

expert (part-time) who plays the role of product owner,

researcher and architect, with knowledge of architects’

practices in France and Luxembourg.
All members of the team are sensitive to and have some

knowledge in Human Computer Interaction (HCI). We have
voluntary not involved a usability expert to test this
configuration, which is the more suitable with the principles
defined in Agile. Indeed, in Agile teams, everyone should
be able to work on each part of the software development.
So, after a while, team members should have sufficient
knowledge and skills to relieve other team members of their
tasks including, in case of Agile-UX, on usability tasks.

2) Implementation of the UCD: The first experiment

lasted six months with iterations’ duration of one week.

We implemented Agile-UX on 22 iterations. The

developer implemented only three usability methods:

wireframing, users’ tests, and satisfaction questionnaire.

360Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 380 / 646

3) Methods used

 Brainstorming sessions to build the product backlog

including business experts and technical experts

 Wireframing with Microsoft Power Point®

 Two user tests:

o Real situation of use, one user, one week

o 6 architects, 6 scenarios, observation tests

4) Team dynamics and satisfaction: During this

experiment, the developer played the role of designer,

developer and evaluator of the application. As the

developer had to play these three roles, he had the feeling

to progress slowly. Moreover, it is not easy to evaluate

own work and to always question it.

The skills in HCI of all team members allowed avoiding

some usability mistakes. But, as the tests results showed, a

lot of usability issues were identified by users. Regarding

these experiment results, Agile-UX works without a

usability expert and with a project having some sensitivity

and knowledge in HCI. This justifies our first statement S1.

It should be noted that the team was in constant contact

with the product owner thanks to his presence at each

specification meeting, each demonstration meeting, and

during some stand up meetings. The product owner was also

available to answer any team member’s questions.

C. Case #2 - Agile-UX involving a usability expert

1) Statement and composition of the team: During the

second experiment, the team was composed of a full-time

usability expert, a full-time developer, a business expert

(part-time) as product owner, and a Scrum master (part-

time). The business expert and the Scrum master are the

same as in the first experiment. The developer has neither

particular sensitivity nor knowledge in HCI.

The focus is to develop, for the same mobile application,

interoperability aspects with a collaboration platform

dedicated to the construction sector, photo tagging and a

search engine based on photo metadata.

2) Organisation of work and process: This

development lasted six months with iterations’ duration of

two weeks. The developer began one month before the

usability expert, because of calendar constraints, to first

work on technical requirements. For independent reasons,

the usability expert quit the project before the end of the

six months. We only really worked two and half months

with the complete team. The process followed was the

parallel tracks proposed by Sy [12].

3) Methods used

 Brainstorming sessions to build the first version of the

product backlog including business experts and

technical experts

 Personas, that help to improve the product backlog

 Wireframing

 Expert review based on ergonomics criteria after each

release

 User tests with four users: two who know the

application, two novices

 Focus groups to evaluate wireframing.

4) Team dynamics and satisfaction: During this

experiment, the usability expert played the role of designer

and evaluator of the application. The whole team had the

feeling to quickly progress and to go deeper in the

functionalities proposed but also in the quality of the

application. Furthermore, more methods of UCD were

used and they were adapted differently. The test results

showed a lower number of usability issues identified by

users thanks to the integration of the usability expert and

they are less critical. That justifies our second statement

S2: Agile-UX provides better results with the involvement

of a usability expert.

Moreover, we observe the natural instauration of a “pair

designing” [8]: when developer was implementing

wireframes, he sometimes asked the usability expert to join

him and to explain and validate developed interfaces during

the implementation; when the usability expert designed

wireframes, she sometimes asked the developer to join her

and to validate feasibility of wireframes during their design.

Even if the developer had no skill in HCI at the beginning,

he learnt the good practices throughout the project and

quickly integrated them.

Furthermore, the team was in constant contact with the

product owner by his presence during the specification

meeting at the beginning of the iterations’, the

demonstration meeting at the end of the iterations’, during

some stand up meetings and his availability throughout the

project to answer all emerging questions.

IV. DISCUSSION

Since the results are only based on two experiments,

hypotheses cannot be formally validated. Then, in the

following section, only the suitability of the hypotheses for

future research will be discussed.

 S1 and S2 are justified by the satisfaction of users,

which is “correct” in the first experiment and which is better

in the second one (see Table I and Table II).

TABLE I. USERS’ TESTS RESULTS IN THE BOTH EXPERIMENTS

 Number of problems meet
Use case 1 Use case 2

By importance of the

problems
(importance = number of

testers who met the problem

* seriousness of the
problem)

1 5 2

2 2 1

3 3 1

4 0 1

6 1 1

8 0 1

10 1 0

12 1 0

15 1 0

20 1 0

TOTAL 15 7

361Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 381 / 646

TABLE II. USERS’ SATISFACTION RESULTS

Percentage of users’ satisfaction Use case 1 Use case 2

Average 75,42 % 81.25%

Min 62.5 % 75%

Max 90 % 92.5%

TABLE III. COMPARATIVE TABLE OF THE BOTH EXPERIMENTS

 Use case 1 Use case 2

Team

Developer 1 full-time 1 full-time

Scrum master 1 part-time 1 part-time

Product owner
1 part-time,

business expert

1 part-time,

business expert

Usability expert 1 full-time

Sensitivity to

UCD
All team members

All team

members, except

the developer

Organisati

on of work

Duration 6 months

Expected 6

months – in reality
2,5 months

Iteration

duration
1 week 2 weeks

Number of
iterations

22 5

Process Scrum
Scrum + Sy’s

parallel tracks

UCD

methods

Wire framing Power Point®
Paper and pen
Balsamiq®

Users’ tests in
direct

observation

6 users, 6

scenarios

At every iteration

end with 2 users
who know the

application and 2

novices

Users’ tests in

real situation

1 user during 1

week
NO

Satisfaction

questionnaire
X X

Personas NO X

Expert review NO X

Focus groups
To evaluate the

wireframes

Other
methods

used

Brainstorming
To build the

product backlog

To build the

product backlog

Team

dynamic

and
satisfaction

Feelings of the

team
Slow progression

 Quick
progression

 Go deeper in the

functionalities

proposed

 Improve quality
of the

application

Observed team

dynamic

 No real
dynamic

 Demotivation

 Pair-designing

 Developer
increased his

HCI skills

Results

Lot of usability

issues but working
software.

Lower number of

usability issues
identified by users

and they are less

critical.
Better users’

satisfaction

And working
software.

Without involving a usability expert we observe a
discouragement and disincentive particularly of the
developer. On the contrary, involving a usability expert
helps maintain a constant pace in the team ([1], principle 8).
No difference has been observed on the constant customer
collaboration ([1], value 3). Some best practices emerged
like “pair-designing” and the whole team improved their
practices and knowledge concerning HCI (see Table III for a
resume of both experiments). This could justify our third
statement S3: the dynamic in the project team is better with
a usability expert involved in Agile-UX.

However, the fact that in the first experiment, the team
was composed of only one person (the developer) may be of
influence. Indeed in the second experiment the team was
composed of two persons (the usability expert and the
developer), then the dynamic observed may be due to the
edge effect of the number of people in the team.

V. CONCLUSION AND FUTURE WORK

These experiments addressed two kinds of Agile-UX

implementations. Thanks to these experiments, we can

validate that the initial statements are justified hypotheses

for further studies. The next step is now to define protocols

to validate these hypotheses.

Another possible implementation that Agile evangelists

begin to propose is to place the usability expert as the

product owner. Indeed, the product owner is responsible for

the contact with users, the definition of needs and the

validation of the work done. A priori, the usability expert

and the product owner have part of their high level

responsibilities which overlap. A future work will be to

check the legitimacy of the following statement: “usability

expert could play the role of product owner”.

ACKNOWLEDGMENT

The author thanks members of the CRAI laboratory of

Nancy and the project’s extended team members: Sylvain

Kubicki, Annie Guerriero, Fabrice Absil, Marion Zéler, Luc

Caffard, Alain Vagner and Charles Gilbertz. This paper is

dedicated to Marion Zéler.

REFERENCES

[1] A. Alliance, "Agile manifesto", 2001, http://www. agilemanifesto.org,
08.14.2013.

[2] J. Armitage, "Are Agile methods good for design?", Interactions, vol.
11, no 1, 2004, pp. 14-23.

[3] S. Chamberlain, H. Sharp, and N. Maiden, "Towards a framework for
integrating Agile development and user-centred design", In Extreme
Programming and Agile Processes in Software Engineering, Springer
Berlin Heidelberg , Oulu, Finland, June 2006, pp. 143-153.

[4] J. Ferreira, J. Noble, and R. Biddle, "Agile development iterations and
UI design", In Agile Conference (AGILE), Washington, DC, August
2007, pp. 50-58, IEEE.

[5] P. McInerney and F. Maurer, "UCD in Agile projects: dream team or
odd couple?", Interactions, vol. 12, no. 6, 2005, pp. 19-23.

[6] E. Nelson, "Extreme programming vs. interaction design", FTP
Online, 2002.

362Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 382 / 646

[7] C. Nodder and J. Nielsen, "Agile usability: best practices for user
experience on Agile development projects", Nielsen Norman Group,
2010.

[8] A. Nummiaho, "User-Centered Design and Extreme Programming",
In Software Engineering Seminar, Fall 2006, pp. 1-5.

[9] L. Schwartz, A. Vagner, S. Kubicki, and T. Altenburger, "Feedback
on the definition and design of innovative mobile services",
InProceedings of the 13th International Conference on Human

Computer Interaction with Mobile Devices and Service, ACM,
Luxembourg, Luxembourg, August 2011, pp. 525-528.

[10] M. Singh, "U-SCRUM: An agile methodology for promoting
usability", In Agile, 2008. AGILE'08, Conference, IEEE, Tonronto,
ON, August 2011, pp. 555-560, IEEE.

[11] J. Sutherland and K. Schwaber, Scrum, "The scrum papers: Nuts,
bolts, and origins of an agile process", 2007.

[12] D. Sy, "Adapting usability investigations for Agile user-centered
design", Journal of usability Studies, vol. 2, no. 3, 2007, pp. 112-132.

363Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 383 / 646

Do Agile Principles and Practices Support the Well-being at Work of Agile Team

Members?

Marja Känsälä and Seppo Tuomivaara
Innovations, Management and Knowledge Creation

Finnish Institute of Occupational Health

Topeliuksenkatu 41 a A, 00250 Helsinki, Finland

marja.kansala@ttl.fi; seppo.tuomivaara@ttl.fi

Abstract—In this work-in-progress paper, a preliminary

review on the literature of the connections between agile

methods and well-being at work is done. The viewpoint of well-

being at work is important when considering agile software

methodologies and techniques. A stage for an empirical

research setting on these issues is also set. The research setting

targets to inspecting how applying agile practices are

experienced and features of agile methods that enhance and

challenge well-being at work, i.e., what kind of implications

agile methods are perceived to have for well-being at work.

Well-being at work is studied from three different points of

view: avoiding excessive strain, feeling of autonomous and

meaningful work, and development and change at work. A

holistic measure of well-being at work, applying agile practices

and managerial implications will be developed further in the

empirical research.

Keywords: agile methods; teamwork; well-being; change

I. INTRODUCTION

One rationale behind agile methods is the need to

increase the quality of systems development projects.

Typical problems relate to timetable, budget, customer

needs and market demands, communication and

cooperation, and the level of competence. The problems

also include different practices of the customer and the

developer team, e.g., following waterfall methods vs. agile

practices. The software crisis has meant fundamental need

for a new paradigm: the need to respond to constant changes

[1]. The newest solution to this has been agile methods.

Agile methodologies and practices emerged as an explicit

attempt to more formally embrace higher rates of

requirements change [27]. From the developers' point of

view agility means the ability to act according to changing

customer needs and continuous change. It enables the

project to advance systematically even when stable and

perfect product planning cannot be done at the beginning of

the project. This aims at higher quality and customer

satisfaction.

Technological solutions do not solve all the problems

related to software development. So, it makes sense to

explore other factors related to quality, like project

management and organizing of work. Despite agile methods

are widespread there has been relatively little scientific

research on their application and organizational gains

[4][17]. Agile methods have often been studied from the

point of view of system productivity and efficiency, but

well-being at work has not been studied that much

systematically. Agile principles hold many promises in

relation to well-being at work in theory but there has been

little scientific research on how they are applied in practice

[16][22]. There has been research on, e.g., around agile

methods and teamwork aspect, though. Indeed, in their

systematic review Dybå and Dingsøyr [8] found human and

social factors as one thematic group of agile literature.
 The objective of this preliminary literature review is to

inspect the connections between agile work practices and
well-being at work and based on this provides a case
research setting. Through this research setting a model for
adopting practices that enhance the well-being at work in
agile environment can be developed. The questions of this
preliminary literature review are: 1) Do agile working
practices support the well-being of agile team members and
if so, how; and 2) What kind of challenges agile practices
bring to maintaining well-being at work and sustainable
productive work.

Next, in Section 2 A., our view of agile methods is
presented. After that, in Sections 2 B and 2 C., the frame of
well-being at work in planning and implementation phases of
agile practices is presented. In Section 3, the case research
setting is presented and in Section 4, the future work is
described.

II. THEORETICAL FRAMEWORK

A. Agile Principles and Practices

Four agile values have been stated in the Manifesto for

Agile Software Development [29]. The most important one

related to the well-being at work is valuing individuals and

interaction over processes and tools. Principles behind the

Agile Manifesto include the values broken down to 12 [30].

Of these principles the most important ones in relation to

well-being at work are: 1) Build projects around motivated

individuals, give them the environment and support they

need and trust them to get the work done; 2) Promote

sustainable pace: be able to maintain a constant pace

indefinitely; 3) Best results emerge from self-organized

teams; and 4) Teams reflect regularly when and how to

improve. Self-organizing teams on one hand require and on

the other produce motivated personnel.

364Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 384 / 646

The agile principles have been implemented through

different practices. It is the way agile practices are applied

that determines whether they are beneficial or harmful to

well-being at work. Porchen [12] states that opportunities of

agile methods have been in focus, but now, the view is

shifting to risks.

In the Shine Technologies’ survey [24], “people over

processes” was the most liked feature of agile processes and

“lack of authority” one of the least liked. According to

Smith and Oltmann [25] the environment for flexibility

requires putting the people and team first: the right people,

commitment and dedication and adequate authority. Within

Crystal people, interaction, community, skills, talents, and

communication are considered as most important [27].

Also, for example XP states its own values (e.g.,

communication, feedback, courage and respect) and

principles (e.g., embracing change). Courage may mean,

e.g., the development team’s courage to resist pressure to

make unrealistic commitments [27]. Informal

communication channels in agile methods include co-

located teams, pair programming and daily stand-ups [7].

XP promotes teamwork by the fundamental that all software

is produced in pairs, two programmers at one screen [3].

The goal is also not to force team members to specialize –

every XP programmer participates in all of activities. Also,

differences exist, e.g., Scrum prescribes cross-functional

teams while Kanban allows specialist teams [12].

When applying agile methodology there are two main

changing forces: continuous development of agile team’s

work processes and introducing agile to the organization.

When considering the inception of agile methods it is

important for managers to understand the factors that affect

the adoption and its consequences to well-being at work.

Also, in the operation phase it is important to know how to

promote their use in a way that supports well-being at work.

B. Well-being at Work when Using Agile

Agile principles promote well-being in theory and it is

commonly believed they increase the well-being of the

developers. Agile methods hold many promises in relation

to well-being at work, for example human centricity,

interaction, and steady workload. However, they may also

implicate strain, such as lack of recovery time and unfit

management culture. Customer-drive, continuous reacting,

changing goals, flexibility, culture change and new practices

challenge well-being and expose to strain. In this paper, we

understand well-being at work through three viewpoints

defined by Gerlander and Launis [9]: avoiding excessive

strain at work, feeling of autonomous and meaningful work,

and change and development in work. Related ways of

understanding well-being at work that have been studied

within software engineering include motivation, job

satisfaction, and employee retention, for example.

Avoiding excessive strain is one aspect of well-being at

work. It means a balance between one’s tasks and

capabilities, work that matches the capabilities both

qualitatively (not too challenging or too easy) and

quantitatively (not too much or too little work) [11]. The

balance theory evaluates the potential positive and negative

impacts that could alter the balance of work system

elements and result in stress load experienced by agile teams

[28]. For example, when operating with XP practices, like

40-hour work weeks, it enables teams to work and maintain

a sustainable pace [14]. Working overtime for a short time is

accepted, but productivity collapses if teams work overtime

for long periods. XP teams do not work excessive overtime

for long periods of time [27].

Mann and Maurer’s [15] results indicate that after the

introduction of a Scrum process into an existing software

development organization the amount of overtime

decreased. This allows the developers to work at a more

sustainable pace. Risks of agile methods still include self-

intensification, overworking oneself and the threat to work-

life balance [20], even though agile methods explicitly try to

avoid them. There is evidence that balancing resources and

workload (optimal resource allocation) is a labor-intensive

and error-prone task [26]. Sherehiy [23] also found that a

combination of job demands and job uncertainty have a

significant effect on workforce agility. She suggests that a

high level of uncertainty may increase perceived job

demands and impede adaptivity at work.

The second core aspect of well-being at work is the

subjective experience of meaningfulness and autonomy of

work [cf. 2]. Within this aspect the focus is on the individual

experiences and feelings of work, work practices and

community. According to Mah and Lunt [12] creating

quality with clean code means taking pride in what you do,

without compromising one’s professionalism. Sherehiy’s

[23] results revealed that the autonomy at work is one of the

most important predictors of workforce agility, as well as

well-being.

C. Considering of Well-being at Work when Planning to

Implement Agile

Work organization is a main factor to anticipate

meaningfulness and autonomy: governing practices (e.g.,

objectives, purposes, meanings), coordination procedures

(e.g., work distribution methods, processes), and

surveillance routines (e.g., monitoring rituals, standards) [6].

Sherehiy [23] suggests that if the management implements

agile strategies in a way that positively affects job

autonomy, job uncertainty, and employees' collaboration, it

is more likely that employees will be able to perform a job

in an adaptive and flexible way. Also, Maruping, Venkatesh

and Agarwal [17] argue that the most effective control

models are those that provide teams with autonomy in

determining the methods for achieving project objectives.

It has also been shown that agile team could attain its

flexible way of working only with the autonomy of the

team. That bundles up agile way of working and well-being

at work. For example, in a study of video game

programming, agile project practices were found to be more

365Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 385 / 646

empowering and flexible than other management methods

emphasizing more management control [6]. In a related

study, when shifting over to more centralized control of

projects in a corporate R&D function of an IT company,

engineers generally reacted to the attempted introduction of

a new regime by increasingly presenting themselves as

distinct from management [10]. Developers may sometimes

view using of agile processes as an attempt to micromanage

[6]. The risks of agile methods include ignoring self-

determination, rigid organizational structures and

possibilities of selection and control [20].

The third aspect of well-being at work considered is the

development and change of work. Developing capabilities

are essential in becoming agile [13]. Qualitative changes at

work and in its environment occur faster and faster, non-

stop and take place simultaneously. The challenges to well-

being at work emerge as discontinuous work flow and

unexpected interruptions [19].

Mayfield [18] found that in the transition to an agile

development methodology there was an initial period of

decision uncertainty and anxiety but that it was only

temporary. Since agile adoption involves a significant

process and organizational change, it is critical to success to

focus initially on the human and cultural issues involved

[21]. Boisnier and Chatman [5] propose that organizations

may still benefit from simultaneously managing strong,

stable cultures while maintaining the flexibility and

adaptability necessary to survive the ebbs and flows of

turbulent environments. When introducing agile methods,

management practices and tools, motivated business

experts, and common methods of managing change are

needed in order to realize change and avoid the chaos

caused by unpredictability and complexity [1].

Briand and Hodgson [6] identify agile methods as

flexible, empowering and post-bureaucratic and non-

hierarchical – as an attempt to mitigate the formal

inflexibility of traditional project management to fit the

demands of software creation. Agility literature emphasizes

the importance of the development of a flexible, adaptable

and highly knowledgeable workforce that is able to deal

with unexpected and uncertain situations [23]. Teams

operating within the context of agile are characterized as

multifunctional, dynamic, and cooperative [28].

III. RESEARCH SETTING

In this section, a case research setting – planned for

studying the connections between agile methods and well-

being at work – is presented. The research targets are the

experiences of the reality of agile practices and their

perceived implications for well-being at work. The topic is

analyzed through the following questions: 1) How do agile

working practices in project management advance well-

being at work? Do agile management principles support the

well-being of agile team members? 2) What kind of

challenges agile practices bring to maintaining well-being at

work and sustainable productive work? The objective is to

analyze the connection between agile work practices and

well-being at work, and based on this analysis provide a

model for adopting practices that enhance the well-being at

work in product and service development.

Our preliminary hypotheses are, that when the agile

practices are applied correctly: 1) they help to keep work

strain steady during a working period (e.g., sprint), 2), they

maintain and promote meaningfulness and autonomy of

work and 3) they diminish discontinuity and interruptions at

work and make development of work more fluent and

natural part of work.

Factors of agile methods that produce and challenge well-

being at work of the team are studied in three case

companies. The research methods include a web based

survey of well-being at work, physiological stress indicators

and interviews of team members and supervisors. The

outcomes of the research are the perceptions of applying

agile and evidence based new knowledge with objective

established methods.

With a web based survey agile methods of software

development are explored through team members'

experiences. Well-being is studied with established

measures and taking advantage of existing well-being and

agile surveys. By physiological stress measurements stress

levels felt during the agile projects can be measured. In

interviews of team members there are questions of applying

agile practices, perceived well-being at work in general,

experiences of well-being at work when applying agile

practices, and expectations and needs to develop of agile

practices.

IV. CONCLUSION AND FURTHER WORK

 Through the methods described a holistic measure of

well-being at work, applying agile methods, and managerial

implications will be developed. The development of these

issues takes use of a literature review, collection existing

measures and results from the case study. In the future, the

validation of the holistic measure also needs a wider

statistical background from different kinds of agile teams.

V. ACKNOWLEDGEMENTS

This WIP paper is a part of Agile and Lean Product

Development Methods for Embedded ICT Systems project

(2012–2014), funded by TEKES – the Finnish Funding

Agency for Technology and Innovation. Partners of the

project are: BA Group, Ericsson, Finnish Institute of

Occupational Health, FiSMA, Lindorff Finland, Neoxen

Systems, Nextfour Group, Nordic ID and University of

Turku.

REFERENCES

[1] P. Abrahamsson, Agile software development introduction:
Introduction, current status & future. Jyväskylä, Finland: VTT
Electronics, 2005.

[2] A. Antonovsky, Unraveling the mystery of health? How
people manage stress and stay well. San Francisco: Jossey-
Bass Publishers, 1987.

366Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 386 / 646

[3] K. Beck, Extreme programming explained. Boston: Addison-
Wesley, 1999.

[4] M. S. Bird, “Utilizing agile software development as an
effective and efficient process to reduce development time
and maintain quality software delivery,” Dissertation
Abstracts International: Section B: The Sciences and
Engineering, vol. 71, no. 5–B, 2010, 3329.

[5] A. Boisnier and J. A. Chatman, “The role of subcultures in
agile organizations,” in Leading and managing people in the
dynamic organization, R. D. Day, R. S. Peterson, and E. A.
Mannix, Eds. Mahwah, NJ, US: Lawrence Erlaum Associates
Publishers, 2003, pp. 87–112.

[6] L. Briand and D.E Hodgson, “Management of creative
projects or creative project management? Agile projects as
micro-emancipation,” Paper presented at the 7th international
Critical Management Studies Conference, Naples, Italy, July
2011.

[7] A. Cockburn, “Agile software development joins the "would-
be" crowd,” Cutter IT Journal, vol. 15, no. 1, 2002, pp. 6–12.

[8] T. Dybå and T. Dingsøyr, “Empirical studies of agile software
development: A systematic review,” Information and
Software Technology, vol. 50, no. 9–10, 2008, pp. 833–859.

[9] E.-M. Gerlander and K. Launis, “Työhyvinvoinnin
tarkasteluikkunat,” Työelämän tutkimus, vol. 5, no. 3, 2007,
pp. 202–212.

[10] P. Gleadle, D. E. Hodgson, and S. Storey, “Project managing
R&D engineers: Assent and recalcitrance,” Paper presented at
the 7th International Critical Management Studies
Conference, Naples, Italy, July 2011.

[11] R. A. Karasek, “Job demand, job decision latitude, and mental
strain: Implications for job redesign,” Administrative Science
Quarterly, vol. 24, 1979, pp. 285–309.

[12] H. Kniberg, Kanban and Scrum – Making the most of both,
2009 http://www.crisp.se/file-uploads/Kanban-vs-Scrum.pdf,
20.8.2013

[13] V. P Kochikar and M. P. Ravindra, “Developing the
capability to be agile,” Organization Development Journal,
vol. 25, no. 4, 2007, pp. 127–134.

[14] M. Mah and M. Lunt, How agile projects measure up, and
what this means to you, The Cutter Consortium Executive
Report, 2009.

[15] C. Mann and M. Maurer, “A case study on the impact of
Scrum on overtime and customer satisfaction,” Proc. The
Agile Development Conference (ADC ’05), July 2005, pp.
70–79, doi: 10.1109/ADC.2005.1

[16] A. Marchenko and P. Abrahamsson, “Scrum in a multiproject
environment: An ethnographically-inspired case study on the
adoption challenges,” Proc. AGILE '08 Conference, Aug.
2008, pp. 15–26, doi: 10.1109/Agile.2008.77

[17] L. M. Maruping, V. Venkatesh, and R. Agarwal, “A control
theory perspective on agile methodology use and changing
user requirements,” Information Systems Research, vol. 20,
no. 3, 2009, pp. 377–399.

[18] K. M. Mayfield, “Project managers' experience and
description of decision uncertainty associated with the agile
software development methodology: A phenomenological
study,” Dissertation Abstracts International: Section B: The
Sciences and Engineering, vol. 71 (12–B), 2011, 7772.

[19] J. Mäkitalo, Work-related well-being in the transformation of
nursing home work. Oulu, Finland: University of Oulu, D
837, 2005.

[20] S. Porschen, “Management of the informal by cooperative
transfer of experience,” in Innovation management by
promoting the informal: Artistic, experience-based, playful, F.
Böhle, M. Bürgermeister, and S. Porschen, Eds. Dordrecht:
Springer, 2012, pp. 105–142.

[21] QSMA, The agile impact report. Proven performance metrics
from the agile enterprise, A report from QSMA Associates,
2008.

[22] O. Salo and P. Abrahamsson, Agile methods in European
embedded software development organisations: A survey on
the actual use and usefulness of Extreme Programming and
Scrum. Oulu, Finland: VTT Tech. Res. Centre of Finland, vol.
2, no. 1, 2006, pp. 58–64, doi: 10.1049/iet-sen:20070038

[23] B. Sherehiy, “Relationships between agility strategy, work
organization and workforce agility,” Dissertation, Kentucky,
University of Louisville, 2008 http://louisville.edu/speed/
industrial/academics/Bohdana%20Dissertation.pdf 20.8.2013

[24] Shine Technology's Agile Adoption Survey, 2003
http://www.shinetech.com/agile_survey_results.jsp 20.8.2013

[25] P. G. Smith and J. Oltmann, “Flexible project management:
extending agile projects beyond software projects,” Proc. PMI
Global Congress, Oct. 2010, http://strategy2market.com/
Preston-Smith/Articles/PMI/Flexible-Project-Management-
Congress.pdf 20.8.2013

[26] Á. Szöke, “Decision Support for Iteration Scheduling in Agile
Environments,” Lecture Notes in Business Information
Processing, vol. 32, 2009, pp. 156–170.

[27] L. Williams, A Survey of Agile Development Methodologies,
2007 http://agile.csc.ncsu.edu/SEMaterials/AgileMethods.pdf
20.8.2013

[28] C. A. Yauch, “Team-based work and work system balance in
the context of agile manufacturing,” Applied Ergonomics,
vol. 38, no. 1, 2007, pp. 19–27.

[29] www.agilemanifesto.org Manifesto for Agile Software
Development, 20.8.2013.

[30] www.agilemanifesto.org/principles.html Principles behind the
Agile Manifesto, 20.8.2013.

367Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 387 / 646

The Scrum Product Owner – Customer Collaboration & Prioritizing Requirements

Empirical research in a sample of Irish Industry

Trish O’Connell

Department of Information Technology
National University of Ireland, Galway, Ireland.

trish.oconnell@nuigalway.ie

Abstract— The existing body of literature on Agile Scrum is extensive.
Many authors, ([1], [2], [3], [4]), concur that the role of the Product
Owner is to represent the customers' requirements to the development
team and set the priorities for the work to be completed. The Agile
Manifesto specifies customer collaboration as being of more
importance than contract negotiation. So, we might expect that in
addition to setting priorities the Product Owner role in Scrum would
work closely with the Customer. This paper investigates a sample of
Irish software development organizations to determine the level of
adherence to Agile Scrum guidelines with regard to the two key aspects
of customer collaboration and requirements prioritization.

Keywords-Agile; Scrum; Requirements Product Owner; Customer
collaboration;

I. INTRODUCTION
In the absence of any a priori knowledge, it is generally believed that

if companies claim to be Agile then they are, in fact, following the precepts
and guidelines of their chosen Agile methodology, whether this be Scrum
[5], eXtreme Programming [6], Crystal Clear [7] or indeed any of a
plethora of Agile practices.

It may then come as something of a surprise to discover that “there is
often a substantial difference between the textbook ‘vanilla’ version” [8] of
the method and the method actually enacted in practice, what Senapathi et
al [9] refer to as the “method-in-action.” Conboy & Duarte [8] elaborate:
“Prescribed practices are inevitably interspersed in diverse ways or tailored
to suit the specific needs of teams.” So, can self-described Agile enterprises
really lay claim to being Agile or are they, perhaps, using an ad hoc
approach which pays lip service to Agile principles with the (unintentional)
benefit of keeping the stakeholders happily deluded? To what extent do
companies that describe themselves as being Agile actually follow Agile
guidelines as documented by the pioneers of the various Agile
methodologies?

Many authors [38], [39] agree that lack of user involvement is a
primary cause of project failure. The CHAOS report of 2010 [40] stated:
“projects that lack user involvement perform poorly.” Consequently, the
degree of user involvement in organizations that describe themselves as
being Agile was of immediate interest to the author.

This paper, based on empirical research, examines the author’s
contention that because “agile methodologies intentionally leave a lot to
be defined about exactly how the methodology is implemented” [4], what
results is sometimes an extemporized approach to implementing Agile
methods with a resultant lack of project success. Because many of the
Agile practices are somewhat loosely, if at all, defined, it is possible that
some organizations might take this as carte blanche to omit some of the
fundamental aspects that made Agile so pertinent at the outset.

The research hypothesis of this work was to ascertain if this ad hoc
implementation of Agile methods extended to the customer involvement /
Product Owner domain.

Whilst it may be argued that a plan based or prescribed method of
developing software might not always be easy to work with due to
constantly changing customer requirements or “software requirements
churn” [10], Addison & Vallabh [11] advocate that to control software
projects it is important to “develop and adhere to a software development
plan.” Fitzgerald [12] also contributes to this argument citing that
“experienced developers are more likely to use a methodology, as they
would be aware of its benefits”. Fitzgerald [12] further claims that
“inexperienced developers are more likely to follow a methodology

rigorously”, perhaps because it lends structure to an otherwise chaotic
endeavour.

Thus, although it is widely accepted that “standard software
development models often provide explicit detailed guidelines” [13], the
author decided to conduct some quantitative research into aspects of actual
Agile implementation in a sample of Irish software industry with a view to
gaining an understanding of the level of compliance to documented Agile
precepts. In the interests of brevity, this paper will deal only with the
Scrum Product Owner, prioritization of customer requirements and
customer collaboration aspects.

Section II of this paper briefly outlines the background to one of the
foremost Agile methods, Scrum, which incorporates the role of Product
Owner. Section III briefly describes the research design of the study.
Section IV presents the results of the study and this is followed by a
discussion of the findings in Section V.

II. BACKGROUND
Agile software development methods emerged in the late 1990s with the

Agile Manifesto [14] being published in 2001 (http://agilemanifesto.org/).
There are many different approaches to implementing Agile and each has its
own ‘vanilla’ version. Sutherland [15] explains “Each Agile methodology
has a slightly different approach for implementing the core values from the
Agile Manifesto, just as many computer languages manifest the core
features of object-oriented programming in different ways.” The
methodologies chosen for the study were Scrum and XP, since previous
work in this domain by Bustard [16] identified these as the most prominent
of the Agile methodologies currently in use. Salo, & Abrahamsson [17] refer
to Scrum and XP as the “perhaps best known agile methods”. However, in
the interest of brevity only Scrum will be discussed in this paper.

A. SCRUM
According to Ken Schwaber [5] (co-creator of Scrum with Jeff

Sutherland), “Scrum is an enhancement of the commonly used
iterative/incremental object-oriented development cycle.” It is more of a
framework than a methodology but it nevertheless takes, according to
Millett et al [18], an “iterative approach to software development.”
Sutherland [15] explains Scrum “structures development in cycles of work
called Sprints. These iterations are no more than one month each, and take
place one after the other without pause. The Sprints are timeboxed – they
end on a specific date whether the work has been completed or not, and are
never extended”.

Schwaber [19] describes product requirements as being “contained in
an ordered list known as the Product Backlog.” At the beginning of each
Sprint, the requirements are prioritized into a list known as the Sprint
Backlog with the aim of completing an agreed set of deliverables by the
end of the Sprint. Sutherland [15] explains further, “During the Sprint, the
chosen items do not change. Every day the team gathers briefly to inspect
its progress, and adjust the next steps needed to complete the work
remaining. At the end of the Sprint, the team reviews the Sprint with
stakeholders, and demonstrates what it has built. People obtain feedback
that can be incorporated in the next Sprint. Scrum emphasizes working
product at the end of the Sprint that is really “done”; in the case of
software, this means code that is integrated, fully tested and potentially
shippable.”

Barari [20] advises that “it is important to follow the guidelines defined

in Scrum but the ultimate goal is to deliver what you promised”. With regard
to the guidelines, Schatz & Abdelschafi [21] state quite categorically that
“there aren’t many rules in Scrum but you need to adhere to the ones that
(do) exist”. Unfortunately, the rules of transitioning software development
from a plan-driven approach to an Agile approach are not set in stone and

368Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 388 / 646

this may be where the confusion lies. The ‘rules’ that exist are the
implementation of the 12 principles set out in the Agile Manifesto [14]. It is
the author’s opinion that it is the interpretation of these rules that is often
confusing and sometimes even problematic.

Most authors on Agile ([1], [3], [22], [23]) agree that the Scrum
framework should include a Product Owner. The role of the Product Owner
will now be reviewed.

B. THE PRODUCT OWNER
According to Deemer et al [24] “The Product Owner is responsible for

maximizing return on investment (ROI) by identifying product features,
translating these into a prioritized list, deciding which should be at the top
of the list for the next Sprint, and continually re-prioritizing and refining
the list. The Product Owner has profit and loss responsibility for the
product, assuming it is a commercial product. In the case of an internal
application, the Product Owner is not responsible for ROI in the sense of a
commercial product (that will generate revenue), but they are still
responsible for maximizing ROI in the sense of choosing – in each Sprint –
the highest-business-value lowest-cost items”. How well this focus on the
“highest-business-value lowest-cost items” correlates with the customers’
requirements is, in this author’s opinion, debatable. Deemer et al [24] offer
the opinion that “‘value’ is a fuzzy term and prioritization may be
influenced by the desire to satisfy key customers.” Thus, the role of the
Product Owner in Scrum might not appear to be as clear cut as the original
proponents of Agile might have wished.

Stober & Hansmann [3] concur and define a Product Owner who
“represents the stakeholders, such as customers.” Consequently, it might be
apposite to assume that there should be a tenable link between the Product
Owner and the customer.

However, Sutherland [25] identifies a ubiquitous dilemma... “In some
cases, the Product Owner and the customer is the same person; this is
common for internal applications. In others, the customer might be millions
of people with a variety of needs, in which case the Product Owner role is
similar to the Product Manager or Product Marketing Manager position in
many product organizations. However, the Product Owner is somewhat
different than a traditional Product Manager because they actively and
frequently interact with the Team, personally offering the priorities and
reviewing the results of each two- or four-week iteration, rather than
delegating development decisions to a Project Manager”. Deemer et al [24]
summarize, “It is important to note that in Scrum there is one and only one
person who serves as – and has the final authority of – Product Owner, and
he or she is responsible for the value of the work”. Schwaber [26] describes
the Product Owner as “the single wringable neck”. Insofar as it is the
Product Owner who represents the customer requirements to the
development team, the success or failure of the project can ultimately be
attributed to this one individual. Beyer [2] sees the Product Owner as ”the
customer representative” and outlines his responsibility to “find out what
the stakeholders and end users actually need.” Having requirements which
are “prioritized by the product owner” [3] is yet another prerequisite of
Scrum. In the Scrum approach, according to Cohn [27], “requirements are
maintained in a backlog, called the Product Backlog, prioritized by
business value.” Having been prioritized, the work (or as much of it as
possible) is accomplished by the Scrum development team in fixed
timeframes “known as Sprints” [27], which usually last two to four weeks,
depending on the product or service. Items are taken off the backlog in
priority order to be worked on as parts of the Sprint Backlog in the current
iteration. At the end of the Sprint, there is usually a Sprint review [22],
where the team demonstrates what it has accomplished to the customer
with a view to soliciting feedback.

According to Schwaber [19], the Product Owner is “responsible for
representing the interests of everyone with a stake in the project and its
resulting system.” Many of the proponents of Scrum, including [4],
advocate “as much customer collaboration as possible” but he counsels that
the “Product Owner represents the voice of the customer and is expected to
provide overall direction to guide the project toward producing the value to
satisfy customer needs” [4]. This should most likely involve close
collaboration with customers and stakeholders. In most Scrum training
workshops, it is advised to ensure customer involvement throughout the
development process. This is often referred to as capturing the “voice of the
customer” [28] in an attempt to deliver the required content. It has been
widely accepted [29] that customer involvement is critical to successful

software development. In fact, Paetsch, Eberlein et al [30] state “customer
involvement was found to be the number one reason for project success,
while the lack of user involvement was the main reason given for projects
that ran into difficulties.”

III. RESEARCH METHOD
The research on which this paper is based was conducted as a

quantitative study that was descriptive in nature. Leedy & Ormrod [31]
describe this type of research as “identifying the characteristics or
exploring possible correlations among two or more phenomena.” The
authors also state that “descriptive research examines a situation as it is.”
However, as Oppenheim [32] explains, “no valid causal interpretations are
possible”, thus, whilst the data collected may describe the actual situation,
the research is limited to being solely a descriptive analysis.

There are many ways to conduct descriptive quantitative research.
Thomas [37] refers to three methods: surveys, correlation analysis and
experiments whilst Leedy & Ormrod [31] also include “observational
studies and developmental designs”. Having reviewed the suitability of
each of these methods it was decided to use an online survey to collect
primary research data. Leedy & Ormrod [31] explain that a survey
“involves acquiring information about one or more groups of people by
asking them questions and tabulating their answers”. The authors indicate
that “the ultimate goal is to learn about a large population by surveying a
sample of that population.” It needs be stressed, however, that survey
research “captures a fleeting moment in time” [33]. It is possible that the
response to a particular question might be totally different in two or three
months’ time. Once this precept was understood, however, it was felt that a
survey would be a perfectly acceptable way to discover information about
the topic to be investigated. De Vaus [34] states, “Survey research is
widely regarded as being inherently quantitative and positivistic and is
contrasted to qualitative methods that involve participant observation,
unstructured interviewing, case studies, focus groups, etc. Quantitative
survey research is sometimes portrayed as being sterile and unimaginative
but well suited to providing certain types of factual, descriptive information
– the hard evidence.”

If survey research has a drawback it would seem to be that the results
are dependent on the participants’ willingness to participate, in addition to
their ability to correctly answer the questions asked. Leedy & Ormrod [31]
refer to the fact that the method relies on “self report” data. The authors
caution that “people are telling us what they believe to be true or, perhaps,
what they think we want to hear.” Survey research can be conducted via a
number of different methods: the face-to-face interview, the telephone
interview or the documented questionnaire, which can be either paper or
Internet based. As Salo & Abrahamsson [17] note “web-based data
collection also overcomes some limitations of ordinary mail surveys and
other data collection mechanisms in terms of speed and cost.” It was also
planned that a limited amount of interviewing would be required to ensure
that the correct conclusions were drawn. Thus, to conduct research into this
domain a sample of software professionals at both management and Scrum
team level in a cross section of Irish Software development companies,
who profess to use Scrum, were polled for their perspectives. This is
described next.

A. THE PARTICIPANTS
In an ideal scenario, it would be preferable to obtain a totally random

selection of Irish software development companies to answer the research
questions. However, given the likelihood that the response rate would be
low (which is one of the main drawbacks of this research method, what
Leedy & Ormrod [31] refer to as “low return rate”), it was decided to
indulge in a degree of “purposive sampling” [35]. Nardi [35] explains
purposive sampling as sampling one or more specific pre-defined groups.
This approach was adopted as it was felt to be important to collect data on
organizations that had some prior knowledge of Agile practices as opposed
to taking a completely random sample, which may have resulted in
confused responses. To generate survey data, a random sample of software
companies was targeted from software groups known to be somewhat
familiar with the concepts of Agile software development, groups such as
AgileIreland, Information Technology Association Galway (ITAG), the
Irish Software Association (ISA), the Irish Software Innovation Network
(ISIN) training companies, blogs etc. All of these were contacted to host

369Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 389 / 646

the online survey on their websites, where it would be visible to their
members.

Using these organizations, it was possible to distribute the online
survey to a diverse audience of software development professionals who
had an established history with, or at the very least, a passing knowledge
of, Agile and who, it was hoped, would be more likely to respond to the
questions. In an attempt to capture a representative view, cross-functional
participants, including both Scrum team members and software
development management in organizations that use Scrum, were targeted.
In this way it was hoped that the findings would be representative of the
actual state of play of software development in Irish industry. The
breakdown of Scrum team participants is shown in Table I.

TABLE I. SCRUM TEAM SURVEY PARTICIPANTS

 Organization Size

Role 1 to 50 51 to 500 500+

Designer 1 1 1
Senior
Developer 2 3 1

Developer 2 4 3

Test Engineer 2 3 2

Similarly, the breakdown of Scrum management participants is shown in
Table II.

TABLE II. MANAGEMENT SURVEY PARTICIPANTS

 Organization Size

Role 1 to 50 51 to 500 500+

S/W Dev. Mgr. 3 3 4

Project Mgr. 2 2 4

Q.A. Mgr. 1

Test Mgr. 1

Given the fact that the survey was online, it was not possible to compute
a response rate, per se. However, it was felt that a sufficiently
representative number of respondents had contributed to make the results
relevant.

IV. RESULTS
Whilst all Scrum teams admitted having a Product Owner it became

clear that the Scrum teams were not always aware of the link between the
Customer and the Product Owner. When asked how frequently the Product
Owners consulted with the customer the responses were as given in Table
III.

TABLE III. LEVEL OF AWARENESS OF INVOLVEMENT

BETWEEN PRODUCT OWNER AND CUSTOMER

Unaware of involvement 44%

Aware of weekly involvement 20%

Aware of infrequent involvement 8%

As required 28%

Although, in theory, the Product Owner sets the vision for the product

and is responsible for prioritizing requirements for the team to work on for
the Sprint duration, in practise it was found that for 44% of those who
described themselves as being Scrum team members this did not happen. In
fact, it transpired that in some cases requirements were prioritized as shown
in Table IV.

TABLE IV. PRIORITIZATION OF REQUIREMENTS

Product Owner 56%

Scrum Master 24%

Release Manager 12%

Combination 8%

One interesting comment was that the developer didn’t know how
priorities were set, but felt that there was a “mysterious process in
operation.”

When questioned about the involvement of customers at Sprint reviews
the Scrum teams’ responses were as shown in Table V.

TABLE V. CUSTOMER INVOLVEMENT AT SPRINT REVIEWS

No customers in attendance 12%

Unsure of attendance 4%

Customers in attendance 84%

From the perspective of the developers with regard to customer

involvement, it would appear that 16% felt the involvement of customers
was either not encouraged, or they were unaware of any efforts to involve
customers.

 When management at self-described Agile organizations were asked if
customer involvement was encouraged (in the form of attendance at Sprints
etc) 13% admitted that this was not the case.

V. DISCUSSION
The research effectively offers a snapshot of Irish software industry

over the duration of the survey availability window, which was two months
from July to August, 2011. Although the sample was not as large as had
been envisaged, and it is consequently not possible to make generalizations
from the results, it is nonetheless valid to make some observations. When
taken in isolation, the Scrum results presented in section IV are somewhat
disconcerting; however, they are largely in line with what was expected. It
should be noted that the results are not skewed by the presence of a number
of responses from organizations who are not using any of the Scrum
precepts. A correlation of all of the responses would seem to show that
only 12% of those who responded were operating precisely to the Scrum
guidelines. The remainder had, indeed, adopted an ad hoc approach to
Scrum for whatever reason. This might, in part, be the reason behind failed
Agile projects.

For any Agile method the theory would seem to indicate that user
involvement is crucial. In fact, one might go further than mere user
involvement, and in order to gain valuable feedback to the project, cite user
participation as being key to a successful software development initiative.
Kautz [36] acknowledges “Agile development practices and principles
insist on the customer taking control and being constantly involved.” This
is underpinned by the Agile Manifesto [14], which advocates “Customer
collaboration over contract negotiation.”

Paetsch, Eberlein et al [30] concur, “All agile approaches emphasize
that talking to the customer is the best way to get information needed for
development and to avoid misunderstandings. If anything is not clear or
only vaguely defined, team members should talk to the responsible person

370Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 390 / 646

and avoid chains of knowledge transfer. Direct interaction also helps
establishing trust relationships between customers and developers.”

However, in the vast majority of companies it is thought not to be
feasible to have the customer on site or actively involved as described. The
solution to this in most companies is to appoint a customer proxy.
However, Beyer [3] says “Product Owners as defined by Scrum do not
make good user surrogates. They may be responsible for representing all
the stakeholders of a system, including end-users, the customer who makes
the purchase decision, and the internal stakeholders. But they are not any of
these people.”

The findings of the study answered the primary research question and
found that, as expected, the adoption of Scrum by many organizations was
not as rigorous as the proponents of the methodology might have wished.
The implications of this approach to software development could have
many ramifications not least being poor Scrum team morale, projects being
late and/or not delivering what the customer requires.

In the author’s opinion, the results of the survey highlight the need for
further research. In particular, it is important to acknowledge that the
results of this study were based on a relatively small sample of Irish
software industry due largely to the aggressive timeframe in which the
author operated. Whilst the preliminary research commenced in February
2011 the completion deadline for the thesis was in August of the same year.
It would, indeed, be interesting to investigate whether the findings would
be replicated on a larger set of software development organisations.

ACKNOWLEDGMENT
The author would like to thank Ms. Karen Young (Discipline of IT,

National University of Galway, Ireland) for her unflagging patience in
keeping this research going for the duration of the thesis portion of the
MScSED.

REFERENCES

[1] J. Highsmith, Adaptive Software Development Ecosystems. Boston,
MA: Pearson Education Inc, 2002, pp. 244-245.

[2] H. Beyer, User Centered Agile Methods, Synthesis Lectures on
Human-Centered Informatics. Ed. J. Carroll, Morgan & Claypool,
2010, p.4.

[3] T. Stober and U. Hansmann, Agile Software Development: Best
Practices for Large Software Development Projects. Berlin
Heidelberg: Springer-Verlag, 2010, p. 41.

[4] C.G. Cobb, Making Sense of Agile Project Management Balancing
Control and Agility. Hoboken, NY: Wiley & Sons, 2011, pp. 101-
103.

[5] K. Schwaber, "Scrum Development Process", Proc. OOPSLA’95
Workshop on Business Object Design and Implementation, Austin,
Texas, USA, 1995, pp. 117-134.

[6] K. Beck, Extreme Programming Explained: Embrace Change,
Boston, MA: Addison Wesley, 1999.

[7] A. Cockburn, Agile Software Development, Boston, MA: Addison-
Wesley, 2001.

[8] K. Conboy and V. Duarte, “Scaling Agile to Lean – Track Summary”,
Proc. LESS 2010, Helsinki, Finland, Volume 65, 2010, pp 1-2.

[9] M. Senapathi, P. Middleton, and G. Evans, “Factors Affecting
Effectiveness of Agile Usage – Insights from the BBC Worldwide
Case Study”, Proc.12th International Conference, XP 2011, Madrid,
Spain, 2011, p. 136.

[10] J. Dooley, Software Development and Professional Practice. New
York, NY: Apress. 2011.

[11] T. Addison and S. Valabh, “Controlling Software Project Risks – an
Empirical Study of Methods used by Experienced Project Managers”,
Proc. SAICSIT 2002, Port Elizabeth, South Africa, pp. 128-140.

[12] B. Fitzgerald, “The use of systems development methodologies in
practice”. Info Sys Journal (1997) Vol 7, pp. 201-212.

[13] J.D. Fontana, “Models of Software Evolution Life Cycle and
Process”, Technical Document 1893, July 1990. Retrieved Aug. 16th,
2013 from

 http://www.dtic.mil/dtic/tr/fulltext/u2/a227328.pdf.
[14] M. Fowler and J. Highsmith, “The Agile Manifesto”, Software

Development, Vol. 9 No. 8 (August, 2001) pp. 28-32.
[15] J. Sutherland, “The Scrum Handbook”, Somerville MA: Scrum

Training Institute, 2010.
[16] D. Bustard, “Beyond Mainstream Adoption: From Agile Software

Development to Agile Organizational Change”, Proc. IEEE 19th
International Conference ECBS, Serbia 2012, pp. 90-97.

[17] O. Salo and P. Abrahamsson, “Agile methods in European embedded
software development organisations: a survey on the actual use and
usefulness of Extreme Programming and Scrum”, Proc. IET Software,
2008, Vol. 2, Issue 1, pp. 58–64, doi: 10.1049/iet-sen:20070038.

[18] S. Millett, J. Blankenship, and M. Bussa, Pro Agile. NET
Development with SCRUM. New York, NY: Apress, 2011, p.13.

[19] K. Schwaber, Agile Project Management with Scrum. Redmond,
Washington: Microsoft Press, 2009, p10.

[20] T. Barari, “Tips for First Time Scrum Masters” Scrum Alliance,
2009. Retrieved 16th Aug. 2013 from

 http://www.scrumalliance.org/community/articles/2009/may/tips-for-
first-time-scrummasters.

[21] B. Schatz and I. Abdelschafi, “Primavera Gets Agile: A Successful
Transition to Agile Development”, IEEE Software. 2005, May/June
Vol. 22 no. 3, pp36-42,

 doi:10.1109/MS.2005.74.
[22] R. Pichler, Agile Product Management with Scrum: Creating

Products that Customers Love. Boston, MA: Pearson Education Inc,
2010, pp. 2-4.

[23] K. Schwaber and M. Beedle, Agile Software Development with
Scrum. NJ: Prentice Hall, 2001, pp. 34-35.

[24] P. Deemer, G. Benefield, C. Larman, and B. Vodde, “Scrum Primer v
1.2” Retrieved 17th Aug, 2013 from

 http://goodagile.com/scrumprimer/scrumprimer.pdf.
[25] J. Sutherland, The Scrum Papers: Nuts, Bolts and Origins of an Agile

Framework. Cambridge, MA: Scrum, Inc., 2012, p.15.
[26] K. Schwaber, The Enterprise and Scrum. Redmond, Washington:

Microsoft Press, 2011, p6.
[27] M. Cohn, Succeeding with Agile : Software Development using

Scrum. Upper Saddle River, New Jersey: Addison-Wesley. pp. 257–
284. 2010.

[28] J.R. Hauser and D. Clausing, “The House of Quality”, Harvard
Business Review (May–June), 1988, pp. 63–73.

[29] Standish Group International, Chaos Report 2000. Retrieved Aug
18th, 2013, from http://www.gobookee.net/standish-group-chaos-
report-2000/.

[30] F. Paetsch, A. Eberlein, and F. Maurer, “Requirements Engineering
and Agile Software Development”, Proc. of the 12th IEEE
international Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises, June 2003, pp. 308 – 313.

[31] P.D. Leedy and J.E. Ormrod, Practical Research Planning and Design.
New Jersey: Prentice Hall, 2005 p.179.

[32] A.N. Oppenheim, Questionnaire Design, Interviewing and Attitude
Measurement, New York: Continuum, 2005, p.4.

[33] C.A. Mertler, Action Research: Improving Schools and Empowering
Educators. California: Sage Publications, California, 2006, p.95.

[34] D. DeVaus, Surveys in Social Research. New South Wales, Australia
:Routledge, 2002, p. 5.

[35] P.M. Nardi, Doing Survey Research: A Guide to Quantitative
Methods. Boston: Pearson Education 2003, p. 119.

[36] K. Kautz “Inclusive Design in Practice: A Study of Participatory
Design, Customer and User Involvement in Agile Software

371Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 391 / 646

Development,” Proc. of the 32nd Information Systems Research
Seminar, Norway, August 2009, p217.

[37] R.M. Thomas, “Blending Qualitative and Quantitative Research
Methods in Theses and Dissertations” Corwin Press, California. 2003.

[38] K.L. James, “Software Engineering”, Delhi: PHI, 2008, p. 34.
[39] R.K. Wysocki, “Effective Management: Traditional, Agile, Extreme”,

Indianapolis, IN: Wiley& Sons, 2011, Ch. 16.
[40] Standish Group International, CHAOS Summary for 2010 retrieved

Aug 17th, 2013, from
http://insyght.com.au/special/2010CHAOSSummary.pdf.

372Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 392 / 646

Benefits and Limitations of Using the MPS.BR Model with Agile Methodologies

A Survey Based on a Systematic Literature Review

Robson Amorim de Souza

Department of Computer Science
Mato Grosso State University, UNEMAT

Barra do Bugres, Brazil

robson.unemat@gmail.com

Fernando Selleri Silva

Dept. of Computer Science, Mato Grosso State University
Center of Informatics, Federal University of Pernambuco

Barra do Bugres, Recife, Brazil

fss4@cin.ufpe.br

Felipe Santana Furtado Soares and Silvio Romero de Lemos Meira

Center of Informatics, Federal University of Pernambuco, UFPE

Recife Center of Advanced Studies and Systems, C.E.S.A.R

Recife, Brazil

fsfs@cin.ufpe.br, srlm@cin.ufpe.br

Abstract— This paper investigates the benefits and limitations

of using the Reference Model for the Improvement of the

Brazilian Software Process (MPS.BR) with agile

methodologies. A survey of the Brazilian and international

literature was performed, which used the concepts of a

systematic literature review. Altogether 21 studies were

included on the subject, viz., 12 articles, 1 Master’s

dissertation, 3 dissertation from post-graduate courses, 4 end-

of-course undergraduate monographs, and 1 report arising

from an undergraduate traineeship. Based on the results

presented in the studies, agile methodologies and their

practices were found to be feasible used in serving the initial

levels of MPS.BR, but for the highest levels of the model,
additional practices must be used.

Keywords-MPS.BR; Brazilian SPI Model; Agile

Methodologies; Suitability.

I. INTRODUCTION

Ensuring that their products or services are of good
quality is essential if organizations have to survival on the
market. Generally, this quality is related to the production
processes of the product/service. In the context of
Information Technology, all software must be of good
quality, both in the development process and the product
itself. In order to establish Software Process Improvement
(SPI), various software development organizations are
looking for quality reference models available on the market,
such as: ISO/IEC 90003 - Guidelines for the application of
ISO 9001:2000 to computer software [1], ISO/IEC 12207 -
Software Life Cycle Processes [2], CMMI - Capability
Maturity Model Integration [3], and MPS.BR - Brazilian
Software Process Improvement [4]. However, quality
models, generally, establish firstly “what” needs to be done
in order to engage on demanding processes and secondly,
methodologies for developing software that indicate “how”
to do so.

Agile methodologies for use in software development
became widely known from 2001, when a group of
professionals, from the software area, assembled and
published the Manifesto for Agile Software Development,
also known as the Agile Manifesto [5]. These methodologies
aim to develop software with high quality, iteratively and
incrementally, thereby stimulating team interaction, with less
documentation, and aim at meeting deadlines, costs and
quality standards. Among various agile methodologies, the
most used are Scrum and Extreme Programming (XP) [6].

In this context, this paper sets out to discuss by means of
a survey of the literature that uses the concepts of a
Systematic Literature Review, the Reference Model (RM)
for Improving the Brazilian Software Process (MPS.BR)
together with agile methodologies for software development.
The following research question was considered: What is
known about the benefits and limitations of adopting the
MPS.BR reference model using agile methodologies?
Further, the paper seeks to characterize academic production
on the Brazilian model of quality assurance, together with
agile methodologies.

The paper is organized in five sections. Section 2 gives a
brief theoretical description of the MPS.BR model and agile
methodologies. Section 3 describes the methodology used.
Section 4 reports the results, and comments on benefits and
limitations. Conclusions are drawn and recommendations for
future work are made in Section 5.

II. THEORETICAL BACKGROUND

Initially, the MPS.BR model will be briefly described;
then, the main concepts regarding agile methodologies are
presented.

A. MPS.BR

MPS.BR is a Brazilian Software Process Improvement
Program that was created in December 2003, by the

373Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 393 / 646

Association for Promoting Excellence in Brazilian Software
(SOFTEX), with the support of several public and private
organizations in Brazil, including: the Ministry of Science
and Technology (MCT), an Agency that Funds Studies and
Projects (FINEP), and the Inter-American Development
Bank (IDB) [4]. MPS.BR aims to assist organizations,
particularly small and medium-sized Brazilian companies, to
achieve good quality in software development, in a smoother
and less expensive way.

The MPS.BR program proposes the SPI Reference
Model for Software (MR-MPS-SW), which defines seven
maturity levels for the software process of an organization
[4]: In descending order, these are A (In Optimization), B
(Quantitatively Managed), C (Defined), D (Largely
Defined), E (Partially Defined), F (Managed), and G
(Partially Managed). For each maturity level, a profile of
processes is assigned that suggests where the organization
must make efforts to improve, as described below (for which
the acronym is given in Portuguese, in brackets): In
ascending order of maturity level, these are:

 Level G: Project Management (GPR) and
Requirements Management (GRE).

 Level F: Acquisition (AQU), Configuration
Management (GCO), Quality Assurance (GQA),
Project Portfolio Management (GPP), and
Measurement (MED).

 Level E: Evaluating and Improving the
Organizational Process (AMP), Defining the
Organizational Process (DFP), Human Resources
Management (GRH), and Reuse Management
(GRU).

 Level D: Requirements Development (DRE),
Product Integration (ITP), Product Design and
Construction (PCP), Validation (VAL), and
Verification (VER).

 Level C: Development for Reuse (DRU),
Management Decisions (GDE), and Risk
Management (GRI).

 Level B: Project Management (GPR – evolution).

 Level A: (process optimization).

B. Agile Methodologies

Agile methodologies refer to approaches of software
development used by organizations that focus on flexible
collaboration, as they deal with projects in which
requirements change constantly. Their core values were
defined in the Agile Manifesto [5], as: individuals and
interactions over processes and tools, working software over
comprehensive documentation, customer collaboration over
contract negotiation, and responding to change over
following a plan.

Among the main agile methodologies, especially in
Brazil, Scrum and Extreme Programming (XP) are foremost
[7], the focus on each is as follows:

 Scrum: its focus is on managing software
development, through an iterative and incremental
process. It aims to deliver software in the shortest
time, to meet deadlines and to reduce costs [8].

 Extreme Programming (XP) focuses on the
development of a specific piece of software, by
providing a set of practices that addresses the
different phases of the life cycle, in an incremental
and iterative format [9].

III. REVIEW METHOD

A survey of the literature on the MPS.BR model and
agile methodologies cited in Brazilian and international
sources was conducted, using the concepts of a Systematic
Literature Review, described in Kitchenham and Charters
[10]. This is a way to identify, evaluate and interpret the
relevant papers available on a research question in particular,
a topic area or phenomenon of interest. The systematic
review process generally consists of identifying a research
study by using a protocol (described in this section), study
selection, quality assessment, data extraction and synthesis.

In this article, we used the stage of study selection, which
includes (automatic and manual) search and the application
of inclusion/exclusion criteria, as described below. Due to
the limit on the available resources, the stage of quality
assessment was suppressed. Data extraction and synthesis
stages were performed, the findings of which revealed
benefits and limitations.

We chose to search, in addition to articles published in
journals and conferences, academic studies (works from
undergraduate and post-graduate courses, Master’s
dissertations and PhD thesis). Although in the systematic
review process, inclusions such as these are not common,
mainly due to the review process being less formal,
academic studies were considered because this enabled
ongoing research in the area to be mapped.

A. Search for studies

The first activity for the search was to formulate a string,
which makes an automatic search feasible. This string was
set taking into account the research question addressed in
Section 1, from which were derived the key terms, their
synonyms or related words, as shown in Table 1.

TABLE I. TERMS USED IN SEARCHES

Term Synonyms or related words

“MPS.BR” “MPSBR”, “MPS BR”, “MPS-BR”, and “Brazilian

software process improvement”

“process” “method” and “methodology”

“agile” “agility”, “light”, “scrum”, “extreme programming”,

“XP”, “dynamic system development”, “DSDM”,

“crystal”, “kanban”, “feature driven development”,

“FDD”, “lean”, “adaptive software development”,

“ASD”, “test driven development”, and “TDD”

The terms and their synonyms or related words were

organized in a standard search string, in which each key term
was grouped with the logical operator “AND” and its
synonyms or related words with the operator “OR”, as
follows:

("MPS.BR" OR "MPSBR" OR "MPS BR" OR "MPS-BR"
OR "Brazilian software process improvement") AND
("process" OR "method" OR "methodology") AND ("agile"
OR "agility" OR "light" OR "scrum" OR "extreme

374Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 394 / 646

programming" OR "XP" OR "dynamic system development"
OR "DSDM" OR "crystal" OR "kanban" OR "feature driven
development" OR "FDD" OR "lean" OR "adaptive software
development" OR "ASD" OR "test driven development" OR
"TDD")

The next step was to define in which electronic databases
to conduct searches and to include digital libraries of
organizations that have an interest in the subject, search
engines that index academic studies in Brazil and
international mechanisms for indexing scientific studies.
Some terms of the string were translated as per the language
of the database language (Portuguese or English) in order to
get better results. In some bases (national and international),
the default string had to be adapted. However, the original
essence of the string, without restricting the results, was
preserved. The following databases were considered:

 Organizations: Association for Promoting
Excellence in Brazilian Software (SOFTEX),
Ministry of Science and Technology (MCT), and
Brazilian Computer Society (SBC).

 National mechanisms: Dedalus – USP, Public
Domain, Google Web Brazil, Google Scholar Brazil,
and Scientific Electronic Library Online (SciELO).

 International mechanisms: ACM, Compendex,
IEEE, ISI, Science Direct, Scopus, Springer, and
Wiley.

The inclusion of the Google search engine is not common
in most systematic reviews. However, it was included with
the intention of facilitating the identification of academic
studies originating from a wide variety of Higher Education
institutions. The search in Google Web returned 980,000
results, of which only the first 200 results were considered,
because from that point on, the results proved to be irrelevant
and/or repetitive. In the other electronic databases, including
Google Scholar, all returned results were considered.

The automatic search was conducted from April 28 to
May 21, 2012, and included studies made available up to
(and including) December 31, 2011. A summary of the
results obtained is listed in Table 2, grouped by electronic
database, and amounted to 836 in total.

TABLE II. AUTOMATIC SEARCH RESULTS

Eletronic Database Result

MCT (www.mct.gov.br) 2

BDBComp – SBC (www.lbd.dcc.ufmg.br/bdbcomp/) 56

SOFTEX (www.softex.br) 58

Dedalus - USP (www.dedalus.usp.br) 177

Public Domain (www.dominiopublico.gov.br) 27

Google Web (www.google.com) 200

Google Scholar (scholar.google.com) 172

Scielo (www.scielo.org) 55

ACM (portal.acm.org/dl.cfm) 6

Compendex (www.engineeringvillage2.org) 11

IEEE (ieeexplore.ieee.org) 18

ISI (apps.isiknowledge.com) 3

Science Direct (www.sciencedirect.com) 4

Scopus (www.scopus.com/home.url) 17

Springer (www.springerlink.com) 29

Wiley (onlinelibrary.wiley.com) 1

Total 836

The survey also included a manual search, which was
undertaken immediately after the automatic search, in the
proceedings of the Brazilian Symposium on Software
Quality (SBQS) and the Brazilian Symposium on Software
Engineering (SBES). The manual search identified one
potentially relevant study, published in SBQS 2009.
Altogether 837 results were considered for being selected for
study.

B. Study Selection

First of all, the titles and abstracts of the studies were
analyzed in order to identify potentially relevant studies.
After eliminating redundancies (studies returned by more
than one database engine) and studies clearly irrelevant to
this research, 56 studies were considered potentially relevant.
The rationale for this reduction (837 results to 56 potentially
relevant studies) was due to the redundancy of results arising
from using two or more database engines and due to the
extensive coverage of the string, which returned studies with
the terms, e.g., “MPS.BR”, “process” and “agile”, applied in
a different context to that of the objective of this research.

The next stage of the review was to read the complete
texts of potentially relevant studies, applying
inclusion/exclusion criteria. To facilitate the application of
the criteria for inclusion and exclusion in the studies, a
Microsoft ExcelTM spreadsheet was used.

The following inclusion criteria were used:
1) Studies from academia or industry;
2) Studies with practical scientific (empirical) or

bibliographic data or experience reports;
3) Studies that addresses MPS.BR and agile

methodology;
4) Studies in Portuguese or English.
As exclusion criteria were adopted:
1) Studies merely based on expert opinion, without

being supported by a practical or bibliographic study
or a report of an experience;

2) Studies in the format of an editorial, foreword,
abstract, interview, news, poster and so forth.

At the end of this stage, 21 studies were included that
address the MPS.BR model together with agile
methodologies. The absence of inclusion criterion number 3
and the occurrence of exclusion criterion number 2 were the
most frequently instances for excluding studies. When this
stage was completed, we moved on to extracting data as
described below.

C. Data Extraction

Data from 21 studies were extracted and analyzed,
including: title, publication year, author, type (article,
undergraduate monograph, post-graduate dissertation or
Master’s dissertation), publication source, where the research
was conducted, research method (case study, experience
report, survey, experiment, action research, ethnography, and
literature), research goal, agile method addressed, MPS.BR
levels involved, and the benefits and limitations of using
MPS.BR and agile methodologies. Data from each study
were copied to an Excel spreadsheet, to aid referencing
during the stage of synthesizing the result.

375Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 395 / 646

IV. RESULTS AND SYNTHESIS

The studies included 12 articles, 1 Master’s dissertation,
3 post-graduate dissertations, 4 undergraduate monographs,
and 1 undergraduate traineeship report. Fig. 1 shows the
corresponding percentages. The articles were written at the
following levels: 1 by post-graduate students, 1 by an
undergraduate student, 4 by students of various levels, 2 by
industry professionals, and 4 by students and professionals.

Figure 1. Type of studies.

The sources where the studies were published or
produced are shown in Table 3. Note that articles published
in 7 conferences, 1 magazine, and academic studies
produced in 7 institutions of higher education were included.

TABLE III. SOURCE OF STUDIES

Type Source Study No.

Article Brazilian Symposium on

Software Quality (SBQS)

[11][12]

[13][14]
4

Annual Workshop on SPI

(WAMPS)
[15][16] 2

Informatics Students Meeting

of Tocantins (ENCOINFO)
[17] 1

Innovations Week in

Information Systems

(SIS2INFO)

[18] 1

Regional Seminar on

Informatics (SRI)
[19] 1

Scientia Plena Magazine [20] 1

Symposium on Computational

Mechanics (SIMMEC)
[21] 1

Workshop on Companies

(W6-MPS.BR)
[22] 1

Master’s

dissertation
Pernambuco University (UPE) [23] 1

Post-graduate

dissertations

Federal University of Sergipe

(UFS)
[24] 1

Pontifical Catholic University

of Paraná (PUCRS)
[25] 1

State University of Londrina

(UEL)
[26] 1

Undergraduate

monographs

Passo Fundo University (UPF) [27][28] 2

Santa Cruz do Sul University

(UNISC)
[29] 1

UniSEB University Center [30] 1

Undergraduate

traineeship

report

State University of Londrina

(UEL)
[31] 1

Total 21

Fig. 2 shows the percentage of studies with respect to the
research method. Note that 9 of the 21 studies used
Bibliographic Research. The 6 empirical studies used the
following methods: 4 Case Studies, 1 Action Research, and 1
Survey. Six Experience Reports were also included.

Figure 2. Research methods of studies.

As reported to the year, it was noted that 2010 was the
year in which most studies were produced on the subject, as
illustrated in Fig. 3. The number of studies has been growing
every year since 2008, but in 2011 there was a small
reduction. The geographical distribution of studies by State
was as follows: 4 from Paraná, 4 from Rio Grande do Sul, 3
from Pernambuco, 3 from Rio de Janeiro, 2 from Minas
Gerais, 2 from Sergipe, 2 from São Paulo, and 1 from Santa
Catarina.

Figure 3. Year of studies.

In Fig. 4, the agile methodologies found in the studies are
shown. Note that the Scrum methodology was the most used,
being addressed in 17 studies (81%). In some studies, Scrum
was used in combination with another methodology. The
agile practices most addressed were Daily Meetings and
Development in Sprints (in 13 studies), followed by Product
Backlog Elaboration (in 11 studies), Sprint Review Meeting
(in 9 studies), Sprint Planning Meeting and Retrospective (in
8 studies).

Fig. 5 shows the number of studies related to the levels of
the MPS.BR model. The studies focus most on the initial
levels (G and F). Although smaller, the number of studies
that cites the other levels (A to E) was similar. The most
addressed processes were Requirements Management (in 19
studies), Project Management (18), Quality Assurance (10),
Measurement (9), Configuration Management (8), and
Acquisition (6). The processes of Project Portfolio
Management, Reuse Management, and Development for

376Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 396 / 646

Reuse were the least discussed (2 studies). The remaining
processes were discussed in 3-5 studies.

Figure 4. Agile methodologies addressed.

Figure 5. Number of studies by MPS.BR Levels.

Next, the benefits and limitations of MPS.BR together
with agile methodologies are discussed.

A. Benefits of using MPS.BR and Agile Methodologies

At this stage of the review, the benefits were analyzed, as
per how they were cited by the authors in the studies.
Oliveira [29] found that the use of Scrum practices, such as
maintaining the product backlog, satisfies many of the
expected results from the processes of Requirements
Management and Requirements Development, which
correspond to levels G and D, respectively.

The study of Oliveira, Guimarães, and Fonseca [22]
reports the experience in a company while the MPS.BR
model together with Scrum and XP methodologies was being
implemented, and notes the following benefits:

 Significant improvements with regard to team
performance and the quality of final product.

 Indicators defined for the processes of Project
Management and Requirements Management, such
as productivity indicators, percentage of rework and
percentage of deviation from predicted vs. actual,
provided important feedback to the team and created
goals to be achieved.

 Indicators also support decision making and create
an atmosphere of continuous improvement.

 Indicators of Configuration Management ensured
that certain practices were followed, providing
greater control of the versions generated and
continuous integration.

 Practices of Quality Management, such as audits,
ensured the institutionalization of the development
process and the quality of work products.

The study also considers that, when problems are
identified, those responsible for Quality Management must
submit proposals for solutions and improvements, and
monitor the deliberations until completion.

According to Santesso [26], the combination of Scrum
and MPS.BR proved to be satisfactory and feasible. Silva
and Denardi [18] observed that the use of Scrum practices
might bring quick results and with quality in the processes,
in order to achieve the maturity levels of MPS.BR model.
For Mancine [30], agile methods, in particular Scrum, were
able to streamline the development processes.

Begnini [27] claims that the use of MPS.BR model can
also be combined with XP agile methodology, bringing
benefits to the company that aim to produce software with
quality and greater agility.

In the study of Osawa [31], Scrum compatibility with the
expected results of MPS.BR processes at level G was
highlighted.

Considering the benefits mentioned by the studies, the
use of agile methodologies with MPS.BR model succeeded
in bringing improvements to organizations, which aim to
produce software with agility and quality. However, the
authors also pointed out limitations and challenges, which
are discussed below.

B. Limitations of using MPS.BR and Agile Methodologies

Teixeira [28] concludes that Scrum practices alone is not
able to meet all the requirements of MPS.BR, thus requiring
the use of additional practices, as metaphor, planning game,
pair programming, study documents, develop the model, and
other, from other agile methodologies, such as XP and FDD.
Several studies, such as [11][23][28], reported that one agile
approach alone is not sufficient to achieve the maturity
levels, and thus require some adjustments. In Silva, Magela,
Santos, Schots, and Rocha [16], a combination with Unified
Process and Scrum was proposed, showing that
organizations can combine different approaches (agile and
traditional) in order to comply with MPS.BR.

According to Stanga [19], to use agile practices of XP
with the MPS.BR model some adjustments should be made
to the project team, especially to aid Requirements
Management. The study notes that a formal way of recording
and monitoring requirement is necessary, but it does not
offer a solution. The use of a tool for agile project
management could help in this task. Some teams record
manually the requirements in a spreadsheet or other
document.

Begnini [27] notes that XP does not aid some processes
of the MPS.BR model, because it does not prioritize the
documentation of software developed nor the development
and management of reusable components. Documentation
and the production of an objective insight are challenges to

377Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 397 / 646

which MPS.BR and agile methodologies are open. Agile
teams should to define a minimum of essential
documentation, in other hand, MPS.BR evaluators should
understand agile values and be open to other forms of
documentary representation.

When Salgado et al. [13] report the experience of
implementing new processes adherent to MPS.BR level C,
using Scrum practices, the main difficulties were presented:

 Discussions about process improvement can divert
the focus of agile practices, such as retrospective
meetings, e.g., making these meetings very long;

 All team members, including the Product Owner,
must participate in the meetings, to provide
communication and visibility of the Sprint status;

 Difficulty in estimating the size and time required to
perform a certain activity, causing project delays;

 Team members should have a heterogeneous profile,
thus avoiding a high turnover of team members.

Given the limitations observed in the studies, although it
is possible the use of MPS.BR together with agile
methodologies, there is the need to use additional practices,
especially with respect to documentation and the metrics of
storage.

V. CONCLUSION AND FUTURE WORK

This article conducted a study, through a systematic
review, on the MPS.BR model with agile methodologies,
thereby aiming to contribute to quality improvements in both
the development process and in the final software product.

In accordance with the included studies and the benefits
pointed therein, the adoption of MPS.BR together with agile
methodologies is feasible, mainly for the initial levels (G to
D, except processes related to acquisition and reuse). They
report that agile practices, which enable rapid improvements
and significant quality in the processes and products, are
needed to achieve maturity levels. However, the studies also
pointed out limitations, such as the fact that agile
methodologies could not completely satisfy the highest
MPS.BR levels (C to A), thus requiring other practices, such
as adjustments in the team, the representation of explicit
knowledge and storage. These limitations can make it
difficult to apply agile methodologies, and their benefits, in
organizations. This demands alternatives that overcome
mainly the problem of documental evidence.

Regarding the limitations of this review, the fact of not
having performed a quality assessment of the studies does
not allow an analysis of the strength of the results found. All
studies underwent some review process, but this is not
sufficient to provide a high level of quality. Another possible
limitation is as to the coverage of the studies. Even though
automatic and manual searches on major sources and
indexing mechanisms were conducted, it is possible that
relevant studies were not included, mainly studies produced
in educational institutions, not published in journals or
conferences. Studies produced from 2012 onwards were not
included. Possible biases introduced throughout the process
of study selection and data extraction are also considered as
limitations. However, all the stages were performed by two

researchers, and then revised by two other researchers who
are knowledgeable about the area. The approach of MPS.BR
gave this study a local scope (Brazilian context), but the
authors undertook a systematic review on the benefits and
limitations of CMMI and agile methodologies, as their scope
was more global. The results will be presented in a future
article.

The research presented in this paper may contribute to
the academic area, since it presents an initial mapping of the
studies conducted with respect to the issue addressed, as well
as to organizations that focus on improving software
development processes and adherence to best practices in
order to ensure the quality of the software they develop. As a
suggestion for future work, we put forward:

 Analyzing the adoption of agile methodologies with
higher levels of MPS.BR model, aiming to find the
possibility of smooth adaptation.

 The number of empirical studies found (28,5%),
suggests the importance of more practical studies
directed to the software industry, in order to meet its
needs.

ACKNOWLEDGMENT

This study has the support of the Foundation for Science
and Technology of Pernambuco State (FACEPE), through
Process No. IBPG-0136-1.03/11.

REFERENCES

[1] ISO/IEC 90003, “Software engineering - Guidelines for the
application of ISO 9001:2000 to computer software”, 2004.

[2] ISO/IEC 12207, “Systems and software engineering -
Software life cycle processes”, 2nd ed., 2008.

[3] SEI, Software Engineering Institute, “CMMI® for
Development”, Version 1.3, Technical Report, CMU/SEI-
2010-TR-033, November 2010.

[4] SOFTEX, Association for Promoting Excellence in Brazilian
Software, “MPS.BR - Brazilian Software Process
Improvement”, SPI General Guide for Software, December
2012.

[5] Agile Manifesto, “Agile Manifesto for Software
Development”, 2001, http://www.agilemanifesto.org
[retrieved: August, 2013].

[6] VersionOne, “State of Agile Development Survey Results”,
2011, http://www.versionone.com/pdf/2011_State_of_Agile_
Development_Survey_Results.pdf [retrieved: August, 2013].

[7] H. Corbucci, A. Goldman, E. Katayama, F. Kon, C. Melo, and
V. Santos, “Genesis and evolution of the agile movement in
Brazil - a perspective from the academia and the industry”,
Proc. 25th Brazilian Symposium on Software Engineering
(SBES 11), IEEE Press, Sept. 2011, pp. 98-107,
doi:10.1109/SBES.2011.26.

[8] K. Schwaber and M. Beedle, Agile Software Development
with Scrum, Prentice Hall, 2002.

[9] K. Beck, Extreme Programming explained: embrace change,
Addison-Wesley, 2000.

[10] B. Kitchenham and S. Charters, “Guidelines for performing
Systematic Literature Reviews in Software Engineering”,
Technical Report, School of Computer Science and
Mathematics, Keele University, 2007.

[11] M. M. Arimoto, E. Murakami, V. V. Camargo, and M. I.
Cagnin, “Adherence analysis of agile methods according to
the MR-MPS Reference Model”, Proc. VIII Brazilian

378Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 398 / 646

Symposium on Software Quality (SBQS 09), SBC, Jun. 2009,
pp. 249-263.

[12] E. Catunda et al., “Implementation of MR-MPS level F with
Scrum agile practices in a software factory”, Proc. X
Brazilian Symposium on Software Quality (SBQS 11), SBC,
Jun. 2011, pp. 1-8.

[13] A. Salgado et al., “Applying an agile process for deploying
software processes based on Scrum at Chemtech”, Proc. IX
Brazilian Symposium on Software Quality (SBQS 10), SBC,
Jun. 2010, pp. 351-358.

[14] C. Santana, A. M. L. Vasconcelos, and A. L. Timoteo,
“Mapping of the Brazilian Model of Software Process
Improvement (MPS.BR) for companies using Extreme
Programming as development methodology”, Proc. V
Brazilian Symposium on Software Quality (SBQS 06), SBC,
Jun. 2006, pp. 130-143.

[15] R. Prikladnicki and A. L. C. C. Magalhães, “Implementation
of maturity models with agile methodologies: an experience
report”, Proc. VI Annual Workshop on SPI (WAMPS 10),
SOFTEX, Oct. 2010, pp. 88-98.

[16] T. Silva, R. Magela, G. Santos, N. C. L. Schots, and A. R.
Rocha, “Implementation of MR-MPS level F combining
features of the Unified Process with Scrum practices”, Proc.
VII Annual Workshop on SPI (WAMPS 11), SOFTEX, Oct.
2011, pp. 54-61.

[17] F. Szimanski, J. Albuquerque, and F. Furtado, “Implementing
maturity and agility in a software factory using Scrum and
MPS.BR level G”, Proc. XI Informatics Students Meeting of
Tocantins (ENCOINFO 09), Lutheran University Center of
Palmas, Nov. 2009, pp. 161-170.

[18] A. M. Silva and A. Denardi, “Using Scrum methodology to
achieve MPS.BR level F”, Proc. XII Innovations Week in
Information Systems (SIS2INFO 11), UNIPAR, Oct. 2011,
pp. 1-13.

[19] M. Stanga, “Integrating XP agile project with MPS.BR level
G”, Proc. XX Regional Seminar on Informatics (SRI 11),
URI, Sept. 2011, pp. 1-6.

[20] F. G. Silva, S. C. P. Hoentsch, and L. M. A. Silva, “An
analysis of FDD and Scrum agile methodologies under
MPS.BR quality model perspective”, Scientia Plena, vol. 5,
Dec. 2009, pp. 1-13.

[21] T. M. R. Dias, G. F. Moita, M. P. Silva, B. Ferreira, and A.
M. Silva, “Feasibility of software development based on the
MPS.BR model with Extreme Programming methodology”,

Proc. IX Symposium on Computational Mechanics (SIMMEC
10), UFSJ, May. 2010, pp. 1-10.

[22] A. C. G. Oliveira, F. A. Guimarães, and I. A. Fonseca, “Using
agile methodologies to achieve MPS.BR level F in
Powerlogic”, Proc. II Workshop on Companies (W6-
MPS.BR), SOFTEX, Oct. 2008, pp. 1-8.

[23] C. Santana Júnior, “Evaluation of the Use of Agile
Methodologies in the Context of Software Quality Models”,
Master’s Dissertation in Computer Engineering, Pernambuco
University (UPE), 2008, unpublished.

[24] P. Silva Neto, “Case Study of a Software Project Management
Process Based on Agile Methods and MPS.BR Model”, Post-
graduate Dissertation in Project Management of Information
Technology, Federal University of Sergipe (UFS), 2010,
unpublished.

[25] D. A. Nunes, M. A. F. Locks, and R. Hayashi, “To Check the
Suitability of Using the Scrum Agile Methodology for
MPS.BR Level G”, Post-graduate Dissertation in Software
Project Management, Pontifical Catholic University of Paraná
(PUCRS), 2011, unpublished.

[26] P. H. C. Santesso, “Using Scrum Agile Methods with
MPS.BR Level G”, Post-graduate Dissertation in Systems
Analysis, Design and Management with Emphasis on
Business Intelligence, State University of Londrina (UEL),
2009, unpublished.

[27] M. M. Begnini, “An Analysis of XP From the Perspective of
MPSBR Model, Undergraduate Monograph in Computer
Science, Passo Fundo University (UPF), 2008, unpublished.

[28] M. Teixeira, “An Analysis of Scrum From the Perspective of
MPSBR”, Undergraduate Monograph in Computer Science,
Passo Fundo University (UPF), 2007, unpublished.

[29] J. S. Oliveira, “Scrum Methodology Applyed to Requeriment
Managment and Development Process of MPS.BR Model”,
Undergraduate Monograph in Information System, Santa
Cruz do Sul University (UNISC), 2010, unpublished.

[30] M. H. Mancine, “Analysis of the Use of Scrum
Methodologies and MPS.BR in the Real Case Study in
Development of Commercial Applications”, Undergraduate
Monograph in Computer Science, UniSEB University Center,
2011, unpublished.

[31] G. S. Osawa, “Analysis of the Implementation of Scrum in a
Company with MPS.BR Level G”, Undergraduate
Traineeship Report in Computer Science, State University of
Londrina (UEL), 2009, unpublished.

379Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 399 / 646

Low-Overhead Profiling based on Stationary and Ergodic Assumptions

Stoyan Garbatov and João Cachopo
Software Engineering Group

INESC-ID Lisboa / Instituto Superior Técnico, Universidade Técnica de Lisboa
Lisbon, Portugal

stoyangarbatov@gmail.com and joao.cachopo@ist.utl.pt

Abstract—In the context of feedback-directed optimization
solutions, the component responsible for collecting application
behaviour data cannot afford to introduce any performance
overheads, otherwise it undermines any optimization that is to
be carried out. This work presents a new online solution for
profiling object-oriented applications. The solution collects
detailed information about accesses over domain instances and
their fields, while introducing approximately zero overheads.
This is accomplished by making assumptions about the
stationary and ergodic properties of applications' run-time
behaviour. The work has been validated with the TPC-W
benchmark.

Keywords-profiling; real-time monitoring; feedback-directed
optimizations; performance; ergodic; stationary.

I. INTRODUCTION

The importance of profiling tools has been steadily
increasing over the last decade. Profilers are essential for
understanding the dynamic behaviour of programs. In the
past, one of the most common use-case scenarios was to use
a profiler for obtaining information about the resource usage
of a given application, to identify performance bottlenecks.
While the nature of the information supplied by profiling
tools has not changed much over time, the spectrum of their
possible applications has observed a significant widening.
These applications include dynamic slicing, program
invariants detection, program correctness and security
checking, predicting data locality and just-in-time compiler
optimizations, among others.

The widespread adoption of programming languages
designed to execute on top of virtual machines played a
major role in valorising profiling tools. Virtual machine
architectures offer several properties that make them more
desirable, from a software engineering point of view, than
environments with statically compiled binaries. Some of
these features include program portability, safety assurances,
automatic memory and thread management, as well as
dynamic class loading. As it can be seen from the work of
Cierniak et al. [1], while these properties empower the
programming model offered to users, they also cause
overheads and contribute to obstruct many static program
optimization techniques, making it harder to achieve good
performance.

To counter these difficulties, a lot of research has been
carried out, focusing on online feedback-directed
optimization systems. These systems make use of techniques

that seek to improve the performance of target programs by
monitoring their run-time behaviour and, subsequently, by
using this information for identifying and applying
appropriate optimization measures. It is frequently the case
to employ profiling tools for obtaining the necessary
program behaviour information.

The main issue of profiling tools is that they are subject
to two requirements that are practically impossible to satisfy
simultaneously. The first requirement is that the profiler
should provide as in-depth and detailed information as
possible about the behavioural patterns exhibited by the
program being monitored. The second requirement is that the
monitoring should be carried out in a transparent, efficient
and devoid of overheads manner that does not compromise
program performance (or at least not significantly).

Independently of the way that a profiler operates (event
or sampling-based), it invariably ends up disrupting the
execution of its target programs, while data is being
collected. These interruptions translate directly into
overheads that penalize application performance.
Furthermore, the fact that many profilers employ code
instrumentation (the injection of additional code into the
target) for achieving their goals not only slows down the
execution of the program but can also change the way it
operates, leading to scenarios where the application displays
behaviour that would be otherwise impossible to observe,
were it executing normally.

All of these factors contribute to make the task of striking
an acceptable balance between performance overheads and
information depth hard to achieve in practice. This is
particularly true for online feedback-directed optimization
systems, where the profiling is expected to be carried out in
real-time, while the program is executing normally, so any
"noticeable" performance overheads are not acceptable. On
the other hand, the profiling information has to be
sufficiently detailed to guide appropriately the optimization
decisions that need to be made for improving the target
system's performance.

While accounting for these considerations, the solution
presented with this work consists in a system capable of
monitoring the access patterns of object-oriented
applications. The patterns are expressed in terms of the
manipulations (read and write access operations) performed
over domain instances and their fields in the execution
contexts of the application methods/services that define the
set of functionality offered to end-users. The novelty of the

380Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 400 / 646

approach consists in the employment of stochastic and
ergodic assumptions for the behaviour of target programs
within their methods/services, making it possible to collect
the access pattern information in an online fashion with
minimal performance overheads while providing very high
accuracy and data depth.

The article is organized as follows. Section II discusses
related work. Section III describes the motivation behind our
new proposal, followed by some assumptions that were
necessary to be made in Section IV. Section V covers the
implementation of the solution presented here. Section VI
presents the benchmark that we used to evaluate the new
proposal and discusses the results obtained. Finally, Section
VII presents some concluding remarks.

II. RELATED WORK

The current trends in application development, software
engineering, and hardware technology (such as the wide
acceptance of programming languages operating in
automatically managed virtual machine environments and
the expansion of cloud computing, among many others) have
contributed to create a great demand for solutions capable of
continuously tracking the behaviour of dynamic systems and
of applying performance optimization measures based on the
gathered information. Adaptive optimization solutions such
as these have been designated in the literature as online
feedback-directed optimization (FDO) systems. As can be
seen from the work of Arnold et al. [2], where an analysis of
over 150 references related to online feedback-directed
optimization solutions has been performed, there is a wealth
of work done in this research area. Unfortunately, the great
majority of these solutions have been developed to act as
support for compilation and dynamic code generation
optimizations, while non-compiler related literature is
somehow scarce. Without intending to perform an in-depth
and exhaustive analysis of the existing literature, some works
on the topic of continuously tracking the behaviour of
software systems shall be discussed next.

Smith [3] discussed the motivation and history of FDO
techniques. The author presented three factors responsible
for the importance of FDO, namely:

 FDO bypasses the restrictions imposed on static
optimization approaches by making use of dynamic
run-time behaviour information that is impossible to
obtain statically;

 FDO makes it possible to adapt the optimization
measures continuously, according to the observed
changes in target application behaviour.

 Software systems can be made more flexible and
easier to change through run-time binding.

From the analysis and discussion in [3], Smith argues in
favour of performing optimizations based on run-time
monitoring as well as accepting the notion of executables as
mutable objects. Smith [3] and Arnold et al. [4] pointed out
that the obstacles that need to be overcome to achieve an
effective FDO are:

 Minimize or otherwise deal with the overhead
introduced in the process of collecting behaviour

information as well as when applying the necessary
transformations over the target application for
optimizing its performance;

 Being able to make informed decisions even when
there is incomplete profiling data or that same
information is subject to constant evolution.

In the context of virtual machine environments, it is
possible to group the profiling-data collection mechanisms
for FDO purposes into the following categories: run-time
service monitoring, hardware performance monitors,
sampling, and program instrumentation. The solution
developed here belongs to the program instrumentation class
of approaches. As such, the other categories shall be only
referred to briefly.

Run-time service monitoring approaches track the state
of the run-time services offered by the subjacent virtual
machine. This is usually done for identifying temporal
locality usage patterns that can be exploited for
optimizations. Several applications of these techniques
include dynamic dispatching, hash-codes, and
synchronization. It is noteworthy that the memory
management systems are particularly rich sources of data for
FDO, covering information about allocation trends, heap
usage and garbage collection.

Hardware performance monitoring collects data provided
by specialized microprocessor hardware for guiding
optimizations. There has been a multitude of FDO
approaches developed to use such information but their
integration into production-ready VMs has been limited.

With sampling approaches, the profiler seeks to collect a
representative (as opposed to exhaustive) sub-set of
observations for a given category of events. By varying the
portion of events that get observed, sampling approaches can
control the amount of overhead being introduced into the
application that is being monitored. Nevertheless, as in all
monitoring approaches, sampling techniques need to strike a
balance between low overhead and collecting enough
behaviour information to be considered useful.

The injection of extra instructions for collecting
behaviour information into the target system is the basis for
program instrumentation profiling approaches. These
techniques are very flexible in their usage and can provide a
wide range of behaviour data. Their main issue consists in
the performance overhead caused by the need to execute the
instrumented code. As such, most existing solutions attempt
to minimize the overheads without compromising too much
the depth of the profiled information.

Arnold and Ryder [5] developed a framework for low
overhead instrumentation sampling supporting multiple types
of profiling. The framework employs code duplication and
compiler-inserted counter-based sampling to enable changes
between the instrumented and original version of the target
code at run-time. The amount of overhead to be introduced is
adjustable at run-time, by varying the ratio of execution
between instrumented and non-instrumented versions of the
code. The authors achieve this by keeping in memory two
versions of all methods that have been modified for profiling
purposes. One of them is the instrumented version that
performs the monitoring measurements while the other

381Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 401 / 646

contains the original code version with a small preamble that
determines if the fast or slow version of the method should
be executed, depending on the current conditions.

Another software instrumentation system, called Pin, is
the one developed by Luk et al. [6]. The tools offered by the
system are written in C/C++ and support portable,
transparent and efficient instrumentation. While the tools are
mostly architecture independent, they can provide
architecture specific information when required. The systems
uses dynamic compilation for instrumenting applications at
run-time. Pin employs several techniques for achieving high
operation efficiency while collecting data. These include
register re-allocation, inlining, liveness analysis and
instruction scheduling. The authors evaluate their systems
against other similar purpose solutions, such as Valgrind [7]
and DynamoRIO [8] and demonstrate it is capable of
offering better performance while providing similarly
detailed levels of information.

III. MOTIVATION

The solution presented here was developed for the
purpose of supplying the input data necessary for the access
pattern analysis and prediction techniques developed in [9-
12]. These techniques use stochastic models for analysing
and predicting, with a high degree of confidence, the domain
data access patterns performed by target object-oriented
applications. The models employed for this purpose are
Bayesian Inference, Criticality Analysis and Markov Chains.
The issue that was detected with these techniques resides in
the performance overheads introduced by the process of
collecting the input data necessary for the stochastic models.
While the overhead is not very significant when evaluated in
a single-threaded environment, where the average
performance loss is in the order of 3% to 8%, when
considered in a multi threaded environment, the performance
loss observed is about 50%, which is absolutely unacceptable
for any sort of real-time continuous application behaviour
monitoring. Since the above techniques had been developed
with the intent of supplying with information online
feedback-directed performance optimization solutions, it is
mandatory that they do not incur any noticeable performance
overhead, otherwise their usefulness is compromised.

The new monitoring solution presented here was
designed to deal with this issue. The reasoning behind the
solution is as follows. It is very hard, if not impossible, to
model and predict accurately the behaviour of an application
as a whole, over long periods of time. The workload of
(most) applications evolves continuously, as a function of
external stimuli (such as client requests) and, apart from very
specific scenarios or relatively short periods of time, it is
impossible to know, a priori, the sequence of inputs/client-
requests that will be issued at a given moment. This is what
makes programs behave as non-stationary processes.

The stationarity of a process can be pictured intuitively as
the absence of any drift in the set of realisations that defines
its behaviour as time proceeds. From a mathematical point of
view, this means that the probability distribution and density
functions that describe such a process are unchanged by a
shift in the time scale. They are applicable now and will

remain so for all time.
The constantly evolving workload of applications makes

it necessary to monitor them continuously, if a precise view
of their behaviour is to be had. Furthermore, the monitoring
has to be performed in a lightweight manner, otherwise it
will introduce inadmissible performance overheads. The
combination of these two factors demands an access-pattern
analysis solution capable of delivering detailed information
about application behaviour, which is expressed in terms of
domain data manipulations being performed, without
compromising program performance.

IV. ASSUMPTIONS

Several assumptions had to be made to reach a viable
solution that achieves these goals. The first assumption is
that the workload of an application can be described entirely
by the ratio of the invocation frequencies of the
methods/services that define the functionality offered by that
particular application to end-users.

The second assumption is that programs behave as
stationary processes [13] within the execution contexts of
their methods/services. The nature of the behaviour
displayed when executing a particular method should not
change significantly over time, as long as its implementation
remains the same. There are several factors that make this
reasonable to assume. The encapsulation and modularity
properties observed in (well-designed and implemented)
object-oriented applications allow their methods to display
functionality that is well defined and contained. This makes
it highly unlikely to observe a broad range of different
access-pattern behaviours when executing a particular
method, independently of small shifts and variations that can
occur when operating over different arguments.

The third and last assumption is that the operation of
application methods displays ergodic properties. A process is
ergodic [14] if it is stationary and, furthermore, if it is
possible to extract its statistical descriptors from realizations
that cover a single finite period of time. Intuitively, it may be
said that the realisations obtained from this time period are
"typical" of all the possible realisations, if the process is to
be ergodic. In practice, it is not necessary for the methods to
be strongly ergodic. It is enough to be able to extract the
behaviour descriptors from a finite number of observations.
This translates into being able to extract the typical access-
pattern behaviour of a method from a limited number of
invocations.

V. IMPLEMENTATION

A. Compile-time

There are two main components of the solution presented
here - a code injection module and a data acquisition module.
The first module employs the ASM byte-code manipulation
toolkit [15] for injecting, at compile-time, code into target
applications. This code invokes functionality in the data
acquisition module. In particular, the injected code serves
two purposes. The first consists in updating the information
about changes in the execution context within which
operations are taking place. By manipulating byte-code, the

382Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 402 / 646

first instruction of all application methods or services (of
interest) is defined to invoke a method responsible for
updating the profiler state information that a new execution
context has been initiated. Similarly, the last instruction
before returning (or otherwise terminating the current
execution context) calls functionality that clears up the
profiler state information about the no-longer-active context.

The second task of the code injection module is to
replace all accesses to domain instances (and their fields)
with the invocation of a distinct method, depending on the
type of access being replaced (read or write operation). This
method is responsible for resolving the surrounding
execution context as well as for updating the statistical
information about the domain data access that is to be
performed within the context that has been identified.

B. Run-time

The second module is responsible for collecting the
behaviour data displayed by the target application, in terms
of the domain data access patterns performed while it is
executing. To obtain high-precision data without introducing
performance overheads, the gathering is performed in two
stages - a learning period and a steady-state period.

The first stage defines a period during which the
monitoring system builds a detailed profile for all methods
and/or services (of interest) of the target application. Each of
the profiles assembled in this stage contains the typical
access-patterns that are performed, per invocation of the
corresponding method or service. The patterns are described
in terms of the frequency of accesses performed over domain
instances and their fields. Consequently, at the end of this
stage, the information collected within the profiles indicates
the number of read and write operations that are usually
observed to be performed over domain data types when
executing the associated methods/services (e.g. MethodY
{DomainDataA.Field2 = 54 reads; DomainDataC.Field7 =
17 writes}, MethodX {DataD.Field3 = 7 reads}, etc.).

While the target application is executing in profile-
building mode, it operates with an enriched version of its
byte-code that contains the calls to the context updating
functionality, as well as statistical behaviour collection. The
necessity to execute all this extra code leads to significant
performance overheads. That is why the learning stage
proceeds only until a representative profile has been built for
all the noteworthy methods. Once this has been
accomplished, the application can move on to the next stage.

In the second stage, the only injected code that is kept in
the target application is the one responsible for keeping track
of the changes in execution contexts. Behaviour data is no
longer collected about the access patterns that are effectively
being practiced by the application. This allows the target
system to operate with practically unperturbed performance,
when compared to its original version, as shall be seen and
demonstrated in the results and evaluation section. The
extremely low overhead makes it possible for the application
to operate normally, while the monitoring system solution
keeps its profiling data up-to-date.

The question that remains is how does the profiler system
update the overall access-pattern behaviour information, if

the only application aspect that it keeps track of is the change
in execution contexts. If the program behaviour, at method
level, is stationary (and does not drift significantly over time)
then the method profiles built during the learning stage
continue to provide a precise view of the behaviour
displayed when executing those methods, as long as their
implementation does not change. As such, whenever an
updated overall view of the domain-data access patterns is
necessary, the profiler determines the composition of the
workload, based on the observed ratios of method/service
invocations (e.g. MethodX = 1045 invocations, MethodY =
703 invocations, etc). The interval for which the workload is
determined corresponds to the period of time from the
previous update up to the moment when the new update is
requested.

Once the workload has been identified, this information
is used along with the individual method/service profiles for
building an application-level view of the domain access
patterns performed during that period. Simply put, the
individual profiles are weighted by the workload ratio that
their respective methods assumed in the workload, for that
particular period of time.

It should be noted that if the implementation of a method
does change, at some point in time, then it is necessary to
revert the application back to stage one so that new and
updated profiles can be built. Otherwise, there would be no
guarantee as to the correctness of the access-pattern
information generated by the profiler.

VI. RESULTS AND EVALUATION

The TPC-W benchmark [16] was used to evaluate the
performance of the profiling solution presented here. The
benchmark specifies an e-commerce workload that simulates
the activities of an online retail store, where emulated clients
can browse and order products from the site.

The TPC-W evaluation metric is the number of web
interactions per second (WIPS) that the system can sustain.
The benchmark execution is characterized by a series of
input parameters. One of these defines the type of workload,
which specifies the percentage of read and write operations
that is to be simulated by the emulated browser (EB) clients.
The workloads considered were Mix1 (95% read and 5%
write); Mix2 (80% read and 20% write) and Mix3 (50% read
and 50% write). The remaining configuration parameters
were 10 emulated browsers; 300 seconds of ramp-up time;
1200 seconds for measurement interval, after the ramp-up
time; 120 seconds of ramp-down time; 1k, 10k, and 100k
book items in the database and think time of 0 seconds,
ensuring that EBs do not pause in between requests.

All results were obtained as the average of 10
independent executions of the benchmark, for identical
configurations. The EBs, database and the benchmark server
were run on the same physical machine. The measurements
were carried out with the benchmark running on a machine
equipped with 2x Intel Xeon E5520 (a total of 8 physical
cores with hyper-threading running at 2.26 GHz) and 24 GB
of RAM. Its operating system was Ubuntu 10.04.3, and the
JVM used was Java (TM) SE Runtime Environment (build
1.6.0 22-b04), Java HotSpot (TM) 64-Bit ServerVM (build

383Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 403 / 646

17.1-b03, mixed mode). The benchmark was run on top of
Apache Tomcat 6.0.24, with the options set to "-server -
Xms64m -Xmx$(heapSize)m -Xshare:off -XX:
+UseConcMarkSweep GC -XX:+AggressiveOpts".

The throughput of the benchmark was evaluated for 14
different modes of monitoring. The operation mode
designated as BaseLine corresponds to the TPC-W operating
in pristine conditions, with its original implementation,
without any byte-code manipulations. The newly developed
profiler shall be referred to as the Stationary solution, while
the old monitoring solution, that keeps track of domain
access pattern occurrences continuously, shall be referred to
as NonStationary.

Two different approaches (orthogonal to the profiling
solution in use) for storing data about changes in execution
context shall be considered as well. The first of these
approaches, which shall be called Deep, maintains
information about the sequence of context changes that led to
the currently active one. Such an approach makes it possible
to know the exact sequence of method invocations that
preceded any given point in the execution of the program.
The alternative approach, called Flat, only keeps track of the
currently active execution context, independently of the
execution flow that might have been displayed by the
program to reach it.

To get a better grasp of how the Stationary and
NonStationary solutions behave, three further variants are
taken into account, based on the types of accesses over
domain data that are tracked. These are read-write, write-
only and read-only modes. The list of the 14 different modes
of monitoring evaluated here is:

 BaseLine - vanilla version of TPC-W
 S_CTX - Stationary solution in context-only mode;
 RW/WO/RO_NSD - NonStationary solution with

Deep context tracking in Read-Write, Write-Only
and Read-Only modes;

 RW/WO/RO_NSF - NonStationary solution with
Flat context tracking in Read-Write, Write-Only and
Read-Only modes;

 RW/WO/RO_SD - Stationary solution under profile-
building mode, with Deep context tracking in Read-
Write, Write-Only and Read-Only modes;

 RW/WO/RO_SF - Stationary solution under profile-
building mode, with Flat context tracking in Read-
Write, Write-Only and Read-Only modes.

A total of 126 distinct benchmark configurations were
evaluated (14 operation modes, 3 workload types and 3 data-
base sizes). Additionally, every configuration was executed
10 times, independently of previous runs, to provide a more
comprehensive view of the behaviour displayed by the
system. Taking this into account, along with the fact that a
single execution of the benchmark takes approximately
15min (14min benchmark execution and 1min for Tomcat
reboot, benchmark redeploy and database refresh), the results
presented in this section took a total of 315h to generate.

The WIPS achieved by the BaseLine, Stationary in
context-only mode and the Read-Write of the Stationary and
NonStationary can be seen in Figure 1 (top), while the Write-

Only and Read-Only variants Figure 1 (bottom). Every group
of bars corresponds to a particular benchmark configuration
in terms of workload (mix1, mix2 and mix3) and database
size (1k, 10k and 100k book instances).

0

400

800

1200

1600

m
ix

1_
b1

k

m
ix

1_
b1

0k

m
ix

1_
b1

00
k

m
ix

2_
b1

k

m
ix

2_
b1

0k

m
ix

2_
b1

00
k

m
ix

3_
b1

k

m
ix

3_
b1

0k

m
ix

3_
b1

00
k

(wips)

BaseLine
S_CTX
RW_NSD
RW_NSF
RW_SD
RW_SF

0

400

800

1200

1600

m
ix

1_
b1

k

m
ix

1_
b1

0k

m
ix

1_
b1

00
k

m
ix

2_
b1

k

m
ix

2_
b1

0k

m
ix

2_
b1

00
k

m
ix

3_
b1

k

m
ix

3_
b1

0k

m
ix

3_
b1

00
k

(wips)

BaseLine
WO_NSD
WO_NSF
WO_SD
WO_SF
RO_NSD
RO_NSF
RO_SD
RO_SF

Figure 1. WIPS - baseline, stationary and non-stationary monitoring

From the analysis of these results, several remarks can be
made. The throughput displayed when TPC-W is operating
with Stationary in context-only mode appears to be very
similar to the one when the benchmark is operating in its
original version. When the benchmark is operating with
Stationary (ReadWrite and ReadOnly) in profile-building
mode as well as with NonStationary (ReadWrite and
ReadOnly), the throughput observed is significantly lower
than the one of BaseLine. The throughput displayed by the
benchmark when the monitoring solutions are only tracking
write-access operations over domain data is very similar to
the BaseLine. The last two observations confirm what was
already to be expected, namely that the factor that
contributes most for the performance overheads observed
when profiling a program is the tracking of read-access
operations. Adding a fixed overhead to many short duration
operations is bound to cause a greater impact than adding the
same overhead to few long-duration operations.

It is interesting to note that for both Stationary and
NonStationary approaches, whenever they are operating with
Flat context-tracking mode, the WIPS achieved are slightly
but consistently better than their counterparts with Deep
context-tracking mode.

A thorough comparison of the relative throughput
difference between all 14 monitoring modes and the
BaseLine can be seen in Table I and II. The relative
throughput difference has been calculated as

384Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 404 / 646

 100A BaseLine BaseLineT T T , in %, where TA indicates the

throughput achieved when TPC-W is operating with
monitoring approach A. The average throughput difference,
per approach, is displayed with a shaded background.

TABLE I. THROUGHPUT DIFFERENCE (%), ALL VS. BASELINE (R&W)

BaseLine S_CTX RW_NSD RW_NSF RW_SD RW_SF

mix1_b1k 0.00 0.51 -12.36 -8.06 -13.15 -8.57
mix1_b10k 0.00 0.63 -69.01 -69.12 -69.53 -68.95
mix1_b100k 0.00 -0.01 -81.45 -80.99 -81.50 -81.26
mix2_b1k 0.00 -2.49 -42.11 -37.75 -39.28 -38.70
mix2_b10k 0.00 -0.22 -66.85 -66.91 -67.44 -67.10
mix2_b100k 0.00 -0.34 -82.10 -81.73 -82.13 -81.53
mix3_b1k 0.00 5.16 -32.85 -25.43 -30.87 -27.70
mix3_b10k 0.00 -1.46 -36.17 -28.74 -40.24 -29.25
mix3_b100k 0.00 3.45 -73.08 -72.71 -72.81 -72.04
avg 0.00 0.58 -55.11 -52.38 -55.22 -52.79

The analysis of these results indicates that the
performance of the benchmark, when the Stationary
approach is operating in context-only mode (S_CTX) is
practically identical (0.58% difference) to the one of the
original version of TPC-W (BaseLine). While it would be
logical to expect that the S_CTX should display throughput
that is strictly less than the one of the BaseLine, the few
configurations where the opposite is observed can be
(eventually) explained by the fact that the byte-code
manipulations performed over the benchmark, for keeping
track of the changes in execution contexts, allowed the just-
in-time compiler of the JVM to perform some further
optimizations that would be otherwise unable to apply.
Another (possibly more likely) explanation for this
phenomenon would relate to the intermediate-to-high
measurement uncertainty observed for the two
configurations where the S_CTX performs better than
BaseLine (Mix3 with b1k and b100k).

TABLE II. THROUGHPUT DIFFERENCE (%), ALL VS. BASELINE (READ-ONLY
AND WRITE-ONLY)

WO_NSD WO_NSF WO_SD WO_SF RO_NSD RO_NSF RO_SD RO_SF

mix1_b1k 0.47 0.25 0.22 -0.03 -12.33 -9.75 -12.47 -8.59
mix1_b10k 1.69 1.29 0.68 0.52 -69.06 -68.57 -69.18 -68.92
mix1_b100k -0.08 -0.01 0.25 -0.24 -81.63 -81.49 -81.73 -81.06
mix2_b1k -2.19 -11.88 -4.08 1.00 -38.27 -39.82 -40.94 -40.48
mix2_b10k -0.52 0.44 -2.20 -0.10 -67.86 -67.18 -67.17 -67.07
mix2_b100k -0.66 -0.17 -0.15 -0.55 -82.18 -81.61 -82.02 -81.90
mix3_b1k -4.01 5.61 -3.42 4.02 -33.10 -23.13 -45.84 -14.76
mix3_b10k -5.32 -0.26 -1.76 -1.40 -38.98 -30.35 -33.02 -24.80
mix3_b100k -9.60 -3.25 0.53 -15.55 -73.18 -72.57 -72.70 -72.71
avg -2.25 -0.89 -1.10 -1.37 -55.18 -52.72 -56.12 -51.14

The throughput displayed by the Stationary solution in
profiling-mode is very similar to the NonStationary
approach, across all evaluated configurations. This was to be
expected since both approaches perform very similar tasks,
in those operation modes. On the average, the throughput
that the TPC-W can maintain while operating with
Stationary profile-mode or any of the NonStationary variants
is from 51% to 56% lower than the throughput of the
unmodified benchmark.

The last performance aspect that can be appreciated,
based on these results is the effect of the Deep and Flat
context-tracking modes. As could be seen from Figure 1 and
can now be confirmed numerically, the Flat context-tracking

mode allows for small but consistent performance
improvements. These are most noticeable for the Read-Write
and Read-Only variants of the monitoring solutions and
range from 3% to 5%.

VII. CONCLUSION

This work presented a new solution for profiling the
behaviour of object-oriented applications, in terms of the
access-patterns performed at run-time over domain data. By
making certain assumptions about the stationary and ergodic
properties of the run-time behaviour of object-oriented
applications, the new solution can provide detailed and
continuously updated information about the effectively
practiced domain-data access-patterns, by the target
application, without introducing any noteworthy
performance overheads. This feature allows the newly
developed solution to monitor any application in real-time,
while the target system is operating in steady-state.

The solution was evaluated on the TPC-W benchmark,
against multiple variants of previously existing solutions. It
was possible to demonstrate that the new approach reduces
the performance overheads of previous alternatives from an
average of 55% down to approximately zero, while
providing the same degree of information.

ACKNOWLEDGMENT

This work was partially supported by national funds
through FCT – Fundação para a Ciência e a Tecnologia,
under project PEst-OE/EEI/LA0021/2013, as well as by FCT
(INESC-ID multiannual funding) PIDDAC Program funds
and by the Specific Targeted Research Project (STReP)
Cloud-TM, which is co-financed by the European
Commission through the contract no. 257784. The first
author has been funded by the Portuguese FCT under
contract SFRH/BD/64379/2009.

REFERENCES
[1] M. Cierniak, M. Eng, N. Glew, B. Lewis and J. Stichnoth, 2003, The

Open Runtime Platform: A Flexible High-Performance Managed
Runtime Environment, Intel Technology Journal, 7, (1), pp. 5-18.

[2] M. Arnold, S. Fink, D. Grove, M. Hind and P. Sweeney, 2005, A
survey of adaptive optimization in virtual machines, Proceedings of
the IEEE, 93, (2), pp. 449-466.

[3] M. Smith, 2000, Overcoming the challenges to feedback-directed
optimization, ACM SIGPLAN Notices, ACM, Vol. 35, pp. 1-11.

[4] M. Arnold, M. Hind and B. Ryder, 2002, Online feedback-directed
optimization of Java, ACM SIGPLAN Notices, ACM, Vol. 37, pp.
111-129.

[5] M. Arnold and B. Ryder, 2001, A framework for reducing the cost of
instrumented code, ACM SIGPLAN Notices, ACM, Vol. 36, pp. 168-
179.

[6] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S.
Wallace, V. Reddi and K. Hazelwood, 2005, Pin: building customized
program analysis tools with dynamic instrumentation, ACM
SIGPLAN Notices, ACM, Vol. 40, pp. 190-200.

[7] Valgrind, http://valgrind.org/ [accessed 10 May 2013].

[8] DynamoRIO, http://www.dynamorio.org/ [accessed 10 May 2013].

[9] S. Garbatov, J. Cachopo and J. Pereira, 2009, Data Access Pattern
Analysis based on Bayesian Updating, Proceedings of the First
Symposium of Informatics (INForum 2009), Lisbon, p. Paper 23.

385Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 405 / 646

[10] S. Garbatov and J. Cachopo, 2010, Importance Analysis for
Predicting Data Access Behaviour in Object-Oriented Applications,
Journal of Computer Science and Technologies, 14, (1), pp. 37-43.

[11] S. Garbatov and J. Cachopo, 2010, Predicting Data Access Patterns in
Object-Oriented Applications Based on Markov Chains, Proceedings
of the Fifth International Conference on Software Engineering
Advances (ICSEA 2010), Nice, France, pp. 465-470.

[12] S. Garbatov and J. Cachopo, 2011, Data Access Pattern Analysis and
Prediction for Object-Oriented Applications, INFOCOMP Journal of
Computer Science, 10, (4), pp. 1-14.

[13] G. Lindgren, 2012, Stationary Stochastic Processes: Theory and
Applications: Chapman and Hall/CRC.

[14] P. Walters, 1982, An Introduction to Ergodic Theory: Springer.

[15] ASM, http://asm.ow2.org/, [accessed 10 May 2013].

[16] W. Smith. TPC-W: Benchmarking An Ecommerce Solution. Intel
Corporation, 2000.

386Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 406 / 646

A Tracking and Visualizing System of Memory Usage along to C Source Programs

Kyoko Iwasawa
Computer Science dept.
Takushoku University

 Tokyo, Japan
kiwasawa@cs.takushoku-u.ac.jp

Takuhiro Okamuira
COMSOFT Co, Ltd.

Tokyo, Japan
shnfkrm@live.jp

Abstract— Our tracking system shows the situation of memory
usage of C programs. Its information includes both stack area
of local data and dynamic allocated area. The system shows the
results off line. First of all, it inserts recording statements to
the memory allocation and release of user programs in order to
make a log file of memory usage. After the execution of
modified user program, the system analyzes the log file to
make the usage graph. Based on the graphical image, the user
can find out where each memory event occurred on the C
source program interactively. Therefore, the user can
recognize the accurate location where the largest memory area
was used, and find which memory allocation caused memory
leak. These functions are efficient for embedded system, whose
memory size is strictly limited. In this work in progress, we are
attempting to show where user should insert free function call
by using static data flow analysis.

Keywords-C source program; memory usage; memory leak;
tracking; visualizing;

I. INTRODUCTION
C program developers have to be concerned with the

situation of memory usage of their programs. The amount of
memory usage is influential in performance of the program,
because using large memory often causes cache miss and
paging. Also, amount size of memory usage is essential for
embedded system [2]. However, it is difficult to know how
much memory is necessary and where it should be decreased.

Although, generally, it is difficult to know that when
memory usage becomes maximum size and whether there is
leak area, this information is necessary to optimize C
programs. Programmers need to know the relationship
between source code and memory usage. There are some
memory management tools for linux. One of them is valgrid
[3], which is the multipurpose code profiling and memory
debugging tool. It shows whether the memory leak occurred
and finds invalid pointer use [4]. It shows the leaked memory
address with process ID, so the users would have to look for
that address on the allocated memory address list. And it has
lots of functions, but does not mention with the size of
memory usage.

Our system shows graphically the amount of memory
usage in chronological order. For each point on the usage
graph, user is able to know the source corresponding source
statements interactively. In addition, the system corresponds

dynamic allocated memory (i.e., malloc() and calloc() call)
to its release (i.e., free() call) [1].

Section II describes the tracking and visualizing system
and its output images. Section III shows detail of the log file.
Section IV presents the algorithm to calculate the dynamic
allocated area, and Section V concludes and describes the
future work.

II. OUTLINE OF THE SYSTEM
In order to measure accurately the size of memory usage,

our system analyzes executing logs offline. Therefore, the
system parses the target C programs and inserts output
statements to record of memory events.

A. Process of Tracking and Visualizing
Figure 1 shows the analyzing process. First of all, the

system picks up statements which cause memory allocation
and release. The picked up statements are following four
kinds of statements.

(1) Entry point of functions
(2) Return statement in functions
(3) Invoke alloc function
(4) Invoke free function

(1) Source code parsing
to insert output statements for log

(2)
Execution of the modified program

(3) Log analysis
To display the memory graph with source code

(A) Target
C source program

(B) Modified
C source program

(C) Log file
(memory event information)

Control flow data flow

Interactive GUI

Figure 1: Process of the System

At point (1) and the point (2) the system inserts our

prepared function call in order to write the size of local data
on stack area, and to write when these local data are

387Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 407 / 646

released. At point (3) and the point (4) the system replaces
the library call with our prepared function call, which writes
the information of dynamic allocated data to the file. Then
the modified C source program (Figure 1: (B)) is generated.
After the execution of the modified program the system can
get the log file which includes the memory usage
information. Finally, memory usage graph is displayed and
users are able to know details of memory information.

B. Output of the System
After the system analyzes the log file, it visualizes the

memory usage of C program. By restructuring the log data,
memory usage graph is displayed off line as Figure 2. The
upper part of the figure shows behavior of stack area usage,
and the lower part of the figure shows the behavior of
dynamic allocated heap area. Each bar means that the four
kinds of memory events, which were described in the
previous section and denoted by (1), (2), (3) and (4),
occurred. The length of bar shows the size of memory used
by program at that point.

Figure 2: Memory usage graph

 (a) free call (b) malloc call

Figure 3: Source program

When user function is invoked, the size of local data area
is added to usage size, and when return statement executes,
these local data area is released, so the length of bar is
shortened. When the C program has finished, its local data
area is always cleared. On the other hand, heap area data,
which was allocated by alloc function call, is released only
by free function call. Consequently, if there is not enough
free function call, memory leak will occur when program has
finished.

When user clicks on a bar of the graph in Figure 2, the
system shows the source program which caused this event.
Figure 3 (a) shows the free function call of the source
program, which corresponds to the clicked bar in the lower
part. It shortened because the free function call releases
memory area. A bar in the lower part lengthens, when malloc
function call allocates memory area dynamically, as shown
in Figure 3 (b). At the end of the execution, a bar in the
lower part means memory leak. User might insert free
function call, because the user can find out where this area is
allocated and its identifier from the tags on the bottom of the
graph (as seen in Figure 3:). If free function call released
linked area (linked list or tree or graph structure, etc.), the
system founds all alloc function call statements. The small
tags on the bottom of the graph mean the correspondence
free call to alloc call.

The bar in the upper part increases when user function
call invoked, and then it shortens by return. As these bars in
the upper part mean the stack area, when a program has
finished, it always becomes zero. The total length of a bar
means the size of memory, which user program was using at
that point.

III. DATA IN THE LOG FILE
The detail of the logging data (shown as Figure 4:) is

described in this section. In order to measure accurately the
size of memory usage, user program is parsed and modified.
User program is inserted the system function call to log the
memory information.

Figure 4: Log file

388Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 408 / 646

A. Local Data on the Stack Area
The size of local data on the stack area is accumulated

the sum of all sizes of local data (variable, array, etc.), which
are caused by nested user function call.

(1) Entry point of functions
The system inserts the function call to output file

following five items to the log file.
 Tag (“s” means entry point of function)
 Directory path and file name
 Function name
 Line number of entry point of function in Source

program
 Sum of local data size (byte) from static data

declarations

(2) Return points of functions
When return statement is executed, system records the

tag, which shows that the program returned from the
function and its stack area data is released.
 Tag (“~s” means return point of function)
 Directory path and file name

B. Dynamic Allocated Data
The size of dynamic allocated data on the heap area is

recorded by each alloc (malloc and calloc) function call and
free function call. As a result, we can get the log file as
Figure 4 shows. It includes the accurate and detailed memory
usage situation. Each record is kept in the chronological
order.

(3) Invoke malloc and calloc function
 Tag (“m” means alloc function call)
 Line number of alloc function call
 Size of allocated area (actual parameter of alloc call)
 Address of allocated area (return value of alloc

function call)

(4) Invoke free function
 Tag (“~m” means free function call
 Line number of free function call
 Size of released area (system find out its own data

sec.4)
 Address of released area (actual parameter of free

function call)

IV. CALCULATION OF DATA SIZE
Although we would like to know the leaked memory size

and where the leaked memory was allocated on source code,
some information of dynamic allocated data was lost when
the program was finished. Therefore, the system function has
to collect information while user program is running.

In the case of linked structure (list, tree and graph, etc.),
it is difficult to accumulate released area by free function call.
The parameter of free function is the pointer of the data, so
there is no information as to the size of the data. Furthermore,

free function released all of linked data, so that the system
has to keep allocated memory information until it is released
by using linked list that we call “Alloc List”.

A. Alloc Function Call
Our system function $ALLOC, which is invoked instead

of the original alloc function, has the following three tasks.
 To allocate memory by calling original alloc

function
 To make the cell of Alloc List including the address

and the size
 To write the log file (tag, address, size, line number

of source program)

This function is given line number of source program and

the data size to allocate as formal parameters. Figure 5 shows
the process of $ALLOC. The system replaces the alloc
function call to $ALLOC function call, and links $ALLOC
function to modified program.

The cell of Alloc List has the address which is returned
by alloc function and allocated memory size (byte), which is
actual parameter of alloc function. Each cell is connected in
chorological order as Alloc List.

void*
$ALLOC(n,no1){
p1 = alloc(n);
$AddAllocList(MakeCell(p1, n));
$output_log(“m”, no1, n, p1);
return p1; /*4*/

}

m,no1,n,p1
m,no2,m,p2

Log file

int func(){
no1:p1=$ALLOC(n,no1);

・・・
no2:p2=$ALLOC(m,no2);

・・・
no3:$FREE(p1);
}

Alloc List

cell
(address
size)

Modified user source
program

Figure 5: $ALLOC function and Alloc List

B. Free Function Call
Our system function $FREE, which is invoked instead of

the original free function call, has following the four tasks.
 To find address given as formal parameter from

Alloc List.
 To write log file (tag, address, size, line number)
 To search linked area to release recursively from

Alloc List
 To release area by calling original free function

This function is given the address that is at the top of

release area, and line number of source code as formal
parameters. Figure 6 shows the process of $FREE function.
The system replaces the free function call by the $FREE
function call, and links $FREE function to modified program.

The system finds the address, which is the actual
parameter of original free function call, from Alloc List, and

389Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 409 / 646

writes the line number, size, and address. Then, the system
has to find any linked area which would be released by the
same free function call, so it searches any allocated address
between given address and given address + size. If system
finds out the address that is kept in Alloc List, it will search
the next linked area recursively. While finding each area,
system gets which alloc function call corresponds to this free
function call.

void
$FREE(p1,no3){
$searchAllocList(p1);
$output_log(“~m”,no3,n,p1);
$serchAddress(p1,n,no3);
free(p1);

}

void
$serchAddress(p1,n,no3){
while(all address q,
in the data area[p1:p1+n]){
if($searchAllocList(q)）{
$output_log(“~m”,no3,m,q);
$serchAddress(q,m,no3);
/* recursively */

}}}

m,no1,n,p1
m,no2,m,p2
~m,no3,n,p1
~m,no3,m,p2

Log file

p1

q

p1+n

q+m

int func(){
p1=$ALLOC(n,no1
);
・・・
・・・
$FREE(p1,no3);
}

qq

Alloc
List

Data area of
user program

n

m

Modified
user source
program

Figure 6: $FREE function and Alloc List

V. CONCLUSION AND FUTURE WORKS
Our tracking and visualizing system shows the situation

of memory usage of C programs. It includes both stack area
of local data and dynamic allocated area. It makes a log file
about memory usage by modified user program execution,

and then analyzes the log file to make the memory usage
graph. Based on graphical image, the user can find out where
each event occurred on the C source program interactively.

Therefore, the user can recognize the accurate location
where the largest memory area was used on source program
and which memory allocation caused memory leak. It is
efficient to optimize the usage memory size of C programs,
because usually finding out the memory size on each line is
very difficult. These functions are efficient for embedded
system, whose memory size is limited strictly. The system
just begins working and we could try some small test
programs. These programs make and modify queue structure
and binary tree structure. We have to evaluate the system
performance by using more practical programs. More
information is necessary for users to optimize the program.

For the future work, we would like to show the last
access of dynamic allocated memory. This is the reason why
it means the earliest point that the allocated memory can be
release. We are considering using static data flow analysis
and static type analysis. Tracking only uncertain reference as
a result of static analysis, we can reduce log data and
analyzing time.

REFERENCES
[1] B. W. Kernighan and D. Ritchie, The C Programming Language (2nd

Edition) , Prentice Hall, 1988.
[2] CoActionOS, [http://www.coactionos.com/embedded-design/101-

understanding-memory-usage-in-c.html](Aug. 2013)
[3] [http://www.valgrind.org](Aug. 2013)
[4] A. Allain, "Using Valgrind to Find Memory Leaks and Onvalid

Memory Use",
[http://www.cprogramming.com/debugging/valgrind.html](Aug.
2013)

390Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 410 / 646

Run-Time Monitoring of Timing Constraints: A
Survey of Methods and Tools

Nima Asadi, Mehrdad Saadatmand, Mikael Sjödin
Mälardalen Real-Time Research Centre (MRTC)

Mälardalen University, Västerås, Sweden
nai10001@student.mdh.se, {mehrdad.saadatmand, mikael.sjodin}@mdh.se

Abstract—Despite the availability of static analysis methods to
achieve a correct-by-construction design for different systems in
terms of timing behavior, violations of timing constraints can
still occur at run-time due to different reasons. The aim of
monitoring of system performance with respect to the timing
constraints is to detect the violations of timing specifications, or
to predict them based on the current system performance data.
Considerable work has been dedicated to suggesting efficient
performance monitoring approaches during the past years. This
paper presents a survey and classification of those approaches
in order to help researchers gain a better view over different
methods and developments in monitoring of timing behavior of
systems. Classifications of the mentioned approaches are given
based on different items that are seen as important in developing
a monitoring system, i.e., the use of additional hardware, the data
collection approach, etc. Moreover, a description of how these
different methods work is presented in this paper along with the
advantages and downsides of each of them.

Index Terms—Runtime Monitoring; Extra-Functional Proper-
ties; Real-Time; Timing; Survey.

I. INTRODUCTION

The number of computer systems used in our daily life
and embedded as part of other systems, such as automobiles,
microwave ovens, TV sets, etc., is exponentially growing. The
interaction of such embedded systems with their surround-
ing environments (e.g., through sensors and actuators) often
brings along timing requirements. Criticality of these timing
requirements, of course, can vary from system to system
and under different usage scenarios and situations. Therefore,
ensuring that a system respects the timing requirements and
operates within the timing constraints defined for it is of great
importance and can even determine the success or failure of
a computer system (e.g., the airbag system in a car).

While the goal of verification and validation techniques,
such as testing, debugging, and theorem proving is to ensure
general correctness of programs, the intention of run-time
monitoring is to determine whether the current execution
meets the specified technical requirements [1]. To achieve this
goal, monitors collect the data of interest from the monitored
systems, which can be used for further analysis by the user,
or the monitor itself.

Timing behavior monitors provide the user with necessary
information which can be used to detect or predict violations
of timing constraints. Examples of such information are dead-
line misses and context switches. Many system performance

monitoring tools have been developed. However, many of these
monitors focus on different aspects of a system performance
other than the timing behavior of the system, such as inter-
process communications and/or access to shared memory
resources. On the other hand, some of the methods used in
such monitors are useful in timing performance data collection
and analysis as well. Thus, a part of the effort in this paper has
been dedicated to distinguishing and including those methods.

Various approaches were suggested in different areas, such
as monitoring, debug and replay, and data analysis and visual-
ization. However, the area covered in those studies has mostly
been software-fault monitoring in general, i.e., monitors that
are used to detect any sort of software fault. The focus in
this paper is tried to be on approaches used for monitoring
of timing constraints. The data that such monitors provide
is especially very important for prediction and analysis of
the performance of systems in real-time environment. Our
goal is to provide the researchers and developers with a good
insight to software monitoring approaches with a focus on
timing constraints violation detection. To achieve this goal, an
overview of the methods as well as an introduction to the used
concepts and definitions is presented. The approaches covered
in this study are tried to be a representative sample of timing
constraints performance monitoring tools and relative studies.

The organization of this paper is as follows. Section 2
presents a background of the topic as well as the definitions of
concepts used in this paper. Section 3 describes the methods
used in selecting the monitoring approaches and a brief review
of related work. Section 4 discusses the methods, the goal they
try to achieve, and the advantages and disadvantages of each
method. Section 5 summarizes the survey. The concluding
remarks and the future work are given in Section 6.

II. DEFINITIONS AND BACKGROUND

Real-time systems are those systems in which the correct-
ness of the system depends not only on the logical results
of computations, but also on the time at which the results
are produced [2]. Although significant work has been done
to suggest a method that guarantees the execution of tasks
within their pre-specified timing constraints, deadline violation
can still happen due to different reasons, such as the unpre-
dictability of the system environment and external signals, and
the inability to satisfy all design requirements [3]. Software
verification methods are used to make sure that the system

391Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 411 / 646

meets its general requirements. However, despite the contri-
butions of common verification methods and improvements in
real-time scheduling, the need to perform run-time monitoring
of these systems is not diminished due to the complexity of
these systems and the unpredictability in dealing with the
external environment [3]. Therefore, a monitoring tool can be
helpful for detecting violations of those timing constraints by
collecting, and analysing (depending on the facilities provided
by the monitor) relevant system performance data.

According to Peters [4], a monitor is a tool that observes
the behavior of a system and determines if it is consistent with
a given specification. We decided to use Peters’ definition of
a monitor, because it covers different categories of monitoring
systems. The system in which monitoring, run-time checking,
or run-time verification is performed is referred as the ’target
system’, and the software application whose execution is being
monitored is referred to as the ’target application’. The data
detected by various monitors can be different. In this paper,
our focus is on the data that can be used in analysis of
timing behavior of different types of target systems, such as
distributed systems, multiprocessor systems, and embedded
systems, or information that can help detecting such data. Most
of such monitors focus on detecting events of interest. An
event is usually a state change in the target application.

1) Latency and interference: Event detection and process-
ing can be performed in different ways, each of them causing
a different amount of interference with the target system. The
best solution for monitoring with respect to interference is a
monitor that uses extra hardware to be able to detect events
without affecting the activities of the monitored system. Such
tools are usually referred as hardware monitors. Run-time
monitoring without interference to the target system is usually
accomplished by passively monitoring the target processor’s
data, address, and control buses [5]. Passive monitoring is a
term used for a type of monitoring that does not affect the
target system’s performance. However, many state changes of
the software being monitored are not reflected by probes that
are created in data collection lines in the added monitoring
hardware. Probes are basically elements of a monitoring sys-
tem which are attached to the target system in order to collect
information about its internal operation. If the internal state of
the system context needs to be thoroughly known to make us
able to detect an event, a monitoring tool which does not use
extra hardware, called software monitor, is needed. However,
implementing a software monitor needs modification on the
target system kernel code, which can alter the behavior of it. To
overcome this problem, a hybrid monitoring approach could be
used. However, this approach that combines the hardware and
software monitoring architecture suffers from the same limi-
tations as the hardware monitoring approach. Besides that, the
observations will be on a low amount of detail. In order to test
and debug a system at satisfactory levels of reliability we need
to observe the system completely. We can observe significantly
more than it is possible with hardware monitoring approaches
by including instrumentation code in the monitored software
(application and kernel). Thus, for most application domains,

pure software monitoring seems to be the better solution. This
can be done by inserting small code stretches in the target
program in order to detect events of interest. Different from
hardware monitoring systems, software monitoring systems
are easier to change. Besides that, the flexibility (modifiability)
of software monitoring approach makes it possible to provide
more information to programmers and in general, to provide
information in a more useful form [5].

As mentioned, including the monitoring code in the target
software has the disadvantage of changing its behavior because
of the amount of latency being added to it. This is because a
part of the CPU time should be dedicated to the monitoring
code. This latency is referred as probe effect.

As for the use of the monitoring results, monitors have to
choose between a low latency and a small rate of evaluations.
Because evaluating a big amount of collected data can increase
the latency in the system. The amount of latency usually de-
pends on the focus of monitoring tool and methods. Monitors
that only gather data for later use can usually cope with a
large latency, whereas monitors that control the monitored
system based on the results of evaluations will require a low
latency [6].

2) Tracing and Sampling: Data collection can happen in
two ways: tracing and sampling. In tracing, every occurrence
of an event creates a record. So event tracing is characterized
by the completeness of knowledge [7]. Sampling yields only
a statistical measure of the software’s execution patterns. It
is not precise: if an event does not occur in a sampling log,
there is no guarantee that it did not occur in execution. This
means that sampling may not be able to detect frequently
executed routines whose execution times are smaller than the
sampling frequency. However, significantly less time needs to
be spent to achieve sampling than to instrument the software
system for tracing [7]. Also, the data volume associated
with event tracing can be very large. Regarding interference
and target behavior change, both event tracing and sampling
may affect the performance of the software system. In some
literature, tracing is mentioned as event-driven monitoring
whereas sampling is called time-driven monitoring.

III. SURVEY METHODOLOGY

Many run-time monitoring methods have been developed in
the past. These methods serve different goals by gathering data
of interest from different aspects of systems. Thus, the effort
of this paper is to provide an informative categorization of the
monitoring tools based on these differences. In this section,
the motivation behind this survey and the methods used for
the survey are discussed.

A. Objectives of this survey

With ever increasing use of real-time systems, the reliability
of such systems seems more and more crucial. In order
to make sure that the real-time characteristic of the system
is preserved, many techniques for run-time monitoring and
debugging of these systems have been developed. In general,
monitoring supports the debugging, testing, and performance

392Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 412 / 646

evaluation of the programs, and covers different aspects of sys-
tem’s behavior, such as memory usage, CPU usage, network
and connections status, and tracing of the execution of the pro-
cesses in the system. Monitoring of timing constraints focuses
on the timing behavior of the processes in the system. The
main goal in monitoring in this area is to make sure that the
real-time quality of the system is guaranteed, which basically
means that all the tasks are completed without missing their
deadlines. In order to have a solid vision of the performance
of a system regarding this quality, it is important that the
monitor can provide the data needed for the analysis of timing
behavior of the system. The goal of this work is to present an
overview of the architecture and workflow of monitors which
can be used for timing analysis. A few surveys have been
done on run-time monitoring. Moreover, some of the existing
works, such as the work of Delgado et al. [1], have tried to
cover a wider range of run-time monitors. We tried to narrow
down our survey to the monitors whose data can be used in
timing analysis of systems. Also, many of the methods covered
in this work are not covered in the work of Delgado. The
approaches covered in this work are representative samples of
such monitoring tools. The categorization that is brought in
the summary section is based on the design and architecture
of the monitors, the services they provide for the user, and
their other important features. Furthermore, the positive and
negative points of each method are presented along with the
explanation of them to help the readers gain a better vision
about them.

B. Related Work

A close work to our work is the taxonomy of run-time
software fault monitoring by Delgado et al. [1]. In that work, a
classification of tools that monitor software faults is presented.
Reinhard Wilhelm et al. [8] discuss the issues in Worst-Case
Execution Time (WCET) analysis and review the common
suggested tools for this purpose. They divided the tools into
two main categories: static methods and measurement based
methods. Another survey related to monitoring of system
performance is the work of Henrik Thane [9]. Besides an
explanation of common concepts and terminologies in per-
formance monitoring, he provides a short review of some
of the suggested monitoring methods. In that work, monitors
are classified as hardware monitors, software monitors, and
hybrid monitors, which are a combination of the first two.
A bibliography of the works on performance evaluation was
presented by Agajanian in 1975 [10]. Gu et al. provide a
review on the literature on monitoring and debugging in
their annotated bibliography [11]. They divide their work into
four section including modeling and design of the systems,
data collection, analysis of the collected data, and dynamic
performance controlling. Also, a number of bibliographies
of parallel debugging tools were presented by Pancake et
al. [12] [13] [14].

C. Review Method

Certain literature review guidelines and approaches were
taken into consideration to choose the papers that cover our
topic of interest. The application of those approaches is only
briefly explained in this section due to space limitations.

a) Inclusion and exclusion criteria: Studies that pre-
sented data about software monitoring or performance eval-
uation were included in the paper data base. The outcome of
the studies was not considered in the inclusion criteria. Papers
that were published up to 2012 were included in this survey.

b) Search Strategy: The main resources we used to ac-
cess the papers of interest include the following: ACM Digital
Library, IEEE Xplore, ScienceDirect Elsevier, SpringerLink.
The main keywords that we used for searching include:
Monitoring AND run-time AND software, Performance evalu-
ation AND run -time AND software, Performance Evaluation
AND real time AND WCET, Analysis AND run-time AND
software, Analysis AND Linux AND run -time, Analysis AND
timing constraints. Apart from these main ones, OR combina-
tion of some of these keywords were tried and executed as
well.

c) Using Citation for Inclusion: Finding the papers that
cited a specific paper was the first step of this strategy.
Among the papers that were found this way, a number of
them were selected according to their relevance to our topic
of interest. Specifically, the papers that were about monitoring
of irrelevant systems were removed from our survey. For
indicating if a paper was relevant or not the whole paper was
skimmed or read, because the abstracts would not always give
information on whether the paper presented empirical results
or not. Another strategy in citation management was to search
for the papers cited in the related work section of studied
papers. The same relevance check criteria went on for those
studies as well.

IV. OVERVIEW OF THE METHODS

This part presents an overview of the architecture and design
of the suggested approaches for the monitoring of system
performance regarding to timing constraints. The aspect of
monitoring that each work aims to improve or resolve is also
stated. Moreover, some of the Pros and Cons of each suggested
solution are presented at the end of each section.

A. Non-interference method

1) Objective: to provide a monitoring and debugging sys-
tem that ensures minimum intervention with the execution of
the target system.

2) Approach: The monitor architecture consists of two
main parts: the interface module, and the development mod-
ule [15]. The interface module’s major duty is to latch the
internal states of the target system based on predefined condi-
tions set by the user. The responsibility of the development
module, which contains a general purpose microprocessor,
is to start the monitoring process, to record the target node
execution history, and to perform analysis on the recorded
data. After being connected to a node of the target system

393Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 413 / 646

and initialized, the interface module keeps collecting events
of interest until it finds a stop condition, pre-specified by the
user. Then an interrupt is sent to the monitoring processor to
separate it from the target processor for the data recording
process to take place. The recorded information is transferred
to a secondary storage for further processing. The events of
interest include process-level events. During the monitoring,
the time at which each event happens is recorded. Using this
timing information, the execution history can be examined
against timing constraint requirements. If violations are found,
the replay mechanism can be used to test the program behavior
again in order to isolate the errors.

3) Advantages: The monitor imposes low interference to
the target system. Also, the start and stop conditions can be
planned by the user, which makes this method more flexible.

4) Disadvantages: Generating an interrupt for every event
occurrence imposes unpredictable interference to the target
system. However, this is the only interference of the mon-
itor with the target system. There is no guarantee that the
microprocessor buses of the future will have the properties
required to support bus snooping [16], a technique to achieve
cash coherence in distributed systems that this type of monitors
rely on.

B. PASM
1) Objective: Suggesting a monitor with a flexible specifi-

cation language to provide the user with automatically defined
process-level events to associate them with actions to be taken
by a hardware monitoring system.

2) Approach: PASM citeLumpp1 [17] is a programmable
hardware monitor, which provides a flexible set of tools for
the user to specify events for a wide variety of monitoring
applications. The user can include a monitoring section with
the application that defines events of interest, actions to be
executed upon detection of those events, and the binding of
events to actions. This section is then used by the compiler to
automatically implement the instrumentation. Events in this
monitor are associated with changes of state of the active
process. An action can be recording the time of the occurrence
of an event to track the timing behavior, or printing of the
contents of some internal data structures when a certain point
in the execution is reached.

3) Advantages: The programmer has the freedom to define
many types of events as functions of the monitored data,
and actions corresponding to them. The monitor imposes low
interference with the target system. Manual instrumentation
is however hard, time-consuming and prone to error, so the
automatic instrumentation suggested in this approach removes
this problem.

4) Disadvantages: parts of the code, which were affected
by the monitoring sections, need to be recompiled when the
programmer wants to modify the probes.

C. ART Real-Time Monitor
1) Objective: The objective of ART Real-Time Monitor is

to visualize the system’s internal behavior with lowest amount
of change in its timing behavior.

2) Approach: This monitoring system was developed
for ARTS, a distributed operating system developed in
1980 [18] [19] [20]. This approach focuses on visualizing the
timing behavior of the system processes. Rate monotonic and
deferrable server algorithms are supported by this monitor,
and the monitoring task is performed as a part of the target
system. The functional structure of the monitoring system
can be divided in to three major parts: a part of the target
operational system code that records the information of interest
about the processes, called event trap, the reporter, which sends
the information to the visualizer, and the visualizer, that uses
the resources sent from the target system to create historical
diagrams of the scheduling decisions of the target system.

An event is generated each time the state of a process
is changed. The ARTS monitor records process-level events
such as process-creating, waking-up, blocking, scheduling,
freezing, killing with completion, killing with missed deadline,
and killing with frame overrun [18]. For monitoring timing
constraints, the monitor uses the facilities that the ARTS
kernel provides, such as ’Time fence’. The ’time fence’ is a
mechanism in the ARTS Kernel used to detect a timing error
at run-time. Before each operation invocation the time fence is
checked to verify that the slack time is bigger than the worst
case execution time of the invoked operation, and a timer is
set. If the execution is not completed within the worst case
time, the timer announces an anomaly.

3) Advantages: The integrated scheduler uses rate mono-
tonic scheduling for periodic hard real-time tasks and de-
ferrable server for aperiodic soft real-time tasks. Also, separa-
tion between the reporter and the Visualizer makes the monitor
suitable for embedded systems.

4) Disadvantages: interactive debugging of real-time sys-
tems without deterministic replay is not enough for removing
errors because debugging commands can damage the timing-
dependent nature of real-time systems [21]. Also, the monitor
needs extra kernel support from ARTS, which makes it inva-
sive. If the target system does not provide sufficient resources,
the monitoring capability will be limited, consequently, thus,
a hybrid approach which uses extra hardware might be neces-
sary.

D. Hmon

1) Objective: To design a transparent monitoring system
with continuous data collection facility for HARTS distributed
system.

2) Approach: Hmon [21] was developed to monitor the
performance of the Hexagonal Architecture for Real-Time
Systems (HARTS), a distributed real-time system. The area
this monitor covers include monitoring interrupts and shared
memory as well as the calls that the users can use in order to
monitor the processes that are not covered by the monitor. The
monitoring is done by including the monitoring code in the
existing system call libraries, meaning that no inside kernel
changes are necessary. Context switch events are detected via
a hook provided by the pSOS kernel. Task scheduling and
CPU usage are determined by studying the order and timing of

394Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 414 / 646

these events. Also, process management calls, such as process
creation and deletion, and time management calls that set or
read the clock are recorded to obtain their real-time properties.

3) Advantages: the monitoring is performed transparently,
so the programmer does not need to add special code to
applications. Also, some system hardware is dedicated to the
monitor to minimize interference with the measured system,
but no special hardware is required. The system is intended
for general-purpose real-time multiprocessors.

4) Disadvantages: data collection code interferes with the
system being monitored, and can change the system behavior.

E. Halsall-Hui

1) Objective: to design an interactive monitoring tool for
system and application level monitoring that is suitable for
embedded systems.

2) Approach: This monitor is designed to gather the data
from each processing node of a real-time embedded system
which is based on a distributed architecture [22]. The recorded
information from each node includes the IDs of the tasks and
processes, the type of the tasks and the system calls, and the
time that those events happen [22]. The event data recording
can take place in two ways. In the first method, the user inserts
a library function call, with the corresponding variable name
as a parameter, at the appropriate point in the source code, so
that whenever that code section is being executed the recording
function is called and run. Each of these functions can record
a specified event. The event data is then sent to the single
monitor of that node, which is also a library function. In the
second method, an interrupt is used to periodically refer to a
data table provided by the user, which includes event identities,
the recording frequency, and the variables to be recorded. This
event information is saved in a system file, or an application
file, which is downloaded to the monitored system later.

3) Advantages: The method allows application-specific
events to be monitored and analysed. The monitor is modi-
fiable, and the monitor interference does not change during
replay, which makes the timing behavior of the target system
more predictable

4) Disadvantages: This method is invasive and not ap-
propriate real-time systems because of its high amount of
interference.

F. Hybrid Monitor

1) Objective: To design a monitor that combines the
flexibility of software methods and non-interference of the
hardware methods.

2) Approach: This monitor is designed by combining
hardware monitors and software monitors [23]. A Test and
Measurement Processor (TMP) is integrated to each node
of the distributed system in order to record their process
and intercommunication activities. The main principle of this
method is that the target system generates events of interest,
and the TMP hardware processes and time stamps them [23].
The collected event data is stored in a FIFO memory in the
CPU. Every time an event is sent into the FIFO buffer the

CPU of the TMP is notified by an interrupt activating the
processing of the events data. The number of messages, the
message length, failed messages, the system time (the time
spent for the processes in kernel), and the application time
(the time that application processes spend in kernel minus
the system time) can be measured using this monitor as well.
Events are time stamped locally in this method.

3) Advantages: This method is transparent, i.e., it does
not change the behavior of the system, thus the monitoring
is continuous. It also uses hardware support to have a low
overhead for typical applications. Also, the graphical rep-
resentation helps better understanding of the recorded data.
Furthermore, since the TMPs communicate via their own
network, the communication disturbance to the host system
is lowered. Another positive point about this tool is that users
can load their own evaluation software instead of the default
TMP analysis software.

4) Disadvantages: Obtaining hybrid schemes is generally
hard. One reason is a lack of architectural support for the
monitoring hardware. Standard interfaces are needed to gen-
erate industry participation and allow instrumentation porta-
bility [24]. Although the analysis part can be changed, till
this tool is not flexible for manipulation by the user(for
example event detection and type of data being recorded
are not decidable). The overhead, although claimed to be
small according to the implementation for typical applications
(0.1%), is not negligible for real time applications.

G. ZM4

1) Objective: To develop a hardware event driven monitor-
ing tool for parallel and distributed systems.

2) Approach: In this approach, a hardware system called
ZM4 , and an event trace processing software called SIMPLE,
which works independently from the monitor, are devel-
oped [25]. The connection between the hardware and the
monitored system is local area network type. Hosting the
monitoring system, storing the measured data, and presenting
an analysis interface for the users are the responsibilities of
the control and evaluation center (CEC) of the ZM4 system.
Also, a number of monitor agents are built as slaves for the
CEC. Each monitor agent is connected to a target system
node. Another responsibility of these probes is time stamping
and recording of the events. Time stamping is done using a
global clock with the precision of 100 ns. SIMPLE, which
works on Linux and MS-DOS, is an evaluation environment
used for analyzing the recorded event traces. It generates a
global view of the distributed system’s behavior and performs
trace validation and analysis as well. Whenever the monitor
recognizes an event, it stores an event record which consists
of event token and a time stamp. The sequence of events is
stored as an event Truce [25].

3) Advantages: Distributed hardware monitor ZM4 can be
adapted to arbitrary target systems. The combination of event-
driven monitoring and event-based modeling makes program
instrumentation and validation systematic.

395Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 415 / 646

4) Disadvantages: Reliance on event driven monitoring and
instrumentation is limited to limit the impact on the target
system.

H. Trams

1) Objective: To design a hybrid monitoring method for the
performance measurement in both tightly and loosely coupled
multiprocessors.

2) Approach: The architecture of this system consists of a
software for event triggering, by inserting Write command in
the code, and a hardware subsystem used to sample the time
and identity of the CPU [26].

For the hardware part, a measurement node consists of a
set of VLSI chips with two IC chip types: the Trams (Trace
Measurement System) and the Rems (Resource Measurement
System). The data written by the user, along with the CPU
identification and the time stamp are stored in the Trams sam-
ple memory. The sample memory then reads this information
for further analysis. Rems is used for data sampling. The target
distributed system can be tightly coupled or loosely coupled. In
the first system a single node can be used in a centralized event
trace collection, and in the second architecture model each
node can be connected to a corresponding processor. Both the
Trams and Rems contain three sections: a data capture system,
an output, and a FIFO buffer.

3) Advantages: Both loosely coupled and tightly coupled
systems are covered in this approach. As a special feature,
event counters are implemented in one of the VLSI chips
in order to reduce the amount of data to be transferred and
evaluated [26].

4) Disadvantages: The monitoring tool is system specific,
and it makes it easy to generate so much data that it swamps
any file system or data analysis station [27].

I. Alamo

1) Objective: A method to reduce development costs for a
broad class of execution monitors.

2) Approach: Lightweight Architecture for Monitoring
(Alamo) [28] [29] [30] is an event-driven monitor developed
for C programs, and uses the Icon programming language to
specify assertions. The Alamo monitoring architecture utilizes
CCI, a Configurable C Instrumentation tool as a preprocessor
that uses parse trees to identify monitoring points and inserts
events into the target program source code. The architecture
of this monitor consists of: (1) an automatic instrumentation
mechanism, (2) an execution model, (3) abstractions for event,
selection, multiplexing and composition, and (4) an access
library that allows monitors to directly manipulate target
program state. Alamo employs automatic program instrumen-
tation to produce target program events for the monitor. The
Execution Monitor (EM) executes the Target Program (TP) and
then returns control with information in the form of an event
report. The user can apply a predicate to each event report to
make monitoring more specific, or view detailed information
through Alamo’s visualization mechanism.

3) Advantages: The Alamo monitor architecture signif-
icantly reduces the development cost of writing program
execution monitors

4) Disadvantages: There is no support for real-time or
shared-memory multiprocessor-based parallel applications.
Not all execution monitors can be written using an Alamo-
based framework; those that, cannot tolerate intrusion of
instrumentation code require a two-process model such as that
employed by standard source-level debuggers [31].

J. MAC

1) Objective: To propose a tool that complements testing
(infeasible to completely test the entire system due to the large
number of possible behaviors), and verification (possibilities
for introduction of errors into an implementation of a design
that has been verified) techniques.

2) Approach: Monitoring and Checking
(MAC) [32], [33], [34], [35], [36], [37] provides a framework
for runtime monitoring of real-time systems written in Java.
The MAC architecture consists of three main components:
a filter, and event recognizer, and a run-time checker. The
filter, which maintains a table containing names of monitored
variables and addresses, extracts low-level information, time
stamps it, puts it in a message, and sends it to the event
recognizer. From this low level data, the event recognizer
detects the occurrence of abstract requirement level events
based on the Requirement specifications written in Meta
Event Definition Language (MEDL), and informs the run-time
checker about them. The run-time checker uses these events
to see if the current system execution conforms with the
requirements of the system. An event is an instantaneous
state change. Static analysis is used to determine monitoring
points, which are inserted automatically.

3) Advantages: The filter (that extracts the information of
interest) is separated from the event recognizer, so that system
execution does not suffer from the overhead of abstracting
out events from low-level information. This architecture is
also appropriate for monitoring distributed systems where each
module is able to have a corresponding filter.

4) Disadvantages: This architecture adds to the communi-
cation overhead because the filter sends the data to the event
recognizer. the executing software needs to send enough state
information to observer process, in order to check constraints
and do analysis. When violation of the constraints happens, ob-
server process cannot stop the execution of the software.(there
is no feedback to the system), but this is feature is added in
MACS, a later work [33].

K. PMMS

1) Objective: To minimize the total time between formula-
tion of the questions (what the monitor should do) and delivery
of the answers. The second is to minimize the monitoring
overhead during execution.

2) Approach: Program Monitoring and Measuring System
(PMMS) [38]. is a monitoring approach that automatically col-
lects high level information about the execution characteristics

396Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 416 / 646

of a program. Data collection is done by code inserted into the
source program of the target system, and conditions are used
to filter out events that are not relevant. The monitor handles
events of interest by installing code that reacts whenever they
occur. This data collection code includes Pre-condition (rele-
vance test), Local-variables (used to store local data), Before-
code (code to collect data available before the event), After-
code (code to collect data after the event), Post-condition(a
relevance test based on data that is available after the event),
and Action(code that stores data more permanently for later
use) [38]. Examples of recorded event data include the time at
which the event occurs, the value of program variables at that
time, etc. The user can specify all the objects and relations
using the high level specification language that is provided in
this method. The PMMS uses a main memory for the active
database to facilitate the collection, computation, and access
to the computation results.

3) Advantages: The used specification language in this
work allow security engineers to write a centralized policy
specification; the systems then uses a tool to automatically
insert code into untrusted target applications. This centralized
policy architecture makes reasoning about policies a simpler
and more modular task than the alternative approach of
scattering security checks throughout application or execution-
environment code. With a centralized policy, it is easy to
locate the policy-relevant code and analyze or update it in
isolation [39].

4) Disadvantages: Since the instrumentation code performs
database queries, instrumentation can significantly change the
performance of the target program.

L. JRTM

1) Objective: An approach for monitoring timing constraint
violations in real-time systems. The objective is to detect
timing violations as early as possible.

2) Approach: Java Runtime Timing-constraint Moni-
tor [40], [41] targets timing properties of distributed, real-time
systems written in Java. In this work, the necessary constraints
and event log are automatically derived by the compiler, and
then the compiled specification is loaded into the monitor at
run-time. Java programmers can insert the event triggering
method calls in their Java programs where event instances are
supposed to occur. At run-time, whenever an event method
is executed, the current system time is recorded as the event
occurrence time and this timestamp is sent to the monitor along
with the event name. The monitor keeps these event occurrence
messages in a sorted queue with the earliest event message
at the head of the queue. The event message at the head is
processed at an appropriate time to check it with the related
constraints. Once a violation of the specification is found, users
are notified. This monitor can run on the same machine as the
target process or on a standalone monitoring machine.

3) Advantages: Low overhead; it uses small size of event
record history depending on the maximum occurrence rate of
events.

4) Disadvantages: It is difficult to timestamp an event with
an accurate time point, which is assumed to be measured well
for JRTM to use.

M. GRTMon

1) Objective: To design a run-time monitor with small
probe effect, and no input missing (not for non-real-time
purposes).

2) Approach: Generalized Run-Time Monitor (GRT-
Mon) [42] is a tool for real-time systems to detect information
regarding timing constraints. In this method, data collected
by sensors is written to buffers from which monitors read.
Each buffer is mapped at the respective sensor section and all
associated monitor tasks. According to the work flow of this
monitor, data pairs of an output element and its timestamp are
the input to evaluation algorithms of the monitor. Monitors sort
the buffer output elements based on their timestamps before
evaluation. The CPU’s timestamp counter, which contains
the number of elapsed CPU cycles since the CPU has been
initialized is used by the sensor to tag the output with its
corresponding timestamp. A sensor directory is used to provide
relations between sensors and monitors. Thus, there is no
direct relation between sensors and the monitor, which can
be effective in decreasing the probe effect of the monitor. The
monitor can either run as a constant-bandwidth server with
a bandwidth that the user defines, or resource requirements
can be determined based on the sensors’ jitter-constrained
stream specifications [42]. Also, in GRTMon, monitors and the
target system communicate asynchronously, so the monitors
have less direct influence on the monitored system’s timing.
Examples of events of interest are context switches, inter-
process communication (IPC) or events in the kernel itself
such as calls to certain kernel functions.

3) Advantages: Using this method evaluation of events with
least amount of input data miss is guaranteed. Also, small set
of dependencies between the monitor and the target system
and sensors and the monitor decreases the overhead on the
target system.

4) Disadvantages: If more than one sensor is used the
overhead will increase significantly.

N. FKT

1) Objective: To design a simple software monitor for
Linux with lower interference which can support multipro-
cessor platform and networked environment.

2) Approach: Fast Kernel Tracing (FKT) [43] monitor is a
software tool designed to evaluate the performance of Linux
kernels running on Pentium PCs. This monitor is implemented
by modifying the Linux kernel through adding probes for
data collection, and user-level programs for data evaluation.
The probes are placed by the programmers. By default probes
are placed at the entry to and exit from every system call,
trap, interrupt, and process switch inside the kernel [43]. The
timing recorded by a probe is the time provided by the Intel
Pentium’s timestamp counter which is incremented on every
hardware clock cycle. The data recorded by the probe consists

397Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 417 / 646

of the time at which the data is recorded by the probe, a
unique identification code assigned to the probe, the ID of the
current process, the number of the processor, and additional
parameters provided by the programmer. The monitor has two
phases: recording, which happens during the run-time, and
analysis, which happens off-line. The analysis part can be
changed by the user for different types of evaluations. Also, the
information to be collected can be specified by the programmer
while inserting the probes.

3) Advantages: The probes can be turned on and off using
a key mask that is controlled by user-level programs, so that
the probing overhead is reduced when probes are not needed
to be used. Also, the amount of information recorded by each
probe is small, which means that big traces of operating system
execution can be recorded.

4) Disadvantages: This tool does not provide a run-time
analysis of data, so the user does not notice violation occur-
rence during the run-time. When the buffer is filled the probing
is suspended, which implies the use of a big buffer.

O. SoC-based Monitor

1) Objective: A runtime monitor within an embedded sys-
tem to detect timing specification violations

2) Approach: The System on Chip-based monitor [44] uses
a hybrid method for run-time verification of embedded sys-
tems. The monitor consists of event recognizer, a verification
tool, and the monitor output. The event recognizer decides
if the collected data is relevant to the event definition. After
passing this step, the event data is sent to verification section
where it is compared with the requirement constraints. In case
a violation is observed, it is sent to the output of the monitor.
The events detection code is inserted in the source code of the
target system, but no code is needed for transmitting the events
to the event recognizer. In fact, the event data is transmitted
from the target system to the event recognizer by a dedicated
monitoring core called ’event dispatcher’ [44].

3) Advantages: Low overhead due to use of extra hardware
for event dispatching. It benefits from a light design for
monitoring of embedded systems.

4) Disadvantages: Limited monitoring is available due to
the memory constraints of embedded systems. The monitor’s
performance is highly dependent to the target system hardware
specifications.

P. Raju-Jahanian

1) Objective: Early detection of violations of timing asser-
tions in an environment in which the real-time tasks run on
multiple processors

2) Approach: This monitoring tool consists of a set of
cooperating monitor processes one on each processor of the
target system [3]. Upon occurrence of an event, application
tasks on a processor inform the local monitor by putting the
event into a queue in shared memory. Then, a monitor process
decides whether the event must be communicated to other
monitors or not. The role of this monitor is to make sure the
violation is predicted as early as possible [45], by deciding if

the data is communicable or not using intermediate constraints.
The main idea behind this solution is that ’it is possible
that an implicit constraint is violated before an explicit delay
or deadline becomes unsatisfiable at run-time’ [45]. If the
occurrence time of an event has to be sent to a remote monitor,
the monitor puts the event and its local occurrence time into a
message and sends it to other monitor processes. If a message
arrives from a remote monitor or a timeout occurs, a monitor
checks if violation has occurred. If a violation is detected, it
notifies the application task (with termination as the default
action).

3) Advantages: The intermediate monitor makes early vi-
olation detection possible

4) Disadvantages: It uses Real-Time Logic specification
language (RTL) for constraints and event-action bonding,
which is rarely used in practice.

Q. OSE Monitor

1) Objective: To facilitate the possibility of monitoring of
timing behavior for OSE real time operating system.

2) Approach: The main idea behind this approach is to
add a second layer scheduler to the OSE (Operating System
Embedded) real-time operating system to make it easier to
query the execution result of real-time tasks [46]. This adjunct
scheduler uses the specifications of real-time tasks, such as
the period and execution time of each task, from a parameter
file. According to these parameters the second layer scheduler
schedules the tasks by allowing them to be sent to the core
scheduler in Earliest Deadline First(EDF) or Rate Monotonic
Scheduling (RMS) scheduling algorithms. Thus, it is clear
that the second layer scheduler process must have the highest
priority among all the OSE processes.

The monitor process works with the lowest priority, i.e., as
a background OSE process, in order to make sure that it does
not interfere with the scheduling process. Upon completion
of a task, the monitor receives a signal from the second
layer scheduler. Two types of log files are created in this
process: a scheduling log file, and a monitoring log file. The
scheduling log file, which is created by the second layer
scheduler, contains the time points at which a task in the task
set is scheduled, completed, or preempted. Monitoring log file,
which is created by the monitor, is updated only when an
instance of a task is completed [46].

3) Advantages: A very good set of timing information is
provided by the log files without further analysis processes,
which makes this tool very easy to use.

4) Disadvantages: Dynamic creation of tasks is not covered
in this method. The overhead of another scheduling layer on
the real-time system can be significant.

V. SUMMARY

A number of suggested tools were selected out of a big-
ger group of studies on system monitoring and performance
evaluation. As mentioned before, the focus of this paper
is on the tools and methods whose presented data can be
used for timing analysis of the system performance. Other

398Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 418 / 646

TABLE I
A CLASSIFICATION OF MONITORS

Approach Monitor Adaptibility Data Collection Design Method Development stage Target System
Specific General Tracing Sampling Hardware Software Hybrid Research Production Real-Time Embedded Distributed

Non-inter x x x x x x
PASM x x x x x
ART x x x x x

HMON x x x x x x
Halsall-Hui x x x x x x x x

Hybrid x x x x x
ZM4 x x x x x

Trams x x x x x
Alamo x x x x
MAC x x x x x
Pmms x x x x
JRTM x x x x x

GRTMon x x x x x
FKT x x x x

Soc-based x x x x x x
Raju-Jahanian x x x x x x
OSE monitor x x x x x

performance evaluation approaches such as debugging, testing,
and visualizing were not covered in this survey.

In this section, a classification of the reviewed tools is
provided in Table I. This classification is based on the features
that can be useful in giving the developers and researchers a
broad insight on different suggested approaches in designing
system performance monitors. These features were chosen in
order to satisfy the goal of facilitating the process of research
on run-time monitoring of timing properties for the readers.
A description of each classification element is provided in the
sections below

A. Monitor Adaptability
Depending on the design purpose, some of the monitoring

tools are developed for a specific target system. In many
cases, the architecture of such monitors is dependent to the
facilities that the target system provides. Monitors that are
not designed for a specific target system can provide the
developers the possibility of designing transparent monitoring
for target systems with basic facilities and source code in
any programming language. In our classification, ’General’
adaptability means that the monitoring method can be used for
different types of target systems. We chose the term ’specific’
for the tools that were developed for a specific target system,
or monitor programs in a specific programming language, and
is not not possible to be implemented for other systems.

B. Data Collection Method
An important task of any a run-time monitor is to collect the

data of interest from the monitored system when it is running.
Two types of data collection during the system execution are
sampling and tracing. A brief description of the two mentioned
methods was previously given.

C. Design Method
As explained in the prior sections, depending on the use

of extra hardware in the monitoring system, a monitor can be
hardware, software, or a combination of the two, called hybrid.
A description of the advantages and drawbacks of each type
is given in the previous sections.

D. Development Stage

While some of the covered methods were employed in
software production projects, thus are available tools, the
others are classified as research project prototype.

E. Target System

As mentioned in previous sections, the monitors covered
in this work are designed for different environments and
platforms of target systems ranging from embedded systems
to distributed and parallel systems. This section on the table
represents the type of target systems that the monitors were
designed for, or can be used for. Some monitors, such as FKT,
were designed for general-purpose systems.

VI. CONCLUSION

There is an increasing need in monitoring of timing behavior
in different types of computer systems. This is mainly because
of the growing importance of the issue of satisfying timing
constraints in many systems that are being used today, partic-
ularly embedded devices. A practical and reasonable method
for controlling a system’s timing behavior is through run-time
monitoring of timing in the system. In this paper, we provided
a survey of a selected group of works on monitoring of timing
constraints in different systems and contexts. The systems
in need of monitoring covered in this work ranged from
embedded systems to hard real-time and distributed systems.
Our main intention with this work has been more to gather ver-
satile monitoring contexts and methods than merely analyzing
monitoring methods targeted for a single specific context or
monitoring methods using the same design architecture (both
in terms of hardware or software implementation). For each
approach that was covered, a review of its work flow and
design of each was presented as well as their advantages,
drawbacks, and the problem each of them aim for. Then, a
short summary and a classification of the methods were offered
based on the each method’s architecture and other practical
features.

Software and hardware monitors have been developed to
tackle different monitoring needs and to enable collection of

399Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 419 / 646

data considering the interference of the monitor in the target
system’s performance, which is referred to as probe effect.
In this sense, hardware monitors try to minimize the interfer-
ence and performance penalty of monitoring, while software
monitors generally provide a more flexible and customizable
solution. Also, hybrid monitors have been designed as a com-
bination of the two mentioned architectures in order to resolve
their issues, and benefit from the advantages of each. However,
due to the complicated nature of timing behavior of systems,
and the increasing complexity of different systems, adaptation
and customization of existing methods may be required to
match the needs of different systems and contexts. Hence, this
paper’s effort in summary has been on giving system designers
and developers an organized insight toward the important
available experiences in this area. This is achieved by not only
describing different monitoring methods for different contexts,
but also providing a classification framework for them.

VII. ACKNOWLEDGEMENT

This work has been partially supported by the Swedish
Knowledge Foundation (KKS) through the ITS-EASY indus-
trial research school [47], and also by Combitech [48] and
Xdin [49] companies in Sweden.

REFERENCES

[1] N. Delgado, A. Q. Gates, and S. Roach, “A taxonomy and catalog of
runtime software-fault monitoring tools,” IEEE Trans. Software Eng.,
pp. 859–872, December 2004.

[2] J. A. Stankovic and R. K., “What is predictability for realtime systems,”
Springer, November 1990.

[3] S. C. V. Raju and F. Jahanian, “Monitoring timing constraints in dis-
tributed real-time systems,” in Proc. Real-Time Systems Symp., vol. 30,
pp. 57–67, 1992.

[4] D. K. Peters and D. L. Parnas, “Requirements-based monitors for real-
time systems,” ISSTA ’00, ACM Press., December 2002.

[5] S. Ricardo and J. R. De Almeida, “Run-time monitoring for dependable
systems: an approach and a case study,” in in Proceedings of the 23rd
IEEE International Symposium on Reliable Distributed Systems (SRDS
2004), vol. 30, pp. 41–49, October 2004.

[6] T. Riegel, “A generalized approach to runtime monitoring for real-time
systems,” Master’s thesis, TU Dresden, 2005.

[7] E. Metz, R. Lencevicius, and T. F. Gonzalez, “Performance data collec-
tion using a hybrid approach,” in Proceedings of the 10th European soft-
ware engineering conference held jointly with 13th ACMSIGSOFT in-
ternational symposium on Foundations of software engineering, vol. 30,
pp. 126–135, 2005.

[8] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenstrom, “The worst case
executiontime problem, overview of methods and survey of tools,” Trans.
on Embedded Computing Sys., 2008.

[9] H. Thane, “Testing and debugging of distributed realtime systems,”
PhD Thesis, Mechatronics Laboratory, Royal Institute of Technology,
Stockholm, Sweden, May.

[10] A. H. Agajanian, “A bibliography on system performacne evaluation,”
Computer, November 2000.

[11] W. Gu, J. Vetter, and K. Schwan, “An annotated bibliography of
interactive program steering,” ACM SIGPLAN Notices, September 1994.

[12] S. Utter, C. M. Pancake, and K. Schwan, “A bibliographyof parallel
debuggers,” ACMSIGP1un Notices, pp. 29–42, November 1989.

[13] C. M. Pancake and S. Utter, “A bibliographyof parallel debuggers,”
ACMSIGP1un Notices, pp. 21–37, January 1991.

[14] C. M. Pancake and R. H. B. Netzer, “A bibliographyof parallel de-
buggers,” in Proc. of the 3rd ACM/ONR Workshop on Parallel and
Distributed Debugging, San Diego, CA, USA, May 1993.

[15] J. J. P. Tsai, K. Y. Fang, and H. Y. Chen, “A noninvasive architecture
to monitor real-time distributed systems,” Computer, pp. 11–23, March
1990.

[16] M. M. Gorlick, “The flight recorder: An architectural aid for system
monitoring,” in Proc. ACM/ONR Workshop Parallel and Distributed
Debugging, pp. 175–183, 1991.

[17] H. J. Siegel, T. Schwederski, J. T. Kuehn, and N. J. Davis, “An
overview of the pasm parallel processing system,” in Tutorial, Computer
Architecture, pp. 387–407, 1987.

[18] H. Tokuda, M. Kotera, and C. W. Mercer, “A real-time monitor for a
distributed real-time operating system,” in Proceedings of ACM SIGOPS
and SIGPLAN workshop on parallel and distributed debugging, May
1988.

[19] H. Tokuda and M. Kotera, “A real-time tool set for the arts kernel,”
in Proceedings of 9th IEEE Real-Time Systems Symposium, December
1988.

[20] H. Tokuda, M. Kotera, and C. W. Mercer, “An integrated time-driven
scheduler for the arts kernel,” in Proceedings of 8th IEEE Phoenix
Conference on Computers and Communications, March 1989.

[21] P. S. Dodd and C. V. Ravishankar, “Monitoring and debugging
distributed real-time programs,” Software Practice and Experience,
pp. 863–877, October 1992.

[22] F. Hasall and S. C. Hui, “Performance monitoring and evaluation of
large embedded systems,” Software Engineering Journal, pp. 184–192,
1987.

[23] D. Haban and D. Wybranietz, “A hybrid monitor for behavior and
performance analysis of distributed systems,” Software Engineering
Journal, IEEE Trans. Software Eng., pp. 197–211, February 1990.

[24] C. Alexander, “Multicomputer performance monitoring: a standards-
based approach,” Technical Report MSSU-EIRS-ERC-93-13 Mississippi
State University, December 1993.

[25] R. Hofmann, R. Kar, B. Mohr, A. Quick, and S. M., “Distributed
performance monitoring: Methods, tools, and applications,” IEEE
Trans.Parallel and Distributed Systems, 1994.

[26] A. Mink, R. Carpenter, G. Nacht, and J. Roberts, “Multiproces-
sor performance-measurement instrumentation,” Computer, pp. 63–75,
September 1990.

[27] J. K. Hollingsworth, B. P. Miller, and J. Cargille, “Dynamic program
instrumentation for scalable performance,” in Proc. Scalable High-
Performance Computing Conference, Knoxville, Tenn., pp. 841–850,
1994.

[28] C. L. Jeffery, “Program monitoring and visualization: An exploratory
approach,” Springer-Verlag, 1999.

[29] C. L. Jeffery New Mexico State Univ., Las Cruces, N.M., personal
comm., 2002.

[30] C. L. Jeffery, W. Zhou, K. Templer, and M. Brazell, “A lightweight
architecture for program execution monitoring,” in Proc. ACM SIG-
PLAN/SIGSOFT Workshop Program Analysis for Software Tools and
Eng., pp. 67–74, 1998.

[31] C. L. Jeffery, “The alamo execution monitor architecture,” Electronic
Notes in Theoretical Computer Science, 2000.

[32] M. Kim, S. Kannan, I. Lee, O. Sokolsky, and M. Viswanathan, “Java-
mac: A run-time assurance tool for java programs,” in Proc. Fourth IEEE
Intl. High Assurance Systems Eng. Symp., pp. 115–132, 1999.

[33] M. Kim, I. Lee, and O. Sokolsky Univ. of Pennsylvania, Philadelphia,
personal comm., 2002.

[34] M. Kim and M. Viswanathan, “Mac: A framework for run-time correct-
ness assurance of real-time systems,” Technical Report MS-CIS-98-37,
Dept. of Computer and Information Sciences, Univ. of Pennsylvania,
December 1998.

[35] M. Kim and M. Viswanathan, “Formally specified monitoring of tem-
poral properties,” in Proc. European Conf. Real-Time Systems, 1999.

[36] I. Lee and H. Ben-Abdallah, “A monitoring and checking framework
for run-time correctness assurance,” in Proc. 1998 Korea-U.S. Technical
Conf. Strategic Technologies, 1998.

[37] I. Lee and M. Kim, “Runtime assurance based on formal specifications,”
in Proc. 1999 Int. Conf. Parallel and Distributed Processing Techniques
and Applications, 1999.

[38] Y. Liao and D. Cohen, “A specificational approach to high level program
monitoring and measuring,” IEEE Trans. Software Eng., pp. 969–978,
November 1992.

[39] J. Ligatti, “Policy enforcement via program monitoring,” Ph.D. thesis,
Princeton University, 2006.

400Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 420 / 646

[40] A. Mok and G. Liu, “Efficient run-time monitoring of timing con-
straints,” in Proc. Third IEEE Real-Time Technology and Applications
Symp., pp. 252–262, 1997.

[41] M. Moller, “Runtime assurance based on formal specifications,” Univ.
of Oldenburg, Oldenburg, Germany, personal comm., 2002.

[42] T. Riegel, “A generalized approach to runtime monitoring for real-time
systems,” Master’s thesis, TU Dresden, 2005.

[43] R. D. Russell and M. Chaven, “Fast kernel tracing: A performance
evaluation tool for linux,” in Proceedings of the 19th IASTED Interna-
tional Conference on Applied Informatics (AI 2001), Innsbruck, Austria,
February 2011.

[44] C. Watterson and D. Heffernan, “A monitoring approach to facilitate
run-time verification of software in deeply embedded systems,” Doctoral
thesis, University of Limerick, Ireland, March 2010.

[45] S. C. V. Raju, R. Rajkumar, and F. Jahanian, “Monitoring timing
constraints in distributed real-time systems,” in Proc. Real-Time Systems
Symp., pp. 57–67, 1992.

[46] M. Saadatmand, M. Sjodin, and N. Ul Mustafa, “Monitoring capabilities
of schedulers in model-driven development of real-time systems,” 17th
IEEE International Conference on Emerging Technologies & Factory
Automation (ETFA 2012), Sepember 2012.

[47] ITS-EASY post graduate industrial research school for embedded soft-
ware and systems. http://www.mrtc.mdh.se/projects/itseasy/, Accessed:
September 2013.

[48] Combitech. http://www.combitech.se//, Accessed: September 2013.
[49] XDIN AB. http://xdin.com/en/about-xdin/enea-experts/, Accessed:

September 2013.

401Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 421 / 646

The Impact of Intra-core and Inter-core Task
Communication on Architectural Analysis of

Multicore Embedded Systems

Juraj Feljan, Jan Carlson
Mälardalen Real-Time Research Centre

Mälardalen University
Västerås, Sweden

Email: juraj.feljan@mdh.se, jan.carlson@mdh.se

Abstract—In order to get accurate performance predictions,
design-time architectural analysis of multicore embedded systems
has to consider communication overhead. When communicating
tasks execute on the same core, the communication typically
happens through the local cache. On the other hand, when they
run on separate cores, the communication has to go through the
shared memory. As the shared memory has a significantly larger
latency than the local cache, we expect a significant difference
between intra-core and inter-core task communication. In this
paper, we present a series of experiments we ran to identify the
size of this difference, and discuss its impact on architectural
analysis of multicore embedded systems. In particular, we show
that the impact of the difference is much lower than anticipated.

Keywords—software architecture; model-based analysis; multi-
core embedded systems; task communication; measurement; cache

I. INTRODUCTION

The majority of computer systems in use today are em-
bedded systems. An embedded system is a microprocessor
based system with a typically single dedicated function (as
opposed to general purpose computer systems), embedded
in and interacting with a larger device. Embedded systems
range from simple devices (e.g., MP3 players) to complex
systems consisting of multiple nodes communicating over a
network (e.g., process controllers), and are used ubiquitously,
as we can find them in industry, transportation, medicine,
communication, entertainment, commerce, etc.

Today, embedded systems have more complex functionality
than ever. At the same time, pieces of functionality that were
traditionally realized in hardware are instead implemented
in software (e.g., software-defined radio [1]). This makes
today’s embedded systems increasingly performance intensive.
Similarly to general purpose computer systems, there is a trend
to tackle the increasing performance demands of embedded
systems by increasing the number of processing units, for ex-
ample by using multicore technology. A multicore processor is
a single chip that contains two or more processing units (cores)
that are coupled tightly together in order to increase processing
power while keeping power consumption reasonable.

Introducing additional processing units increases the per-
formance capacity, but on the other hand introduces the
problem of how to best allocate (partition) the software to

the available cores, as the allocation has a substantial impact
on the performance. A possible way of determining whether
a particular allocation of software to cores gives satisfactory
performance is to implement, deploy and run the system, in
order to collect performance measurements. However, rather
than employing such a ”fix-it-later” approach, in line with soft-
ware performance engineering [2], a preferred approach would
be to predict the performance with a sufficient accuracy early
in the development process, based on architectural models of
the system. That way we can get an indication towards good
allocations, and avoid time-consuming and costly redeploy-
ment of the system when using an iterative measurement-based
method. The earlier in the development process that a design
fault is caught, the cheaper and simpler it can be fixed. Also, by
using models of the system, it is possible to try a large number
of candidate allocations in shorter time than by measuring.

In our current work [3], we are investigating an approach
for optimizing the allocation of software modules to the cores
of a multicore embedded system, with respect to performance.
Here, communication time plays a significant role, as it impacts
performance aspects relevant in the domain of embedded
systems, such as throughput and response time. In a multicore
system, the communication time is affected by the allocation of
software modules to the available cores. If two communicating
software modules run on the same core, the communication
normally happens through the local cache and has thus the
potential to be much faster than communication between two
modules running on different cores, which happens through
the shared cache or the main memory. As our work includes
design-time model-based performance predictions, we have to
take these differences in communication duration into account,
in order for the performance predictions to be accurate.

In this paper, we investigate the impact that the allocation
of software modules to the cores of a multicore system
has on communication time. By performing measurements
on a running system, we determine the difference between
intra-core communication and inter-core communication under
varying conditions. We show that in many situations the
difference is significantly lower than we expected, and discuss
the reasons and implications of this, namely that the impact
of this difference on design-time model-based performance
analysis is limited.

402Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 422 / 646

The paper is organized as follows. In Section II, we
describe the preliminaries and present the motivation for
investigating the difference between intra-core and inter-core
communication, from the perspective of our current work. In
Section III, we give an overview of related work. Section IV
is the core of the paper: first it reasons about the expected
difference between intra-core and inter-core communication in
different scenarios, then it describes the setup of the performed
experiment, and finally it gives an interpretation of the results.
Section V concludes the paper with a discussion of what the
experiment results mean in the context of architectural analysis
of multicore embedded systems.

II. BACKGROUND

The scope of our work are modern (and future) embedded
systems whose hardware architecture resembles the one of
today’s general purpose computers. There is a recent trend of
embedded systems moving from single core CPUs to complex
multicore CPUs. For example, processors used in today’s
smartphones and microcontroller boards support up to 4 cores
at 2.5 GHz (e.g., ARM Cortex-A15 MPCore [4], Qualcomm
Krait 400 [5]).

Typically, each core of a multicore processor has a small
on-chip memory (cache), while a larger off-chip main memory
(RAM) is shared between the cores. The cache keeps a copy
of a subset of data present in the RAM, in order to make
this data available to the CPU at a much lower latency than
when accessing data from the RAM. For this, the cache utilizes
the fact that the same data is often re-accessed frequently
(temporal locality of data), and that data being accessed close
in time is often stored in adjacent memory locations (spatial
locality of data). Other than the local cache (called L1 cache),
modern processors typically have additional levels of cache.
L2 cache is usually shared between pairs of cores, while L3
cache is shared between all cores. The latency of a particular
memory grows in the following order: L1 cache, L2 cache, L3
cache, RAM. Even when having a particular CPU in mind, it is
difficult to characterize these values with concrete numbers, but
in general L2 cache latency is roughly two to three times larger
than L1 cache latency, L3 cache latency is roughly ten times
larger than L1 cache latency, and finally RAM latency is two
orders of magnitude larger than the latency of L1 cache [6],
[7]. When data is transferred between the different memories,
it is done in bigger blocks of fixed size called cache lines. A
cache line is usually several tens of bytes long.

The software architecture of embedded systems typically
consists of a set of concurrent communicating software mod-
ules called tasks. The decision of which task to run on which
core (i.e., the allocation of tasks) impacts the performance of
the system. The extent of the impact depends on the particular
performance aspect we consider. For example, schedulability
is directly determined by the allocation. If too many tasks
are allocated to a single core, the core will be overloaded.
As a consequence, tasks will miss their deadlines which is
not acceptable for systems with real-time requirements, which
embedded systems often have. Similarly to schedulability, it
can be expected that task allocation has a large impact on
communication time. Two tasks running on the same core can
communicate through the L1 cache, while two tasks running
on different cores have to communicate through one of the

shared memories. This means that intra-core communication
should be considerably faster than inter-core communication.

Our current work [3] focuses on optimizing the allocation
of tasks to the cores of a multicore embedded system. Already
early in the development process, before the implementation,
we want to be able to identify the allocations that will
result in a system with good performance. We start with
an architectural model of the system in terms of tasks and
the connections between them, and a model of the hardware
platform the system will run on. By an automatic model-
to-model transformation, from the architectural and platform
models we obtain an executable model of the system, and
by simulating this model we get performance predictions for
the system. This way we are able to test many allocations in
search for the ones that give satisfactory performance. With the
term performance, here we mean aspects like throughput and
response time. These aspects depend on the communication
time, which in turn depends on the allocation of tasks to
the cores, as stated above. Therefore, in order to be able to
give sufficiently precise performance predictions, we need to
identify the difference in communication time depending on
whether tasks communicate locally with other tasks running
on the same core, or globally with tasks running on different
cores. Due to the considerable differences in latencies between
the different memories, we intuitively expect this difference to
be significant.

III. RELATED WORK

Even though the work presented in this paper touches
upon research on caches in multicore systems and research
on detailed performance evaluations of multicore systems, the
context of the work lies in the field of architectural analysis
and optimization of embedded systems. We therefore focus the
discussion about related work to this research area.

Architectural analysis and optimization of embedded sys-
tems can be viewed as a subfield of software performance
engineering [2]. Research in this field has a general goal
of being able to reason about the performance of embedded
systems, already prior to the implementation. At this early
stage, embedded systems are typically specified as (more or
less formal) models, which can be analyzed or simulated in
order to get performance predictions. Often these approaches
are complemented with architectural optimization — model-
based assessment of particular architecture candidates is en-
hanced with a mechanism for finding a good architecture.
For all but the most trivial embedded systems, evaluating all
possible architecture candidates is not feasible, so typically
architecture optimization involves a search process aided by
heuristics, whose goal is to find near-optimal architectures. In
the remainder of this section, we describe several prominent
approaches for architectural analysis and/or optimization of
embedded systems, both academic and industrial.

ProCom [8] is a component-based and model-based ap-
proach for embedded systems in the automotive domain. A
ProCom a component is a set of code, documentation, models
and extra-functional properties. By utilizing different modeling
formalisms, ProCom can analyze worst-case execution times,
end-to-end response times and resource usage of embedded
systems.

403Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 423 / 646

DeepCompas [9] is an analysis framework for predicting
performance related properties of real-time embedded sys-
tems. The basis of the approach are composable models of
individual software components and hardware blocks, which
are then synthesized into an executable model of the system.
Simulation-based analysis of the executable model results with
predicted performance properties for the system. DeepCompas
also makes a step towards architecture optimization, by provid-
ing support for performing trade-off analysis between several
architecture alternatives.

ArcheOpterix [10] is a framework for optimizing embedded
system architectures modeled in the Architecture Analysis and
Description Language (AADL) [11]. The quality attributes
supported by the approach include reliability, performance and
energy. One of the key characteristics of the approach is that
(through its extension called Robust ArcheOpterix [12]) it
takes into account the uncertainty of design-time parameter
estimates, and can find architectures that reduce the impact of
the uncertainties.

A defacto industry standard for model-based analysis of
embedded systems is Mathworks Simulink [13]. It is a graphi-
cal tool that comes with built-in libraries of blocks (for instance
the Stateflow toolbox for defining and executing state charts)
that enable analysis and simulation of embedded systems, and
ultimately code generation. It is also possible to define custom
blocks using the Matlab programming language, which makes
Simulink extendable with custom analysis and simulation
techniques.

Additional approaches (not limited to embedded systems)
can be found in Koziolek’s survey of component-based ap-
proaches for performance evaluation [14], and in the survey
of architecture optimization approaches by Aleti et al. [15].

IV. INTRA-CORE VS. INTER-CORE TASK COMMUNICATION

In this section, we first discuss in more detail about the
expected difference between intra-core and inter-core commu-
nication in various scenarios. Then, in a separate subsection,
we give details about the experiment setup — we describe the
hardware and software environments, the general task model
and the concrete task setup used in the experiment, and the
variation points of the experiment. Finally, again in a separate
subsection, we provide an interpretation of the experiment
results.

Since many factors other than allocation influence the
communication time, such as interruptions from other tasks,
we start by identifying the case that has the highest potential of
exhibiting a significant difference between intra-core and inter-
core communication duration. Imagine the following scenario
(Figure 1): a dual-core system, where each core has L1 cache,
and the cores share the RAM. There are two communicating
tasks: task T1 produces (writes) data which task T2 consumes
(reads), and task T2 runs immediately after task T1 completes.
The data fits in the L1 cache. If both tasks run on core1
(scenario depicted in Figure 1a), task T2 can obtain the data
directly from the L1 cache on core1, where it was written
when task T1 produced it. On the other hand, if task T1 is
running on core1 and task T2 on core2 (scenario depicted in
Figure 1b), the data produced by task T1 is stored in the L1
cache of core1 and not in the L1 cache of core2. So T2 will

L1 cache

T1 T2

core1

L1 cache

core2

RAM

(a) Intra-core communication

L1 cache

T1 T2

core1

L1 cache

core2

 RAM

(b) Inter-core communication

Fig. 1: Task communication in a dual-core system

have to fetch the data from the RAM. Accessing the RAM is
around a hundred times slower than accessing L1 cache, so
inter-core communication should be significantly slower than
intra-core communication. If the system also had shared L2
cache, the reasoning would still apply — since the latency of
L2 cache is around two to three times larger than the latency
of L1 cache, the difference in communication times should be
smaller than in the case when there is no shared cache, but
significant nevertheless.

If two communicating tasks do not run immediately after
each other, or if they get preempted by a higher priority task,
the data they share might be evicted from the cache, due to
other data taking its place. The longer the duration between
producing and consuming a particular piece of data, the more
likely other data will occupy the cache. In such cases even
intra-core communication will have to go through the shared
memory, thus reducing the communication time gain from
allocating communicating tasks to the same core. Similarly,
if the data being communicated does not fit in the local
cache, the communication will have to go through the shared
memory and the difference between intra-core and inter-core
communication is reduced.

A. Experiment setup

We use a system with an Intel Core 2 Duo E6700 pro-
cessor [16]. Each core of this dual-core processor has 32
kB of local L1 cache, while 4 MB of L2 cache is shared
between the cores. The cache lines in all caches are 64 bytes
long. The system runs the 32-bit version of the Ubuntu 12.04
LTS operating system (kernel version 3.2.29) patched with
the PREEMPT RT patch (version 3.2.29-rt44) [17], which
turns the stock Linux kernel into a hard real-time kernel. By

404Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 424 / 646

reducing the overall jitter and enabling the tasks to run at the
highest priority, in combination with a high resolution timer of
nanosecond granularity, this contributes to reducing unwanted
interference in the experiments and increasing the precision of
the measurements.

Next, we describe the task model used in the experiments.
Tasks are implemented as Posix threads [18], and have read-
execute-write semantics, meaning that they first read input
data, then preform calculations and finally write output data. A
task can either be periodic or event-triggered. A periodic task
is activated at regular time intervals, while an event-triggered
task is activated when the task it receives data from finishes
executing. We assume that the tasks exchange data through
shared memory, and that each core has access to the whole
main memory. Other models (e.g., distributed memory, where
each processor has its own local main memory), are possible
but since they are not common in embedded systems, they are
out of the scope of this paper.

As identified above, the biggest difference between intra-
core and inter-core communication should happen in the case
of two communicating tasks that share data which fits into the
L1 cache, and the reader task runs immediately after the writer
task finishes. We therefore use two tasks in the experiment, a
periodic task that writes data, and an event-triggered task that
reads the data. The event-triggered task is activated by the
periodic task immediately after it has written the data. The data
shared between the tasks is an array of integers (integer size
is 4 bytes), and each task holds a pointer to it. We use bound
multiprocessing, i.e., each task is allocated to a particular core
and cannot move to a different core during the execution of
a particular experiment. In order to reduce jitter, we run the
tasks at the highest priority and prevent memory from being
paged to the disk.

In the experiment, we measure the time it takes the reader
task to read the shared data. Between the different experiment
runs, we vary the allocation of the tasks to the cores, the
pattern of accessing the data, and the size of the data the
tasks share. Regarding the allocation, in the case of intra-core
communication both tasks run on core 1, while in the case of
inter-core communication the periodic task runs on core 1 and
the event-triggered task runs on core 2.

In order to represent different data access patterns, we vary
the stride of accessing the shared data. In other words, the tasks
access the data array with different increments (see Figure 2
for an example of different strides; the grey elements are
accessed, while the white ones are skipped). In the experiment
runs, we use the following strides: 1, 2, 3, 4, 8, 12, 16, 24
and 32. The idea behind using different strides is to compare
the reading times in the following cases: (i) when the data
is read sequentially (stride 1), (ii) when the data is read
nonsequentially with an increment smaller than the cache line
(stride 2, 3, 4, 8 and 12), and finally (iii) when the data is read
nonsequentially with an increment larger than the cache line
(stride 16, 24 and 32).

In a particular experiment run, the writer and the reader
tasks access the same amount of data and with the same stride.
The amount of data shared between the tasks in different runs
is the following number of integers: 128, 256, 512, 4 096,
8 192, 16 384, 262 144, 524 288, 1 048 576, 1 310 720. In order

stride 1

stride 2

stride 4

Fig. 2: Stride examples

to access N integers with stride S, we allocate a block of data
whose size is N * S * 4 bytes. This means that the data we
allocate in the different runs varies from 512 B (128 integers
with stride 1) to 160 MB (1 310 720 integers with stride 32),
and thus covers data that fits into the L1 cache, data that is too
large for the L1 cache but fits into the L2 cache, and finally
data that is too large for the L2 cache but fits into the RAM.

B. Experiment results

We varied 2 allocations, 9 strides and 10 data sizes, which
means that 180 experiment runs were performed in total. In
each run, we collected 10 000 measurements of the time it
took the event-triggered task to read the data sent by the
periodic task. The complete experiment results are available
in [19]. Here, we illustrate the results by focusing on three
representative data sizes: one that fits into L1 cache (256
elements: from 1 kB for stride 1 to 32 kB for stride 32), one
that fits into L2 cache (8 192 elements: from 32 kB for stride
1 to 1 MB for stride 32) and one that fits into RAM (1 048 576
elements: from 4 MB for stride 1 to 128 MB for stride 32). In
Figure 3, we show the results as three graphs, one for each data
size. As the data size increases, so does the reading time, which
is the reason for the difference in the time scales between the
graphs. Each graph has two entries for every stride: one for
intra-core communication (depicted in black) and one for inter-
core communication (depicted in red). Each entry is a boxplot
describing the 10 000 measurements. The ends of the boxes
show the first and third quartiles, the band inside the box is
the second quartile (median), while the whiskers extend to
the most extreme data point which is no more than 1.5 times
the interquartile range away from the box. For the sake of
readability of the graphs, the outliers are omitted.

Comparing the three graphs, we can identify a trend of
a relative decrease in the difference between intra-core and
inter-core communication when increasing the amount of data
shared between the tasks. If we take stride 16 as an exam-
ple, intra-core communication is 144% faster than inter-core
communication when the tasks share 256 integers. When the
tasks share 8 192 integers, this difference decreases to 6%,
and finally when 1 048 576 elements are shared the difference
is 1%. As identified in the beginning of the section, this is
expected behavior. If the shared data is bigger than the L1
cache, only the end portion of the data will be present in the
L1 cache after the writer task has finished writing the data.
Since the reader task reads the data from the beginning, it
has to be fetched from one of the shared memories (the L2
cache or the RAM, depending on the size of the shared data),
regardless of whether the tasks run on the same core or on
different cores.

405Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 425 / 646

stride

ti
m

e
,

m
ic

ro
se

c
o

n
d

s

1 4 8 12 16 24 32

0
1

2
3

4
5

6
7

Communication

inter−core

intra−core

(a) 256 elements

stride

ti
m

e
,

m
ic

ro
se

c
o

n
d

s

1 4 8 12 16 24 32

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0

Communication

inter−core

intra−core

(b) 8 192 elements

stride

ti
m

e
,

m
ic

ro
se

c
o

n
d

s

1 4 8 12 16 24 32

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0
2

0
0

0
0

Communication

inter−core

intra−core

(c) 1 048 576 elements

Fig. 3: Experiment results

Looking only at the case where the shared data fits into L1
cache (Figure 3a), we see the expected significant difference
between intra-core and inter-core communication. The inter-
core communication takes roughly three times as long, which
corresponds to the difference in latency between L1 and L2
cache. However, the difference is present only at the higher
strides. If the shared data is accessed sequentially (stride
1) there is no significant difference between intra-core and
inter-core communication. The reason lies in the way data
is transferred between cache and RAM — as mentioned in
Section II, this is done at cache line granularity. One cache
line of 64 bytes corresponds to 16 integers. So even in the
case when the data is not present in the L1 cache, as soon as
the reader task reads the first integer from one of the shared
memories, one whole cache line is transferred to the L1 cache,
containing the currently read element and the 15 subsequent
elements. Thus, the next 15 elements will be read from the
L1 cache. This continues in the same fashion: after reading
one element not present in the L1 cache, the next 15 are read
from the L1 cache. In other words, in the case of inter-core
communication where we intuitively expected 16 cache misses,
we got one cache miss followed by 15 cache hits. Increasing
the stride increases the share of the elements that create cache
misses and decrease the share creating cache hits. This explains
the increase of the times it takes to read the shared data in
Figure 3a as we increase the stride. When the stride reaches
16, and thus the difference between two read elements reaches
the length of the cache line, then reading every element creates
a cache miss. The same happens with the strides higher than
16. Therefore, the reading times stay roughly the same even
with further increasing the stride. On the other hand, in the
case of intra-core communication, the data being read is always
present in the L1 cache, regardless of the stride, and the reading
times are roughly the same.

V. CONCLUSION

The experiment confirmed that when tasks share data that
is bigger than the local cache, we do not see a significant
difference between intra-core and inter-core communication
time. On the other hand, when the shared data does fit into

the local cache, the experiment only partially confirmed the
intuitively expected difference in communication times. Inter-
core communication took roughly three times as long as
intra-core communication (which conforms with the difference
between the latencies of the L1 and L2 caches), but only
when the shared data was not read sequentially. In the case of
sequential data access, the difference between intra-core and
inter-core communication was marginal, due to the way data is
transferred between the different memories. It can be expected
that data would in fact typically be accessed sequentially,
meaning that even in the case of data that fits into the local
cache, we would not witness a significant difference between
intra-core and inter-core communication.

When the tasks do not share a set of data elements, but
rather a very small amount of data (for instance only one
integer), then inter-core communication would be significantly
slower than intra-core communication. However, this would
likely not have a large impact on the response time, since the
time it takes to access one data element is typically negligible
in comparison with the time that a task spends performing
calculations.

In summary, we have seen that the difference between
intra-core and inter-core communication in most cases is
smaller than what could be anticipated from the difference
in the latencies of the local and the shared memory. This
was shown for the case when the tasks that share data run
immediately after each other, which is the most favorable case
for exhibiting a significant difference between intra-core and
inter-core communication. A typical application would consist
of a set of tasks, meaning that tasks that share data would
not always run in immediate sequence, and that the difference
between intra-core and inter-core communication would be
further reduced.

In the context of design-time architecture-level analysis
of multicore embedded systems, this has the following con-
sequences. In order to identify whether a particular case
exhibits a significant difference between intra-core and inter-
core communication, we need detailed information about data
access patterns. This information is typically not available prior

406Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 426 / 646

to the implementation, when we envision the analysis to be
performed. However, as seen from the experiments, in the
typical case the difference between intra-core and inter-core
communication is not significant enough to hinder performing
early performance predictions. Early analysis relies on a set
of abstractions and estimates, and for a sufficiently precise
performance prediction, a small difference in a particular input
to the analysis (in this case the difference between intra-core
and inter-core communication time) can normally be ignored.

In the future, we plan to investigate other types of task
communication, e.g., message passing. Furthermore, we want
to perform a similar experiment on distributed embedded
systems, consisting of several interconnected multicore units.
Here, the difference between local (intra-node) and global
(inter-node) communication should be significant, as intra-
node communication uses shared memory, while inter-node
communication is preformed over the network.

ACKNOWLEDGMENT

This work was supported by the Swedish Foundation for
Strategic Research via the Ralf3 project, and by the Swedish
Research Council project CONTESSE (2010-4276). We would
like to thank Tiberiu Seceleanu and Aneta Vulgarakis (ABB
Corporate Research, Västerås, Sweden), and Michael Wahler
(ABB Corporate Research, Baden-Dättwil, Switzerland) for
valuable input and discussions.

REFERENCES

[1] T. Ulversoy, “Software defined radio: Challenges and opportunities,”
Communications Surveys Tutorials, IEEE, vol. 12, no. 4, pp. 531–550,
2010.

[2] M. Woodside, G. Franks, and D. C. Petriu, “The Future of Software
Performance Engineering,” in Workshop on the Future of Software
Engineering, 2007, pp. 171–187.

[3] J. Feljan, J. Carlson, and T. Seceleanu, “Towards a model-based
approach for allocating tasks to multicore processors,” in 38th Euromi-
cro Conference on Software Engineering and Advanced Applications
(SEAA), 2012, pp. 117–124.

[4] Cortex-A15 MPCore, http://www.arm.com/products/processors/
cortex-a/cortex-a15.php, [Accessed: 2013-08-20].

[5] Qualcomm Krait 400, http://www.qualcomm.com/snapdragon/
processors/800, [Accessed: 2013-08-20].

[6] D. Levinthal, “Performance Analysis Guide for Intel Core i7
Processor and Intel Xeon 5500 processors”, http://software.intel.com/
sites/products/collateral/hpc/vtune/performance analysis guide.pdf,
[Accessed: 2013-08-20].

[7] U. Drepper, “What every programmer should know about memory”,
http://lwn.net/Articles/250967, [Accessed: 2013-08-20].

[8] S. Sentilles, A. Vulgarakis, T. Bureš, J. Carlson, and I. Crnković, “A
component model for control-intensive distributed embedded systems,”
in Proceedings of the 11th International Symposium on Component-
Based Software Engineering (CBSE), 2008, pp. 310–317.

[9] E. Bondarev, “Design-time performance analysis of component-based
real-time systems,” Ph.D. dissertation, Eindhoven Universty of Tech-
nology, 2009.

[10] A. Aleti, S. Bjornander, L. Grunske, and I. Meedeniya, “ArcheOpterix:
An extendable tool for architecture optimization of AADL models,”
in ICSE Workshop on Model-Based Methodologies for Pervasive and
Embedded Software, 2009, pp. 61–71.

[11] SAE standard, no. AS5506, “Architecture Analysis & Design Language
(AADL),” 2012.

[12] I. Meedeniya, A. Aleti, I. Avazpour, and A. Amin, “Robust
ArcheOpterix: Architecture optimization of embedded systems under
uncertainty,” in 2012 2nd International Workshop on Software Engi-
neering for Embedded Systems (SEES), 2012.

[13] Mathworks Simulink, http://www.mathworks.se/products/simulink/,
[Accessed: 2013-08-20].

[14] “Performance evaluation of component-based software systems: A
survey,” Performance Evaluation, Special Issue on Software and Per-
formance, vol. 67, no. 8, pp. 634–658.

[15] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I. Meedeniya,
“Software architecture optimization methods: A systematic literature
review,” IEEE Transactions on Software Engineering, vol. 39, no. 5,
pp. 658–683, 2013.

[16] Intel Core 2 Duo E6700 processor, http://ark.intel.com/
products/27251/Intel-Core2-Duo-Processor-E6700-4M-Cache-2
66-GHz-1066-MHz-FSB, [Accessed: 2013-08-20].

[17] PREEMPT RT patch, https://rt.wiki.kernel.org/index.php/Main Page,
[Accessed: 2013-08-20].

[18] POSIX, http://pubs.opengroup.org/onlinepubs/9699919799, [Accessed:
2013-08-20].

[19] J. Feljan and J. Carlson: “The Impact of Intra-core and Inter-core Task
Communication on Architectural Analysis of Multicore Embedded Sys-
tems — Experiment Results”, http://www.idt.mdh.se/∼jcn01/research/
multicore, [Accessed: 2013-08-20].

407Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 427 / 646

Cooperative Optimal Route Planning of Accumulator-Bank Servicing Robots

Ágnes Werner-Stark
and Tibor Dulai

Department of Electrical
Engineering and Information Systems

University of Pannonia
Egyetem str. 10.

Veszprém, Hungary
Email: werner.agnes@virt.uni-pannon.hu

dulai.tibor@virt.uni-pannon.hu

Katalin M. Hangos
Computer and Automation

Research Institute HAS
Budapest, Hungary

and Department of Electrical
Engineering and Information Systems

University of Pannonia
Egyetem str. 10.

Veszprém, Hungary
Email: hangos@scl.sztaki.hu

Abstract—Renewable energy storage originating from solar en-
ergy is possible in an accumulator-bank, from where the demands
and utilization may be provided by robots. A novel optimal
route planning algorithm is proposed in this paper that is based
on the cooperation of the robots implemented as agents. The
interaction between the agent-robots is learned to enhancethe
stability of the system, and in such a way more efficient operation
can be achieved. A special model is developed for describing
the operation of the multi-agent system formed by the robots,
and the route planning algorithm determines the optimal route
considering the cooperation of the robots in special situations. The
operation and properties of the proposed algorithm is illustrated
using simple examples with robots in different conflict situations.

Keywords-cooperation; renewable energy; accumulator bank;
multi-agent system

I. I NTRODUCTION

Nowadays, all problems related to the application of re-
newable energy sources enjoy an increased attention and
popularity. Beside of their advantageous properties from en-
vironmental and sustainability point of view, these energy
sources suffer from limited and unpredictable availability. A
solar panel, for example, can produce enough energy during
the day, but during the night (or just on cloudy days) it proves
unusable. Therefore, a sufficient amount of electrical energy
storage capacity should be provided along with each renewable
energy source to ensure the availability of sufficient energy on
demand. One of the easiest ways is to use accumulators as
energy storage, but the price and the storage place they need
is too large compared to their capacity. If we would like to
store energy in large volumes, we would need to place the
accumulators in very large storage parks. The service of this
storage (accumulators out and to transport) is a big logistics
task. It is then very important to solve the problem of efficient
place utilization and the quick service. We developed a system
of self-service for an accumulator-bank. For this purpose self-
propelled robots are required which are able to transport the
accumulators, and can perform independent decision making
as well as reacting to certain environmental events. In such

a distributed setting, the cooperation among the robots may
significantly enhance the performance of the system.

The above accumulator-bank servicing problem is much
similar to some well investigated problems in traffic manage-
ment and control, and logistics. An important approach to solve
these problems is to usemulti-agenttechniques. A multi-agent
approach to design in the transportation domain is presented
in [4]. It presents three important instances for distributed
artificial intelligence techniques that proved to be usefulin
the transportation applications: cooperation among the agents,
task decomposition and allocation, and decentralized planning.
They can be used to obtain good initial solutions for complex
resource allocation problems. As another example, one can
consider real-time approaches to manage roadway network
congestion over time and space, that is a difficult problem. A
solution approach based on cooperative negotiation between
agents based on multi-agent principles is proposed in [1].

In one of our earlier works [8], we dealt also with au-
tonomous agents, as we considered such circumstances that
make autonomy important, such as extreme high or low
temperatures and closeness of dangerous materials. These
circumstances had the need of applying robots, they had to
solve their problems self-sufficiently, without any directhuman
intervention.

In the field of logistics, operations research approaches
deal with Vehicle Routing Problem (VRP) ([3], [7]) and its
solutions that help the companies in their logistic tasks aswell.
Because of the huge application area of VRP, lots of variants
of the problem have born. Some of them include additional
constraints (e.g., [9]), while other variants modify the basic
tasks (e.g., [5]). The cooperation of vehicles has proven tobe
useful in this problem class, too [2], where we proposed a
method of choosing the directions of the routes of the VRP
solution which has the best answer (the minimal extra route)
in case of an immediate event supposing cooperative agents.
As an immediate event may happen at different phases of the
completion of the transportation task, the event’s effect has to
be taken into account on average.

Usually, in a multi-agent system the agents have specific

408Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 428 / 646

pre-defined abilities to perform a certain task. One of the
challenges of a multi-agent system is to develop agents with
the ability of learning from each others’ behavior. The aim of
this paper is to present an algorithm that allows autonomous
agents to use cooperation in conflict situations through com-
munication with other robots. The agents are not in interaction
with humans during operation.

The paper is organized as follows. First, we describe
the domain of the multi-agent system (Section 2). Then, we
introduce our algorithm that can be applied in the context of
the multi-robot system example (Section 3). The testing of the
algorithm is presented in Section 4. Section 5 concludes the
paper.

II. OPTIMAL ROUTE PLANNING IN THE
ACCUMULATOR-BANK

This section describes the simple model that is used to
design the route of the robots in the accumulator-bank.

A. Plan of routes

Let us divide the storage place into cells of equal size such
that a transport robot fits in them. It is very important that we
use the available place in the storage the best possible way.The
resulted matrix is used as a tool for describing the traffic of
the robots: they move from cell to cell to get from one place
to another. Obviously, if we use the smallest possible units,
then more condition examination and much more calculation
have to be performed. There is a trade-off between achieving
the best possible result and the efficiency of the algorithm.

Basic assumptions for the route planning algorithm are as
follows.

• The capacity of each robot is one unit as is the weight
and size of every accumulator, too.

• The orientation is based upon a grid of cells which
allows the robots to drive only among the neighboring
cells (but not diagonally). In every cell there is at most
one robot at a time.

• Every robot moves a unit distance in a unit time, i.e.
they move only to the closest neighboring cell. The
90 degrees turn takes a unit time, too.

• One accumulator fits into one storing cell of the
storage place.

B. Identification of the optimal route

The robots move along the cells of a grid between the
neighboring cells with a one cell per time unit velocity, andthe
90 degrees rotation takes a unit time, too. A widely-used path
search algorithm has been modified for the identification of the
optimal route. This is a popular version of Dijkstra’s graph-
based algorithm, that was developed by Hart et al. [6], where
they described how heuristic information from a problem
domain can be incorporated into a formal mathematical theory
of graph search and demonstrated an optimal property of a
class of search strategies. The algorithm stores the path length
from the starting point to the points of graph on the graph’s
points, that is used again when the recursive algorithm re-visits

this point. This re-visit is easily detectable, and the stored value
is used to prevent continued counting on the given branch
(because we found an existing shorter way) or we can stop
the run of the branch because at this point we have already
found a more efficient path.

The main modification is that we reduced the cost by
reducing the distance between cells. Because the turning of
robots requires time, too, we have to record from which
direction the robot arrived in to the examined cell and to which
direction it continued the search. We add the cost of every90

degrees turns made between cells as a unit virtual distance.
Another modification serves the route which makes traceability
easier: when we get a smaller value in a point than the former
ones and we overwrite until now the smallest approaching cost,
then we note it too, from where (from which direction) the
robot comes to a given point. So we can determine easier the
compliant route after the filling of a table.

Fig. 1 shows an example of the distance table with the
distances in the cells. The green cell is a start point, the blue
cell is an end point and the red cells mark obstacles (wall/rack).

Figure 1. Matrix-based orientation - the problem of listingall the routes

The pseudo code of the proposed basic route search algorithm
can be seen in Fig. 2.

The determination of the shortest route is happening back-
ward: it starts at the end point and determines the desired
route unanimously. For this purpose one has to record from
which cell the robot arrived (source cell) when the length of
the shortest route is modified. The easiest method for doing
this is to build a new data unit in the cells of matrix (source
cell). With this we have a structure similar to a chained list.

It occurs often that there are some routes with equal length
between two given points. It is advisable to process each of
them, so a crisis situation could be avoided in the future. The
routes of equal length present a problem, as the source cell is
not enough to store a single value in the cells when the robot
can arrive to a cell from several sides after driving the same
route length. In order to process the case of equal route lengths
properly, it is very important that we consider the following.

• If the robot arrives in a cell and the covered distance
is less than the smallest distance until now, we have

409Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 429 / 646

Figure 2. Pseudo code of the proposed basic route search algorithm

to cancel the list of source cells (this information is
not relevant).

• If the values of the two distances are equal we have
to record it in the source cell to the list, making sure
not to overwrite the past values.

C. Constructing the list of all routes

The specification of every optimal route and taking into
consideration the turning cost presents a problem when con-
structing the list of all routes. For clarity, let us consider the
example in Fig. 1. The values in the cells mean the distance
values and these are determined by the above algorithm. For
example, the red lines are the shortest routes (with the same
lengths), but the black line has the same length as the other two
red lines (not all routes are drawn in the figure). The source of
the problem is hidden in the grey colored cell. When the robot
approaches the goal from bottom (black line), the distance
value of the cell is17. But when the robot comes from the left-
hand side (red line) the distance value is16, because the cell
value is overwritten with the larger17 value (this information
is correct). However, we have to turn90 degrees to achieve
the target following the red line, that would add one time unit
at this point and the length of the two routes are in fact equal
(17), that we lost by overwriting it.

The easiest way to resolve this problem takes place during
the building of the route. We examine all cells and compare
the directions either with rotation or a straight route. Since a
rotation is not straight, we calculate where the next cell isif
we go on straight. If the direction value of this deviates by
maximum1 from the direction value of the current cell then
we add this cell to the list of the previous routes. Because
in each cell the shortest route to get there and its length are
stored, it is enough if we make up the connection only from
the overwritten cell, the recursive route construction will bring
us to the start cell.

III. C OOPERATIVE ROUTE SEARCHING OF THE ROBOTS

While a single robot navigates in the storage, it can use the
previously described algorithm. However, in the case of more

than one robot, it is important that we deal with prevention of
conflicts, e.g., with the collision of two robots. The possible
collision can be detected in advance, not locally. The robots
can cross-check the routes in advance so they can search for
another route at the start moment instead of waiting for another
robot if a possible collision is forecasted. For this reason, the
robots make a note to each cell when they pass through it, and
notify the other robots about this event. In order to reduce the
load of the communication channel, in certain cases the robots
may communicate indirectly to each other. In this situationwe
install a central computer that is able to store the collected
information of the storage of the cells and it can pass these
information at the request of the robots.

Fig. 3 (a) shows a situation when two robots starting from
the pointsA1 andA3, respectively, may have a collision.

We have got two possibilities to avoid the collision.

• The robots go to the meeting point and after that one
of the robots goes round the other robot. This route
will be longer than the pre-planned route because of
the turns. This can be seen in Fig. 3 (b).

• If the robots plans their routes in advance then the
roundabout route may be shorter, this can be seen in
Fig. 3 (c).

When a robot plans a route for itself then it reserves specific
cells for itself at pre-planned time instances. Because each
navigating robot uses the same time unit, we consider the
time unit to be the time step of the system (we suppose that
every robot pushes on in synchrony). When the next robot
plans its route, it queries the data of the previous robots so
it knows exactly what the first robot (or all previous robots)
reserved: exactly when and which cells they intend to visit.
Now the robot in turn can take this into consideration during
route searching, therefore it can decide what is more profitable
in case of crossing routes: waiting for the passing of another
robot or looking for another route.

A. Waiting for other robots

There may be situations in which it is simply not enough
to avoid another robot because for example the robot takes up
a bottleneck passage and the other passage is too far. At that
time it is more appropriate to wait for the passing of another
robot than to choose a bypass route.

In order to handle such situations properly, we should
modify the route search algorithm so that the algorithm deals
not only with the travelled distance but also with the latency.
For this purpose we must note the latency in every cell together
with the exact current shortest distance, and when the robot
comes into a new cell, we need to compare the sum of the two
values with the entered value. If the following cell is reserved
at the moment of arrival we must wait until the cell will be
empty. During the latency we need to pay attention to the
current cell (in which the robot waits) so that no other robot
traverses it. If this is to happen, the waiting is not possible.

B. Passages

There can be some narrow passages in the storage for the
sake of the better utilization of space, therefore we also need

410Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 430 / 646

(a)

(b) (c)

Figure 3. Comparison of the local collision detection and pre-planning: (a) A possible collision, (b) The unplanned route, (c) The pre-planned route

to deal with them. In these passages there can be one robot at
a time, this can cause a traffic-jam. If two robots approach the
passage at its opposite ends then the route search algorithmcan
sense only the character of the problem before the collisions.

In order to handle passages in a proper way, a new seizing
method had to be developed. When a robot comes into a
passage it places a separate seizing at the end of the passage
(i.e., at the cell after the last cell of the passage), which is valid
not only for the duration when the robot will pass through the
cell but it already starts before entering the passage and keeps
until when the robot steps out from the passage.

A simple example of a passage situation is seen in Fig. 4.
The white squares mark empty cells and the red squares mark
obstacles (wall/rack). The robot marked with the blue arrow
tries to get out from the passage, his route being reserved.
During the route planning of the other robot the recursive
algorithm goes in regularly on the red marked route, it senses
the collision with the first robot, because this branch stops(in
this direction is not any route temporarily). The other green
routes are open though, but with different conditions: on the
dark green route we have not got to wait for the first robot
supposing that we leave the cell before the robot arrives at the
end of passage; on the light green route we have to wait in
any case for the first robot (or else we find ourselves face to
face with the robot and one of them has to turn back). The
problem is that the waiting for a given cell (in our case it is
B3) depends on to which cell we want to go to later.

Figure 4. Comparison of the local collision detection and advance planning:
The problem of stepping in the passage

Figure 5. Comparison of the local collision detection and advance planning:
Different stopping required in various passages

Unfortunately, however, a more complicated situation can
also arise (as it is depicted in Fig. 5. In this case it may happen,
that with each of the three different further directions we need
to wait for a different duration. This can be resolved if we
examine separately every case in the course of route searching.
If we perceive a special seizing before entering a cell we have
to examine to which passage it is allocated because the rate
of waiting will depend on this. For every touched passage we
need to create a separate branch and to examine the waiting
time of them before we can go over to this special cell. We
need to attend to the given branch with the individual waiting
time in the direction of only one given cell.

C. Cells multiple visited

There may be cases in which the optimal route passes
through a cell twice or even more times. This situation presents
a problem to the proposed route planning method, because
the cells between two visits can not be clearly defined, and
the other robots can not decide on the direction they should
proceed. One such example is shown in Fig. 6. The first robot
(black arrow) is planning to pass for the first time so the route
of this is specific: the robot goes straight from cell E11 to cell
E6. If we assume that the robot can pass through a cell only
once, the second robot (red arrow) is forced to make a long
roundabout way. The shortest route will be the blue route, i.e.
the robot shuns the front of the other robot in cell F7 and
waits while the other robot passes and then continues on it
is way. The original route planning algorithm can not process

411Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 431 / 646

Figure 6. Comparison of the local collision detection and advance planning:
The strategy of the stand aside option in contradiction to the roundabout way

this route satisfactorily, because we leave the end points of
the passages (here it is cell E7) and we register the following
information: the previous value of the cell F7 will be E6 and
the previous value of the cell E8 will be F7. Thus, there will
be a stoppage in the course of decryption of the route.

A similar problem may arise where a robot decides to
pass through the cell E7 twice because there are two different
distance values and waiting values. The different waiting value
case is more important. When the second robot passes through
the cell for the first time, the algorithm records0 waiting, then
a positive value for the second time (assuming that we need to
wait some time units for the first robot). These values should
also be noted separately in a suitable data structure. Three
parameters are needed for this: the previous and next cells
(these identify where the robot came from and where it is going
to when it passes through the cell) and the waiting value. This
permits us to record the difference in the duration of waiting
times before the robot steps into the different passages.

IV. CASE STUDIES

Simple case studies were used to test the operation and
efficiency of the proposed cooperative route planning algo-
rithm. For this purpose an implementation of the algorithm
has been developed in Delphi programming language (we
used also Indy (Internet Direct) component package to the
communication), and this simulation environment can visualize
the robots’ movements.

Every measurement result was verified with the following
configuration:

• CPU: Inter Celeron 560@2.13 GHz

• Operating system: Microsoft Windows XP SP2

A. Route planning tests

Each case study had a few cooperating robots and the
topology of the accumulator-bank storage place was also
different. The planning order of the robots was the same
in each case, and it corresponded to their serial number (in
ascending order).

Fig. 7 illustrates the starting situation and the movements
of the robots in the following two examples. The grey cells
show the actual positions of the robots, where both the robots’
serial number and their actual direction are indicated. Thecells
with a number denote the goal of the robot with the same serial
number.

TABLE I. T HE EFFECT OF THE MAP SIZE ON THE RUNNING TIME

Size of map Time of route Time of planning/

planning (ms) robot(ms)

25x25 62,6 3,13

25x50 175 8,75

50x50 334,8 16,74

TABLE II. T HE EFFECT OF THE ROBOT NUMBER ON THE RUNNING

TIME

Number of robots Time of route Time of planning/

planning (ms) robot(ms)

5 14,4 3,08

10 28 2,8

15 46,8 3,12

20 62,6 3,13

• Example 1: Passages
There are four robots in the storage and they know to
which cells they need to get to. We can see in Fig.
7 (a) that every robot stands in compliance with his
forward direction. Robot3 waits till robot1 and robot2
pass through the passage, thereafter robot3 goes on in
the direction of its goal. Robot4 has attained the goal
in the meantime because its route has not crossed the
others. Fig. 7 (b) illustrates the movement of the robots
in this situation.

• Example 2: Getting out of the way
This example illustrates the getting out of the way:
robot1 planned first, it has priority, so robot2 gets
out of its way in the other passage. Thereafter robot2
continues on its way when robot1 passes before it.
We can see the starting situation in Fig. 7 (c), and the
movements in Fig. 7 (d).

B. Efficiency test

In order to test the efficiency of the proposed algorithm,
we recorded the full running time of the algorithm and noticed
how this value changed with the increasing complexity of the
planning problem.

Effect of the map size:In the first test we examined
how the time of planning changes by increasing the size of
the map applying the same number of robots (in the present
instance 20 robots). The robots were randomly placed on the
map. The results are collected in Table I.

The average length of the randomly placed robots’ route
doubled in case of doubling the map size, so the route search
algorithm had to explore the space with twice as large radius
in this case.

Effect of the number of robots:In case of the other test
the robots were arranged randomly in a25x25 of size map-file.
Five program running was performed with each robot number
value, and the running times were averaged. Table II shows
the simulation results.

It can be seen from the results that the system integrates
the new robots well, the robot pre-planning time is about3 ms
independently of the number of robots. This important result

412Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 432 / 646

(a) (b)

(c) (d)

Figure 7. (a) Example1, starting situation, (b) Example1, movements of the robots, (c) Example2, starting situation, (d) Example2, movements of the robots,

shows that the proposed algorithm scales up well with the
size and complexity of the problem, thus offering an efficient
service of the accumulator-bank.

V. CONCLUSION

A novel optimal route planning algorithm is proposed in
this paper that is based on the cooperation of the robots
implemented as agents. The basic version of the algorithm
uses a special data structure that is arranged according to the
matrix-type grid of the cells defined in the storage place.

The robots use the same route planning algorithm in turn,
and take into account the plans of the other robots in order to
avoid collision. This way they can detect and avoid collision
in advance and not locally. Special conflicting situations,
including waiting, passage handling and multiple visitingof
cells are also investigated.

The operation and properties of the proposed algorithm
are illustrated using simple examples with robots in different
special conflict situations.

For optimizing the navigation of the robots, we aim at en-
riching their communication process with learning capabilities.

ACKNOWLEDGMENT

We acknowledge the financial support of the Hungarian
State and the European Union under the TAMOP-4.2.2.A-
11/1/KONV-2012-0072. This publication/research has been
supported by the European Union and Hungary and co-
financed by the European Social Fund through the project
TAMOP-4.2.2.C-11/1/KONV-2012-0004 - National Research
Center for Development and Market Introduction of Advanced
Information and Communication Technologies.

REFERENCES

[1] J.L. Adler and V.J. Blue, ”A cooperative multi-agent transportation
management and route guidance system”, Transportation Research Part
C: Emerging Technologies 10(5-6). 2002, pp. 433-454.

[2] T. Dulai and Á. Werner-Stark, ” Immediate event-aware routing based
on cooperative agents”, Proceedings of Factory Automation2012,
Veszprém, 21-22 May. 2012, pp. 144-148.

[3] B. Eksioglu, A.V. Vural, and A. Reisman, ”The vehicle routing problem:
A taxonomic review”, Computers & Industrial Engineering 57, 2009, pp.
1472-1483.

[4] K. Fischer, J.P. Müller, and M. Pischel, ”Cooperative transportation
scheduling: An application domain for DAI”, Applied Artificial Intel-
ligence: An International Journal, 10(1), 1996, pp. 1-34.

[5] M. Gendreau, F. Guertin, J.Y. Potvin, and R. Séguin, ”Neighborhood
search heuristics for a dynamic vehicle dispatching problem with pick-
ups and deliveries”, Transportation Research Part C 14, 2006, pp. 157-
174.

[6] P.E. Hart, N.J. Nilsson, and B. Raphael, ”A formal basis for the heuristic
determination of minimum cost paths”, IEEE Transactions onSystems
Science and Cybernatics, 1968, pp. 100-107.

[7] G. Laporte, ”The vehicle routing problem: An overview ofexact and
approximate algorithms”, European Journal of OperationalResearch, No.
59, 1992, pp. 345-358.

[8] Z. Szabó, B. Lájer, and́A. Werner-Stark, ”Automata Depository Model
with Autonomous Robots”, Acta Cybernetica 19, 2010, pp. 655-660.

[9] D. Zhenggang, C. Linning, and Z. Li, ”Improved Multi-Agent System
for the Vehicle Routing Problem with Time Windows”, Tsinghua Science
and Technology, 14(3), 2009, pp. 407-412.

413Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 433 / 646

 Business Architecture for a SME: A Case Study of a Manufacturing Firm in

Mexico

Alicia Valdez

Research Center

University Autonomous of Coahuila

Coahuila, Mexico

aliciavaldez@uadec.edu.mx

Carlos Vega, Elias Olivares, Juan Perez

Research Center

UPAEP

Puebla, Mexico

carlosarturo.vega@upaep.mx,elias.olivares@upaep.mx,

juancarlos.perez@upaep.mx

Abstract— Enterprise architecture is a subject that has

increased its importance in the Small and Medium Enterprises

in the manufacturing sector of the industry in Mexico. The

global competitiveness of the markets has influenced the

adoption of methodologies that support the strategic alignment

of the processes with the goals and strategic objectives of the

firms. The components of the business architecture like

mission, vision, strategic objectives, products, organizational

structure, business processes, clients and geographic region,

were collected from the firm of the case study for the design of

the architecture. As a result of the practical application, an

implementation model has been created and four strategic

objectives were established for to improve productivity and

competitiveness. This paper is a result of the research project

of analysis, design and implementing business architecture in a

medium size manufacturing company like partial architecture

of an enterprise using ontologies for representing the core

elements of the business architecture; the study presents

clearly the importance of the strategic planning for the analysis

and the detection of the main faults for the success of the

achievement of goals and objectives.

Keywords-Business architecture; SME; Enterprise

architecture; Key processes

I. INTRODUCTION

Five major markets are emerging in the world, namely,

China, India, Southeast Asia, Latin America and Eastern

Europe, where global manufacturing companies have

considered to make investments, because these regions are

rapidly growing economies with great potential for business

[1].

In these regions, the Small and Medium Enterprises

(SMEs) are important in the development of the economy as

they have a great capacity of generating jobs. In Mexico,

99% of the companies are SMEs, (for every 10 employees,

7 of these are working on SMEs) [2]; the study “Impact

Evaluation of SME Programs in Latin America and the

Caribbean”, developed by the World Bank has mentioned

some of the problems faced by SMEs, among which are [3].

 Access to financing;

 Weak management capacity;

 Lack of ability to exploit economies of scale in

production;

 Poor information about market opportunities, and

 New technologies and methods of work

organization.

The Enterprise Architecture (EA) is a strategic solution

to improve the capabilities of these companies and respond

quickly to the challenges, either business related or

technological which is today’s markets demand.

EA is also a way that aims to provide companies with a

framework for the use of information on business processes

in ways that support the business strategy [4]. Orantes,

Gutierrez, and Lopez have mentioned that the company

should be in a constantly evolving, redefining business

processes, to achieve business process architecture, which

is the basis for subsequent architectures [5].

The EA is the instrument that establishes the structure of

the company, is a conceptual model of the business and

information technology solutions (IT), seen as a set of

pieces that involves processes, and functions that works

together in a coherent and well defined way [6].

Some authors consider that SMEs have lesser tendencies

to use IT for strategic purposes [7], and the success of

architectures implementation depends on consistent

objectives between IT strategy and business strategy [8].

The Business Architecture (BA) is a partial architecture

of the EA, where the business is defined, the organizational

structure is documented, and the business processes are

identified.

 BA analyses the business model relying on strategic

planning with their areas of interest [9].

In this case study, an analysis was performed to

establish: What key processes in manufacturing SMEs are

included in the EA design, as well as, the practices and

business modeling tools that use these companies to develop

EA; with the objective of supporting them in increased

productivity and competitiveness. A proposal was

414Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 434 / 646

developed that included EA standards, software tools, and

methods [10].

The software tools [11] can provide support for this

particular type of companies, that can be easy to use and

implement to help them in their process of establishing

enterprise architectures, while developing, a parallel process

of Strategic Planning to support in setting goals and

strategic objectives.

The organization of this paper is as follows; first section

is mentioning the concepts and methods of the EA; the

second section shows the information required for the

business architecture from the company; finally, the

implementation of the solution derived from the analysis is

shown.

II. CONTENT

The EA started as management information systems in

the early 60's in the United States Company International

Business Machines (IBM) by “Information Systems,

Control and Planning Staff" (ISCM) area.

 The methodology known as Business Systems Planning

(BSP) was considered one of the methodologies that started

the EA.

 John Zachman, who worked at ISCM, developed a

framework for defining the architectures of information

systems, subsequently became the "Zachman Framework"

[12]; one of the perspectives was the business model of the

company.

In 1994, the Department of Defense of the United States

of America [13] created the Technical Architectural

Framework for Information Management (TA-FIM), based

on Zachman framework.

 In 1996, the Congress of the United States of America

passed a law called "Clinger-Cohen Act of 1996", which

specifies that federal agencies should improve the efficiency

of investment on information technologies, establishing the

Council of Managers of information Technology (CIO's

Council) group, which originated the Federal Enterprise

Architecture Framework (FEAF) [14].

TAFIM was withdrawn by the Department of Defense

and the association donated to The Open Group, who later

developed The Open Group Architecture Framework

(TOGAF) standard [15].

TOGAF is an enterprise architecture methodology and

framework, used in organizations to improve business

efficiency [16], based on the Architecture Development

Method (ADM); ADM is divided into 9 phases, an

overview of the architecture describing how the new

capacity going to align business goals and strategic

objectives with IT. Fig. 1 shows the phases of the ADM

Method.

In the firsts two phases, preliminary and “A”, the

principles of the architecture and the architecture vision are

defined.

In the “B” phase, the BA with the fundamental business

organization and its goals, objectives, business processes,

functions, services, human resources, organizational

structure, the principles governing its design and evolution

are analyzed.

Figure 1. Architecture Development Method Phases

The metal mechanic industry is representative of the

northern of Mexico, which provides raw material to the

automotive cluster with some important firms like General

Motors, Chrysler, and other important companies.

The suppliers of the cluster are mainly SMEs; this case

was developed in SME of the metal mechanic industry and

the flow of the information of the study case is shown in

Fig. 2.

Beginning with the collection of the information

required, this information was captured in the ontology

editor; from the editor were obtained reports and maps, and

flowcharts of the processes were built; after these activities,

the design of the BA was realized, and finally, the

implementation of the design.

The results showed some opportunity areas for

improvement, in the company.

A. Information of the Business Architecture

The BA involves some elements of the company like

mission, vision, objectives, goals, values and policies,

business processes, procedures and functions, organizational

structure, situational analysis, customers, markets, products

and long, medium and short strategies.
Tables I and II show the data of the BA elements,

processes like distribution, finance, human resources,
production, quality, sales and marketing, information
technology, and product development.

Each process has a set of activities; for example, the

product development includes production cycle program,

cutting, marking, machining and forming of steel plates, and

415Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 435 / 646

profiles. All processes were collected from the company and

recorded in software tools.

Figure 2. Flowchart of the case study

This information served as base for the next

architectures, application and technology, where each

process are linked with a software application and

technology that supported it.

TABLE I. DATA FOR THE BUSINESS ARCHITECTURE

Business

Architecture

Description

Mission “Serve society, customers,

employees, suppliers, be
the best option for all”.

Vision “Being a quality supplier

of metal products, broaden

participation in national
and international markets”

Values Responsibility, loyalty,

respect and quality
production.

Objectives

Improve the relationship

between customers and
suppliers.

Minimize operation failure.

Maximize the performance
of the raw material.

Have better management

control.

Improve planning

processes.

Investment plan in
machinery and

equipment.

The organizational structure of the company has 4 levels

corresponding to the position of the Chief Executive Officer

(CEO) and sales manager for the level 1; head of production

machining, head buyer, finance officer, and human

resources manager for level 2; machining supervisor, pailer

supervisor, warehouse manager, billing, and quality control

for level 3; machining operators and pailer operators for

level 4.

The customers belong to the local market of the northern

of Mexico with Altos Hornos de Mexico, S.A. (AHMSA),

TAKATA Industries, General Motors Company, Chrysler,

and other companies of the metal mechanic industry.

The market is regional; the firm can compete in global

markets adopting a strategy of certification in quality

processes. The products of manufacturing are: General

forklift parts, rotatory joints, various pieces of mechanical

equipments, and assembly using Computer Numerical

Control (CNC) machines.

The first strategy is to manufacture products with high

quality that markets demands, the support of the IT can

permit to reduce costs, and increase the competitiveness and

the productivity.

With the data obtained from the company, the next step

is entering data in the ontology software; for this case, we

use the free software Protégé Ontology Editor 3.4 [17],

developed by the Stanford University; in this software, we

can have one super class called EA with some subclasses

like business architecture, information architecture,

applications architecture, and technology architecture.

The main components of the BA class are shown in Fig.

3, these are:

TABLE II. PROCESSES OF THE COMPANY

 Company area Processes

Distribution Finished products

delivery

Finance Management
company's finances

Human

Resources

Personnel

administration

Detect training needs

of business areas,

especially productive
areas for develop

entrepreneurial

training program

Investment

Administration

Investments of the

company

IT Provision of IT

support for company's
business processes

Quality Manufacture that

meets production
specifications

Testing and inspection

using ultrasonic
methods or industrial

inspection

Sales and

Marketing

Management

customers.

Customer service

Continuous

communication with
customers to identify

needs and complaints.

Stock Register the inputs and
outputs of goods and

raw materials.

Suppliers
management.

Product
development

Program production
cycles

Cutting, marking,
machining and

forming of steel plates

and profiles

416Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 436 / 646

 Objective (strategic alignment);

 Principle (production requires all processes);

 Domain (distribution, sales, quality, etc);

 Role (CEO, chief of sales, pailer operator);

 Capability (planning sales, machinery

operator);

 Product (rotatory joints, machining), and

 Process (design products, sales management).

The BA objective is the strategic alignment between

business goals and IT represented like “Strategic

Alignment.”

The business domains are all areas and functions of the

company, like distribution, finance, sales, and others.

The principle business is “Production requires all

processes.” Business roles are performed by people and the

business process are all the processes represented in Table

II, required for the company operation.

The graphical representation of the all BA components

is the link between the collected data and the software tool.

Figure 3. BA Design

Fig. 4 displays the customer’s process with roles and

capabilities, after entering data in the ontology editor.

The information of the editor is sent to a graphical tool

[11], functioning like repository, which is an open source

software tool for the management of AE, this tool is

Essential Architecture Manager 3.0 [18], requires some

prerequisites software like Apache Tomcat 5.5 or above,

Java Runtime 1.5 or above, Graphviz 2.26, and the Protégé

Ontology Editor 3.4 or above.

This set of tools creates a graphical environment for

representing the EA, and each of the partial architectures,

like BA. Fig. 4 shows partially one process with the

components of the BA for this process.

All the processes were represented in the software tools

for purpose of completing the BA for subsequent

architectures.

B. Implementation model

Figure 4. Example of process in software tool

The implementation model is centered on the client, the

material resources and equipment, organization, human

resources, logistics, and all that the company needs for

working in his goals and objectives; so the circle represents

the firm, the architectures are around the circle, and are

applied to all processes, for to identify strategic changes

with assessment of options tending to produce a change

plan. Fig. 5 shows the implementation model described.

Some components of the BA were redesigned as a result

of the analysis for implementation updating:

 Mission;

 Vision;

 Strategic objectives, and

 Organizational structure.

Figure 5. Implementation model diagram

417Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 437 / 646

Considering full knowledge of the manufactured

products, identifying potential markets, and their

competitive advantage, and the vision determines the

strategic direction of the company. Four strategic objectives

were established:

Strategic objective 1: Increase production and

competitiveness to achieve better sales and increase

company revenue.

Strategic objective 2: Update, acquire, and implement

the technology required for increased production and

competitiveness.

Strategic objective 3: Update recruitment processes and

training of existing staff to increase integration and

productivity.

Strategic objective 4: Secure your position with existing

customers, increase local sales and find new customers in

global markets.

Two areas from the organizational structure were added:

Human Resources and Logistics; the justification was that

the firm does not have human resources area for the training

of the employees, and logistics are required for the

management of the resources from the beginning of the

value chain to final assembly.

Other needs identified like the strengthening of the

market position, the total quality culture, and the training of

human resources to achieve improved organizational

climate and consequently on the productivity of the entire

company.

Current management skills are not sufficient for the next

five or ten years; it requires that managers, although have

professionals studies in engineering, must be kept updated

on the latest management techniques.

Competition modernizes its production techniques and

new companies emerge, so the upgrading of equipment and

technological infrastructure is vital to the long-term

performance of the company.

III. CONCLUSION

The process of developing a BA in a SME in metal

mechanic industry in Mexico reflects the needs of this
industry sector, to upgrade their management skills to
compete in global markets.

BA must be focused on the importance of the technology
strategy aligned with the business strategy, to gain
competitive advantage from the use of IT, to enable them to
be inserted into global markets with a clear plan.

This project helped to meet the needs of SMEs
companies to propose affordable solutions that make
business management resources and technology to solve
problems.

BA can be represented on a business ontology designed
especially to support the structuring of architectural maps of
the company and its relationships with strategic objectives.

It is necessary to comprehensively conceptualize
strategic planning of the company to continue with the

design of the ontology in the subsequent phases as
application and technology.

The contribution of the paper focuses on the approach to
the problems of the company, with the help of business
architecture, software tools, and the implementation model.

The BA supports the strategic alignment between
objectives, goals, and business processes.

In the future, this industry will be supplier of the
aerospace industry in the country, and would be integrated to
a more specialized chain with greater scope in the domestic
and international markets.

This research project was developed in one year for a
doctoral dissertation in Strategic Planning.

REFERENCES

[1] Deloitte T., ”Innovation in emerging markets 2007 annual

study”, http://www.deloitte.com/assets [retrieved: 06-2013].

[2] Secretary of Economy, ”SMEs news”,http://economia.gob.mx/
[retrieved: 04-2013].

[3] G. Lopez and H. Tan, “Impact evaluation of SME programs in
Latin America and the Caribbean”, World Bank, Washington,
USA, 2010, pp. 4-10.

[4] S. Spewak and S. Hill, ”Enterprise architecture planning,
developing a blueprint for data, application and technology”,
Wiley publisher, USA, 1992, pp. 1-6.

[5] S. Orantes, A. Gutierrez and M. Lopez,”Enterprise
architectures: Business processes management vs Services
oriented architectures, are they related?”, Redalyc, vol. 13, pp.
136-144, 2009.

[6] W. Bruls, M. Steenbergen, R. Foorthius, R. Bos, and S.
Brinkkemper, “Domain architectures as an instrument to
refine enterprise architecture”, Communication of the
association for information systems, vol. 27, pp. 517-540,
2010.

[7] B. Goh, “Applying the strategic alignment model to business
and ICT strategies of Singapore’s small and medium sized
architecture, engineering and construction enterprises”,
Construction management and economics, vol. 25, pp. 157-
169, 02-2007.

[8] H. Voordijk, A. Leuven and, A. Laan, ”Enterprise resource
planning in a large construction firm: implementation
analysis”, Construction management and economics, vol. 21,
pp. 511-521, 2003.

[9] S. Spewak, “Enterprise architecture planning”, Wiley
publisher, 2000, pp. 85-88.

[10] J. Schekkerman, “Enterprise architecture good practices guide:
How to manage the enterprise architecture practice”, Traffod
publisher, 2008, pp. 15-20.

[11] D. Rice, “Review of essential architecture manager 1.0”,
Journal of enterprise architecture, vol. 1, pp. 1-7, 05-2009.

[12] J. Zachman, “A framework for information systems
architecture”, IBM sytems journal, vol 26, pp. 276-292, 1987.

[13] Departament of Defense of the United States of America,
”DoD architecture framework version 2.0”, 2009,
http://dodcio.defense.gov/dodaf20.aspx [retrieved: 05-
2013].

[14] R. Sessions, “A comparison of the top four enterprise
architecture methodologies”, MSDN Library,
http://msdn.microsoft.com/en-us/library/bb466232.aspx
[retrieved: 03-2013].

[15] The Open Group, ”TOGAF”,http://www.opengroup.org/togaf/
[retrieved: 05-2013].

418Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 438 / 646

[16] The Open Group,”Management overview, in ADM basic
principles,http://www.togaf.info/ [retrieved: 05-2013].

[17] Stanford University, “Tutorial documentation of protégé”,
http://protege.stanford.edu/doc/users.html#tutorials [retrieved:
05-2013].

[18] Essential project,”The Essential Project”, 2013,
http://www.enterprise-architecture.org/ [retrieved: 06-2013].

419Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 439 / 646

Confirming Design Guidelines for Evolvable
Business Processes Based on the Concept of Entropy

Peter De Bruyn, Dieter Van Nuffel, Philip Huysmans and Herwig Mannaert
Normalized Systems Institute (NSI)

Department of Management Information Systems
University of Antwerp

Antwerp, Belgium
{peter.debruyn, dieter.vannuffel, philip.huysmans, herwig.mannaert}@uantwerpen.be

Abstract—Contemporary organizations need to be agile at
both their IT systems and organizational structures (such as
business processes). Normalized Systems theory has recently
proposed an approach to build evolvable IT systems, based on the
systems theoretic concept of stability. However, its applicability to
the organizational level, including business processes, has proven
to be relevant in the past and resulted a.o. in a set of 25
guidelines for designing business processes. In subsequent work,
the Normalized Systems theory was confirmed and extended
based on the concept of entropy from thermodynamics. Therefore,
this paper explores whether the guidelines which have been
proposed for business processes from an evolvability point of
view can be confirmed or extended from the entropy reasoning
as well. More specifically, the validity of 9 business process design
guidelines is investigated for this purpose. Our results indicate
that the investigated guidelines are rather consistent among both
approaches: guidelines required to attain evolvability seem to
enable low entropy (i.e., complexity) and vice versa.

Keywords—Business Processes; Complexity; Entropy; Nor-
malized Systems.

I. INTRODUCTION

Lack of organizational agility is often attributed to a lack
of IT agility [1] as IT systems ensure the support or even au-
tomation of business processes. Consequently, organizational
changes need to be reflected in both the business processes and
their supporting information systems. This means that, instead
of focusing solely on IT systems, attention for the design and
agility of the business processes is needed as well. The explicit
attention for the design of business processes emerged when
the implicit work practices were automated using ERP systems
[2]. It was recognized that the hard coding of the business
processes in software packages resulted in a lack of adapt-
ability of the processes [3]. As a result, the design of business
processes gained a central role in organizations, separated from
the design of information systems [2]. However, integration of
business processes and information systems still needs to be
achieved, and agility (or “evolvability”) needs to be ensured
on both levels.

Normalized Systems (NS) theory offers a theoretically
founded way to design software systems which exhibit evolv-
ability based on the systems theory’s concept of stability, by
proposing a limited set of design theorems [4], [5]. Applying
the theory’s rationale to the business process level has been
shown feasible and resulted a.o. in a set of 25 guidelines for de-
signing evolvable business processes [6]. In subsequent work,

NS theory was confirmed and extended based on the concept
of entropy from thermodynamics [7]. This extension resulted
in additional theorems, while confirming the existing theorems.
Therefore, it might be interesting to verify whether the guide-
lines which have been proposed for business processes can
be confirmed or extended from the entropy reasoning as well.
This paper explores this research area by applying the entropy
reasoning to a set of business process guidelines (which were
originally proposed to design evolvable business processes).
First, we provide some theoretical background (Section II).
Afterwards, the guidelines (Section III) and discussion (Sec-
tion IV) are presented. Finally, our conclusions are offered in
Section V).

II. THEORETICAL BACKGROUND

NS was introduced as a theoretically founded way for
deterministically designing software architectures exhibiting
a proven amount of evolvability. For this end, the systems
theoretic concept of stability is applied [4], [5]. This implies
that a bounded input function (e.g., “add data attribute”) should
result in bounded output values, even as time T → ∞ . It has
been proven that at least four theorems should be consistently
applied in order to obtain such evolvable software architecture
[4], [5]. Violations against these theorems can be observed at
compile-time [5].

Later on, the theory has been proven to be applicable to
the design of evolvable business processes [6]. Here, business
processes are considered at their most elementary level (i.e.,
the “elementary tasks and elementary sequencing and design
of these tasks”). To obtain stability, it is required that changes
to individual processes or tasks do not impact other processes
or tasks [6]. In order to achieve such Normalized Business
Processes (NSBPs), a set of 25 guidelines was developed,
based on the four NS theorems [6].

In order to position this research, a clear distinction be-
tween the concepts evolvability and flexibility is necessary.
Although flexibility also denotes a desired characteristic of
business processes, as defined by e.g., [8]: ‘the capability to
implement changes in the business process type and instances
by changing only those parts that need to be changed and
keeping other parts stable”; it differs from evolvability defined
as the capability of a modular business process design to adapt
to identified change drivers [6]. It also differs from the change
patterns research, as that research focuses on how (opera-
tionally) processes should be changed to be flexible, whereas

420Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 440 / 646

this research focuses on why and how processes should be
(structurally) designed in order to support change. Matching
the flexibility types of Schonenberg [9], evolvability can be
situated within the Flexibility by Design type. Nevertheless,
designing evolvable business processes actually precedes flex-
ibility as run-time (flexible) design decisions should comply
with the requirements of evolvable business processes at design
time.

In subsequent research, NS was extended based on the
thermodynamic concept of entropy, initially focusing on soft-
ware architectures again [7]. As entropy is generally associated
with concepts as complexity, amount of disorder or available
information, it enables the study of the diagnostability of a
(software) system. In statistical thermodynamics, entropy is
considered proportional to the number of microstates con-
sistent with one macrostate (i.e., its multiplicity) [10]. The
macrostate refers to the whole of externally observable and
measurable (macroscopic) properties of a system, correspond-
ing to visible output of a software system (e.g., loggings).
The microstate depicts the whole of microscopic properties
of the constituent parts of the system, such as binary values
representing the correct of erroneous outcome of a task (i.e., a
unit of processing of which we are interested in independent
information about whether it has been executed properly). The
higher the multiplicity, the more difficult it becomes to identify
the precise origin of an observed error. This approach requires
a run-time view of the system [7]. To design information
systems exhibiting low entropy, two NS theorems have been
confirmed, while two additional theorems were proposed as
well [7].

This entropy viewpoint can be applied to business pro-
cesses as well [11], [12]. Again, a business process is consid-
ered to be a flow (i.e., including sequences, selections and
iterations) of tasks which perform actions on one or more
information objects. Considering their execution allows us to
define macrostates and microstates on this level as well. The in-
dividual values of, for example, the throughput times of all task
instantiations correspond to a microstate. The macrostate of a
business process is the (aggregated) information available for
an observer (e.g., the total troughput time). Multiple microstate
configurations consistent with one macrostate (i.e., multiplicity
> 1), makes entropy (and the experienced complexity during
diagnostics) increase, and typical management questions more
difficult to answer. For instance, it becomes unclear which task
or tasks in the business process was (were) responsible for the
extremely slow (fast) completion (of this particular instance)
ofthe business process

No specific guidelines on how to reduce entropy on this
level have been formulated yet. Similar to the software level,
it is hypothesized that guidelines to achieve stable business
processes might reduce entropy as well. As a first step, we
assess in this paper the entropy-reducing capability of the first
nine available guidelines of Van Nuffel [6]. More specifically,
we investigate whether a violation of each guideline increases
the multiplicity (and hence, entropy) of business processes.

III. COMPARISON OF GUIDELINES RATIONALES

In this section, we will systematically investigate the first 9
guidelines as proposed by the work of Van Nuffel [6]. For each

guideline, we will first provide a brief description. Next, we
explore whether not adhering to this guideline would imply an
increase in entropy as we defined it earlier. Guidelines of which
violations result in additional entropy are then considered to
be suitable for entropy control as well.

The first guideline, “Elementary Business Process”, re-
quires that a business process should be operating on one and
only one Information Life Cycle Object (ILCO) [6, p. 107].
Not adhering to this guideline would imply a design in which
a business process could be operating on multiple ILCOs.
For instance, consider both invoicing and manufacturing steps
which are mixed up and interacting in one process, and a
problem with the total throughput time of finishing invoices is
present. At least two situations in which multiplicity > 1 (and
entropy arises), can now occur. First, as the business process is
concerned with operations on multiple ILCOs, the problematic
throughput time of the invoicing steps can be “compensated”
by “normal” throughput times of the manufacturing steps.
Consequently, the problematic total throughput time of the
invoicing activities would not necessarily raise an “alert”, even
after for instance hypothesis testing on the overall observed
mean versus expected mean. Therefore, multiplicity > 1 (and
entropy increases): the status reflected by the macrostate (e.g.,
no problems are reported (“OK”)), is conform to multiple
microstates (e.g., both “OK” or “Not OK” for the throughput
time of the invoicing steps). Further, not demanding that
business processes operate on a single information object, also
implies that multiple business processes can be operating (un-
consciously) on identical information objects (i.e., duplication
and copy/paste might occur). Therefore, chances that the prob-
lematic total throughput time of the invoicing activities would
raise an “alert” become even smaller, as the information on this
concern is not properly separated. This situation correlates with
our (reduced) observability interpretation of entropy as pointed
out in Section II. Second, in case a problem is observed (i.e.,
the macrostate signals “Not OK”), multiplicity > 1 as well.
Indeed, the macrostate conforms to multiple microstates: the
“Not OK” result of the total throughput time might be related
to the manufacturing steps, the invoicing steps or both. In order
to diagnose the problem unambiguously, the process owner
should disentangle all steps in the business process, determine
the ILCO they belong to, and analyze to which ILCO the
overall problem is actually related. Further, we already noted
that not demanding a business process to operate on a single
information object might result in multiple business processes
operating (unconsciously) on identical information objects
(i.e., duplication and copy/paste might occur). If the macrostate
of multiple business processes (each implementing (duplicate)
invoicing steps) goes to “Not OK”, chances of identifying
“the invoice” as the problematic concern become even smaller,
as the information on this issue is not properly separated.
This situation correlates with our (reduced) diagnostability
interpretation of entropy as pointed out in Section II. Based
on these two situations, we can conclude that not adhering to
this guideline implies an increased amount of entropy in the
business process instantiation space. Therefore, we state that
the guideline is suitable for entropy control as well.

The second guideline, “Elementary Life Cycle Infor-
mation Object”, defines a LCIO as an information object
not exhibiting state transparency [6, p. 114]. Combined with
guideline 1 this implies that a business process is related to

421Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 441 / 646

one information object not exhibiting state transparency. In this
context, an information object is considered state transparent
if it adheres to the NS Separation of States principle and the
object has no proper state transitions which should be made
explicit [6, p. 118]. Not adhering to this guideline would imply
two possible situations: (1) the identification of an information
object as a LCIO when it already exhibits state transparency,
or (2) not recognizing a non-state transparent information
object as a LCIO. Regarding the first situation, the creation
of an additional LCIO (and a corresponding business process)
for an information object of which the states are already
fully reflected by another LCIO, does neither increase of
decrease entropy. Indeed, no additional information regarding
the microstate configuration is retained or lost (the information
regarding the states of one particular LCIO instance is simply
duplicated) by identifying this additional LCIO. Regarding the
second situation however, an information object not exhibiting
state transparency which does not get recognized as a LCIO,
will generate an increase in the degree of entropy (i.e., mul-
tiplicity > 1). Indeed, as in such case no state transparency
regarding the concerning information object is attained, infor-
mation about its state transitions (and hence, the microstate
configuration) is lost. Expressed differently, a multiplicity > 1
will arise during and after execution-time as the macroscopic
observations regarding this information object cannot be traced
to individual tasks represented by states (i.e., a myriad of
microstates are possible). This situation correlates with both
our (reduced) observability and diagnostability interpretations
of entropy as pointed out in Section II. Consequently, this
guideline is not strictly necessary to control entropy in the
context of the first situation: theoretically speaking, a state
transparent information object can be identified as a LCIO
without increasing entropy (albeit without any thinkable bene-
fit). However, the second situation shows that not adhering to
this guideline can imply an increased amount of entropy in the
business process instantiation space when a non-transparent
information object is not recognized as a LCIO. Therefore,
we state that the guideline is largely suitable for entropy
control and advice its application for this purpose as well.
We would further like to add that this guideline actually quite
nicely illustrates the core reasoning of designing business
processes based on the entropy rationale: for every task of
which separate information might be valuable (constituting
a so-called “information unit”), a separate state should be
defined and related to the information object it is operating
on. Therefore, each information object not exhibiting state
transparency should be considered as a LCIO, thereby storing
information of each individual task performed on it, at its most
fine-grained level.

The third guideline, “Aggregated Business Process”,
states that in order to represent an aggregated business process,
an aggregated LCIO has to be introduced (p. 121). This
guideline relates to the fact that certain aggregated business
processes might be necessary to several reasons. First, the or-
chestration of different business processes (each operating on a
single LCIO) by a distinct business process might be necessary.
For instance, consider an Order-to-Cash process in which sev-
eral sub-processes —such as “order entry process”, “procure-
ment process”, “production process”, etcetera— are each indi-
vidually and successively called, waiting for completion, upon
which the next (set of) sub-process(es) is called, completed,

etcetera. Second, different (both internal or external) stakehold-
ers might require different perspectives (such as aggregations)
due to, for instance, their own functional domain. For instance,
in case of very complex business processes, one can imagine
that clients or certain actors at a higher management level
might be primarily interested in the mere “milestones” (e.g.,
“order received”, “order produced”, “order shipped”) of a
business process, instead of the possible hundreds of more fine-
grained states the product might be in during its lifecycle. The
guideline under consideration prescribes that such aggregated
processes may only be introduced for orchestrating purposes
and in case the business processes under consideration are
not able to be designed solely based on guidelines 1 and
2. Once more, not adhering to this guideline would imply
two possible situations: (1) designing an aggregated business
process while a redesign based on guidelines 1 and 2 would
be possible, or (2) not recognizing a business process for
orchestrating purposes while a redesign based on guidelines
1 and 2 is not possible. The first situation would clearly imply
an unnecessary combination of two concerns and therefore a
violation of guidelines 1 and 2 (as a redesign based on them
is still possible). Given the fact that both guidelines were
proven to mostly result in an increase of entropy when not
adhered to, this situation would equally result in an increase
of entropy. The second situation would lead to not recognizing
a “combined concern”: while each of the underlying concerns
have their own LCIO and corresponding business process, the
orchestration or “interfacing” between them might constitute
a genuine concern as well. This orchestration might entail
a relevant information unit and therefore necessary to keep
track of when one’s aim is to minimize entropy. Imagine
an Order-to-Cash process tracking the Order Entry Process,
(possibly multiple) Procurement Processes, Production Pro-
cesses, Delivery Processes, etcetera. While each of these
processes clearly designate their own LCIO and therefore,
business process, the orchestration between them is crucial
to be monitored as well. Indeed, tracking interfacing issues
in this Order-to-Cash Process constitutes relevant information
(macroscopically) and in case a customer complains about
a lately delivered order (i.e., the macrostate), the specific
business process (instance) which is causing this delay (Order
Entry, Procurement, etcetera) should be identifiable (i.e., the
specific microstate) Not identifying the necessary aggregated
process would therefore lead to multiple microstates consistent
with one macrostate. This situation correlates with both our
(reduced) observability and diagnostability interpretations of
entropy as pointed out in Section II. We can therefore conclude
that not adhering to this guideline implies an increased amount
of entropy in the business process instantiation space and state
that the guideline is suitable for entropy control as well.

Guideline 4, ”Aggregation Level”, requires that tasks
performed on a different aggregation level should denote a
separate business process (p. 124). An “aggregation level” in
this particular guideline is mainly to be understood as focusing
on the multiplicities of different information objects (i.e., the
different perceived aggregations). For instance, a typical Order
within a company might be conceived as being associated
with several Product processes, where this Product process
at its turn might then again be associated with multiple Part
processes. Not adhering to this guideline would imply that
it is possible for a business process to execute sequences of

422Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 442 / 646

tasks situated at different “aggregation levels”. Suppose one
business process performing a sequence of tasks on a “parent”
information object (e.g., “Product”) and sequences of tasks on
its “child” information objects (e.g., different “Part” instances).
As one could argue that such business process is operating on
multiple LCIOs, our first two arguments are highly parallel to
those of guideline 1. First, such business process design would
not guarantee that systematic problems regarding, for instance,
the overall throughput time of the sequence of tasks performed
on the “child” information object are observed. Indeed, they
might become “compensated” by “normal” throughput times
of the other tasks, therefore not necessarily raising an “alert” to
the observer. Hence, multiplicity > 1 (and entropy increases):
multiple microstates (“throughput times OK” and “throughput
times Not OK”) are consistent with one macrostate (“no
problems are reported”). This situation correlates with our
(reduced) observability interpretation of entropy as pointed
out in Section II. Second, in case a problem is observed (i.e.,
the macrostate signals “Not OK”), multiplicity > 1 as well.
Indeed, the macrostate conforms to multiple microstates: the
“Not OK” result of the overall process might be related to
the sequence of tasks performed on the “parent” information
object, the “child” information object or both. This situation
correlates with our (reduced) diagnostability interpretation
of entropy as pointed out in Section II. Third, no instance
traceability regarding the multiple processed Parts within the
single business process seems feasible in such design. There-
fore, the same states regarding the “child” information object
sequence are activated several times during the execution of
the business process. This makes adequate state-tracking (cf.
guideline 2) impossible. As a result, the business process
owner cannot make the distinction between situations in which
the problematic throughput time might be associated with
all Part instances in general (i.e., a “systematic” recurring
problem) or with one Part instance in particular (and in such
case, which specific Product instance). Also in this third
situation, this implies multiplicity > 1: one macrostate (i.e.,
a problem is observed) is consistent with multiple microstate
(i.e., the problem is due to Part instance 1, or 2, . . . , or all
Part instances): certain parts of the microstate configuration
are simply not captured during process execution. Based on
these two situations, we can conclude that not adhering to
this guideline implies an increased amount of entropy in the
business process instantiation space. Therefore, we state that
the guideline is suitable for entropy control as well.

Guideline 5, “Value Chain Phase”, states that the follow-
up of an organizational artifact resulting from a value chain
phase should denote a different business process (p. 132). A
value chain phase refers to the rather generic, often recurring
structure and parts within aggregated business processes in
manufacturing organizations (e.g., Order Entry, Procurement,
Production, etcetera), such as for instance described by the
SCOR reference model. Not adhering to the above described
guideline could lead to the following two situations: (1) the
steps related to these value chains are incorporated into the
aggregated (i.e., orchestrating) business process, or (2) no more
grained steps related to each of these value chain phases are
discerned and no states regarding them is kept. In the first
situation, this would imply a violation of guidelines 1 as
multiple LCIOs (e.g., Order Entry, Procurement, Procurement)
are combined into one business process. Further, guideline 4

would be violated as well because most often, these value chain
phases have one-to-many or many-to-many relations. Indeed, a
Customer Order can typically be related to multiple Purchase
Orders and/or Production Orders. The second situation would
imply violations regarding guidelines 2 (i.e., no LCIO is iden-
tified for several non-state transparent information objects) and
3 (i.e., an aggregated business process is designed when there
are still some opportunities for redesign based on guidelines
1 and 2). A situation in which no relevant states regarding
the tasks constituting a value chain phase should be identified,
seems rather unlikely as this would allow to model almost all
necessary activities of a typical manufacturing company within
one business process having 5 to 8 tasks. Consequently, as
we should earlier how violations regarding guidelines 1 to 4
result in multiple microstates consistent with one macrostate,
we can conclude that violating this guideline would generate a
multiplicity > 1 as well. Therefore, we state that the guideline
is suitable for entropy control as well.

Guideline 6, “Attribute Update Request”, states that a
task sequence to update an attribute of a particular LCIO that
is not part of its business process scenarios, is represented by
an Attribute Update Request business process (p. 135). This
guideline is subject to two specific conditions. First, it has to
concern an update operation for which one single functional
task is not sufficient to complete the update request, but rather
a sequence (i.e., “process”) of activities is required. Second,
it concerns update requests which are not part of a branch
within the regular business process scenarios. Consequently
such procedures can be instantiated several times and during
several different “states” of the lifecycle of the information
object regarding which the update request is actually aimed at.
Additionally, such process (verifying for instance the validity
of updating a certain information object attribute with a certain
new value) will typically differ for each individual attribute.
Not adhering to this guideline would imply that tasks for
handling an attribute update request, not part of the regular
business process scenario, becomes incorporated into the flow
of the LCIO of which the attribute is requested to be update.
Again, such situation can be seen as a violation regarding sev-
eral of the above mentioned guidelines. Indeed, not separating
such task sequences would lead to a business process operating
on multiple ILCOs and —at the same time— one concern
being dispersed over several places within one business process
(i.e., all the life cycle states in which the update request is
allowed), thereby violating guideline 1. Second, the design
would make the proper tracking of states impossible as at any
point of the business process execution (thereby indirectly vi-
olating guideline 2) as each time an update request is initiated,
the state of the regular business process is suddenly (possibly
repeatedly) changed to states regarding this update request.
Third, as attribute update requests can be performed several
times during one instance of the “parent” business process,
both concerns relate in a one-to-many multiplicity, thereby
violating guideline 4. Consequently, as we showed earlier how
violations regarding guidelines 1, 2 and 4 result in multiple
microstates consistent with one macrostate, we can conclude
that violating this guideline would generate a multiplicity >
1 as well. Therefore, we state that the guideline is suitable
for entropy control as well. Indeed, from an organization
diagnostics (i.e., entropy) viewpoint, it clearly makes sense
to separate such sequence of tasks for future reference. For

423Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 443 / 646

instance, the calculation of certain measures and the solution
for certain managerial questions such as: “how often are such
requests accepted/denied and for which reason” or “can we
see any relation between the outcome of the update requests
and its input values” are only able to be solved in an efficient
way when this task sequence is properly separated in its own
business process module and not unconsciously repeated in
other places throughout the business process repository.

Guideline 7, Actor Business Process Responsibility,
states that tasks, of which the task allocation genuinely belongs
to a different business process owner, should be designed into a
separate business process (p. 139). This guideline only applies
in very stringent cases. For example, in case legislation or
internal audit rules prescribe that different owners should be
responsible for other (parts of) task sequences, this guideline
applies. Mostly, the guideline is applicable when different parts
of a task sequence are performed by different organizations.
In such cases, the respective task allocations are logically
situated at one of these different organizations as well. From
an entropy viewpoint, let us consider the case in which the
mentioned guideline is not adhered to. In such case, a business
process could consist of a combination tasks which belong to
genuinely different business process owners. Each task still
has an attribute regarding which actor is allowed or required
to perform the task. However, no information is available
regarding who is doing the task allocation (e.g., the manager
of organization who determines who is doing what). If such
information should be retained, the appropriate level seems
to be the business process level, as it concerns a sequence of
multiple tasks. In case this information is relevant but however
no distinct business process would be designed, a multiplicity
> 1 (and hence, entropy) arises as one macrostate (e.g., a
problem regarding the overall process) complies with multiple
microstates (was the task allocation responsibility situated
at person A, B, or C?). This situation correlates with our
(reduced) diagnostability interpretation of entropy as pointed
out in Section II. Therefore, in case the information regarding
task allocation responsibility is relevant, a different business
process should be identified from an entropy viewpoint to
allow for this task allocation responsibility to be traceable.
Indeed, this guideline calls to create an additional level of
“process responsibility” (i.e., who allocates tasks among dif-
ferent actors and takes responsibility that they are carried out
adequately), in addition to the responsibility for one or multiple
tasks. Therefore, we state that the guideline might be suitable
for entropy control as well. However, in line with the work of
Van Nuffel [6] we stress that identifying additional business
processes based on this guideline should be done with extreme
precaution to avoid unnecessary additional business processes
and, hence, only in cases where a different task allocation
responsibility is relevant for diagnostability purposes.

Guidelines 8 and 9 as proposed by Van Nuffel [6], propose
two specific business process types to be identified. Guideline
8, “Notifying Stakeholders” states that the communication of
a message to stakeholders (in the correct format, incorporating
fault handling, etcetera) constitutes a distinct business process
(p. 143). Guideline 9, “Payment” states that the payment of a
particular amount of money to a particular beneficiary should
equally constitute a distinct business process (p. 146). Not
recognizing these two concerns as distinct business processes
could again create two possible situations: (1) integrating

the tasks for the notification and payment in other business
processes or (2) not specifying their constituting tasks at all.
It is clear that the first situation would violate guideline 1
(multiple ILCOs operating within one business process) and
4 (for example, multiple notifications can be sent within the
scope of one “parent” business process instantiation). The
second situation would violate guideline 2 as a non-state
transparent information object is not identified as a separate
LCIO. Consequently, as we showed earlier how violations
regarding guidelines 1, 2 and 4 result in multiple microstates
consistent with one macrostate, we can conclude that vio-
lating this guideline would generate a multiplicity > 1 as
well. Therefore, we state that guideline 8 and 9 are suitable
for entropy control as well. Obviously, designing these task
sequences as separate business processes is useful from an
organizational diagnostics (i.e., entropy) viewpoint as. Indeed,
both the payment of a particular amount in a particular
format to a particular beneficiary at the right time, as well as
communicating a certain message in a particular format at the
right time while maintaining integrity, are often recurring func-
tionalities within typical business processes. As a consequence,
due to their frequently occurring nature, a business process
owner would typically be interested in certain characteristics
of each of these separately recurring tasks sequences: how long
do they take to execute, how many times do they result in
an error, etcetera. Focusing on these aspects might generate
considerable efficiency gains as, for instance, improving the
quality metrics or throughput time of the payment process with
5% might entail huge organizational effects as the changes
are “expanded” throughout the whole organization. However,
these analyses and improvements can only be performed when
“payments” and “notifications” are designed into separate
business processes. Otherwise, systematic problems regarding
one of the concerns might not be noticed (cf. the observability
issue of Section II) or might not be unambiguously traced to
the right concern (cf. the diagnostability issue of Section II)

IV. DISCUSSION, LIMITATIONS AND FUTURE RESEARCH

This paper aims to contribute to our research line on how
to prescriptively design business processes regarding certain
criteria (such as low complexity and high evolvability). In
earlier work, a set of prescriptive guidelines has been pro-
posed from the stability perspective, and the applicability of
entropy to study process complexity has been reported. The
main focus in this paper was to verify whether the already
existing guidelines from the stability viewpoint align with
this entropy reasoning [12], [11]. Due to page limitations, we
were only able to investigate a small subset of the guidelines
of Van Nuffel for this purpose [6]. We found that most of
the investigated guidelines are rather consistent among both
approaches: guidelines required to attain evolvability seem to
enable low complexity and vice versa. A small exception was
noticed for guidelines 2 and 7. Regarding the former, it was
observed that —theoretically— entropy does not increase when
a state transparent information object is identified as a LCIO.
Regarding the latter, it was argued that the application of the
specific guideline should be performed even more thoughtfully
and exceptionally from an entropy viewpoint as its necessity
in many situation seems not really compelling.

This consistency might seem surprising, since the evolv-
ability analysis focuses on the mere design-time of business

424Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 444 / 646

processes, which means that the harmful effects its aims to
resolve (the so-called “combinatorial effects”) are situated on
this perspective: a functional change which causes N changes
in the business process design. In contrast, the complexity anal-
ysis focuses on avoiding harmful effects during execution-time:
a multiplicity > 1 (which we could coin as an “uncertainty
effect”) only manifests itself when the business processes are
executed. While these effects are caused by choices made at
design-time, this distinction illustrates the need for more in-
sight at the execution-time of business processes. Current busi-
ness process modeling notations (e.g., BPMN) focus primarily
on design-time models. Moreover, the criteria both approaches
use to delineate and identify the different business processes
and their constituting tasks, differ. The evolvability approach
employs the concept of “change drivers” (i.e., parts within
the business process design which are assumed to change
independently) to identify and isolate concerns, whereas the
complexity approach employs the concept of “information
units” (i.e., these parts within the business process design of
which independently traceable information is assumed to be
needed later on). Since most of the stability-related guidelines
largely align with our entropy reasoning, we might conclude
that the concerns which should be used to delineate and
identify business processes or tasks are determined by the
union of “change drivers” and “information units”. Given the
additional, more in-depth analysis of the entropy approach
by incorporating the execution-time perspective (e.g., the im-
portance of traceability), additional concerns which do not
seem to be necessary from the evolvability perspective, might
indeed be potentially identified in future research. Moreover,
this preliminary analysis is limited to the first nine guidelines
of Van Nuffel [6], and future research should elaborate on the
consistency of other guidelines.

Notwithstanding the limitations and need for future re-
search, this paper can claim a number of contributions. First,
we further contributed to the enterprise and business process
engineering field by elaborating on the usefulness to take an
entropy perspective for studying the complexity of business
processes. Second, we validated the suitability of a set of
(already existing) business process design guidelines in this
context as a first step towards a Design Theory [13]. In
literature, it is generally acknowledged and even encouraged
that such design efforts are guided by principles from related
scientific fields (i.e., “kernel theories”) [14], such as the con-
cept of entropy from thermodynamics. Third, Design Science
research acknowledges logical reasoning as one the possible
evaluation methods in design science [15]. Therefore, next to
our efforts performed in earlier work, this paper constitutes an
additional validation base for the applicability of (a part of)
the guidelines of Van Nuffel [6].

V. CONCLUSION

Contemporary organizations need to be agile regarding
both their IT systems and organizational structures (such as
business processes). Normalized Systems theory has recently
proposed an approach to build evolvable IT systems, based
on the systems theoretic concept of stability. However, its
applicability to the organizational level, including business
processes, has proven to be relevant in the past and resulted a.o.
in a set of 25 guidelines for designing business processes. This
paper investigated the validity of 9 of these guidelines from

another theoretical perspective, more specifically, entropy from
thermodynamics. We concluded that the investigated guide-
lines are rather consistent among both approaches: guidelines
required to attain evolvability seem to enable low complexity
(i.e., entropy) and vice versa. However, future research is
definitely needed in this domain: for instance, 14 guidelines
are still to be investigated and additional guidelines might
potentially be investigated from the entropy perspective as
well.

ACKNOWLEDGMENT

P.D.B. is supported by a Research Grant of the Agency for
Innovation by Science and Technology in Flanders (IWT).

REFERENCES

[1] E. Overby, A. Bharadwaj, and V. Sambamurthy, “Enterprise agility
and the enabling role of information technology,” European Journal
of Information Systems, vol. 15, no. 2, pp. 120–131, 2006.

[2] J. Mendling, H. A. Reijers, and W. M. P. van der Aalst, “Seven process
modeling guidelines (7pmg),” Inf. Softw. Technol., vol. 52, no. 2, pp.
127–136, Feb. 2010.

[3] L. Brehm, A. Heinzl, and M. Markus, “Tailoring erp systems: a
spectrum of choices and their implications,” in Proceedings of the 34th
Annual Hawaii International Conference on System Sciences, 2001.

[4] H. Mannaert, J. Verelst, and K. Ven, “The transformation of require-
ments into software primitives: Studying evolvability based on systems
theoretic stability,” Science of Computer Programming, vol. 76, no. 12,
pp. 1210–1222, 2011.

[5] ——, “Towards evolvable software architectures based on systems
theoretic stability,” Software: Practice and Experience, vol. 42, no. 1,
pp. 89–116, January 2012.

[6] D. Van Nuffel, “Towards designing modular and evolvable business
processes,” Ph.D. dissertation, University of Antwerp, 2011.

[7] H. Mannaert, P. De Bruyn, and J. Verelst, “Exploring entropy in
software systems : towards a precise definition and design rules,” in The
Seventh International Conference of Software Engineering Advances
(ICSEA), 2012, pp. 84–89.

[8] S. P. Regev, G. and R. Schmidt, “Taxonomy of flexibility in business
processes,” in Proceedings of the 7th Workshop on Business Process
Modelling, Development and Support (BPMDS’06), 2006.

[9] M. R. R. N. M. N. Schonenberg, H. and W. van der Aalst, “Process
flexibility: A survey of contemporary approaches,” in Advances in
Enterprise Engineering I, 2008, pp. 16–30.

[10] L. Boltzmann, Lectures on gas theory. Dover Publications, 1995.
[11] P. De Bruyn, P. Huysmans, H. Mannaert, and J. Verelst, “Understanding

entropy generation during the execution of business process instantia-
tions: An illustration from cost accounting,” in Advances in Enterprise
Engineering VII, ser. Lecture Notes in Business Information Processing,
H. Proper, D. Aveiro, and K. Gaaloul, Eds. Springer Berlin Heidelberg,
2013, vol. 146, pp. 103–117.

[12] P. De Bruyn, P. Huysmans, G. Oorts, and H. Mannaert, “On the
applicability of the notion of entropy for business process analysis,”
in Proceedings of the second international symposium on Business
Modeling and Software Desgin (BMSD2012), B. Shishkov, Ed., 2012,
pp. 128–137.

[13] S. Gregor and D. Jones, “The anatomy of a design theory,” Journal of
the Association for Information Systems, vol. 8, no. 5, pp. 312–335,
2007.

[14] J. Walls, G. Widmeyer, and O. El Saway, “Building an information
system design theory for vigilant eis,” Information Systems Research,
vol. 3, no. 1, pp. 36–59, 1992.

[15] F. Müller-Wienbergen, O. Müller, S. Seidel, and J. Becker, “Leaving
the beaten tracks in creative work - a design theory for systems that
support convergent and divergent thinking,” Journal of the Association
for Information Systems, vol. 12, no. 11, pp. 714–740, 2011.

425Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 445 / 646

Towards Ontology-Driven Approach for Data Warehouse Analysis

Case study : Healthcare domain

Lama El Sarraj1,2, Bernard Espinasse1

1
LSIS UMR 7296

Université d‟Aix-Marseille,

Marseille, France

{firstname.lastname}@lsis.org

Thérèse Libourel3
3
Espace-Dev UMR 228

Université Montpellier 2

Montpellier, France

therese.libourel@univ-montp2.fr

Sophie Rodier2,
2
Assistance publique–Hôpitaux Marseille

DSIO

Marseille, France

{firstname.lastname}@AP-HM.fr

Abstract—Understanding, reusing, and maintaining data

warehouse resources is a key challenge for data warehouse

users. Data warehouses resources are shared by different

groups of users. The interpretation of information is

subjective, it depends on user knowledge. Thus, a resource, like

a data cube, is interpreted differently from a user to another.

Unfortunately, misinterpreting data could induce serious

problems and conflicts. To guarantee homogenous

interpretation of data warehouse resources additional

information is necessary. To tackle these challenges we propose

to use ontologies to help the users in the exploitation of data

warehouses. In this paper we propose an ontology-driven

approach that represents data warehouse, dimensions and

facts semantically enriched by their equivalent domain

concepts and related to final resources provided by this data

warehouse.

Keywords- data warehouse; ontology; decision information

systems; decision making; healthcare institution management

I. INTRODUCTION

Several surveys proved that big companies need efficient
Decision support systems (DSS) and seek to expand the
number of users over their DSS. To that aim, researchers
found that companies need to have flexible decision tools,
especially with, users‟ requirements and domain resources. A
DSS is a collection of many tools or applications; we call
them in this paper resources; that enable users to analyze, to
query and to visualize a huge volume of data. In general,
those data are stored in a data warehouse, and a set of
Business Intelligence (BI) tools dedicated for data treatment
and helping users (directors, managers, analysts, etc.) to
make decisions.

Data Warehouse (DW) is the center of the DSS. DW is
« a subject oriented, nonvolatile, integrated, time variant
collection of data in support of management's decisions» [1].
In this paper we only consider resources provided by a data
warehouse in a decision support system. To facilitate the task
of DW analysis and treatment, a subset of the DW is created,
it is called data mart. A data mart is oriented to a specific
business need or a particular user requirement. Most of the
times, data mart are organized in a multidimensional
structure [2]. Data are represented like a point in a
multidimensional space, visualized like a data cube (see
Fig.1) [3]. They give users the possibility to synthetize and
analyze data from three (or higher) dimensional array of

values and various granularity levels. To manipulate data
provided by the DW, end-users could use On Line Analytical
Processing (OLAP) techniques, classic techniques, or even
dashboards.

Taking user requirements into account is very important

for the success or the failure of the DW [4], especially when

users belong to different domains. The exploitation level of

DW, as well as the preliminary conception level, is mainly

based and adapted to user requirements [5]. Most research

works devoted for DW focus on the approach design [6],

[7], [8]. Even if these approaches are successful at the

conceptual level knowledge about the data warehouse

resources is still needed. It is important that users

understand the semantic around the information he analyses

and have a visibility about other resources that could help
them to make efficient analysis.

The goal of this work is to design an ontology that relates

data warehouse structure, resources and domain concepts. In

consequence, in this paper we address two research

questions:

 What are the competencies questions that our
ontology takes in consideration?

 What are the concepts that compose the ontology to
help decision makers in their analysis to understand
indicators provided from a data warehouse?

Our research is supported by the public hospitals of
Marseille; Assistance Publique Hôpitaux de Marseille
(APHM). In this context we will present a case study from
the healthcare domain specific to financial program based on
the Program of Medicalization of Information Systems
(PMSI) common to all French healthcare institutions.

This paper presents a new ontology-driven approach for

DW personalization to resolute the semantic problematic

related to the heterogeneous domains we applied our

approach in healthcare management domain. The paper is

organized as follow. Section II presents a case study from

the healthcare domain. Section III presents the competencies

questions that give an idea about the possible scenarios

possible to help users in his analysis. Section IV presents
the needed background. Section V presents an ontology-

driven approach. Section VI presents an ontology-driven

framework. Finally, before we conclude we present in

section VII the related works.

426Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 446 / 646

II. CASE STUDY

In this section we will present a case study from the

healthcare domain specifically applied in the Program of

Medicalization of Information Systems (PMSI). This case

study is a good example that represents heterogeneous users

that share same data warehouse.

In the French healthcare management system the PMSI

has a central place. PMSI is a French adoption for the

concept of Professor R. Fetter (Yale university, United

States of America) to finance hospitals. PMSI specify the

cost of sojourn based on diagnosis related groups that
classes the hospitalization of patients in homogeneous and

coherent medico-economic groups. This concept is applied

in several countries like United States of America, England,

etc.

In the healthcare domain users belong to the medical

domain (doctors, pharmacists, biologists, etc.) whereas

others don‟t (financial affaire managers, computer scientists,

human resources, etc.). We should note that our approach is

not limited to the healthcare domain. It could be applied in

other business contexts where users are from different

domains. This is, in general, the case of big institutions.

In this context we will take the example of a data

warehouse. Fig.1 represents a data warehouse conceptual

model for “PMSI activity” analysis. This DW conceptual

model is composed of a fact table, dimensions, and

measures.

Fact table = {Activity_PMSI}
Dimensions = {Date, Structure, Age, Exit_Mode,

International_classification_of_desieases,

Diagnosis_related_groups }

Measures = {Number of patient, …}

Sojourn

...

Diagnosis_related

_groups

Number of patient

Age

International_clas

sification_of_

desieases

Date

Exit_mode

Structure

Figure 1. PMSI activity data warehouse conceptual model.

The multidimensional table (MT), MT = (M, D), where

M is a set of measure and D is a set of dimensions. We will

take an example of a multidimensional pivot table,

presented in Fig. 2, for ethics reason we have taken fictive

data:
D1 = “Structure ” (dimension level “pôle”)

D2 = “Diagnosis Related Groups” (attributes: DRG, MCD,

TYPE DRG TITLE)

M1 = “number of patients” (calculated measures: total of M1

per Diagnosis Related Groups, total of M1 per pole, total of

M1 for all DRG and poles.

Figure 2. PMSI pivot table.

In this research work we will take into consideration

resources based on data warehouses sources and that

represent data in a multidimensional table (defined by of

measure, an operations on the measure, two or three

dimensions, and a filter). In this context we noticed many

difficulties:

Semantic lack
Users don‟t interpret the results in the same way. They

need information about:

 Data warehouse concepts: dimensions definition,
measures calculation methods and their sources

 Requirements expression heterogeneity: users don‟t
belong to the same domain. They don‟t express their
need with the same terms. For example: number of
sojourn could be expressed as number of venue

Analysis needs
Most of the times, users need to analyze many resources

to take a decision. In big institutions the big number of

resources makes this task complicated. To facilitate this

task, users need a global vision about the existing analysis

axes. Thus, users need to have a global vision about the data

warehouse structure to visualize the possibilities or existing

resources that could help him to take a decision.

Finally, these difficulties lead us to think about a new

semantic approach that structure the concepts related to the

data warehouse based on ontologies.

III. COMPETENCIES QUESTION

In this section we exemplify and define possible

scenarios to interrogate our ontology.

Entry 1: Data warehouse concept.

Output:
1. Related data warehouse concept -- Measures

analysis -- What are the different measures related

to an analysis axe? What is the different analysis

axes related to a measure?

Dimensions (Analysis axes) -- What are the

measures that could be analyzed over a dimension?

2. Resources concept -- What are the existing
resources to analyze a measure?

3. Domain concepts -- What are the existing measures

to analyze a domain concept?

427Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 447 / 646

Entry 2: Resources concept.

Output:
1. Data warehouse structure concepts -- Which is the

data warehouse (data mart) that provides a resource

2. Domain concepts -- What are the existing resources

to analyze a domain concept?

Entry 3: Domain concept.

Output:
1. Data warehouse structure -- Which is the data

warehouse (data mart) related to this domain

concept?

2. Resources concept -- What are the resources to

analyze a domain concept?

Those scenarios could be treated by using ontology

technologies to visualize and have semantic to facilitate the

analysis.

IV. BACKGROUND

In this section we will define the ontology and present

some researches that have used ontology for the

multidimensional systems.

A. Ontologies

Ontology is an explicit specification of shared

conceptualization [9]. Different ontologies are proposed to

define ontologies. W3C consortium recommends Ontology

Web Language (OWL) to define ontologies. This language

is based on the description Logic (DL) [10], it gives the

opportunity to reason and represent structured knowledge.

The DL language represents knowledge with concepts and

roles. The concepts described as a set of individuals

(instances) and roles describing a binary relation between

individuals.

A knowledge base is represented with an ABOX
(assertion box) and a TBOX (terminological box). An

ABOX represent extensional knowledge (instances), TBOX

describes the intentional knowledge of the domain as

axioms.

We present the ontology with 4-uplet <C, P, ClassPropt,

ClassAssoc> that concerns the TBOX.
Our ontology describes concepts to relate domain,

resources and data warehouse structure. We consider:

 C represents the classes of the ontological model

 P represents the properties of the ontological model.
P is partitioned into :
o Pvalue : represents the characteristics properties

o Pfct : represents domain dependent properties

 ClassPropt : C -> 2P relates each class to its property

 ClassAssoc : C -> (Opr, Expr (C)) is an expression
that associate to each class an operator (inclusion or
exclusion) and an expression to other classes.

B. Multidimensional system

We consider that DW resources are multidimensional

table that represent a slice of the cube. The DW ontology

registers the DW conceptual schema and the resources

provided from this DW. For other purposes, several

researchers like Prat et al [11] represents a multidimensional

model with an OWL-DL ontology model, based on

description logic [12], and define the transformation rules

from the multidimensional level into OWL-DL ontologies.

We will use these transformation rules to generate an OWL

ontology of the DW model, based on transformations rules

proposed in the work of Prat et al [11].

V. ONTOLOGY-DRIVEN APPROACH FOR DATA

WAREHOUSE ANALYSIS

In this section we briefly present our approach and the

architecture of our system.

Our approach focuses on two key requirements to address

the research problem:

 It represents ontology architecture to describe
knowledge about decision support system

 It provides an ontology-driven approach to help
users in their analysis

A. Approach architecture

Our functional architecture Fig. 3 is based on three inter-

related concepts, in order:

 Domain concepts

 Data warehouse structure

 Resources

Figure 3. Approach architecture.

The framework system that we propose is based on an

ontology interrelating three concepts (domain, DW and

resources) to help users in the analysis task.

B. Ontology concepts

We will define the three concepts that compose our
ontology. These concepts are necessary to help users in the

analysis process:

Domain concepts structure: presents concepts of the

domain and the relation between them. A decision is based

on one or many indicators. In the analysis processes the user

check the information‟s that he already know. However,

most of the times user needs additional indicators to make

428Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 448 / 646

his analysis. The domain description wills provide the

information about the relation between domain concepts.

Data warehouse structure: the multidimensional model

associated to the data warehouse organizes data into facts

and dimension. Facts represent the subject of analysis and

dimensions represent the axis of analysis. Fact table is the

center of the multidimensional model. It stores elementary

indicators, called measures. Dimensions can form

hierarchies, structured in different granularity levels.
Resources structure: resources are provided by the data

warehouse. Resources regroup information necessary for the

analysis. To understand a component information about the

indicator are needed like: calculation method, unit of

measure, calculation period, date of creation, date of update,

date of validity, objective, definition and the relation with

the data mart.

C. Ontology connection

To connect those three concepts we will follow four

steps:

1. Define domain ontology or use an existing domain

ontology

2. Generate the data warehouse structure ontology

based on the transformation rules proposed in the

work of Prat et al [11].

3. Associate the data warehouse structure to the domain

ontology, this step could be accomplished in several
methods, for example :

o Administrator relates data warehouse

concepts to the domain concepts

o Automatically align the data warehouse

structure ontology with the existing domain

ontology

4. Associate to the data warehouse concepts existing

resources Ontology architecture

D. Ontology architechture

We will formalize our ontology by the triple < ODW, OD,

Map> where:

 OD is the domain ontology which provides a schema
about the domain

 ODW is a data warehouse schema which describes the
resources (DSS components) related to the data
warehouse

 Map is the mapping between ODW and OD which
establish the connection between domain concepts
and the DSS components

This ontology can be used for many purposes with

ontology-based software. In the first hand, to give a vision
about the relation between DW, resources and domain

concepts, in the other hand, to propose for users other

related resources to accomplish his analysis, based on the

relation of the three concepts the resources, the data

warehouse concepts and the domain concepts. Fig. 4

presents the ontology architecture meta-model to implement

the knowledge base of the framework.

Dimension

Data_warehouse Measure Agregation_operations
1..* 1..*
Possibility

Dimension_level
1 1..*

Hierarchy

1..*

2..*

Relatad

1

1..*

Ressource

Domain_

concept
1..* 0..*

Relatad

1..* 1..*

0..*

0..*

Possibility

0..* 1

RollUp

Figure 4. Ontology metamodel.

This ontology model represents the concepts related to

the data warehouse. Each data warehouse is composed of

zero or many measures and related to two or many

dimensions. Hierarchies are composed of one or many

dimensions. It is possible to effectuate operations on

measures and aggregation according to the dimensions

levels.

The proposed ontology model has been designed as

follow to give high expressiveness about data warehouse

components and to show the relation between DW concepts,

resources (DSS components) and domain concepts.

VI. ONTOLOGY-DRIVEN FRAMEWORK

In this section we will present a framework based on our

ontology. We implemented an ontology based on healthcare

domain. Thus, this semantic structure will help users to

discover and retrieve resources related to their domain and

their first need.
To test our method we chose to implement OWL

ontology with Protégé editor [13], and then we will use

protégé to interrogate and visualize ontology with

OntoGraph Fig. 5.

A. Methods

To create our OWL ontology we use “Protégé”, an open

source Java tool providing an extensible architecture for the

creation of customized knowledge-based applications.

1. Create three classes Data_Warehouse, Domain, and

resources

2. Export existing domain ontology or create new

domain ontology. These ontology concepts will be a

subset of the domain class

3. Export data warehouse conceptual model ontology.

To pass from the data warehouse conceptual model

to OWL we applied the transformations rules

proposed by [14]. Data warehouse concepts will be a
subset of the Data_Warehouse class

4. Relate the data warehouse concepts to domain

concepts. This task can be automatic by using

existing ontology mapping tools; in this work we‟ll

not consider this option. To relate data warehouse

concepts to domain concepts ontology administrator

will refer to each data warehouse concept the

equivalent, opposite, etc. concept in the domain

ontology. For example, the data warehouse

429Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 449 / 646

dimension “Diagnosis_Related_Groups” will be

related to “DRG” class of the domain ontology

5. Relate the resources provided by the data warehouse

to their corresponding concepts. For example, the

resource named “PMSI_activity” allows user to

analyze the PMSI activity per month and per medical

unit. So, this resource will be related to

Data_Warehouse subclasses dimensions month and

medical units

B. Visualization

We will consider the example of the data warehouse

presented in the healthcare domain. We will propose an

ontology-driven framework.

Input: is a need expressed with a term or a group of

terms.

Output: are concepts related to this need, about resources

concepts, domain concepts, and data warehouse structure

concepts.

Figure 5. Example, retrieve „DRG‟ concept from the ontology.

Thus, the user expresses his need with one or more

keywords for example DRG.

 Domain concept: DRG is equivalent to “diagnosis
related groups”

 DW concept: DRG is a dimension

So as Fig. 5 shows the resulting visualization of the

ontology shows the existing concepts that contains DRG,

equivalent and related concepts.

VII. RELATED WORKS

In the literature researches in the data warehousing field

have already explored the ontology-based data warehouses

and the personalization.

In the first hand, in the ontology-based data warehouses

field researches are based on the multidimensional schema
design, representation and its summarizability.

Prat et al [14] represent a multidimensional model with

an OWL-DL ontology model to check the multidimensional

model and its summarizability. Niemi and Niinimäki [15]

provide an RDF model of an OLAP cube, they focus on the

relationship between measure and dimension attributes and

its effect on summarizability. They define the concept of

measure-dimension consistency and they show how to

conclude it from OLAP ontology. The OLAP ontology is

constructed with semantic web technologies and is basically

used to help users for OLAP cube construction and

querying. Nebot et al [16] proposes a framework for

designing semantic data warehouses. They propose the

Semantic Data Warehouse to be a repository of ontologies

and semantically annotated data resources and propose an

ontology-driven framework to design multidimensional

analysis models for Semantic Data Warehouses.

In the other hand, in the personalization of the data
warehouse field we can distinguish three main objectives:

 Customizing data sources schema [17], [18]
adapting the data structures to a specific needs of
users

 Customizing queries visualization [19], or
representation [20]

 Recommendation of OLAP queries [21, 22] to assist
in the exploration of the ED

We also find the personalization of the DW by
recommendation that can be associated to various works
such as [17], [21], [23]-[26].

All these personalization techniques are not based on
ontologies. Only Jerbi et al [27] adds semantic by
annotation of the DW schema but his technique is not based
on ontologies.

In our research we use ontology to personalize users need
and retrieve not only semantic information about DW or
cube schema but also the eventual existing resource like
files (PDF, Excel, etc.), OLAP queries, etc. To that aim we
integrate domain and resources concepts to our DW
ontology.

VIII. CONCLUSION

The Data Warehouse (DW) resources are shared by users

from heterogeneous domains. Those resources could be
interpreted differently from a user to another. Consequently,

semantic about those resources is necessary to guarantee the

coherence of the analysis. Ontologies are effective solutions

to add semantic to concepts. They facilitate the management

of data, clarify and give a sense to ambiguous concepts.

Ontologies have been adopted by companies. Different

solutions are offered to manage and query these data. In this

paper we implemented the ontology with Protégé,

interrogated and visualized the ontology with OntoGraph.

The study of concepts from healthcare domain confirms

the need of semantic to help users in the analysis of

resources provided by DW. One of the main characteristic

of our proposed ontology architecture is that it provides a

connection between domain concepts, data warehouse

structure and data warehouse resources, this connection

provide semantic information about resources and help users

to choose other resources that can help him in his analysis.
This personalization task is based on resources related to

connected domain concept in the ontology.

430Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 450 / 646

Furthermore, the main asset of our proposition is that it

combines ontology and data warehouse to add semantic to

resources analysis.

We should note that our approach is not restricted to the

healthcare domain it could be applied for any domain for the

retrieval of data warehouse resources.

This work leads to many other tasks. In future work, tasks

that should be considered (i) test the integrity of the

ontology when adding new concepts (like new resources),
(ii) extension of this approach to add other type of resources

and data source provided from decision support system but

not related to the data warehouse, (iii) study different

scenarios of the ontology evolution, (iv) validate our

approach in a larger context.

REFERENCE

[1] W. H. Inmon, Building the data warehouse, New York,

NY, USA.: John Wiley & Sons, 1992.

[2] W. Lehner, “Modelling Large Scale OLAP Scenarios,”

in Advances in Database Technology (EDBT), 1998, pp.
153-167.

[3] A. Bosworth, J. Gray, A. Layman , H. Pirahesh “Data

Cube : A Relational Aggregation Operator Generalizing

Group-By, Cross-Tab, and Sub-Total,” Data Min.
Knowl. Discov., pp. 152-159, 1995.

[4] S. Rizzi, A. Abello, J. Lechtenborger, J. Trujillo

"Research in data warehouse modeling and design: dead

or alive?," Proceedings of the 9th ACM international
workshop on Data warehousing and OLAP - DOLAP

'06, pp. 3-10, 2006.

[5] M. Golfarelli, “From user requirements to conceptual

design in data warehouse design – a survey,” 2009.
[6] R. Kimball, and M. Ross, The data warehousing toolkit,

New York: John Wiley&Sons, 1996.

[7] N. Prat, and J. Akoka, “From UML to ROLAP

multidimensional databases using a pivot model,” in
8èmes Journées Bases de Données Avancées, 2002, pp.

24.

[8] A. Tsois, N. Karayannidis, and T. K. Sellis, “Mac :

Conceptual data modeling for olap,” in 3rd International
Workshop on Design and Management of Data

Warehouses (DMDW 2001), Theodoratos 2001, pp. 5.

[9] T. Gruber, “A translation approach to portable ontology

specification,” Knowledge Acquisition, vol. 5, no. 2, pp.
199-220, 1993.

[10] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi “

The description logic handbook: theory, implementation,

and applications,” Cambridge University Press 2003.
[11] N. Prat, J. Akoka, and I. Comyn-Wattiau, “Transforming

multidimensional models into OWL-DL ontologies,” in

RCIS, 2011.

[12] B. Grosof, I. Horrocks, R. Volz et al., “Description logic
programs: combining logic programs with description

logic,” in WWW, Budapest, Hungary, 2003.

[13] Stanford Center for Biomedical Informatics Research.

14/08/2013, 2013; http://protege.stanford.edu/.
[14] N. Prat, I. Megdiche, and J. Akoka, “Multidimensional

Models Meet the Semantic Web: Defining and

Reasoning on OWL-DL Ontologies for OLAP,” in

DOLAP, Hawaii, USA, 2012.
[15] T. Niemi, and M. Niinimäki, “Ontologies and

summarizability in OLAP,” in Proc. of SAC‟10, Sierre,

Switzerland, 2010.

[16] V. Nebot, R. Berlanga, J. Pérez, M. Aramburu, T.
Pederson “Multidimensional integrated ontologies: a

framework for designing semantic data warehouses,”

Journal on Data Semantics, vol. XIII, 2009.

[17] F. Bentayeb, O. Boussaid, C. Favre, F. Ravat, O. Teste
“Personnalisation dans les entrepôts de données : bilan et

perspectives,” in Entrepôt de Données et Analyse en

ligne (EDA), 2009.

[18] I. Garrigos, J. Pardillo, J.-N. Mazon, J. Trujillo., “A
Conceptual Modeling Approach for OLAP

Personalization,” in Conceptual Modeling-ER Verlag

Berlin Heidelberg, 2009, pp. 401-414.

[19] L. Bellatreche, A. Giacometti, P. Marcel, H Mouloudi,
D. Laurent “A personalization framework for OLAP

queries,” in 8th International Workshop on Data

Warehousing and OLAP, DOLAP‟05, Bremen,

Germany, 2005, pp. 9-18.
[20] D. Xin, J. Han, H. Cheng, X.,A. Li, “Answering top-k

queries with multi-dimensional selections: The ranking

cube approach,” in VLDB, 2006, pp. 463-475.

[21] A. Giacometti, P. Marcel, and E. Negre, "A Framework
for Recommending OLAP Queries." pp. 73-80.

[22] A. Giacometti, P. Marcel, and E. Negre,

“Recommending Multidimensional Queries ” in DaWaK,

2009, pp. 453-466.
[23] C. Sapia, “On Modeling and Predicting Query Behavior

in OLAP Systems,” in DMDW, 1999, pp. 2.1-2.10.

[24] G. Chatzopoulou, M. Eirinaki, and N. Polyzotis, “Query

Recommendations for Interactive Database Exploration,”
in SSDBM, 2009, pp. 3-18.

[25] H. Jerbi, F. Ravat, O. Teste, G. Zurfluh, “Applying

Recommendation Technology in OLAP Systems ” in

ICEIS, 2009, pp. 220-233.
[26] A. Giacometti, P. Marcel, E. Negre, A. Soulet, "Query

recommendations for OLAP discovery driven analysis."

pp. 81-88.

[27] H. Jerbi, F. Ravat, O. Teste, G. Zurfluh, “Management of
Context-Aware Preferences in Multidimensional

Databases. ,” in ICDIM 2008, pp. 669-675.

431Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 451 / 646

Light-PubSubHubbub: A Lightweight Adaptation of the PubSubHubbub Protocol

Porfírio Dantas, Jorge Pereira, Everton Cavalcante, Gustavo Alves, Thais Batista

DIMAp – Department of Informatics and Applied Mathematics

UFRN – Federal University of Rio Grande do Norte

Natal, Brazil

{enghaw13, jorgepereirasb}@gmail.com, {evertonrsc, gustavo}@ppgsc.ufrn.br, thais@ufrnet.br

Abstract—The publish-subscribe communication paradigm is

widely used in systems that require a loosely coupled asyn-

chronous form of interaction. The PubSubHubbub protocol is

a publish-subscribe protocol for the Web that involves pub-

lishers, subscribers, and hubs, which are the intermediate

elements between publishers and subscribers. However, in the

original implementation of the protocol, unnecessary computa-

tion and network traffic occur as the sequence of exchanged

messages to subscribers to retrieve a message is not optimized.

In this paper, we present a lightweight version of such a proto-

col, named Light-PubSubHubbub, by introducing the follow-

ing changes to the communication process: (i) the publisher no

longer needs to publish updated messages in a Web topic and

then notify the hub since the messages are published in the hub

itself; (ii) it uses the REST architectural style in order not to

couple publishers, subscribers, and the hub; (iii) XML is the

default format of the messages. This paper also presents the

results of experiments comparing Light-PubSubHubbub with

the original PubSubHubbub protocol and the JMS technology

for asynchronous messaging. The obtained results have shown

that Light-PubSubHubbub takes less time to answer to the

client than PubSubHubbub and JMS.

Keywords-asynchronous communication; publish-subscribe;

PubSubHubbub; Light-PubSubHubbub

I. INTRODUCTION

In the traditional way of the client-server communication,
the server is the main element involved in the communica-
tion that receives and handles requests from clients. Never-
theless, such a model has shown to be significantly ineffi-
cient in situations in which data is frequently updated or such
frequency is undetermined. In this case, the client needs to
periodically send requests (synchronous) to the server to
obtain the data and to check for updates. Such method is
called polling [1], and although it meets the purpose of ob-
taining updates, it is not appropriate for situations when data
are updated with an unknown frequency. Fig. 1 illustrates an
example in which a client interested in updated data periodi-
cally makes requests to check for updates on the server.
However, in this example, the client only gets an update on
the third request; so, the first, second, and the fourth requests
would be unnecessary because they do not provide any new
information.

Although such a method makes the communication pro-
cess between the client and the server simpler, it raises the
question about the ideal period of time for making such re-
quests. If a very large time period is chosen, the time for
obtaining an update may be high and then it is possible to use

Figure 1. The polling method for obtaining information.

outdated information while an updated one is available. On
the other hand, if the requests are performed in a very short
period of time, unnecessary network traffic may be generated
since the information may not be updated in such short time
period [2]. In order to solve this problem, the PubSubHub-
bub protocol [3] was developed for dealing with event-
oriented asynchronous requests [4] based on the Publish-
Subscribe client-server communication model, in which
publishers are responsible for sending messages to be con-
sumed by subscribers. PubSubHubbub introduces a new
element in such communication model called hub, which
works as an intermediary between the publisher and sub-
scriber elements. However, in the original implementation of
such a protocol, the publisher needs to notify the hub that it
has published an updated message in a Web topic, so that an
additional processing must be performed by the hub in order
to retrieve this new message and then forward it to the sub-
scribers, thus generating unnecessary computation and net-
work traffic. These limitations have motivated us to perform
adaptations in the PubSubHubbub protocol to reduce its
complexity, thus resulting in a lightweight protocol called
Light-PubSubHubbub. In our approach, the publisher no
longer needs to notify the hub that it has published a new
message since publishers directly send the updated message
to the hub instead of the Web topic. Therefore, no additional
actions are performed to retrieve the published messages.

This paper is structured as follows. Section 2 gives an
overview of the Publish-Subscribe communication model.
Section 3 introduces the PubSubHubbub protocol. Section 4
presents the Light-PubSubHubbub protocol, resulted from
adaptations in the original PubSubHubbub protocol. Section

432Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 452 / 646

5 presents a preliminary evaluation of the proposed protocol.
Finally, Section 6 contains final remarks and future works.

II. THE PUBLISH-SUBSCRIBE MODEL

An event can be defined as a change in a state [4]. For
example, when a person enters in his/her house, this action
means a state change, i.e., an event. Events can be detected
and dealt with applications through an event-driven architec-
ture (EDA). Technically, such an approach enables the de-
velopment of applications in which events trigger messages
to be sent to independent modules of the application in an
asynchronous way and according to the occurrence of such
events.

In this context, the Publish-Subscribe model was devel-
oped as a model to deal with asynchronous messages in
which publishers are responsible for sending messages that
are consumed by subscribers. A great advantage of such
model is the decoupling among its elements since publishers
do not have knowledge about the subscribers registered for
receiving their messages. However, the subscribers are able
to choose what messages they want to receive from the pub-
lishers. Furthermore, subscribers receive only a subset of all
published messages. The process of selecting such messages
to be sent to the subscribers is called filtering, which can be
topic-based or content-based. In a topic-based system, the
messages are published in topics, which work as repositories
of information of interest, so that subscribers will receive all
messages published in the topic in which they have sub-
scribed. In content-based systems, subscribers define con-
straints about the messages to be received, so that the mes-
sages are forwarded to them only if the message attributes or
the content itself match the defined constraints.

In several systems that adopt the Publish-Subscribe mod-
el, there is an intermediary element called broker (or event-
bus), which basically stores and forwards messages [5, 6]. In
this kind of implementation, publishers publish messages in
the broker, which forwards them to the subscribers that have
been registered in the broker. There are also systems that do
not use such intermediary element, so that publisher and
subscriber share information (metadata) about themselves,
thus forwarding messages based on the discovery of each
other [6].

III. THE PUBSUBHUBBUB PROTOCOL

The PubSubHubbub protocol [3] is based on the Publish-
Subscribe communication model and uses a broker element
called hub. The hub is responsible for intermediating re-
quests both from publishers (interested in distributing an
updated information) and subscribers (interested in receiving
the updates provided by the publishers), so that it receives
update notifications from the publishers through an HTTP
POST message, which informs the topic that has been updat-
ed. In a sequence, the hub makes a request to such topic in
order to get the updated information. This request to the
topic is performed through an HTTP GET message for ob-
taining updates, so that the updated information is forwarded
to the subscribers through an HTTP POST message. There-
fore, the PubSubHubbub protocol avoids that clients con-
stantly perform checks for updates and it also eliminates the

direct communication between the client and the server,
which now is always intermediated by the hub (i.e., client–
hub–server).

The PubSubHubbub protocol has four main elements:
1) The topic is the element in which the update infor-

mation is published in the format of a feed by using the

Atom [7] or Really Simple Syndication (RSS) [8] technolo-

gies. In general, the topic is publically available on the Web

and can be accessed through an URL.

2) The hub is the element that works as an intermediary

between the publisher and subscriber elements by: (i) re-

ceiving update notifications; (ii) accessing the topic provider

in order to obtain updates; (iii) registering the subscribers,

and; (iv) forwarding the updates to the subscribers.

3) The publisher is the element that publishes in the

topic and is responsible for notifying the hub about the oc-

currence of an update. In the PubSubHubbub protocol, the

publishers do not have to send the update to the hub. The

publishers are only responsible for notifying it. The updates

are published by the publisher as feeds, which is a data

format used in communication transactions in which users

frequently receive updated content.

4) The subscriber is the element that wants to receive

updates regarding a given topic. In order to receive such

updates, it is necessary that the subscriber has been sub-

scribed in a topic of interest by making a request to the hub

for subscribing to such topic. The hub will send to it the

updates regarding the subscribed topic. The subscriber must

be directly accessible through the network and identified by

an URL.

PubSubHubbub works by performing three basic opera-
tions: (i) discovery; (ii) subscription, and; (iii) publication. In
the discovery process the subscriber asks the publisher for a
feed of a topic. Afterwards, the publisher sends the feed to
the subscriber, which checks if there is an address regarding
the hub used by the publisher for publishing updates in the
topic and other important information, such as the update
title and date when Atom feeds are used. If there is any ref-
erence to the hub in the feed sent by the publisher, then the
subscriber can be subscribed to the referenced hub in order to
obtain the updates whenever they are available. Otherwise,
the subscriber must resort to the polling method or to other
mechanism for obtaining updates regarding such topic since
there is no reference to a hub in the feed, thus making impos-
sible the use of the PubSubHubbub protocol.

In the subscription process, the subscriber requests the
hub to subscribe to a topic by passing the address of the topic
and the necessary information for sending the updates to the
subscriber, and the hub confirms the subscription to the sub-
scriber.

Fig. 2 illustrates the publication process in which the
publisher publishes in the topic and immediately notifies the
hub about the update by passing the address of the topic. In
turn, the hub consults the address passed by the publisher
and obtains the updated information for forwarding it to the
interested subscribers. In such a communication model, the

433Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 453 / 646

update of information requires the following actions illus-
trated in Fig. 2:

(1) the publisher publishes a new information in the

topic;

(2) the hub is notified about the update in the topic;

(3) the hub requests the topic about the new available

information;

(4) the hub receives the new information from the top-

ic, and;

(5) the update is distributed to the interested subscrib-

ers.

Figure 2. Processes performed by the PubSubHubbub protocol.

In addition, PubSubHubbub specifies operations based
on the REpresentational State Transfer (REST) [9] architec-
tural style, as means of establishing connections and request-
ing services, whether subscription or even publication re-
quests. By using REST, PubSubHubbub can establish com-
munications between hub, publishers, and subscribers by
using only the HTTP protocol and several representation
formats (e.g., XML, JSON [10] or plain text) without addi-
tional abstractions as in the SOAP protocol [11] for Web
services.

IV. LIGHT-PUBSUBHUBBUB: AN ADAPTATION OF THE

PUBSUBHUBBUB PROTOCOL

In PubSubHubbub, the publisher is not responsible for
sending information to the hub when it is published. It is
only responsible for notifying it. Afterwards, the hub makes
a request to the topic in order to obtain the updated infor-
mation through the informed URL. In the adoption of this
model, some shortcomings can be observed, such as the
unnecessary computation performed by the hub, which must
access the topic at each publication, and the generation of
unnecessary network traffic because the updated information
must go to the topic and then be retrieved by the hub, as well
as the possibility of the topic being unavailable when it is
accessed.

In this perspective, the original PubSubHubbub protocol
was modified, resulting in the Light-PubSubHubbub protocol
[12]. In this new proposal, the hub is not responsible for
accessing the topic (on the Web) in order to obtain the up-
dates, thus eliminating the need of publically accessing the
topic through an URL. In the publication request to the hub
(implemented by following the REST architectural style),
publishers send information to the topic that must be previ-

ously registered in the hub, not in a server on the Internet, so
that the hub must forward the updated information to the
subscribers to such topic.

In the Light-PubSubHubBub proposed protocol, the pub-
lisher sends the updated information and the identifier of a
topic that is registered in the hub. Next, the hub checks if the
passed identifier of the topic is already registered and if there
are subscribers interested in such publication. If true, the hub
sends the updated information to the subscribers that are
registered for receiving it. In this new perspective, the com-
munication process is as follows: in the publication request
to the hub, publishers directly send the updated information
to the hub by following the REST architectural style; next,
the hub forwards the updated information to the subscribers.

Another change that was performed over the original
PubSubHubbub protocol refers to the used topic. PubSub-
Hubbub extends the Atom and RSS protocols by using them
as means of obtaining updates about information hosted in a
server on the Web. Nevertheless, as the publisher is used for
sending update data to the hub in the implementation of the
Light-PubSubHubbub protocol, it was observed that the
Atom and RSS technologies originally used for sending
information to the hub could be easily replaced by XML-
based messages (extensively used for message exchanges in
the Web) since additional information (e.g., the update date
in the Atom protocol) would not be necessary because the
hub has now control over the topic. Therefore, the hub re-
ceives a publication and forwards it to the subscribers, thus
bringing a greater flexibility to the Light-PubSubHubbub
protocol in terms of the message format (that can be repre-
sented as XML, JSON, plain text, etc.) since there is no
restriction regarding it. However, the subscriber must know
the message format in order to suitably and correctly parse it.

It is important to highlight that the hub just works as a
distributer, i.e., it does not need to know the object format
since it only receives and forwards a string that must be
parsed by the subscribers. Hence, if the messages are repre-
sented in the XML format, for example, the transformations
to (marshaling) and from (unmarshaling) the XML format
must be respectively performed by the publishers and sub-
scribers. In turn, the hub can distribute information in any
text-based format.

The following subsections detail the communication pro-
cesses in the Light-PubSubHubbub protocol.

A. Registration

Before making any publication, the topic must already be
registered in the hub. To do that, a publisher requests the
registration of a new topic through an HTTP request to the
RESTful service that is responsible for registering new top-
ics. In the registration request, the hub checks if the passed
identifier has not already been registered and then makes and
confirms the registration.

The registration process regarding a new topic is per-
formed through an HTTP PUT request to the URL regarding
the RESTful service that registers new topics in the hub. The
HTTP PUT request for registering a new topic in the hub is
made by the publisher to the following URL:

http://<hub’s IP address>:<hub’s port>/Hub/register

434Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 454 / 646

The identifier of the topic must be in the body of the HTTP
message. Fig. 3 shows an example of an HTTP message sent
to the hub aiming at registering a topic with the sports identi-
fier. In Fig. 3, lines 1 to 7 correspond to the header of the
HTTP message and line 9 corresponds to the body of the
message with the identifier of the topic.

Figure 3. Example of HTTP PUT message sent to the hub for registering a

topic with the sports identifier.

B. Subscription

The subscriber must be registered to receive the updates
regarding its topics of interest. In this perspective, the sub-
scriber sends to the hub an HTTP request to the RESTful
service responsible by such requests and passes as parame-
ters: (i) the identifier of the topic of interest, which is re-
quested by the hub in order to identify which updates will be
sent to the subscriber, and; (ii) an address and a port used for
identifying to where the updates will be sent. Therefore, each
subscriber is uniquely identified by a triple composed of its
IP address, identifier of the topic of interest, and the port in
which it will wait for the notifications. After receiving a new
request for subscription, the hub checks if the identifier of
the topic is already registered; if true, the informed address
and the port are registered as interested in receiving updates
regarding such topic.

For a new subscription, it is made an HTTP PUT request
to the URL regarding the subscription in the hub:

http://<hub’s IP address>:<hub’s port>/Hub/subscribe

The body of an HTTP PUT request for new subscriptions
must contain the identifier of the topic of interest, and the
address and the port for receiving updates. Fig. 4 illustrates
an example of an HTTP PUT request sent to the hub in order
to make a subscription to the topic with the sports identifier.
In Fig. 4, lines 1 to 7 correspond to the header of the HTTP
message and line 9 corresponds to the body of the message
with the identifier of the topic of interest, and the address and
the port for receiving updates.

Figure 4. Example of HTTP PUT message sent to the hub for subscribing

to the topic with the sports identifier.

C. Unsubscription

If a subscriber does not want to receive anymore updates
regarding a topic, it is necessary to make an HTTP request to
the RESTful service responsible for cancelling such action.
As a client may be registered for receiving updates regarding
more than one topic, it is necessary to specify the infor-
mation about the client and the identifier of the topic. In
order to perform such operation, the subscriber sends the
identifier of the topic, and its address and port, so that the
hub removes such client from the list of interested subscrib-
ers.

In order to cancel a subscription, an HTTP DELETE re-
quest to the URL regarding the RESTful service responsible
for such operation is made by passing through such URL the
information that uniquely identify the resource to be deleted.
Unlike the previous operations in which the parameters can
be directly sent in the body of the HTTP message, the infor-
mation for this operation is passed in the URL itself due to
limitations of the HTTP DELETE request. Such URL is as
follows:

http://<hub’s IP address>:<hub’s port>/Hub/
unsubscribe/?address=<subscriber’s IP address>

&idTopic=<topic of interest>
&port=<subscriber’s port>

Fig. 5 illustrates an example of an HTTP DELETE re-
quest to the hub aiming at unsubscribing a subscriber from
the topic with the sports identifier. In Fig. 5, lines 1 to 6
correspond to the header of the HTTP message, which can be
empty because the information needed to cancel the sub-
scription have already been sent in the URL of the request.

Figure 5. Example of HTTP DELETE message sent to the hub for unsub-

scribing to the topic with the sports identifier.

D. Publication

The publication process only happens when the topic that
is being updated is already registered in the hub, otherwise a
“topic not found” exception is thrown. In order to make a
publication, a publisher sends to the hub the identifier of the
topic and the value to be published. The hub checks if the
passed identifier is already registered, and if true, it stores the
information contained in the request.

The publication is performed through an HTTP POST
request to the hub containing the identifier of the topic of
interest that must be updated. The request URL is as follows:

http://<hub’s IP address>:<hub’s port>/Hub/publish/
<identifier of the topic>

After publishing, the hub sends the updated information
to all subscribers registered for the current topic by using
their respective address and port that were previously regis-
tered when subscribing. If there is no registered subscriber,
the information is immediately discarded.

435Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 455 / 646

The body of the HTTP message for publishing a new
content regarding a given topic must contain the value for
update, which can be a string or even a XML representation
of an object that must be parsed by the subscribers. Fig. 6
illustrates an example of an HTTP POST request to the hub
in which the publisher wants to publish information in the
topic with the sports identifier.

Figure 6. Example of HTTP POST message sent to the hub for publishing

information in the topic with the sports identifier.

In Fig. 6, lines 1 to 7 correspond to the header of the

HTTP message, and lines 9 and 10 correspond to the body

of the message that represents a new information to be for-

warded to the subscribers. In such example, the update is

regarding a message as a string.

V. EVALUATION

A. QoMonitor

The conducted case study consists of a ubiquitous oil and
gas application that illustrates the need of monitoring the
Quality of Service (QoS) and Quality of Context (QoC) of
the services used by it. For monitoring such services, the
QoMonitor [13, 14] system assesses, monitors, and makes
available QoS and QoC metadata regarding services to be
used by clients such as middleware platforms, Web services,
applications, etc. QoMonitor handles synchronous and asyn-
chronous requests from clients, both returning QoS and QoC
metadata regarding a given service or a set of services. In
synchronous requests, QoMonitor receives a request, pro-
cesses the information, and answers to the client, i.e., the
response time of such operation is the time for transporting
the request/response over the network and the time for pro-
cessing the request. In asynchronous requests, QoMonitor
receives a subscription request, processes the information,
and waits until a particular event (return condition) happens,
and then asynchronously responds to the client, which needs
to provide means of receiving responses from QoMonitor.
To do that, the original implementation of QoMonitor uses a
Java Message Service (JMS) [15] topic for forwarding the
result of the subscription to the client when QoMonitor pub-
lishes in such topic. More details can be found at the URL
http://consiste.dimap.ufrn.br/projects/lightpubsubhubbub/ics
ea2013.

However, the JMS technology generates a coupling be-
tween the clients and QoMonitor since JMS only works
when the client is developed by using the Java programming
language. In this context, the Light-PubSubHubbub protocol
could have a key role since it enables the asynchronous
communication between the clients and QoMonitor without

generating a coupling because Light-PubSubHubbub was
developed as a Web service.

B. Experiments and results

The performed experiments were aimed to address the
overhead due to the use of the Light-PubSubHubbub proto-
col in comparison with the original PubSubHubbub protocol
and the JMS technology, when QoMonitor notifies its clients
about the event (return condition) regarding the asynchro-
nous request. In the experiments, five different computers
were connected to the same wired LAN network (in order to
minimize the influence of the network) according to the
experimental setup shown in Fig. 7. In order to calculate
such overhead, a time Web service was developed for shar-
ing the current time among the client, QoMonitor, and the
used topic (JMS or hub). When QoMonitor publishes the
notification in the topic, the time service is accessed for
retrieving the current time and this time is stored. After-
wards, when the client receives the notification from JMS
topic or the hub, it accesses the time service and the obtained
time is subtracted from the time retrieved by QoMonitor,
thus resulting in the time spent by the topic for answering to
the client.

Figure 7. Infrastructure used in the evaluation of the Light-PubSubHubbub

protocol compared with the original PubSubHubbub protocol and the JMS

technology.

The experiments were conducted in three sequential
phases. In the first one, the JMS technology was used by
QoMonitor for communicating with the client, so that the
client has performed an asynchronous request to QoMonitor,
which has registered it in the JMS topic. Similarly, in the
second and third phases, the PubSubHubbub and Light-
PubSubHubbub protocols were respectively used, so that the
client has performed an asynchronous request to QoMonitor,
which has registered it in the hub. When the return condition
was satisfied, QoMonitor answered to the client by using the
used topic (JMS or hub). Twenty independent executions for
the process of publishing and receiving the subsequent noti-
fication message were performed.

Table I presents the minimum, average, maximum, and
standard deviation times spent (in milliseconds) by JMS,
PubSubHubbub, and Light-PubSubHubbub within QoMoni-

436Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 456 / 646

tor. As can be observed in Table I, Light-PubSubHubbub
takes less time to answer to the client than JMS and the orig-
inal PubSubHubbub, thus resulting in a reduction of approx-
imately 40% compared with JMS and 93% when compared
to PubSubHubbub, on average.

TABLE I. TIME SPENT BY THE JMS TECHNOLOGY AND THE PUBSUBHUBBUB

AND LIGHT -PUBSUBHUBBUB PROTOCOLS WITHIN QOMONITOR.

Technology Minimum Maximum Average
Standard

deviation

JMS 22.7671 30.6794 24.4792 1.7112

PubSubHubbub 173.4899 302.8242 209.085 33.2603

Light-PubSubHubbub 13.5101 19.3910 14.5962 1.3127

The considerable reduction observed when comparing
Light-PubSubHubbub with the original version of the proto-
col is mainly due the fact that messages are directly sent to
the hub instead of being posted to a Web topic, so that the
hub can retrieve the message and then forward to the client,
as in the original PubSubHubbub. Furthermore, as we have
already argued, Light-PubSubHubbub does not generate a
strong coupling between QoMonitor and the client since it
was developed as a Web service, unlike the JMS technology
that requires that the client be implemented by using the Java
programming language.

VI. RELATED WORK

PubSubHubbub is a well-known protocol that has been
used as a plug-in in several blog tools and content manage-
ment systems (CMS) such as WordPress, Tumblr, Joomla,
etc. Furthermore, there is also several works in the literature
that have the same purposes of the PubSubHubbub protocol.
For instance, the Java Message Service (JMS) [15] is a mes-
sage-oriented middleware (MOM) that defines a set of inter-
faces that enable Java applications to communicate with each
other. The JMS API enables asynchronism since it delivers
the messages to consumers as soon as they are sent from the
message producers, so that that consumers do not need to
periodically request for the messages in order to receive
them (as in the polling method). The JMS API also ensures
that a message will be delivered one and only once, in a
reliable way. The connection between consumers and pro-
ducers can follow two basic models: (i) point-to-point, in
which producers know consumers and directly deliver the
message to them; or, (ii) publish/subscribe, in which pub-
lishers do not know subscribers and vice-versa since the
communication among them is performed through the JMS
topic, which receives the messages sent from publishers and
forwards them to the interested subscribers. Since JMS is a
Java technology, publishers and subscribers must be devel-
oped by using the Java programming language, thus generat-
ing a dependency in terms of technology, which does not
happen in Light-PubSubHubbub.

Trifa [2] presents the Web Messaging System (WMS)
protocol, which is based on the Publish-Subscribe model and
is essentially similar to the PubSubHubbub protocol. WMS
specifies the core functions of a Publisher-Subscribe system
by using RESTful design patterns over HTTP interactions

instead of developing a custom messaging protocol on the
top of the HTTP protocol. In addition, it envisions a broker
(very similar to the hub in the Light-PubSubHubbub proto-
col) that is responsible for storing the messages in an embed-
ded database until their delivery to the subscribers. Despite
of ensuring the delivery of the messages to the subscribers,
this database storage may increase the latency for delivering
the messages, as reported by the author.

In turn, Senn [16] uses the PubSubHubbub protocol in
Wisspr (Web Infrastructure for Sensor Streams PRocessing),
a Web-based framework for handling sensor data. Wisspr is
built upon a Publish-Subscribe system in order to facilitate
the development of event-driven and real-time processing
applications for Web of Things by storing sensor data from
different sources (e.g., mobile devices, home appliances,
etc.) in a relational database. All sensor data are available
from the PubSubHubbub protocol through a uniform REST-
ful interface, which enables to easily publish and consume
data, as in Light-PubSubHubbub.

Another interesting publish-subscribe protocol is Mo-
bilePSM [17], which is intended to support mobile clients for
publish-subscribe middleware. MobilePSM ensures that
messages are not lost nor duplicated by temporarily storing
them in a broker during the moving period, so that mobile
clients can receive messages according to the sending order
when a mobile client moves from one network to another or
it is passively disconnected. This temporarily storage for
providing reliability in terms of message delivering is an
interesting feature that is not currently provided by Light-
PubSubHubbub.

VII. CONCLUSION AND FUTURE WORK

 In this paper, we presented Light-PubSubHubbub [12], a
lightweight version of the PubSubHubbub protocol [3] to
deal with asynchronous message exchanges in the Internet.
This new version introduced the following changes: (i) the
publisher no longer needs to publish updated messages in a
Web topic and then notify the hub since the messages are
published in the hub itself; (ii) it uses the REST architectural
style in order not to couple publishers, subscribers, and the
hub, and; (iii) XML is the default format of the messages.
We performed experiments to compare Light-
PubSubHubbub with the original PubSubHubbub protocol
and the JMS technology [15] for asynchronous messaging,
and the obtained results have shown that Light-
PubSubHubbub takes less time to answer to the client than
PubSubHubbub (a reduction of 93% on average) and JMS (a
reduction of 40% on average). In addition, the implementa-
tion is not constrained to a specific technology since JMS
uses the Java programming language, whilst Light-
PubSubHubbub is implemented as a Web service.

As ongoing work, we are investigating how to address
some current limitations of Light-PubSubHubbub. The first
one regards to the temporary persistence of the messages
when the subscriber is busy or down. Moreover, Light-
PubSubHubbub does not provide any mechanism to ensure
that only the owner of a topic can publish updated in such
topic; in the PubSubHubbub protocol, publishers receive
keys when registering for a topic and must use them in order

437Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 457 / 646

to publish the updates. Finally, it is important to provide
means of securing of the messages, in terms of crypto-
graphing the exchanged messages.

ACKNOWLEDGMENT

This work is partially supported by the Brazilian National
Agency of Petroleum, Natural Gas and Biofuels (ANP),
through the PRH-22 Project.

REFERENCES

[1] H. Levi and M. Sidi, “Polling systems: Applications,
modeling, and optimization”, IEEE Transactions on
Communications, vol. 38, no. 10, Aug. 1990, pp. 1750-1760.

[2] M. V. Trifa, Building blocks for a participatory Web of
Things: Devices, infrastructures, and programming
frameworks – PhD dissertation. Swiss Federal Institute of
Technology Zurich, Switzerland, 2011.

[3] PubSubHubbub: http://pubsubhubbub.googlecode.com/
(access on September, 2013)

[4] K. Mani Chandy, “Event-driven applications: Cost, benefits
and design approches”, Gartner Application Integration and
Web Services Summit, 2006.

[5] G. Cugola and H.A. Jac obsen, “Using Publish/Subscribe
middleware for mobile systems”, ACM SIGMOBILE Mobile
Computing and Communications Review, vol. 6, no. 4, Oct.
2002, pp. 25-33.

[6] P.T. Eugster, P.A. Felber, R. Guerraoui, and A.M. Kermarrec,
“The many faces of Publish/Subscribe”, ACM Computing
Surveys, vol. 35, no. 2, Jun. 2003, pp. 114-131.

[7] Atom Publishing Protocol: http://www.ietf.org/rfc/rfc5023.txt
(access on September, 2013)

[8] RSS Specification: http://www.rssboard.org/rss-specification
(access on September, 2013)

[9] L. Richardson and S. Ruby, RESTful Web services. USA:
O’Reilly, 2007.

[10] JSON: http://www.json.org/ (access on September, 2013)

[11] Simple Object Acess Protocol (SOAP) 1.2:
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
(access on September, 2013)

[12] Light-PubSubHubbub:
http://consiste.dimap.ufrn.br/projects/lightpubsubhubbub/
(access on September, 2013)

[13] C. Batista et al., “A metadata monitoring system for
Ubiquitous Computing”, Proc. of the 6th Int. Conf. on Mobile
Ubiqutious Computing, Systems, Services and Technologies
(UBICOMM 2012). USA: IARIA, 2012, pp. 60-66.

[14] QoMonitor: http://consiste.dimap.ufrn.br/projects/qomonitor/
(access on September, 2013)

[15] Java Message Service (JMS):
http://www.oracle.com/technetwork/java/jms/index.html
(access on September, 2013)

[16] O. Senn, WISSPR: A Web-based infrastructure for sensor
data streams sharing, processing and storage – Master’s
thesis. Swiss Federal Institute of Technology Zurich,
Switzerland, 2010.

[17] T. Xue and T. Guan, “A protocol to support mobile
computing for publish/subscribe middleware”, Proc. of the
2012 Int. Conf. on Communication, Electronics and
Automation Engineering, Advances in Intelligent Systems
and Computing Series, vol. 181, G. Yang, Ed. Germany:
Springer-Verlag Berlin/Heideberg, 2013, pp. 845-849.

438Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 458 / 646

Semantic Symbols Extraction Model for Emergency Hazard Map

Lijian Sun1, Jie Zhao2, Lihong Shi1, Zheng Gong2, Yi Zhu1, Agen Qiu1

1. Chinese Academy of Surveying and Mapping

E-Government GIS Center
Beijing China
e-mail:sunlj@casm.ac.cn

2. National Administration for Code Allocation to

Organization
Department of Data Processing
Beijing, China
e-mail:zjvsfd@sina.com

Abstract— Emergency event information released in map is
necessary for emergency management and disaster reduction.
A new method for emergency map symbols extraction from
symbol collection based semantic analysis is presented in this
paper. A novel map symbol semantic matrix is introduced to
measure the degree of the semantic representation between the
symbol meaning and the emergency event conception. The
necessary content factors of emergency released in map are
conduced by analyzing the emergency content construction
and statistic result of the emergency content published by
national disaster reduction center. The fuzzy comprehensive
evaluation is proposed to extract the map symbol class. The
sub function ()i if k is designed to confirm the risk of factor-ki .
The simulation results verify the feasibility of emergency
semantic model and its extraction model.

Keywords-Symbol; Semantic Construction; Emergency;
Fuzzy comprehensive evaluation.

I. INTRODUCTION
Natural disasters or emergency hazards occur frequently

in the world [1], such as earthquake, typhoon, mud-rock
flow, land-slip of the mountains, falling and the downthrow
of the earth, etc. These are significant and realistic threats to
people’s wealth and life. Most of the natural disasters and
emergency hazards are intimately related with spatial. To
marked those hazard information including characters,
impact range and the response processing by symbol on a
map, it is of important practical and immediate significance
to the disaster prevention and reduction. [2]. At present,
researchers have done little work on this area [3]. The
dissemination of emergency information processing system
is mostly manual intervention, in a low automation level [2],
so it is necessary to do some work in this area. The sematic
of cartographic symbols includes spatical character and
reference characters[4].

In this paper, a cartographic symbol extraction model
on emergency hazard map n based semantic analysis is
presented. A novel map symbol semantic matrix is
introduced to measure the degree of the semantic
representation between the symbol meaning and the
emergency event conception. Further the fuzzy
comprehensive evaluation and sub function are proposed to
extract emergency map symbol from symbol library, by

evaluating the relationship between the symbol semantic
representation and the emergency event construction.

II. SEMANTICS RELATED TO EMERGENCY
SYMBOL

Map symbols, composed of some graphics with different
shape, size and color, are atlas language and could express
geo-information effectively. Some researchers have done
some work on map symbols linguistics, while most of them
focused on the organization mode of graphic elements and
symbol design. In this session, research on semantic
representation of map symbol will be carried out by
analyzing relationship between the entire semantic
representation of the map symbol and the emergency content
construction.

The map symbol for emergency release is thematic
symbol. Spatial and representation are the basic attributes of
those symbols.

The spatial character is the position on the map.
According to the distribution mode of the object, the pattern
of the map symbol spatial distribution includes dot, line, and
poly. The dot distribution refers to the emergency whose
spatial distribution mode is a point, for example, “January 2,
2008, 20 pm, a great fire occurred in U-City, D-Square”, the
D-Square is just a point in small scale map. The line
distribution refers to the emergency whose spatial
distribution mode is the line, for example, “January 6, 2008,
Ice-run appeared in the Yellow River in Ningxia section, the
whole length is about 234 Km”. The poly distribution refers
to the emergency whose spatial distribution mode is poly, for
example, “from January 12,2008, a great snow storm fell in
Anqing, Chizhou, Tongling district”. The Anqing, Chizhou,
and Tongling districts, which suffered from a great snow
storm, are an area on a large scale map.

Symbol representation is to assess the relationship
between the symbol and the emergency event, which is the
ideographic expression. In this paper, the symbol
representation measure is studied, not the symbol design.
The symbol representation includes two aspects: symbol
credibility and symbol (press) degree.

Definition: Symbol credibility: The real event is material,
while the symbol is abstract, so there is gap between them.
Symbol credibility (ijϕ) is used to measure this relationship.

439Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 459 / 646

ijϕ is the credibility for symbol i representing the case j.
ijϕ is continuous not binary, 0 1ijϕ≤ ≤ ，i∈ symbol, j∈ case,
ijϕ is dimensionless. The greater ijϕ is, the more little the

gap is, that is the symbol is more similar to the event.
ijϕ is often set by expert’s subjective judgment, it is a

definition value.
Definition: Symbol (press) degree: Generally speaking,

a different emergency is often represented with different
degree’s symbols, according to the emergency press. The
class of emergency symbol could be set by different shape
and graphics construction and the press degree of emergency
map symbol could be set by different color. For instance, the
level of different meteorological disaster symbols is
distinguished by four color-blue, yellow, orange, and red
(according to the regulation of meteorological disaster
symbols for prediction, published by China Meteorological
Administration in 2004) [6] .

TABLE I. METEROLOGICAL DISAER SYMBOLS COLLECTION (PART)

Meteorological
disaster

Risk Level
Ⅳ
Slight

Ⅲ
Serious

Ⅱ
 Magnitude

Ⅰ
Destroy

Typhoon

Rain Storm

Snow Storm

Cold Wave

Gale

Sand Storm ------

Drought ------ ------

Frost

In Table 1, the meteorological disaster level Ⅳ(Slight)

is marked with blue, the levelⅢ(Serious) is marked with
yellow, the levelⅡ (Magnitude) is marked with orange, and
the levelⅠ(destroy) is marked with red.

III. EMERGENCY SEMANTIC CONSTRUCTION
MODEL

Emergency is an out-of-order incident, which people have
little knowledge and information about [7]. A range of issues

arising from the emergency are of ill-structured or
unstructured problems [12]. If the emergency could not be
responded effectively, it will lead to crisis. Emergency is
often regarded as pre-crisis. Compared with general incidents,
emergency incidents have the following three characteristics:
emergent, severe ,and urgent.

Some linguists have done useful exploration and research
on the analysis of the emergency content, such as Zeng
Qingqing[5], who defined two information chains from the
perspective of researchers—the main information chain and
the secondary information chain. Yang Erhong analyzed the
emergency content by setting the key words. The key
elements in emergency content construction will be deduced
by analyzing the relationship between the emergency
meaning and the semantic representation of map symbols.

Event in context refers to language description for the
special matter which people are concerned about, it belongs
to the union meaning description [4]. Event is made up of
event words and event parameters. In other words, the
behavior generally described by verbs also includes event
word, location, participants and so on.

Event word is to flag the property of the event, which is
the key difference compared with other events. For example,
“January 16, 2008 16:50 pm, one person was missing in a
land-slip of the mountains, in Guxiang village, Xinshui town,
Daning country”. In this context, the event word is “land-slip
of the mountains”, which is the key word to distinguish the
emergency. Generally speaking, a content collection may be
confirmed by the type of the emergency when the event
word appears.

Definition: Event word collect A:

 1 2{ , , , , }nA a a a= (1)
where anaa ,...,2,1 are the elements of A, ia is the event

word. For example, the coalmine accident is defined as:
Coalmine Accidents ={gas accident, collapse, colliery
flooding, ...}.

The emergency hazard type should be certain from the
context. If the type is not indexed in event word library, it
could be pushed in the event word library, thus the event
word library is open for extend.

Sometimes, the event word is not in context, for example,
the context—“the houses have been razed to the ground,
most of people was homeless”, we knew the state of the
house and the victims, but we could not detect the disaster
type from the content, it may be earthquake, volcano or flood.
This is called the event word missing, and the symbol could
not be extracted from the emergency content when event
word missing.

A. Event parameters
An integrated emergency should have a completed event

word centric expression model that is given by:

 1 2(, , , ,)i i i ina f p p p= (2)
where p1, p2,,, pn are the event parameters to describe the
emergency.

440Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 460 / 646

The components of the emergency event are always the
mapping results from the part parameters in the whole event
parameters. For example, the event parameters of the
emergency- land-slip of the mountains includes :

“ 1p -Location”,
“ 2p -Impact range”,
 “ 3p -The time of occurrence”,
“ 4p -The duration”,
“ 5p -The dead and hurt people”,
“ 6p -The economic losing”, etc.
For example, the context-“January 16, 2008 16:50 pm,

one people was missing in a land-slip of the mountains, in
Guxiang village, Xinshui town, Daning country”, the event
parameters in above include location, the time of occurrence
and the number of missing.

B. Event attributes
Event attributes are used to describe the state of the event.

The event modality, press degree, frequency and the state are
focused on. The event modality is the possibility of
emergency occurrence. The event modality mode is
determined when the emergency has occurred, while for the
predicted emergency, it should be marked by title or other
form of annotation. For example, the context from the China
Central Meteorological Station, “in the next 2-3 days, the 8th
typhoon will generate in the northern of the South China Sea,
the wind in typhoon center will be expected to reach 10-12
class.” is a predictive emergency. The event press degree is
used to measure the hazardous extent of the emergency. It is
in the content of the emergency sometimes, for example,
“January 8, 2008, a serious traffic accident occurred in the
Hexu expressway in Anhui province section”. (The press
degree in this emergency is serious). While sometimes it is
not direct in the emergency content, for example,” January 7,
2008, two were hurt in the traffic accident in 312 State Road
in Yongshou country section”. Sometimes the event press
degree could be detected from the content if there is enough
information in. The event frequency is the number of the
emergency occurred. For example, “January, 20, 2008, two
blasts occurred in a chemical factory, fortunately nobody
was hurt”, The event frequency of this blast is two times.
The event state is used to describe the current state of the
emergency incident, for example, “January, 10, 2008, a
coalmine flooding accident occurred in K-Country, D-city.
Now the rescue work is still on.”

The statistic result of the emergency context for release
with map symbols is as follows: (From national disaster
reduction center, public)

TABLE II. THE SUMMARY STATICTIS RESULTS OF THE
NUMBER OF EMERGENCY CONTEXT FOR RELEASE FROM

JANUARY1,2008 TO JANUARY 27,2008,CHINA

Emergency Event
Word

Emergency
Space

Emergency Attribute
Event extent Time information

Location Impact
range

Numbered
Infor

Extent
Infor

Occurrence
frequency

Duration
Infor

Earthquake 11 11 2 11 0 11 0
Snowstorm 58 58 0 0 20 58 1

Fire 1 1 0 0 1 1 1

Over-wate
Accident 2 2 0 2 0 2 1

Traffic
accident 4 4 0 4 1 4 0

Drought 4 4 0 4 0 4 0
Ice-run 1 1 1 1 0 1 0
Coalmine
accident 1 1 0 1 0 1 0

Explosion 1 1 0 1 0 1 0
land-slip o
mountains 1 1 0 1 0 1 0

Crash 1 1 0 1 0 1 0
Cold
Wave 3 3 0 3 0 3 0

Total 92 92 3 29 22 92 3
Scale 100% 100% 3.26% 31.52% 23.91% 100% 3.26%

In Table 2, the event word, event space, event occurrence

time are all emerging in the emergency context, combination
of the research result of the map symbol, a conclusion is
drawn that the emergency content for release in map should
at least include the event word, space and occurrence time.
The event word and the event space have to be marked on
the map. The event occurrence time is sometimes marked out
of the map, usually as title, annotation. The event extent is
necessary for the level emergent.

IV. SOFTWARE MODEL DESIGN FOR SYMBOL
EXTRACTION

The basic principle of the map symbols extraction
algorithm is scattering the event according to the attributes
of the elements. Then they can be converted to quantitative
data according to the discrete elements and can be mapped
to the symbol library through the mapping model . This
paper will further extend this mapping as an evaluation.

The result of scattering event is the formation of an
event object , the event object including (attribute 1 attribute
2, ... attribute n).Each symbol in the symbol library is
associated with a semantic routing model .Semantic routing
model is a table, which saves semantic categories and
similarity of each symbol. The attribute of the event object
can be into the evaluation index, the sign which gets a high
score in this indicator is the symbol to be extracted. Then
setting attributes (color, size, etc.) of the extracted symbol
according to other semantic events in the object (degree of
harm).The model is shown in Figure 2:

The Procedure Design Language (PDL) for map symbol
extraction is as follows:
(1) Analyzing the emergency content, getting the elements

collection 1 2{ , ,,, }nA a a a= .
if (Event word A∉ | Event space A∉ | event occurrence
time A∉), A could not be released, then finish.

(2) Map symbol extraction algorithm:
if(∃ Event extent) 1f f= (event word, event extent,
symbol collection)
Else 1f f= (event word, default event extent, symbol
collection)

(3) if(1 nullf ≠)，Symbol space position： (d f= Event
space) , then 1f is marked at d .

(4) Mark the event occurrence time in map as label or title

441Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 461 / 646

or other illustration.
The algorithm and technical of position on map is quite

mature, the event occurrence time is often marked as title or
annotation. The map symbol extraction in step (2) is studied
in this paper.

Define symbol as a bivariate function, that is,
 (,)S f B V= (3)

where B is the symbol’s class and V is its extent.
Define Symbol semantic matrix, () ()ij m nB i ϕ ×= , ijϕ is the

degree of credibility for symbol i substituting the case j .
Definition: Symbol attributes matrix, 1 1() ()m kj mL i l× ×= ,

that shows the relationship between attribute k and the class i.
kjl =1, when k consistent with j in class i, otherwise kjl =0.

For example, class i is {flood, snow storm, earthquake,
volcano, explosion, ice-run,,,}, then the

1() {0,0,1,0,0,0, ,}mL earthquake × = .

A. Symbol’s class extraction
The fuzzy comprehensive evaluation, which is a method

to classify the examples according by some indicators, is
introduced to extract the map symbol class.

Suppose the count of event word is n, its attribute matrix
is ()L i ， (i=1,2,…n), then the extracted analysis matrix

1, 2, ..., T
rX η η η= , iη = (() ())TL i A i , where i=1,2,,,r. r is the

count of symbol in symbol collection.
The processing steps are as follows:
1. Confirm the fuzzy relationship matrix Ri (including

the membership function and the result), i=1,…,n.
2. Confirm the weighed distribution vector A, A=

(a1,a2,,,,an).
3. Get the evaluation result Bi by blue processing, Bi =

A°Ri, Bi= (bi1,bi2,,,,bin).
where the samples belong to the class k*, when bik

* =
max

k
|bik|.

B. Confirm the risk of symbol
The event degree is to explain the hazardous extent of the

emergency, including the directly or indirectly information,
indirect information, such as “7 people injured in a traffic
accident, in Badong country, January 3, 2008”, the directly
information is that, “January 8, 2008, a serious traffic
accident occurred in the Hexu expressway in Anhui province
section”.

(1) If the event press degree is not in the emergency
context, define the event extent is the lowest.

(2) If the press degree l is in the context, the v is
extracted directly. The higher the event extent level is, the
more hazardous the emergency is.

(3) If the extent level is not direct in the context, while
the number information about extent is in. Supposing that the
information number k about extent is an indicators collection,
that is, 1 2{ , ,,, }nK k k k= n is the count of the elements in k.
Then, the sub-event extent to ik could be confirmed
according by the industry standard.

For example, the rainfall extent defined by China
Meteorological Administrator is that: 1th grade is from
4.17mm/h to 8.33mm/h, 2 th is from 8.33mm/h to
16.67mm/h, 3 th is from 16.67mm/h to 33.33mm/h, 4 th is
from 33.33mm/h to larger. The function is like that:

 1 4.17 8.33ik< ≤

 ()i if k = 2 8.33 16.67ik< ≤ (4)
3 16.67 33.33ik< ≤
4 33.33ik >

The function (4) is shown in Figure 1.
The event extent with indicators collection k is that,

 1 1 2 2max{ (), (), , , ()}n nV f k f k f k= (5)

V. EXPERIMENTS AND ANALYSESE
Since the event word and press degree are necessary for

emergency release. Suppose there are event words t1, t2, t3,
t4 and press degree indicators k1, k2, k3, k4 in the
emergency context. The simulation processing 1f f= (event
word, event extent, symbol collection) is as follows:

A. Symbol’s class extraction
Six map symbols in collection as examples will be

evaluated. After analysis from the symbol mapping table, the
relationship result between the symbol semantic and the
event word is as follows:

TABLE III. THE RELATIONSHIP BETWEEN SYMBOLS AND EVENT WORD

symbol event word t1 t2 t3 t4

1 0.9 0.0 0.5 0.2
2 0.1 0.9 0.4 0.3
3 0.0 0.1 0.3 0.7
4 0.1 0.9 0.0 0.6
5 0.2 0.4 0.1 0.0
6 0.0 0.2 0.1 0.1

Then the matrix X :
0.9,0.0,0.5,0.2
0.1,0.9,0.4,0.3
0.0,0.1,0.3,0.7
0.1,0.9,0.0,0.6
0.2,0.4,0.1,0.0
0.0,0.2,0.1,0.1

x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Suppose the evaluation factors collection is set as follows:

TABLE IV. THE EVALUATION FACTORS TABLE

level
evaluation factor t1 t2 t3 t4

Ⅰ 0.3 0.3 0.3 0.3
Ⅱ 0.6 0.6 0.6 0.6
Ⅲ 0.9 0.9 0.9 0.9

442Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 462 / 646

Define that the bigger the value of the evaluation factor is,
the better the expression effect is.

Confirm the membership and weigh:
Define a factor membership function for evaluation is

like:
 1 0 i ijd c≤ ≤

 iju = 1
1

ij i
ij ij

c d
c c

+ −
+ − 1ij i ijc d c +≤ ≤ (6)

0 ij ic d<

where iju is the factor i that belongs to the membership
degree j. id is the value of the factor i. ijc is the criterion
value of i with degree j, i = 1,2,3,4，j=1,2,3.
So, the symbol K ’s membership matrix with all the
evaluating factors is defined as ()

4 3 4 3()k
i jR µ× ×= ,k=1,2,…,6.

The weight parameter matrix Ak = (a1,a2,a3,a4), where ia is
like:

 1

/

/

i i
i n

i i
i

x aa
x a

=

=

∑
 (7)

Fuzzy comprehensive evaluation is presented next.

To evaluate symbol K , the evaluation matrix is generated
by synthesizing Ak and ()

4 3
kR × . In this paper, the average

weigh model M(*,+) is adopted, that weighed all the factors.
Then Ak is as follows:

(1)
1 4 3

(2)
2 4 3

6 3

(6)
6 4 3

°

°

°

A R

A R
B

A R

×

×
×

×

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

...

, put the data into, then

6 3

0.23,0.21,0.56
0.39,0.08,0.53
0.36,0.42,0.22
0.06,0.38,0.56
0.81,0.19,0.00
1.00,0.00,0.00

B ×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦ .

It shows that symbols 0 and 3 are better than others, that
is B = 0 or B = 3.(0,3 are the row order) , B(3,2) > B(0,2), so
B = 3.

B. Confirm the risk of symbol
From Eq.(4), the conclusion is drawn that,

1 1 2 2 3 3 4 4max{ (), (), (), ()}V f k f k f k f k= ,
where i()if k is a linear classified function, usually defined

by industrial standard.
After confirming B and V, according to (3), the target

symbol could be calculated. Generally speaking, the function
(,)f B V is a mapping function to the symbol, B is the row, V

is the col.
The electronic map with this method is shown in Figure 3

(dot symbol and line symbol in map).

VI. CONCLUSIONS
In this paper, the context and semantic construction

about the emergency for release was studied. The map
symbol semantic matrix is introduced to measure the
relationship between the symbol semantic representation
and the emergency event. According to the research, the
necessary conditions for the emergency release in map are
deduced. The fuzzy comprehensive evaluation is proposed
to extract the symbol’s class and the classified function for
the factor of the event extent is used to confirm the event
press degree. In this experiment, the symbol semantic
matrix values are set by subjective definition, the value will
be set by the standard or the expert database after the
enough resource has been collected in future. By analyzing
the example, the effectiveness and practice of the present
experimental method are proved. The extension of the
normalization of performance value and efficiency
compared with other method would be our future direction.

ACKNOWLEDGMENT
This paper is partially supported by the China National

Key Technology R&D Program with no. 2012BAH24B02.

REFERENCES

[1] N. Sun and L. Sh. Li, “The Study of Hierarchy Assessment
Theory about Meteorological Disasters”. 2007 Annual
Conference of the Chinese Meteorological Society, July.2007,
pp. 85-93.

[2] S. Stein, R. Geller, and M. Liu, “Why earthquake hazard
maps often fail and what to do about it, ”Tectonophysics, July
2012, pp. 1-48.

[3] X. Li and Z. Li, “Preliminary Discussion on the Theoretical
Framework of the Earthquake Symbology System Building,”
Technology for Earthquake Disaster Prevention, July.2012,
pp. 37-41.

[4] A. Schaff, “Introduction to Semantic,” Pergamon Press,
Oxford, New York, 1962

[5] Q. Zeng and E. Yang, “Event Anonotation and Analysis about
the Content in Sudden Events Discourse,” Advances of
computational Linguistics in China, July 2009, pp. 600-605.

[6] China Meterological Administration, Symbols for
meteorological disaster warning signal. China Meteorological
Administration,
2004,(4),http://zwgk.cma.gov.cn/web/showsendinfo.jsp?id=1
011.

[7] D.S. Mileti, “Natural Hazards and Disasters – Disasters by
Design A Reassessment of Natural Hazards in the United
States,” Joseph Henry Press, Washington DC, 1999.

[8] M.Me, et al.,” Geological disaster analysis and risk evaluation
by GIS,” Journal of Geosciences Translation, March.1995, pp.
72-79.

[9] A. Bagga, “Analyzing the Complexity of a Domain With
Respect To An Information Extraction Task,” Proceedings of
the MUC-7, 1998,(6) http://www.muc.saic.com.

[10] National Disaster Reduction, Disaster Information.
http://www.jianzai.gov.cn/.

[11] Z. Hu and H.W. Yan, Analysis on Linguistics Mechanism for
cartographic symbols and its application. Geography and
Geo-Information Science, January.2008, pp. 17-20.

443Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 463 / 646

[12] L.J. Sun, Y. Zhu, and X.Diaodong Liu, Research on the
Theory of E-Government Emergency Information Publication
Rapidly Based on Hierarchical Workflow. Geomatics World,
June.2009, pp. 16-21.

[13] ACE.ACE Chinese Annotation Guidelines for Event.
http://www.ldc.upemn.edu/Projects/ACE/docs/Chinese-
Events-uidelines_ V5.5.1.pdf.2005C.

[14] X.H. Tan, The Application of Fuzzy Comprehensive
Evaluation and Grey Assembly Classifying in lithologic
Classification . Anhui geologic, April.1996, pp.71-76.

[15] L.N. Dang, F. Wu and Xuedong Li, Representation pf map
symbols based on description method. Journal of Geomatics
Oct, July 2007, pp.16-18.

Figure 1. Example of Graphic for classified function Figure 3. Emergency released in map by symbol

Figure 2. Software design model for symbols extraction

444Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 464 / 646

Interactive Hyperbolic Tree for Industrial size Software Product line Architecture

Abeer Khalid, Salma Imtiaz

Department of Software Engineering

International Islamic University

Islamabad, Pakistan

abeer.msse234@iiu.edu.pk, salma.imtiaz@iiu.edu.pk

Abstract—This Software Product line is an eminent part of

software re-engineering field. Facilitation of software product

line architecture with a more convenient method of

representation mechanism results in efficiency with respect to

time, cost, energy, etc. For this to be true, there is a need for

information visualization techniques that represent true

characteristics of software product line. This paper presents a

study of information visualization technique which makes

perception of data easy for interacting with the software

product line architecture.

Keywords-software product line architecture; information

visualization; visualization representation

I. INTRODUCTION

Software product lines are known as a family of software
systems, based on common and varying aspects of software
products with immense complexity rooted in them. The
present studies have suggested that architecture is the best
suitable form there representation [24] [25]. Literature shows
that representation mechanism, such as Unified Modeling
Language (UML), matrix tables, conventional trees have so
far been used in illustration of software product line
architecture. But foremost, they have not depicted the
characteristics of a software product line, which
consequences in, not well attained results. For this problem
to be tackled, an information visualization technique is the
best suitable option [26].

In recent years, information visualization has taken grip
of software engineering field by its sheer capability to
enhance cognitive abilities for perceiving complex data [23].
Thought information visualization is a relatively new
concept in the branch of software product line engineering, it
can still be of immense help if a suitable visual structure plus
its interactive visualization techniques are provided, as well
said by Tufte “There are right ways and wrong ways to show
data; there are displays that reveal the truth and displays that
do not” [22].

A lot of work has been done in representation of software
product line architecture data, with each technique having its
pros and cons. The techniques presented so far are not
scalable, traceable and they are not supporting evolution
[10]. Present representation mechanisms for management of
software product line architecture are not capable of handling
the software product line architecture attributes and do not
expose good visual structure attributes [26]. And thus, a
visual structure technique is proposed, which is capable of
conquering the attributes of a software product line

architecture data, also that visual structure can be interacted
upon; without being a static structure.

Hyperbolic trees are the visual structure devising the
central piece for our Information visualization techniques.
The criterion, on the bases of which hyperbolic tree structure
was concluded as best fit structure, was obtained from
attributes of software product line architecture and visual
structure [26]. The criteria were set as “abstraction,
hierarchy, traceability, scalability, evolution, visual content,
and perception” [26]. Also, hyperbolic trees are chosen, for
the fact that they “support exponential growth in the number
of components with increasing radius” [5]. Hyperbolic tree
stands on the basis that it has its root in the middle while its
linked nodes and their children are spread apart. In short, this
hierarchy depicts many generations of parents, their children,
their siblings, in the same window snapshot without losing
focus of the context [6]. The main feature of hyperbolic trees
is their ability to be manipulated, without any regard to its
extremely large hierarchy, which is much larger than
conventional hierarchal structure. They have the ability to
show 10 times as many nodes compared to other visual
structures, and hyperbolic tree structure being more effective
in providing navigation, without deviating from the context
[5]. This takes care of our software product line architecture
scalability issue to some extent.

This paper is organized in four sections: Section II is
concerned with the problem and related work. Section III
describes the visualization of the chosen visual structure.
Section IV states the conclusion and direction for future
work.

II. PROBLEM AND RELATED WORK

So far, representation of software product line
architecture has used many techniques and notations (e.g.,
Matrix table conventional tree, then notations like UML,
etc.). But, noticeably all these techniques are lacking in one
way or another.

Literature suggests that a number of illustration
mechanisms are used for representation of software product
line data. Unified modeling language (UML) notations are a
well-known representation form, and can be understood
easily, with platform independence provided in them[16-21].
UML notations incorporated with natural languages are also
used for representation of software product line data. Use
case map path notations (UCM) are also used for
representation of software product line data. The point to be
notated is that all of the notations are good in some context
[26], but they are not favorable for representation of software

445Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 465 / 646

product line architecture data as a whole, where traceability
links need to be visualized across the architecture as a whole,
beside other factors.

Textual presentation is another representation form,
which is used for SPL data [13] [14] [15]. But again, it is not
feasible for the fact that, it is not scalable, no traceability
links are present or visualized, keeping in mind that if no
traceability, then evolution cannot be optimally utilized.

Matrix form is another type of notation which is used, as
the literature suggests, for representation of software product
line architecture data [9] [11] [12]. They are a good form of
representation, but the problem with them is that they are not
scalable for software product line architecture data; also, as
with the above type of notation, traceability links are not
visible.

Conventional trees are another type of representation
form, whether they are vertical or horizontal tree [7], [9],
[10]. They are the best form of presenting software product
line architecture data. Here, the traceability links can be
visualized for the whole context. However, they are not
feasible because they are not a scalable structure, and also,
when focusing on one aspect of the tree, the other parts of
the hierarchy are obscured.

Cone tree is another form of hierarchal structure, which
in 3D format is quite good; they overcome the prominent
issues of the software product line architecture, namely
scalability, plus visualization of traceability links [8], [9].
But, the problem of data obscuring is still present, meaning
when focusing on one aspect of hierarchy, one does not see
the full context in a single snapshot.

Tree maps are another form of hierarchal structure, which
optimally utilize the screen space [7]. But the problem with
this type of technique is that traceability links are not visible,
also specifically one area of hierarchy cannot be focused on,
without losing the grip on the context.

In sum, the shortfall of the above mentioned
representation mechanism can be atoned by hyperbolic tree
structure, based on the fact that its essence is favorable for
software product line architecture data [26].

III. VISUALIZATION OF HYPERBOLIC TREE

The mapping of software product line architecture data
on to hyperbolic tree is based on the fact that this visual
structure is best suited for this job [10]. As defined in [5] and
[6], hyperbolic trees support large hierarchies and their
results have shown a preference towards the hyperbolic tree,
as compared to conventional approaches. The authors of [5]
and [6] also briefed about the implementation and the
general features of their hyperbolic browser.

Here, their work has been translated for software product
line architecture with enhancements included in it, based on
the lack of presence of characteristics of software product
line architecture. Also, the enhancements are derived from
the perception capability of a human mind.

Figure 1. Based on Anstis (1974) work [3].

A. Presenting “node”

Each node is encompassed in a circle for displaying node
information [5]. The circle does not interact with the circle of
another node. The size of the circle would vary based on its
generation level, e.g., if the node central to the core has size
of 15cm, then, the next ring of nodes would have node with
size of 10cm, which is 5cm short as compared to the parent
and so on. The theory behind this logic is to show the
distance factor giving the illusion of 3D depth factor. This is
similar to the implementation in [3], where letter size is
larger if the generation level is high. As shown in fig. 1,
where outer most circle have large sized nodes, giving the
perception that they are more close to the surface of the
screen as compared to the other nodes; the illusion is that the
size of the node decreases as they move further away from
the surface of the screen. In fig. 2, Anstis [3] work has been
translated onto the hyperbolic tree structure, where the inner
most circles of nodes is giving the perception that they are
closer to the surface of the screen. The next levels of
generation of circle of nodes are positioned behind and so
on.

 When focusing on some point of a hierarchy then, the
size of the nodes would vary, depending on the size of the
parent node. The size of the parent node, and its child, and so
on would become the same as compared to the other nodes at
that specific time. Moreover, the positioning of the nodes
with regards to the generation level would not be hindered
when focusing on some part of the hierarchy.

446Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 466 / 646

Figure 2. Hyperbolic tree structure with distance factor mapped on it.

B. Generation level

This feature has to be maintained for the sole reason that
the perception of data for software product line architecture
has a major hold. If the graph cannot maintain the level of
placement of every node by their generation radius, then
perceiving can be made quite difficult. The allotment of
placement of nodes can be calculated by

 = =

where stands for total degree of angle, n implies total
number of children, is the equal number of angle, is

number of children per node, and is the number of angle

per node. Also, it should be stated that for each ring of nodes
this equation is called for placement of next level of
generation nodes. Then [5] presented in their article,
equation for calculating the needed space from a parent to
their child.
Lamping and Rao formula:

where is angle between midline and edge of the subwedge

and is the desired distance between child and edge of its
subwedge [5].Keeping in mind that even when focusing on
some part of the hierarchy the level of generation gap should
be maintained and not overlap at any point in time.

C. Background landscape

The background of it would be landscape, e.g., made up
of peak mountain; the base of the mountain would be in
green representing the grass, moving upwards it would
merge with the color brown showing bare land, then moving
upwards to color white representing snow. Figure 3 shows
software product line architecture data translated onto the
hyperbolic tree with human perception of real world
environment kept in mind.

Perception of data is easy if the visualization is inspired
from the real world environment and its objects known as

“data landscape” in software terminology [4], based on the
fact that skills used by human mind in interpreting the real
world environment can be used in perceiving the
visualization of “data landscape” [4].

Figure 3. Perception of hyperbolic tree as real world object.

D. Color aid

The concept of “peak mountain” for the background, on
which the hyperbolic tree would reside can be achieved with
the help of color, as well said by Colin “that color helps in
breaking camouflage” otherwise it would be very difficult to
determine where or what a certain object is [4]. The use of
color is not just about filling an image with color, but one
has to bring it as close to real world objects as possible. In
fig 3, the circles of nodes are filled with Lambertian shading,
also the circles shown as objects, are Casting shadow on the
mountain. Where Lambertian shading is known as a method
for showing surface shape with the help of shading [4],
meaning that if a mixture of color is not used then it is not
possible to differentiate between the background and the
overlaying objects on them. And Casting shadows theory is
deduced from the fact that any real world subject can cast
shadows either on itself or on the surface it is placed upon.
This theory gives us the illusion of perception of height, of
an object [4], stating that the specified object is at a height,
above the ground that’s why it’s casting its own shadow on
the ground; rather than being at the same level on the ground.

The nodes are also filled with the blue color and the text
defining the node is in black color, which brings out the
luminance contrast; which states that if the background is
low saturation (light color), then the overlaid symbols must
be of darker shade [4].

E. “Affordance”device

Taking Gibson’s affordance theory known as perceivable
prospective for action [2] into consideration and translating it

447Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 467 / 646

to our work, e.g., if the task is to bring second generation of
children into focus, it would be highly recommended if
“handles” are used [2]. As perceived by Houde, it is rather
easy to perceive solution with the help of “handles” than
arrows, etc. [1]. Here again, the focus is to bring forth human
perception of real life objects, and use those skills as
opposed to defining new ones.

IV. CONCLUSION AND FUTURE WORK

This paper starts with identifying the need for
information visualization technique for the software product
line architecture. It has mentioned the need for not just a
good visual structure, but also the need for interaction with
it. It further went on to explain the importance of hyperbolic
tree and then presented enhancements to the concept of
hyperbolic tree introduced by [5] and [6], for the sole
purpose of establishing it as a fine means for the
representation of software product line architecture data.
Along the way, the perception of the human mind was kept
in focus based on the rationale that nonfunctional
requirement of software product line architecture can only be
handled if perception of human mind is focused upon.

There is a need for testing this technique against
previously used techniques for representation of software
product line architecture. Our future work is based on this.

ACKNOWLEDGMENT

We would like to thank all our teachers and colleagues
who helped. A.K, thanks MR. Mushtaq, Ms. Zafar, Mr.
Iqbal, Mr. Hussian and Ms. Latif for their endearing support.

REFERENCES

[1] S. Houde. “Iterative design of interface for easy 3-D direct
manipulation,” Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, ACM, Monterey,
May, 1992, pp. 135-142. [Retrieved: October, 2013].
doi:10.1145/142750.142772

[2] J. J. Gibson. “The ecological approach to visual perception,”
Houghton Mifflin, Boston, 1979. (currently published by
Lawrence Erlbaum, Hillsdale, NJ.)

[3] S. M. Anstis. “A chart demonstrating variation in acuity with
retinal position,” Vision Research, vol. 14, no. 7, July, 1974,
pp. 589-592. [Retrieved: September, 2013].
doi:10.1016/0042-6989(74)90049-2

[4] C. Ware. “Information visualization:Perception for design,”
Morgan Kaufman Publishers, 2nd ed, 2004.

[5] J. Lamping and R. Rao. “Hyperbolic Browser:A

focus+context Techniques for visualizing large hierarchies,”

Journal of visual languages and computing, vol. 7, no. 1,

March, 1996, pp. 33-55. [Retrieved: September, 2013]. doi:

10.1006/jvlc.1996.0003
[6] J. Lamping, R. Rao, and P.Peter. “A focus+context technique

based on hyperbolic geometry for visualizing large
hierarchies,” In Proceedings of the ACM SIGCHI Conference
on Human Factore in Computing Systems(CHI '95), ACM,
May, 1995, pp. 401-408. [Retrieved: October, 2013]. doi:
10.1145/223904.223956

[7] B. Johnson and B. Shnedierman. "Tree-maps: a space-filling
approach to the visualization of hierarchical information
structures," Visualization, 1991. Visualization '91,
Proceedings, IEEE Conference on, vol., no., 22-25 October,

1991, pp. 284-291. [Retrieved: September, 2013]. doi:
10.1109/VISUAL.1991.175815

[8] G. G. Robertson, J. D. Mackinlay, and S. K. Card. “Cone
trees: Animated 3d visualization of hierarchical information,”
Proceedings of the ACM SIGCHI Conference on Human
factors in computing systems, ACM, 1991 pp. 189-194.
[Retrieved: October, 2013]. doi:10.1145/108844.108883

[9] S. Card, J. Mackinlay, and B. Shneiderman. “Readings in
Information Visualization - Using Vision to Think,” Morgan
Kaufmann, 1999.

[10] D. Nestor, L. O'Malley, A. Quigley, E. Sikora, and S. Thiel,
"Visualisation of Variability in Software Product Line
Engineering," in 1st International Workshop on Variability
Modelling of Software Intensive Systems (VaMoS-2007),
Limerick, Ireland, 2007. [Retrieved: October, 2013].
doi:10.1.1.136.9399.

[11] S. Ferber, J. Haag, and J. Savolainen. "Feature Interaction and
Dependencies: Modeling Features for Reengineering a
Legacy Product Line," Software Product Lines (SPLC2):
Springer, vol. 2379, August, 2002, pp. 235-256. [Retrieved:
September 2013]. doi: 10.1007/3-540-45652-X_15

[12] H. Ye, and H. Liu. “Approach to modelling feature variability
and dependencies in software product lines,” IEEE. vol. 152,
June, 2005, pp. 101-109. [Retrieved: September, 2013]. doi:
10.1049/ip-sen:20045007

[13] S. G. Eick, J. L. Steffen, and E. E. Sumner. “Seesoft-ATool
for Visualizing Line Oriented Software Statistics,” IEEE
Transactions on Software Engineering, vol. 18, no. 11,
November, 1992, pp 957-968. [Retrieved: September, 2013].
doi:10.1109/32.177365

[14] A. van Deursen, M. de Jonge, and T. Kuipers. "Feature-
Based Product Line Instantiation Using Source-Level
Packages," Software Product Lines (SPLC2): Springer, vol.
2379, August, 2002, pp. 217-234. [Retrieved: October, 2013].
doi: 10.1007/3-540-45652-X_14

[15] K. C. Kang et al., “FORM: A feature-oriented reuse method
with domain specific reference architectures,” Annals of
Software Engineering, vol. 5, no. 1, 1998, pp. 143-168.
[Retrieved: September, 2013]. doi:
10.1023/A:1018980625587

[16] D. Muthig, and C. Atkinson. "Model-Driven Product Line
Architecture," Software Product Lines (SPLC2): Springer,
vol. 2379, USA, August, 2002, pp. 110-129. [Retrieved:
October, 2013]. doi: 10.1007/3-540-45652-X_8

[17] D. Fey, R. Fajta, and A. Boros. "Feature Modeling: A Meta-
Model to Enhance Usability and Usefulness," Software
Product Lines (SPLC2): Springer, vol. 2379, USA, August,
2002, pp. 198-216. [Retrieved: October, 2013]. doi:
10.1007/3-540-45652-X_13

[18] S. Salicki, and N. Farcet. "Expression and Usage of the
Variability in the Software Product Lines," Software Product-
Family Eng (PFE-4): Springer, vol. 2290, Spain, October,
2002, pp. 304-318. [Retrieved: September, 2013]. doi:
10.1007/3-540-47833-7_27

[19] G. Halmans, and K. Pohl. “Communicating the variability of
a software-product family to customers,” Software and
Systems Modeling, vol. 2, no. 1, March, 2003, pp. 15-36.
[Retrieved: October, 2013]. doi: 10.1007/s10270-003-0019-9

[20] F. Bachmann et al., "A Meta-model for Representing
Variability in Product Family Development," Software
Product-Family Eng (PFE-5): Springer, vol. 3014, Italy,
November, 2004, pp. 66-80. [Retrieved: October, 2013]. doi:
10.1007/978-3-540-24667-1_6

[21] D. L. Webber, and H. Gomaa. “Modeling variability in
software product lines with the variation point model,” Sci.
Comput. Program., vol. 53, no. 3, December, 2004, pp. 305-
331. [Retrieved: September, 2013]. doi:
org/10.1016/j.scico.2003.04.004

448Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 468 / 646

[22] R. E. Tufte. “Visual explanation:Images and Quantities,
Evidence and Narrative,” Cheshire, CT: Graphics Press, 1997.

[23] D. A. Norman. “Things that Make Us Smart,” Reading, MA:
Addison-Wesley, 1993

[24] M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch.
"COVAMOF: A Framework for Modeling Variability in
Software Product Families," Software Product Lines
(SPLC3): Springer, vol. 3154, USA, August- September,
2004, pp. 197-213. [Retrieved: September, 2013]. doi:
10.1007/978-3-540-28630-1_12

[25] A. V. D. Hoek. “Design-time product line architecture for
any-time variability,” Science of Computer Programming,
vol. 53, no. 3, Neatherland, December, 2004, pp. 285–304.
[Retrieved: October, 2013]. doi:10.1016/j.scico.2003.04.003

[26] K. Abeer, and I. Salma, “Evaluation of Visual structure for
Industrial size Software Product Line Architecture,” Proc. of
Eighth International Multi-Conference On Computing In The
Global Information Technology, Think Mind, France(Nice),
July. 2013, pp. 152-157. [Retrieved: October, 2013].
doi:iccgi_2013_7_40_10278

449Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 469 / 646

Creating a ITIL-based Software Incident
Categorization Model for Measurement: A Case

Study

Sanna Heikkinen, Antti Suhonen, Mika Kurenniemi, and Marko Jäntti
University of Eastern Finland

School of Computing
Email: firsname.lastname@uef.fi

Abstract—Many IT organizations have recognized incident
categorization as a problematic subject because there are no
general policies or guidelines for incident categorization. This
leads to incident categorization usually being seen as an optional
task for the specialists who handle incidents. This article presents
the results of a case study that was carried out in an energy
business unit of a Nordic IT service company. The research
problem of this study is as follows: what type of software
incident categorization model would be efficient and would also
support ITIL-based continual service improvement? The results
of this study consist of two parts: First, the software incident
categorization (SIC) model which helps an IT organization to
categorize incidents effectively and recognize the weak points
of the software development process, and second, the provision
of the lessons learned for improving incident categorization and
measurement practices.

Keywords—IT service management; ITIL; continual service im-
provement; incident management; software incident categorization
model

I. INTRODUCTION

Managing incidents effectively is an essential operation
for an IT organization and it usually affects several of the
activities of the organization e.g., software development needs
to change or fix an application or software in order to resolve
an incident. IT organizations use different types of terms to
define an incident (e.g., error, fix, bug, problem, programming
error, user error, and hardware error), which may complicate
understanding the meaning of the term, especially when the
organization and its stakeholders are communicating about in-
cidents. According to ITIL version 3 (Information Technology
Infrastructure Library), an incident is an unplanned interruption
to an IT service or reduction in the quality of an IT service
[1]. In practice, an incident can be e.g., a software error, which
prevents normal use of software, a malfunction in the printer,
or a crashed database server. In this paper, the researchers use
the description of ITIL v3 for the term ”incident”.

The ITIL is a set of good practices for directing and man-
aging IT services and it can be tailored to any IT organization
[2]. This study will focus on the Service Operation [1] and
Continual Service Improvement (CSI) [3] lifecycle phases.
One of the key processes of the Service Operation is incident
management, which is responsible for managing the lifecycle
of all incidents. According to the CSI ideology, an organization
needs to measure the incident management process so that the
organization can be sure that the process works effectively.

The measurement data should be used to identify ideas for
improvement to IT services or processes.

During the incident management process, incidents are
arranged into categories. This is usually done by the service
desk employees who are responsible for handling incident
tickets through IT service management system. Incident cate-
gorization enables similar incidents to be tracked, which helps
to recognize the weak points of services and processes. Al-
though incident categorization is an important phase in incident
management, there are no common incident categorization
models, guides, or other best practices. This leads to the fact
that organizations may create ineffective and unclear models
for incident categorization and might mean that employees
do not always understand the reasons and benefits which
suggest why incident categorization should be performed in
the first place. In practice, incident categorization should be
user-friendly and explicit, and it should not slow down IT
service management activities conducted by employees, such
as diagnosing, escalating, and resolving incidents.

Incident categories are an important source of information
when it comes to measuring and analyzing. The data that
software incident categorization produces help IT organiza-
tions to identify the challenges and quality gaps in services
and processes from the software lifecycle management point
of view. Appropriate software incident categories allow the
comparison of incident categorization data without country- or
product- specific limitations. The organization’s future process
improvement plans can also benefit from the data that software
incident categorization produces. Ultimately, effective software
incident categorization leads to increased customer satisfaction
by improving product and service quality.

A. Related Work

Incident management is a central process for IT organiza-
tions and therefore many articles have been written about the
subject from the software engineering and IT service manage-
ment (ITSM) points of views. However, there have only been
a few studies that have concentrated on incident categorization
from the ITSM perspective. The present researchers exploited
the following scientific articles while creating the software
incident categorization model. In their paper Vipindeep and
Pankaj [4] describe some of the common programming errors
and poor programming practices that are often the cause
of different types of bugs. Collofello and Balcom [5] intro-

450Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 470 / 646

duce a causative software error classification scheme which
emphasizes the entire software lifecycle and the causative
attributes of the errors. In their paper Nakajo and Kume [6]
researched the cause-and-effect relationship of software errors
and human errors, which offers an appropriate framework for
classifying the software errors. Lutz [7] used this framework
when analyzing software requirement errors in safety-critical
embedded systems. In their paper Leszak, Perry, and Stoll [8]
describe a four-dimensional root cause classification. These
four dimensions are human, review, project, and lifecycle.
Owens, Womack, and Gonzalez [9] researched software error
classification using a defect detection tool. Software errors
were categorized into five classes: uninitialized memory read,
array bounds write, array bounds read, free memory read,
and free memory write errors. IEEE standard 1044-2009 [10]
provides a uniform approach to classifying software anomalies,
regardless of whether they occur within the project, product,
or system lifecycle. Classification data can be used for a
variety of purposes, including defect causal analysis, project
management, and software process improvement.

B. Our Contribution

The main contributions of this paper are: 1) the software
incident categorization (SIC) model which helps an IT orga-
nization to categorize incidents effectively and recognize the
weak points of its software development process; 2) the provi-
sion of lessons learned for improving incident categorization
and measurement practices.

The goal of this study was to design an appropriate and
consistent incident categorization model which an IT organi-
zation could configure into its ITSM system. The purpose of
the SIC model is to help IT organization to allocate incidents
to a specific part of the software development process. In other
words, the SIC model makes it easier to detect sections where
customers have found incidents and which are not detected
by the IT organization. The results of this study are mainly
meant to be of benefit to the persons who are responsible for
managing, measuring, and reporting IT services and IT service
management processes (e.g., service owners, service managers,
process owners, and process managers). This research does
not address how the SIC model should be integrated into
different ITSM systems. However, this integration should not
be problematic with the systems that support ITIL v3 best
practices because the SIC model was built on the basis of
ITIL.

The rest of the paper is organized as follows. The research
problem and methods are described in Section 2. The creation
and validation of the software incident categorization model is
covered by Section 3. The analysis of the findings, with lessons
learned, is covered in Section 4. The conclusion in Section 5
summarizes the case study.

II. RESEARCH METHODS

The research problem of this study is this: what type of
software incident categorization model would be efficient and
would also support ITIL-based continual service improvement?
This study was a qualitative research study which was built
using the case study research and action research methods.
The research problem was divided into the following research
questions:

• RQ1: What type of information can be used as a guide
in creating an effective software incident categoriza-
tion model?

• RQ2: How should the software incident categorization
model be structured so that software-related incidents
can be arranged effectively?

• RQ3: How should the software incident categorization
model be validated?

• RQ4: How can incident categorization be used to
support key CSI activities, such as measurement,
reporting, and identifying the ideas for improvements?

During the case study, a researcher is an outsider, who
observes and analyses an environment and makes notes by
combining different data collection methods [11]. According to
Baskerville [12], the action research method produces highly
relevant research results because it is grounded in practical
action, and it solves an immediate problem case while carefully
informing theory. These selected methods support a situation
where the researchers work together on a research project and
their objective is to identify and solve problems in the IT
organization’s environment. The researchers used ITIL [2], and
the ISO/IEC 20 000 standard [13] as theoretical frameworks
in this study.

A. Case Organization and Data Collection Methods

The case subject of this study was an energy business unit
which is part of a Nordic IT service company that provides
solutions and services for Scandinavian energy companies.
In 2012, the Nordic IT service company had around 17 000
employees operating in over 20 countries. The company’s en-
ergy business unit is one of the research project’s cooperation
partners. This energy business unit will be referred to by the
name Alpha for the rest of the paper.

The research was conducted in January 2013, using the
KISMET (Keys to IT Service Management Excellence Tech-
nique) model as a roadmap to improve incident management
practices. The KISMET model is presented in more detail in
Suhonen’s et al. research paper [14]. Multiple data collection
methods proposed by Yin [11] were used during the study and
the following data sources were used:

• Documents: meeting memos and process charts.

• Archival records: articles, incident categorization
sets, and incident records.

• Participatory observation: meetings and discussions
with managers (e.g., product, portfolio, development,
release, and test managers).

• Physical artifacts: access to the intranet and to the
IT service management system.

• Semi-structured themed interviews: interviews with
five of the IT organization’s staff members (senior
software engineer, service desk specialists, and con-
tinuous service manager).

451Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 471 / 646

B. Data Analysis Method

This study was performed by using within-case analysis for
a single organization. According to Eisenhardt [15], the within-
case method typically involves detailed case study write-ups
for each site and becoming familiar with the case as a stand-
alone entity. The data analysis was performed collectively with
the research group. The idea behind this collective analysis is
to provide ”seeds for development” and to use their expertise
in the analysis, as they know their specific fields best [16].
The triangulation used in this study allowed the researchers to
be more confident about their results. Denzin [17] extended
the idea of triangulation beyond its conventional association
with research methods and designs. During the study the
researchers used three forms of triangulation [17]: 1) data
triangulation, which includes collecting data through several
sampling strategies; 2) investigator triangulation, which refers
to the use of more than one researcher in the field to gather
and interpret data, and 3) methodological triangulation, which
refers to the use of more than one method for gathering data.
The research work was organized into chronological order by
the phases of the KISMET model. The research work was
validated during weekly meetings with Alpha’s representatives.

III. RESULTS

In this section, the researchers will introduce the way in
which the software incident categorization model was created
in cooperation with the case organization and the research
team. The research work consisted of five main phases: A)
investigating the current state of incident management and
planning improvement actions; B) designing a software inci-
dent categorization model based on ITSM practices; C) pre-
senting the main categories and subcategories of the software
incident categorization model; D) validating the SIC model,
and E) presenting continual service improvement actions.
These phases are described in the following subsections.

A. Investigating the current state of incident management and
planning improvement actions

The kickoff meeting between the research team and the
business unit Alpha was held in January 2013. At that meeting,
the representatives of Alpha reported that they would like to
improve and unify their unit’s internal measurement practices
by designing a software incident categorization model.

The researchers analyzed the current state of Alpha’s
incident management. During the analysis, the research team
recognized a few challenges which implied to the team that
appropriate improvement actions were needed. After that the
researchers defined the improvement actions for Alpha and
explained to them why executing these actions systematically
is important (business benefit).

The recognized challenges: the researchers recognized
that Alpha uses different incident categorization sets (sets of
values for categorizing incidents). The lack of a consistent
incident categorization set means that incidents are not cate-
gorized similarly inside Alpha. For this reason the same types
of incidents may be arranged into different categories. This
complicates the consistent measuring and reporting of different
types of incidents. Improvement actions: Alpha requires an
appropriate and consistent software incident categorization

model in order to categorize incidents in a systematic way
throughout the business unit. This model will help to analyze
and compare different types of incidents and their frequen-
cies inside Alpha (and between other business units if they
implement the same software incident categorization model).
Business benefits: by using an appropriate software incident
categorization model, Alpha is able to design clear and mea-
surable objectives for incident management. The measurement
results can be used to identify areas or activities which cause
delays in incident management. For instance, these results can
show that the resolution times in network-related incidents
are much longer than the resolution times for other types of
incidents or lots of incidents were initiated during a testing
phase (which may indicate that the testing is not executed prop-
erly). Regularly reviewing effectively categorized incidents
on the basis of priorities and underlying causes could help
to identify opportunities for continual service improvement,
increase the quality of IT services, and improve customer
satisfaction. A systematic model for managing improvement
actions concerning IT services and IT service management
processes have been presented in Heikkinen’s and Jäntti’s
paper [18].

B. Designing a software incident categorization model based
on ITSM practices

The researchers designed the software incident categoriza-
tion model by using the ITIL technique [1], which can be
applied to creating a complete set of incident categories. This
technique contained the following steps:

1) Organize brainstorming sessions. Appropriate stake-
holders should be invited to the sessions (e.g., service
desk managers, incident managers, and problem man-
agers).

2) Create the main categories for incidents by using the
information collected during Step 1. Additionally, add
an ”Other” incident category.

3) Test the main categories which were created in Step 2.
Testing should last a sufficiently long period of time
for the appropriate amount of data to be collected.

4) Analyze the data which were collected during the
Step 3. The successfulness of the main category is
determined by the number of incidents that have
fallen into it. Additionally, analyze incidents which
have been categorized as ”Other” incident. If the
”Other” incident category contains a large number
of incidents, form new main categories for these
incidents on the basis of similarities found.

5) Execute a breakdown analysis of the incident cate-
gories that have been created. The purpose of this
analysis is to review the main categories and design
appropriate subcategories for them.

6) Repeat Steps 2 to 5 for an appropriate period of time
(approximately, from one to three months). Review
the categories and subcategories regularly to ensure
that they remain relevant.

The data sources that the researchers collected, analyzed, and
used while executing these six steps are presented in Section
II.

452Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 472 / 646

C. Presenting the main categories and subcategories of the
software incident categorization model

The software incident categorization model that was cre-
ated offers a consistent and practical means of incident cat-
egorization. The SIC model is hierarchical and it consists of
seven main categories and twenty-six subcategories. The model
is not bound to any specific software or business unit. Figure
1 presents the structure of the software incident categorization
model.

The model includes the main categories ”Other” and ”Un-
known” (categories six and seven). Additionally, the main
categories from one to five contain subcategories ”Other”
and ”Unknown”. In practice, the ”Other” and ”Unknown”
main categories and subcategories are meant to be used in
the following way: the ”Other” category contains incidents
that cannot be classified into the other categories and the
”Unknown” category will be used when the right classification
category for the incident is not (yet) known. The list below
presents the software incident categorization model’s main
categories and subcategories in more detail:

1) Design: this main category contains incidents caused
by customer requirements, improper translation of
requirements into design, or the poor definition or
inadequate specification of software.

• Customer requirements: this subcategory
covers incidents caused by inconsistent, in-
complete, or incorrect customer requirements.

• Our design: this subcategory covers software
incidents caused by the improper translation
of requirements into design. Incidents caused
by the poor definition or inadequate specifica-
tion of software also fall into this subcategory.

2) Delivery: this main category contains incidents that
occur during software delivery or installation proce-
dures.

• Packaging: this subcategory covers incidents
caused by software packaging.

• Distribution: this subcategory covers inci-
dents caused by software distribution.

• Installation: this subcategory covers incidents
caused by software installation.

3) Operational: this main category contains incidents
that occur during the normal use of software (e.g.,
the software behaves incorrectly or it does not work
with all inputs).

• Data content: this subcategory covers in-
cidents related to data management (e.g.,
database incidents, file handling incidents, and
incidents related to measurement data).

• Configuration: this subcategory covers inci-
dents related to configuring the software.

• Programming: this subcategory covers inci-
dents related to programming errors. A pro-
gramming error produces an incorrect or un-
expected result, or causes software to behave
in unintended ways (code may compile and
run without error, but the outcome of an
operation may produce an unexpected result).

• User error: this subcategory covers incidents
related to errors made by users. A user error
results from a mistake made by a user.

4) Third party: this main category contains incidents
that occur with the use of a third party’s software
and hardware.

• System or component: this subcategory cov-
ers incidents related to third party systems or
components which do not behave as they were
supposed to.

• Network: this subcategory covers incidents
related to the network.

• Distribution or installation: this subcategory
covers distribution and installation incidents
caused by a third party.

• Configuration: this subcategory covers inci-
dents related to the configuring of the software
caused by a third party.

453Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 473 / 646

5) Customer information: this main category contains
incidents that are caused by incorrect or misleading
information between the customer and the organiza-
tion.

• Release notes: this subcategory covers inci-
dents related to release notes (e.g., customers
feel that they have not been informed properly
about the changes to hardware, software, or
other components).

• Communication: this subcategory covers in-
cidents related to communication between a
customer and the organization’s employees
(e.g., the service desk or support specialists).

• Instructions: this subcategory covers inci-
dents caused by written instructions, manuals,
or training materials.

6) Other: this category contains incidents that cannot be
categorized into the previous categories (categories 1
- 5). This category should exist because it helps to
understand whether the SIC model works correctly
and the categories that have been created are easy
to use. This category also indicates whether other
categories need expanding.

7) Unknown: this category will be used when the right
category (1 - 6) for an incident is not yet known.

D. Validating the SIC model

The software incident categorization model that was cre-
ated was validated by collecting data from Alpha’s personnel
(e.g., product area managers, problem managers, and service
desk employees) using interviews and surveys. The following
questions were used to validate the model:

• How does incident logging or managing appear to you
in your job? Could you describe a typical incident
situation?

• Are the software incident categorization model’s main
categories and subcategories appropriate and consis-
tent, in your opinion?

• Is there a lack of any categories of the SIC model (e.g.,
are there any missing main categories or subcategories
that you can think of)?

• In your opinion, is the software incident categorization
model easy to use? Do you find it easy to discover the
proper category for an incident?

• Are the descriptions of the main categories and sub-
categories appropriate and easy to understand?

• Have you found categorizing incidents challenging? If
that is the case, please describe.

• What benefits can be achieved by using incident
categorizing?

• Do you have any other ideas on how to improve the
incident categorization?

The judge from the validations, Alpha’s representatives were
pleased with the model and its categories. The personnel were
also keen to know when the model would be implemented and

ready for use. The following comments were collected during
validation meetings:

• The SIC model will help us see the most critical
incident sources in software development. We will
be able to identify the areas that cause most of
the incidents and we can take appropriate counter-
measures once these areas have been identified.

• Work was done earlier in small groups when our
working practices were not a concern. Today, when
work is done in cooperation with several groups,
working practices need to be consistent if we want
to measure and compare work e.g., from the quality
point of view.

• Change and service request types of tickets need to
have their own categorization models.

• Using the model (choosing the right main category and
subcategory) may be challenging at first if appropriate
documentation about the model is not available.

• The ”Other” and the ”Unknown” categories are useful
in situations when it is hard to know the right subcat-
egory for the incident, e.g., when an incident is sent
to the service desk, which cannot know for sure what
the exact incident subcategory is without the help of
support specialists.

• What type of reports can be created by using the
categorization data and how can these reports be
exploited?

E. Presenting continual service improvement actions

Continual Service Improvement (CSI) aims to continually
improve the effectiveness and efficiency of IT processes and
services. Measuring the current performance of services and
processes is an important factor when identifying improvement
opportunities. The SIC model is closely linked to CSI by
supporting the measurement of ITSM services and processes.
With clear and measurable objectives (e.g., increase number
of incidents related to software installation) organization is
able to direct its ITSM improvement actions by using incident
categorization data of the SIC model. The measurement data
can be also used to identify flaws in e.g., incident, problem,
and release management processes.

Before the implementation of the SIC model, Alpha should
document and validate all the necessary instructions and train-
ing materials (e.g., example cases for every category). Alpha
should also organize training for its employees to make sure
that the SIC model is used properly. It would be wise to arrange
regular checks on the SIC model after the implementation to
ensure that the model works as expected. In practice, Alpha
needs to review how well employees can use the categories
and start appropriate improvement actions in case there arises
any shortages during the SIC model implementation phase.
All the identified opportunities for improvement should be
logged in the CSI register, where they are evaluated, approved,
prioritized, measured, and reported in a systematic way.

454Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 474 / 646

IV. ANALYSIS

In this section, the researchers analyze the research findings
in the form of the lessons learned. A source for each lesson is
presented using the following abbreviations: DR = documents
and archival records; PO = participatory observation, and PA
= physical artifacts.

Lesson I: having and understanding consistent IT
service management terminology is vital (DR, PO, PA).
The researchers discovered that Alpha’s personnel do not fully
comprehend the actual meaning of an incident and how an
incident differs from other support ticket types, e.g., service
request. The issue was confirmed in January 2013, when
the researchers noticed several dozen different definitions of
incidents in the IT service management system. For this reason,
Alpha has created several incident categorization sets. Using
consistent ITSM terminology makes it easy to recognize what
types of support tickets are incidents by nature.

Lesson II: there should be an appropriate and main-
tainable amount of incident categories (DR, PO). The
incident categorization is more useful when it is kept simple.
Adding new categories always has to be reasoned. This means
that the categorization should help support groups to assign
incidents to different categories. The categories should also
support incident management analysis and reporting. Help desk
personnel may find it difficult to decide which category is
the right one if there are too many categories. Besides, if
the number of categories grows too large, it is more likely
that some of the categories would never be used. An unused
category is useless and it has no value in reporting.

Lesson III: the category of the incident should be
checked and updated if necessary during the lifecycle of
the incident (DR, PO). The details available at the time of
the incident categorization may be incomplete, misleading, or
incorrect (the ”Other” and ”Unknown” categories in the SIC
model are meant to be used in situations where the incident
category is unclear). It is therefore important that the incident
categorization is checked and updated if necessary, e.g., during
the closure of the incident. The capability to track changes
in incident category throughout the lifecycle of an incident
may prove useful when looking for potential improvements
(e.g., analyzing why the underlying cause of the incident was
difficult to identify).

Lesson IV: automation is the key to logging incident
information successfully (PO). The work of support group
employees should not be slowed down by incident catego-
rization. In practice, support group employees may need to
complete several tasks to log an incident (e.g., fill mandatory
input fields and choose the right values for drop-down lists).
To save time and to make the incident logging process easier,
employees may be unwilling to use the SIC model, which is
why the incident logging process should be automated as much
as possible so that employees’ workload does not increase
substantially. In addition, customer input for incident logging
should be exploited whenever it is possible and convenient.

Lesson V: incident categorization supports continual
service improvement (DR, PO). The organization should
use reactive and proactive actions during the continual service
improvement. From the reactive point of view, incident cate-
gorization makes it possible to recognize challenges and short-

ages in services. Proactively, acting in advance by executing
appropriate procedures can be used to guide an organization in
the desired direction. Managing and fixing recurring incidents
is not effective. The organization should learn from previous
incidents and take proper counter actions to ensure that the
same incidents will not recur in the future. For example,
incidents related to releases need to be monitored and analyzed
for a sufficient period of time. The results and conclusions
drawn from the analysis have to be recorded and reviewed to
identify opportunities for improvement.

V. CONCLUSION AND FUTURE WORK

The research subject of this study was an energy business
unit, Alpha, which is part of a Nordic IT service company.
The research problem of this study was this: what type of
software incident categorization model would both be efficient
and support ITIL-based continual service improvement? The
research work consisted of five main phases: A) investigating
the current state of incident management and planning im-
provement actions; B) designing a software incident catego-
rization model based on ITSM practices; C) presenting the
main categories and subcategories of the software incident
categorization model; D) validating the SIC model, and E)
presenting continual service improvement actions. The result
of this study consisted of two parts: one, the software incident
categorization (SIC) model which helps an IT organization to
categorize incidents effectively and recognize weak points of
the software development process, and two, the provision of
the lessons learned for improving incident categorization and
measurement practices.

The use of a case study and action research methods
includes certain limitations. First, the research was performed
with one organization, which means that the research work
needs to be repeated in other organizations so that the results
can be generalized. Second, the study was executed within a
short period of time. A longer research period would have
provided more detailed analysis of the SIC model and its
work in practice. Third, the researchers could have conducted
more validation meetings with Alpha’s other business units to
get a better understanding of whether the SIC model works
as expected. Fourth, the purpose of this paper was not to
research how the SIC model should be integrated into different
ITSM systems. Since SIC model is built on the basis of ITIL
v3 practices, it should be easily integrated to the systems
which support ITIL. The management (e.g., adding, removing,
and editing categories) of the SIC model should be also
straightforward in organizations that are already familiar with
ITIL best practices.

More studies are needed to investigate how the SIC model
categories work and how the SIC model could be expanded
to cover e.g., hardware-related incidents. Additionally, future
research could concentrate on designing new models to support
other ticket types (service requests and problems) by using the
SIC model as a starting point.

ACKNOWLEDGMENTS

This paper is based on research in the KISMET project,
funded by the National Technology Agency, TEKES (no.
70035/10), the European Regional Development Fund (ERDF),
and industrial partners.

455Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 475 / 646

REFERENCES

[1] Cabinet Office, ITIL Service Operation. The Stationery Office (TSO),
United Kingdom, 2011.

[2] OGC, Introduction to ITIL. The Stationery Office, London, 2007.
[3] Cabinet Office, ITIL Continual Service Improvement. The Stationery

Office (TSO), United Kingdom, 2011.
[4] V. Vipindeep and P. Jalote, “List of common bugs and programming

practices to avoid them,” 2005.
[5] J. S. Collofello and L. B. Balcom, “A proposed causative software error

classification scheme,” 1985, pp. 537–546.
[6] T. Nakajo and H. Kume, “A case history analysis of software error

cause-effect relationships,” 1991, pp. 830–838.
[7] R. R. Lutz, “Analyzing software requirements errors in safety-critical,

embedded systems,” in Proceedings of IEEE International Symposium
on Requirements Engineering, 1993, pp. 126–133.

[8] M. Leszak, D. E. Perry, and D. Stoll, “A case study in root cause
defect analysis,” in Proceedings of the 2000 International Conference
on Software Engineering, 2000, pp. 428–437.

[9] H. D. Owens, B. F. Womack, and M. J. Gonzalez, “Software error
classification using purify,” in Proceedings of International Conference
on Software Maintenance, 1996, pp. 104–113.

[10] IEEE Computer Society, “IEEE standard classification for software
anomalies,” 2009.

[11] R. K. Yin, Case Study Research: Design and Methods. SAGE
Publications ltd, 2003.

[12] R. L. Baskerville, “Investigating information systems with action re-
search,” Commun. AIS, vol. 2, no. 3es, Nov. 1999.

[13] ISO / IEC, ISO/IEC 20000-1:2011, IT Service management, Part 1:
Service management system requirements. ISO/IEC JTC 1/SC 7, 2011.

[14] A. Suhonen, S. Heikkinen, M. Kurenniemi, and M. Jäntti, “Imple-
mentation of the ITIL-based service level management process to
improve an organizations efficiency: A case study,” in The Eighth
International Conference on Software Engineering Advances (ICSEA),
Paper accepted, 2013.

[15] K. M. Eisenhardt, “Building theories from case study research,” in
Academy of Management Review, 1989, pp. 532–550.

[16] P. Eriksson and A. Kovalainen, Qualitative Methods in Business Re-
search. SAGE Publications ltd, 2008.

[17] N. Denzin, The Research Act in Sociology, 1970.
[18] S. Heikkinen and M. Jäntti, “Establishing a continual service improve-

ment model: A case study,” in Proceedings of the 19th European Con-
ference: Systems, Software and Service Process Improvement (EuroSPI),
2012, pp. 61 – 72.

456Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 476 / 646

Implementation of the ITIL-Based Service Level
Management Process to Improve an Organization’s

Efficiency: A Case Study

Antti Suhonen, Sanna Heikkinen, Mika Kurenniemi, and Marko Jäntti
University of Eastern Finland

School of Computing
Email: firsname.lastname@uef.fi

Abstract—IT organizations’ needs to reduce costs and maxi-
mize the efficiency and effectiveness of IT services have become
essential factors for success. Processes, functions, and services
require continual improvement in order to generate positive
business results and high levels of customer satisfaction. This
article presents the results of a process improvement case study
carried out in the Information System Management (ISM) unit
of the Finnish Tax Administration. The researchers focused
on improving the ISM unit’s service level management (SLM)
process to increase employee and customer satisfaction. The
research problem of this study is this: how to implement the
Information Technology Infrastructure Library (ITIL) based
SLM process to improve organization’s efficiency? The main
contributions of this paper are: 1) defining how to implement
the ITIL-based SLM practices by using the Keys to IT Service
Management Excellence Technique (KISMET) model to increase
organization’s efficiency, and 2) providing the lessons learned
from improving SLM practices.

Keywords—IT service management; ITIL; continual service
improvement; service level management; service level agreement

I. INTRODUCTION

The Information Technology Infrastructure Library (ITIL)
is a set of good practices for directing and managing IT
services. The ITIL gives a detailed description of IT service
management (ITSM) processes with comprehensive checklists,
activities, roles, and responsibilities, which can be tailored
to any IT organization [1]. ITIL version 3 approaches ITSM
from the IT service lifecycle point of view. The IT service
lifecycle consists of five phases: Service Strategy [2], Service
Design [3], Service Transition [4], Service Operation [5],
and Continual Service Improvement [1]. This study focuses
on the Service Design and Continual Service Improvement
(CSI) lifecycle phases, where the business perspective plays
an important role. Continually improving services is vital for
every IT organization because there is strong competition in
business today and the IT services need to be continually
aligned with the customer’s needs. According to ITIL [1],
CSI reviews, analyzes, and makes recommendations on im-
provement opportunities in each IT service lifecycle phase and
ensures that these opportunities are identified and managed
throughout the service lifecycle.

An ITIL-based service desk provides a single point of
contact between IT organization and users on a day-to-day
basis. This also means that a service desk is responsible for

handling support tickets, which are managed via the IT service
management (ITSM) system. The type of a support ticket can
be an incident or a service request. An incident is an unplanned
interruption to an IT service or reduction in the quality of an
IT service [5]. In practice, an incident can be e.g., a software
error, which prevents normal use of software, a malfunction
in the printer, or a crashed database server. A service request
is a formal request from a user for something to be provided
(for example, a request for information or advice to reset a
password, or to install a workstation for a new user) [5]. The
service desk treats every support ticket as a separate entity
(one logged support ticket to the ITSM system should cover
one incident or service request). However, while handling same
types of incidents, the service desk can create a link between
these incident tickets by using an ITSM system. This practice
enhances the efficiency of incident management.

Service level management (SLM) is a process of Service
Design lifecycle phase in ITIL v3 [3]. The purpose of the SLM
process is negotiating and documenting SLM agreements with
appropriate stakeholders, and then monitoring and producing
reports to follow these agreements [3]. According to ITIL,
SLM agreements can be classified into three groups: service
level agreements (SLA), operational level agreements (OLA),
and underpinning contracts (UC) [3]. A SLA is made between
an IT organization and a customer. An OLA is an agreement
between two parts of the same organization and an UC is a
contract between an IT organization and a third party.

Every SLM agreement contains rules. These rules define
how an IT organization handles different types of support tick-
ets. Usually a support ticket affects one or more configuration
items (CI). A CI is any component or other service asset
that needs to be managed in order to deliver an IT service.
For example, a CI can be a service, hardware, software, a
building, people or a formal documentation. Looking at SLM
from ITSM system perspective, CIs are mandatory because
they can be used to create links between SLM agreements,
CIs and support tickets. For example, this practice makes it
possible to create SLM agreement, which includes rules that
only focus on incidents of the Service Alpha (an CI).

In practice, a rule in the SLM agreement is a combination
of following attributes:

• Configuration items (or an item): which CIs (usually
services) are affected by the rule?

457Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 477 / 646

• Type of the support ticket: which support tickets are
affected by the rule?

• Reaction and resolution times: what kind of reaction
and resolution times would be best for the selected CIs
(these times might vary depending on the type of the
support ticket)?

• The priority of the support ticket: how will the
priority of the support ticket affect the calculation of
reaction and resolution times?

• The states of the support ticket: which states will
affect the calculation of reaction and resolution times?

• Notification settings: which people will be notified,
when are the notifications sent, and what is the content
of the notification?

In this context, the reaction time means the time in which
work should start on a support ticket after the ITSM system
has registered the ticket and the resolution time means the time
in which a support ticket needs to be solved.

Well designed SLAs, OLAs, and UCs help to improve
and maintain organization’s efficiency. According to ITIL v3,
efficiency is a measure of whether the right amount of resource
has been used to deliver a process, service or activity. An
efficient process achieves its objectives with the minimum
amount of time, money, people or other resources [3]. In this
paper, the researchers use the description of ITIL v3 for the
term ”efficiency”.

The efficient handling of support tickets has become one of
the essential tasks for IT organizations in the last few years.
In practice, separate SLM agreements for different services
enables that support tickets can be handled efficiently based on
types and priorities of the tickets. This means that appropriate
amount of resources (e.g., time, money, and right persons) can
be allocated to handle tickets, which makes support ticket han-
dling process efficient and has direct impact to organization’s
overall efficiency. It also seems that in the future there will be
an increased number of support tickets, which customers will
expect to be solved quickly and effectively. For these reasons
many organizations have started defining and designing SLAs,
OLAs, and UCs.

CSI has a strong interface with the SLM process. CSI
reviews and analyzes SLA, OLA, and UC reports and if
those reports indicate any deviations (e.g., the resolution times
for support tickets being exceeded) CSI starts appropriate
improvement actions. These actions should follow the ISO/IEC
20 000 standard [6]. ISO/IEC 20 000 is an international
standard for ITSM. ISO/IEC 20 000 requires the results of the
process monitoring to be recorded and reviewed to identify
causes, nonconformities, and opportunities for improvement.
The CSI model has been discussed in our previous paper [7].

A. Related work

There have been few studies which have analyzed the
SLM process from the IT perspective. Jäntti and Suhonen
[8] performed a research study about how to implement SLA
using an ITSM tool. In their paper, Kajko-Mattsson, Ahnlund,
and Lundberg [9] suggested a SLA model and evaluated it
within four support organizations in Sweden. Wegman et al.

[10] illustrated how methods based on the System Enterprise
Architecture Methodology (SEAM) can be used to define SLA
by modelling the service. Hsueh’s [11] research described
how an IT organization working in the aerospace industry
applied an adaptive approach to ensure that service delivery
meets business requirements in the face of changes in require-
ments. An adaptive SLM approach was used in their study
to deliver a just-in-time quality service. Correia’s and Abreu’s
[12] research work concentrated on defining and observing
compliance with SLA. The main contribution of this research
work was a model-based approach to SLA specification and
compliance verification for IT services. Barroero’s, Motta’s,
and Durante’s [13] paper focuses on defining sustainable ways
to create and manage service levels in call centres.

The purpose of this article is not to analyze successful
factors of the study. There are many existing studies that have
dealt with the success factors of ITSM such as the study made
by Tan, Cater-Steel, and Toleman [14]. Their study focused on
presenting successful factors in an Australian ITSM project.
The study explained challenges and breakthroughs, confirmed
a set of factors and contributed to the project’s success, and
offered learning opportunities to organizations.

B. Our Contribution

The main contributions of this paper are:

1) Defining how to implement the ITIL-based SLM
practices by using the KISMET model to increase
organization’s efficiency.

2) Providing the lessons learned from improving SLM
practices.

The results of this study can be used by persons such as service
owners, service managers, process owners, process managers,
and consultants, who are responsible for any phases of the
IT service lifecycle. These results can be used to support CSI
work based on the ITIL framework and the ISO/IEC 20 000
standard.

The rest of the paper is organized as follows. The research
problem and methods are described in Section 2, and the work
and results of implementing the SLM are covered in Section 3.
The analysis of the findings, together with the lessons learned,
is covered in Section 4. The conclusion and future work in
Section 5 summarizes the case.

II. RESEARCH METHODS

The research problem of this study is how to implement
the ITIL-based SLM process to improve the organization’s
efficiency. The researchers used a case study research and
action research methods with a single case organization to find
answers to the research problem. The research problem was
divided into the following research questions:

• RQ1: What is the current state of the SLM in the case
organization (this research question is discussed in the
Section III. B. and C.)?

• RQ2: What kind of things should be taken into con-
sideration when designing SLAs and OLAs (Section
III. D. provides readers with an overview of design
guidelines)?

458Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 478 / 646

• RQ3: Which issues should be examined while analyz-
ing whether SLAs and OLAs can be configured to the
ITSM system (in Section III. E., researchers explore
the ITSM system perspective of creating SLAs and
OLAs)?

• RQ4: What types of benefits do SLM practices provide
from the perspective of continual service improvement
(the improvement cycle is visible in the whole article
and relationships between CSI and SLM are discussed
in the Section III. G.)?

These four research questions highlight the importance of CSI,
while enhancing and deploying ITSM and SLM. This study
was a qualitative research, which was built using the case study
research and action research methods. According to Yin [15],
a case study is ”a research strategy, which focuses on under-
standing the dynamics present with single settings”. During a
case study, the researcher is an outsider who observes and anal-
yses an environment and makes notes by combining different
data collection methods [15]. According to Baskerville [16],
the action research method produces highly relevant research
results, because it is grounded in practical action, and it solves
immediate problem situations. These selected methods support
the situation where the researchers work together on a research
project and their objective is to identify and solve problems in
the IT organization’s environment.

The Keys to IT Service Management Excellence Technique
(KISMET) model supports action research methods, which
focus on improving ITSM practices. For this reason, the
researchers used the KISMET model as a tool to achieve the
goals of this action research study. The KISMET model is
also used in e.g., Jäntti’s and Suhonen’s research paper [8].
Additionally, the researchers used ITIL [1], ISO/IEC 20 000
[6], and COBIT [17] as the theoretical frameworks of this
study.

A. The Case Organization

The case subject of this study was the Information System
Management (ISM) unit, which is part of the IT unit of
the Finnish Tax Administration. In 2012, the Finnish Tax
Administration had around 5300 full-time employees from
which approximately 60 work in the ISM unit. The ISM
unit provided IT services (e.g., creating and maintaining user
privileges, implementing changes to the software and hard-
ware, and supporting the incidents and service requests) to
these employees. The ISM unit is a representative case of a
government agency with a desire to improve and enhance its
IT services using ITIL-based practices.

The most of the ISM unit’s employees perform service
desk and customer support activities either part time or full
time. The ISM unit’s service desk follows ITIL-based incident
management and service request management processes. In
practice, this means that the number of service desk employees
do not affect the support tickets handling principles, but it has
influence on designing SLM agreements (defining reaction and
resolution times for different types of support tickets).

B. Data Collection and Exploitation Methods

The data which was used in this research was collected
by using the ITIL-based seven-step improvement process [1].

The ITIL-based seven-step improvement process consists of
the following steps: 1) identify the strategy for improvement;
2) define what you will measure; 3) gather the data; 4) process
the data; 5) analyse the information and data; 6) present and
use the information, and 7) implement improvements.

The steps from 1 to 3 were conducted by the Finnish
Tax Administration IT unit. During these steps the IT unit
identified the strategy, defined metrics, and gathered the data
for improving their ITSM. In Step 4, the researchers used three
core perspectives of ITSM (people, process, and technology)
to categorize the data that had been gathered (via a customer
satisfaction survey and feedback related to resolved tickets).
In Step 5, the researchers used the categorized data to identify
challenges and opportunities for improving the services and
processes related to ISM’s practice. In Step 6, the researchers
presented the ideas for improvements to the managers of the
ISM unit and they made a decision to improve the SLM
process. In the Step 7, the researchers implemented the im-
provements that had been decided by the ISM unit’s on the
basis of the researchers’ recommendation in Step 6. This paper
concentrates on the results of the Step 7, during which the
researchers started the implementation of the SLM process.

The procedures of the Keys to IT Service Management
Excellence Technique (KISMET) model where used to manage
the SLM implementation activities. The following data collec-
tion methods and data sources were used during the research:

• Documents and archival records: ITSM documents,
service descriptions, customer satisfaction survey,
feedback data, meeting memos, and other internal
records.

• Participatory observation: meetings and discussions
with the service manager, customer manager, ITSM
system specialists, and team managers from different
service areas. SLM workshops held in autumn 2012.

• Physical artifacts: access to the intranet and to the
ITSM system.

C. Data Analysis

This study performed by using within-case analysis for a
single organization. According to Eisenhardt [18], the within-
case method typically involves detailed case study write-ups
for each site and becoming familiar with the case as a stand-
alone entity. The pattern matching technique [15] was used
to find patterns from the empirical data. The researchers used
this technique to analyze and categorize the customer survey
results and feedback according to different patterns, such as
people, process, and technology.

The triangulation used in this study allowed the researchers
to be more confident about their results. Denzin [19] extended
the idea of triangulation beyond its conventional association
with research methods and designs. During the study the
researchers used three forms of triangulation [19]: 1) data
triangulation, which includes collecting data through several
sampling strategies; 2) investigator triangulation, which refers
to the use of more than one researcher in the field to gather
and interpret data, and 3) methodological triangulation, which
refers to the use of more than one method for gathering data.

459Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 479 / 646

The process improvement events were organized into
chronological order by the phases of the KISMET model. The
research work was validated in weekly meetings with the ISM
unit’s representatives.

III. IMPLEMENTATION OF THE ITIL-BASED SERVICE
LEVEL MANAGEMENT PROCESS TO IMPROVE

ORGANIZATION’S EFFICIENCY

The implementation of the ISM unit’s SLM process was
performed using the KISMET model. The model consists of
the following phases: A) create a process improvement infras-
tructure; B) perform a process assessment; C) plan process
improvement actions; D) improve / implement the process
on the basis of the IT service management practices; E)
deploy and introduce the process; F) evaluate the improvement
of the process, and G) design continual process / service
improvement actions.

A. Create a process improvement infrastructure

The ”create a process improvement infrastructure” phase
includes the following steps: motivate the business decision
makers to ITSM, define business goals for ITSM process
improvement, select an improvement target, and identify the
stakeholders that participate in the process improvement.

The kickoff meeting of the SLM implementation study
between the research team and the ISM unit was held in August
2012. The participants agreed that the main goal for the study
was to improve and unify the ISM unit’s working processes
by implementing ITIL-based SLM. To achieve this goal, the
research team needed to 1) evaluate the current state of the
SLM in the ISM unit; 2) define SLA and OLA for the ISM
unit, and 3) investigate how to configure SLAs and OLAs into
the ISM unit’s ITSM system.

B. Perform a process assessment

The ”perform a process assessment” phase includes the
following steps: perform a process assessment for a selected
ITSM process, document the challenges and difficulties in
the current state of the process, identify the key concepts
regarding the process, study how tools support the process, and
benchmark the process with ITIL best practices and ISO/IEC
20 000 requirements.

The process assessment was executed by analyzing the
results (the ISM unit’s internal customer satisfaction survey
and feedback related to incidents and service requests that
had been solved) and searching for issues and problems
related to SLM. The analysis of SLM revealed following main
challenges and bottlenecks: 1) there was neither knowledge
nor a systematic way to perform SLM inside the ISM unit
(insufficient amount of people know how to create SLAs and
OLAs); 2) a common agreement between the ISM unit and
customers stipulating that every incident and service request
should be solved within an hour, and 3) the ISM unit needs
appropriate metrics and reporting tools that could be used to
improve and unify the ISM unit’s working processes.

The following comments were captured from the ISM
unit’s customer satisfaction survey and feedback regarding
SLM:

• "The delay is too long. We need help with incidents
related to workstations immediately, not after a few
days."

• "I don’t know how long it will take till I actually get
help or a solution."

• "We have been uncertain about a state or an estimated
resolution time of an incident or a service request."

During the process assessment phase the researchers discov-
ered the following strengths concerning the ISM unit’s SLM.
The ISM unit was interested in SLM, and both the management
and personnel were strongly motivated to increase customer
satisfaction and were ready to improve their ITSM system.

C. Plan process improvement action

The ”plan process improvement actions” phase includes the
following steps: analyze the challenges that have been iden-
tified, plan improvement actions, and validate the challenges
and improvement actions.

This phase focused on defining the process improvement
actions based on the challenges and bottlenecks that have been
identified. For each challenge that was identified, improvement
actions and the business benefit were documented.

Challenge: there is neither knowledge nor a systematic
way to perform SLM inside the ISM unit (insufficient amount
of people know how to create SLAs and OLAs). Improvement
actions: the ISM unit needs to increase its knowledge of
SLM methods and practices, configure their ITSM system to
support SLM, and train and instruct employees to use the
ITSM system efficiently. Business benefit: the ISM unit can
define clear and measurable objectives for the SLM process.
Additionally, efficient SLM can help the ISM unit to establish
clear responsibilities between the ISM unit and a customer.

Challenge: there is a common agreement between the ISM
unit and customers that stipulates that incidents and service
requests should be solved within an hour. Improvement ac-
tions: the ISM unit needs to design SLAs and OLAs, which
define reaction and resolution times for different types of
support tickets. Business benefit: all incidents and service
requests can be classified on the basis of their priorities. This
helps employees to decide the order in which incidents and
service requests should be handled, which makes support ticket
handling process efficient and has direct impact to ISM unit’s
overall efficiency.

Challenge: the ISM unit needs appropriate metrics and
reporting tools that could be used to improve and unify the ISM
unit’s working processes. Improvement actions: the ISM unit
should define metrics that best meet the organization’s goals.
These metrics would direct the ISM unit’s activities to achieve
set targets. Business benefit: a constant monitoring allows
the ISM unit to ensure that incidents and service requests
are processed and solved within the agreed reaction and
resolution times. Additionally, reviewing reports of reaction
and resolution times allows the ISM unit to recognize weak
points in processes and identify opportunities for improvement.

460Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 480 / 646

TABLE I. AN EXAMPLE OF SLA RULES CREATED BY SERVICE LEVEL AGREEMENT AND OPERATIONAL LEVEL AGREEMENT RULE DEFINITION MODEL

Configuration
item (CI)

Type of
support ticket

Priority Reaction time
Notification of
reaction time

Resolution
time

Notification of
resolution time

Notification targets

Software A Incident

Low 15 min. 1 hour after
10 working

days

2 working days

before
Support ticket handler

Normal 15 min. 1 hour after
3 working

days
6 hours before Support ticket handler

High 15 min. 10 min. after 2 hours 4 hours after Support ticket handler

 D. Improve / implement the process on the basis of ITSM
practices

The purpose of the ”improve / implement the process on
the basis of ITSM practices” phase is to define and document:
a) process goals; b) the benefits that a process provides to
customers and the IT organization’s business; c) key concepts;
d) roles and responsibilities; e) actions; f) metrics, and g)
relationships to other ITSM processes.

The SLM workshops in the autumn of 2012 played a major
role when the researchers and the ISM unit were designing
SLAs and OLAs for incidents and service requests. Before
the workshops were held, the research team created and sent
a questionnaire to the workshop participants (e.g., the service
manager, the customer manager, and ITSM specialists). Those
attending were told to answer the questions from their own
unit’s perspective (e.g., give an estimation of how fast the unit’s
personnel could handle incidents and service requests). The
questions below were included in the questionnaire:

1) Who is responsible for SLM (managing SLAs and
OLAs)?

2) Which configuration items should have their own
SLAs and OLAs during the first stage of the imple-
mentation of SLM?

3) Will the SLAs and OLAs for configuration items be
targeted at incidents or will service requests also be
taken into account?

4) What types of reaction times would be best for
incidents / service requests which affect the selected
configuration items (the reaction time means the time
in which work should start on an incident or a service
request after the ITSM system has registered the
incident or the service request)?

5) What types of resolution times would be best for
incidents / service requests which affect the selected
configuration items (the resolution time means the
time in which an incident or a service request needs
to be solved)?

6) Will different priorities of service requests and in-
cidents have an effect on reaction and resolution
times? Is it necessary to define a set of reaction and
resolution times for incidents and service requests
on the basis of the priorities of incidents / service
requests? (In this context, the priority is a category
used to identify the relative importance of a support
ticket. Priority is defined on the basis of the impact
and urgency of the support ticket. In practice, a high
priority support ticket need to solved faster than a
low priority ticket.)

7) When should notification messages be sent (when the
reaction or resolution time looks likely to be exceeded
or has already been exceeded)? Will the priority of
the incident or service request affect the sending of
notifications?

8) Which person(s) or group(s) will be informed when
the reaction or resolution time looks likely to be
exceeded or has already been exceeded? Will the
priority of an incident or service request have an
effect on the sending of a notification to person(s)
or group(s)?

As a result of the workshops the researcher and the ISM unit
defined the SLA and OLA rules for incidents. These rules were
created by using the SLA / OLA rule definition model. An
example of SLA rules created by definition model is presented
in Table 1.

E. Deploy and introduce the process

The ”deploy and introduce the process” phase includes the
following steps: deploy an ITSM process with a pilot unit,
create work instructions for how to perform the process in
practice, encourage a positive attitude to ITSM among the staff,
increase the awareness of ITSM in the organization through
training, and organize ITSM workshops to clarify the ITSM
process interfaces.

The researchers organized a workshop in September 2012
to investigate how to implement and configure SLAs and OLAs
into the ITSM system. The researchers created and used the
following questionnaire to evaluate the readiness of the ITSM
system from the viewpoint of the implementation of SLAs and
OLAs:

Creation of a new SLA / OLA
The SLM process is heavily dependent on the organi-

zation’s ITSM system. In practice, a ITSM system has to
contain a SLM module (a collection of SLM features), which
need to be configurable. Otherwise SLAs and OLAs cannot
work properly in the ITSM system and the organization will
not be able to execute SLM practices efficiently (e.g., ensure
that reaction an resolution times are used as planned). The
following issues should be examined while analyzing ITSM
system’s principles related to the creation of new SLAs /
OLAs:

• Does the ITSM system contain a proper method to
create new SLAs and OLAs? Is it possible to use pre-
created SLA and OLA templates?

• Is there a proper method to create a link between a
SLA / OLA and a configuration item (CI)?

461Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 481 / 646

When a new support ticket is registered into the ITSM
system, the data of the ticket will be analyzed. If the
ticket contains a CI that has an existing link to SLA
/ OLA, this SLA / OLA will become active and the
ticket needs to be resolved according to the SLA /
OLA rules.

• Is there a proper method to activate a completed SLA
/ OLA? Is it possible to set a date when the SLA /
OLA will become active?

Rule definitions for SLAs and OLAs

Every SLA / OLA contains different types of SLA and
OLA rules. Defining appropriate reaction and resolution times
is an essential task while designing SLA and OLA rules.
A well balanced reaction and resolution times directly affect
organization’s capabilities to manage support tickets effectively
and to keep customers satisfied. In practice, a successful
creation of SLAs and OLAs requires that the attribute values
of SLA and OLA rules are accurate (these values were
defined in Section III. D.). The following issues should be
examined while analyzing whether SLA and OLA rules can
be configured to the ITSM system:

• Is there a proper method to create new SLA and OLA
rules?

• Is there a proper method to edit SLA / OLA rule
settings? How are the reaction and resolution time
values configured into the rule?

• Is there a proper method to configure how the priority
of the support ticket affects the calculation of reaction
and resolution times?

• Is there a proper method to create sets of different
kind of states of support tickets, which are taken into
account in SLA / OLA rules?

In practice, some of the states will affect the calcula-
tion of reaction and resolution times. For example, a
state ”waiting for reply from the third party” should
not affect calculation of a resolution time. These kinds
of states should be well-known and documented.

• Is there a proper method to create and configure
working hours and holiday sets which might affect
reaction and resolution times?

• Is there a proper method to configure notification mes-
sage settings related to reaction and resolution times?
A notification message will be send automatically to
the appropriate personnel at the agreed times (e.g.,
when the resolution time exceeds).

• Is there a proper method to edit the content of the
notification message?

Generating SLA and OLA reports

An organization has to define appropriate metrics to be
able to generate accurate and relevant SLA and OLA reports.
This practice helps to improve support ticket escalation and
work queue management. For example, metrics can be used to
measure the percentage of incidents, which have been resolved

according to reaction and resolution times. This information
is useful when organization reviews the functionality, validity,
and business alignment of SLAs / OLAs. The following issues
should be examined while analyzing ITSM system’s principles
related to metrics and a SLA / OLA report generation:

• Is there a proper method to configure metrics that
measure how well SLAs and OLAs are working in
practice?

• Is there a proper method to generate SLA and OLA
reports?

At the end of the workshop, the researchers were able to
determine that the ISM unit’s ITSM system allows its users
to create appropriate SLA and OLA rules. Based on this
knowledge, the ISM unit decided that it would create SLAs
and OLAs for the incident type of support tickets.

F. Evaluate the improvement of the process

The ”evaluate process improvement” phase involves col-
lecting feedback regarding an improved process, tools, and
training, conducting fine-tuning if necessary, and the deploy-
ment of the processes to other organizational units or services.

After the workshop held in September, the ISM unit
executed a one-month-long evaluation period. During that time
the ISM unit ensured that SLAs and OLAs worked correctly
in the ITSM system. This was done by: 1) creating test
SLAs and OLAs; 2) testing reaction and resolution times by
using different types of incidents (e.g., incidents with different
priorities), and 3) checking whether notification messages got
sent to the right persons at the right time.

The ISM unit was able to test the basic SLM features of
the ITSM system and they confirmed that these features work
correctly. However, the ISM unit also stated that one month is
a too short time period to test and configure all SLM features
thoroughly. The results of this evaluation period were analyzed
in a workshop at the end of October 2012. Evaluate phase
indicates that ISM unit has achieved the following results:

• ISM unit’s managers have been able to increase their
awareness related to SLM process and its purposes
and practices compared the situation before research
pilot (e.g., before the research only few ISM unit’s
managers had basic knowledge about SLM and after
the research over 10 managers has now good under-
standing about SLM and they know how to design
SLAs and OLAs).

• During the research workshops ISM unit’s specialists
learned how to create and configure SLAs and OLAs
to the ITSM system (e.g., before the research, spe-
cialists did not have comprehensive knowledge about
SLM features in the ITSM system).

• After the research, ISM unit is committed to create
SLAs for the services they are providing and OLAs
for different ISM unit’s work groups (e.g., before the
research, ISM unit used only one SLA, which covered
all services).

462Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 482 / 646

G. Design continual process / service improvement actions

The ”design continual process / service improvement ac-
tions” phase includes the following steps: conduct process
reviews frequently, identify and report process improvement
ideas, and plan and implement improvement actions.

The ISM unit needs to identify critical success factors
(CSF), key performance indicators (KPI), and metrics for SLM
in the same way as in other ITSM processes. The CSFs, the
KPIs, and metrics will determine whether there are gaps be-
tween the expected outcome and the real outcome. The metrics
need to be monitored and the results of the measurements
should be used to identify opportunities for improvement. Ideas
for improvements that are identified should be logged in the
CSI register for evaluation and possible implementation. A CSI
register is a database or structured document used to record and
manage improvement opportunities throughout their lifecycle
[1].

The metrics direct the ISM unit’s activities to achieve set
targets. The ISM unit has had problems with implementing the
metrics that were designed because of the lack of SLM best
practices. After the research described in this paper, the ISM
unit is now prepared to create reports, which will help it to see
how well SLAs and OLAs are working (with the possibility
of handling incidents within the given reaction and resolution
times) and thus, continually improve its IT services. Complete
understanding of how SLM works also requires the ISM unit
to measure other processes that have interfaces with the SLM
process. For this reason the following CSFs and KPIs were
chosen by ISM unit for incident management [5][20]:

CSF: resolve an incident as quickly as possible to
minimize the impacts on the business:

• KPI: reduce the mean time required to find a resolution
or a workaround for an incident, broken down by
priority.

• KPI: an increased percentage of incidents resolved
within the agreed resolution times by priority.

CSF: maintain user satisfaction with IT services:

• KPI: average user survey score (total and by question
category).

• KPI: percentage of satisfaction surveys answered ver-
sus total number of satisfaction surveys sent.

Communication, training and documentation are required
to move a new or improved service, a tool or a service
management process into production [1]. The ISM unit needs
to review improvement activities to ensure that approved ideas
for improvement are implemented and employees use these
new practices in daily basis. The ISM unit should also organize
training sessions for its employees to make sure that they
understand SLM practices.

IT organizations should create reports where the imple-
mented improvement actions are presented. These reports
should be delivered to employees and customers. For ex-
ample, improvement actions based on customer satisfaction
surveys and feedback motivate employees and customers to
give feedback in the future if their input has been taken into

consideration while improving the service. A report, which
shows improvement trends can be used as marketing tool to
communicate that the organization is committed to continual
improvement [1].

IV. ANALYSIS

In this section, the researchers analyze the research findings
in the form of the lessons learned. These lessons learned
can be used as general guidelines while repeating the same
experience. The source for each lesson is presented using the
following abbreviations: DR = documents and archival records,
PO = participatory observation, and PA = physical artifacts.

Lesson I: implement a systematic way to manage and
operate SLM throughout the organization (PO). Non-
existent or incoherent SLM creates different working methods
and practices inside the organization and its units over a long
period of time. With ITIL-based defined roles, responsibilities,
processes, and metrics, the organization should be able to exe-
cute SLM in a systematic way, which improves and unifies the
organization’s working practices and increase organization’s
overall efficiency.

Lesson II: define reaction and resolution times for
different types of support tickets according to the ticket’s
priority (PO, PA). If all support tickets are processed iden-
tically without their types and / or priorities being taken into
consideration, the organization may encounter the following
challenges: 1) employees who work at the service desk may
have difficulties with handling support tickets at a sufficient
speed, and 2) customers may also feel that they do not get
solutions for their support tickets fast enough. Also, in case
of high-priority support tickets, resolution time notifications
should be sent after exceeding a resolution time because time
limits are usually very strict and personnel do not have time
to check their email messages when they are solving a ticket.
In other words, these notifications should work primary as
reminders to close tickets.

Lesson III: employees and customers might not have
comprehensive knowledge about SLM or the benefits,
which can be gained by using it (PO). If, after the successful
implementation of SLAs and OLAs, a person who submits
support tickets does not understand the meaning of SLAs or
OLAs, he / she might not understand either why his / her
low-priority support ticket takes longer to handle than high-
priority tickets. For this reason, the organization needs to
communicate with employees and customers about new and
changed SLAs and OLAs and increase people’s knowledge
of SLM by organizing training sessions. These actions can
be used to prevent resistance to change with regard to SLM
practices.

Lesson IV: missing SLAs and OLAs might cause self-
inflicted hurrying among the employees of the organization
(PO). In this context, self-inflicted hurrying means that cus-
tomers have unrealistic expectations about the resolution times
of support tickets and employees want to handle support tickets
as quickly as possible without prioritizing them first. SLAs and
OLAs can be used to prevent self-inflicted hurrying among the
employees of the organization because SLAs and OLAs create
common rules, which both employees and customers should
know and follow.

463Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 483 / 646

Lesson V: define appropriate metrics for SLM (DR,
PO, PA). The organization needs to define and configure
appropriate process metrics to gather measurement data and
monitor trends and performance against service targets at
planned intervals. The measurement data should be used to
identify the causes of nonconformities and opportunities for
improvement.

Lesson VI: organize regular reviews to evaluate how the
SLAs and OLAs have been followed and report the findings
to interested parties (DR, PO). It is important to define
requirements for SLM reporting after the deployment of SLAs
or OLAs. The requirements should answer at least the next
questions: Which persons will attend to report reviews? How
often will report reviews be held? What kinds of actions will
be taken if the reaction and resolution times are not working
properly?

V. CONCLUSIONS AND FUTURE WORK

The research problem of this study was this: how to
implement the ITIL-based SLM process to improve the organi-
zation’s efficiency. The main contribution of this study was: 1)
defining how to implement the ITIL-based SLM practices by
using the KISMET model to increase organization’s efficiency,
and 2) provide the lessons learned from improving SLM
practices. In this study, the researchers used the KISMET
model to improve the IT service process. The improvement
focused on the following things from the viewpoint of the
ITSM: evaluate the current state of the SLM in the ISM unit,
define SLA and OLA for the ISM unit, and investigate how to
configure SLAs and OLAs into the ISM unit’s ITSM system.

There are three important reasons why our research results
are valuable: First, poorly planned SLAs may cause significant
financial losses in the form of sanctions when SLA rules cannot
be met. Second, there are only few academic studies that
deal with interface between CSI and SLM. More studies are
needed to fill this knowledge gap. Third, we provided prac-
tical implications for IT organizations to enable a systematic
improvement of SLM practices by using the KISMET model.

The use of case study and action research methods has
certain limitations. First, the research was performed with one
organization, which means that the research work needs to
be repeated in other organizations, so that the results can be
generalized. However, the results of this study can be used to
extend ITSM theory. Other case study researchers can use the
KISMET model and SLM questionnaires to get similar results
while repeating this study. Second, this research was executed
within a short period of time. A longer research period would
have provided a more detailed analysis of how SLAs and OLAs
work in practice. Third, the researchers could have conducted
more SLA and OLA validation meetings with employees to
get a better understanding of whether the SLA and OLA rules
that were defined correspond with the reality.

More studies are needed to examine SLM and its inter-
faces with other ITSM processes. Further research could also
focus on exploring how to assess and measure ITSM process
maturity by using the ISO / IEC 15504 framework [21]. It
would be also interesting to research how impacts of service
improvement actions could be evaluated in IT organizations.

ACKNOWLEDGMENTS

This paper is based on research in the KISMET project
funded by the National Technology Agency, TEKES (no.
70035/10), the European Regional Development Fund (ERDF),
and industrial partners.

REFERENCES

[1] Cabinet Office e, ITIL Continual Service Improvement. The Stationery
Office (TSO), United Kingdom, 2011.

[2] Cabinet Office a, ITIL Strategy. The Stationery Office (TSO), United
Kingdom, 2011.

[3] Cabinet Office b, ITIL Service Design. The Stationery Office (TSO),
United Kingdom, 2011.

[4] Cabinet Office c, ITIL Service Transition. The Stationery Office (TSO),
United Kingdom, 2011.

[5] Cabinet Office d, ITIL Service Operation. The Stationery Office (TSO),
United Kingdom, 2011.

[6] ISO / IEC, ISO/IEC 20000-1:2011, IT Service management, Part 1:
Service management system requirements. ISO/IEC JTC 1/SC 7, 2011.

[7] S. Heikkinen and M. Jäntti, “Establishing a continual service improve-
ment model: A case study,” in Proceedings of the 19th European Con-
ference: Systems, Software and Service Process Improvement (EuroSPI),
2012, pp. 61 – 72.

[8] M. Jäntti and A. Suhonen, “Improving service level management
practices: A case study in an IT service provider organization,” in
International Conference on Advanced Applied Informatics (IIAIAAI),
2012, pp. 139 –144.

[9] M. Kajko-Mattsson, C. Ahnlund, and E. Lundberg, “Cm3: service level
agreement,” in Proceedings of 20th IEEE International Conference on
Software Maintenance, 2004, pp. 432–436.

[10] A. Wegmann, G. Regev, G.-A. Garret, and F. Marechal, “Specifying
services for ITIL service management,” in International Workshop on
Service-Oriented Computing Consequences for Engineering Require-
ments (SOCCER ’08), 2008, pp. 8 –14.

[11] M.-C. Hsueh, “Adaptive service level management,” in 11th IEEE Inter-
national Enterprise Distributed Object Computing Conference (EDOC),
2007, pp. 451 – 456.

[12] A. Correia and F. B. e Abreu, “Defining and observing the compliance
of service level agreements: A model driven approach,” in Seventh Inter-
national Conference on the Quality of Information and Communications
Technology (QUATIC), 2010, pp. 165 –170.

[13] T. Barroero, G. Motta, and M. Durante, “Sustainable service level
agreements,” in IEEE International Conference on Services Computing
(SCC), 2011, pp. 679 – 684.

[14] W.-G. Tan, A. Cater-Steel, and M. Toleman, “Implementing IT service
management: A case study focussing on critical success factors,”
Journal of Computer Information Systems, vol. 50, no. 2, 2009.

[15] R. K. Yin, Case Study Research: Design and Methods. CA: Sage
Publications, 2003.

[16] R. L. Baskerville, “Investigating information systems with action re-
search,” 1999.

[17] COBIT 4.1, Control Objectives for Information and related Technology:
COBIT 4.1. IT Governance Institute, 2007.

[18] K. M. Eisenhardt, “Building theories from case study research,” in
Academy of Management Review, 1989, pp. 532–550.

[19] N. Denzin, The Research Act in Sociology, 1970.
[20] Office of Government Commerce (OGC), Planning to implement ser-

vice management. The Stationery Office, Norwich, 2002.
[21] Public Research Centre Henri Tudor, ITSM Process Assesment Support-

ing ITIL. Van Haren Publishing, Zaltbommel, 2009.

464Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 484 / 646

Measuring the Functional Size of Real-Time and Embedded Software:

a Comparison of Function Point Analysis and COSMIC

Luigi Lavazza and Sandro Morasca

Dipartimento di Scienze Teoriche e Applicate

Università degli Studi dell’Insubria

Varese, Italy

{luigi.lavazza; sandro.morasca}@uninsubria.it

Abstract— The most widely used methods and tools for

estimating the cost of software development require that the

functional size of the program to be developed be measured,

either in “traditional” Function Points or in COSMIC

Function Points. The latter were proposed to solve some

shortcomings of the former, including not being well suited for

representing the functionality of real-time and embedded

software. However, little evidence exists to support the claim

that COSMIC Function Points are better suited than

traditional Function Points for the measurement of real-time

and embedded applications. Our goal is to compare how well

the two methods can be used in functional measurement of

real-time and embedded systems. We applied both

measurement methods to a number of situations that occur

quite often in real-time and embedded software. Our results

seem to indicate that, overall, COSMIC Function Points are

better suited than traditional Function Points for measuring

characteristic features of real-time and embedded systems.

Our results also provide practitioners with useful indications

about the pros and cons of functional size measurement

methods when confronted with specific features of real-time

and embedded software.

Keywords- Functional Size Measurement; Function Point

Analysis; COSMIC Function Points; Real-time software;

Embedded software

I. INTRODUCTION

Several methods have been proposed to estimate the
development effort of a software product, given the
characteristics of the product itself and its development
process. Software size plays a special role in effort
estimation, as it is the main input used by the vast majority
of effort estimation models. Accordingly, measures of
functional size are used in early effort estimation models,
since other measures –like Lines of Code– are not available
in the early development phases. Functional measures
quantify the functional size of a software application, as
defined in the requirements specification documents.

The available functional sizing methods are evolutions of
the Function Points Analysis (FPA), originally proposed by
Allan Albrecht [1]. The International Function Points User
Group (IFPUG) maintains the definition of the method and
publishes and regularly updates the official Function Point
(FP) counting manual [2][3]. Effort estimation methods have
been defined, and tools supporting them have been
developed, which require the size in FP as the main input.

FP are generally not considered well suited for measuring
the functional size of embedded applications. The reported
motivation is that FP –conceived by Albrecht when the
programs to be sized were mostly Electronic Data Processing
applications– capture well the functional sizes of data storage
and data movement operations, but are ill-suited for
representing the complexity of control and elaboration that
are typical of embedded and real-time software.

The COSMIC method was defined to overcome some
limitations of FPA. The COSMIC method [4] redefines
FPA’s basic principles of functional size measurement in a
way that applies equally well to traditional “business”
application and other applications, including the real-time
and embedded ones. Specifically, the COSMIC method
counts the data movements (entries, exits, reads and writes)
that involve data groups (corresponding approximately to
FPA’s logic files) in each functional process (corresponding
to FPA’s elementary processes). The result is a functional
size measure called COSMIC Function Points (CFP).

Even though it is traditionally considered not well suited
for real-time and embedded applications, FPA can be applied
to embedded software via a careful interpretation of FP
counting rules [5]. Moreover, it is known that many real-time
projects have actually been measured using FPA. On the
contrary, there is little analytic evidence of successful
applications of the COSMIC method to real-time and
embedded applications. This paper aims at providing some
evidence about the suitability of FPA and the COSMIC
method to measure real-time embedded software.

Both FPA and COSMIC methods require the
representation of user requirements according to a method-
specific model of software (e.g., the FP model includes logic
files and elementary processes, while the COSMIC model
includes functional processes and data movements).
Measurement is then based on counting the elements of these
models according to given rules. To measure RT and
embedded software, it is of critical importance that
representative models can be correctly derived from the user
requirements. To test this ability, we consider a set of typical
and representative –though necessarily incomplete– features
of real-time embedded software and apply FPA and
COSMIC to each of them. The comparison of the two
methods provides useful indications to the developers that
have to choose a functional size measurement method.

The paper is organized as follows: Section II illustrates
the attractiveness of the COSMIC method from the

465Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 485 / 646

management point of view. Section III presents a set of
modeling and measurement problems that occur frequently
in real-time and embedded software developments. In
Section IV, FPA and COSMIC methods are applied to the
cases illustrated in Section III. Section V accounts for related
work, while Section VI draws some conclusions and outlines
future work.

Throughout the paper, we refer exclusively to Unadjusted
Function Points (UFP) for FPA, because UFP are more
commonly used than adjusted Function Points and because
UFP are recognized as an ISO standard, while FP are not.

II. SIZING AND ESTIMATION OF REAL–TIME EMBEDDED

SOFTWARE: THE MANAGER’S POINT OF VIEW

Both FPA and COSMIC methods aim at measuring the
size of Functional User Requirements (FUR). However,
there are a few reasons that suggest that the COSMIC
method may be preferable. First, CFP are defined in a simple
and sound way, while the definition of FP has been widely
criticized, e.g., because the weighting mechanism make
unclear whether FP are a measure of size or effort [6], or
because the inherent subjectivity of FPA leads even certified
measurers to measure different sizes for the same application
[7][8]. Finally, the COSMIC method, which does not require
a thorough analysis of data and allows for analyzing
transactions at coarser granularity level, is somewhat faster
and less expensive than FPA.

So, managers have a few reasons to prefer the COSMIC
method over FPA. However, evidence concerning the
suitability of the COSMIC method for measuring real-time
software is still missing. This paper aims at filling this gap.

III. CASE STUDIES FOR FUNCTIONAL SIZE

MEASUREMENT OF REAL-TIME EMBEDDED SOFTWARE

Here, we illustrate a set of typical features of real-time
and embedded software that are difficult to represent by
means of the models that underlie the definition of functional
size measurement methods. All the proposed cases are
derived from the first author’s experience gained in
measuring seven avionics applications in a large European
company. So, the proposed set of cases is of empirical origin:
during the measurement, the cases presented here emerged as
those particularly challenging for functional size
measurement. Most examples are illustrated by means of
sequence diagrams, according to the measurement-oriented
modeling methodology proposed in [9] and used in [10]. It is
assumed that the reader is familiar with FPA and COSMIC
concepts and terminology and with UML.

A. Embedded processes having multiple purposes

In embedded software, several processes often include
both updating some data and producing some result.
Consider for instance a process that initializes and tests a
piece of hardware (Fig. 1): both the initialization and the test
are necessary. Actually, the initialization and test of several
hardware devices are performed by means of a single
command: you send the initialization command and get the
resulting state back, so that you can check that the device is
working correctly.

: Controller

init(params)

sd Set-up

Record(DeviceState)

Init_result

: State

DeviceState

Eval(Init_result)

: Device

set_up

Figure 1. Inizialization of devices: the “main purpose” is not evident.

B. Transactions defined at very low level

Requirements often concern very low level operations,
thus making it difficult to identify functions that match the
definition of Base Functional Components.

1) Memory vs. data
In embedded software, the use of RAM as a whole

introduces new requirements. For example, a piece of
software embedded on board of a military airplane should
clear the whole RAM under given circumstances, e.g., if the
airplane crashes in an enemy zone (because the information
stored in memory must not be made available to enemies).
This requirement (Fig. 2) is peculiar in that it is about the
whole RAM, not the user-relevant data.

: System

Clear()

: RAM

sd RAM_clear

Clear()

Figure 2. RAM clearing process.

: System

Output(data)

: Device space
in RAM

sd Memory_mapped_I/O

Write(data)

Figure 3. Memory-mapped I/O.

2) Memory mapped I/O
In embedded systems, updating a variable and sending

data to a device can be extremely similar operations. For
instance, when I/O is memory-mapped, both mentioned
operations write registers or RAM locations (Fig. 3).

3) Processes that do not terminate properly
In embedded software, it is often required that a function

terminates by jumping to a given location. This situation is
illustrated in Fig. 4: the initialization function terminates by
executing the set-up function (described in Fig. 10).

: Controller : State

init()

: Unit1

sd Init

Set(InitState)

Power_up()

: Unit2

init()

Set-up
ref

: Device1 : Devicen

Figure 4. A function that ends with a jump to another function.

C. Taking into account the devices

In traditional software applications, functions are usually
invoked by the user and end either by updating some internal
data, or by outputting some information. In embedded
applications, the situation can be very different. Often it is
some hardware device (not a user) that acts as both the cause

466Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 486 / 646

that determines the execution of the function and the
destination of the produced data or signals.

1) Considering the role of the Operating System in I/O
Let us consider the following requirements for an I/O

functionality (described in Fig. 5): “upon request by the
controller, data are retrieved from an I/O channel, according
to the criteria stored in the I/O channel table. When all the
data have been read, they are suitably converted and sent
back to the controller.” It is often the case that the I/O
operation has to be carried out with the help of the Operating
System and the requirements can be implemented by means
of two functions, illustrated in Fig. 6 and Fig. 7. The first
function (Fig. 6) is invoked by the controller and prepares an
I/O request for the OS and a subsequent system call. The
second function (Fig. 7) is triggered by the interrupt from the
I/O device and involves reading the data from the channel,
elaborating them, and sending them back to the controller.
The execution of this “function” is done partly by the OS (by
a driver that will have to be implemented as a part of the
application development) and partly in the section of the
application devoted to I/O.

: Controller
: I/O

component
: I/O Channel

Table
: I/O Channel

Read(ch_ID) Get_channel_data
(ch_ID)

channel_data

Get_Byte()loop

Convert_data()
data

Byte

sd Direct_read

Figure 5. Process featuring direct access to I/O channels.

If the development also includes the construction of a
driver for the considered I/O device, it seems that taking into
account the size of the corresponding code will contribute to
produce a more accurate effort estimate. In other words, it
seems reasonable to count two functions, corresponding to
the “elementary processes” described in Fig. 6 and Fig. 7.

2) Multi cycle operations
In real-time systems, it is not unusual that a function is

too long to fit into one execution cycle. In such cases, it is
rather common to split the function into two (or more) pieces
that are executed in consecutive execution cycles. Here are
two typical examples:

− The function transfers data via a buffer. The data to be
transferred do not fit in the buffer. The transfer is split
into n cycles: in each cycle 1/n of the data are copied
into the buffer.

− The function, triggered by the tick, takes a time longer
than the cycle duration (i.e., the time between two
consecutive ticks) to execute. Thus, the transfer is split
into multiple consecutive cycles.

: Controller
: I/O

component
: I/O Channel

Table
: OS

Read(ch_ID)

Get_channel_data(ch_ID)

channel_data

: I/O space
in RAM

Sys call

sd Read_req_SO

Write(I/O_request)

Figure 6. Process Access to I/O channels via the O.S.

: I/O
channel

: I/O
component

: OS

ready_intr

: I/O space
in RAM

: Driver

Read()

: Controller

write(Byte)

data

get_Byte()

Byte

loop

Read()

data

Return from write syscall

sd SO_reads

Convert_data()

Figure 7. The O.S. handles the I/O.

An example is given in Fig. 8: an output operation is split
over two consecutive clock cycles. In the first cycle the
application outputs the data from Data_1 and sets the State to
represent that there is a pending output operation; in the
following cycle, the State indicates that the output operation
has to be completed, thus data are read from Data_2 and sent
to the output device.

: Controller : State

read()

: Data_1

sd Out_init

write(data)

Output()
: Device

data
: Clock

tick

set(out_2)

: Controller

: State

read()

: Data_2

sd Out_end

write(data)

: Device

data

: Clock

tick

set(out_finished)

opt [state==out_2]

Figure 8. Output: first and second (final) cycle.

These cases are often described in the requirements, since
they deal with the real-time behavior of the application,
which is typically explicitly accounted for in the
requirements specification.

However, requirements specifications could not state
explicitly that the function should be split, i.e., requirements
could just describe the whole operation as in Fig. 9.

D. Long processes

In embedded software, functions are often “service
routines” that perform rather long tasks; e.g., the
requirements specify that “the connected devices are tested,
and the result (a ‘pass’ value or the set of diagnostics) is sent
to the controller, which stores it for later use.” Fig. 10
illustrates the situation with 4 different device types.

467Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 487 / 646

: Controller : Data_2

read()

: Data_1

sd Output

write(data1)

output()

: Device

data1

read()

data2

write(data2)

Figure 9. Output, not split.

: Controller : State : Device2

poll()

: Device1

sd Set-up

: Device4: Device3

Record(DevState)

DevState

poll()

Record(DevState)

DevState

poll()

Record(DevState)

DevState

poll()

Record(DevState)

DevState

Figure 10. A long transaction.

E. Unusual data

Embedded applications often include constant data
structures (e.g., data mapping tables or bit masks) that
require a non-negligible design effort, which we would like
to take into account. An example is shown in Fig. 5: for each
request to read an I/O channel, the I/O component reads from
the channel table how many bytes must be read from the
channel and how they should be interpreted. The channel
table is a read-only structure that describes how to manage
the I/O channels.

F. Complex elaborations

In real-time and embedded applications, some operations
can be complex. Consider for instance the generic flight
control operations described in Fig. 11. It should not be
surprising that the computation of the flight control data can
be quite complex.

IV. APPLYING FPA AND COSMIC TO REAL-TIME

EMBEDDED SOFTWARE

This section illustrates the application of FPA and
COSMIC methods to the cases described in Section III.

A. Embedded processes having multiple purposes

According to the IFPUG counting rules [2][3], the size of
a function varies according to its type (external input, output
or query). The type is determined by the “main purpose” of
the function, according to the requirements. However, it may
be difficult to decide what the main purpose is, since both the
external input and the external output can update internal
data and report a result, as in our case. In conclusion,
measures based on FPA have some degree of subjectivity
that can be hardly avoided.

: Clock : SensorManager
: Sensor

State
: FlightControl

Get_state()

state

Read()

: NavigData

data

sd Periodic_sensor_read

Put(control_data)

tick

Compute(state, data)

control_data

Figure 11. Sensor-driven flight control.

The problem described above does not apply to COSMIC
measurement, since all processes are treated in the same
way, regardless of their purpose.

B. Transactions defined at very low level

1) Memory vs. data
According to the principles of FPA, in a case like the one

described in Section III.B.1) one should count the memory
clearing function as an external input. In that case, since
every External Input (EI) manages an Internal Logic File
(ILF), we should consider the RAM an ILF. On the one
hand, counting the RAM as an ILF does not appear correct
with respect to the rules, since logic data files should
represent a homogeneous set of related data (which RAM is
not), on the other hand, not considering the RAM as an ILF
is an inconsistency, as all EI have to deal with an ILF.

There is a similar problem with the COSMIC method, as
the process writes in the RAM: accordingly, we should
consider a write data movement. However, this implies that
the RAM is classified as a data group, which does not appear
perfectly coherent with the COSMIC rules.

2) Memory mapped I/O
When I/O is memory-mapped, an output operation can be

modeled as an External Output (EO) but also as an EI since
the output is obtained by writing registers or RAM locations
(see Fig. 3). The choice affects the resulting measure, since
EI and EO have different weights. With the COSMIC
method, you still can model the operation as a Write or an
Exit data movement, but the choice does not affect the final
measure, since every data movement contributes exactly one
CFP.

3) Processes that do not finish properly
According to FPA, a transaction function has to be self-

contained and leave the application being counted in a
consistent state. In embedded software, it is often required
that a function terminates by jumping to a given location
(Fig. 4). In this case, the transaction is not self-contained and
does not leave the program in a consistent state. FPA does
not suggest how to take into consideration this type of
functions. Just ignoring them would not be a good idea, since
it takes some effort to implement these functions; hence we
want them to contribute to the functional size of the
application. Actually, there is no other way of dealing with
these cases than just ignoring the constraints imposed by the
IFPUG and counting the functions, considering their

468Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 488 / 646

behavior down to the final jump. The same problem occurs
when the COSMIC method is used, since functional
processes are defined as FPA transactions, in essence.

C. Taking into account the devices

1) Considering the role of the Operating System in I/O
With both FPA and COSMIC methods, the measurement

of the process represented in Fig. 5 is quite straightforward.
The problem here occurs when the development must also
include the construction of a driver for the considered I/O
device, since taking into account the size of the
corresponding code will contribute to produce a more
accurate effort estimate. In other words, it seems reasonable
to count two functions, described in Fig. 6 and Fig. 7.

With FPA, this requires a deviation from the FPA
counting practice, since FPA does not take into account the
existence of different “layers”: with FPA you can only
measure requirements at the single abstraction level
corresponding to the user’s point of view, and the user is not
aware of the OS and what happens in the OS.

With the COSMIC method, it is possible to explicitly
model and measure the layers that compose the software
application. The sum of the sizes of the layers is generally
greater than the size of the whole application corresponding
to the point of view of the user (who is not aware of the
existence of layers). So, the measure of layers is exactly what
is needed to take into account the size of the OS parts that
are being developed.

2) Multi cycle operations
The cases described in Section III.C.2) suggest that the

value of a functional size measure can depend on how
requirements are written. Let us consider the case when
requirements specifications do not state explicitly that the
function should be split (Fig. 9): if Data_1 and Data_2
account for 10 DET each, the transaction is a high
complexity EO (having 3 FTR and 21 DET), whose size is 7
FP. When requirements specifications prescribe that the
function be split (Fig. 8) we have two average complexity
EO (3 FTR and around 12 DET each), whose size is 10 FP in
total. When requirements specifications do not state
explicitly that the function should be split, the COSMIC
method identifies one functional process sized 5 CFP, since
it involves 5 data movements (the Entry, the Reads of
Data_1 and Data_2, and the corresponding Exits). When
requirements specifications prescribe that the function be
split, according to the COSMIC rules we have two functional
processes, one involving 5 data movements (the Entry that
triggers the operation, the Read of Data_1, the Entry of the
clock tick, the Exit to the device, the Write of the state), and
one involving 4 data movements (the Entry of the tick, the
Read of Data_2, the Exit to the device, the Write of the
state); the total size is thus 9 CFP.

In conclusion, both methods provide measures of size
that depend on how requirements are written. This is a
characteristic of the methods that has to be taken into
account, as it affects the resulting measures.

D. Long processes

A well known problem with Function Points is the so-
called “cut-off” effect: a function cannot contribute more
than 7 FP to the functional size, regardless how many DETs
it moves and how many FTRs it involves. This is a relevant
problem, especially in embedded software, where functions
are often “service routines” that perform rather long tasks,
like in the example illustrated in Section III.D and Fig. 10.

Fig. 10 illustrates the situation with 4 different device
types. According to the IFPUG counting rules, this is a single
transaction. If the device states contain on average 5 (or
more) parameters, then the transaction is a complex one. The
problem here is that if we had 5 or more different types of
devices, the number of FP would not increase with the
number of devices: according to FPA, we would have just
one complex EI. This is a problem, because in practice the
development effort increases with the number of device
types, since each device type provides different status data,
which need to be interpreted in a specific way.

FPA hides from the estimation methods how much a
function is bigger (thus more expensive to build) than
another that classifies as complex. The COSMIC method, on
the contrary, does not suffer from the cut-off effect. In a case
like the one in Section III.D and Fig. 10, the size in CFP
takes into account all the data movement, whose number is
proportional to the number of devices.

E. Unusual data

According to FPA, data functions are either internal data
“maintained” (i.e., modified) by the application, or external
data (maintained outside the application). Constant data are
treated as “decoding data” and explicitly excluded from the
counting [2]. However, it seems that the authors of the
IFPUG manual had in mind simple “zero effort” constants
when they wrote the rules concerning the constant data.

To account for the fact that a constant data structure will
require some design effort, it is necessary to deviate from the
IFPUG rules, and count a “constant ILF”: for instance, in the
example illustrated in Fig. 6, one should count an ILF for the
channel table; consistently, a FTR for each access to the
table should be considered.

The COSMIC method does not count data directly; that
is, no fraction of the size measures accounts for data. On the
contrary, data movements are counted without considering
whether the data being moved are constant or not. In
conclusion, this case does not pose any additional difficulty
to the application of the COSMIC method.

F. Complex elaborations

Both FPA and COSMIC methods base the measurement
of size on the number of processes and the amount of data
handled. For instance, the process described in Fig. 11 is
considered as an EO (with a maximum size of 7 FP) or a
functional process accounting for 4 CFP (as it involves 4
data movements). None of the two methods considers the
complexity of the computations performed: the fact that the
“Compute” operation performed in the process is simple or
complex does not change the size of the process.

469Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 489 / 646

This is clearly a shortcoming of the two methods, since
the development effort is very likely proportional to the
complexity of the functions to be implemented.

V. RELATED WORK

There is a fairly large body of literature aimed at
extending the scope of functional size measurement to real-
time software. Mark II Function Points [11][12] refine and
extend the traditional function point transaction model and
environmental factors. Asset-R [13] extends the applicability
of FP to real-time systems by considering issues like
concurrency, synchronization, and reuse. It also accounts for
architectural, language expansion, and technology factors to
generate the size estimate. Application Features [14] aim at
the early estimation of the size of application in the process
control domain. Counting practices for highly constrained
systems [15] address issues such as boundary identification
and internal processing. Also the IFPUG published a Case
Study on how to apply FPA to real-time software [16].

A common characteristic of the methods mentioned
above is that none of them is widely used in practice. A
partial exception is represented by Mark II Function Points
[11], which were also standardized [12]. So, the popularity of
FPA and COSMIC suggested that their suitability to deal
with software has to be evaluated.

VI. CONCLUSIONS

The results of our analysis show (see Table I) that several
cases can be measured with the COSMIC method by just
applying the measurement rules given in the manual [4],
while Function Point Analysis often requires “bending” the
rules to account for the considered cases. Also the resulting
measures are easily affected by the measurement choices
made in FPA, while there are just a few cases (namely,
processes terminating with a jump, multi-cycle operations
and complex elaborations) that can affect the measures in
CFP.

TABLE I. COMPARISON OF FSM METHODS

Case
FPA COSMIC

Rules Meas. Rules Meas.

Multiple purpose processes � � � �

Memory data � � � �

Memory mapped I/O � � � �

Processes terminating with jump � � � �

Clock � � � �

OS involved in I/O � � � �

Multi cycle operations � �
a
 � �

a

Long processes � � � �

Unusual data � � � �

Complex elaborations �b � � �b

a
 The measures depend on how requirements are written.

b Elaboration complexity is just not accounted for by any rule.

In conclusion, the original claims that the COSMIC
method is more suitable than FPA for measuring real-time
and embedded applications seem justified.

In any case, it must be noted that neither FPA nor the
COSMIC method account for the complexity of the required
elaboration. This may be a problem in the real-time
embedded context, since some processes can be really very
complex and require a relevant amount of development
effort. Future work involves assessing measures that
represent not only the functional size of Real-Time
applications as done by FPA and COSMIC methods, but can
represent also the complexity of the required elaboration.

REFERENCES

[1] A.J. Albrecht, Measuring Application Development
Productivity, Joint SHARE/ GUIDE/IBM Application
Development Symposium, 1979, pp. 83-92.

[2] International Function Point Users Group. Function Point
Counting Practices Manual - Release 4.3.1, January 2010.

[3] ISO/IEC 20926: 2003, Software engineering – IFPUG 4.1
Unadjusted functional size measurement method – Counting
Practices Manual, Geneva: ISO, 2003.

[4] COSMIC – Common Software Measurement International
Consortium, The COSMIC Functional Size Measurement
Method - version 3.0.1 Measurement Manual, May 2009.

[5] L. Lavazza and C. Garavaglia, “Using Function Points to
Measure and Estimate Real-Time and Embedded Software:
Experiences and Guidelines”, ESEM 2009, Lake Buena Vista,
FL, USA, October 15-16, 2009, IEEE, pp. 100-110.

[6] A. Abran and P.N. Robillard “Function points: a study of their
measurement processes and scale transformations”, Journal of
Systems and Software, vol.25,n.2, Elsevier, 1994, pp.171-184.

[7] C. Kemerer, “Reliability of Function Points Measurement: a
Field Experiment,” Comm. ACM, Vol. 36, No. 2, 1993, pp.
85-97.

[8] J.R. Jeffery, G.C. Low, and M.A Barnes, “Comparison of
Function Point Counting Techniques,” IEEE Trans. Software
Eng., Vol. 19, No. 5, 1993, pp. 529-532.

[9] L. Lavazza, V. del Bianco, and C. Garavaglia, “Model-based
Functional Size Measurement”, 2nd Int. Symp. on Empirical
Software Engineering and Measurement – ESEM 2008,
Kaiserslautern, Germany. October 9-10, 2008, pp. 100-109.

[10] L. Lavazza and V. del Bianco, “A Case Study in COSMIC
Functional Size Measurement: the Rice Cooker Revisited”,
IWSM 2009, Amsterdam, November 2009, pp. 101-121.

[11] C.R. Symons, “Function Point Analysis: Difficulties and
Improvements”, IEEE Transactions on Software Engineering,
Vol. 14, No. 1, January, 1988, pp. 2-11.

[12] ISO/IEC 20968: 2002, Software engineering Mk II Function
Point Analysis. Counting Practices Manual, International
Standardization Organization, ISO, Genève, 2002.

[13] D. J. Reifer, “Asset-R: A Function Point Sizing Tool for
Scientific and Real-Time Systems”, Journal of Systems and
Software, Vol. 11, No. 3, March 1990, pp. 159-171.

[14] T. Mukhopadhyay and S. Kekre, “Software Effort Models for
Early Estimation of Process Control Applications”, IEEE
Transactions on Software Engineering, Vol. 18, No. 10,
October 1992, pp. 915-924.

[15] European Function Point Users Group, Function Point
Counting Practices for Highly Constrained Systems, 1993.

[16] IFPUG, Case Study 4: Counts Function Points for a Traffic
Control System with Real Time Components, International
Function Point Users Group – IFPUG.

470Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 490 / 646

MCReF: A Metric to Evaluate Complexity of Functional Requirements

Carlos Roberto Paviotti

São Paulo Federal Institute of Education, Science and

Technology, IFSP

Capivari, Brazil

 e-mail: carlinhos@ifsp.edu.br

Luiz Eduardo Galvão Martins

Institute of Science and Technology

Federal University of São Paulo, UNIFESP

São José dos Campos, Brazil

e-mail: legmartins@unifesp.br

Abstract— The high sophistication of software systems has lead

to an increase in the requirements complexity. Currently, there

are metrics to evaluate the functional size of the software such

as metrics of function point and use case points which are used

with good results. However, a metric for the complexity for

software requirements specifically had not yet been proposed.

Identifying this gap, this paper proposes a Metric of

Complexity of Functional Requirements (MCReF is an
acronym composed by Portuguese words: Métrica de

Complexidade de Requisitos Funcionais) indicated to evaluate

and classify the complexity of software requirements. MCReF

was developed from an empirical study based on a

questionnaire that collected the opinion of 20 professionals

from the requirements area to determine the weights of the

factors that influence the requirement complexity. The

responses were tabulated and given a statistical treatment to

assess the weights of the complexity factors and their

respective ranges of values for classification. A case study

using MCReF is also presented in this paper.

Keywords-Requirements Engineering; Complexity of

Requirements; Requirement Metrics.

I. INTRODUCTION

Being part of the system engineering phases,
Requirements Engineering consists of a set of techniques
employed in the processes involved in the development of
system requirements, i.e., eliciting, detailing, documentation
and validation of the requirements [11]. The result of the set
of requirements is a Software Requirements Specification
Document, where the degree of understanding and accuracy
of the provided description tend to be proportional to the
degree of quality of the generated product. The definition of
the software requirements occurs in the early development
phases. Requirements Engineering provides methods,
techniques and tools that help requirements engineers to
define and classify what must be implemented in the
software before starting building the system to be, i.e., the
earliest phases of the software life cycle. Several processes
models advocate such a procedure, for example:
Requirements Definition in the Waterfall Model [13],
Requirements Design in the Spiral Model [11],
Requirements Gathering in the Prototyping Model [15],
Requirements Workflow in USDP [13], etc. Among the
ways of realizing the requirements complexity of a given
system, regardless of the process model to be adopted, the
Use Cases provide help in this issue, helping to formalize the
scope of the system and facilitating the communication

between developer teams and stakeholders. The presentation
of requirements in a Use Cases Diagram is a simplified and
less complex form of representation than the requirements
description in natural language, enabling to estimate the
project size and realize the system’s complexity in a global
way. Being one of the important factors to generate a
software product with quality, a Software Metric
corresponds to quantitative measures on one or more
relevant features of the software [7][8][10], which allows
developers to have a more refined view on the software
process or related documentation, along with being an
important management tool that contributes to preparation of
time schedule, more accurate costs and more plausible goals,
thus facilitating the decision making process and its
consequent results.

Among the existing metrics, focusing on functionalities
and not on a software system requirements, there are
Function Points [13] and Use Cases Points Metrics [15], in
both, the specified complexity factors are classified as
subjective since they link the measures to “its value to the
user”.

Some related studies have been performed involving the
requirements complexity, with presence in researches and
empirical studies [12]. However, as many of them are
focused on software quality, the necessity of involving the
complexity factor in achieving the final result of the study
remains, which generally refers to the system or project
complexity in relation to their functionalities and not their
requirements.

Kanjilal, Sengupta, and Bhattacharya [1] developed an
approach based on metric model which aims to
quantitatively estimate the requirements complexity for the
object-oriented methodology, using project models like
Sequence Diagram and Classes Diagram in the aid of
validating the estimates in the project phases and long term
project management.

Zhao, Tan, and Zhang [2] created a method to estimate
costs through the requirements designing, proposing a new
term named Path Complexity, which indicates a metric to
measure the effort of the software complexity based on E-R
Diagram (Entity-Relationship Diagram), showing the whole
database structure in which an entity that can reach other
entities due to its relationship and obtaining data on it.

Aiming the complexity related to requirements, an
empirical study performed by Regnell, Svensson, and Wnuk
[3] describes a case of system engineering in the field of
mobile telephony, based on experiences used at Sony

471Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 491 / 646

Ericsson, which demonstrates the existing complexity of
requirements in mobile telephones development.

The result of this study is called by the authors Very
Large–Scale Requirements Engineering (VLSRE),
suggesting a new order of magnitude applied to
requirements, focusing on the size of the requirements set
(the number of requirements is used, among other variables,
to represent the complexity and it is strongly related to the
nature of interdependencies among requirements), which are
managed by a system developer company.

Complexity is an attribute that allows measuring if a
software, usually part of it (module, method or function) is
easy to read (comprehension), or else how complex it can
become, if it contains a large number of nesting of laces and
decision commands in a given program or functionality [8].

According to McCabe (1976) in Pressman [13]
complexity is the quantification of the number of
interdependent paths in a program, which provides an
indication of its maintainability and testability. It is
important to note that these definitions of complexity were
built with the software as object in question and not the
software requirements [10]. Another issue, also reported by
Regnell, Svensson, and Wnuk [3] is that one of the factors
responsible for the increasing of the requirements complexity
is the large and diversified set of stakeholders, both internal
and external to the organization. Based on the research
performed in the literature and on the case studies, it is
possible to characterize the requirements complexity as the
degree of difficulty to interpret, specify, understand and
implement a set of requirements, which is directly influenced
by the amount of variables and procedures relevant to the
requirements, as well as by the dependency relationships or
coupling among them.

Currently, there is not available among the Requirements
Engineering techniques, a metric aimed specifically to
evaluate the requirements complexity. Such metric is of
fundamental importance for the software development teams
to have a reference concerning to the degree of complexity a
requirement can present. Based on a metric of requirements
complexity, the developer teams may build their own
productivity indicators, which will be of great value to
accurately estimate variables such as effort, time and cost of
software development.

The aim of this study is to contribute to the software
development in industries that employs the Requirements
Engineering concepts and techniques, by proposing a metric
to evaluate the complexity of functional requirements, even
before start building the systems, in which this complexity is
already recognized in the early phases of the life cycle of the
software development.

To achieve the proposed metric, the adopted
methodology was divided in four phases: (i) Development of
case studies focusing the requirements elicitation,
specification and validation, based on real contexts,
including: a) Creation of a requirements specification
document using the template Volere, referring to a system for
monitoring and capturing heart rates to evaluate the heart
autonomic function (in human beings); b) Creation of a
requirements specification document using one of the

templates from the IEEE STD 830-1998 recommendation
[9], regarding to the system for technical and physical
monitoring of athletes in all the categories of a Brazilian
professional soccer club [16]. These case studies were used
as a “laboratory” to identify the factors that influence the
requirements complexity. (ii) Creation of a Requirements
Complexity Metric, identifying: a) main variables that
influence the requirements complexity; b) Relationships
among these variables; c) Weight of these variables, obtained
through the application of a questionnaire to the software
development professionals; d) Classification of the
requirements complexity. (iii) Application of the proposed
metric in three case studies which were software projects
whose requirements had already been raised and previously
documented. (iv) Analysis and discussion of the results
obtained with the application of the metric in the case
studies.

The rest of this paper is organized as follows: MCReF
metric is explained in the section II. The empirical study that
grounded the proposed metric is presented in section III. A
case study is discussed in the section IV. Conclusions are
presented in the section V.

II. MCREF METRIC

A. Proposal

The revolution of software systems, where the increasing
complexity and the size of their set of requirements are
inherited factors of this progress, has motivated the
improvement of already existing methods, techniques and
tools in the Requirements Engineering.

Currently, there are metrics to estimate the software size
and functionality [8][13][15], something that was a challenge
to software companies in past decades. However, a metric
for complexity of software requirements had not already
been proposed. Motivated by such a gap, this paper presents
the Metric of Complexity of Functional Requirements
(MCReF).

MCReF is a metric proposed to evaluate the complexity
of functional requirements, enabling to classify how complex
is the functional requirement, focusing especially in
information systems requirements. To apply the proposed
metric it is necessary to obtain from the Requirements
Specification Document, the generated artifacts or diagram,
enabling to know the main factors that influence the
complexity of functional requirements, namely: treatment
and identification of functionalities, input and output
variables, dependencies and couplings, decompositions,
constraints and number of stakeholders involved in. Once
performed the identification of these factors, it is necessary
to specify them a little more, and thus to classify the sub-
factors that influence the complexity of functional
requirements on which is applied the weight attributed to
each subfactor of complexity, enabling to obtain the degree
of complexity in a single requirement.

B. Case study Development

To assist identifying the factors that influence the
complexity of the information system requirements, two case

472Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 492 / 646

studies were carried out, each one having as a result a
requirements specification document, being in different
templates, which allowed a wider view of the functionalities
and the objectives to specify and document the requirement
correctly. The requirements specification documents
included the following systems: (i) Monitoring and Heart
Frequency Capturing System to evaluate the heart autonomic
function (in human beings) developed in collaboration with
Department of Physiotherapy at UNIMEP (Methodist
University of Piracicaba – Brazil), using Volere template
[14]; (ii) Technical and Physical Follow Up System to all
categories of a professional soccer club in Brazil, which is
discussed in a previous work [16].

C. Metric Development

Based on case studies performed to support the MCReF
metric it was possible to identify in the Requirement
Specification Document [16], the main factors of the
complexity that influence the functional requirements, which
are described in the following subsections.

1) Input and Output Variables

Represent values to be treated or used to meet the
requirement represented by the identifiers, i.e., a label for
each variable. They are classified as: (i) Input variable –
existing variable in the requirement that will receive
information from one agent or another system and making
necessary to treat the value of this input, for example, an
input variable of genre: “f” for female or “m” for male. (ii)
Output variable – a variable of the result of the requirement.
After processing the variable, the resulting information will
be presented to the applicant and such value must be treated
by the application, for example: the information “f” obtained
from a field that stores data referring to genre must present
the result “female” to the user requesting. It is possible to
identify this factor of complexity in the Requirement
Specification Document due to: the large number of
variables, which will possibly have a greater complexity
when comparing to requirements with a few variables,
because these, whether input or output, need to be treated to
present the results they were intended; the amount of
constraints on the variables of the requirement, for example:
input variables where the date of birth cannot be greater than
or equal to the current; height and weight cannot receive
negative values; output variables where age is obtained from
date of birth stored; etc. Among the artifacts produced in a
Requirements Specification Document, there is the factor of
complexity in analysis in: Class Diagram, identifying the
attributes of classes; Data Flow Diagram, obtaining the
amount of data (input, output, query, internal file and
external file); Entity-Relationship Diagram, identifying the
attributes of the Entities and the attributes of the
Relationships; Context Diagram, through the amount of data
sent or received by the external entities, among others.

2) Number of Types of Stakeholders Involved
As reported by Regnell, Sevensson, and Wnuk [3], one of

the factors responsible for the elevation of the complexity in
Requirement Engineering is the large and diversified set of

stakeholders, both internal and external to the system.
However, regardless of the counting of stakeholders, there is
a need of classifying these types involved.

It is possible to identify in the Requirements
Specification Document such factors of complexity due to:
number of actors representing given types of stakeholders –
possibly a wide range of stakeholders attributed to the
requirement will have a greater complexity when comparing
to requirements with fewer stakeholders involved, because
these will be related, at least, with one system functionality,
demanding to be treated to present the results intended;
quantity of existing hierarchic levels for the actors – each
hierarchic level created indicates the need to specify and
treat the available functionalities.

Among the artifacts produces in a Requirements
Specification Document, there is the factor of complexity in
analysis in: Use Cases Diagram, represented by the Actors
and Hierarchic Levels existing among the actors
(generalization relationships).

3) Number of External Interfaces
The external elements, with which the software in

question must interact, such as IN/OUT hardware or even
other systems, are considered external resources to the
software and must be treated at the requirement level. It is
possible to identify the influence of this factor of complexity
analyzing: number of actors representing devices, such as
sensors, actuators, etc. which demand treatment to interact
with the system; number of actors representing other
systems; other software or systems that receive or send
information to the software in question. Among the artifacts
produced in requirements specification, there is the factor of
complexity in analysis in the Use Cases Diagram through the
identification of the Actors and Data Flow Diagram by
means of external and internal entities.

4) Functionalities Identification/Treatment
Functionality can be defined as a behavior or an activity

for which a beginning and an end can be viewed, that is,
something capable of being executed. For example, the
simple execution of a functionality called “perform order”
refers to the activities to be performed (create order, verify
customer, link product, verify stock, calculate discount,
define delivery time, etc.) resulting in the creation of an
instance of the entity/class called “Order”. It is also
recommended to present, in the description, the set of
preconditions (for example, customer already registered), to
implement functionality, and post-conditions (product
delivered, product warranty after sale etc.) which may arise
from this implementation.

It is possible to identify in the Requirements
Specification Document this factor of complexity by
analyzing: the number of existing functionalities to perform a
requirement; necessary conditions set out in the requirement
preconditions, necessary conditions set out in the
requirement post-conditions, requirements that involve
dependency or coupling of the functionality of other
requirements. Among the artifacts produced in a
Requirements Specification Document, there is the factor of

473Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 493 / 646

complexity in analysis in: Classes Diagram, represented by
the operation of classes; Data Flow Diagram, represented by
the processes; Use Cases Diagram represented by the Use
Cases, Requirement Specification Form, obtained from the
conditions to perform a requirement; number of validations
to perform a requirement, number of results obtained from
the performance (main flow, requirement alternative(s) and
exception (s)), among others.

D. The weights of Factors of Complexity and their

Subfactors

In Table I, the factors and subfactors of the complexity
proposed for MCReF are presented along with their
respective weights, obtained from the results of the empirical
study performed with 20 professionals from the requirements
area. The factors and subfactors are objects of study and
were obtained through bibliographic review of the
Requirement Engineering area along with the development
of case studies focused on requirements elicitation,
specification and validation based on real context, among
them: a) Creation of a requirement specification document,
using the template Volere, referring to a monitoring and
collection of a heart rate system to assess the autonomic
function of the heart (in human beings); b) Creation of a
requirement specification document using the templates
recommended by IEEE STD 830-1998, referring to a
technical and physical monitoring of athletes system on all
categories of a professional soccer club [16]. To define each
Weight Attributed to the Subfactors of Complexity of the
Requirement, as presented in Table I, it was necessary to
base on the responses obtained on the empirical study
conducted with the professionals from the area. Based on the
responses obtained from this study, the arithmetic average of
the respondents answers were obtained for each subfactor of
complexity and thus defining the subfactor Average.

TABLE I. WEIGHTS OF THE FACTORS OF COMPLEXITY OF THE

REQUIREMENTS

To define the weight attributed to the subfactor of

complexity, it was necessary to conduct, for each one, a
division of the average of the subfactor obtained by the sum
of the subfactors of complexity generated. With the value of
the assessment of each factor of complexity, it is obtained
the result, which must be multiplied by 10 (ten), to be

applied in a 0-10 scale, as suggested by the metric proposed.

During the empirical study, it was needed to define a weight

to the factors of requirements complexity along with their
subfactors of complexity, however, it was verified that only
the responses attributed to the subfactors of requirements
complexity would be of real interest, discharging the values
obtained to the factors of requirements complexity.

The amount identified of each subfactor of requirement
complexity must be multiplied by the weight attributed to the
Subfactor of Complexity (SfC), resulting in the Complexity
of the Subfactor of the Requirement (CSfR) and allowing
them to receive their respective classification of complexity.
The degree of importance of the composition to the subfactor
of requirement complexity, in this study called weight of the
subfactor, is the result of the empirical study conducted with
the professionals of the area.

The classifications of the CSfR is the result of empirical
tests conducted, and the rating value “Low” was assigned by
the MCReF’s developers, based on their professional
expertise; “Medium” corresponds to twice the value
attributed to low classifications, “High” corresponds to
higher values than the average and less than “inappropriate”.
The classification “Inappropriate” indicates that the amount
of elements defined for the SfC in the requirement multiplied
by the weight of the factor of requirement complexity
exceeds the value attributed to the value “high”. For the
complexity of the subfactor of the requirement that is not
identified or used in the requirement, there should be used a
value of zero (0). In case there is not a CSfR classified as
“Inappropriate”, it is possible to obtain the classification of
the requirement by the sum of the complexities of the
subfactors referring to the requirement in question, thus
obtaining a “Complexity of the Requirement” (CR). This
Complexity of the Requirement must be related with Table II
to receive a Classification of the Complexity of the
Requirement (CCR). When the CSfR is classified as
“Inappropriate”, it is recommended to restructure the
requirement or, “Complexity Inappropriate Requirement”
must be attributed to the requirement in question, i.e., it will
maintain the structure of the functional requirement in
analysis, even with one or more subfactors of complexity
classified as inappropriate. All Complexity of Inappropriate
Requirement (CiR) indicates that one or more subfactor of
complexity of the requirement was diagnosed as a number of
elements defined for the SfC of the requirement that, when
multiplied by the weight of the factor of requirement
complexity, exceeds the value attributed to the classification
“High”, then this requirement is given the Complexity
Inappropriate Requirement (CiR) and its weight is the
highest value shown in Table II multiplied by the number of
times the SfC of requirement for the functional requirement
in question was classified as inappropriate. Therefore, the
Complexity of the Requirement is obtained by the result of
the sum of the CSfR and its Classification of the
Complexity of the Requirement is achieved through the
application of the Complexity of the Requirement checked
with Table II. The Classification of the Complexity of the
Requirement (CCR) is the result of empirical tests grounded
on the development of case studies focused on elicitation,

474Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 494 / 646

specification and validation of requirements based on real
contexts [16]. To define the classification as “Very Low” it
also takes under consideration the classification
“inappropriate” where both have a scale of 10 (ten) points,
i.e., less than 10 points are classified as “Very Low” and the
10 points less than 100 points are “Inappropriate”.

TABLE II. CLASSIFICATION OF THE COMPLEXITY OF THE

REQUIREMENT

III. THE EMPIRICAL STUDY THAT GROUNDED THE

PROPOSED METRIC

The empirical study, which aimed the application of a
questionnaire concerning to the requirements complexity
identified along with the professionals of the area provided
the database to obtain the weights for each factor of
complexity studied. The results are shown through the
following analysis: data from the participants, degree of
importance attributed to the factors and subfactors of
requirements complexity and reliability of the instrument of
data collection.

A. Data from the participants

It was possible to obtain a profile of the interviewed
through the part of the questionnaire “Professional
Identification”. The results indicated that 100% of the
participants in the empirical study were professionals with a
high level of academic education, distributed in master
(30%), mastering (55%) and Ph.D (15%). Regarding the time
working in the area of requirements, 80% of the participants
have carried out activities for 5 years or more, while only
10% has had less than a year in the area.

B. Degree of importance attributed to the factors and

subfactors of complexity of the requirement

For the specific purpose of obtaining weights to the
factors and subfactors of complexity, it was used the basic
tool for data collection: a questionnaire consisting of 4
factors subdivided in 12 subfactors with 5 alternatives each,
whose measures were based on Likert scale [6]. The factors
considered in the empirical study were obtained by
reviewing the literature about the complexity of requirements
and also by the case study developed along the research
using the templates Volere and IEEE STD 830-1998 to
document the requirements with the factors: input variables
and output of the system, Stakeholders, external interfaces to
the system and system functionalities. Through this
instrument to collect data, the participants were able to
express their opinion about each of the affirmatives.

C. Analysis of the Reliability

Finished the tabulation of the research data using the
statistic software SPSS (Statistical Package for the Social
Sciences- version 13.0), the instrument used to collect data
was subjected to a reliability evaluation through Cronbach’s
Alpha coefficient analysis which works the relationship
between internal covariance and variances of the measures.
The value of Alfa can range between zero and one (0 - 1) and
the higher this value, the greater the internal consistency of
the instrument evaluated. Authors differ on the minimum
acceptable value to Cronbach’s Alpha Coefficient. Hair et al.
[4] said that to have an acceptable reliability, Cronbach’s
Alpha must have a value of at least 0.70. However, as this is
not considered an absolute value, lower values are accepted
if the research is exploratory in nature. According to
Malhorta [5], the minimum value of Cronbach’s Alpha to
ensure the reliability in a research must be 0.60.

Using Cronbach’s Alpha in this study aimed to evaluate
the internal consistency of the instrument used
(questionnaire), and check if there is consistency in the
variation in the participants’ responses, examining each
factor and subfactor of complexity considered in the
research. Table III presents the results of Cronbach’s Alpha
coefficient for subfactors grouped by their factors of
requirement complexity in question, i.e., involving Q1.1,
Q1.2, Q1.3 and Q1.4 for Input and Output variables, Q2.1
and Q2.2 for Stakeholders, Q3.1 and Q3.2 for External
Interfaces and Q4.1, Q4.2, Q4.3 and Q4.4 for functionalities.

According to the presented in this table, it is possible to
observe the Alpha values obtained for each one of the factors
of complexity considered in the empirical study. It is
observed that the lower Alpha value produced was for the
factor of Input and Output Variables (0.532) and the highest
result was for the factor External Interfaces (0.834).
Analyzing the general Alpha and considering all factors, it is
noticed that the value generated was very satisfactory. The
result indicates that the instrument used in the research is
highly reliable since reached a maximum value of 1 (one), an
Alpha of 0.808 was obtained. This value can be presented as
an indicator of efficiency and reliability of the instrument in
evaluating the factors of requirement complexity.

TABLE III. RESULTS OF CRONBACH’S ALPHA FOR FACTORS OF

COMPLEXITY OF REQUIREMENT

IV. CASE STUDY

The intent of this section is to present the applicability of
the metrics of complexity of functional requirements –
MCReF - in a case study. The context of such study was a
system to monitor and capture heart rate to evaluate the
autonomous function of the heart.

475Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 495 / 646

A. Monitoring and Heart Rate Capturing System

The documentation of requirements specification
referring to the Monitoring and Heart Rate Capturing System
to evaluate the autonomous function of the heart (in human
beings) was developed by students of the Computer Science
Master Degree at UNIMEP – Methodist University of
Piracicaba, Brazil - related to the practical work using the
Template Volere and presented to the discipline of
Requirements Engineering. The documentation consists of
21 functional requirements, 15 new ones and 6 from the
previous system. Table IV shows the results of the
application of MCReF.

TABLE IV. RESULTS OF THE APPLICATION OF MCREF – MONITORING

AND HEART RATE CAPTURING SYSTEM

Legend:
FRN – New Functional Requirements
FRL – Legacy Functional Requirements

1) Analysis and Discussion of the results obtained with

the application of MCReF in the Monitoring and Heart Rate

Capturing

Investigating the subfactors that classify FRN001

complexity as “inappropriate”, it is observed that the
subfactor “number of functionalities”, which presents 21
functionalities, multiplied by the weight 0.97 results to the
subfactor a complexity equal to 20.37 (weight adopted
according to Table I), which is higher than the stated in the
classification of complexity given to the subfactor applied in
the metrics, i.e., higher than 5 and less than 10.

In the analysis of the subfactors that classify the
complexity of FRN002 as “middle low”, it was observed that
the subfactor “number of input variables” stated with 22
variables, which multiplied by the weight 0.85 results in a
complexity of 18.7 to the subfactor defined as “High” in the
classification of complexity.

Besides this subfactor, it was found that the subfactor
“Number of Constraints to Input Variables” presents 7
variables, which multiplied by the weight 0.92 generates a
complexity of 6.44 to the subfactor also defined as “High” in
the classification of complexity.

Evaluating the classifications of complexity produced by
the MCReF from the experience of the analyzer considering
their own productivity indicator, it is observed that the result
of the application of the proposed metric reflects the reality
in the implementation of a software requirement, i.e., the
results of the complexity obtained for the requirements
corresponds to the necessary resources identified for their
development and enable their identification in functional
requirements of factors and subfactors of higher complexity.
It is also noticed that the results obtained with the application
of MCReF assist in the tasks to estimate the effort (people
and professional), time and cost for development, ranging
from the functional requirement of lower complexity, the
FRN014, until the highest complexity, the FRN002.

V. CONCLUSION AND FUTURE WORK

With the evolution of Software Engineering techniques,
it became possible to improve the software quality through
standardization and definition of development processes – in
accordance with the requirements – to ensure a final product
that meets the customer’s expectations, as agreed.

The tasks of classifying and measuring software are
present from the conceptual stage (requirements) to product
delivery. However, little has been explored in the
Requirements Engineering area about the use of metrics of
complexity. Briefly, only two studies about the subject could
be identified [1][3]. Currently, there is not available, among
Requirements Engineering techniques, a metric aimed
specifically to measure the complexity of requirements. Such
metric is of fundamental importance for software
development teams in industries to have references about the
degree of complexity a requirement can present. Based on a
metric of complexity of requirements, the development
teams can build their own productivity indicators that will be
of great use to predict, with precision, variables as effort,
time and cost of software development. These requirements
must preferably be specified in standard documents, based
on, for example, the template Volere or templates available
in IEEE STD 830-1998 recommendation, allowing
distinguishing their main features, artifacts or diagrams
contained therein, namely: treatment of functionalities; input
and output; dependencies or coupling, constraints and

number of stakeholders involved. With the definition of the

subfactors of complexity and their respective weights and
classification, it has been applied in real requirements
context already specified the metric of complexity proposed.
With the complexity and classification obtained for the
requirements it became possible to compare the results
among requirements and check the efficiency of the
proposed metric. For the specific purpose of obtaining
weights to the factors of complexity, it has been used a basic
instrument of collecting data, a questionnaire composed of

476Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 496 / 646

four factors of complexity, divided in 12 subfactors with 5
alternatives whose measures were based on Likert scale.

The factors considered by the empirical study were
obtained through a literature review about the complexity of
requirements, and also through the case studies developed
along this research. Through the instrument of collecting
data, the participants could express their opinion about each
of the statements. The instrument used to collect data was
subjected to an evaluation of reliability through
Cronbach’Alpha coefficient.

Besides the evaluation of the general consistency of the
instrument, Cronbach`s Alpha was employed to analyze each
issue (factor and subfactor of complexity) considered in the
research. Therefore, the current paper assists the
development of system that use the Requirements
Engineering techniques and concepts, through a metric of
complexity of requirements, i.e., with the capacity of
measuring how complex a requirement is, even before
starting building it, identifying such complexity in the early
stages of a software development life cycle. It is envisioned
the possibilities of expanding this research and suggested as
future works the development of a method to obtain the
complexity of a set of existing requirements in a project,
enabling classify the complexity of a system as a whole.

It is also suggested the development of a software to
support the proposed metric. Besides such suggestions, this
metric could: become a tool to estimate the cost of the
software, because of the complexity involved in the
requirement, being charged by the degree of difficulty for its
implementation; predict the time of development of the
requirement presented by the complexity associated to the
resources required for implementation; estimate the delivery
time of the modules of the system; establish the necessary
resources (hardware, software, professionals, etc.) and
qualify the software through the way of treatment of the
requirement complexity. The study presented in this paper
points out for the necessity of new researches in the
Requirements Engineering metrics.

REFERENCES

[1] A. Kanjilal, S. Sengupta, and S. Bhattacharya, “Analysis of
complexity of requirements: a metrics based approach”, Proceedings
ISEC'09, pp.131-132, Pune, India, 2009.

[2] Y. Zhao, H. B. K. Tan, and W. Zhang, “Software cost estimation
through conceptual requirement”; Proceedings of the Third
International Conference On Quality Software (QSIC'03), p.141,
2003.

[3] B. Regnell, R. Svensson, and K. Wnuk, “Can We beat the complexity
of very large-scale requirements engineering?”, Proceedings of the
14th International Working Conference on Requirements Engineering:
Foundation for Software Quality (REFSQ 2008), pp.123-128,
Montpellier, France, june/2008.

[4] J. F. Hair, Multivariate Data Analysis, 4th ed., New York: Prentice-
Hall, 1995.

[5] N. K. Malhotra, Marketing Research: An Applied Orientation. New
Jersey: Prentice Hall, 1996.

[6] R. Likert, “A technique for the measurement of attitudes”. Archives
of Psychology, 1932.

[7] B. W. Boehm and P. N. Papaccio, “Understanding and controlling
software costs”, IEEE Transactions on Software Engineering, p.1462-
1477, vol. 14, no. 10, 1988.

[8] N. E. Fenton and S. L. Pfleeger, Software Metrics – A Rigorous and
Practical Approach, 2nd ed., PWS Publishing Company, 1997.

[9] IEEE, IEEE Std 830-1998 Software Requirements Specification, The
Institute of Electrical and Electronics Engineers, New York, 1998.

[10] S. H. Kan, Metrics and Models in Software Quality Engineering;
Addison–Wesley, 2002.

[11] G. Kotonya and I. Sommerville, Requirements Engineering:
Processes and Techniques; John Wiley & Son, Chichester, England,
1998.

[12] S. Park and J. Nag, “Requirements management in large software
system development”; IEEE International Conference on Systems,
Man and Cybernetics, pp. 2680-2685, vol. 3, 1998.

[13] R. S. Pressman, Software Engineering: A Practitioner´s Approach;
McGraw-Hill, 7th edition, 2009.

[14] J. Robertson and S. Robertson, Volere: Requirements Specification
Template, Edition 14, 2009.

[15] I. Sommerville, Software Engineering; Addison Wesley, 9th edition,
2010.

[16] C. R. Paviotti and L.E.G. Martins, MCReF – Métrica de
Complexidade de Requisitos. Revista Conteúdo, vol.1, no.6, pp.1-26,
ago/dez 2011.

477Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 497 / 646

Hierarchical Multi-Views Software Architecture

Ahmad Kheir, Mourad Oussalah

LINA Laboratory

Nantes University

Nantes, France

{Ahmad.Elkheir, Mourad.Oussalah}@univ-nantes.fr

Hala Naja

LaMA Laboratory

Azm Center For Research, Lebanese University

Tripoli, Lebanon

Hala.Naja@ul.edu.lb

Abstract—Software design and development hold so many

inconsistencies when it comes to build composable and scalable

structures. However, software architectures could be an

efficient solution if considered with additional features like the

composition of such architectures by linking different

hierarchized views formally together. Thus, this paper presents

a new contribution of a multi-views/multi-hierarchy software

architecture that is consistent with the ISO/IEC/IEEE 42010

standard, and that presents a way for defining formally the

consistencies between its different views and hierarchy levels.

Keywords-Software architecture; Views; Hierarchy levels;

Consistency

I. INTRODUCTION

Software architectures have contributed effectively in
complex and distributed software systems development.
Normally, there are two principles, which have made the
software architectures' contribution obvious and
indispensable. First, it allows the architect to model the
structure and the behavior of the system simultaneously.
Second, it offers the architect the base to build multi-
hierarchy based models.

In fact, coherent and well organized software architecture
would enhance some crucial system properties like the
reliability, consistency, and scalability. However, the lack of
such architectures may limit those systems' adaptability,
evolution, and consequently their life cycle, due to the
incapability of modifying or expanding the stakeholders'
requirements.

This paper presents a Model, View and Abstraction Level
based software architecture (MoVAL), a multi-views and
multi-hierarchy software architecture, which complies with
the IEEE standard 42010-2011 [1] and is based on the
construction of multi-views models having for each of their
views a hierarchy of levels.

Actually, the concept of viewpoint was present in many
fields of software engineering domain. Indeed, it was
introduced in requirements engineering by A. Finkelstein [4]
in 1989 opening the way for other valuable works in this
field like in [5] and in [6]. Also, the viewpoint concept was
existing in software modeling, implicitly in some cases like
in the unified modeling language (UML), where each

diagram type has an implicit viewpoint, and explicitly in
other studies like in the View-based UML extension
(VUML) [7], where an explicit representation of different
viewpoints in a single multi-views class diagram is proposed.
Also, the software implementation field recognized the
utility of viewpoint concept. Indeed, different development
paradigms encapsulate the viewpoint concept, like the aspect
oriented [8], subject oriented development paradigms [9] and
the view-based programming technique [10], which define
explicitly different views in a single model. In addition, most
of the related works done in the field of software architecture
like the 4+1 View Model [2] and the Views and Beyond [3]
approaches, have defined multi-views software architecture.
However they did not provided any type of hierarchy for
their views in order to reduce their complexities, nor they
defined formally some consistency rules between different
views of an architecture in order to conserve the robustness
of that architecture and its ability to evolve while the
stakeholders' requirements evolve. A complete survey on
related works and a fruitful analysis of their limitations was
presented in a previous study [11], but we can summarize
those limitations in three main points: the views
inconsistencies, the need to move between different
abstraction levels, and the lack of a complete architectural
description process.

In light of the related works study, MoVAL's motivations
and goals were made clear. Actually, there are two main
goals that were intended in this approach. The first goal is to
propose a multi-views software architecture defining for
each view a multi-levels hierarchy aiming to minimize
software systems complexity per modeling entity. The
second goal addressed in this approach, is to define formally
the relationships that may exist between different views of a
model, and also between different hierarchy levels inside a
given view.

This paper is organized as follows: Section II presents in
details our contribution. Then, the proposed approach is
illustrated by a case study in Section III. Finally, Section IV
concludes the paper.

II. MOVAL

In MoVAL, a model is conceptualized via a matrix as
illustrated in Figure 1.

478Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 498 / 646

Figure 1. Conceptual Matrix of a MoVAL model.

The columns of the matrix represent the views of the

model, while the lines represent its abstraction levels, which
are the first level of the views' hierarchy detailed further in
this paper. Hence, the lines and columns of the matrix
illustrate two distinct structuring types defined in MoVAL.
The columns illustrate the vertical structuring referring to
different views of the same model, and the lines illustrate the
horizontal structuring referring to the hierarchy levels
defined in the model and associated to its views.

Note that model's matrix, in some trivial cases where the
architect decides to create only one view for the model, and
decide to represent this unique view in a single abstraction
level, could be reduced to a single element.

A. Model View

A model view in MoVAL, or simply a view, is a
representation of this model considering, from one side, a set
of the development process' aspects, and from another side
certain problems associated to a specific category of
stakeholders or a group of categories of stakeholders. Those
development aspects and problems are grouped in a separate
entity, named viewpoints. In general, every stakeholder
needs to express his interests via some appropriate
semantics, syntax, and tools, called formalisms. For
example, a database administrator needs to use the entity-
relationship diagrams (ERDs) and the appropriate tools in
order to model his database in a given phase. Thus, a
viewpoint also defines the formalisms that shall be used
afterwards to model the inherent views. Hence, each view
must be associated to a specific viewpoint, which should be
either predefined like the physical, structural, and behavioral
viewpoints, or customized based on the application domain
like the thermic view in an automobile construction system.

B. View's Hiearachy Level

MoVAL approach has defined a hierarchy of levels for
each view, in order to describe it formally and appropriately
in each step of the development process.

Figure 2. Views and hierarchy levels.

Figure 2 represents this hierarchy, which consists of two

types of levels, the abstraction levels, which are

represented in the figure via ovals. Also, under each

abstraction level several description levels are represented

via correlated rectangles.

1) Abstraction Level
An abstraction level is a representation of a view

considered at a specific stage of the system lifecycle.
Eventually, several abstraction levels could be considered on
the same view, and then linked together by higher/lower
relationships. In fact, for the same view, an abstraction level
AL1 is higher than another abstraction level AL2 (resp. AL2
is lower than AL1) if AL1 defines relevant requirements in a
given stage of the system lifecycle leaving out some other
requirements and relegating them to AL2 in a more advanced
stage.

For a given view, an abstraction level must use
appropriate formalisms that are implied by the associated
viewpoint.

In general, a view could have more than one abstraction
level having the same inherent requirements as long as they
have different formalisms. Actually, in this case the
transition from one abstraction level of a view to another
abstraction level in the same view conserving the same
inherent requirements and changing the formalism, could
indicate the transition from a stage of the software lifecycle
to another more advanced stage.

Note that it is not mandatory to have always an
isomorphism between different views of a model, by the fact
that it is not mandatory to have each abstraction level
associated to all the views of the model, as illustrated in
Figure 1.

2) Description Level
The second type of hierarchy levels of a view is the

description level. This type of hierarchy levels allows the
architect to describe the same abstraction level of a specific
view and the same inherent requirements while providing
multiple descriptions having different granularity levels.

Here also, the description levels of the same abstraction
level are linked together by higher/lower relationships. So, a
description level DL1 is higher than another description level
DL2 (resp. DL2 is lower than DL1) if DL1 lies on the same

479Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 499 / 646

requirements as DL2 but adds more details in order to make
easier the understanding of DL2's requirements. In other
words, DL1 is at a higher granularity level than DL2.

Actually, the difference between this type of hierarchy
levels and the abstraction levels, resides in the fact that a
lower abstraction level allows the architect to go
straightforward into more advanced stages of the system
lifecycle relatively to the higher abstraction level, in general,
by providing more requirements. However, a lower
description level does not allow the architect to provide
additional requirements of a specific view, but it allows him
to describe more clearly its previous description level by
providing more description details.

C. Link

The links are structural elements defined in MoVAL in
order to express formally the relations between different
hierarchy levels and conserve model's consistency. Those
links are grouped in four categories:

 Inter-views link, defining the relation among a couple
of distinct hierarchy levels belonging to two different
views.

 Inter-levels link, defining a similar relation to that
defined by the inter-views link, except that the hierarchy
levels here belong to the same view.

 Intra-level link, defining an internal relation between
elements of the same hierarchy level.

 User links; this category of links is a special category.
A user link always inherits from one of the three
previous categories, then defines some additional
structural or semantic properties and attributes (see the
case study in Section IV). Actually, the purpose of this
category of links was to enhance the modularity and
reusability of software architecture's structural elements.

In order to formalize the links, MoVAL has attributed
four main properties to define them:

 Source: based on the semantic role of a link, its source
could be either an abstraction or a description level of a
view.

 Destination: similarly, the type of the destination of a
link depends on its semantic role. Note that always the
source and destination of a link must have the same
type.

 Semantic role: the semantic role of a link defines the
nature or the purpose behind the relation between the
source and destination hierarchy levels. It is firmly
related to the category of the link and the type of its
source and destination hierarchy levels. Hence, MoVAL
has defined three main semantic roles:

o Connection, specifying some consistency rules
between elements of the same hierarchy levels.
Note that this semantic role could be used only
for intra-level links.

o Composition, specifying the composition of
elements of the source level in the destination
level, which is in this case the lower level. This
role could be used in case of inter-levels or
inter-views links.

o Expansion, representing the description of
elements of the source level in the destination
level, which is in this case the lower level,
respecting the abstraction levels of the source
and destination. Actually, this semantic role is
dedicated for the representation of relations
between abstraction levels only and could be
used in both cases of inter-levels or inter-views
links.

 Normally, composition and expansion roles are
 adequate when the architect adopts a Top-Down
 development strategy. However, when the Bottom-
 Up strategy is adopted, composition and expansion
 could be replaced by other roles having inverse
 semantics, which are respectively the aggregation
 and compression semantic roles.

 Semantic link, which includes a set of semantic
attributes aiming to implement the desired semantics,
chosen in advance by architect via the semantic role:

o Dependence, declaring that the destination
hierarchy level depends for its existence on the
source hierarchy level.

o Predominance, which declares semantics
symmetric to those declared by the dependence
attribute.

o Coherence, specifying that some consistency
rules should be considered and respected in the
destination hierarchy level based on the source
level parameters, in order to conserve the
coherence of the model. Those consistency
rules could be expressed via a given constraint
language like OCL.

D. MoVAL Meta-Model

MoVAL meta-model is consistent with the
ISO/IEC/IEEE 42010 standard. Thus, some elements have
kept their definitions presented in the IEEE standard, like the
definition of a system, architecture, architectural description,
stakeholder, viewpoint, view, and concern. However, some
other elements were given new definitions like the model,
and others have been introduced like the abstraction and
description level, formalism, and link. Figure 3 presents the
proposed meta-model.

A System, as it was defined in the IEEE standard, is not
limited to individual applications but it encompasses them to
cover also the subsystems, systems of systems and all kind of
software interests' aggregations. A system always has
different categories of Stakeholders, which are the
participants in every phase of his life cycle. They could be
individuals, teams or even organizations interested in this
system, like the system architects, developers, analysts,
experts contributing in the system development, users, etc.

Each of those stakeholders focuses on a specific part of
the system requirements saturating his interests. Hence, those
interests of different stakeholders are defined as different sets
of Concerns overlapping in certain cases and contradicting in
other cases.

Simultaneously, a system is associated to an
Architecture, documented and described via an Architectural

480Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 500 / 646

Description (AD). An AD is composed of a set of Views
governed by a set of Viewpoints specifying and grouping the
inherent

concerns and formalisms that should be used for the
development of the views. Those views are represented in a
hierarchy of Abstraction and Description Levels.

Figure 3. Conceptual model of MoVAL

Also, each viewpoint and each abstraction level of a
model offers a set of Formalisms that could be used
afterward to model the associated view at each of its
abstraction levels. Those formalisms define actually the
lexical and syntax elements that could be used.

III. CASE STUDY

In order to clarify MoVAL concepts and confirm its
contribution and utility in software engineering and complex
systems development field, a case study will be represented
in this section.

This case study consists on an eCommerce WebApp, in
which multiple stores would be registered and given virtual
spaces to expose their products for sale.

In this context, only three viewpoints are considered (due
to space limitation issue):
 Physical viewpoint, which represents the view of the

system deployer. Thus, it manipulates the hardware and
software resources used for the deployment of such
systems. Actually, this viewpoint is predefined in

MoVAL and considered associated to a single
formalism, which is the deployment diagram of UML.
The associated view could be represented in a hierarchy
of one abstraction level and one description level
mentioned respectively in figures 4 and 5.

Figure 4. Physical view abstraction level.

481Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 501 / 646

Figure 5. Physical view description level

 Site administrator viewpoint, representing the system as

seen by the system administrator and considering his
requirements. Three formalisms could be associated to
this viewpoint, which are the use case, sequence, and
class diagrams of UML. In addition, the associated view
could be defined in two abstraction levels illustrated in
figures 6 and 7, respectively.

Figure 6. First abstraction level of the Site admin view.

Figure 7. Second abstraction level of the Site admin view.

 Store administrator viewpoint, representing the system

as seen by the registered store administrator. This
viewpoint will be associated to the same formalisms
associated to the previous viewpoint, also the associated
view will be defined in two abstraction levels illustrated
in figures 8 and 9.

Figure 8. First abstraction level of the Store admin view.

Figure 9. Second abstraction level of the Store admin view.

In general, in order to improve the models’ consistency,

the system architect must create different links between
different views and hierarchy levels of this model. For this
reason, the abstraction levels of the Site Administrator view
could be associated to the abstraction levels of the Store

482Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 502 / 646

Administrator view, as they share the same level of details.
Thus, for the remaining of this section, the higher and lower
abstraction levels, associated to this couple of views, will be
referred by the First Functional Level and the Second
Functional Level, respectively.

Now, three links, among others, could be derived for this
case study:
 Inter-levels link having the First Functional Level of the

Site Administrator view as source hierarchy level, and
the Second Functional Level of the same view as
destination. This link is a composition link expressing in
his coherence semantic attribute the composition of the
Accounting Service in the source by the Site Accounting
Service and the Store Accounting Service in the
destination.

 Inter-levels link having the First Functional Level of the
Site Administrator view as source and the Second
Functional Level of the same view as destination. This
link is an expansion link expressing in his coherence
semantic attribute the expansion of the Internal Services
of the source level to the Log Service and the Backup
Service in the destination.

 User link, named Reuse Link, created by the architect as
an inter-views link defining the reusability of a
component of the source level in the destination level.
Hence, a Reuse link could be defined having the Second
Functional Level of the Site Administrator view as
source and the Second Functional Level of the Store
Administrator view as destination. This link expresses
the reusability of the Reporting Service in both of the
source and destination levels.

Figure 10. Conceptual matrix of the eCommerce model.

Figure 10 represents the conceptual matrix of the
eCommerce case study.

IV. CONCLUSION

This paper has presented a new contribution of multi-
views and multi-hierarchy software architecture, named
MoVAL, defining and modeling independently, for each
stakeholder, its inherent concerns in a separate multi-levels
view and providing the necessary definitions to combine and
link all those views and hierarchy levels in order to guaranty
a complete consistency between different parts of the
resulting architecture.

In fact, MoVAL has given every stakeholder the space to
model his interests and the tools to represent the possible
interferences that may exist with other interests of other
stakeholders, what should decrease significantly the number
of unexpected executions or the number of bugs of the
system, and increase consequently the system’s reliability.

From another side, MoVAL has given the software
architect the tools to link different semantically related views
or abstraction levels via the architectural links, what would
enhance the model coherence because of the representation
of every constraint that may exist between different views or
abstraction levels. Simultaneously, this organization and
coherence make the addition of other user requirements
much simpler, and consequently increase model’s scalability.

Actually, MoVAL is in the prototyping phase. A specific
framework encapsulating the all the tools and features
needed to apply MoVAL's concepts will be implemented and
validated.

ACKNOWLEDGMENT

This material is based upon work supported by the
Lebanese association for scientific research (LASeR), the
Lebanese council for scientific research (CNRS), the French
association CAPACITES, the University of Nantes, and
finally the Lebanese University.

REFERENCES

[1] ISO/IEC/IEEE, “Systems and software engineering -- Architecture
description,” in ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC
42010:2007 and IEEE Std 1471-2000), 2011.

[2] P. B. Kruchten, “The 4+ 1 view model of architecture,” IEEE
Software, vol. 12, no. 6, 1995, pp. 42–50.

[3] P. C. Clements et al., “A practical method for documenting software
architectures,” Research showcase, Carnegie Mellon University,
2002.

[4] A. Finkelstein and H. Fuks, “Multiparty specification,” in ACM
SIGSOFT Software Engineering Notes, vol. 14, 1989, pp. 185–195.

[5] B. Nuseibeh, J. Kramer, and A. Finkelstein, “A framework for
expressing the relationships between multiple views in requirements
specification,” IEEE Transactions on Software Engineering, vol. 20,
no. 10, 1994, pp. 760–773.

[6] I. Sommerville and P. Sawyer, “Viewpoints: principles, problems and
a practical approach to requirements engineering,” Annals of
Software Engineering, vol. 3, no. 1, 1997, pp. 101–130.

[7] M. Nassar et al., “VUML: a Viewpoint oriented UML Extension,”
Proceedings of the 18th IEEE International Conference on Automated
Software Engineering (ASE’03), IEEE Computer Society, 2003, pp.
373–376.

[8] D. Majumdar and S. Bhattacharya, “Aspect Oriented Requirements
Engineering: A Theme Based Vector-Orientation Model,” Infocomp
J. Comput. Sci., vol. 9, no. 1, 2010, pp. 61–69.

[9] H. Ossher, M. Kaplan, W. Harrison, A. Katz, and V. Kruskal,
“Subject-oriented composition rules,” in ACM SIGPLAN Notices,
vol. 30, no. 10, 1995, pp. 235–250.

[10] H. Mili, J. Dargham, A. Mili, O. Cherkaoui, and R. Godin, “View
programming for decentralized development of OO programs”, in
Technology of Object-Oriented Languages and Systems (TOOLS 30),
1999, pp. 210–221.

[11] A. Kheir, H. Naja, M. Oussalah, and K. Tout, “Overview of an
Approach Describing Multi-Views/Multi-Abstraction Levels
Software Architecture,” Proceedings of the 8th International
Conference on Evaluation of Novel Approaches to Software
Engineering (ENASE 2013), France, 2013, pp. 132–140.

483Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 503 / 646

484Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 504 / 646

Object Oriented Petri Nets in Software Development and Deployment

Radek Kočı́ and Vladimı́r Janoušek

Brno University of Technology, Faculty of Information Technology,

IT4Innovations Centre of Excellence

Bozetechova 2, 612 66 Brno, Czech Republic

{koci,janousek}@fit.vutbr.cz

Abstract—Modeling, implementation, and testing are inte-
gral parts of system development process. Models usually
serve for description of system architecture and behavior and
are automatically or manually transformed into executable
models or code in a programming language. Tests can be
performed on implemented code or executable models; it
depends on used design methodology. Although models can
be transformed, the designer has to usually adapt resulted
code manually. It can results in inconsistency among design
models and their realization and the further development,
testing and debugging by means of prime models is impossible.
The approach discussed in this paper allows to model and test
systems using high-level languages, especially Object Oriented
Petri Nets combined with Discrete Event System Specification,
whereas models are deployed to the product environment and
become integral part of the system.

Keywords-Object Oriented Petri Nets; DEVS; model deploy-
ment.

I. INTRODUCTION

Modeling, implementation, and testing are integral parts

of system development process. Various models are used in

analysis and design phases and usually serve as a system

documentation rather than real models of the system under

development. The system is then implemented according to

these models, whereas the code is either generated from

models or is implemented manually. Unfortunately, many

implementation differ from designed models because of

debugging or system improvement. Consequently, models

become out of date and useless.

To solve a problem with manual implementation and

impossibility to test designed system using models, the

methodologies and approaches commonly known as Model-

Driven Software Development are investigated and devel-

oped for many years [1], [2] These methods use executable

models, e.g., Executable UML [3] in Model Driven Ar-

chitecture methodology [4], which allows to test systems

using models. Models are transformed into another models

and, finally, to code. Nevertheless, the resulted code has to

often be finalized manually and the problem with semantic

mistakes or imprecision between models and transformed

code remains unchanged.

The approach to system development, which is presented

in the paper, uses formal models as a means for system

description as well as system implementation. The basic

idea is to have a framework allowing to execute models

in different modes, whereas each mode is advisable for

another kind of usage—design, testing, and deployment. The

system is developed using different kinds of models (from

formal models to direct code in a programming language)

in simulation, i.e., it is possible to test systems in any state

in any time. The design method, which is taken into account

in the papers [5][6], does not require model transformations

and assumes that models serve for system description as

well as system implementation. The formalism of Object-

Oriented Petri Nets (OOPN) [7], [8] and Discrete Event

System Specification (DEVS) are basic modeling means.

The paper is organized as follows. First, we briefly

introduce the used formalisms of OOPN and DEVS in

Section III, application framework in Section IV, and design

methodology including a simple case study model in Section

V. Possibilities to deploy models into product environment

will be discussed in Section VI.

II. RELATED WORK

Combination of formal models, simulation, and model

deployment is applicable mainly in control software. The

use of high-level languages, especially Petri Nets, allows

to build and maintain control systems in a quite fast and

intuitive way. To control robot application, hierarchical bi-

nary Petri nets are used for middleware implementation in a

RoboGraph framework [9]. To develop control software for

embedded systems, the work which uses Timed Petri Nets

for the synthesis of control software by generating C-code

[10], the work based on Sequential Function Charts [11], or

the work based on the formalism of nets-within-nets (NwN)

[12], [13], [14] can be mentioned.

These tools and works allow to model systems using a

combination of different formalisms, but do not allow to

use formal models in system implementation. The proposed

approach allows to use formal models as a basic design,

analysis and programming means combining simulated and

real components. The main advantages; there is no need for

code generation, and for further investigation of deployed

systems, using the same formal models and methods is

possible.

485Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 505 / 646

III. USED FORMALISMS

We will briefly introduce the formalisms of Object-

Oriented Petri Nets and Discrete Event System Specification

in this section.

A. Formalism of Object Oriented Petri Nets

Object orientation of Object-Oriented Petri nets (OOPN)

[15] is based on the well-known class-based approach. All

objects are instances of classes, every computation is real-

ized by message sending, and variables contain references

to objects. This kind of object-orientation is enriched by

concurrency. OOPN objects offer reentrant services to other

objects and, at the same time, they can perform their own

independent activities. The services provided by the objects

as well as the autonomous activities of the objects are

described by means of high-level Petri nets—services by

method nets, object activities by object nets.

The formalism of OOPN contains important elements

allowing for testing object state (predicates) and manip-

ulation with object state with no need to instantiate nets

(synchronous ports). Object state testing can be negative

(negative predicates) or positive (synchronous ports). We

can see that synchronous ports can be used for testing as

well as for manipulation. Synchronous ports are special

(virtual) transitions, which cannot fire alone but only dynam-

ically fused to some other transitions, which activate them

from their guards via message sending. Negative predicates

are special variants of synchronous ports with inverted

semantics—the calling transition is fireable if the negative

predicate is not fireable.

B. Formalism of DEVS

Discrete Event System Specification (DEVS) [16] is a

formalism, which can represent any system whose input/out-

put behavior can be described as sequence of events. The

atomic DEVS model is specified as a structureM containing

sets of states S, input and output event values X and Y ,

internal transition function δint, external transition function

δext, output function λ, and time advance function ta. These

functions describe behavior of the component.

This way we can describe atomic models. Atomic models

can be coupled together to form a coupled model CM .

The later model can itself be employed as a component

of a larger model. This way the DEVS formalism brings

a hierarchical component architecture. Sets S, X , Y are

obviously specified as structured sets. It allows to use

multiple variables for specification of a state; we can use

a concept of input and output ports for input and output

events specification, as well as for coupling specification. In

another words, components are connected by means of ports

and event values are carried via these ports.

IV. APPLICATION FRAMEWORK

Since one of the main motivations behind the development

of OOPN is a possibility to use Petri nets not only for

system modeling but also for system implementation and

deployment, we need an application framework, which ful-

fils two basic requirements. First, to link models and product

environment. Second, to work with models in simulations.

A. Interoperability with Product Environment

The models described by means of OOPN can cooperate

with objects of the product environment (product objects).

Since the framework is implemented in Smalltalk [17],

OOPN objects can send messages to Smalltalk objects,

and OOPN objects can be directly available in Smalltalk.

There are different levels at which the product objects can

send messages to OOPN objects—domain, predicate, and

synchronous port levels. Domain level allows Smalltalk

objects to send messages OOPN objects as though they were

Smalltalk objects. Predicate level allows to test predicates

and port level allows to perform synchronous ports. Each

OOPN object offers special meta-protocol allowing to work

at presented levels (it will be shown in the text, later on).

Another way on how to connect OOPN models with

their product environment is to use component approach

based on DEVS formalism. DEVS component can wrap

another kind of formalism, so that each such a formalism

is interpreted by its simulator and simulators communicate

each other by means of a compatible interface. Let MPN =
(M,Π,mapinp,mapout) be a DEVS component M , which

wraps an OOPN model Π. The model Π defines an initial

class c0, which is instantiated immediately the component

MPN is created. Functions mapinp and mapout map ports

and places of the object net of the initial class c0. The

mapped places then serve as input or output ports of the

component.

B. System in Simulation

The framework offers a protocol for creating and manipu-

lating models and simulations. Models are usually described

by formalisms of OOPN or DEVS, but can be implemented

in product environment or can interoperate with product

environment. The framework allows to execute models in

different simulation modes—simulation in model time, sim-

ulation in real time, and simulation in combined time.

Each simulation mode is advisable for another kind of

usage. Model time is intended for basic design, testing,

and analysis of system under development and assumes all

components are described by formal models. Combined time

assumes that the system is descibed by formal models as

well as implemented in product environment, i.e., selected

simulated components are replaced by their real implemen-

tation, whereas simulated components work in model time

and real components work in real time. This mode allows to

experiment with simulation models in real conditions. Real

486Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 506 / 646

time assumes that all components (simulated as well as real)

work in real time and is intended for hardware/software-in-

the-loop simulation and system deployment.

V. SYSTEM MODELING USING OOPN AND DEVS

The system is modeled and simulated in the applica-

tion framework, which supports formalisms of OOPN and

DEVS, so far. This section will demonstrate modeling

methodology based on usage of the application framework.

Figure 1. Use Cases of designed system.

A. Modeling Methodology

We will follow the design methodology, which has been

presented by Kočı́ and Janoušek [18]. The modeling process

starts with identification of actors and use cases as a model

of system behavior. In this phase, the use case diagrams

from UML can be used. Based on this diagram, roles and

their activity nets are defined. Roles are based on analysis of

actors (actors usually correspond to roles) and activity nets

model behavior described by use cases.

Next step is to define an architecture of the system. The

architecture can be described by class diagram. Roles and

activity nets are encapsulated into classes, furthermore the

subjects are identified and modeled using classes. Subjects

represent information about actors or a group of actors,

e.g., one user (a subject) can have more roles (administra-

tor, customer, etc.). The architecture is based on layered

modeling of roles and their activities, i.e., each activity

encapsulates a role, an activity can encapsulates another

activity, etc. Each role and its set of allowed activities

(activity nets) can be described by any formalism allowing

to define an interface for communication or synchronization,

e.g., statecharts, activity diagrams, Petri Nets, etc.

B. System Behavior Modeling

We will demonstrate system modeling and model deploy-

ment on a simple case study of a robot control system. First,

walking

r isCloseToObstacle.

t1

r stop. r turnRight.

r

r

p1

r isCloseToObstacle.

t2

r turnRight.

r

r isCloseToObstacle.

t3

r turnRight.

r isClearRoad.

t11

r

r isCloseToObstacle.

t4 blocked

r isClearRoad.

t12

r isClearRoad.

t13

r

r

r

r go.

r go.

r go.

r

p2

r

r

r

p3

r

r

r

Figure 2. Activity Net Scenario.

we identify use cases of the system, as shown in Figure 1.

We have found two actors (User who can control the system

and Robot who is controlled) and three use cases (Execute

Scenario for Robot, and Start Scenario and Stop Scenario

for User).

walking

blocked

isBlocked isNotBlockedr r

isWalking r isNotWalkingr

Figure 3. Activity Net Scenario – predicates.

Actors represent roles and use cases represent activities

in the system. We aim at the actor Robot and the use case

Execute Scenario in our study. The use case models an

activity of the robot. We will suppose very simple activity,

which can be described in following algorithm: (1) the robot

is walking, (2) if the robot comes upon to an obstacle, it

stops, turns to right and tries to walk, (3) if the robot turns

three times with no possibility to walk, it stops. The activity

net Scenario describing the presented behavior of use case

Execute Scenario is shown in Figure 2.

The robot can be in two stable states—walking or blocked

(there is no possibility to walk). Each such a state is

represented by appropriate place, i.e., places walking and

blocked. We have to be able to test activity states, there-

fore the predicates are generated for each such a place—the

synchronous port isBlocked and the negative predicate

isNotBlocked for the state blocked and similar pred-

icates for the state walking. Test predicates are shown in

Figure 3.

487Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 507 / 646

constructor forRole: r

r

r

rself

return

isStopped

stopped

isNotStopped

r

r

r

role

Figure 4. Activity Net Scenario – the constructor.

The activity has to be linked to a role in the system—this

role is stored in places and serves even as a state token. The

role supplies an information about the robot and allows to

send commands. Each activity is instantiated for just one

role, so that the role is initialized by means of constructor

as shown in Figure 4. The new state stopped is added—it

represents a situation when the robot is stopped but does not

stay before any obstacle (e.g., the robot was stopped by user

or the activity is being created).

Now, we have to add last element, a possibility to start

activity—it is a part of use case Start Scenario modeled

by method net start (see Figure 5), which decides what

has to be done based on the activity state. If the activity is

walking, the method does nothing. If the activity is stopped

or blocked, it starts the robot’s walk (send a message go

and moves the token to the place walking.

start

p1

return

self isWalking self isStopped || self isBlocked.

r go.

false true

role

walking

r

r

Figure 5. Activity Net Scenario – a method net start.

C. Architecture Modeling

Each role needs to have its subject, i.e., the object defin-

ing information about a subject, which can have different

roles in the system. The subject is usually modeled as an

object containing efficient data directly or as an interface to

database, another system or remote object. The way how to

model subjects influences the system architecture.

Figure 6 shows the classes of basic architecture of our

example with appropriate stereotypes Activity Net, Role, and

Subject. The architecture consists of the subject RobotDe-

vice, its role Robot and its activity Scenario, that have been

modeled by OOPN (see the stereotype PN). RobotDevice

represents an interface to the simulated robot and Robot

represents a role which the robot has in the system. Each

method is labeled with one of stereotypes C (constructor),

Figure 6. Basic architecture of the case study.

Act (activity), and T (testing) determining a realization of

methods in OOPN (see [19]).

D. DEVS Architecture Modeling

The DEVS architecture of presented case study contains

the components Behavior and Subject as shown in Figure

7. The component Behavior describes the system behavior

as presented in previous case and the component Subject

describes a subject of behavior. Subcomponents of the

component Subject can be modeled by OOPN, programming

language, or any other supported formalism. Components

are connected via ports request and answer. The DEVS

subcomponent RobotDevice is an atomic component, which

gets a request string at its input port request, asks a robot for

answer, and puts this answer to its output port answer. This

architecture allows to exchange components in a very simple

way, because components are connected only by means of

ports.

Figure 7. DEVS architecture of the case study.

VI. SOFTWARE DEPLOYMENT WITH MODELS

This section will demonstrate possibilities of keeping

models in the deployed system. It is based on the applica-

tion framework allowing to interoperability of models and

product environment.

A. Implementation with Basic Architecture

A possible model of the role Robot, which is based on

architecture described in Figure 6, is shown in Figure 8. The

488Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 508 / 646

role checks actual distance of robot to the obstacle each 10

time units and offers information about robot’s position by

means of predicates isClearRoad and isCloseToObstacle. To

get information about the distance, the role asks its subject

by sending a message getDistance.

subject

self delay: 10

d := r getDistance.

100

isCloseToObstacle

distanceToObstacle

d <= 10.
d

d

isClearRoad

d > 10.

r

d

oldD

p1

p2

t1

t2

Figure 8. The role Robot – implementation for basic architecture.

We can exchange the simulated subject by real interface

to the controlled robot. It is very simple—we only create

instances of appropriate classes and do not care about used

formalism. Figure 9 of Smalltalk code shows creating a

subject as an instance of a Smalltalk class. This subject

cooperates with a role and an activity modeled by OOPN.

The object Repos represents the storage of all classes and

simulations using OOPN or DEVS formalisms.

cAct := Repos componentNamed: ’Scenario’.

cRole := Repos componentNamed: ’Robot’.

subj := RobotDevice new.

role := cRole forSubject: subjR.

actS := cAct forRole: roleR.

Figure 9. Accessing OOPN objects from Smalltalk.

Now, we demonstrate an accessing OOPN objects from

product environment of Smalltalk. We send a command to

start walking by means of a message go—the message

passing is provided in the standard form. To test an object

state, the predicates should be used. Since they are not

ordinary methods, we have to access them in a special

way. First, we obtain a special meta-protocol by sending a

message asPredicate. Second, we can call synchronous

port or negative predicate in the standard form of message

passing. Third, the result represents a state of a called

port/predicate, which has been tested. In our example, we

test the predicate isCloseToObstacle and if the result

is true, then we stop robot’s walking by sending a message

stop. The example is shown in Figure 10.

role go.

r := role asPredicate isCloseToObstacle.

r ifTrue: [role stop].

Figure 10. Message passing and predicate testing.

Of course, proposed solution is not sufficient for our case,

because we need to test this condition until it becomes

true. Therefore we can use one of following ways—to

use waiting for specified condition or to define a listener.

The first way is shown in Figure 11. We simply use a

message waitFor: from the meta-protocol, which blocks

until the specified condition becomes true, i.e., the port

isCloseToObstacle becomes fireable.

role go.

role asPredicate waitFor: #isCloseToObstacle.

role stop.

Figure 11. Waiting for a condition.

Second way is shown in Figure 12. It uses a message

listener:for: from meta-protocol to define a listener,

which is activated if the condition becomes true, i.e., the

port becomes fireable.

role go.

role asPredicate

listener: self

for: #isCloseToObstacle.

Figure 12. Setting a listener.

The activation of listener means that the special message

conditionSatisfied: is sent to object, which is spec-

ified as a first argument. The example of its implementation

is shown in Figure 13.

method conditionSatisfied: aCond

(aCond == #isCloseToObstacle)

ifTrue: [role stop].

Figure 13. Listener implementation.

B. Implementation with DEVS Architecture

Because the architecture changes, we have to modify

classes describing system behavior. The component Behav-

ior encapsulate OOPN model, which defines the class Robot

as its initial class, so that ports are mapped to places of the

Robot object net. This modified object net is shown in Figure

15. Place named request, resp. answer, corresponds to output

port request, resp. input port answer.

The example of accessing DEVS components and their

object interface is shown in Figure 14. First, we get a DEVS

simulation named R01, which is based on architecture from

Figure 7. Second, we obtain DEVS component Behavior,

which is able to communicate through its ports. Never-

theless, this component is described by OOPN, so that it

is possible to use object interface of its initial object (an

instance of the class Robot) too. To get the object interface,

we send a special message objectInterface from the

component meta-object protocol.

s1 := Repos componentNamed: ’R01’.

cB := c1 componentNamed: ’Behavior’.

iB := cB objectInterface.

Figure 14. Obtaining object interface to the inital object.

489Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 509 / 646

answer

self delay: 10

100

isCloseToObstacle

distanceToObstacle

d <= 10.
d

d

isClearRoad

d > 10.

(#distance, d)

d

oldD

#getDistance

request

p1

t1

t2

Figure 15. The role Robot – implementation for DEVS architecture.

VII. CONCLUSION AND FUTURE WORK

The paper dealt with a possibility to deploy formal models

to target application using specific application framework.

It allows to use formal models as a basic design, analysis

and programming means combining simulated and real

components. The main advantage of that approach is no need

for code generation and further investigation of deployed

systems using the same formal models.

The proposed approach has one main disadvantage—

usage of application framework, which interprets formal

models directly demands of increased requirements on mem-

ory size and system performance. The future research will

aim at efficient representation of choosed formal models

and interoperability with another product environment. The

application framework will be adapted to new conditions

having lesser requirement for resources.

ACKNOWLEDGMENT

This work has been supported by the European Regional

Development Fund in the IT4Innovations Centre of Excel-

lence project (CZ.1.05/1.1.00/02.0070), by BUT FIT grant

FIT-S-11-1, and by the Ministry of Education, Youth and

Sports under the contract MSM 0021630528.

REFERENCES

[1] S. Beydeda, M. Book, and V. Gruhn, Model-Driven Software
Development. Springer-Verlag, 2005.

[2] M. Broy, J. Gruenbauer, D. Harel, and T. Hoare, Eds., Engi-
neering Theories of Software Intensive Systems: Proceedings
of the NATO Advanced Study Institute. Kluwer Academic
Publishers, 2005.

[3] C. Raistrick, P. Francis, J. Wright, C. Carter, and I. Wilkie,
Model Driven Architecture with Executable UML. Cam-
bridge University Press, 2004.

[4] D. S. Frankel, Model Driven Architecture: Applying MDA to
Enterprise Computing, ser. 17 (MS-17). John Wiley & Sons,
2003.

[5] R. Kočı́ and V. Janoušek, “System Design with Object
Oriented Petri Nets Formalism,” in The Third International
Conference on Software Engineering Advances Proceedings
ICSEA 2008. IEEE Computer Society, 2008, pp. 421–426.

[6] R. Kočı́ and V. Janoušek, “OOPN and DEVS Formalisms
for System Specification and Analysis,” in The Fifth Interna-
tional Conference on Software Engineering Advances. IEEE
Computer Society, 2010, pp. 305–310.

[7] M. Češka, V. Janoušek, and T. Vojnar, PNtalk — a Com-
puterized Tool for Object Oriented Petri Nets Modelling, ser.
Lecture Notes in Computer Science. Springer Verlag, 1997,
vol. 1333, pp. 591–610.

[8] R. Kočı́ and V. Janoušek, Simulation Based Design of Control
Systems Using DEVS and Petri Nets, ser. Lecture Notes in
Computer Science. Springer Verlag, 2009, vol. 5717, pp.
849–856.

[9] J. L. Fernandez, R. Sanz, E. Paz, and C. Alonso, “Using
hierarchical binary Petri nets to build robust mobile robot
applications: RoboGraph,” in IEEE International Conference
on Robotics and Automation, 2008, pp. 1372–1377.

[10] C. Rust, F. Stappert, and R. Kunnemeyer, “From Timed Petri
Nets to Interrupt-Driven Embedded Control Software,” in
International Conference on Computer, Communication and
Control Technologies (CCCT 2003), 2003.

[11] O. Bayo-Puxan, J. Rafecas-Sabate, O. Gomis-Bellmunt, and
J. Bergas-Jane, “A GRAFCET-compiler methodology for
C-programmed microcontrollers, In Assembly Automation,”
Assembly Automation, vol. 28, no. 1, pp. 55–60, 2008.

[12] R. Valk, “Petri Nets as Token Objects: An Introduction
to Elementary Object Nets.” in Jorg Desel, Manuel Silva
(eds.): Application and Theory of Petri Nets; Lecture Notes
in Computer Science, vol. 120. Springer-Verlag, 1998.

[13] D. Moldt, “OOA and Petri Nets for System Specification,” in
Object-Oriented Programming and Models of Concurrency.
Italy, 1995.

[14] L. Cabac, M. Duvigneau, D. Moldt, and H. Rölke, “Modeling
dynamic architectures using nets-within-nets,” in Applications
and Theory of Petri Nets 2005. 26th International Conference,
ICATPN 2005, Miami, USA, 2005, pp. 148–167.

[15] V. Janoušek and R. Kočı́, “PNtalk: Concurrent Language with
MOP,” in Proceedings of the CS&P’2003 Workshop. Warsaw
University, Warsawa, PL, 2003.

[16] B. Zeigler, T. Kim, and H. Praehofer, Theory of Modeling
and Simulation. Academic Press, Inc., London, 2000.

[17] A. GoldBerk and D. Robson, Smalltalk 80: The Language.
Addison-Wesley, 1989.

[18] R. Kočı́ and V. Janoušek, “Modeling and Simulation-Based
Design Using Object-Oriented Petri Nets: A Case Study,” in
Proceeding of the International Workshop on Petri Nets and
Software Engineering 2012, vol. 851. CEUR, 2012, pp. 253–
266.

[19] R. Kočı́ and V. Janoušek, “Specification of UML Classes by
Object Oriented Petri Nets,” in ICSEA 2012, The Seventh
International Conference on Software Engineering Advances.
Xpert Publishing Services, 2012, pp. 361–366.

490Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 510 / 646

A Measurement-based Approach to Software Development Process
Tailoring in R&D Organization

Apinporn Methawachananont and Pawarat Nontasil

National Electronics and Computer Technology Center (NECTEC)

National Science and Technology Development Agency (NSTDA)

Pathumthani, Thailand

apinporn.methawachananont@nectec.or.th, pawarat.nontasil@nectec.or.th

Abstract— In case of R&D (Research and Development)

organization, the problems of SPI (Software Process

Improvement) are focused on how to tailor the process

properly because researchers always ask to take the least time

and the most benefits for implementing established processes.

Process tailoring strategy is a key to attract the researchers for

applying the processes. It is a challenge for EPG (Engineering

Process Group) to find out the best solution for the

organization. EPG has to prove if the software development

processes are suitable for the research. Measurable CSF

(Critical Success Factors) and how to tailor appropriately

influences the quality of the process.

Keywords-Process Tailoring Strategy; Software Process

Improvement; Engineering Process Group; Critical Success

Factor

I. INTRODUCTION

 Referring to Process Maturity Profile 2012 by SEI [1],
many organizations have been struck at CMMI (Capability
Maturity Model Integration) Maturity Level 3 because of
missing quantitative project data; this is valid especially for
government organizations, which tend to apply international
standards for AEC (ASEAN Economic Community)
opportunity. MA (Measurement and Analysis) is an
important process area from all the 22 process areas which
CMMI has specified and it affects to upgrade SPI in the
organization. The problem is that there is no experience in
this process. NECTEC tries to do research about it and
expects to make the SMEs to understand better in MA.

Each software development project can have different
SDLCs (Software Development Lifecycles) depending on its
constraints that can be size, cost, effort, time, customer
requirement, business/project goal, capability, culture, etc.
There are various SDLCs including Waterfall Model, V-
shaped SDLC, Structured Evolutionary Prototyping Model,
RAD (Rapid Application Model), Incremental SDLC, Spiral
SDLC, Agile SDLC, etc. Each SDLC has strengths and
weaknesses which collect from past implementation [4].
But, each organization can adapt them to align with its
optimizing processes like NECTEC where tailors Agile
SDLC to be own SDLC called “Adaptive SDLC”. Currently,
agile methodology [18] is capturing more, especially the

extreme method and a survey indicates percentage of
companies which get better responses in main aspects such
as 93% productivity, 88% quality, 49% cost and 83%
business satisfaction [2]. Positive and Negative features from
implementing agile methodology are identified in Figure 1.

Figure 1. Positive and Negative features from implementing Agile [2]

Some perspectives for the organizational requirement of
a metrics program have been classified [10]. Three main
factors, which affect the SPI program, include senior
management commitment, clear and relevant SPI goals, and
staff involvement, as shown Figure 2.

Figure 2. Factor affecting to SPI program [11]

Seven advantages of Measurement are identified in
Rational Edge article. They include 1) Improve visibility,
2) Communicate effectively, 3) Identify and correct
problems early, 4) Make key trade-off, 5) Track specific

491Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 511 / 646

project objectives, 6) Manage risks, and 7) Defend and
justify decisions and plan future projects. However, it is
hard to establish measures because of no having certain set
for all organizations. It depends on their strategy,
technology, and the route of competition.

First an overview of measurement-based methodology is
provided. Then the paper presents a result of implementing
measurement in R&D organization and how to work with
MA process. The CSF for the MA implementation is
identified. Finally, an effort to find out the better measure
for R&D work is proposed.

II. METHODOLOGY

A. Measurement and Analysis Process based on CMMI

Measurement and Analysis (MA) process area is grouped
in support category. Its objective is to develop and maintain
measurement capability for supporting management
information needs. There are 2 specific goals; each goal
consists of 4 practices to fulfill the goal. The goals are to
align measurement and analysis activities and to provide
measurement results. CMMI just guide what to do so each
organization has to find out how to do the best. Each
organization can have different MA process depending on its
goal. The process can be changed periodically because the
organization can change its goal. Figure 3 shows the
relationship between MA process and other processes.

Figure 3. The relationship between MA process and others [14]

B. MA Process Evaluation Approach

The measurement management in organization has
several methodologies. The Software Engineering Institute
(SEI) published an interesting method called “Measurement
and Analysis Infrastructure Diagnostic Method (MAID)”.
MAID guides the organizations to evaluate key
characteristics of their measurement programs [15]. This
method is based on criterion. A set of criteria for evaluating
each MA process has been introduced in [15]. The MAID
method has four phases comprising (1) Measurement
Planning, (2) Data Collection and Storage, (3) Data Analysis,
and (4) Measurement Reporting. The criteria are
implemented by evaluation team in the 2

nd
 and 3

rd
 phase. We

tried to apply MAID method to appraise the CMMI-based
MA process. Some activities have been selected to be
implemented, such as Review MA documents, Conduct

interviews and examinations, etc. However, the criteria cover
various issues including data analysis, reporting, process
documentation, etc. Another interesting approach is called
“Standard CMMI Appraisal Method for Process
Improvement (SCAMPI)”, which supports evaluation of
CMMI-based process in term of opportunity for
improvement (OFI). There are A, B and C types; SCAMPI
A is the official appraisal and others will reduce strictness,
respectively. Figure 4 presents an appraisal direction [16].

Figure. 4. An example of appraisal method [17]

C. Goal-Question-Metric Paradigm (GQM)

Goal-Question-Metric Paradigm is invented Basili [19]
from the University of Maryland College Park and Software
Engineering Laboratory at the NASA Goddard Space Flight
Center. This approach is based on the idea of goal-oriented
measurement. In Figure 8, we apply GQM approach to
analyze the measures. We started with analyzing the
organizational goals, which came from the executive policy
and found out related measures leading to achieve those
goals via a set of questions. GQM approach can divided into
three levels, as shown in the Figure 5:

 Conceptual Level (Goal): We set up Business Goals
that is the goal in the measurement goals.

 Operational Level (Question): We define a set of
questions to achieve the goal.

 Quantitative Level (Metric): We formulate the
measure to answer the question in Operational
Level.

Figure 5. GQM Levels [13]

492Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 512 / 646

III. MEASUREMENT IMPLEMENTATION

A. A Set of Measures for R&D Organization

Primary quality attributes, which impact achievement of
the SPI program, are summarized in 5 categories involving
performance, stability, compliance, capability, and
improvement [7]. Organizational Metrics are aligned with
these categories to specify their values. For Project Level,
there are different quality attributes categories and
supporting metrics. An example of metrics in each category
is shown in Table I.

TABLE I. AN EXAMPLE OF METRICS IN QUALITY CATEGORIES [7]

Level Quality

Category

Example of Supporting Metrics

Organization Performance Completeness of requirement,

Resource utilization versus the

plan

Stability Effectiveness of Scope, schedule,

and cost-tracking processes

Compliance Product conformance with

requirement, # workarounds
required

Capability Use of knowledge, skills, and

competency profiles

Improvement Involvement of individual team
members initiatives, Effect of

technology in terms of
performance improvement

Project Resource Cost/budget, Resource

Utilization

Progress Development progress,
Incremental capabilities

performance

Technical Requirement stability, Design

stability, Error margins

Quality Defects, Rework, Defect removal

rate

Productivity Cost performance index, Trends

in cost, schedule, efficiency

Completion

Activity

Quality gate task status, Quality

gate passed

Change Percent change to product

baseline per period

Staff Percent voluntary staff turnover,
Percent overtime

Risk Risk impact and reduction, Risk

Liability, Anonymous warning

The appropriate measures depend on the organization’s
strategy, technology, and economic situation [7]. From a
survey, top 10 project measures consist of ROI (Return on
Investment), Productivity, Cost of Quality, Cost of
Performance, Schedule Performance, Customer Satisfaction,
Cycle Time, Requirements Performance, Employee
Satisfaction and Alignment to Strategic Business Goals [7].
Figure 6 and Table II present some characteristics of R&D
works leading to different measures.

Characteristics of
R&D Organization

Time
(No strict)

Cooperation
(R&D Culture)

Output
(Prototype, consulting)

Outcome
(Effectiveness)

Staff
(Expert)

Process
(Simple & induplicate,

Automatic System)

Competition
(Nonprofit,

technology evolution)
Business Goal

(innovation,
The best solution)

Project Mgt.
(Efficiency)

Figure 6.Characteristics of R&D Organization

TABLE II. MEASURES/METRICS SUPPORTING R&D WORKS [7]

Category Characteristic Measures/Metrics

Business Goal Research an
innovation

- Improvement Trends/
Pattern

- Operational Trends/
Patterns

- Alignment to Strategic

Business Goals

find out the best
solution

Customer Satisfaction,
problems reduced

Competition Nonprofit % research linked to
business unit or corporate

strategic planning, R&D

as a % sales

Compete with

technology evolution

#ideas, #inventions

submitted, #patents

challenged

Process Simple and
induplicate

Customer Satisfaction

Supporting Automatic

System

% process operated

automatically

Staff expert % R&D staff with related

experience

Time No strict in time R&D time variance vs.

budget

Outcome effectiveness Return On Investment,

Work satisfaction, etc.

Output Lab prototype Productivity

Consulting SMEs to

upgrade product

Customer Satisfaction,

market share

Cooperation R&D Culture depends
on behavior of

researcher

Employee Satisfaction

Project

Management

Efficiency, Different

between planned and
actual values

Cost Performance,

Schedule Performance

493Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 513 / 646

It is impossible to record all data to respond the related
measurement. Thus, the organization should consider the
measures from the needs of the executive. How to get data
supporting all measures for R&D works has many channels
such as GQM, MAID, CMMI, Lesson learned, etc.

Figure 7 presents three types of indicators including
success indicators, progress indicators, and analysis
indicators [11]. EPG can apply this idea to find out the
measures.

Figure 7. Types of indicators [11]

B. Implementation in R&D Unit

Generally, many organizations including NECTEC start
to follow Specific Goals and Practices of Measurement
Process Area. NECTEC’s EPG established a lot of data for
achieving measurement goals but finally users could not
record all established inputs because they needed a lot of
effort (to understand, to record, to attend, etc.). Moreover,
the recorded data was not correct because they usually
recorded after related activities had occurred although there
were templates to support them completely. Finally, the
process improvement program could not achieve
measurement activities.

Figure 8 presents mapping the organizational needs to
related MA processes and established analysis methods.
Table III shows the lesson learned from NECTEC’s CMMI
implementation (2010-2011) including its strengths and
weaknesses. Each role in a project has to record data for
supporting the measurement process. There are 10 different
templates for project manager to input the data which
depends on applied processes. Figure 9 shows an example
of MA templates and Table IV proposes the new
information needs and how to obtain the best measures for
NECTEC or R&D organization comparing strategy from
CMMI and GQM.

Figure 8. An example of MA Analysis

TABLE III. LESSON LEARNED FROM IMPLEMENTATING

MEASUREMENT PROCESS OF NECTEC (2010-2011)

Needs #Way to

record

the

Measure

by each

role

Lesson learned Suggestion

Strengths Weaknesses

Progress

of the
project

PM: 10

CM: 1
SA: 4

Dev: 3

Rev: 3
Tester: 1

- all PAs

covering
measures

- Having

data to
respond all

related

measures
- Recorded

by related

roles

-no

automatic
record

-spend time

to record
-often

forget to

record
-a lot of

data to

record
-no use all

data

-no
understand

clearly

1. no MA

experience
2. no need to

record all data

initially
3. too

difficult to

record
4. duplicate

record

5. no align
with real

activities

6. no need to
record some

measures (get

ROI from
responsible

unit)
7. join with

QA or PM to

support MA
records

Quality
of the

project

QA: 1
Cus: 1

ROI of

the
project

PM: 1

Others EPG: 3

 Remarks:

 -1st deployment

 >>fail (no complete data, no right data, no record immediately, etc.)
 -2nd deployment

 >>almost fail (some measures are selected to respond some needs but not

 be satisfied by the stakeholder)

Figure 9. An example of MA templates

C. Lesson Learned from MA Implementation in R&D Unit

The lesson learned from the past implementations

makes us understand more about the importance of MA

process. Many problems occurred in the MA

implementation period as shown in Figure 10. The

problems and their solutions are summarized for the

next implementation in Table IV.

494Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 514 / 646

9%

9%

9%

37%

18%

9%

9%

MA Problems from Feedback (%)

Plan

Process

Measures

Channels to record

Supporting System

Responsibility

Training

Figure10. MA Problems in SPI Implementation Period (%) [5]

D. Tailoring the Process

There are two levels for tailoring software
development process. Firstly, it focuses on
organizational process which NECTEC’s EPG tries to
optimize Software Development Lifecycle (SDLC)
models from brainstorming of stakeholders. There are
other related processes, such as training process,
improvement process, etc. They have to be consistent
with organizational policies and goals. Another level is
to tailor processes and products in each project. How
can one know that each tailoring can respond the
information needs completely? A product tailoring
template should be established for stakeholder who
requests to do other products instead. What is the best
criterion for tailoring the process and the product
responding to organizational goals? Currently, EPG has
to examine each tailoring in each project. If you want to
focus on quality of process improvement works, you
also have to realize appropriate conditions for tailoring
the product. However, alternatives should be
considered.

IV. OPTIMIZING MEASURES FOR R&D ORGANIZATION

A. Measures in R&D Organization

This paper presents NECTEC to be representative of
R&D organization. We start from current business goals as
follows. The measures which come from GQM and survey
result are identified as follows:

 Tracking of the project: Milestone completion,
Resource utilization, Risk impact and reduction,
Project Completions per year, Number of active/on –
hold/closed projects, periodically.

 Quality of the project: Product defects, Defects by
activity, Deviation from standard.

 Error/fault/failure rates, Product failures, Customer
complaints.

 Return on Investment (ROI): Investment in
R&D/Project Cost, Evaluated benefits from applying
related products periodically, Comparison between

cost and evaluated benefits, Customer satisfaction/
dissatisfaction, Customer Retention.

 Engineering Excellence: Depth width and
knowledge, Skills and productivity, Building
character to perform within moral and ethical
framework.

TABLE IV. MA PROBLEMS AND SOLUTIONS

MA Aspect MA

Problem

%

Feedback

(project

and

appraisal

team)

Proposed MA

Solution

1 Plan Don’t know
why to do

MA process

9% -Clear MA
plan and

inform to

stakeholder

2 Process Incorrect
Steps to

record MA

leading
wrong data

(some

records)

9% -clear
understanding

of the

advantage
from MA

data.

-executive
supporting

policy

3 Measure Too much
for

responding

the
organization

’s needs

9% -Apply GQM
methodology

to identify the

measures
(traceability)

-Start small

and showcase
a success

4 Channels to

record

Too hard to

record

37% -Access

rapidly and
easily

-Simple

Templates and
not many

templates.

5 Supporting
System

No
application

to support

MA process

18% -Retrieve data
from

operation

automatically

6 Responsibility No assign

the person to

track,collect,
analyze,

summarize,

and report
all MA

records

9% -Assign a

person to

track and
collect all

MA records

periodically

7 Training Forget step
to record

MA.

9% -clear
understanding

of the type

and purpose
of each

indicator

-simple
guideline to

remind MA

process/step

NECTEC is implementing these measures for

organizational level. The MA result has to respond the
executive’s information needs or policies. However,

495Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 515 / 646

measures in the project level can use some measures from
the organizational level and add some measures which
impacts to achieve the project goals such as measures
proposed to the 1

st
-2

nd
business goals. Besides the tailoring

the process also has to support the established measures
especially in project aspect. Figure 11 shows an example of
duplicated measures in different aspects [6].

Figure 11. An example of duplicated measures in different aspects

B. Tailoring Criteria for R&D Organization

Another important activity which needs measures
properly for implementing the project is SW development
Process Tailoring. Five main causes enforce EPG to tailor
the process including resource, communication,
requirement management, political and technical [8]. The
process includes all related documentation such as SDLC,
template, guideline, etc. Concerning the lesson learned, EPG
should tailor the SDLC covering all types of the R&D
projects. Currently, NECTEC has tailored the SDLC into 3
types involving waterfall, rapid prototyping, and adaptive
models. Each model has different documents that authorized
person can request to tailor the documents with his/her
reasons. EPG will consider the requests in 2 aspects, which
cover related standard goals and established measures.

 Another challenge issue needed is to find criteria for
choosing the appropriate process (global process model and
methods and tools supporting those models), evaluating its
suitability and improving it continuously [9]. Referring to the
characteristics of R&D works, the measures should be
established to evaluate its consistency with the information
needs. There are two tailoring level including organization
and project levels. The tailoring approach is one of the
improvement methodologies. Purpose of tailoring the
process in a project is data collection to indicate all
candidates of process and work product in R&D work.
Error, fault and failure analysis are selected to respond the
tailoring purpose. Furthermore, measures which should be
also realized for tailoring the process effectively include
coverage attribute following the standard process and
established measures. EPG has to consider quality in
coverage for tailoring both process and work products. The
criteria supporting EPG to validate the tailored process is
proposed as follows:

 Measures, which respond the organization/project
goals from tailoring processes, are still recorded.

 Measures, which respond the organization/project
goals from tailoring products are still recorded.

 Tailoring Processes still respond to
organization/project goals comparing with default
processes.

 Tailoring Products still respond to
organization/project goals comparing with default
products.

 The process (including related products) still
responds to established requirements.

V. CONCLUSION AND FUTURE WORK

This paper presented how to implement MA process in
R&D organization and proposes an idea to improve it
including measure analysis and tailoring conditions. To
apply international frameworks can make officers work
professionally. The R&D organization has specific business
goal which impacts to establish the measures for indicating
quantified improvement level. Tailoring the process is a
measure which supports flexible process. How to tailor the
process effectively needs to be analyzed systematically.

 A set of measures has to adjust in parallel with changed
business goals. Moreover, supporting data should be
recorded automatically and should not be operated
repeatedly by project team. It is a challenge for the next
research to refine better processes and measures by analyzing
actual result continuously and make them more generic and
systematic for distributing their advantages to others.

REFERENCES

[1] Software Engineering Institute, “CMMI for SCAMPI Class A
Appraisal results 2012 Mid-Year Update,” Carnegie Melon,
Pittsburgh, September 2012.

[2] M. Johnson, “Agile Methodologies Survey Results,” A
Passion For Excellence, Shine Technologies Pty. Ltd, 2003.

[3] C. Ebert, R. Dumke, M. Bundschuh, and A. Schmietendorf,
“Best Practices in Software Measurement,” Springer-Verlag
berlin Heidelberg, 2005.

[4] Y. Berra, “Software Development Life Cycle (SDLC),”
presentation.

[5] Software Engineering Labolatory, “Research and
Development Report for NECTEC-CMMI phase 1,”
NECTEC/NSTDA, 2009.

[6] W. Goethert and W. Hayes, “Experiences in Implementing
Measurement Programs,” Copyright by Carnegie Mellon
University, November 2001.

[7] Center for Business Practices, “Measures of Project
Management Performance and Value”. PA 19083 USA.

[8] P. Xu and R. Balasubramaniam, “Using Process Tailoring to
Manage Software Development Challenges,” IEEE
Computer Society, 2008.

[9] V. R. Basili and H. D.Rombach, “Tailoring the Software
Process to Project Goals and Environment,” ACM, 1987.

[10] D. N. David, T. Hall, and N. Baddoo, “A framework for
evaluation and prediction of software process improvement
success,” University of Technology in Australia and
University of Hertfordshire in UK, 2001.

[11] A. Rainer and T. Hall, “Key success factors for implementing
software process improvement: a maturity-based analysis,”
The Journal of Systems and Software 62, 2002, pp. 71-84.

496Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 516 / 646

[12] Royal Academy of Engineering, “Measuring Excellence in
Engineering Research,” London, January 2000.

[13] G. Xiaodong and M. Li, “Organization Application Oriented
Software Process Measurement Model,” ISCSCT -2008-
80,2008.

[14] Software Engineering Institute, “CMMI for Development,
version 1.3,” Technical Report, November 2010.

[15] Software Engineering Institute, “Measurement and Analysis
Infrastructure Diagnostic (MAID) Evaluation Criteria, version
1.0,” Technical Report, December 2009.

[16] Software Engineering Institute, “Standard CMMI Appraisal
Method for Process Improvement (SCAMPISM) A, Version
1.3: Method Definition Document,” Handbook, March 2011.

[17] J. Dalton, “What are the steps to achieving a Maturity level of
CMMI? ,” http://askthecmmiappraiser.blogspot.com,
February 2012. [retrieved: May, 2013]

[18] J. A. H. Alegria and M. C. Bastarrica, “Implementing CMMI
using a Combination of Agile Methods,” Clei Electronic
Journal, Volume 9, Number 1, Paper 7, June 2006.

[19] V. Basili, “Software Modeling and Measurement: The
Goal/Question/Metric Paradigm,” College Park, MD, USA:
University of Maryland, Technical Report CS-TR-2956,
1992.

497Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 517 / 646

Towards Probabilistic Models to Predict Availability, Accessibility and
Successability of Web Services

Abbas Tahir, Sandro Morasca, Davide Tosi
Department of Theoretical and Applied Sciences

Università degli Studi dell'Insubria
Varese, Italy

tahir_a@acm.org, {sandro.morasca, davide.tosi}@uninsubria.it

Abstract— Web Services are gaining increasing attention as
programming components and so is their quality. The external
qualities of Web Services (i.e., qualities that are perceived by
their users) such as the OASIS sub-quality factors Availability,
Accessibility, and Successability can only be measured at late
stages after the deployment and the provisioning of the Web
Service. This may necessitate expensive rework if the targeted
levels of qualities are not satisfactorily met. A reliable
prediction of the values of the external qualities at early phases
during development may totally remove the need for
reworking and hence save valuable resources. In this paper, we
describe an approach for building and empirically evaluating
probabilistic prediction models for the Web Services external
sub-quality factors Availability, Accessibility, and Successability
based on internal static and dynamic quality measures (e.g.,
Cyclomatic Complexity and Distinct Method Invocations). A
methodology was established that involves the collection of a
set of predefined quality measures and then performing
regression analysis to identify any correlation between them
and the above mentioned external qualities. For this purpose, a
framework for data collection and evaluation was designed,
implemented and tested. The results of the preliminary
evaluation of the framework showed that it is feasible to collect
all the data points necessary for the regression analysis and
model building activities. We are currently working towards
adding about 18 more Web Services to our testbed in order to
carry out a wider controlled experiment and then to build
possibly accurate probabilistic prediction models for
Availability, Accessibility, and Successability.

Keywords-quality models; web services; measurement;
metrics; probabilistic models; quality prediction

I. INTRODUCTION
Web Services (WSs) are gaining more attention as

programming components for different software
applications. They play an important role in service-oriented
architectures where loosely coupled programming
components or services deliver their functionality over a
network – often over the Internet. The quality of such
architectures depends heavily on the quality of its individual
service components, which are usually WSs. Therefore, the
quality of WSs is becoming a major concern. Users of WSs
are usually careful (among others) about the availability of
WSs they are relying on. They also need to know whether
the WSs are accessible (i.e., they actually accept requests)

while available and whether they successfully deliver
responses for the incoming requests. These concerns are
referred to as the Availability, Accessibility, and
Successability of WSs.

The OASIS Web Services Quality Model (WSQM)
Technical Committee [1] is currently working towards a
quality model for WSs. The committee developed
specifications for WSs quality factors (WSQF) [3] that cover
the development, usage and management of WSs. One of the
quality factors described in the specification is the Service
Level Measurement Quality that consists of sub-quality
factors including Availability, Accessibility, and
Successability.

All of the above mentioned quality factors are considered
external software quality measures according to the
definition provided in the ISO/IEC standard 25000 [4]. On
the other hand, internal software quality measures [4] are
those measures concerned with the static attributes of
software products (e.g., number of lines of code). Such
measures are usually related to the software architecture and
design and do not require the execution of the targeted
software. Measures that can only be collected by executing
the software are called dynamic measures. For example
coupling between class objects CBO is a well-known static
quality measure. If it is measured in runtime, it is called
dynamic coupling between objects DCBO and considered as
a dynamic software quality measure.

The external quality measures Availability, Accessibility,
and Successability of a WS can be only measured when the
WS is already developed, deployed and exposed to users. If
these external quality measures can be predicted early during
the development phase, they can provide valuable
information that may positively influence the engineering of
WSs with regards to the three sub-quality factors.

Other researchers worked towards predictive models for
software quality. Dragan Ivanovic et al. [5] proposed a
methodology for predicting Service Level Agreement (SLA)
violation during service composition at run-time. They used
the structure of the composition and properties of the
component services to derive constraints to model SLA
conformance and violations. These models are used for
predicting satisfaction and violation of the constraints in a
specific scenario. Xing et al. [6] proposed an approach to
predict software quality by adopting support vector machine

498Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 518 / 646

(SVM) in the classification of software modules based on
complexity metrics.

There are many factors that may influence the time-
related behavior, and therefore some external qualities of the
WS (e.g., network, hardware, application server, application
software, etc.). In this research, we are focusing on the WS's
application software since in a typical WSs development
project, only the WS's logic is implemented and all the other
elements are not developed but only used for deployment
and hosting purposes. Factors other than the WS's
application software are isolated by using similar
configurations for all WSs under test. Our aim is to help
predicting external qualities in early stages of WSs
development projects based on static internal quality
measures as well as the internal dynamic behavior of WS's
application software measured through different dynamic
measures.

In this paper, we present a framework for (1) collecting
some static and dynamic quality measures from WSs, and (2)
applying statistical approaches to identify any correlation
between the static and dynamic measures collected and WSs
Availability, Accessibility, and Successability, and (3) the
development of probabilistic models for the prediction of
WSs Availability, Accessibility, and Successability based on
the theory provided in [7].

The rest of this paper is structured as follows. Section II
provides the necessary background by introducing the basic
concepts and the theoretical basis on which this work is
based. In Section III, the aims and objectives are introduced
and the two main research questions are clearly stated. Then,
the methodology followed and the data required for
experimentation and model building are introduced
(Section IV). A detailed technical description of the
framework used for collecting necessary data during
experimentation is provide in Section V. The results of short
tests performed to build confidence on the framework are
listed in Section VI. Finally, in Section VII, conclusions are
drawn and future work plans are introduced.

II. BACKGROUND
In this section, we introduce the WSs quality factors

defined by OASIS with focus on Availability, Accessibility
and Successability; we discuss the theoretical background
that is at the basis of our framework to compute external
quality factors; we show the logistic regression approach that
helps us in predicting external quality factors starting from
the observation of internal quality metrics.

A. OASIS Web Services Quality Factors
As a result of the increased acceptance and utilization of

WSs as programming components, the OASIS [2]
standardization body established a technical committee [1] to
define a quality model for WSs (WSQM). The model is
centered around the identified WSQFs [3]. The quality
factors are based on the functional and non-functional
properties of the WSs. They are classified into 6 categories:
Business value quality, service level measurement quality,
interoperability quality, business processing quality,
manageability quality, and security quality. Each category

contains different related sub-quality factors. Service level
measurement quality is subdivided into five sub-quality
factors including Availability, Accessibility, and
Successability.

Availability is defined as “a measurement which
represents the degree of which web services are available in
operational status. This refers to a ratio of time in which the
web services server is up and running. As the DownTime
represents the time when a web services server is not
available to use and UpTime represents the time when the
server is available, Availability refers to ratio of UpTime to
measured time.”

 (1)

Accessibility “represents the probability of which web
services platform is accessible while the system is available.
This is a ratio of receiving Ack message from the platform
when requesting services. That is, it is expressed as the ratio
of the number of returned Ack message to the number of
request messages in a given time.”

 (2)

Successability “is a probability of returning responses
after web services are successfully processed. In other words,
it refers to a ratio of the number of response messages to the
number of request messages after successfully processing
services in a given time. ‘Being successful’ means the case
that a response message defined in WSDL is returned. In this
time, it is assumed that a request message is an error free
message.”

 (3)

B. Theoretical background
Morasca [7] introduces a probability-based approach for

measuring the external qualities of software. The main
assumption is that external qualities can be quantified by
means of probabilities. The author proposes that “external
software attributes should not be quantified via measures, but
via probabilistic estimation models.” This implies that
instead of measuring the external qualities after the
deployment and the exposure of a WS, we can predict them
using probabilistic models.

Additionally, the introduced probability-based approach
is rooted in the “probability representations”, which are part
of the well-founded Measurement Theory. Probability
representations “has not yet been used in Software
Engineering Measurement” [7].

Based on this theory, probabilistic models for different
software external qualities models can be built. However, the
accuracy of the models need to be assessed by carrying out
empirical studies.

C. Logistic regression
Logistic regression [8] is a statistical analysis approach

for predicting the outcome of dependent variables based on
one or more independent variables.

messages request of number
messages response of number=litySuccessabi

Time Measured
Time Down=tyAvailabili 1

messages request of number
rmessages Acks of number=ityAccessabil

499Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 519 / 646

The logistic regression curve (Fig. 1) is the graphical
representation of the logistic function that can be expressed
as follows for one independent variable x:

P(x) = exp(0 1x)/(1 + exp(0 1x)) (4)

 logit(x) = 0 1x (5)

P(x) is the probability that the dependent variable equals 1
for the independent variable x. 0 and 1 are the regression
coefficients.

Figure 1. The logistic regression graph

As it is clear from Fig.1, the values of the dependent
variable (probability) range from 0 to 1. Re-examining the
formulas for calculating the external qualities Availability,
Accessibility, and Successability presented in Section II, we
can conclude that the resulting values of any of the three
qualities range also from 0 and 1. Therefore, we intend to use
the logistic regression in our analysis to identify any possible
correlation between the internal and the external quality
measures in order to facilitate the prediction of external
quality factors starting from the static and dynamic measure
of internal quality factors.

III. OBJECTIVES AND RESEARCH QUESTIONS
The main final aim of the work described in this paper is

to develop probabilistic models for the quantification of the
software sub-quality factors Availability, Accessibility and
Successability identified in the OASIS WSQF [3] based on
the theoretical basis provided in [7]. These models may
predict the values of the above-mentioned factors in early
phases (design-time and deployment-time), thus allowing for
early adjustments during the development to satisfy any
imposed requirements with regards to the three sub-quality
factors. Additionally, knowing the need of adjustments in
advance may also facilitate early evaluation of the impact
(costs, human resources, etc.) for implementing the
adjustments.

Our Objectives (O) can be summarized as follows:
 O1 - To build significant probabilistic models for

the sub-quality factors Availability, Accessibility
and Successability;

 O2 - To empirically evaluate the accuracy of the
probabilistic models.

To achieve our objectives, we formulated the following
research questions (RQ):

 RQ1 - Is it possible to build statistically significant
probabilistic models for the WSs sub-quality factors
Availability, Accessibility and Successability?

 RQ2 - How accurate are these models?

To build and empirically evaluate the probabilistic
prediction models, we designed and implemented a
framework able to support developers of WSs to collect and
calculate metrics automatically and to measure external
qualities.

IV. EXPERIMENTATION APPROACH
For model building and evaluation, we need to perform

experimentation using a set of WSs. The approach we
follow can be summarized as follows:

1. Selection of suitable WSs for experimentation;
2. Identification and selection of related software

measures to be collected besides the external
qualities Availability, Accessibility, and
Successability;

3. Development of a framework for collecting the
selected quality measures;

4. Data collection;
5. Analysis of the collected data and building

probabilistic models for the external qualities
Availability, Accessibility, and Successability.

The experimentation will be carried out as a controlled
experiment, where (graduate) students will be used to
interact with the WSs to collect quality measures.

A. Web services selection
The WSs needed for experimentation are selected based

on the following criteria:
 Full access to the source code and the

documentation of the WS to facilitate the evaluation
of static and dynamic quality factors;

 The WSs are built using Java programming
language, due to the fact that our framework is
currently able to analyze Java components only;

 The WS provides the claimed functionality itself
and it is not a “wrapper” for other services.

Since open source applications usually satisfy the above
criteria, we focused on them.

Unfortunately, the process of identifying and selecting
WSs satisfying all the aforementioned criteria ended with the
availability of just one WS only. Specifically, we discovered
and used as case study a WS released by Yesiltepe
Softwareentwicklung [9], which satisfies all the above
conditions. This WS provides a registry for artists. One issue
with this WS is that the data of artists are stored on plane
operating system files. This makes the application slow and
not stable enough for concurrent accesses. Therefore, we
modified the original WS to make use of an embedded
database instead of plane files.

To overcome the limitation in the number of available
Open-WSs on the net, we decided to manually convert free
and open source Java applications into WSs (i.e., the

500Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 520 / 646

functionalities provided by the Java applications are exposed
on the Web). To perform this conversion, we used the
Apache Axis2 framework [10]. For instance, we converted
the application code2web [11], a utility application that
converts Java source code into HTML, into a WS. For
uniformity, we used the Axis2 framework to expose the
functionalities of all the WSs selected for the
experimentation.

To provide a statistically relevant set of WSs, we targeted
at least 20 WSs for the complete experimentation of the
approach. This process is an ongoing work so, in this paper,
we focus on the experimental results of the two above-
mentioned case studies.

B. Identification and selection of software measures to be
collected
Building probabilistic models for the sub-quality factors

Availability, Accessibility, and Successability involves the
identification of the dependent variables and the (possibly)
related independent variables. Since we aim to predict the
sub-quality factors Availability, Accessibility and
Successability, they are considered the dependent variables.
The independent variables on which the prediction of the
dependent variables depends are the software internal static
and dynamic measures listed below. The static quality
measures selected are well-known a widely accepted
measures taken mainly from [12]. We also considered the
dynamic behavior of the Web Services by including four
dynamic metrics.

 Static software measures:
 Lines of Code (LOC) is the number of lines of code

in the WS's source code. It is a size measure that is
usually used to assess the complexity of the
software.

 McCabe Cyclomatic Complexity (CC) counts the
number of linearly independent paths in the WS's
source code.

 Weighted Methods per Class (WMC) is the sum of
the McCabe Cyclomatic Complexity of all class
methods.

 Lack of Cohesion of Methods (LCOM) “is the
number of pairs of methods in a class that don't
have at least one field in common minus the number
of pairs of methods in the class that do share at least
one field. When this value is negative, the metric
value is set to 0.” [13]

 Afferent Couplings (Ca) is the number of other
packages that depend upon classes in a specific
package.

 Efferent Couplings (Ce) is the number of other
packages that the classes in the package depend
upon.

 Instability (I): The ratio of efferent coupling (Ce) to
total coupling (Ce + Ca)

 Dynamic software measures:
 Distinct Classes (DC) is “the count of the distinct

number of classes that a method uses within a
runtime session.” [14]

 Dynamic Coupling Between Objects (DCBO) is the
number of distinct classes a specific class is coupled
to at runtime.

 Object Method Invocations (OMI) is the total
number of distinct methods invoked by each
method in each object within a runtime session

 Distinct Method Invocations (DMI) is “the count,
within a runtime session, of the total number of
distinct methods invoked by each method in each
object.” [14]

Each data point for a specific WS in the regression graph
is composed of two elements, the dependent variable (Y-
Axis) and the independent variable (X-Axis). For example,
suppose that the measured Availability value is 0.922 and
WMC value is 7.60, then (7.60, 0.922) is a data point on the
regression graph.

C. Data Collection.
The static software measures (e.g., LOC and WMC, etc.)

are first calculated for all WSs using two different tools,
namely, CodePro AnalytiX [15] and the Eclipse Metrics
plugin [16]. Then a number of users (students) freely use the
WSs under evaluation through a set of clients that support all
their exposed functionalities for a pre-specified period of
time. During this, the different dynamic quality measures
identified in Section IV. B are collected using the data
collection framework described in details in Section V of this
paper. The framework collects the required data and
automatically calculates the average values for each quality
measure.

The sub-quality factors Availability, Accessibility and
Successability are calculated using the three formulas
presented in Section II. A. The data required for calculating
Availability are collected from the log information of the
WSs application server. This includes server's up-times and
any possible down-time. The data required for calculating
Accessibility and Successability are collected by capturing
the HTTP messages exchanged between the WSs application
server and the clients. This allows for calculating the number
of request, response, and acknowledgment messages
exchanged between the WSs and their clients.

D. Data analysis
After collecting the necessary data points, we will then

use statistical regression analysis to identify possible
correlation between the software qualities described above
for a specific WS and the external software qualities
Availability, Accessibility and Successability measured at
run-time. We propose logistic regression for our analysis as
the values of all the three external qualities (the dependent
variables) range from 0 to 1 and the logistic regression curve
(Fig. 1) better fit such values.

501Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 521 / 646

V. THE DATA COLLECTION FRAMEWORK
To achieve the objectives listed in Section III, we

designed, implemented and tested a framework for the
automatic data collection and metrics calculations. The
framework can support developers of WSs in assessing in a
simple way the external qualities of their WSs at deploy-
time, and to react promptly in case their WSs do not satisfy
the expected quality requirements. Server-side, the
framework simplifies the process of converting Java
applications into WSs, guaranteeing a reliable message
exchange between the clients and the WSs. The server-side
components are also responsible for the computation of static
measures, for creating the environment that is able to
compute dynamic measures in a transparent way, and also
for calculating Availability, Accessibility and Successability
for the target WS.

 In the following sections, the framework and its
components are described in details.

A. Server-side
The server-side of the measurement framework is

centered around the application server Apache Tomcat. First
the WSs engine Apache Axis2 is deployed into Tomcat and
used to expose (web) applications functionality as standard
WSs that communicate using SOAP messages over the
HTTP protocol. The targeted WSs are then deployed into
Axis2 engine.

To assure reliable message exchange between the clients
and the WSs, they were instrumented using Sandesha2 (an
implementation of the OASIS WS-ReliableMessages
standard [17]). Sandesha2 provides a mechanism that can
accurately track and monitor message exchanges between the
WSs and their clients. It allows for the accurate
determination of the correct disposition of messages only
once and therefore, avoid any problems or errors associated
with lost or duplicated messages. Using Sandesha2, each
request received from the client is acknowledged separately.

This facilitates the calculation of the Accessibility since it is
calculated as the number of acknowledge messages received
by the client divided by the number of request messages sent.

Static measures defined in Section IV. B are calculated
before the deployment of the WSs into Tomcat using
CodePro AnalytiX and the Eclipse Metrics plugin.

Conversely, the dynamic measures defined in
Section IV. B are collected using the Aspect-Oriented
Programming (AOP) technology [18] at run-time. Each
measure is implemented as an “Aspect” that is constructed of
“point cuts” and “advices.” The “point cuts” define the
points in the program runtime flow that are of interest. For
example, “point cuts” can be placed to identify each “method
call” in the program flow. “Advices” are used to collect data
at the defined “point cuts” and to use the collected data to
calculated a specific measure. By placing “point cuts” at
“method calls,” an advice can be used for example, to collect
the data necessary to calculate the number of invocation of
each method in the program. All dynamic metrics defined in
Section IV. B are implemented in a similar way according to
their definitions and weaved into the services code during
compilation. The generated byte-code is then deployed into
Tomcat. When a WS is invoked during a runtime session, the
weaved aspects collect all the defined dynamic measures and
store the output as text files on the server-side.

During WS invocations, message exchanges between the
WS and its clients are captured using the network transport
capturing tool WinPcap [19] that captures outgoing and
incoming TCP packets to the WS server machine.
Wireshark [20] is a network protocol analyzer that is used
after each predefined capturing session to (1) extract all
HTTP communications, and (2) calculate the number of
request, response and acknowledge messages. These data are
used to calculate the Availability, Accessibility and
Successability of the WS.

B. Client-side
WSs clients are simple Java applications that invoke the

WSs under test to deliver its specified functionality. For each
WS, a web client is developed and used (or planned to be

TABLE I. PRELIMINARY EXPERIMENTAL RESULTS

 Static Measures (average) Dynamic Measures (average)

LCO CC WMC LCOM I Ca Ce DCBO OMI DC DMI

Code2web 565 2.26 7.6 0.24 1 0 10 2.00 3.375 1.50 23.00

Artist-Registry 322 1.56 14.2 0.39 1 0 4 1.50 2.09 1.80 14.00

 External Sub-quality Factors

Availability Successability Accessibility

Code2web 1 0.998 0.927

Artist-Registry 1 1 0.971

502Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 522 / 646

used) by users in experimental setup to stimulate the WSs
while collecting the data necessary to calculate the targeted
measures of the WSs. All develop clients for the WSs under
evaluation are instrumented by Sandesha2 to support reliable
messaging.

VI. PRELIMINARY RESULTS
Before executing the planned controlled experiment, we

carried out some tests to validate the data collection
framework we described in Section V. For this purpose, WSs
clients were developed to emulate intensive use of the WSs
under evaluation by randomly generating requests in a
randomly generated time intervals (range from 0.5 to 2
seconds). Each of the code2web WS and the Artist-Registry
WS were separately tested continuously for a period of 30
minutes using separate clients and the defined quality
measures were calculated. The results reported in Table 1
were achieved for each of the code2web WS and the Artist-
Registry WS. The reported values of Availability,
Accessibility and Successability are either 1 or very close to
it. This is due to the fact that these qualities usually require
longer measurement periods (weeks or months) for failures
to occur and hence to produce values different than 1. To
overcome this obstacle, we are planning to inject random
faults.

The outcomes of this study may be affected by two issues
(1) using random fault injection to enforce failures, and (2)
controlled experiments may result in restrictively
generalizable outcomes. Moreover, the population (Web
Services) selected for the experiment are all open-source
application with maturity level “Production” or “Stable”.
Therefore, we consider the population representative enough
and allows for the generalization of the results. Taking the
above mentioned concerns into account, the results of this
study may be considered generalizable.

VII. CONCLUSIONS AND FUTURE WORK
In this paper, we presented our ongoing work towards

answering the two research questions: (1) Is it possible to
build statistically significant probabilistic models for the
WSs sub-quality factors Availability, Accessibility and
Successability? and (2) How accurate are these models?

Building probabilistic prediction models for the WSs
sub-quality factors Availability, Accessibility and
Successability has a strong theoretical basis but
experimentation is necessary to build and empirically
evaluate the accuracy of the models. The framework
presented in this paper and the preliminary experimentation
on two case studies showed that it is feasible to collect all the
data points necessary for the regression analysis to establish
possible correlations between the static and dynamic
measures identified and the sub-quality factors Availability,
Accessibility and Successability of WSs. Based on that,
accurate probabilistic models for the mentioned factors may
be built.

Our next steps are (1) to identify and deploy additional
WSs so that the total number of WSs will be around 20. This
will provide sufficient data for (2) performing the planned

regression analysis and allows for (3) building more accurate
probabilistic models.

REFERENCES
[1] OASIS Web Services Quality Model (WSQM) Technical

Committee, https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsqm
[retrieved: August, 2013]

[2] OASIS (Organization for the Advancement of Structured
Information Standards), https://www.oasis-open.org
[retrieved: August, 2013]

[3] Web Services Quality Factors Version 1.0. 22 July 2011.
OASIS Committee Specification 01. http://docs.oasis-
open.org/wsqm/WS-Quality-Factors/v1.0/cs01/WS-Quality-
Factors-v1.0-cs01.html [retrieved: August, 2013]

[4] ISO/IEC 25000, Software engineering – Software product
Quality Requirements and Evaluation (SQuaRE) – Guide to
SQuaRE, ISO (2005).

[5] D. Ivanovi , M. Carro, and M. Hermenegildo, "Constraint-
based runtime prediction of SLA violations in service
orchestrations," In Service-Oriented Computing, Springer
Berlin Heidelberg, 2011, pp. 62-76.

[6] F. Xing, P. Guo, and M. R. Lyu. "A novel method for early
software quality prediction based on support vector machine,"
In Software Reliability Engineering, 2005. ISSRE 2005. 16th
IEEE International Symposium on, IEEE, 2005.

[7] S. Morasca, “A probability-based approach for measuring
external attributes of software artifacts,” Proceedings of the
3rd International Symposium on Empirical Software
Engineering and Measurement, IEEE, 2009, pp. 44-55.

[8] F. Harrell, “Regression modeling strategies: with applications
to linear models, logistic regression, and survival analysis,”
Springer, 2001.

[9] The Artists Registry Web Service,
http://yesso.eu/samples/artist-registry.zip [retrieved: August,
2013]

[10] Apache Axis2 (Java), http://axis.apache.org/axis2/java/core/
[retrieved: August, 2013]

[11] Code2Web Toolkit, http://sourceforge.net/projects/code2web
[retrieved: August, 2013]

[12] Chidamber, Shyam R., and Chris F. Kemerer. "A metrics
suite for object oriented design," IEEE Transactions on
Software Engineering, vol. 20, no. 6, 1994, pp. 476-493.

[13] Chidamber & Kemerer object-oriented metrics suite,
http://www.aivosto.com/project/help/pm-oo-ck.html
[retrieved: August, 2013]

[14] L. Lavazza, S. Morasca, D. Taibi, and D. Tosi, "On the
definition of dynamic software measures," ACM-IEEE
International Symposium on Empirical Software Engineering
and Measurement (ESEM), 2012, IEEE, 2012, pp. 39,48.

[15] CodePro AnalytiX, https://developers.google.com/java-dev-
tools/codepro/doc/ [retrieved: August, 2013]

[16] Eclipse Metrics plugin, http://metrics2.sourceforge.net
[retrieved: August, 2013]

[17] OASIS Web Services Reliable Messaging (WS-1
ReliableMessaging) Version 1.1, June 2007, http://docs.oasis-
open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01.pdf
[retrieved: August, 2013]

[18] G. Kiczales and E. Hilsdale. "Aspect-oriented programming,"
In ACM SIGSOFT Software Engineering Notes, vol. 26, no. 5,
ACM, 2001, doi: 10.1145/503271.503260.

[19] WinPcap, http://www.winpcap.org [retrieved: August, 2013]
[20] Wireshark, http://www.wireshark.org [retrieved: August,

2013]

503Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 523 / 646

Measuring Design Quality of Service-Oriented Architectures

Based on Web Services

Michael Gebhart

Gebhart Quality Analysis (QA) 82 GmbH

Karlsruhe, Germany

michael.gebhart@qa82.de

Abstract—For achieving a flexible and maintainable IT,

companies increasingly design their IT architecture in a

service-oriented manner using web services. As the

effectiveness of this transition is influenced by the design of the

architecture, patterns and best-practices have been evolved

that are expected to be considered during the development

process. However, reviewing the architecture regarding these

guidelines is complex and time-consuming as a lot of

interpretation and calculation has to be performed. This article

introduces an approach for efficiently measuring design

quality with a focus on the service layer, thus the service

interface and service component design. To illustrate the

approach, services of an automotive scenario are developed

using a product that integrates the introduced concepts.

Keywords-soa; web service; design; quality; metrics

I. INTRODUCTION

The ability to realize new business requirements within
shortest time has become a critical success factor for
companies. This requires the IT to be both flexible and
maintainable, which constitute main drivers for service-
oriented architecture (SOA) projects [1][2]. While SOA does
not dictate any technology usage, in most cases web services
are applied as their standardization increases the flexibility
and maintainability of the architecture from a technical point
of view [3]. In this case, the web services are described using
the World Wide Web Consortium (W3C) standards Web
Services Description Language (WSDL) [4] and XML
Schema Definition (XSD) [5]. Furthermore, in some projects
the Service Component Architecture (SCA) [6] standardized
by the Organization for the Advancement of Structured
Information Standards (OASIS) is applied to describe the
component model.

In the past, many projects have shown that the success of
SOA projects is influenced by the design of the architecture
especially its service layer [7]. On a service layer the
architecture targets the design of service interfaces, service
components, and their dependencies. Decisions, such as the
grouping of operations to services and their granularity,
impact the achievement of the previously described goals.
For that reason in literature many best-practices and patterns
have been identified that describe how to design the service
layer. Furthermore, companies also establish standards or
design guidelines that represent internal experiences and
might be company-, industry-, or project-specific.

Developers are expected to consider these guidelines during
their work. This requires a solid understanding of the
guidelines and discipline to not overlook any application.
From a project management perspective it is also necessary
to ensure a consistent application of the guidelines.

In both cases, the review of developed web services
regarding these requirements is complex and time-
consuming. Besides the necessary interpretation and solid
understanding a manual analysis of every web service and its
relations to other services has to be performed. Furthermore,
every change requires a new analysis not only of the changed
service but – due to interdependencies – of all web services.
The necessary effort is costly and mostly cannot be asserted.
In addition, with increasing complexity of the architecture
measure mistakes become more likely due to the high
number of performed calculations. The result is that quality
analyses regarding guidelines are often neglected even
though they are relevant for the creation of a flexible and
maintainable architecture and the success of SOA projects.

This article introduces an approach to simplify those
analyses on a service layer by means of appropriate
automation or at least semi-automation. For that purpose,
existing best-practices and patterns for service interfaces and
service components are formalized so that no interpretation
effort is necessary and their compliance can be automatically
or at least semi-automatically verified. Even though the
internal behavior of a service component, such as its
implementation using object-oriented languages, influences
the quality of the architecture as a whole, in this article the
focus is on the service part represented by the service layer.
When designing a service-oriented architecture from a
strategic point of view, this is the first essential design task
that has to be performed. Previous work in the context of
service design metrics will serve as basis for this article. In
[8], Gebhart et al. introduced metrics for service designs
based on the Service oriented architecture Modeling
Language (SoaML) that represent design guidelines. These
metrics have been demonstrated by a case study in [9].
Combined with work that describes the relation between
SoaML and web services [10] service design metrics based
on SoaML are transferred to web services based on WSDL,
XSD, and SCA. As result, web services can be automatically
analyzed regarding wide-spread guidelines. Furthermore, the
methodology can be applied on any other company-,
industry-, or project-specific design guidelines.

504Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 524 / 646

The concept is illustrated using a scenario in the context
of automotive manufacturing. In this case, the usage of
formalized guidelines helps to systematically design web
services and to coordinate several developers. Furthermore,
the concepts are integrated into the QA82 Analyzer as
product for analyzing software and data. The product enables
the automatic measurement of the design quality of the
created SOA, thus increases the efficiency.

The article is organized as follows: Section II introduces
existing guidelines for web services and their formalizations.
The scenario is introduced in Section III. In Section IV, the
services are designed using the formalized guidelines and our
product. Section V concludes this article and introduces
future research work.

II. BACKGROUND

This section describes guidelines for the design of
services in service-oriented architectures that will be
considered within the scenario. Furthermore, this work is
examined regarding the possibility to be efficiently measured
using tool support. The technologies of web services, such as
WSDL, XSD, and SCA are not further introduced in this
article. They are assumed to be well known.

The service design phase is an essential ingredient of
software service engineering that can be defined as the
“discipline for development and maintenance of SOA-
enabled applications” [11]. The service design phase
includes decisions about the interface of a certain service,
such as its grouping of operations, and its internal behavior.
As services constitute the building blocks of an SOA, they
determine its design. For services several best-practices and
patterns have been evolved as guidelines.

In [7] and [12], Erl describes numerous patterns for
services in particular web services. They have been derived
from experiences in real-world projects and provide valuable
hints for architects and developers. Nevertheless, all
guidelines are only textually describes. This results in
ambiguities and requires interpretation before using it in
concrete projects. This again may result in faulty
applications.

Similar to Erl, also Cohen [13] and Josuttis [14] focus on
patterns from a similar point of view. While the guidelines
are clearly motivated, their usage in projects requires
interpretation. Furthermore, due to the textual description
concrete artifacts cannot be checked against these guidelines
without manual effort.

A more academic approach is chosen in [15] and [16].
Perepletchikov et al. introduce metrics for quality attributes,
such as loose couplings. These metrics consider formalized
service designs independent from concrete technologies. The
essential benefit of this work is its ability to perform an
automatic measurement. However, the motivation of the
introduced metrics is not obvious. Work as introduced by Erl
and Josuttis is not reflected by the metrics. This is even not
possible as Perepletchikov et al. consider an abstract
formalization of services. Most of the aspects described by
best-practices refer to elements that are not part of this
formalization.

Similarly to Perepletchikov et al. also Hirzalla et al. [17]
and Choi et al. [18] introduce metrics for services. Also in
this work, the metrics are very abstract and cannot be
directly applied in projects. They do not represent best-
practices as introduced by Erl and Josuttis.

To fill this gap, in previous work we created a quality
model that combines best-practices as introduced by Erl et al.
with a formalization as used by Perepletchikov et al. [8]. The
quality model was aligned with the Service oriented
architecture Modeling Language (SoaML) [19] as profile for
the Unified Modeling Language (UML) [20] that is meant to
replace proprietary UML profiles for services, such as the
one developed by IBM [21][22][23]. As result of this work,
an SOA formalized using SoaML can be checked against
wide-spread guidelines. The usage of SoaML is explained in
[24][25] and a case study that applies the metrics is presented
in [9]. However, in most cases web services are created or
are already existent without a formalization based on
SoaML. Furthermore, some guidelines refer to elements that
are not part of a SoaML-based description. Thus, an
approach is necessary that is applicable on web services
directly.

In [10], it is shown how service designs based on SoaML
can be transformed into web services using the WSDL, XSD,
and SCA. This work was not necessarily created with quality
analysis in mind. However, it can be applied to transfer the
service design metrics based on SoaML to web services.

The summary of existing work shows, that a lot of good
work exists that focuses either on the description of best-
practices, patterns, design guidelines etc. for web services or
on a formalization of academic metrics. Whilst the former
are too abstract to be efficiently measured, the latter are too
academic to be comprehensible understandable and
motivated. For that reason we use the metrics introduced in
[8] that on the one hand represent best-practices and on the
other hand are formalized so that they can be automatically
measured. They are transformed so that they can be applied
on web services using the mapping rules described in [10].

III. SCENARIO

To illustrate the quality analysis of a service-oriented
architecture design, a scenario from automotive
manufacturing is chosen.

Figure 1. Participants and their relationships.

505Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 525 / 646

There is a product and quality manager who coordinates
two developers and in addition delivers reports to the
management and the customer. In some cases, the role of the
product and quality manager might also be fulfilled by an
architect, who is responsible for the design of the
architecture and its quality. Fig. 1 illustrates the participants
and their relationships.

According to this figure, the product and quality manager
has an interest in proving the high quality of the created
software. In this scenario, besides functional requirements
especially the architectural design is considered. So it is
necessary that he understands the meaning of high quality in
the context of service-oriented architecture design.
Furthermore, he is required to analyze software artifacts
regarding these quality requirements. To support this quality
assurance, this article shows how to analyze artifacts, such as
web service interfaces, regarding wide-spread best-practices
and guidelines for services.

The scenario begins with the development of a service
for the manufacturing of automobiles by the first developer.
An SCA Composite is created, which combines a service for
manufacturing automobiles and a service for filing
manufactured automobiles in the database. The artifacts are
filed in a shared Git repository. Fig. 2 illustrates the
composite using the graphical representation introduced in
the official SCA standard. In the scenario, originally a
proprietary tool is used that uses a different visualization.

Figure 2. Created SCA composite.

Starting with this SCA composite the product and quality
manager determines the quality of the architecture using the
approach introduced in the following section.

IV. MEASURING DESIGN QUALITY OF SERVICE-

ORIENTED ARCHITECTURES BASED ON WEB SERVICES

To determine the quality of software, one approach is to
refine the term quality until it can be measured. A wide-
spread quality model methodology is Factor, Criteria, Metric
(FCM) introduced by McCall et al. in [26]. According to this
methodology a factor is refined into more fine-grained
criteria that again are refined into quantifiable metrics.
Similar approaches use the equivalent terms quality
characteristics, quality sub-characteristics, and quality
indicators.

Correspondingly, applied on the design of service-
oriented architectures the term quality from a design

perspective has to be broken down into measurable aspects
that can be formalized by means of metrics. In [8], a quality
model has been created that enables the measurement or at
least systematic determination of best-practices and patterns
that have been identified as important for service-oriented
architectures. However, the quality model has been
formalized on basis of Service oriented architecture
Modeling Language (SoaML) as language to formalize the
architecture. When the product and quality manager of the
scenario in Section III tries to apply this quality model, the
usage of SoaML hampers the direct. As in the scenario other
technologies in particular WSDL, XSD, and SCA are used,
the metrics introduced in [8] cannot be applied without
additional effort. However, in [10], a mapping between
SoaML and web service technologies is described. The
combination of this work enables the transformation of
metrics onto web services so that they can be directly
applied. This application is shown next.

A. Application of Metrics

According to Gebhart et al. [8] in particularly four quality
sub-characteristics or criteria can be considered as relevant
for the design quality: Unique categorization, loose coupling,
discoverability, and autonomy. Even though this set of
quality characteristics is not expected to be complete it is a
good starting point to evaluate the design of a service-
oriented architecture and to illustrate the approach.

In this section, especially the unique categorization as
quality sub-characteristic is considered. This sub-
characteristic is comparable to the concept of cohesion in
object-oriented systems. It consists of four quality indicators
with metrics introduced in [8][27][28]. To illustrate the
approach, these metrics are mapped and applied to analyze
the service-oriented architecture design.

1) Division of Agnostic and Non-Agnostic
Functionality:

TABLE I. VARIABLES AND FUNCTIONS USED FOR DANF

Element Description and Mapping

DANF Division of Agnostic and Non-agnostic Functionality

s service: the considered service that is provided or
required

It is represented by a SCA Service or Reference element.

SI(s) Service Interface: service interface of the service s

It is represented by the WSDL document that describes

the SCA Service or Reference.

RI(si) Realized Interfaces: realized interfaces of the service

interface si.

It is represented by the WSDL PortType that includes
provided operations of the service.

O(i) Operations: operations within the interface i

The WSDL Operations within the identified WSDL

PortType are expected to be returned.

AF(o) Agnostic Functionality: operations providing agnostic
functionality out of the set of operations o

This information has to be determined by an IT expert. It
cannot be found within the web service technologies.

| o | Number of operations o

Manufacturing

Process

Manufacturing

Mediator Deliver

Mediator

Manufacturing

Construction

ManufacturedAutomobile

506Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 526 / 646

The background of this metric is that generic functionality
should be split from specific ones so that changes regarding
the specific operations do not affect the highly reused ones.
It has its origin in the patterns described by Erl [7].

 ()
| (((()))) |

| ((())) |

To apply this metric for the scenario, the functions and

variables have to be mapped onto elements within XSD,
WSDL, and SCA. Table I shows a brief introduction of the
element and afterwards a mapping. This mapping specifies
where to find this information.

As result a value of 0 or 1 is desired. These values mean
that the service operations provide only agnostic or only non-
agnostic functionality.

Based on this mapping information, the metric can be
applied for the Manufacturing service that is the SCA
Service within the SCA Composite. According to the metric,
in a first step the service interface has to be identified. This is
the WSDL file Manufacturing.wsdl. Next, the WSDL
PortType comprising the provided operations within the
WSDL is selected and finally, the operations themselves are
returned. Fig. 3 shows the proceeding.

 Figure 3. Determination of DANF metric.

After the relevant operations have been identified, the IT
quality manager has to decide whether these operations are
agnostic or non-agnostic. If he is not capable to answer these
questions, he has to ask the developers and estimate the
reusability of these operations. In this case, the quality
manager comes to the conclusion that the operation
“Manufacture” is non-agnostic as it is very specific and
cannot be used in other contexts. The operation
“getManufacturedAutomobiles” however is agnostic as it
provides functionality to request manufactured automobiles,
which can be reused in several scenarios. As result the metric
returns 0.5, which represents a suboptimal value.

2) Division of Business-Related and Technical
Functionality: A metric similar to DANF is DBTF that
targets the division of business and technical functionality.
It can be mapped in a similar way. To illustrate the approach
a more complex metric, the data superiority, is chosen next.

3) Data Superiority: This quality sub-characteristic
describes that a service that manages an entity is exclusively
responsible for managing it. The metric can be formalized
as follows. Most functions have already been described. The
others are explained in Table II.

 ()

||

 (((())))

 ((((()))))
||

| (((())))|

TABLE II. VARIABLES AND FUNCTIONS USED FOR DS

Element Description and Mapping

DS Data Superiority

M1 \ M2 Elements of set M1 without elements of set M2 or the
element M2

ALLS All existing services

Represented by all SCA Services

ME(o) Managed Entities: entities that are managed by

operations o

This information has to be determined by an IT expert. It

cannot be found within the web service technologies.

Figure 4. Determination of DS metric.

composite.xml

…

<service name="Manufacturing.service" ui:wsdlLocation="Manufacturing.wsdl">

<interface.wsdl

interface="http://xmlns.oracle.com/bpmn/bpmnProcess/Manufacturing#

wsdl.interface(ManufacturingPortType)"

…

Manufacturing.wsdl

<wsdl:definitions …>

…

<wsdl:portType name="ManufacturingPortType">

<wsdl:operation name=„Manufacturing">

<wsdl:input message="tns:start"/>

</wsdl:operation>

<wsdl:operation name=„getManufacturedAutomobile">

<wsdl:input message="tns:getManufacturedAutomobileRequest"/>

<wsdl:output message="tns:getManufacturedAutomobileReponse"/>

</wsdl:operation>

</wsdl:portType>

…

</wsdl:definitions>

1

2

3

Dr. Michael Gebhart: QA82 Analyzer - Demonstration Video

Manufacturing.wsdl

<wsdl:definitions …>

…

<wsdl:portType name="ManufacturingPortType">

<wsdl:operation name=„Manufacturing">

<wsdl:input message="tns:start"/>

</wsdl:operation>

<wsdl:operation name=„getManufacturedAutomobile">

<wsdl:input message="tns:getManufacturedAutomobileRequest"/>

<wsdl:output message="tns:getManufacturedAutomobileReponse"/>

</wsdl:operation>

</wsdl:portType>

…

</wsdl:definitions>

2

ManufacturedAutomobile.wsdl

<wsdl:definitions …>

…

<wsdl:portType name="ManufacturedAutomobilePortType">

<wsdl:operation name="get">

<wsdl:input message="tns:GetRequest"/>

<wsdl:output message="tns:GetResponse"/>

</wsdl:operation>

<wsdl:operation name="create">

<wsdl:input message="tns:CreateRequest"/>

<wsdl:output message="tns:CreateResponse"/>

</wsdl:operation>

<wsdl:operation name="delete">

<wsdl:input message="tns:DeleteRequest"/>

<wsdl:output message="tns:DeleteResponse"/>

</wsdl:operation>

<wsdl:operation name="update">

<wsdl:input message="tns:UpdateRequest"/>

<wsdl:output message="tns:UpdateResponse"/>

</wsdl:operation>

</wsdl:portType>

…

</wsdl:definitions>

Managed Entities

Manufactured Automobiles

1

Summarized

Manufactured Automobiles

2

Managed Entities

Manufactured Automobiles

6

Managed Entities

Manufactured Automobiles

5

Managed Entities

Manufactured Automobiles

4

Managed Entities

Manufactured Automobiles

3

2
Summarized

Manufactured Automobiles

7

507Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 527 / 646

To illustrate this metric we assume that the
ManufacturedAutomobile Reference within the SCA
Composite refers to a service described by the
ManufacturedAutomobile.wsdl and that no other services are
relevant for this metric.

To calculate the metric, the product and quality manager
has to consider the provided operations of the Manufacturing
service and of all other services, i.e., the
ManufacturedAutomobile service in this case. Afterwards,
he has to decide for each operation whether an entity is
managed by this one. Finally, he has to compare the set of
managed entities of the services to identify conflicts. Fig. 4
illustrates the proceeding for the Manufacturing service.
According to this figure all entities managed by the
Manufacturing service are not exclusively managed. The
Manufactured Automobile service that corresponds to an
entity service [1][7] manages manufactured automobiles too.
So from a data superiority perspective the Manufacturing
service is not ideal and should be revised.

4) Common Entity Usage: Finally the last quality
indicator of the unique categorization quality sub-
characteristic can be measured. According to the common
entity usage metric, all operations within a service should
work on the same entities. This guarantees that entities that
do not belong together are managed by different services. In
turn, the prior described data superiority ensures that
operations that manage the same entities are part of one
service.

 ()

|

|

(

 ((()))

 (
 ((())) (((())))

 (((())))
)

)

|

|

 | ((())) |

TABLE III. VARIABLES AND FUNCTIONS USED FOR CEU

Element Description and Mapping

CEU Common Entity Usage

CMP(o,
e1, e2)

Composition: biggest set of entities managed by
operations o out of e2 that depend on entitites e1

UE(o) Used Entities: entities that are used within operations o

as input

MOUE(o) Mostly Often Used Entities: entities that are mostly often
used within one operation out of operations o

OUE(o,
be)

Operations Using Entities: operations out of operations o
that only use entities out of be

This table shows that there is no explicit mapping to web

services necessary. All functions that refer to certain
elements within a technology have already been mapped by
the functions described in Table I and Table II.

Applied on the Manufacturing service the metric returns
the value 1 as all operations that manage entities manage the
same. This is also the case for the Manufactured Automobile
service. As this entity service provides Create, Read, Update,

Delete (CRUD) operations for the same entity, this metric is
also ideal for this service. If the Manufactured Automobile
service would also manage another entity, the CEU metric
would return a suboptimal value.

B. Integration into Scenario

Back in our scenario, the quality manager can use the
results to inform developers about the design weaknesses.
The usage of these metrics in a quality-oriented service
design process is illustrated in [29].

For example, the result of DANF shows that the two
provided service operations “Manufacture” and
“getManufacturedAutomobiles” should be separated into two
services. In addition, the result of the DS metric shows the
conflict between the operations provided by the
Manufactured Automobile service and the operation
“getManufacturedAutomobile” of the Manufacturing service.
Summarized, the operation “getManufacturedAutomobile”
should be deleted as it provides functionality that is also
offered by the Manufactured Automobile service. Service
consumers using this operation should switch to the
Manufactured Automobile Service.

In addition to the revision hints, the results of the metrics
can be used to deliver reports to the management and the
customer. For example the product and quality manager can
justify cost and investments into quality assurances.
Furthermore, he can prove the quality of the software by
means of objective criteria.

V. CONCLUSION AND OUTLOOK

In this article, an approach was illustrated to measure the
design quality of service-oriented architectures regarding
wide-spread best-practices and guidelines. For that purpose
an existing quality model that refers to SoaML as
formalization of a service-oriented architecture design was
chosen. By use of another work that describes the mapping
between SoaML and web service technologies, this quality
model was transferred onto WSDL, XSD, and SCA. By this
means the resulting quality model can be directly applied on
service-oriented architectures based on web services. The
approach demonstrated that for an efficient quality assurance
existing quality models should be mapped onto the used
technologies.

After an examination of existing work, a scenario from
automotive manufacturing was introduced. In this scenario, a
product and quality manager is responsible to ensure the
quality of the resulting architecture. Next, the mapped
quality model was applied to measure the design quality of
services in this scenario. The metrics mapped onto web
services enable the product and quality manager to identify
weaknesses in the current design and thus give the
developers hints about possible improvements. In addition,
the results can be used to deliver reports to the management
and the customer. The reports help to prove the high quality
and to justify investments in additional quality assurance
projects. Furthermore, developers can perform analyses by
themselves. The metrics reduce the additional effort to
interpret the textual descriptions. Furthermore, they directly
refer to concrete elements within the used technologies.

508Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 528 / 646

As part of our research work, we have created a mapping
for all metrics introduced in [8]. We also implemented this
quality model as part of the QA82 Analyzer [30]. Through
this both product and quality managers and developers can
automatically measure their service-oriented architecture
regarding the quality model. This further increases the
efficiency of the quality assurance process.

For the future, we plan to include further quality
characteristics both regarding service-oriented architectures
and related fields. First, we plan to adapt the approach to
analyze services based on REST as it is often applied today.
As REST does not prescribe certain interface formalization,
we assume that the adaptation will require using more
implementation-specific information. Second, we work on a
quality model for business process management (BPM) that
enables the determination of quality characteristics regarding
the functional quality of modeled business processes based
on the Business Process Model and Notation (BPMN) 2.0
[31]. This quality model is expected to be linked with the
experiences we gained with the quality model introduced in
this article. The results of this BPM quality model will be
published as well. Furthermore, it will be supported by our
quality analysis product. Finally, we aim to formalize the
described metrics in a technology-independent but
executable way. With languages, such as OCL [32] or
XQuery [33] it is possible to describe queries that refer to a
certain technology, such as UML or XML. We will examine
the applicability of these languages for our purposes.

REFERENCES

[1] T. Erl, Service-Oriented Architecture – Concepts, Technology, and
Design, Pearson Education, 2006. ISBN 0-13-185858-0.

[2] D. Krafzig, K. Banke, and D. Slama, Enterprise SOA – Service-
Oriented Architecture Best Practices, 2005. ISBN 0-13-146575-9.

[3] T. Erl, Web Service Contract Design & Versioning for SOA, Prentice
Hall, 2008. ISBN 978-0-13-613517-3.

[4] W3C, “Web Services Description Language (WSDL)”, Version 1.1,
2001.

[5] W3C, “XML Schema Part 0: Primer Second Edition”, 2004.

[6] Open SOA (OSOA), “Service component architecture (SCA), sca
assembly model V1.00”, http://osoa.org/download/attachments/35/
SCA_AssemblyModel_V100.pdf, 2009. [accessed: January 04, 2011]

[7] T. Erl, SOA – Principles of Service Design, Prentice Hall, 2008.
ISBN 978-0-13-234482-1.

[8] M. Gebhart and S. Abeck, “Metrics for evaluating service designs
based on soaml”, International Journal on Advances in Software,
4(1&2), 2011, pp. 61-75.

[9] M. Gebhart and S. Sejdovic, “Quality-oriented design of software
services in geographical information systems”, International Journal
on Advances in Software, 5(3&4), 2012, pp. 293-307.

[10] M. Gebhart and J. Bouras, “Mapping between service designs based
on soaml and web service implementation artifacts”, Seventh
International Conference on Software Engineering Advances (ICSEA
2012), Lisbon, Portugal, November 2012, pp. 260-266.

[11] W. van den Heuvel, O. Zimmermann, F. Leymann, P. Lago, I.
Schieferdecker, U. Zdun, and P. Avgeriou, „Software Service
Engineering: Tenets and Challenges”, 2009.

[12] T. Erl, SOA – Design Patterns, Prentice Hall, 2008.
ISBN 978-0-13-613516-6.

[13] S. Cohen, “Ontology and Taxonomy of Services in a Service-
Oriented Architecture”, Microsoft Architecture Journal, 2007.

[14] N. Josuttis, SOA in Practice, O'Reilly Media, 2007. ISBN 978-0-59-
652955-0.

[15] M. Perepletchikov, C. Ryan, K. Frampton, and H. Schmidt,
“Formalising service-oriented design”, Journal of Software, Volume
3, February 2008.

[16] M. Perepletchikov, C. Ryan, K. Frampton, and Z. Tari, “Coupling
metrics for predicting maintainability in service-Oriented design”,
Australian Software Engineering Conference (ASWEC 2007), 2007.

[17] M. Hirzalla, J. Cleland-Huang, and A. Arsanjani, “A metrics suite for
evaluating flexibility and complexity in service oriented architecture”,
ICSOC 2008, 2008.

[18] S. W. Choi and S. D. Kimi, “A quality model for evaluating
reusability of services in soa”, 10th IEEE Conference on E-Commerce
Technology and the Fifth Conference on Enterprise Computing, E-
Commerce and E-Services, 2008.

[19] OMG, “Service oriented architecture modeling language (SoaML) –
specification for the uml profile and metamodel for services
(UPMS)”, Version 1.1, 2012.

[20] OMG, “Unified modeling language (UML), superstructure”, Version
2.2, 2009.

[21] S. Johnston, “UML 2.0 profile for software services”, IBM Developer
Works, http://www.ibm.com/developerworks/rational/library/05/
419_soa/, 2005. [accessed: July 11, 2012]

[22] U. Wahli, L. Ackerman, A. Di Bari, G. Hodgkinson, A. Kesterton, L.
Olson, and B. Portier, “Building soa solutions using the rational sdp”,
IBM Redbook, 2007.

[23] A. Arsanjani, “Service-oriented modeling and architecture – how to
identify, specify, and realize services for your soa”, IBM Developer
Works, http://www.ibm.com/developerworks/library/ws-soa-design1,
2004. [accessed: July 11, 2012]

[24] J. Amsden, “Modeling with soaml, the service-oriented architecture
modeling language – part 1 – service identification”, IBM Developer
Works, http://www.ibm.com/developerworks/rational/library/09/
modelingwithsoaml-1/index.html, 2010. [accessed: July 11, 2012]

[25] M. Gebhart, “Service Identification and Specification with SoaML”,
in Migrating Legacy Applications: Challenges in Service Oriented
Architecture and Cloud Computing Environments, Vol. I, A. D.
Ionita, M. Litoiu, and G. Lewis, Eds. 2012. IGI Global.
ISBN 978-1-46662488-7.

[26] J. A. McCall, P. K. Richards, and G. F. Walters, “Factors in software
quality”, 1977.

[27] M. Gebhart, M. Baumgartner, S. Oehlert, M. Blersch, and S. Abeck,
“Evaluation of service designs based on soaml”, Fifth International
Conference on Software Engineering Advances (ICSEA 2010), Nice,
France, August 2010, pp. 7-13.

[28] M. Gebhart, S. Sejdovic, and S. Abeck, “Case study for a quality-
oriented service design process”, Sixth Internation Conference on
Software Engineering Advances (ICSEA 2011), Barcelona, Spain,
October 2011, pp. 92-97.

[29] M. Gebhart and S. Abeck, “Quality-oriented design of services”,
International Journal on Advances in Software, 4(1&2), 2011, pp.
144-157.

[30] Gebhart Quality Analysis (QA) 82, QA82 Architecture Analyzer,
http://www.qa82.de. [accessed: July 11, 2012]

[31] OMG, “Business process model and notation (BPMN)”, Version 2.0
Beta 1, 2009.

[32] Object Management Group, “Object constraint language”, Version
2.0, 2006.

[33] W3C, “XQuery 1.0: an XML query language (second edition)”,
Version 1.0, 2010.

509Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 529 / 646

Towards Automatic Performance Modelling Using the GENERICA Component Model

Nabila Salmi
MOVEP Laboratory, USTHB

Algiers, Algeria,
LISTIC Laboratory, Université de Savoie

Annecy le Vieux, France
Email: nsalmi@usthb.dz

Malika Ioualalen
MOVEP laboratory
USTHB University

Algiers, Algeria
Email: mioualalen@usthb.dz

Mehdi Sliem
MOVEP laboratory
USTHB University
Algiers, Algeria,

Email: msliem@usthb.dz

Abstract—Software designers are often interested in predicting
performances of their designed applications, especially for
component-based software design where high quality is targeted.
In this context, several technics have been proposed. However,
none of these approaches has gained widespread industrial
use, and automatic tools supporting component-based systems
analysis are needed. In this objective, we propose, in this paper,
a novel general component model, called GENERICA, enabling
the description of component-based systems unifying software
and hardware components, as well as their deployment and
runtime environments and performance characteristics. The aim
of this new model is to help designers in deriving automatically
performance models, allowing thus automatic qualitative and
quantitative analysis of component-based applications, basing
on architecture descriptions and component behaviours. The
Architecture Description Language (ADL) of GENERICA
combines software and hardware components, and allows to
describe component-based configurations with performance
annotations. Targeted generated performance models consist of
Stochastic Petri Nets (SPN) and Stochastic Well-formed Nets
(SWN).

Keywords-Component-Based Systems; software component;
hardware component; performance annotations; performance
modelling.

I. INTRODUCTION

Component-based design of systems is more and more ap-
plied for building modern complex hardware and software
systems. In this approach, precompiled elementary compo-
nents, with explicitly defined provided and required interfaces,
are being assembled together [1]. Such systems are known
as Component-Based Systems (CBS). The main goals are
to improve software quality and to reach reduced cost and
easy maintaining and upgrade. Several academic and industrial
component models have been developed, such as Fractal [2],
EJB [3], CCM [4], AADL [5], Palladio [6], Koala [7], etc.

Very often, designers are interested in predicting perfor-
mances of their designed systems (such as response times,
throughput, etc.), to avoid performance problems after imple-
mentation, which can lead to re-designing substantial costs. It
would be helpful if the designer can automatically perform an
"a priori" analysis of his/her systems. This requires to generate
automatic component modelling. As component performance
depends not only on implementation, but also on the context
the component is deployed in, it would be beneficial if we can
get deployment and runtime environment information directly
from the system architecture description or from some other
component specification tools, to automatically build a perfor-
mance model for a system. Indeed, we need two information

categories: on one side, the runtime environment nature (e.g.,
hardware components, middleware components, etc.); on the
other side, information about context performance (e.g., pro-
cessor rate, memory space, number of component threads, etc.).
Despite the numerous proposed component models, only few
of them offer such information or some related specifications,
such as Palladio [6] and Procom [8].

On this behalf, we attempt, in this work, to provide a
component model with necessary information enabling auto-
matic component performance modelling; we propose a general
component model with its Architecture Description Language
(ADL) allowing to describe component properties, as well as
deployment and runtime environment and performance charac-
teristics. These specifications are used to derive from architec-
ture descriptions and component behaviours an automatic map-
ping into performance models, without additional modelling.
So, we describe here the GENERICA model, developed for
this aim. Targeted generated performance models are Stochastic
Petri Nets (SPN) and Stochastic Well-formed Nets (SWN) [9],
which are well-known for their expressiveness and existing per-
formance analysis methods and tools, such as GreatSPN [10].

The paper is organized as follows. Section II discusses re-
lated work. Then, Section III presents main requirements of a
general component model. We detail, in Section IV, our pro-
posal, the GENERICA component model. Corresponding gen-
erated performance models are given in Section V. Section VI
introduces the GenTools prototype that we developed to support
compilation of architecture descriptions of Generic systems and
model generation, and illustrates component modelling with an
application example. Section VII concludes the paper.

II. RELATED WORK

Over the last decades, several component models have been
proposed, They have been applied to a large spectrum of
application domains. Several classifications and surveys have
been also achieved, attempting to identify key features of com-
ponent software approaches [11][12][13][14][15]. According
to the classification done by Crnkovic et al. [12], two kinds
of component models are distinguished: general-purpose and
specialized models. General-purpose models have similar so-
lution patterns, whereas specialized ones have specific domain
characteristics Hence, many component characteristics are not
always included in existing component model, and no complete
or generic component model gathers all component features,
except UML/MARTE [16], which is a quite generic model
capturing a large number of systems, even if it is hardly used
because of its complexity.

Besides, providing deployment, performance and runtime
properties in a component model is uncommon. These prop-

510Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 530 / 646

erties are extra-functional and their specification is still not
widespread. In this context, resource usage and some other
performance properties have been modelled by few models
such as component models are Palladio, SaveCCM, ProCom,
Pin and CompoNETs, as given in some surveys [12][13].

The Palladio component model (PCM) [6] is a domain-
specific component model, designed to enable early perfor-
mance predictions for component-based business software ar-
chitectures. For that purpose, deployment environment and
resource allocation to components are specified using a proper
domain-specific modelling language. Then, PCM models are
created using an integrated modelling environment, called
PCM-bench, and performance metrics are derived from these
models using analytical techniques and simulation.

SaveCCM [17] is also a domain-specific component model
designed for embedded control automative applications, tar-
geting to provide predictable vehicular systems. It considers
resource usage and analysability of the dependability and real-
time properties. Component behaviour modelling is done using
timed automata extended with tasks. Analysis is then performed
at design time using a model checker.

Procom [8] is a component model for control-intensive dis-
tributed embedded systems. An extra-functional component
behaviour is described in a dense time state-based hierarchical
modelling language. This behaviour consists namely in timing,
resource consumption, component allocations, etc. Pin [18] is a
simple component technology, used also in Prediction-Enabled
Component Technologies (PECT). It supports prediction of
average latency in assemblies and in stochastic tasks, and for-
mal verification of temporal safety and liveness. Finally, Com-
poNETs [19] is a general-purpose component model, based on
CCM, where, additionally, the internal behaviour of a software
component and intercomponent communication are specified
by Petri Nets. A mapping from the constructs of the component
models to Petri Nets is defined.

From these model descriptions, we deduce that some com-
ponent models are domain-specific, missing genericity, and
others support some behavioural or performance specifications,
requiring sometimes deployers or experts to provide such in-
formation on the designed application. We want to provide de-
signers with tools allowing them to perform "a-priori" analysis
of their systems or applications, basing on automatic generated
performance models and without requiring an expert interven-
tion. To do so, the component dimension (which deals with
general component and assembly properties) and the perfor-
mance behavioural dimension should be gathered in the same
model, to enable automatic component performance modelling
and analysis at design time. However, no model includes at the
same time the two kinds of properties (component and perfor-
mance), and if such model exists, often an expert performs this
modelling task for performance analysis of designed systems.

Hence, we introduce in this paper a general component
model, the GENERICA model, which fares better along the two
dimensions, inspired from two models: the Fractal model [2]
and the AADL model [5]. These two models comprise many
generic features, as well as UML/MARTE, which make them
interesting to use, however they lack performance character-
istics. Our component model is a combination of common
component/assembly features, runtime environment and per-
formance features: It includes genericity features of Fractal,
and hardware component features from AADL, but also allows
designers to describe runtime and performance characteristics,

as attributes of software and hardware components. Thus,
specific software and hardware systems, such as embedded
systems, can be modelled using GENERICA. Moreover, the
specification of all these features with performance annotations
is useful to derive directly from architecture descriptions and
component behaviours an automatic mapping into performance
models, without additional effort modelling, and hence useful
to conduct an automatic a priori qualitative and performance
analysis of designed systems.

III. REQUIREMENTS FOR A GENERAL COMPONENT MODEL

As defined by Crnkovic et al. [12], a component model
defines standards for properties that individual components
must satisfy, and methods for composing components. Com-
ponent properties are commonly known as being functional
properties and extra-functional specifications (like quality of
service attributes). These properties are exposed by means of in-
terfaces, whereas composing components includes mechanisms
for component interaction. These mechanisms are mainly bind-
ings defining connections between interfaces. Besides, modern
applications generally run in a multi-layered environment. An
application is deployed on an application server, which, in turn,
runs on some virtual machine (e.g., Java virtual machine, .NET,
etc.). The virtual machine works on an operating system (OS),
which utilizes some hardware resources. Such configurations
highlight several factors, which may influence performances of
an application and particularly performances of a component-
based application:
• Number of execution flows (threads) of software components,
• Processing rates of hardware components,
• Processing rates of operating systems and middleware under
which the application is running,
• Amount of space memory required during execution,
• Amount of necessary resources allocated to component, and
• Parallel applications running under the same operating sys-
tem.

Consequently, we identify the following main elements that
should be allowed by a general component model:
• Software components, which may be primitive or composite,
and whose exposed interfaces may be of any kind (service
invocation interface or event-based interface),
• Component bindings, being synchronous (invocation service)
or asynchronous (event-based) connections.
• Hardware components composing the deployment and run-
time environment, and
• Deployment and performance component features (service
rates, used memory, required resources, threads, etc.).

These requirements have led to the GENERICA model,
which gathers all these characteristics.

IV. THE GENERICA COMPONENT MODEL

Our model is defined around common component concepts
that are components, interfaces and interactions. To be generic,
we allow the definition of software components, hardware com-
ponents and system configurations describing a component-
based application deployed on a running environment (as it is
shown in Figure 1). Finally, performance annotations are added
to describe performance properties. To describe component
architectures following our model, we defined the GENERICA
ADL, based on a textual XML syntax.

511Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 531 / 646

Fig. 2: GENERICA Metamodel

512Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 532 / 646

Fig. 1: Software and hardware categories

A. Software components
As in other component models, a software component is

made of a content and a set of access points, called interfaces,
used for interaction with its environment. The content is either
composite, composed of a finite number of other components,
allowing components to be nested at an arbitrary level, or be
primitive (source code) at the lowest level.

An interface can be a functional interface describing com-
ponent functionalities, or a control interface for non functional
properties such as monitoring and control over execution. To
be as generic as possible, two sorts of functional interfaces are
defined in GENERICA:
• Service invocation interfaces enabling synchronous commu-
nications. Two kinds of interfaces are used: a client interface
requesting a service, and a server interface providing the ser-
vice.
• Event based interfaces, resulting in asynchronous communi-
cations. In this case, an event source interface generates events
and an event sink interface receives event notifications. The
reception of a notification causes the acknowledgment of the
reception and execution of a specified handler.

To communicate, components are connected by relating their
corresponding interfaces through a binding.

Other characteristics can be described by GENERICA: gen-
eralization, component inheritance, connectors, sharing, etc.

B. Hardware components
The interest in adding hardware components to our model is

to allow descriptions of the runtime environment and hardware
systems as well. These descriptions enable to do a detailed
performance modelling, to be used for qualitative and quanti-
tative system analysis while considering the running platform
influences. Four kinds of hardware components are defined in
GENERICA:
• Processor: models a processor associated to a minimal OS.
• Memory: represents a storage device.
• Bus: acts for all kind of networks or bus communication.
• Device: defines peripheral or resource elements whose inter-
nal structure is ignored. Hardware components interact through
bus components, instead of using interfaces.

C. Threads
Software components are linked to hardware components by

defining component running states being executed on hardware
elements. These running states are represented by threads. To
describe that in our ADL, one or several threads are first asso-
ciated to software components; then, these threads are linked to

hardware components. At least one thread must be associated to
a component application. The main role of thread description is
to allow multithreading definition in the generated performance
models, so that to enable computation of multithreading impact
and performances on the analyzed system.

D. System configurations
A GENERICA system configuration consists of a software

application mapped to a hardware platform. The mapping is
made by describing a semantic connection (or association)
between component threads (defined for the software) and hard-
ware components. Consequently, three parts form the system
configuration (see the example below):
• A "software" part, where are described software components,
• A "hardware" part, defining hardware components, and
• An "association" part relating component threads to hardware
components.
If the designer wants to describe only a software application, it
is possible to omit the hardware part description.

E. Data flows
Sometimes, when invoking a component service, the called

component invokes itself a service from another component,
which in turn may call another service, etc. So, data cross
several components until executing the first requested service.
This case corresponds to a data flow, defined as data routing
across the system architecture or dependencies between several
requests being service invocations or events notifications. For
instance, receiving an event notification on a sink interface of
a given component may cause service invocation to another
component. Data flows are useful to build a complete detailed
knowledge about the studied system, which helps in generating
a correct modelling. So, it is important to highlight data flows
in an architecture description of a system. For that purpose,
GENERICA allows to describe data flows as a dependency
between a server interface and a client or source interface of
the same component, or between a sink interface and a client or
source interface.

F. Performance annotations
One of the main contributions of GENERICA is the def-

inition of performance annotations, which will enable later
to map components into formal performance models, namely
Stochastic Petri Net (SPN) and Stochastic Well-formed Net
(SWN) models. For this purpose, we need to specify some
information:
• To assess multithreading impact, the number of threads of
components and the system configuration is necessary.
• To evaluate service or event processing performances (such as
response times or throughput), we need to know the processing
rate as well as code size or an estimated execution time of a
service or event processing.
• When interest is given to storage size, we need the storage
capacity or speed, the data bus speed and dataflow size.

So, we distinguish the following annotations appearing as
attributes added to corresponding elements:
• Four annotations for hardware components: data bus speed,
processing rate, storage capacity and processor scheduling
strategy. Note that this information is useful for assessing
software components running even on the same or heterogenous
systems with different processor families for instance.
• Four annotations for software components: estimated number

513Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 533 / 646

of thread instructions, estimated execution time of a service
method, dataflow size, and request arrival rate.

All described core concepts of the GENERICA component
model are gathered in its metamodel shown in Figure 2.

V. MODELLING WITH SPN/SWN
From the main characteristics of the GENERICA model, we

derive a generic approach for automatic model generation of
GENERICA systems, inspired from previous work [20]. The
proposed modelling is based on the Stochastic Petri Net (SPN)
and Stochastic Well-Formed Petri Net (SWN) models; the SWN
model being a high level (coloured) model of Petri Nets with
probabilistic extensions for performance analysis [9]. These
formalisms are state based models, well known for being able
to model complex systems with concurrency and conflicts, and
widely used for qualitative and performance analysis. In partic-
ular, the SWN model is well suited for behavioral symmetries
of system’s entities.

Let be a GENERICA system defined through an ADL de-
scription and a set of Java classes corresponding to primi-
tive components. To generate a model for this system, we
first model each primitive component. For this purpose, as a
GENERICA component may be made of a local behaviour
(set of internal actions) and a set of interfaces, we defined
basic SPN/SWN models for interfaces and internal component
behaviour. Using these basic models, each primitive compo-
nent is modelled. Finally, we generate the GENERICA system
global model, using previously generated SPN/SWN models.
This global model highlights components and component com-
munication, and hence, bottlenecks can be detected within this
model. More details can be found in [20].

VI. ILLUSTRATION

A first tool helping in building an GENERICA architecture
description has been developed: the GENERICA toolbox.

A. The GENERICA tool prototype
The GENERICA component model ADL has been im-

plemented into a Java prototype GenTools, using the Java
language. This prototype provides an editor for introducing
an ADL system description, a compiler to check syntactical
and semantical errors and an SPN/SWN model generator for
primitive components and for the whole application. To do a
qualitative or/and performance analysis of generated models for
a given application, we need to use existing SPN/SWN analysis
tools such as the GreatSPN tool [10]. It would be interesting
to have such analysis automated after model generation. This is
one of our future work. The user interface of the GENERICA
toolbox is depicted in Figure 3, showing an application example
with its generated model.

B. Running example
To illustrate the description of a component-based applica-

tion using the GENERICA model, we use a typical industrial
application (Figure 4), the stock quoter system, which is an
extended version of an application presented in [21]. This
application is a system managing a stock information database,
chosen mainly for its components exposing, at the same time,
service invocation and event-based interfaces. When the val-
ues of particular stocks change, a StockDistributor component
sends an event message that contains the stock name to two
StockBroker components. If the first StockBroker component

is interested in the stock, it can obtain more information about
it, by invoking a service operation offered by an Executor
component. This latter processes the received request, generates
data and invokes itself a service request from a persistence
server component to save its results. Besides, if the second
StockBroker component is interested in the stock, it processes
locally the event. Figure 4 shows the interactions between the
different components.

Fig. 5: Part of the GENERICA ADL of the application example

Figure 5 shows a part of the architecture description of the
application using the GENERICA ADL.

The generated SPN global model is depicted on the user
interface of Figure 3.

514Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 534 / 646

VII. CONCLUSION AND FUTURE WORK

This paper presented the GENERICA component model, a
new general model, which deals with two dimensions: the com-
ponent dimension describing general component and assembly
characteristics, and the performance behavioural dimension
related to deployment, runtime environment and performance
properties. An ADL language has been also proposed for
GENERICA, as well as a corresponding performance mod-
elling approach based on SPN and SWN models. The long-
term objective of introducing such a general component model,
is to enable automatic performance component modelling and
hence automatic a priori qualitative and performance analysis
of component based systems. Even if introduction of a generic
component model may lead to a complex specification, we
think of its usefulness for several design fields such as em-
bedded systems. This component model has been implemented
into a Java toolbox prototype, the GenTools toolbox, supporting
compilation of ADL descriptions and model generation. The
tool has been experimented on several GENERICA applica-
tions.

However, still more research work is required in several di-
rections, such as integrating the GENERICA toolbox in a global
modelling and analysis tool, starting from the ADL description
and automatic modelling, and resulting in performance compu-
tations, given specification of performance indexes of interest.
We also target to use the automated modelling of primitive
components in a compositional analysis step, based on compo-
nents models, to have time and memory savings during models
analysis. This can be done thanks to our previous work [20],
which defined a structured performance analysis method for
analysing a CBS in an efficient way allowing, to reduce compu-
tation times and memory usage (basing on primitive component
models rather than the global net). Finally, we are working on
modelling reconfiguration features of GENERICA CBSs and
verification of their behaviours.

REFERENCES

[1] C. Szyperski, Component software, 2002, vol. 2nd Edition.
[2] E. Bruneton, T. Coupaye, and J. Stefani, “The fractal component model,

version 2.0-3,” http://fractal.ow2.org/specification/ (October 2013), Tech.
Rep., Feb 2004.

[3] Sun Microsystems, “EJB 3.0 specification,” http://www.oracle.com/
technetwork/java/index.html, Jul 2007.

[4] Object Management Group, “CORBA component model specification.
version 4.0,” http://www.omg.org/spec/CCM/4.0/ (October 2013), Apr.
2006.

[5] SAE, “Architecture analysis et design language (aadl),” SAE Standards
AS550, Tech. Rep., November 2004.

[6] S. Becker, H. Koziolek, and R. Reussner, “Model-based Performance
Prediction with the Palladio Component Model,” in WOSP2007. Buenos
Aires, Argentina: ACM Sigsoft, 2007.

[7] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee, “The
Koala component model for consumer electronics software,” IEEE
Computer, vol. 33, no. 3, pp. 78–85, Mar. 2000.

[8] S. Sentilles, A. Vulgarakis, T. Bures, J. Carlson, and I. Crnkovic, “A
component model for control-intensive distributed embedded systems,”
in CBSE, 2008, pp. 310–317.

[9] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad, “Stochastic
well-formed colored nets and symmetric modeling applications,” IEEE
Trans. on Comp., vol. 42, no. 11, pp. 1343–1360, Nov 1993.

[10] Perf. Eval. Group, “GreatSPN home page: http://www.di.unito.it/
∼greatspn,” Torino, Italy, 2002.

[11] H. Aris and S. S. Salim, “State of component models usage: justifying
the need for a component model selection framework,” Int. Arab J. Inf.
Technol., vol. 8, no. 3, pp. 310–317, 2011.

[12] I. Crnkovic, S. Sentilles, A. Vulgarakis, and M. R. Chaudron, “A classi-
fication framework for software component models,” IEEE Transactions
on Software Engineering, vol. 37, pp. 593–615, 2011.

[13] J. Feljan, L. Lednicki, J. Maras, A. Petricic, and I. Crnkovic, “Classifica-
tion and survey of component models,” Målardalen University, Technical
Report ISSN 1404-3041 ISRN MDH-MRTC-242/2009-1-SE, December
2009.

[14] K.-K. Lau and Z. Wang, “Software component models,” IEEE Trans.
on Software Engineering, vol. 33, no. 10, pp. 709–724, October 2007.

[15] N. Medvidović and R. N. Taylor, “A classification and comparison
framework for software architecture description languages,” in IEEE
Trans. On Soft. Eng., vol. 26, no. 1, 2000, pp. 70–93.

[16] S. Taha, A. Radermacher, S. Gérard, and J.-L. Dekeyser, “Marte: Uml-
based hardware design from modelling to simulation,” in FDL, 2007,
pp. 274–279.

[17] M. kerholm, J. Carlson, J. Fredriksson, H. Hansson, J. Håkansson,
A. Möller, P. Pettersson, and M. Tivoli, “The save approach to
component-based development of vehicular systems,” J. Syst. Softw.,
vol. 80, no. 5, pp. 655–667, May 2007.

[18] S. Hissam, Pin Component Technology (V1.0) and Its C Interface, ser.
Technical note. Carnegie Mellon University, 2005.

[19] R. Bastide and E. Barboni, “Component-Based Behavioural Modelling
with High-Level Petri Nets,” in MOCA ’04- Third Workshop on Mod-
elling of Objects, Components and Agents , Aahrus, Denmark , 11/10/04-
13/10/04. DAIMI, October 2004, pp. 37–46.

[20] N. Salmi, P. Moreaux, and M. Ioualalen, “Structured performance
analysis for component based systems,” International Journal of Critical
Computer-Based Systems (IJCCBS)- Part II - Issue 1/2, vol. 3, no. 1,
pp. 96–131, 2012.

[21] D. Schmidt and S. Vinoski, “Object interconnections: The CORBA
component model: Part 2, defining components with the IDL 3.x types,”
C/C++ Users Journal, April 2004.

515Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 535 / 646

Fig. 3: User interface of the the GenTools tool

Fig. 4: Application example

516Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 536 / 646

Ensuring Consistency of Dynamic Reconfiguration of Component-Based Systems

Hamza Zerguine
MOVEP laboratory
USTHB University
Algiers, Algeria,

Email: hzerguine@usthb.dz

Nabila Salmi
MOVEP Laboratory, USTHB

Algiers, Algeria,
LISTIC Laboratory, Université de Savoie

Annecy le Vieux, France
Email: nsalmi@usthb.dz

Malika Ioualalen
MOVEP laboratory
USTHB University

Algiers, Algeria
Email: mioualalen@usthb.dz

Abstract—The introduction of dynamic reconfiguration
properties in a system can affect its performance and quality
of service offered to users. Thus, performance prediction of
component-based systems after reconfiguration is important
to help software engineers to analyze their applications at
the moment of reconfiguration and take decision to keep or
discard the analyzed reconfiguration, so that performance
problems are avoided. In this case, the design and verification
of functional and non-functional properties before and after
reconfiguration become a challenge. In particular, when a
applying a reconfiguration on a system, the consistency of
the new resulting architecture should be checked. To this
aim, we describe, in this paper, a generic reconfiguration
analysis approach which allows to check the reconfiguration
consistency of a component-based architecture, starting from the
architectural description of a component-based system. A case
study of a system reconfiguration illustrates the effectiveness of
our approach.

Keywords-Component-Based Systems; dynamic reconfiguration;
formalization; consistency.

I. INTRODUCTION

Component-based approaches [1] are more and more essen-
tial for the development of systems and applications, to meet
the challenges of engineering systems such as administration,
autonomy. In this paradigm, components are developed in
isolation or reused and are then assembled to build a Com-
ponent Based System (CBS). Their objective is to enable a
high degree of reusability of the software, rapid development
(reducing the cost in terms of development time) and high
quality since development is based on precompiled components
In this direction, numerous component models have been pro-
posed (e.g., Enterprise Java Beans (EJB) [2], Corba Component
Model (CCM) [3], Fractal [4], etc.). They operate different
life-cycle stages, target different technical domains (embedded
systems, distributed systems, etc.) and offer different degrees of
tool support (textual modeling, graphical modeling, automated
performance simulation, etc.).

Nowadays, systems need more and more to adapt their be-
haviour to their environment changes. To do that, they should
dynamically add, remove or recompose components by the use
of computational reflection. These abilities are called dynamic
or runtime reconfiguration and constitute a key element to
enable the adaptation of complex systems, such as embedded
systems (mobile phones, PDAs, etc.) and service-oriented sys-
tems, to a changing environment. Moreover, dynamic system

reconfiguration allows to achieve continuous availability of
systems.

Dynamic reconfiguration techniques are promising solutions
for building highly adaptable component-based systems. How-
ever, the introduction of dynamic reconfiguration properties in a
system can affect its performance and quality of service offered
to users. To avoid this, the design and verification of functional
and non-functional properties of a reconfigured system become
a challenge.

In this context, our long-term goal is to develop a method-
ology which allows analysis of component-based applications
and their correction after reconfiguration, to help the decision to
keep or discard the analyzed reconfiguration. The first property
to ensure during analysis of such systems is consistency, which
is defined as remaining compliant with their specification [5].
In this paper, we introduce a new formalism for checking
consistency of dynamic reconfigurations of component-based
systems. We provide this formalism for general component sys-
tems characterized by the most common component properties.

Outline. The structure of the paper is as follows. We discuss
in Section II the related work. Then, we present in Section III
the most important concepts of component-based systems. We
detail our approach in Section IV and illustrate it in Section V.
We conclude in Section VI and give future works.

II. RELATED WORK

Several approaches were proposed, during last years, for
analysis of CBS; a few of them addressed dynamic reconfig-
uration.

In this context, two main proposals were given for dy-
namic reconfiguration analysis of CBS. First, Grassi et al.
[6] proposed a metamodel called KLAPER, which includes a
kernel modelling language. The main goal of this language
is to act as a bridge between design models of component-
based systems (built using heterogenous languages like Uni-
fied Modeling Language (UML) [7], Ontology Web Language
(OWL) (OWL-S) [8], etc.) and performance analysis models
(Markov chains [9], queueing networks [10], etc.). This first
work did not address reconfiguration cases study. Later, in [11],
an extension of KLAPER, called D-KLAPER, was given to
support the model-based analysis of reconfigurable component-
based systems, with a focus on the assessment of particular non-
functional properties, namely performance and reliability.

517Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 537 / 646

The second work, defined by Leger [5], targeted dynamic
reconfigurations reliability analysis for component-based sys-
tems, where an analysis approach for the Fractal component
model was defined. The approach is summarized in three steps:
the first step is a Fractal configuration modeling [5] step of
a component-based configuration architecture; then, definition
of mechanisms used for maintaining systems consistency dur-
ing dynamic reconfigurations; finally, implementation of these
mechanisms for checking reliable reconfiguration.

Besides, some other approaches were proposed for CBS for
checking, in particular, consistency of CBS during dynamic
reconfiguration. Warren et al. [12] proposed to do automatic
runtime checks of reconfigurable component-based systems
for the OpenRec framework [13]. A formal model based on
ALLOY [14] was defined for that purpose. It allows architec-
ture constraints expression and checking. Another work [15]
has introduced an extension of the Fractal model [16], called
Safran to enable the development of adaptive applications. It
consists of a dedicated programming language for adaptation
policies, as well as a mechanism to dynamically attach or
detach policies to or from Fractal basic components. Finally, M.
Simonot et al. [17] proposed a formal framework, called Fracl,
for specifying and reasoning about dynamic reconfiguration
programs, being written in a Fractal-like programming style [4].
This framework is based on a first order logic, and allows
properties specification and proof concerning either functional
or control concerns. An encoding of their model using the
Focal specification framework [18] enabled them to prove its
coherence and obtain a framework for reasoning on concrete
architectures.

These proposals are interesting, however, Safran, Fracl and
Leger’s proposals are focused on Fractal models only. In par-
ticular, Fracl was defined only for applications with primitive
components. In addition, no difference is done between Manda-
tory and Optional interfaces and no subtyping notion is consid-
ered. Warren et al. [12] focused on OpenRec framework only.
Moreover, only connections between component are modelled
and not component behaviours.

In our case, we target to provide a generic formalism to
be used for checking consistency in any component-based
system. Our approach formalizes main component elements
(component, interfaces, bindings, etc.) and defines for each
reconfiguration operation a set of constraints to build consistent
configurations. Global constraints are also introduced on a CBS
after its reconfiguration.

III. COMPONENT BASED SYSTEMS

A software component is defined as a unit of composition,
provided with contractually specified interfaces and explicit
context dependencies [19]. An interface is an access point to
the component, which defines provided or required services.
In addition, types, constraints and semantics are defined by the
component model in order to describe the expected behaviour
at runtime.

Interfaces of a component allow to connect it to other com-
ponents. Consequently, we build a Component-based System

by connecting the interfaces of components. These connec-
tions are done depending on interactions between components.
Generally, two main styles of interactions are defined in com-
ponent models: synchronous interactions provided by service
invocation (such as an Remote Procedure Call (RPC) or Remote
Method invocation (RMI) communication), and asynchronous
interactions given through notification of events (asynchronous
messages). Service invocations take place between a client in-
terface requesting a service and a server interface providing the
service. Besides, event communications are defined between
one or more event source interfaces generating events and one
or several event sink interfaces receiving event notifications.
The reception of a notification causes the acknowledgment
of the reception and execution of a specified reaction called
the handler of the event. Some event services can use event
channels for mediating event messages between sources and
sinks. An event channel is an entity responsible for registering
subscriptions of a specific type of event, receiving events,
filtering events according to specific modes, and routing them
to the interested sinks.

A component can contain itself a finite number of other
interacting components, called sub-components, allowing the
components to be nested at an arbitrary level. In this case, it is
said a composite component. At the lowest level, components
are said primitive. Sometimes, assembling two components
may require an adaptation of associated interfaces, whenever
these interfaces cannot directly communicate for example. In
this case, the adaptation is done with an extra entity, called
connector, modelling the interaction protocol between the two
components.

For each component model, a corresponding Architecture
Description Language (ADL) allows to describe an assembly of
components forming an application. From such a description, a
set of tools are used to compile and generate the application
code, while checking syntactical and even some semantical
properties.

IV. FORMALIZATION

Our goal is to propose a new formalism for checking con-
sistency of dynamic reconfigurations of component-based. For
this purpose, we give first a set of concepts and then define our
approach for checking consistency of CBS.

A. Concepts

1) Component-based configuration:

Definition 1. A component-based configuration of a system S
is defined as a triplet:

Cg =≺ C, I,B ≻ where

• C: is a set of components;
• I: is a set of interfaces;
• B: is a set of component connections or bindings.

Definition 2. A component c is defined as:

c =≺ name, granul, state ≻

518Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 538 / 646

where:

• name: is the unique name of the component C;
• granul: refers to granularity wich can be Composite or

Primitive;
• state: is the current state of the component C, which can

be Started or Stopped.

Definition 3. A component interface i is defined as:

i =≺ itfc, role, visib, card, contig, sign ≻

where:

• itfc: is the unique identifier of the interface (being of the
form: component-name.interface-name);

• role: can be Client / Server (in the case of a service
invocation interface) or Sink / Source (in the case of an
event based interface);

• visib: refers to the visibility of the interface, which can
be Internal or External;

• card: refers to the cardinality of the interface, which is
Singleton or Collection;

• contig: characterizes the interface contingency, which
may be Optional or Mandatory;

• sign: returns the interface signature.

Definition 4. A component binding b is defined with:

b =≺ itfc− clt, itfc− srv ≻

where:

• itfc-clt: refers to the invoking interface, and can be Client
or Sink;

• itfc-srv: refers to the service interface, and may be Server
or Source.

2) Reconfiguration:

Definition 5. Let be a configuration Cg1 of a system S. We
define a reconfiguration R of S, being in the configuration
Cg1, as an ordered set of primitive operations applied on
Cg1 :

R = op1, op2, ..., opn, n ≥ 1

where opi, i = 1..n, is one of the following reconfiguration
operations:

1) Delete a component
2) Add a component
3) Replace a component
4) Delete a binding
5) Add a binding

The resulted configuration after application of R is denoted
Cg2.

We denote this by:

Cg1
op→ Cg2

3) Predefined functions: To be able to specify constraints
required for performing properly a reconfiguration, we need a
set of predefined functions. For this objective, we propose the
following functions:

1) CFather(cp) : returns the parent of the component cp;
2) CInterfaces(cp) : returns the interfaces list of the compo-

nent cp;
3) CType(cp) : returns the type of the component cp;
4) IComponent(i) : returns the owner of the interface i;
5) IType(i) : returns the type of the interface i.

B. Constraints

To ensure the correction of a reconfiguration R applied on a
system S, we define two sets of constraints:

• Constraints on primitive reconfiguration operations :
Should be checked after each primitive operation.

• Global constraints : should be checked after the whole
reconfiguration.

In the following, we specify these two sets of constraints.
1) Constraints on primitive reconfiguration operations:

Let op be a primitive reconfiguration operation, applied on a
configuration Cg1 of a system S, resulting in the configuration
Cg2, where :

• Cg1 =≺ C1, I1, B1 ≻
• Cg2 =≺ C2, I2, B2 ≻
We denote this by:

Cg1
op→ Cg2

In the following, we consider :

• A component : cp =≺ name, granul, statut ≻
• A binding : b =≺ iclt, isrv ≻
Primitive reconfiguration operations, applied on components

cp and cp′, are denoted as follows:

1) Delete a component cp :

del comp(cp)

2) Add a component cp :

add comp(cp)

3) Replace a component cp by anpther cp′:

Repl comp(cp, cp′)

4) Delete a binding b :

del bdg(b)

5) Add a binding b :
add bdg(b)

Table I gives the required constraints to be satisfied after each
reconfiguration operation.

519Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 539 / 646

TABLE I: CONSTRAINTS ON PRIMITIVE RECONFIGURATION OP-
ERATIONS

Operation Constraints

del comp(cp)
1) C2 = C1 − cp
2) I2 = I1 − CInterfaces(cp)
3) ∀ i ∈ CInterfaces(cp), i /∈ I2

add comp(cp)
1) C2 = C1 ∪ cp, cp /∈ C1

2) I2 = I1 ∪ CInterfaces(cp)
3) ∀i ∈ I1, ∃j ∈ I2 tq : i.itfc =

j.itfc
4) ∀i ∈ CInterfaces(cp), i /∈ I1

Repl comp(cp,cp’)
• CType(cp) is a sub-

type of CType(cp′)

del bdg(b)
1) B2 = B1 − b
2) b ∈ B1

add bdg(b)
1) B2 = B1 ∪ b
2) b /∈ B1

3) ∃ b.iclt ∈ I1 ∧ b.isrv ∈ I1
4)

b.iclt.card=SINGLETON ⇒
∀ b’< iclt′, isrv′ >∈
B1, iclt

′ ̸= iclt
5)

b.isrv.card=SINGLETON ⇒
∀ b’< iclt′, isrv′ >∈
B1, isrv

′ ̸= isrv

2) Global constraints: Let R be a reconfiguration that will
be applied to a configuration Cg1 of a system S, giving as a
result a configuration Cg2:

Cg1
R→ Cg2

with : R = op1, op2, ..., opn, n ≥ 1

We specify the following constraints, which must be satisfied
by Cg2 :

1) ∀ b ∈ B2, b.iclt.role = Client / Sink ∧ b.isrv.role = Server
/ Source

2) ∀ b ∈ B2, (b.iclt.contig = Mandatory) ⇒ (b.isrv.contig =
Mandatory)

3) ∀ b, b’ ∈ B2, b.iclt ̸= b’.iclt
4) ∀ b ∈ B2, (CFather(IComponent(b.iclt)) =

CFather(IComponent(b.isrv)))∨ (b.iclt.visib = Internal ∧
IComponent(b.iclt) = CFather(IComponent(b.isrv))) ∨

(b.isrv.visib = Internal ∧ CFather(IComponent(b.iclt)) =
IComponent(b.isrv))

5) ∀ i ∈ I2 (i.role = Client ∧ i.contig = Mandatory ⇒ ∃! b
∈ B2 tq: b.iclt = i)

6) ∀ b ∈ B2, IType(b.isrv) ⊆ IType(b.iclt)

C. Consistency of a configuration

Theorem 1. A reconfiguration R, applied to a configuration
Cg1 of a system S, is valid if the resulting configuration Cg2
satisfies all constraints defined on primitive reconfiguration
operations and global constraints.

Theorem 2. A configuration Cgi of a system S is consistent
after a reconfiguration R if R is valid.

V. ILLUSTRATION

To illustrate our approach, we use a navigator application
similar to Mozilla already used in [20]. In such applications,
components are usually equipped with an install manifest in
XML format, allowing, among other things, to deliver the in-
formation needed to manage the version compatibility between
components.

Fig. 1: Initial configuration

So, the architecture of the application consists of a composite
component MAIN composed of three primitive components
(Figure 1):

1) M , the main application (e.g., Firefox);
2) E, an already installed plugin;
3) VM , a version manager component.
Each of the components M and E have an interface h

with a signature H , being respectively a client and server
interface. They also each have a server interface im of signature
InstallMf . M has an additional server interface g of signature
G, being the main interface exported to the global external
interface of the application.

The Main composite exports business methods from M and
supplies update, a control method implementing the upgrade
operation. This method looks for a component with same id as
E, having a more recent version and being compatible with M .
In case of success, it replaces E with the new component.

Based on our formalization, we specify the initial configura-
tion of Figure 1 as follows:

Cg1 =≺ C1, I1, B1 ≻

520Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 540 / 646

where:
• C1 = (Main,M, VM,E)
• I1 = (Main.g,M.g,M.im, VM.a1, V M.a2, E.im,E.h)
• B1 = (b1, b2, b3, b4)

where:
• M = (M, Primitive, Started)
• VM = (VM, Primitive, Started)
• E = (E, Primitive, Started)
• Main.g = (Main.g, Server, External, Singleton, Optional,

G)
• M.g = (M.g, Server, External, Singleton, Optional, G)
• M.h = (M.h, Client, External, Singleton, Optional, H)
• M.im = (M.im, Server, External, Singleton, Mandatory,

InstallMF)
• VM.a1 = (VM.a1, Client, External, Singleton, optional,

InstallMF)
• VM.a2 = (VM.a2, Client, External, Singleton, Optional,

InstallMF)
• E.h = (E.h, Server, External, Singleton, Optional, H)
• E.im = (E.im, External, Singleton, Mandatory, InstallMF)
• b1 = (Main.g, M.g)
• b2 = (VM.a1, M.im)
• b3 = (VM.a2, E.im)
• b4 = (M.h, E.h)
When applying on this configuration a reconfiguration R,

which removes the plugin E, we model this by the following
reconfiguration R :

R = op1, op2, op3

where:
• op1 : Del comp(E),
• op2 : Del bdg(b3),
• op3 : Del bdg(b4).
This resulted configuration is valid because it provides a new

consistent configuration (given in Figure 2), which is defined as
follows:

Cg2 =≺ C2, I2, B2 ≻
where:
• C2 = (Main, M, VM)
• I2 = (Main.g, M.g, M.im, M.h, VM.a1, VM.a2)
• B2 = (b1)

Fig. 2: Resulting configuration after reconfiguration

where:
• M = (M, Primitive, Started)
• VM = (VM, Primitif, Started)
• Main.g = (Main.g, Server, External, Singleton, Optional,

G)
• M.g = (M.g, Server, External, Singleton, Optional, G)
• M.h = (M.h, Client, External, Singleton, Optional, H)
• M.im = (M.im, Server, External, Singleton, Mandatory,

InstallMF)
• VM.a1 = (VM.a1, Client, External, Singleton, optional,

InstallMF)
• VM.a2 = (VM.a2, Client, External, Singleton, Optional,

InstallMF)
• b1 = (Main.g, M.g)
• b2 = (VM.a1, M.im)
By checking all defined constraints, we can say that R is

valid. So, the new configuration Cg2 is consistent starting from
the fact that Cg1 is consistent.

VI. CONCLUSION

In this paper, we presented a new formalism for checking
consistency of dynamic reconfigurations of general component-
based systems. For this purpose, we introduced formal concepts
for modelling a component-based configuration and reconfig-
uration operations. We also defined required constraints that
must be satisfied by the new configuration resulting after ap-
plying reconfiguration, to ensure consistency of the system.

Our approach can be instanciated to any existing component
model, allowing thus genericity of the formalism.

Work is in progress to achieve automation of the proposed
approach, by providing a toolbox based on the FOCALIZE
programming environment [21]. This latter is based on a func-
tional programming language with object-oriented features and
allows to write formal specifications and proofs of designed
programs. Proofs are build using the automated theorem prover
Zenon [22] and Coq proof-assistant [23]. Future work also
include modeling CBS before and after reconfiguration to allow
quantitative analysis of CBS.

REFERENCES

[1] C. Szyperski, Component software: Beyond Object-Oriented Program-
ming. Addison-Wesley Professional, 2002, vol. 2nd Edition.

[2] Sun Microsystems, “EJB 3.0 specification,” http://www.oracle.com/
technetwork/java/docs-135218.html, jul 2007.

[3] Object Management Group, “Corba component model (ccm) (CORBA)
- specification, version 3.1, part 3: CORBA components,” http://
www.omg.org/spec/CORBA/3.3/Interoperability/PDF (November 2008),
2008.

[4] E. Bruneton, “Fractal tutorial,” http://fractal.objectweb.org/tutorials/
fractal/index.html (September 12 2003), September 2003.

[5] M. Leger, “Reliability of dynamic reconfigurations in component archi-
tectures,” Ph.D. dissertation, Superior National School of Mines of Paris,
19 mai 2009.

[6] R. M. Vincenzo Grassi and A. Sabetta, “From design to analysis models:
a kernel language for performance and reliability analysis of component-
based systems,” vol. 80, no. 11, 2005, pp. 25–36.

[7] O. M. Group, “(uml) unified modeling language (3rd release),” Novem-
ber 2004.

[8] Object Management Group, “UML unified modeling language (3rd
release).”

521Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 541 / 646

[9] D. Freeman, Markov chains, Springer-Verlag, Ed. Springer-Verlag,
1983.

[10] L. Kleinrock, Queueing systems. Volume I : Theory, Wiley-Interscience,
Ed. New-York: Wiley-Interscience, 1975.

[11] V. Grassi, R. Mirandola, and A. Sabetta, “A model-driven approach to
performability analysis of dynamically reconfigurable component-based
systems,” pp. 103–114, 2007.

[12] I. Warren, J. Sun, S. Krishnamohan, and T. Weerasinghe, “An automated
formal approach to managing dynamic reconfiguration,” in Automated
Software Engineering, 2006. ASE ’06. 21st IEEE/ACM International
Conference on, september 2006, pp. 37–46.

[13] J. Hillman and I. Warren, “An open framework for dynamic reconfigura-
tion,” in Proceedings of the 26th International Conference on Software
Engineering, ser. ICSE ’04. Washington, DC, USA: IEEE Computer
Society, 2004, pp. 594–603.

[14] D. Jackson, “Alloy : a lightweight object modelling notation,” vol. 11,
no. 2, Novembre 2002, pp. 256 – 290.

[15] L. T. David P.-C., “An aspect-oriented approach for developing self-
adaptive fractal components,” 2006, pp. 82–97.

[16] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J. Stefani, “The
fractal component model and its support in java,” vol. 36, no. n. 11-12,
2006, pp. 1257–1284.

[17] M. Simonot and M. Aponte, “Formal modeling of control with fractal,”
CEDRIC laboratory, CNAM-Paris, France, Tech. Rep. CEDRIC-08-
1590, 2008, http://cedric.cnam.fr/index.php/publis/article/view?id=1590.

[18] V. Benayoun, “Fractal components with dynamic reconfiguration :
formalization with focal,” 2008, http ://reve.futurs.inria.fr/.

[19] C. Szyperski, “Component technology - what, where, and how?” in Proc.
25th Int. Conf. on Software Engineering. IEEE, May 3–10 2003, pp.
684–693.

[20] M. Simonot and V. Aponte, “A declarative formal approach to dynamic
reconfiguration,” pp. 1–10, 2009.

[21] INRIA and LIP6, “The focalize essential,” 2005, http://focalize.inria.fr/.
[22] D. D. R. Bonichon and D. Doligez, “Zenon : An extensible automated

theorem prover producing checkable proofs,” vol. 4790, 2007, pp. 151–
165.

[23] Y. Bertot and P. Casteran, Interactive Theorem Proving and Program De-
velopment Coq Art: The Calculus of Inductive Constructions. Addison-
Wesley, 2004.

522Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 542 / 646

An Investigation on Quality Models and Quality Attributes for Embedded Systems

Lucas Bueno R. Oliveira
University of São Paulo - USP,

São Carlos, SP, Brazil
IRISA - Université de Bretagne-Sud,

Vannes, France
buenolro@icmc.usp.br

Milena Guessi
Dept. of Computer Systems,

University of São Paulo - USP,
São Carlos, SP, Brazil

guessi@icmc.usp.br

Daniel Feitosa and Christian Manteuffel
University of Groningen - RUG,

Groningen, The Netherlands
{d.feitosa, c.manteuffel}@rug.nl

Matthias Galster
University of Canterbury,

Christchurch, New Zealand
matthias.galster@canterbury.ac.nz

Flavio Oquendo
IRISA - Université de Bretagne-Sud,

Vannes, France
flavio.oquendo@univ-ubs.fr

Elisa Yumi Nakagawa
Dept. of Computer Systems,

University of São Paulo - USP,
São Carlos, SP, Brazil

elisa@icmc.usp.br

Abstract—Embedded systems have gained more and more
importance in recent years, being adopted in a diversity of
application areas. Due to the increasing variety and complexity
of these systems, a rising demand for software quality can
be observed. Initiatives proposing quality models and quality
attributes (QM&QA) for embedded systems can already be
found. Nevertheless, there is a lack of a complete, detailed
panorama about the research that proposes QM&QA dedi-
cated specifically to this domain. In this paper, we apply the
systematic review technique to investigate how QM&QA for
embedded systems have been defined, evaluated, and used. In
addition, we identify which quality attributes are considered as
the most important ones in the embedded systems domain. As
a result, this work provides a detailed state-of-the-art about the
QM&QA for embedded systems and identifies new, important
research topics for the future, contributing to improve the
quality of these systems.

Keywords-Embedded System; Quality Model; Quality At-
tribute; Systematic Review.

I. INTRODUCTION

Recently, a large number of products containing embed-
ded software has been developed and used, bringing an
effective impact to the society. Embedded systems have
been widely adopted in different application areas, such
as telecommunication, transportation, entertainment, and
medicine [1]. According to Liggesmeyer and Trapp [2],
over the last 20 years, software’s impact on the embed-
ded system functionalities, as well as on the innovation
and differentiation potential of new products, has rapidly
grown. Besides that, the complexity and diversity of these
products are creating a considerable challenge for embedded
software development, which usually has to meet stringent
requirements, such as real-time or performance [1]. The
development process of embedded systems has to ensure
the compliance with various quality attributes, such as
maintainability, safety, security, and dependability. In this
context, the quality assessment activity must be considered
a key concern during the development of such systems.
This statement is especially true considering the fact that
many embedded systems are considered critical, i.e, systems
whose failures may cause serious damage to the environment

or to human lives, damage to expensive equipment, or non-
recoverable financial losses [3].

In another perspective, software quality models have be-
come well-accepted means to describe, manage, and predict
software quality. Over the years, a variety of quality models
have been proposed to support the development of general
software systems. McCall’s Quality Model [4], considered as
the precursor of the actual models, establishes three major
perspectives for defining and identifying the quality of a
software product: product revision, product transition, and
product operations. Each of these perspectives describes a
set of quality attributes that refers to the ability of a software
system to undergo changes, to adapt to new environments,
and to adequately performs its functionalities. Similarly,
Boehm’s Quality Model [5] attempts to define software
quality by a given set of attributes and metrics. Another
important quality model is ISO/IEC 25010 standard [6],
which incorporates quality goals that encompass a large
number of quality attributes. Given its relevance, quality
models and sets of quality attributes (QM&QA) that intent
to specifically address the needs of embedded systems can
also be found [7], [8]. These studies can be considered
important initiatives, as embedded systems have particular
characteristics, such as the use of dedicated hardware and
real-time constraints, that differentiate them from general in-
formation systems. Nevertheless, as far as we are concerned,
there is no complete, detailed view of how QM&QA have
been defined, evaluated, and used in the embedded systems
domain. Therefore, a study involving a broad, fair analysis
of this research topic seems to be quite relevant, considering
the impact that it could have on the quality of the embedded
systems being developed.

The main objective of this paper is to present a detailed
state of the art of QM&QA for embedded systems, the ap-
plication areas that they are intended for, and how QM&QA
have been evaluated. In addition, this work also aims at
identifying which quality attributes are considered as the
most relevant ones in the embedded systems context. For
this, we have adopted and applied the systematic review

523Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 543 / 646

technique [9], which allows for a complete, fair evaluation
of a topic of interest. Results have shown that most studies
are recent, indicating a growing interest and concern of the
community on the proposition of QM&QA for embedded
systems. Besides that, we have observed that there is a
lack of quality models that are widely adopted and used
by developers of embedded systems. Based on our findings,
we intend that this state of the art makes it possible to
identify interesting, important research topics for further
investigations.

The remainder of this paper is organized as follows.
Section II presents the conducted systematic review and de-
scribes its results. Section III presents the quality assessment
of these results. Section IV summarizes the main, important
findings of the systematic review and identifies perspectives
of future research. Finally, Section V presents our conclusion
and future work.

II. SYSTEMATIC REVIEW APPLICATION

Our systematic review was conducted from Novem-
ber/2012 to April/2013 by six persons: four software engi-
neering researchers, an embedded system expert, and a sys-
tematic review specialist. To conduct our systematic review,
we followed the process proposed by Kitchenham [9]. In
short, this process is composed of three main phases: plan-
ning, conduction, and reporting. These phases are explained
in more details during the presentation of our systematic
review.

A. Phase 1 - Planning

In this phase, the objectives and the systematic review
protocol are defined. The protocol consists of a predeter-
mined plan that describes the research questions and how the
systematic review will be conducted, i.e., the search strategy.
It also establishes the selection criteria, the data extraction
and synthesis method.

1) Research Questions: Aiming at finding possibly all
primary studies to understand and summarize evidences
about QM&QA for embedded systems, the following re-
search questions (RQ) were established:

• RQ1: How are QM&QA for embedded systems de-
fined?

– RQ1.1: What are the information sources used to
define QM&QA for embedded systems?

– RQ1.2: Are the QM&QA developed in a prescrip-
tive or descriptive manner?

• RQ2: What are the application areas where QM&QA
for embedded systems have been used?

– RQ2.1: Are the QM&QA designed for critical
embedded systems?

– RQ2.2: Which design approaches, such as service-
orientation or component-orientation, have been
adopted to develop these embedded systems?

• RQ3: How have QM&QA for embedded systems been
evaluated?

– RQ3.1: What is the level of evidence used to
evaluate the QM&QA?

– RQ3.2: In how many embedded systems the
QM&QA have been applied?

– RQ3.3: Have the QM&QA been used in actual
projects?

• RQ4: What are the main quality attributes for embed-
ded systems?

2) Search Strategy: In order to establish the search
strategy and considering the research questions, we ini-
tially identified two main keywords “Embedded System”
and “Quality Model”. We also identified related terms for
these keywords: “Embedded Software”, “Quality Attribute”,
“Non-functional Requirement”, “Non-functional property”,
and “Quality Requirement”. We considered the plural form
of all keywords and related terms. Besides that, only pa-
pers written in English were considered in our systematic
review, since it is the most common language in scientific
papers. We used the Boolean operator OR to link the main
terms and their synonyms; furthermore, all these terms were
combined using the Boolean operator AND. The final search
string was: (“Embedded System” OR “Embedded Systems”
OR “Embedded Software”) AND (“Quality Model” OR
“Quality Models” OR “Quality Attribute” OR “Quality
Attributes” OR “Non-functional Requirement” OR “Non-
functional Requirements” OR “Non-functional Property”
OR “Non-functional Properties” OR “Quality Requirement”
OR “Quality Requirements”).

In addition to the search string, we also defined a control
for our systematic review. For this, we considered two
previously known studies [7], [8]. They were our baseline to
check whether our search string was properly defined, i.e.,
if our string was able to find these studies in the publication
databases. Moreover, in order to select the most adequate
databases for our search, we considered the following criteria
discussed in [10]: content update (publications are regularly
updated); availability (full text of the primary study is avail-
able); quality of results (accuracy of the results obtained by
the search); and versatility export (since much information
is obtained through the search, a mechanism to export the
results is required). The selected databases to our systematic
review were: ACM [11], IEEE Xplore [12], ScienceDirect
[13], Scopus [14], Springer [15], and Web of Science [16].
According to Dybå et al. [17] and Kitchenham et al. [18],
these publication databases are the most relevant sources.
Aiming at not missing any important primary study, we also
considered the related works presented in the reference list
of the primary studies selected by our systematic review.

3) Inclusion and Exclusion Criteria: The selection crite-
ria are used to evaluate each primary study obtained from
the publication databases. These criteria make it possible
to include primary studies that are relevant to answer the
research questions and exclude studies that do not answer
them. Our inclusion criteria (IC) were:

• IC1: The primary study presents a quality model for
embedded systems;

524Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 544 / 646

• IC2: The primary study reports the use of a quality
model for embedded systems;

• IC3: The primary study proposes a set of quality
attributes; and

• IC4: The primary study is an empirical study that has
as outcome a set of quality attributes.

The established exclusion criteria (EC) were:
• EC1: The study does not propose or report QM&QA

for embedded systems;
• EC2: The study is a previous version of a more

complete paper about the same research; and
• EC3: The primary study is a table of contents, short

course description, copyright form or conference pro-
ceedings.

4) Data Extraction and Synthesis Method: In order to
extract data, we planned to build data extraction tables
related to each research question. These tables will syn-
thesize the results to facilitate drawing conclusions. During
the extraction process, the data of each primary study will
be independently extracted by two reviewers. In case of
disagreements, discussions will be conducted. To summarize
and describe the set of data, statistical synthesis method and
meta-analysis will be applied.

B. Phase 2 - Conduction
In this phase, we adapted the generic search string defined

in the Phase 1 according to the specificity of each publication
database. The search of primary studies was then performed
by searching for all primary studies that matched the adapted
search string. After removing primary studies indexed by
two or more publication databases, 308 primary studies
remained for analysis. Initially, the title and abstract of each
study were read and the selection criteria were applied. A
total of 15 studies were selected for further reading. These
studies were read in full by two reviewers and the selection
criteria were again applied. As a result, nine primary studies
were selected for the data extraction. Besides, we looked for
the related work (i.e., the main references) of each primary
study read in full. Among all related works evaluated, we
selected two relevant primary studies that had not been
previously identified [19], [20]. Finally, a set of 11 studies
was selected as the most relevant to our systematic review.

Table I shows all primary studies included, their publi-
cation year, and references (Ref.). It is important to notice
that only three primary studies found propose quality models
for embedded systems (i.e., they were included by IC1).
Therefore, most of studies are dedicated to provide sets
of quality attributes for embedded systems. Moreover, it is
possible to observe that 73% (i.e., 8/11) of the studies were
published in the last five years, which might indicate an
increasing interest for this topic of research.

C. Phase 3 - Reporting
This phase presents the analytical results of our systematic

review. Data extraction and synthesis of knowledge consid-
ering each research question are discussed below.

TABLE I. QM&QA FOR EMBEDDED SYSTEMS

ID Author Year Criteria Ref.
S1 Wijnstra, J.G. 2001 IC3 [19]
S2 Purhonen, A. 2002 IC3 [21]
S3 Åkerholm, M. et al. 2004 IC4 [20]
S4 Choi, Y. et al. 2008 IC1 [22]
S5 Sherman, T. 2008 IC4 [8]
S6 Carvalho, F. and Meira, S.R.L. 2009 IC2 [23]
S7 Paulitsch, M. et al. 2009 IC3 [24]
S8 Peper, C. and Schneider, D. 2009 IC3 [25]
S9 Jeong, H.Y. and Kim, Y.H. 2011 IC1 [26]
S10 Guessi, M. et al. 2012 IC4 [7]
S11 Ahrens, D. et al. 2013 IC1 [27]

1) RQ1 - Research Question 1: This research question
aims at understanding how QM&QA for embedded sys-
tems have been defined. For this, we have investigated
which sources of information are most used to develop the
QM&QA and whether they are defined in a descriptive or
prescriptive way. Descriptive primary studies depict how
quality has been addressed in systems of this domain. On the
other hand, prescriptive primary studies introduce guidelines
of how quality should be addressed in embedded systems.
Table II summarizes the sources of information and methods
of development used in each primary study.

We noticed that most of QM&QA for embedded systems
(54.5%) were developed from documental analysis, i.e., us-
ing information collected in documents associated to existing
systems, such as system requirement documents. Moreover,
personal experience and literature reviews were considered
in 36.4% and 27.3% of the primary studies, respectively.
Developed systems, standards and regulations, interviews,
questionnaires, existing software architectures, and on-going
projects were also considered in at least one primary study.
Furthermore, it is possible to observe that there is no
predominance of prescriptive or descriptive studies. We also
identified that there is no correlation between the informa-
tion source and prescriptive/descriptive QM&QA. Thus, the
choice of information sources may be more related to the
context in which the model was defined than the purpose
for what it was intended.

2) RQ2 - Research Question 2: This research question
investigates for which application areas QM&QA for embed-
ded systems have been developed. To answer this question,
we collected data regarding the application areas of the
embedded systems, as well as the approaches used to design
these systems. We also collected data to discover whether
QM&QA were designed to critical embedded systems. Ta-
ble III summarizes the obtained results.

Regarding this research question, it is possible to point
out that several studies (S5, S6, S9, and S10) are concerned
about quality of embedded systems in general, i.e, without
a specific application area. QM&QA for embedded systems
for the transportation area can also be highlighted (S3, S7,
and S11). With respect to the design approaches, we found
out that they are often related to component-based embedded
systems, as presented in studies S3, S4, S6, S9, and S11. It

525Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 545 / 646

TABLE II. INFORMATION SOURCES AND METHODS OF DEVELOPMENT USED TO DEFINE QM&QA

Source of information S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 (#) (%)
Documental analysis X X X X X X 6 54.5
Personal experience X X X X 4 36.4
Literature review X X X 3 27.3
Developed systems X X 2 18.2
Standards and regulations X X 2 18.2
Interviews X X 2 18.2
Questionnaires X X 2 18.2
Existing architectures X 1 9.1
On-going project X 1 9.1
Method of development S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 (#) (%)
Prescriptive study X X X X X 5 45.5
Descriptive study X X X X X X 6 55.5

TABLE III. APPLICATION AREAS AND DESIGN APPROACHES OF
THE QM&QA

ID Application Area Design Approaches Critical
System

S1 Medical imaging Product Lines Yes
S2 Digital signal

processing
Generic No

S3 Automotive Components Yes
S4 Digital TV Components No
S5 Generic Generic Both
S6 Generic Components Both
S7 Aviation Integrated Modular

Architecture
Yes

S8 Ambient intelli-
gence

Service Oriented Ar-
chitecture

Yes

S9 Generic Components Yes
S10 Generic Generic Both
S11 Automotive Components Yes

is also possible to identify QM&QA that are not limited to
a specific type design approach, such as presented in studies
S2, S5, and S10. Furthermore, we found out that most of
primary studies (nine out of 11) are dedicated to critical
embedded systems. This result was expected and reinforces
the importance and interest in the quality of this type of
systems.

3) RQ3 - Research Question 3: This research question
investigates on the evaluation of the QM&QA for embed-
ded systems available in the literature. For answering this
question, we collected data about the level of evidence
used in the evaluation, the number of systems in which
these QM&QA have been applied, and whether they are
in actual use or not. The following levels of evidence were
considered: industrial evidence (i.e., actual use of QM&QA
in industry), industrial studies (i.e., QM&QA developed
in the industry); academic studies (e.g., controlled lab ex-
periments or evidence based results); expert opinions or
observations; demonstration or working out toy examples;
and no evidence. Table IV presents the information about the
evaluation of the QM&QA for embedded systems. Studies
that do not report whether the proposal is in actual use or
not are represented as Not Reported (NR).

It is possible to observe that only three studies (S4, S8,
and S11) present QM&QA that were evaluated through

TABLE IV. OVERVIEW OF THE EVALUATION OF QM&QA FOR
EMBEDDED SYSTEMS

ID Level of Evidence Number of
Systems

In
use

S1 No evidence NR Yes
S2 Academic studies 0 NR
S3 Expert opinions or observations NR NR
S4 Industrial evidence 2 Yes
S5 No evidence NR NR
S6 Expert opinion or observations 0 NR
S7 Expert opinion or observations NR NR
S8 Demonstration or toy programs 1 NR
S9 No evidence NR NR
S10 Academic studies NR NR
S11 Industrial studies 1 NR

their application in embedded systems. Five studies were
evaluated using expert opinion (S3, S6, and S7) or academic
studies (S2 and S10). Three studies do no present informa-
tion about their evaluation (S1, S5, and S9). However, it is
worth highlighting that QM&QA proposed in S1 and S9 are
descriptive studies that emerged from personal experience
(see Table II) and may not need an explicit evaluation.
Besides that, it can be noticed that, among the QM&QA
evaluated using embedded systems, only primary study S4
reports its application at least twice. Regarding the adoption
of QM&QA, only S1 and S4 studies indicate that their pro-
posals are currently supporting the evaluation of embedded
systems. The other included studies do not present evidences
about their current adoption. Despite these QM&QA may be
in actual use, no publication reporting this information was
found in our systematic review.

4) RQ4 - Research Question 4: This research question in-
vestigates the main quality attributes for embedded systems.
Table V presents the main quality attributes identified in this
review and the primary studies that address these attributes.

We identified 18 major quality attributes related to em-
bedded systems. These attributes are those addressed by at
least 25% of the primary studies, i.e., three or more studies.
It is observed that the main quality attributes are related to
maintainability and reliability. This result seems coherent,
since an embedded system involves the coordinated project
of software and hardware. Besides that, the maintainability
is a challenging issue of the development of this type of

526Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 546 / 646

TABLE V. QUALITY ATTRIBUTES OF EMBEDDED SYSTEMS

Attributes (#) (%) Primary studies
Maintainability 10 91 S1, S2, S3, S4, S5, S6, S7, S9,

S10, S11
Reliability 10 91 S1, S3, S4, S5, S6, S7, S8, S9,

S10, S11
Security 7 64 S3, S4, S5, S6, S7, S8, S9
Safety 7 64 S1, S3, S5, S6, S7, S10, S11
Functionality 7 64 S1, S4, S5, S6, S8, S9, S10, S11
Efficiency 7 64 S2, S3, S4, S5, S6, S10, S11
Portability 7 64 S1, S2, S4, S6, S9, S10, S11
Testability 7 64 S1, S3, S5, S6, S7, S9, S11
Performance 5 45 S2, S5, S7, S10, S11
Usability 5 45 S3, S4, S5, S6, S9
Availability 4 36 S1, S5, S9, S11
Extensibility 4 36 S1, S2, S3, S11
Reusability 4 36 S2, S4, S6, S11
Cost 4 36 S1, S2, S5, S6
Fault
tolerance

3 27 S2, S9, S10

Recoverability/
Repairability

3 27 S6, S9, S11

Interoperability 3 27 S1, S9, S10
Flexibility 3 27 S3, S5, S6

systems. Embedded systems are also often used in safe-
critical context and, therefore, they must be reliable. Most of
studies also address security, safety, functionality, efficiency
(i.e., efficient consumption of hardware resources, such as
processor, memory, and battery), portability (i.e., ability
of being transferred and used in a different environment),
and testability as important quality attributes. Other quality
attributes addressed by less the half of the studies were: per-
formance, usability (i.e., ability of being understood, learned,
configured, and used), availability, extensibility, reusability,
fault tolerance, recoverability (repairability), interoperability,
and flexibility.

III. QUALITY ASSESSMENT

In order to analyze the quality of the included primary
studies, we developed a checklist containing seven questions
based on the quality assessment created by Kitchenham et
al. [28]. Table VI presents the quality assessment criteria and
the scores obtained by the primary studies. For each question
in the checklist, the following scale-point was applied: the
study fully meets a given quality criterion (1 point), the study
meets the quality criterion in some extent (0.5 point), and the
study does not meet this quality criterion (0 point). Thus, the
total quality score fell into the range between: 0 - 1.0 (very
poor); 1.1 - 2.0 (poor); 2.1 - 3.0 (fair); 3.1 - 4.0 (average), 4.1
- 5.0 (good), 5.1 - 6.0 (very good), and 6.1 - 7.0 (excellent).
It can be noticed that eight out of 11 studies were considered
as having good quality. On the other hand, two studies were
considered as having poor quality. Despite of that, these
two studies were not excluded from this review because
we were interested in covering all publications available
in the research area. It is also important to highlight that
studies considered as having poor quality did not present
information about evaluation, limitation of their results, and
perspectives of future research.

IV. BRIEF DISCUSSION

After carrying out the systematic review, a first finding
was that QM&QA are often defined using two or more
different sources of information. This fact may evidence
that the establishment of QM&QA is a complex task and
requires broad knowledge about the domain. This review
also points out that, among the studies that propose generic
QM&QA (i.e., QM&QA that can be applied to any type of
embedded system), only study S9 is described in the format
of a quality model (i.e., included by IC1), but it is considered
to have a poor quality. Therefore, contributions that provide
widely accepted quality models for embedded systems are
still necessary.

In parallel, QM&QA could be used as means to con-
duct quality evaluation of embedded systems. This review
also pointed out that few QM&QA were evaluated using
evidences obtained in the industry or in real embedded
systems. Thus, more studies reporting experiences of eval-
uating embedded systems might increase the reliability of
the QM&QA and also provide important feedback to im-
prove them. In this scenario, this topic of research can be
considered as a promising one and results of this review can
be used as a starting point. Notice that the set of attributes
can also be different, including a different distribution, if we
considered specific application areas, such as automotive and
robotics. Finally, we identified that only study S11 proposes
a set of metrics related to its QM&QA. Therefore, we believe
that the identification of metrics associated to QM&QA is
also an important topic of research, and it can contribute to
provide some measurement to the development of embedded
systems.

V. CONCLUSION AND FUTURE WORK

The adoption of quality models and the identification of
most important quality attributes can contribute to improve
the quality, which is so needed in embedded systems. In
this perspective, the main contribution of this work is to
present a detailed state of the art on the QM&QA available
in literature, the way they were defined and evaluated, and
the main quality attributes addressed by them. For this, we
conducted the steps of a systematic review. As future work,
we intend to make a more specific investigation of this
research area, for instance, to identify metrics associated to
each quality attribute. Furthermore, we intend to consolidate
the results of this systematic review in a general quality
model for embedded systems, aiming at contributing to a
more effective development of such systems.

VI. ACKNOWLEDGMENTS

This work is supported by Brazilian funding agen-
cies São Paulo Research Foundation - FAPESP (Grant
N.: 2011/06022-0 and 2011/23316-8), Capes/Nuffic (Grant
N.: 034/12), and CNPq (Grant N.: 142099/2011-2,
474720/2011-0, and 239981/2012-0), as well as the INCT-
SEC (Grant N.: 573963/2008-8 and 2008/57870-9).

527Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 547 / 646

TABLE VI. QUALITY ASSESSMENT OF THE INCLUDED PRIMARY STUDIES

Source of information S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
Q1: There is a rationale for why the study was
undertaken

1 1 1 1 1 1 1 1 1 1 1

Q2: It presents an overview about the state of the
art of the area in which the study is developed

0.5 1 1 1 0.5 1 1 0.5 0.5 1 1

Q3: There is an adequate description of the context
in which the work was carried out

0.5 0.5 1 1 1 0.5 1 1 0 1 1

Q4: It provides a clear justification about the meth-
ods used during the study.

0 0.5 0.5 0.5 0.5 0.5 1 1 0 1 0.5

Q5: There is a clear statement of contributions and
has sufficient data been presented to support them

0 1 0.5 1 0.5 0.5 0.5 1 0.5 1 1

Q6: It discusses the credibility and limitations of
their findings explicitly

0 0.5 0 1 0 0.5 1 1 0 1 1

Q7: It discusses perspectives of future works based
on the study contributions

0 0.5 1 1 0 0.5 1 1 0 0 1

Study overall score 2 5 5 6.5 3.5 4.5 6.5 6.5 2 6 6.5
Study overall score (%) 29 71 71 93 50 64 93 93 29 86 93

REFERENCES

[1] W. Wolf, Computers as Components – Principle of Embedded
Computing System Design, 2nd ed. Morgan Kaufman, 2008.

[2] P. Liggesmeyer and M. Trapp, “Trends in embedded software
engineering,” in IEEE Software, vol. 26, no. 3, 2009, pp. 19–
25.

[3] A. Aguiar, S. Filho, F. Magalhaes, T. Casagrande, and F. Hes-
sel, “Hellfire: A design framework for critical embedded
systems’ applications,” in ISQED’10, San Jose, USA, 2010,
pp. 730 –737.

[4] J. McCall, P. Richards, and G. Walters, Factors in Software
Quality. Nat’l Tech. Information Service, 1977.

[5] B. W. Boehm, J. R. Brown, and M. Lipow, “Quantitative
evaluation of software quality,” in ICSE’76, San Francisco,
USA, 1976, pp. 592–605.

[6] ISO/IEC, “Systems and software engineering - Systems and
software Quality Requirements and Evaluation (SQuaRE) –
System and software quality models,” ISO/IEC, Tech. Rep.
25010/2011, 2011.

[7] M. Guessi, E. Y. Nakagawa, F. Oquendo, and J. C. Mal-
donado, “Architectural description of embedded systems: a
systematic review,” in ISARCS’12, Bertinoro, Italy, 2012, pp.
31–40.

[8] T. Sherman, “Quality attributes for embedded systems,” in
Advances in Computer and Information Sciences and Engi-
neering, T. Sobh, Ed. Springer, 2008, pp. 536–539.

[9] B. Kitchenham, T. Dybå, and M. Jørgensen, “Evidence-based
software engineering,” in ICSE’04, Edinburgh, Scotland, UK,
2004, pp. 273–281.

[10] O. Dieste, A. Grimán, and N. Juristo, “Developing search
strategies for detecting relevant experiments,” in Empirical
Software Engineering, vol. 14, no. 5. Hingham, MA, USA:
Kluwer Academic Publishers, 2009, pp. 513–539.

[11] ACM Digital Library, [Online]. Available: http://dl.acm.org/
- Accessed in 08/18/2013.

[12] IEEE Xplore, [Online]. Available: http://ieeexplore.ieee.org/
- Accessed in 08/18/2013.

[13] ScienceDirect, [Online]. Available:
http://www.sciencedirect.com/ - Accessed in 08/18/2013.

[14] Scopus, [Online]. Available: http://www.scopus.com/ - Ac-
cessed in 08/18/2013.

[15] Springer, [Online]. Available: http://www.springerlink.com -
Accessed in 08/18/2013.

[16] Web of Science, [Online]. Available:
http://www.isiknowledge.com/ - Accessed in 08/18/2013.

[17] T. Dybå, T. Dingsoyr, and G. K. Hanssen, “Applying system-
atic reviews to diverse study types: An experience report,” in
ESEM’07, Madrid, Spain, 2007, pp. 225–234.

[18] B. Kitchenham and S. Charters, “Guidelines for performing
systematic literature reviews in software engineering,” Keele
University and Durham University Joint Report, Tech. Rep.
EBSE 2007-001, 2007.

[19] J. Wijnstra, “Quality attributes and aspects of a medical
product family,” in HICSS’01, Maui, Hawaii, 2001, pp. 1–
10.

[20] M. Åkerholm, J. Fredriksson, K. Sandström, and I. Crnkovic,
“Quality attribute support in a component technology for
vehicular software,” in SERPS’04, Linkoping, Sweden, 2004,
pp. 1–9.

[21] A. Purhonen, “Quality attribute taxonomies for DSP software
architecture design,” in PFE’01, Bilbao, Spain, 2002, pp. 238–
247.

[22] Y. Choi, S. Lee, H. Song, J. Park, and S. Kim, “Practical S/W
component quality evaluation model,” in ICACT’08, Phoenix
Park, South Korea, 2008, pp. 259–264.

[23] F. Carvalho and S. Meira, “Towards an embedded software
component quality verification framework,” in ICECCS’09,
Potsdam, Germany, 2009, pp. 248–257.

[24] M. Paulitsch, H. Ruess, and M. Sorea, “Non-functional
avionics requirements,” in Leveraging Applications of Formal
Methods, Verification and Validation, 2009, vol. 17, pp. 369–
384.

[25] C. Peper and D. Schneider, “On runtime service quality mod-
els in adaptive ad-hoc systems,” in SINTER’09, Amsterdam,
The Netherlands, 2009, pp. 11–18.

[26] H. Y. Jeong and Y. H. Kim, “A quality model of lightweight
component for embedded system,” in Applied Mechanics and
Materials, vol. 121-126, 2011, pp. 4907–4911.

[27] D. Ahrens, A. Frey, A. Pfeiffer, and T. Bertram, “Objective
evaluation of software architectures in driver assistance sys-
tems,” in Computer Science - Research and Development,
vol. 28. Springer-Verlag, 2013, pp. 23–43.

[28] B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner,
J. Bailey, and S. Linkman, “Systematic literature reviews
in software engineering - a systematic literature review,” in
Information and Software Technology, vol. 51, no. 1, Newton,
MA, USA, 2009, pp. 7–15.

528Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 548 / 646

 A Counter Rocket, Artillery and Mortar System

with Laser Simulation Software

Maria Epp, Hendrik Rothe

Institute of Automation Technology,

Measurement and Information Technology

Helmut-Schmidt-University

Hamburg, Germany

maria.epp, rothe@hsu-hh.de

Abstract — Several countries develop laser weapons to use

them for protecting critical infrastructures. Before the weapon

is used for protection, the decision must be made, whether it is

beneficial to use a laser instead of existing weapons. In order to

make this decision, one must run several tests under varying

conditions. These tests are not only very expensive, but also

difficult to organize. This paper describes the Counter-RAM

with laser simulation software. It simulates different attacks of

rockets, artillery or mortar against the protected area. The

simulation can simulate attack on the protected territory, the

detection and tracking of missiles. It can classify the projectile

as danger and simulate the intercepting of this projectile. This

paper describes the development of the simulation.

Keywords-C-RAM; simulation; RAM intercept; Laser

weapon system

I. INTRODUCTION

Mortars and rockets are common weapons of insurgents.
The inexpensive projectiles are fired at the defended area,
where they can damage the infrastructure and kill or injure
numerous people [1].

A Counter Rocket, Artillery and mortar system (C-RAM)
is a defense system for providing warnings to vulnerable
assets and for intercepting RAM threats in the air [2]. The
system considered in this paper is equipped with a radar
system and high energy laser weapons. Fig. 1 demonstrates
an attack and engagement scenario: A launched mortar is
detected by an acquisition radar. During the tracking, the
trajectory of the projectile is predicted. If the projectile is

classified as a target, a laser weapon is assigned to it. Once
the laser is aligned to the target, optical tracking of the
projectile is started. The laser weapon is activated and the
target is destroyed in flight [3].

Only projectiles are modeled in the simulation, which are
unguided and do not have sensors, that direct the flight path.
The average flight time of such projectile is 25-35 seconds.

In the simulation, the projectile mass is concentrated at
one point and is affected only by the force of gravity. Fig. 2
shows the simulated trajectory of a projectile: is the

muzzle velocity of the projectile, ϑ0 its elevation, is the
force of gravity, is the velocity, ω is the angle of sight.

The concept of the simulation is presented in [4]. Knapp
and Rothe [4] describes the basic idea of a simulation for
CRAM with laser weapon. This idea has been adapted and
for this simulation and developed.

Section II describes the program flow of the simulation.
The listing of the selected tools for programming can be
found in Section III. Section IV will talk about possible
advancements and extensions of the program.

II. SIMULATION DESCRIPTION

The simulation is split into two separate parts. The first
part simulates an attack of a protected asset and the second
part performs the defense of this area.

The software is divided into several individual modules.

Figure 2: Trajectory of an unguided projectile

Figure 1: Typical engagement scenario (adapted from [3])

529Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 549 / 646

There is an internal database and a Graphic User
Interface (GUI). A user has two options to start the
simulation:

1) Enter all new relevant parameters for simulation via
the GUI. Before the simulation starts, the parameters will be
saved in the database.

2) Load existing simulation parameters. The
parameters can be changed and saved as new simulation data
or the old data set can be overwritten.
The workflow of the simulation is illustrated in Fig. 3. The
simulation starts by firing of first projectile.

A. RAM Launch

This module simulates an attack on the protected area.
All RAMs are saved in a list and are sorted by firing

time. At the beginning of the simulation, the trajectory for
each projectile in the list is calculated. As of now, only
vacuum trajectories are taken into account in the simulation.

The –coordinates of the projectile, with respect
to time, are calculated using equations (1), (2), and (3) [5].

 (1)

 (2)

 (3)

Once the first RAM in the list is launched, the simulation

is started.

B. RAM Detection

Hence, the simulation of the defense of the asset begins.
The detection radar is located in the middle of the area,

which is to be defended. The radar has the angle of sight [°],
the radar range [m], and the detection rate [s]. An arbitrary
number of RAMs can be detected by the radar. To determine
whether the projectile is inside the radar range, the distance
between the radar position (xr, yr, zr) and the current position
of the projectile (xp, yp, zp) is calculated by using equation
(4). The calculated distance is compared to the radar range. If
the distance is less than the radar range, the projectile is
classified as detected.

 (4)

C. RAM Tracking

As soon as a projectile is detected, the tracking of its
trajectory starts. The tracking rate is defined by the user. An
arbitrary number of projectiles can be tracked
simultaneously.

The radar data is used in the trajectory prediction model
[6, 7]. During tracking, the time and coordinates of the
impact point are calculated [4], recurrently.

The prediction model needs several tracking datasets to
calculate the trajectory. Therefore, only the projectile is
tracked at first. Once enough data is available the first
prediction coordinates and prediction times are determined.
The more tracking data is available, the more accurate the
predicted impact point will be calculated.

D. Interception Planning

Fig. 4 shows a defended area, which is split into several
districts. Each district has a different priority. As soon as the
first predicted impact point has been calculated, it is decided
whether the projectile is a threat for the protected area. It is

Figure 3: Workflow of the simulation

Figure 4: Defended area and impact points of the projectile with bursting

radius: 1-4 are priorities of districts. 1is highest, 4 is lowest priority.

530Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 550 / 646

determined, whether the calculated point of impact, with its
bursting radius taken into account, is inside the defended
zone. If the bursting radius is located outside of the area, it is
discarded. If the radius intersects with districts of several
priorities, the highest priority will be assigned to the threat
level of the projectile.

If more than one projectile is classified as a threat, these
will be saved in a list and sorted by threat level.

E. Engagement Planning

If more than one projectile is identified as a threat, it

must be decided in which order the projectiles should be

fought. In the simulation software, the user has the choice

between three engagement principles:

1) Interception by first in first out (FIFO) principle:

The first detected projectile will be intercepted first.

2) Interception by intercept time: The projectile with

the shortest intercept time will be intercepted first.

3) Interception by priority of projectile: The projectile

with the highest priority in the list will be intercepted first.

F. Laser Assignment

After the order of engagement is determined, a laser

weapon must be allocated to each projectile.

The weapon assignment problem is a fundamental

problem of battle management. The problem is to assign

weapons to RAM-threats in an optimal way. The expected

damage to the protected area has to be minimized [8, 9].

At that moment, the weapon, that can be directed to the

target the fastest, will be chosen. During the engagement

analysis, the laser weapon is assigned to a threat. The laser

can be assigned to another threat as long as it is not

activated. Once the laser is activated, it is blocked for other

threats. The projectile is destroyed within 3-8 seconds of

engagement time, depending on distance to the threat.

Because the more is the projectile to the laser weapon, the

longer laser takes to heat the threat, due to the scattering of

laser light.

G. Program End

The program terminates, once all projectiles from the list

of RAMs have been processed. The number and the fighting

time of the intercepted projectiles are displayed and

recorded. For the impacted projectiles in the protected area,

the fraction of damage is calculated. For each of the laser

weapons, the consumed energy is recorded.

III. SIMULATION DESIGN

1) Time continuous simulation: The program is based
on time continuous simulation to make the simulation
realistic. Thereby, the variables of the program are varied at
defined points of time. At the beginning, the user can define
the time step of the simulation via the GUI module. Each
module is started at defined time steps.

2) Material:
a) C#: This is an object-oriented programming

language, which has been developed by Microsoft. It is a

widespread programming language which is why there are
many internet communities to help with the programming,
and also there is good support from Microsoft. Visual Studio
2012 [10] has been chosen as the programming environment.

b) NUnit: This is an open source unit testing
framework from Microsoft. NUnit tests the modules of
computer programs for correct functionality.

c) Windows Presentation Foundation (WPF): The
GUI is developed with WPF [11]. It is a graphic framework
for Windows-based applications. WPF uses DirectX [11].
WPF is based on the Extensible Application Markup
Language (XAML).

IV. CONCLUSION

Each module is tested with NUnit individually. Once the

modules are fully functional, the next step is to combine all

modules and to test common systems with several different

scenarios.

The existing simulators combat the approaching targets

with artillery [12, 13]. The David’s Sling System is the state

of the art by C-RAM systems, based on interception by

artillery [14]. The in this paper described system simulates

the fighting of RAMs with laser weapon.

After a number of tests have been performed, the

statement must be made whether or not it would be

beneficial to adopt the laser weapon as a defense weapon.

REFERENCES

[1] M. Libeau, “Laser Counter Rocket, Artillery, and Mortar (C-

RAM) Efforts,” NAVAL SURFACE WARFARE CENTER
DAHLGREN DIV VA, January 2012, pp. 82–85.

[2] C. Corbett, B. Beigh, and S. S. Thompson, “Counter-rocket,
artillery, and mortar (C-RAM) joint intercept capability:
shaping the future joint force,” Fires, March-April 2012, pp.
46–54.

[3] J. Schwartz, G. T. Wilson, and J. Avidor, “Tactical High
Energy Laser,” SPIE Proceedings on Laser and Beam Control
Technologies, vol. 4632, January 21, 2002.

[4] M. Knapp and H. Rothe, “Concept for Simulating
Engagement Strategies for C-RAM Systems using Laser
Weapons,” Conference on Defense and Military Modeling &
Simulation. San Diego, CA, 2012.

[5] D. E. Carlucci and S. S. Jacobson, “Ballistics: Theory ans
Design of guns and ammunition,” CRC Press, 2008, pp. 195-
202.

[6] M. Graswald, I. Shaydurov, and H. Rothe, “Analysis of
weapon systems protecting military camps against mortar
fire,” Computational ballistics III, Southampton: WIT Press,
2007, pp. 21-30.

[7] I.Shaydurov and H. Rothe, “Hitting with the first shot:
miniaturized fire control computer with digital signal
processors” Duesseldorf: Wiedemeier & Martin, vol. 17,
2007, pp. 32-36.

[8] R. K. Ahuja, A. Kumar, K. J. James, and J. B. Orlin, “Exact
and Heuristic Methods for the Weapon Target Assignment
Problem,” MIT Sloan School of Management, Working Paper
4464-03, July 2003.

[9] A. Toet and H. de Waard, “The Wepon-Target Assignment
Problem,” TNO Human Factors Research Insitut, February,
1994.

531Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 551 / 646

[10] Microsoft,
http://www.microsoft.com/visualstudio/eng/products/visual-
studio-ultimate-2012, 2013

[11] Microsoft,
http://msdn.microsoft.com/library/vstudio/ms754130, 2013

[12] M. Knapp, M. Graswald, and H. Rothe “Simulation for
Detrmining Engagement Strategies for C-RAM systems,”
Proceeding of the 2011 Summer Computer Simulation
Conference, 2011, pp. 168-174

[13] M. Graswald, I. Shaydurov, and H. Rothe. "Analysis of
weapon systems protecting military camps against mortar
fire," Computational Ballistics III, Ashurst (2007).

[14] “David’s Sling System – First Successful Interception Test,”
Israel Defense,
http://www.israeldefense.com/?CategoryID=483&ArticleID=
1784 , 2012.

532Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 552 / 646

Towards Cloud-based Collaborative Software Development:
A Developer-Centric Concept for Managing Privacy, Security, and Trust

Roy Oberhauser
Computer Science Dept.

Aalen University
Aalen, Germany

roy.oberhauser@htw-aalen.de

Abstract—Cloud-centric collaboration in (global) software
development is gaining traction, resulting in new development
paradigms such as Tools-as-a-Service (TaaS). Yet both within
and between clouds, there are associated security and privacy
issues to both individuals and organizations that can
potentially hamper collaboration. In this paper, an inter-cloud
security and privacy concept for heterogeneous cloud
developer collaboration environments is described that
pragmatically addresses the distributed collection, storage,
transmission, and access of events and data while giving
individuals fine-granularity control over the privacy of their
collected data. In a case study, the concept was implemented
and evaluated by adapting an existing collaborative
development and measurement infrastructure, the Context-
aware Software Engineering Environment Event-driven
framework (CoSEEEK). The results showed its practicality
and technical feasibility while presenting performance
tradeoffs for different cloud configurations. The concept
enables infrastructural support for privacy, trust, and
transparency within teams, and can support compliance with
privacy regulations in such dynamic collaborative
environments.

Keywords-cloud-based software engineering environments;
cloud-based software development collaboration; global software
development; privacy; security; trust

I. INTRODUCTION
Global software development (GSD) [1] is increasingly

taking advantage of cloud-based software applications and
services [2] and realizing its collaboration potential. Data
acquired and utilized during the software development and
maintenance lifecycle is no longer necessarily locally
controlled or even contained within an organization, but may
be spread globally among various cloud providers with the
acquired data retained indefinitely. Tools-as-a-Service
(TaaS) [3] and cloud mashups will enable powerful new
applications that utilize the acquired SE data [4]. And while
the technical landscape is changing, the corporate landscape
is also. A 2005 survey of American corporations conducted
by the American Management Association showed that 76%
monitored employee Internet connections, 50% stored and
reviewed employee computer files, and 55% retained and
reviewed email messages, with a rapidly increasing trend [5].

The ability to measure and minutely observe and track
software developers during their work is becoming
technically and economically viable to employers, managers,

colleagues, virtual teams, and other entities. While metrics
can be useful for personal improvement (cp. Personal
Software Process), abuse is also possible (consider misuse of
public profiling). While software services and apps for the
public typically attend to user privacy due to their longevity,
mass accessibility, and legal scrutiny, relatively little
attention has been paid to the privacy needs of software
developers, an estimated 17 million worldwide [6].

Consequently, privacy is becoming a looming concern
for software developers that faces unique technical
challenges that affect collaboration: it involves a highly
dynamic technical environment typically at the forefront of
software technology and paradigms (e.g., new languages,
compilers, or platforms), uses diverse tools ([3] identifies
384) and heterogeneous project-specific tool chains (e.g.,
application lifecycle management, version control systems,
build tools, integrated development environments, etc.), it is
project-centric (unique, short-lived undertakings), it may
involve multinational coordination (offshoring), etc.

Yet the trust climate plays a vital role in the success of
virtual and distributed teams [7], and trust and transparency
are considered vital values for effective teams and
collaboration [8][9]. Where trust exists (cp. Theory Y [10]),
collected data can be utilized collaboratively to enhance team
performance [10], for instance by utilizing event data to
coordinate and trigger actions and to provide insights,
whereas where data is misused as an instrument of power,
monitoring, or controlling (cp. Theory X [10]), individuals
require mechanisms for protection. Since the technical
development infrastructure cannot know a priori what trust
situation exists between some spectrum of complete trust to
complete distrust, infrastructural mechanisms should support
collaboration within some spectrum, while allowing the
individuals and organizations to adapt their level of data
transparency to the changing trust situation.

Privacy is control over the extent, timing, and
circumstances of sharing oneself. Cloud service users
currently have few personal infrastructural mechanisms for
retaining and controlling their own personal data. Diverse
privacy regulations are applicable within various geographic
realms of authority. Various (overlapping) (multi-)national
laws and regulations may apply to such (global)
collaborative cloud contexts. For instance, Germany has a
Federal Data Protection Act, the European Union has a Data
Protection Directive 95/46/EC, and within the United States,
various states each have their own internet privacy laws.

533Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 553 / 646

Many privacy and security principles are typically involved
including notice, consent, disclosure, security, earmarking,
data avoidance, data economy, etc. Various challenges for
security and privacy in cloud environments remain [11][13].
In the interim, pragmatic infrastructural approaches are
needed to deal with the issues in some way.

The main contribution of this paper is to elucidate
requirements for and describe a solution concept that
pragmatically addresses various privacy and security
concerns in cloud-based dynamic heterogeneous
collaborative development environments (CDE). It is based
on service layering, introduces distributed cloud-based
datasteading for individuals, and mediates trust with brokers.
Its technical feasibility and performance tradeoffs were
investigated in a case study.

This paper is organized as follows: the next section
details and provides some justification for the assumptions
and requirements for a solution, and Section 3 describes
related work. In Section 4, the solution concept is introduced,
and the following section provides details of a technical
implementation based on the concept. Evaluation results are
presented in Section 6, which is then followed by a
conclusion and description of future work.

II. REQUIREMENTS
The following requirements, assumptions, or constraints

(denoted by the prefix R: in italics) were elicited from the
primary problems, goals, and challenges introduced in the
preceding section, and considered to be generally applicable
for any conceptual solution. They are summarized here to
highlight key considerations in the solution concept.

Multi-cloud configurability (R:MCC): private cloud
(R:PrC), public cloud (R:PuC), and community cloud
(R:CoC) support for a wide array of deployment options.
Provider-specific cloud API independence (R:PAI) to
support wide applicability and avoid provider lock-in. Cloud
compatibility (R:CCO) with current public cloud provider
and private cloud APIs and services, meaning no exotic
solutions requiring special configurations that would limit
usage. Single tenancy (R:ST) in the personal (developer's)
cloud to reduce risk (e.g., to avoid a misconfiguration
compromising a much larger set of tenants simultaneously)
and avoid access by an organizational administrator, which
involves an additional trust issue.

Disclosure (R:D): three fundamental levels of shall be
supported: non-disclosure, anonymized disclosure, and
personally-identifiable disclosure to specific requestors.
Sensor Privacy (R:SP): It is assumed that any client-side and
server-side sensors, (e. g., version control system sensors)
distribute personally-identifiable events according to a
privacy concept. Entity-level privacy control (R:EPC):
granularity of privacy is controllable by any and all entities
involved (persons, organizations).

Restricted network access (R:RNA) to collaboration
participants, e.g., via Virtual Private Networks (VPN), to
reduce cloud accessibility to collaborators only. Secure
communication (R:SC) to protect internal data transmission,
even within a VPN for personal privacy. Basic security
mechanisms (R:BSM): Reliance on widely-available off-the-

shelf security mechanisms (e.g., HTTPS), without any
dependence on specialized or exotic hardware or software
security platforms (e. g., Trusted Platform Module) or
research-stage mechanisms that would constrain its
practicality. Beyond (R:SC), encryption (R:ENC) can protect
data accessibility and storage.

Trusted code implementation (R:TCI): Open source
and/or independent code audits together with secure
distribution mechanisms (e.g., via digital signatures from a
trusted website) provide assurance that the code
implementation can be trusted. Additionally, remote runtime
code integrity verification (R:CIV) shall be supported to
allow agents (e.g., automated temporally random auditing
requests or manually initiated user requests) to detect any
tampering with the implementation, sensors, configuration,
or the compromise of any privacy safeguards.

In summary, a primary tenet is that organizations and
teams want to support privacy freedom for individuals,
support and value self-organizing teams, and not hinder
electronic collaboration and communication. While together
these requirements are in no way sufficient or complete, they
nevertheless provide a practical basis and can be useful for
furthering discussion.

III. RELATED WORK
In the area of global software development, [3] discusses

support for TaaS and [14] Software-as-a-service in
collaborative situations. Neither go into detail on various
privacy issues, nor is support for various aforementioned
requirements, e.g., individual (R:EPC). Examples industrial
offers for cloud-based collaboration include Atlassian
OnDemand and CollabNet CloudForge. Individual (R:EPC,
R:D) do not appear to be supported.

Work on more general multicloud collaboration includes
[4], which similarly supports opportunistic collaboration
without relying on cloud standardization based on the use of
proxies. However, aspects such as (R:BSM, R:CI, R:EPC)
were not considered and a technical implementation was not
investigated.

Work in the area of standardization and reference
architecture includes [15], which mentions privacy but fails
to prescribe a solution. [16] lists various security and
interoperability standards and their status, but their maturity
and market penetration considering (R:MCC) and (R:CCO)
remain issues.

Various general cloud security mechanisms have been
proposed. Privacy as a Service (PasS) [17] relies on secure
cryptographic coprocessors to provide a trusted and isolated
execution and data storage environment in the computing
cloud. However, its dependency on hardware within cloud
provider infrastructure hampers (R:PAI). Data protection as a
service (DPaaS) [18] is intended to be a suite of security
primitives that enforce data security and privacy and are
offered by a cloud platform. Yet this would inhibit (R:PAI).
Other work such as [19] describe privacy-preserving fine-
grained access control and key distribution mechanisms, but
are not readily available for a pragmatic approach that is
usable today (R:BSM).

534Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 554 / 646

IV. SOLUTION CONCEPT
For a cloud-based context-aware collaboration system to

have satisfactory utility, it will depend on some type of event
and data collection and communication facilities. Thus this
foundational infrastructure should be equipped with basic
trust and security mechanisms, such that upper level services
such as context-awareness and collaboration can ensue.

Thus, to provide a flexible solution for such
environments, a primary principle in the solution is the
application of the Service Layer design pattern to provide a
decoupling and separation of concerns shown in Figure 1.
The lower conceptual Event and Data Services Layer
includes event and/or data services for an entity
(person/team/organization) including acquisition, storage,
retention, and dissemination, while the upper Collaboration
and Tools Services Layer includes CDE and tool services
that utilize lower layer data to provide collaboration, data
sharing, analytics, and other value-added services over which
an entity may have more limited privacy control
mechanisms.

Event & Data Services Layer

Collaboration & Tool Services Layer

Event
Service

Person B

Collaboration
Service Y

Tool
Service Z

Data
Service
Org C

Sensor
A

Analytics
Service X

Figure 1: Services Layer Pattern

A second solution principle is the introduction of a
datastead, shown in Figure 2, which is loosely analogous to
the concept of homesteading or seasteading. In this case, an
individual (or some unit) manages and controls clearly
delineated data resources in the cloud for which they have or
receive responsibility and ownership rights. The technical
implementation of a datastead can be in the form of a
personal cloud in the case of an individual, or within a
private cloud for an organization. The third principle is the
inclusion of a Trust Broker that mediates between service
and data access, acting as both a cloud service broker (for
interoperability with various tools) and cloud security broker
(for security). Akin to the Trusted Proxy pattern [20] and
Policy Enforcement Point [20], it constrains access to
protected resources and allows custom, finely-tuned policies
to be enforced (R:EPC). Rules can be used to configure and
distinguish/filter access by event types, timeframes, projects,
etc. It provides secure communication mechanisms (R:SC) to
authenticate and authorize data acquisition and data
dissemination in the datastead, as well as interoperability
mechanisms for various collaboration and tool services. Only
client requests from preconfigured known addresses are
accepted. A management interface to the Trust Broker
provides the datastead owner with policy management
capabilities. It also supports data anonymization on a per
request basis if so configured. For secure storage, the Trust
Broker encrypts (R:ENC) acquired events and data

(Encrypted Storage pattern [20]) to prevent unauthorized
access by administrators or intruders, and protects access to
the encrypted storage typically on a single port (Single
Access Point pattern [20]). The Trusting Broker supports
runtime code integrity (R:CI) via remote attestation, and a
client, called the Trusting Tool, can be invoked periodically
or event-based to ensure that the Trust Broker has not been
tampered with.

Community Cloud

Datastead

Community Channel

Compute
Trust

Broker

Collaborator

Event
Service

Group
Event

Storage

 Compute
Trust

Broker

Event
Service

Inter-Cloud Channel

Trusting
Tool

Personal ChannelPersonal
Event

Storage

Data
Service

Tool
Service

Collaboration & Tool
Services Layer

Event & Data
Services Layer

Collaboration
Servic e

Client
Sensor

Server
Sensor

Figure 2: Generic Solution Concept

Secure Channels and Secure Sessions [20] are used to
protect the transmission between the sensors and the
datastead (the Personal Channel), between sensors and the
Community Cloud (Community Channel), as well as
between the datastead and any collaboration and tool
services (Inter-cloud Channel). For a community cloud, a
VPN is used to limit network access.

V. TECHNICAL IMPLEMENTATION
To determine the technical feasibility of the solution

concept and provide a concrete case study, the solution
concept was applied to an existing heterogeneous CDE
called the Context-aware Software Engineering Environment
Event-driven framework (CoSEEEK) [22], which had
hitherto not incorporated privacy or security techniques.
CoSEEEK's architecture and integrated technologies are
shown in Figure 3. Its suitability is based on its portability
(use of mainly Java and web-based languages), non-
commercial access to the code and dependent technologies,
its reliance on distributed communication mechanisms, and
its heterogeneous tool support.

For event acquisition, CoSEEEK relies on the Hackystat
framework [22] and its SE tool-based sensors (e.g., Ant,
Eclipse, Visual Studio) for event extraction and event storage
(shown in red in Figure 1). Hackystat does not currently
provide extensive security and privacy mechanisms. For an
insight, [24] briefly describes some of its security issues.

Service Layer Separation: the Hackystat-related elements
(shown in red) were hereby separated into the Event and
Data Services Layer and the remaining elements were placed
in the Collaboration and Tools Services Layer.

535Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 555 / 646

Cloud configuration: To meet (R:MCC, R:CCO, R:PAI),
two different cloud platforms were utilized in isolation. To
represent a public IaaS cloud provider configuration
(R:PuC), Amazon Web Services (AWS) was used, using
Elastic Compute Cloud (EC2) for computing services, the
Elastic Block Store (EBS) for storing configuration files and
XML database, and the Relational Database Service (RDS)
which holds the sensorbase.

To represent a private cloud (R:PrC) or community cloud
(R:CoC) deployment, OpenStack was used with Compute
used for computing and Object Storage used in place of EBS
storage; and since nothing directly equivalent to AWS RDS
was available, a Compute instance with Object Storage that
contains a MySQL Server database was configured. Single
tenancy (R:ST) with one Compute instance per developer
with access restricted to the developer was configured.

Process
Management

Governance

Context Management
(Semantic Module)

Data Storage

Pellet

XML Tuple Space

Jena

Ontology Storage

Multi-Agent System
JADE

Integration Apache
Camel

Routing

Knowledge
Management

Semantic
MediaWiki

Quality
Assessment

ApacheDS Apache Server

AristaFlow

Collaboration
Complex Event

Processing

Esper

Event Extraction

Hackystat

Tool
Sensors

JBoss Drools

Protégé

Joseki SPARQL

Quality GUI
Advisor

AJAX JQuery
RIA Client

MySQL

eXist
XML DB

Service Mgmt
OSGi Equinox

Event Storage
(sensorbase)

Figure 3. CoSEEEK Architecture (affected areas shown in red).

Trust Broker: the Trust Broker supports (R:D) was
implemented in Java. The open source Restlet Framework
for Java SE was used to provide the REST-based interface.
An example of a query that can be sent is the following,
specifying the project via the sensorbase_id, the timeframe,
the sensor data type, the tool, and its uri source.

GET

/trustbroker/sensordata/{sensorbase_id}?
startTime={startTime}&endTime={endTime}&
sdt_name={sdt_name}&tool={tool}

&uriPatterns={uriPatterns}

Encryption of events (R:ENC) can be optionally

configured. For encryption of arriving events and decryption
of events on authenticated and authorized retrieval, Java's
AES 128 and the SHA-256 hash algorithm were used
(R:BSM). One reason for encrypting the storage is that it
provides an additional form of protection, should, e.g., a
provider's agent or intruder gain access.

The measurement database called sensorbase in
Hackystat required a few minor adaptations. For (R:D), to
support anonymization the HACKYUSER table was
extended to include an anonymization flag, which is checked
before responding, replacing a userid with anonymous. In
order to support HTTPS connections, the sensorbase client
(R:SP) was modified and rebuilt, requiring any sensors to
utilize this modified jar file. HTTPS (R:BSM) was used to
secure all three communication channels (personal,
community, and inter-cloud) (R:SC). Additional properties
were added to indicate the location of the keystore. SSH was
used to configure and manage each cloud. Security groups
were used in both AWS and OpenStack.

To implement remote attestation, on the client-side, a
user configures the Trusting Tool with the expected
checksum value (provided e.g., by the admin or a trusted
website), version, and the interval for rechecking. On the
service side, a REST interface sensorbase/checksum was
added that loads the local adapted sensorbase.jar file,
computes the SHA-256 hash value using
java.security.MessageDigest, and returns this
value and the sensorbase version to the Trusting Tool. While
not foolproof, since any unauthorized access on the server or
client could allow spoofing, it provides an additional level of
confidence. Various stronger jar file tampering technologies
could be employed if needed, such as componio JarCryp
bytecode encryption.

VI. EVALUATION
The case study evaluated the technical feasibility of the

concept based on the technical implementation. However,
security and privacy are highly contextually dependent on
the expectations, requirements, environment, risks, policies,
training, available attack mechanisms, implementation
details (bugs), configuration settings, etc., making a
comprehensive formal assessment in this area difficult. So
the assumption is made that the prescribed privacy and
security mechanisms suffice or are balanced for current
developer needs in developer settings.

Since CoSEEEK is a reactive system, the ability to
respond adequately to contextual changes via events is
highly dependent on network latency; the evaluation focuses
on this area for various cloud settings.

As to hardware, the Client PC (for use by a developer)
has an i5-2410M (2.3-2.9 GHz) dual core CPU and 6GB
RAM with 32-bit Windows XP SP3. The network consists of
gigabit Ethernet and two 1 Gbit connections from the
university campus in Germany to the Internet Provider.

Representative for a private (R:PrC) or community cloud
where a datastead could also be placed, the OpenStack
configuration (OSCfg) consisted of a local intranet server
with an i5-650 (3.2-3.4GHz) dual core CPU, 8GB RAM, and
64-bit Ubuntu Server 12.04. The OpenStack Cloud Essex
Release was installed on the Server via DevStack and the
Compute instances also ran Ubuntu Server 12.04. MySQL v.
5.5.24 was used for Hackystat sensorbase storage in a
Compute instance.

As a public cloud provider (R:PuC) representative, a free
AWS configuration (AWSCfg) was chosen. It consisted of

536Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 556 / 646

t1.micro EC2 instance types located in US-EAST-1d
(Virginia) with 613 MiB memory, up to 2 EC2 units (for
short periodic bursts) with low I/O performance running 64-
bit Ubuntu Server 12.04. MySQL v. 5.5.27 was used for the
Hackystat sensorbase storage in AWS RDS.

Common software included Hackystat 8.4 with the
Noelios Restlet Engine 1.1.5 and JDK 1.6.

Typical network usage scenarios were considered, thus
no optimizations were applied to any configurations nor was
an artificially quiet network state created. All results are the
average of 10 repeated measurements (with one exception
noted below). A secure configuration denotes using the
TrustBroker via HTTPS (R:SC) with encrypted storage
(R:ENC), and an insecure configuration means no
TrustBroker and using HTTP. VPN (R:RNA) overheads were
not measured.

To determine delays from the client to the datastead in
cloud variants, on the client PC Ant was invoked, causing
the Hackystat Ant sensor to send one XML event to the
Server (a write in the remote sensorbase) consisting of 235
bytes of event data and 73 bytes of overhead. As shown in
Figure 4, the average network latency using an insecure
OSCfg was 214 ms, for a secure OSCfg 389 ms, and for a
secure AWSCfg 608 ms.

Figure 4: Latency (in ms) for sending an event (33 bytes)

from the client PC to the server sensorbase.

Once events are in the datastead, then latencies between
computing instances in a cloud are of interest, since the
collaboration or tool services will be retrieving this data
(shown in Figure 5 and Figure 6). For AWSCfg, a single
query for 67 events (15818 bytes) between two EC2
instances took 78 ms on average via HTTP and 84 ms over
HTTPS. In a secure configuration the retrieval took 347 ms.
For OSCfg between two Compute instances, a single query
took 38 ms to return 22 events (5243 bytes). Note that
HTTP insecure reads in the private cloud had two anomaly
values (178 and 210 ms) that would have changed the
average from 38 to 69, and were also far larger than any
secure value measurements. Thus, these 2 measurement
values were removed, and the average created from the
remaining 8 values. These large latencies could perhaps be
attributed to a network, disk, operating system, or OpenStack
related issue. Continuing with the measurements with 39
events (9238 bytes), HTTPS requests took 60 ms while in the
secure configuration it averaged 61ms.The overhead of the
privacy approach is the addition of SSL, brokering a second
SSL connection, and encryption. For the OSCfg, the
difference of TrustBroker and decryption showed on average
only a 1ms difference to that with purely SSL. One
explanation could be that the extra overhead is minimal
compared to the data transfer delays between OpenStack

instances, but further investigation of OpenStack internals
and profiling would be required.

Figure 5: Private vs. public cloud inter-computing instance query latencies
grouped by security (in ms)

Figure 6: Inter-cloud query latency grouped by cloud type

for different degrees of security (in ms).

Based on the results shown in the above figures, the use
of the secure configuration of the OSCfg within a private or
even a community cloud setting would appear to have
acceptable performance overhead for cloud-centric
collaborative development work, and distributed retrieval
from datasteads is viable for responding to changes in the
collaborative situation. On the other hand, the use of the
secure configuration in the public cloud (AWSCfg), as
shown in this perhaps worst case as a no cost offshore
minimal public cloud setting, incurs substantially higher
network latencies. Obviously choosing geographically close
locations when possible is recommended. Also, provisioning
sufficient computing and I/O resources support to deal with
the additional inter-cloud and security mechanism overheads
would also reduce such lags in public cloud configurations.
Optimization in this area would also be promising.

To determine the remote attestation overhead, the
Trusting Tool was measured on the PC using the AWSCfg
over SSL. The average request-response latency was 702 ms.
On the server, this involved loading and calculating the
SHA-256 hash value for the 5.5 MB large sensorbase.jar file.
Thus the attestation mechanism of the remote cloud instance
could be configured to be automatically invoked periodically
by client-side sensors at regular intervals in a separate thread
or process to not interfere with other network
communication.

In summary, the evaluation showed that network
latencies incurred by the concept are most likely insignificant
for collaboration in PrC settings, but that security overheads
in global PuC settings may require optimization attention.

0 100 200 300 400 500 600
Latency (ms)

Secure AWSCfg
Secure OSCfg
Insecure OSCfg

0 50 100 150 200 250 300 350

Insecure

HTTPS

Secure

Latency (ms)

Inter-AWSCfg

Inter-OSCfg

0 50 100 150 200 250 300 350

Inter-OSCfg

Inter-AWSCfg

Latency (ms)

Secure

HTTPS

Insecure

537Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 557 / 646

VII. CONCLUSION AND FUTURE WORK
To address security and privacy in collaborative cloud

development, this paper presented a practical concept with
entity-level control of non-, anonymized-, and personally-
identifiable disclosure for multiple cloud configurations. It
can further both collaboration and trust by giving individuals
transparency and control and allowing them to adjust
disclosure to the changing trust situation. The paper
contributes a practical basis for illustrating issues, eliciting
awareness, community discussion, and and may increase
self-regulation and infrastructural privacy offerings.
Organizations adopting such a privacy infrastructure show
that they value and trust their employees, enabling them to
reap mutual trust rewards. Also, one could envision, for
instance, that an audited "we don't spy here" seal might help
attract and retain developers.

The evaluation showed its technical feasibility and
practicality, requiring only minimal adaptation of the
CoSEEEK CDE. The Trust Broker enables fine granularity
access control to personal data. Performance was sufficient
in private cloud configurations, while public cloud
configurations using additional security and privacy
mechanisms may require optimization to ensure fluid
collaboration situational response.

Limitations and risks include: extending privacy/trust
support within and across collaboration layer tools, non-
detection/discovery of (un)intentionally unspecified/hidden
sensors, data manipulation risk by datastead owners
themselves, and provider-side access or manipulation risk.
For service provider trust issues, building your own
datastead cloud server site could be considered.

Future work can consider the inclusion of various data
provenance and data integrity mechanisms to mitigate
manipulation risk. In the face of shifting privacy norms,
infrastructural support for data confidentiality is needed to
limit disclosure of distribution data beyond its original intent,
like lifetime constraints, transitivity bounds, and claims-
based access [25]. Enhanced remote attestation mechanisms
could be investigated. Since service privacy is also a broader
issue, development and adoption of global industry service
privacy standards combined with independent privacy audits
involving all service layers would enhance trust of cloud-
based data acquisition and usage offerings.

ACKNOWLEDGMENT
The author acknowledges Jürgen Drotleff for his

conceptual, implementation, and measurement contributions.

REFERENCES
[1] S. I. Hashmi et al. (2011, August). Using the Cloud to

Facilitate Global Software Development Challenges. In
Global Software Engineering Workshop (ICGSEW), 2011
Sixth IEEE International Conference on (pp. 70-77). IEEE.

[2] R. L. Grossman, "The case for cloud computing," IT
professional, 11(2), pp. 23-27.

[3] M. A. Chauhan and M. A. Babar, "Cloud infrastructure for
providing tools as a service: quality attributes and potential
solutions," In Proceedings of the WICSA/ECSA 2012
Companion Volume, ACM, 2012, pp. 5-13.

[4] M. Singhal et al., "Collaboration in Multicloud Computing
Environments: Framework and Security Issues, " Computer,
46(2), IEEE Computer Society, New York, 2013, pp. 76-84.

[5] G. D. Nord, T. F. McCubbins, and J. H. Nord, "E-monitoring
in the workplace: privacy, legislation, and surveillance
software," Communications of the ACM, 49(8), 2006, pp. 72-
77.

[6] M. Parsons, "The challenge of multicore: a brief history of a
brick wall," EPCC News, Issue 65, University of Edinburgh,
2009, p. 4.

[7] T. Brahm and F. Kunze, "The role of trust climate in virtual
teams," Journal of Managerial Psychology, 27(6), 2012, pp.
595-614.

[8] A. C. Costa, R. A. Roe, and T. Taillieu, "Trust within teams:
The relation with performance effectiveness," European
journal of work and organizational psychology, 10(3), 2001,
pp. 225-244.

[9] T. DeMarco and T. R. Lister, Peopleware. Dorset House,
1987.

[10] D. McGregor, The Human Side of Enterprise. McGrawHill,
New York, 1960.

[11] B. Al-Ani and D. Redmiles, "Trust in distributed teams:
Support through continuous coordination," IEEE Software,
IEEE Computer Society, 26(6), 2009, pp. 35-40.

[12] P. Louridas, "Up in the air: Moving your applications to the
cloud," IEEE Software, 27(4), IEEE Computer Society, New
York, 2010, pp. 6-11.

[13] H. Takabi, J. B. Joshi, and G. J. Ahn, "Security and privacy
challenges in cloud computing environments," IEEE Security
& Privacy, IEEE Computer Society, 8(6), 2010, 24-31.

[14] R. Martignoni, "Global sourcing of software development-a
review of tools and services," In Fourth IEEE International
Conference on Global Software Engineering (ICGSE 2009),
IEEE Computer Society, 2009, pp. 303-308.

[15] F. Liu et al., NIST cloud computing reference architecture.
NIST Special Publication, 500, 292, 2011.

[16] M. Hogan, F. Liu, A. Sokol, and J. Tong, Nist cloud
computing standards roadmap. NIST Special Publication, 35,
2011.

[17] W. Itani, A. Kayssi, and A. Chehab, "Privacy as a service:
Privacy-aware data storage and processing in cloud
computing architectures," In Eighth IEEE International Conf.
on Dependable, Autonomic and Secure Computing
(DASC'09), IEEE Computer Society, 2009, pp. 711-716.

[18] D. Song, E. Shi, I. Fischer, and U. Shankar, "Cloud data
protection for the masses, " Computer, 45(1), 2012, pp. 39-45.

[19] M. Nabeel and E. Bertino, "Privacy-Preserving Fine-Grained
Access Control in Public Clouds," Data Engineering, 21,
2012.

[20] D. M. Kienzle, M. C. Elder, D. Tyree, and J. Edwards-Hewitt,
Security patterns repository version 1.0. DARPA, 2002.

[21] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F.
Buschmann, and P. Sommerlad, Security Patterns: Integrating
security and systems engineering. Wiley, 2006.

[22] G. Grambow, R. Oberhauser, and M. Reichert, "Enabling
Automatic Process-aware Collaboration Support in Software
Engineering Projects," In Software and Data Technologies,
Springer, Berlin Heidelberg, 2013, pp. 73-88.

[23] P. M. Johnson, "Requirement and Design Trade-offs in
Hackystat: An In-Process Software Engineering Measurement
and Analysis System," Proc. 1st Intl. Symposium on Empirical
Software Engineering and Measurement, 2007, pp. 81-90.

[24] P. M. Johnson, C. A. Moore, J. Miglani, and S. Zhen,
Hackystat design notes. 2001.

[25] D. Reed, D. Gannon, and J. Larus, "Imagining the future:
Thoughts on computing," Computer, 45(1), 2012, pp. 25-30.

538Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 558 / 646

Two-Dimensional Models’ Processing Using Principles of Knowledge-Based

Architecture

Andrejs Bajovs, Oksana Nikiforova

Faculty of Computer Science and Information Technology

Riga Technical University

Riga, Latvia

e-mail: andrejs.bajovs@rtu.lv, oksana.nikiforova@rtu.lv

Abstract — Presently, the technological diversity increases the

attention to Model Driven Software Development, which

provides system modeling at the high level of abstraction and

further generation of software components. In this aspect, the

task of the automatic code generation starts to play an

important role and requires a new generation of the research

directed to the quality of model and model transformation

result. This paper discusses an ability to use several principles

of artificial intelligence and knowledge management and offers

so called knowledge-based architecture for code generation

from the Unified Modeling Language class diagram and a

verification of a class diagram itself.

Keywords- UML class diagram; code generation; knowledge

base; model verification

I. INTRODUCTION

An increasing impact of the role of system modeling
during software development facilitates the leading positions
of Object Management Group (OMG) [1] and its solution for
system abstraction, modeling, development, and reuse –
Model Driven Architecture (MDA) [2]. A key component of
usages of MDA is Unified Modeling Language (UML) [3],
which defines several kinds of diagrams, their elements and
notation. UML diagrams describe the system from different
aspects: static diagram represents system structure, dynamic
diagrams represents system behavior. Fully automated
transformation of system model, defined at platform
independent level into platform-specific source code, is the
main goal of MDA.

Currently, this goal has not yet been achieved
completely, due to problems with definition of system
dynamic aspects and their translation into code components
[2]. But even description of system static elements would
give a good initial preparation for system development and
its further refinement with dynamic aspects. This static
system representation in the form of UML class diagram and
further generation of software components could replace
significant amount of routine work performed by
programmers during software development. Reducing its
amount could give developers an opportunity to focus on
more important tasks, thus helping to improve the quality of
computer systems’ developing process.

Model-Driven Architecture defines that the system’s
models could be automatically transformed from one level of

abstraction into another. These levels involve not only
graphical, but also textual models, including a source code.
So, according to MDA, a graphical model could be
automatically transformed into a source code. Such
transformation process is commonly called code generation.

The idea of automatic code generation is not new. The
first code generators were compilers which appeared in the
middle seventies and used text-to-text generation techniques
[4]. Since then, a significant amount of different standards
appeared to support the idea of automatic code generation,
however the practical side of this field was left almost
untouched. Nowadays, a significant amount of different tools
exists, which implement the most popular code generation
approach – text templates. However, the authors’ previous
study shows that the code generation as a result of the UML
class diagram transformation is of a low quality [5]. As
designed for the concrete situations (thus, required to be
frequently rewritten), templates, possibly, limit the
functionality of some popular code generators. The other
problem is that the code generators do not “think” like a
human while doing their job and should be endowed with
means of at least artificial intelligence.

Therefore, authors state code generation as an object to
research and propose knowledge-based code generator
architecture, which allows not only generating the source
code, but also verifies the correctness of a model and thus a
model transformation result.

The goal of the paper is to describe how the basic
principles of artificial intelligence could be used to increase
the quality of the code generation process. This paper
specifies the background of the term “code generation” and
reveals the related problems. In order to solve them, the
hypothesis of the knowledge-based code generator
architecture is described. In addition, the small practical
example is presented to reveal the essence of the proposed
theory.

The paper is structured as follows. The second section
describes the roots of code generation and related problems
which disturb its evolution. Section three introduces the
knowledge-based code generator architecture and describes
its parts, advantages, and disadvantages. The mechanism of
how the introduced architecture works is explained in section
four. The fifth section gives an overview of the researches
related to the code generators, which use artificial
intelligence. Section six concludes the paper.

539Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 559 / 646

II. CODE GENERATION: STATE OF THE ART

The term code generation has several interpretations. One
of them is defined by OMG’s MDA. It states that
implementation of a concrete target platform is generated
from a model containing the target platform’s specific details
using pre-defined and tool supported transformations.
Actually, OMG did not invent anything new, but
standardized older framework – Model Driven Software
Development (MDSD) [6]. Both of MDA and MDSD are
related to a term “model”, which according to [1] is “… a
description or specification of a system and its environment
for some certain purpose.” However, MDA considers
models to be central in the development process (assuming
that the model represents a set of diagrams that express the
whole software system) [7]. According to MDA, these
diagrams are used to build the systems for any platform,
however MDSD does not claim such portability at all. In
contrast of MDSD, MDA suggests using only UML
diagrams to describe the system at a high level of
abstraction. In general, MDA is more strict than MDSD,
which allows much more ways of building the computer
system by using models [6].

There are four basic models for systems’ development
proposed by MDA: computation independent, platform
independent, platform specific and implementation specific
model. The first one reflects to business and its models. The
next two represent analysis and detailed design models of
software system to be developed. The last one reflects to
implementation and runtime models and, in fact, it is a
system’s source code. MDA also defines that each of the
described models could be transformed into the others [8].
This paper focuses on the automatic transformation of
platform specific model to the implementation specific
model.

While the OMG organization was developing theoretical
basis of the research area, practical side of code generation
started to fall behind. Nowadays, a significant amount of
different standards related to code generation exists [9], but
no methods could completely describe how to apply all these
theory into practice. The problem is that OMG invented their
standards for templates and transformation languages, but
almost forgot about looking at the core process of code
generation itself.

Speaking about theory, the computer science describes
two different code generation approaches [10], but both of
them involve word mapping to model elements. In addition,
the study from [5] shows that some of the nowadays most
popular code generators are not producing a good quality
code because of lack of smart ways to verify correctness of
the models.

Authors are making experiments with different software
development environments and different tools, positioned as
MDA/MDD support tools [5], and have detected several
inadequacies between expected code and code generated by
the tool. Unfortunately, the current experiments with
modeling tools that generate program code from UML class
diagram show a weak and unsatisfactory results compared to

the expected. Authors have identified a number of problems,
which can be generally divided into two groups:

 Modeling tools allow to create improper element
constructions and use incompatible keyword
connections that leads model transformation into
incorrect code, that can`t be compiled.

 Generated code does not correspond to notation and
details used in model, which leads to loss of
information in the result code.

 The root problem is in the simplicity of program code
generators, which just transfer the pattern of model
information into the program code without any additional
testing and decision making on the required information
conversion for the target programming language. Generators
do not have any additional knowledge support about target
platform restrictions, laws and keyword combination. Some
tools like SPARX Enterprise Architect [11] have code
template editor with built-in transformation templates, which
can be modified to support custom needs, but this does not
solve the problem of the lack of base information about
target platform, because restrictions might be needed for
combination of elements and not one-to-one element
mapping. The second mentioned group points to the
complexity of the generators negligence. The result program
code does not represent appropriate constructions for
semantics used in the model, resulting in loss of information
and devalue of the work invested to provide additional
details in the model.

It means that it is not enough with simple word mapping,
and machine should be taught to apply some knowledge
performing code generation. Inspired by this idea, in the next
sections authors propose their hypothesis of applying some
principles of artificial intelligence in code generation process
to supplement it with the model verification.

III. THE KNOWLEDGE-BASED CODE GENERATOR

ARCHITECTURE

In this section, authors propose the hypothesis of the
knowledge-based code generator architecture, which is
shown in Fig. 1.

Figure 1. Knowledge-based code generator architecture.

The reason authors call it “knowledge-based” is as
follows. As it was mentioned before, code generation is
nothing but model transformation to code performed by
computer. But how do human beings act, while transforming
models to source code? It could differ from concrete

OOP knowledge base

(concept + rules)

Language-specific principles

(language syntax)

Model-specific principles

(XMI syntax)

540Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 560 / 646

individual, but commonly, each element of the model is
taken and transformed, in a step-by-step manner, into code
according to some knowledge of the model’s notation,
programming language syntax and fundamental rules of
object-oriented paradigm. In authors’ opinion, the word
“knowledge” is the keyword here. That is the reason why the
proposed architecture consists of three blocks: Object-
Oriented Programming (OOP) knowledge base, model-
specific principles and language-specific principles. All of
them are explained in the next subsections of the paper.

A. Description of the knowledge-based architecture’s

blocks

The main block of the proposed architecture is OOP
knowledge base, which describes the field of object oriented
programming in a high level of abstraction. It represents only
the very basics and does not describe anything connected
with the concrete programming languages, models or
platform-specific things. This is expressed in a way of
ontology [12], which keeps two main things: conceptual
information about OOP and basic rules to support validating
the correctness of the UML class model.

The first is represented as a tree structure, which shows
the relationships between different concepts of OOP (e.g.,
class, visibility, attribute, method, etc.). The simple example
of such structure is shown in Fig. 2. Due to the complexity of
the OOP itself, the relations between some concepts
(visibility and attribute/method, type and name, interface and
method, etc.) are omitted at the example to make it more
readable and simpler to understand.

Figure 2. Example of OOP structure.

The second part of the OOP knowledge base is an
alternative to Object Constraint Language (OCL). This block
is represented by the set of rules, where each rule is a first-
order logic (predicate) expression. This set of rules describes
some restrictions which exist in the context of OOP (e.g.,
attribute can be only one at a time: private or public or
protected).

The research of [5] defines some of the rules which are
most commonly missed by code generators. They are:

1. If class contains at least one abstract method, then it
must be marked as abstract;

2. A non-abstract class that is derived from an abstract
class must include implementations of all inherited
abstract methods;

3. Because an abstract method must be overridden in
the derived class, then it must not be private;

4. While overriding an abstract method, the access
modifier ought to be the same as for the overridden
base method, e.g., if it is public, then in the derived
class it can not be protected, because it must be
public.

The rules mentioned above could be formally expressed
in the way shown in Fig. 3.

Figure 3. Formal expression of the model validation rules

The other block of the knowledge-based architecture is a
set of language-specific principles or in other words, the
syntax of different programming languages. In fact, there are
several sets of such rules – each represents concrete
programming language. The description of the syntax should
be similar to Backus-Naur Form (BNF) notation [13]
because its level of formalization allows to be easily
interpreted by computer. The syntax of languages should be
described using templates which associate concepts from the
OOP knowledge base with its formal syntax. Although
templates have some major disadvantages [5] which force to
find alternatives to replace them, it is preferable to use them
here. However, in this context templates should be
maximally laconic and structured, describing the whole
syntax of a concrete programming language rather than a
particular case. The example of a simplified description of a
Java class is shown in Fig. 4.

Figure 4. Example of the class syntax description using BNF notation

Such markups as <Name> or <Parent> are taken from
the OOP concept (see Fig. 2). During code generation the
<Name> is replaced by the name of a particular class while
<Attribute> is replaced by another piece of code which in
case of Java is defined like this:

[<Visibility>] [<Scope>] <Type> <Name> [= <Value>];
As it was stated earlier, the BNF notation is used to

specify the syntax. Thus, blocks which are enclosed inside
“{}“ are repeating blocks, but blocks inside “[]” are those
which can not be in the code for it to be correct, etc. A word
inside “<>” points to a concrete block of the syntax which is
associated with the concrete OOP concept. The last is a
modification which is used for proposed architecture and is
not connected with BNF.

1. has(Class, Method) & abstract(Method)
abstract(Class);

2. ¬abstract(Class1) & parent(Class1, Class2) &
abstract(Class2) & inherited(Method, Class1,
Class2) overriden(Method, Class1, Class2);

3. abstract(Method) & overriden(Method)
¬private(Method);

4. overriden(Method1, Method2) &
abstract(Method2) equals(visibility(Method1),
visibility(Method2).

OOP

Class Interface

Name

Attribute Method

Type Parameters

Visibility

Private

Public

Protected

Parent

“class” <Name> [<Parent>]

[“implements” <Interface>

{“,”<Interface>}] “{”

 [{<Attribute>}]

“}”

541Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 561 / 646

The third block includes the model-specific principles
that, in fact, represent the mapping of the concepts from the
OOP knowledge base to the Extensible Markup Language
Metadata Interchange (XMI) representation of the model
[14]. This should be done using slightly extended XPath
language [15]. Since various modeling tools implement XMI
format differently [16] this block contains various sets of
described mappings which are specific to the XMI format of
the concrete tool. For example, let us assume the concepts
shown in Fig. 2, which are mapped to the Extensible Markup
Language (XML) document shown at Fig. 5.

Figure 5. Example of the class syntax description using BNF notation

In this case, a mapping of the Class concept could be
done as //class, which means that this concept takes its data
from the class XML element. The name of the class in turn
could be accessed as <element>/@name . <element> is a
reserved directive which points to the element being iterated
before a current one since all concepts make a hierarchical
structure. This means that the knowledge-based code
generator takes a full path //class/@name to access the name
of the class.

It is also important that language-specific and model-
specific principles’ blocks could include overloading of
some of the classic OOP rules from the OOP knowledge
base according to the concrete programming language or
model. Section IV shows how all of these blocks work
together.

B. Analysis of the knowledge-based architecture

The proposed architecture does not have an ability to
autonomously derive code as logical consequence of the
knowledge-base like advanced AI code generators do.
Basically, the approach does the standard template-based
model-to-code transformation where additional intelligence
is reflected into using such fundamental AI structures as
ontology and first-order logic rules. Thus, ontology, syntax
description and rules proposed by the authors could be
represented as the equivalent of MDA meta-model, OCL and
the templates, but their specter of appliance is wider, as well
as they are more universal. For example, OCL is designed
directly for UML and is much more oriented on constraining
values rather than the structure of the models. In contrast,
predicate rules do not depend on any concrete syntax so they
could constrain every model by working directly with the
essence of OOP itself. As for the proposed templates, they
have less complex structure and focus on describing
language’s syntax rather than simple XMI mapping.

The main advantage of the proposed code generator
architecture is its precise structure. Knowledge-based
architecture defines the exact set of tasks for each of its
blocks. It also specifies different levels of abstraction for
describing contents for its blocks. The architecture gives an
opportunity to split block creation tasks between different
independent specialists where each of them should work on
concrete task at a specific level of abstraction. Moreover, the
OOP principles are a kind of bridge between a model and a
programming language. This means that theoretically, each
of the templates can be used with each of the model-specific
principles. Rewriting or adding new ones also do not affect
the opposite part. In addition, OOP knowledge base is the
bridge which stands between the problem and solution
domain. This is reflected in Fig. 6.

Figure 6. Relation of the knowledge-based code generator with sotware

development domains

Theoretically, the OOP knowledge base can be used to
transform some artifacts from the Problem software
development domain into the model. However, such
transformation is out of the knowledge-based generator’s
scope and thus, it will not be described in this paper.

The main disadvantage of the knowledge-based
architecture is a significant amount of the work required to
build a knowledge base and map its concepts with the syntax
and XMI. However, after this job is done, the knowledge-
based code generator potentially can be more powerful. The
other disadvantage is that there is a significant amount of

Problem

domain

Solution

domain

Software

domain

OOP

knowledge

base

OOP rules

Model-specific +

language-specific

principles +
OOP concept

<model>

<class id = “1” name = “A” p_id = “2”>

 <attributes>

 <attribute visibility = “private”

type = “int”>

 <name>A_atr1</name>

 </attribute>

 </attributes>

</class>

<class id = “2” name = “B”></class>
</model>

542Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 562 / 646

different ways to organize knowledge base as well as some
variants to write a syntax templates, which means that
functionality of such code generator can strongly vary
depending on specialists and many other factors.

In addition, the proposed architecture can be used in two
different dimensions: vertical (to generate a code from a
model) and horizontal (to verify if model is correct).
Normally, generating the code, both dimensions should be
involved, but their separate usage is also possible depending
on the task. When the model is only verified, the code
generator uses mostly the rules from OOP knowledge base,
but while performing only the code generation, all other parts
of the proposed architecture are used. Fig. 6 shows how these
dimensions are related with the software development
domain. The reason of calling these two concerns as
dimensions is also reflected there. Models are at the same
level of abstraction – solution domain, so, while validating
them, the code generator is staying within its bounds. That is
why the dimension is horizontal. As for the vertical
dimension, code generation transfers the model between the
different states of the various domains – vertically.

IV. USAGE EXAMPLES OF THE KNOWLEDGE-BASED

ARCHITECTURE

As it was mentioned before the architecture of the
knowledge-based code generator can be used in two different
dimensions: horizontal (to verify the correctness of the
model) and vertical (to perform the code generation). The
subsections below show the examples of both dimensions.

A. Vertical Dimension (Code Generation)

The knowledge-based code generator works with the
OOP knowledge base in the first place. It iterates through the
defined concepts starting from the root of the structural tree
by jumping between elements according to the relations of
these concepts. First, code generator takes an appropriate
mapping from the model-specific principles and tries to find
a value according to this mapping inside the XML meta-data.
If the value is found, then, the code generator takes a syntax
template for the OOP concept currently being iterated and
produces an output. If the template interpreter finds any
markup (text enclosed in “<>”) then, it refers to the
appropriate concept from the OOP knowledge base, searches
for the values according markup from the model-specific
principles and finds another template of the text to produce.
When the code generator meets a structure enclosed in “{ }”
it assumes that the model could contain none or more than
one element that is represented by the markup inside.
Therefore, it takes each of them, repeating the text and
iterating through every other concepts enclosed in figure
brackets as much as model elements it had found. If the code
generator meets something inside “[]” then it produces an
appropriate text if it finds any values inside the XML
documents, otherwise it does not. If the code generator does
not find any model elements which are enclosed in “{}” or
“[]” brackets, it will not produce any text inside of them.

Concerning the example shown in Fig. 2, Fig. 4 and Fig.
5, the root is “OOP” and its children are “Class” and
“Interface”. The code generator will not find anything

connected with “Interface” because XML document does not
contain anything about it. But since a markup of interface is
included inside the square as well as figure brackets, the
code generator will not insert anything at the place of
markup “<Interface>”, as well as it will not produce a text
“implements” and “,”. The situation with the concept “Class”
is different. Let us assume that this concept has a markup
“//model/class”. The code generator will use it to state that
the XML document contains two elements expressed with
this path so it will iterate through them. First of all, the code
generator will produce the text “class ” and meet the markup
“<Name>”. The knowledge base describes the concept with
the same name, so the code generator will jump to a model-
specific principle and find a markup for this concept. Let us
say it is “<element>/@name”. As the parent concept of the
current one is Class, the full path to determine its name is
“//model/class/@name”. Using this, the code generator finds
out the name of the class and produces the following code
“A {“. After that it will return to the parent (which is the the
concept Class) and continue parsing the template. The next
stop will be a markup “<Attribute>”. Here, in the same way,
the code generator will take a visibility, type and the name of
the attribute and construct a piece of code “private int
A_atr1;”. Since no more information about the class A is
provided the code generator will iterate further producing a
text “class B {} “.

At first glance this mechanism is very similar to the
ordinary templates, but the difference is that template is fully
separated from the markup. A markup for the Class could
possibly be “//diagram/elements/class” but for its name –

“//diagram/attributes[@id = <element>/@id]/name”.
This never affects the template and vice versa because these
two blocks are connected through the knowledge base which
is static. That gives an opportunity to switch between
markups easily without making any changes inside the
templates.

B. Horizontal Dimension (Model Verification)

The rules which are used to validate the model are
described in Fig. 3. The mechanism of the model verification
is conceptually simple: the model’s every element is tested
on matching the defined rules and if at least one of them does
not match, the model is considered incorrect. Despite
appearing primitive in theory, this part of the proposed
architecture is both the most creative and complex because
the rules can be translated into logical expressions in a
variety of ways. Each rule contains standard symbols defined
by predicate logic [12] (terms, predicates, and, or, not, etc.),
as well as references to the concepts from the OOP
knowledge base expressed as variables. But in contrast to the
model-specific and language-specific principles not every
OOP concept must be described in the rules. The other part
which is skipped in this example is putting some sense in
predicates or, in other words, explaining to a computer what
does they mean. The programming language, such as Prolog
[17] is used to accomplish this. Although it does not fully
feat in the concept of the knowledge-based architecture as
well as in the code generation itself, it is specially created to
work with logical expressions.

543Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 563 / 646

V. RELATED WORK

The first code generators in the World were related to
text-to-text transformation. They were nothing but high-level
compilers. According to [4], the first scientist who started to
talk about the code generation was Wilcox. In 1971, he
described his compiler, which was based on two internal
forms: Abstract Program Tree and Source Language
Machine. The first one was translated into the second one,
which in turn was transformed into the machine code.

The first popular code generator which was able to
transform model into a source code was Rational Rose [18]
developed by Rational Software in 1997. Later, this
company was consumed by IBM resulting with evolution of
Rational Rose into Rational Software Architect [19]. The
tool’s integration into an Eclipse environment allows users to
customize their transformations more flexibly. Flexibility is a
distinctive feature of Eclipse, so some other tools operating
under this platform exist: Acceleo [20] and XPand [21]. The
other popular tools – the “monsters” of today’s industry
which provide a code generation opportunities are such tools
as SPARX Enterprise Architect [11] and Microsoft Visual
Studio [22]. This list could be populated with a significant
amount of other smaller tools, and basically, all of these code
generators use their own different transformation
mechanisms which are mostly based on templates. In
addition, none of these tools are positioned to use artificial
intelligence to perform code generation.

The template based programming originated in the 1960s
and became especially popular thirty years later [23].
Eighteen years later, in 2008, the template-based code
generation approach was also standardized by OMG [24].
However, since then, no new versions of this specification
appeared.

The idea of using artificial intelligence in the field of the
code generation was expressed by bloggers-enthusiasts as
well as by scientists. Danilchenko and Fox [23] describe
their system called the Automated Coder using Artificial
Intelligence (ACAI), which as they claim is “… a first pass
at a purely automated code generation system”. ACAI
generates the code through some simple steps: first, it
generates a plan(s) to solve the problem; next, it takes
reusable code components from the library and weaves them
according to a created plan. The result is a text template
which has been processed to get a working source code.
ACAI uses an artificial intelligence technique called Case-
Based Reasoning which can be used to maintain a reusable
library of code components. Case-Based Reasoning is
popular, and also is used in the other code generation
systems: CHEF [25], Software Architecture Materialization
Explorer [26] and The Individual Code Reuse Tool [27].

The knowledge-based code generator studies, which are
mentioned above are advanced and actually they are far from
the classic MDA concept. The studies are based on building
the program’s text from the reusable code components. The
knowledge-based architecture, however, describes more
simple mechanism which uses only basic AI principles but in
fact is much similar to the ideology of the Model-Driven
Architecture.

VI. CONCLUSION

Abstraction is the process by which we extract and distill
core principles from a set of facts or statements. A model is
an abstraction of something in the real world, representing a
particular set of properties. There are two primary reasons
developers build the model [28]: understanding a process or
a thing by identifying and explaining its key characteristics
and documenting ideas what developers need to remember
and to communicate those ideas to other. OMG’s last
initiative – Model Driven Architecture offers the third reason
on using the models during software development [29].
Using models as a basis for the further code generation and
UML class diagram plays the central role on moving an idea
about the code generation into the industry.

A significant amount of different standards in the code
generation area overwhelmed it and as a result, led to the
lack of ways of using them in practice. However, a
significant amount of tools exist that have an ability to
generate a more or less working source code. In general, all
of them are using templates as a code generation technique,
and this could be a reason why those code generators have
not got an ability to work perfectly yet. The main problem is
that templates do not provide any mechanism to verify a
model which could be wrong from the start. Thus, as long as
completely new approaches of code generation will not be
found, the idea of using MDA for making the process of
implementing fully functioning system more easy, affordable
and reliable will remain nothing but a utopia. For now,
templates could not be fully replaced, that is why they must
be used in conjunction with the other methods.

The authors of this paper wanted to make a computer
“smarter” for the code generation tasks. This could be
achieved by applying some principles of the artificial
intelligence. Therefore, authors propose a knowledge-based
architecture which separates a code generator into three main
blocks: model-specific, language-specific principles, and
OOP knowledge base. The first one is used to perform meta-
model mapping, the second one describes the syntax of a
programming language, and the third one keeps the main
principles of OOP, as well as it serves as a bridge between
the first and the second block. In the opposition to the simple
template, the proposed architecture keeps the meta-model
mapping independent from templates. It allows not only to
use different syntax with different mapping cases but also
involving different specialists to work with them
independently in turn to save the time.

The key contribution of this paper is extending an
ideology of the MDA central components, such as templates,
meta-model and constraints. According to the architecture
proposed by authors, the templates are no longer
overwhelmed by complex directives but contain only
references to the OOP knowledge base – the names of OOP
concepts. They also represent not only concrete code
mapping situations, but a whole syntax of the particular
programming language. The templates are independent from
the XMI mapping rules because of the OOP knowledge base
which is restricted by the first order logic rules that are an
alternative to MDA OCL. In contrast of this language, the

544Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 564 / 646

predicate rules are also independent from any concrete
syntax and XMI, as well as they describe global OOP
constraints based on the knowledge base. In addition, the
described architecture’s components do not only reflect the
basic MDA components, but also represent the basic AI
structures, which means that they have a potential for future
studies of making code generator cleverer.

The code generator, which is based on such an
architecture, can be used not only to perform the code
generation, but also to verify the model. The both tasks could
be performed separately as well as together. The knowledge-
based code generator has a potential ability to become
powerful, however it is very important to make a good OOP
knowledge base.

The further researches will be connected with adding
details to each of the three described levels: finding better
structures to express them, forming some restrictions and
formal rules for this task. When the concept of the
knowledge-based architecture is fully ready, the tool should
be implemented to realize it practically. This tool could be
used to validate the presented approach by systematically
applying some tests, which display the most problematic
aspects of the model to code transformations, including those
which other tools can not handle.

ACKNOWLEDGEMENTS

The research presented in the paper is partly supported by
Grant of Latvian Council of Science No. 342/2012
"Development of Models and Methods Based on Distributed
Artificial Intelligence, Knowledge Management and
Advanced Web Technologies".

REFERENCES

[1] Object Management Group, [Online]. Available: www.omg.org
[retrieved: September, 2013]

[2] Model Driven Architecture FAQ, [Online]. Available:
http://www.omg.org/mda/faq_mda.htm [retrieved: September, 2013]

[3] UML Unified Modeling Language Specification, OMG document,
[Online]. Available: http://www.omg.org/spec/UML/2.4.1 [retrieved:
September, 2013]

[4] R. G. G. Cattell, A survey and critique of some models of code
generation. Tech. rep. Pittsburgh, Pennsylvania, USA: School of
Computer Science, Carnegie Mellon University, 1979.

[5] J. Sejans and O. Nikiforova, “Practical Experiments with Code
Generation from the UML Class Diagram,” Proceedings of
MDA&MDSD 2011, 3rd International Workshop on Model Driven
Architecture and Modeling Driven Software Development In
conjinction with the 6th International Conference on Evaluation of
Novel Approaches to Software Engineering, Osis J., Nikiforova O.
(Eds.), Beijing, China, SciTePress, Portugal, Printed in China, Jun.
2011, pp. 57-67

[6] T. Stahl and M. Volter, Model-Driven Software Development, Wiley,
2006, pp. 428.

[7] I. Jacobson, G. Booch, and J. Rumbaugh: The Unified Software
Development Process, Addison-Wesley, 2002, pp. 512.

[8] O. Nikiforova, A. Cernickins, and N. Pavlova, “Discussing the
Difference between Model-driven Architecture and Model-driven
Development in the Context of Supporting Tools,” Proceedings of the
4th International Conference on Software Engineering Advances,
IEEE Computer Society, Sept. 2009, pp. 446-451.

[9] OMG: Catalog Of OMG Modeling And Metadata Specifications,
[Online]. Available:

http://www.omg.org/technology/documents/modeling_spec_catalog.h
tm [retrieved: September, 2013]

[10] A. Bajovs, Research of the Basic Principles of the Model-To-Code
Transformation, Bachelor Thesis, Riga Technical University, 2012.

[11] Enterprise Architect – UML Design Tools and UML CASE Tools for
Software Development, [Online]. Available:
http://www.sparxsystems.com.au/products/ea/index.html [retrieved:
September, 2013]

[12] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern
Approach, Second Edition, Prentice Hall, 2002, pp. 1132.

[13] M. Marcotty and H. Ledgard, The World of Programming Languages,
Springer, 1986, pp. 380.

[14] OMG: MOF 2 XMI Mapping Specification Version 2.4.1, [Online].
Available: http://www.omg.org/spec/XMI/2.4.1 [retrieved:
September, 2013].

[15] XML Path Language (XPath) 2.0 (Second Edition), W3C document,
[Online]. Available: http://www.w3.org/TR/xpath20 [retrieved:
September, 2013]

[16] A. Cernickins, O. Nikiforova, K. Ozols, and J. Sejans. “An Outline of
Conceptual Framework for Certification of MDA Tools,”
Proceedings of the 2nd International Workshop on Model-Driven
Architecture and Modeling Theory-Driven Development, In
conjunction with ENASE 2010, In Janis Osis, Oksana Nikiforova,
(Eds.), Athens, Greece, SciTePress, Jul. 2010, pp. 60-69.

[17] C. S. Mellish and W. F. Clocksin, Programming in Prolog: Using the
ISO Standard, Fifth Edition, Springer, 2003, pp. 300.

[18] IBM Software – Rational Rose, [Online]. Available: http://www-
01.ibm.com/software/awdtools/developer/rose [retrieved: September,
2013]

[19] Introducing IBM Rational Software Architect, [Online]. Available:
http://www.ibm.com/developerworks/rational/library/05/kunal/?S_T
ACT=105AGX99&S_CMP=CP [retrieved: September, 2013]

[20] Acceleo home page, [Online]. Available:
http://www.eclipse.org/acceleo/ [retrieved: September, 2013]

[21] XPand – Eclipsepedia, [Online]. Available:
http://wiki.eclipse.org/Xpand [retrieved: September, 2013]

[22] Microsoft Visual Studio 2012, [Online]. Available:
http://www.microsoft.com/visualstudio/eng/team-foundation-service
[retrieved: September, 2013]

[23] Y. Danilchenko and R. Fox, “Automated Code Generation Using
Case-Based Reasoning, Routine Design and Template-Based
Programming,” in the Proceedings of the 23rd Midwest Artificial
Intelligence and Cognitive Science Conference, S. Visa, A. Inoue and
A. Ralescu editors, Omnipress, Apr. 2012, pp. 119-125.

[24] MOF Model To Text Transformation Language, Version 1.0,
[Online]. Available: http://www.omg.org/spec/MOFM2T/ [retrieved:
September, 2013]

[25] K. J. Hammond, “CHEF: A Model of Case-based Planning,” in
Proceedings of the Fifth National Conference on Artificial
Intelligence, AAAI, Aug. 1986, pp. 267-271.

[26] G. Vazquez, J. Pace, and M. Campo, “A Case-based Reasoning
Approach for Materializing Software Architectures onto Object-
oriented Designs,” in Proceeding SAC '08 Proceedings of the 2008
ACM symposium on Applied Computing, ACM, Mar. 2008, pp.
842-843.

[27] M. Hsieh, and E. Tempero, “Supporting Software Reuse by the
Individual Programmer,” in Proceedings of the 29th Australasian
Computer Science Con"ference, Australian Computer Society, Inc,
Jan. 2006, pp. 25-33.

[28] J., W. Satzinger, R. B. Jackson, and S. D. Burd: Object-Oriented
Analysis and Design with the Unified Process, Thomson Course
Technology, 2005, pp. 656.

[29] D. Gasevic, D. Djuric, and V. Devedzic: Model Driven Engineering
and Ontology Development, 2nd edition, Springer, 2009, pp. 378.

545Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 565 / 646

Towards a Smart City Security Model
Exploring Smart Cities Elements Based on Nowadays Solutions

Felipe Silva Ferraz, Carlos Candido Barros Sampaio,
Carlos André Guimarães Ferraz, Gustavo Henrique da Silva Alexandre, Ana Catharina Lima de Carvalho

Informatics Center
Federal University of Pernambuco

Recife, Brazil
{fsf3, ccbs, cagf, ghsa}@cin.ufpe.br

CESAR – Recife Center for Advanced Studies and
Systems

Centro de Estudos e Sistemas Avançados do Recife
Recife, Brazil

{fsf, ccbs, ghsa, aclc}@cesar.org.br

Abstract— Even though concepts related to smart cities are
well established and spread, those concepts are still very thin
when related to Information Security. This paper will present
some studies on smart cities, and will show that those studies
are based on three macro concepts, System Interoperability,
Applications and Frameworks/Platforms. Solutions and tools
focusing on Information Security are still far from the common
and typical scenario of urban systems. Based on that
assumption, we propose a solution, based on a self-contained
information security model, that aims to relate several items
from urban system sand solutions for problems like, privacy
and information integrity. This paper presents the first stage
of this model that is based on elements found on nowadays
solutions form Smart Cities.

Keywords-smart city; security; privacy; information.

I. INTRODUCTION
The term City, in general, means a place or an urban area

demographically closed, running under economical and
political understanding [1]. These assumptions are also
related to the idea that a City is a trading and commercial
center that offers different services and products to a region.
Those images are directly influenced by the industrial age
when the production of services and products had their
transformation [1].

Today, urbanization have reached an unprecedented
level; different from other ages, large cities have now most
part of world population and an increasingly share of the
world's most skilled, educated, creative and entrepreneurial
minds [2]. More than 50 percent of people on the planet now
live in large cities [4]. According to United Nations, this
number will increase to 70 percent in less than 50 fifty years
[3]-[5]. This so-called city growth or emerging of urban life
is driving the city infrastructure into a stress level never seen
before as the demand for basic services are both increased
and overloaded [6].

According to a research called Smarter Cities and Their
Innovation Challenges, there is an urgent need for urban
scenarios and cities to be smarter in the management of their
infrastructure resources and interactions [3]. The urban
performance must not depend only on its hardware
infrastructure, or the physical concepts of infrastructure, but

it must start taking into account social interactions and a
faster deployment of information and services.

Cities are becoming increasingly empowered
technologically as their core systems, i.e., Education, Public
Safety, Transportation, Energy and Water, Healthcare and
Services, are instrumented and interconnected, enabling new
ways to deal with massive, parallel and concurrent usage.

In this paper, we aim to present a Security Model for
Smart Cities, based on the assumption that this field has few
works focusing on Information Security and its
consequences. To that, this paper will present works related
to security, it will depict Smart City initiatives and will
present the Security Model based on urban system, data type
and their interaction. This work is divided as follows:

In Section II, we present a difference between
information security in cloud computing areas and smart
cities. In Section III, there is going to be a detailed model
basis. Section IV presents model's entities explanation;
Section V presents the conclusion and future works.

II. INFORMATION SECURITY, CLOUD COMPUTING
SECURITY AND SMART CITIES

Typically, cities or urban areas will begin to increase the
demand for a better and more spread network connectivity,
which will serve as a base for a group of different and more
powerful features and services. Along with that, potential
threats against those systems will increase, going beyond
security network aspects. Hence, security measures will be
needed within system scope. According to Bartoli et al. [7]
and to Li et al. [8], for an effective protection of a Smart
City system or its environment in the correct way, a number
of problems related to security have to be addressed
following a specific plan, definition or architecture. Those
plans cover different types of systems and threats, but still
do not address specific environmental situations and entities
of a Smart City.

Although systems information security, within the scope
of smart city, is not a well-established concept, another area
presents several advances in this security field; for instance,
CERT presents a hierarchical graphic where it presents
potential vulnerabilities and/or exploits to be studied as
challenges in Cloud Computing area [9]. G-Cloud
Information [10], on the other hand, presents a series of

546Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 566 / 646

minimum requirement needed by Cloud Computer Service
Provides (CCSP).

Finally, in Security Architectures for Cloud Computing
[11], international trends in security requirements for Cloud
computing, along with security architectures proposed by
Fujitsu such as access protocol, authentication and identity
(ID) management, and security visualization, is presented
and discussed.

Different from the smart city needs, Cloud Computing
studies on security focus on specific problems for this area,
among those problems we can mention topics like
virtualization, PaaS (Platform as a Service) or IaaS
(Infrastructure as a Service) or SaaS (Software as a Service)
failures, legal responsibility, scalability to ensure
availability. Even though smart city systems rely on Cloud
Computing as a host and service provider for its services, it
is still a scenario where security concerns supersedes far
beyond the structure it uses.

As a basic situation, we can explore an application that
helps citizen to report crimes; this typical application is
deployed within a cloud computer structure to guarantee
scalability and availability among others. Still, even a secure
cloud solution does not create the guarantee for the citizen,
or user, that its identity will be kept private in case of a
complaint; nevertheless it also does not answer the question
“Is this accusation, reliable? Should the system trust this
complaint? Should it relay on historical denounces to trust
this one?”

This situation summarizes a common concern with
privacy within the use of a Smart City system. Many more
can be presented, like a patient who does not want his/hers
medical history reviled, but still, they must be accessible to
the medical entities. Another situation is of a driver that
would not want his physical location broadcasted but has to
have its location ready available for the traffic authorities in
case of a traffic transgression or does NOT need its location
just to inform cases of traffic violation. Whatever the
situation, the smart city system(s) presents different needs
from a Cloud Computing system, for instance, because it
needs to deal with a higher, and therefore different, level of
concern.

III. BACKGROUND
A century ago, city population would not exceed the size

of a million people. Nowadays that scenario is known in
more than 450 cities [4]. The connection from the services
and structures of those cities has become a big connected
information system in order to guarantee that the cities are
becoming smarter and, from that, will endure as a Smart
City, and not just a connected city.

Within these scenarios, Smart City environments, or
solutions, we face three specific topics that are: System
Interoperability, Platforms and Applications.

A. System Interoperability
In the last decades, major cities around the globe have

emerged to a reality in which every major public and urban
system are now represented in the form of a Computer
System. Urban systems like the ones responsible for

Education, Public Safety, Transportation, Energy and Water,
Healthcare and Services are now present and vital to the
continuity of those cities. Furthermore, those systems deal
with a historical amount of data that would be impossible to
manage in any different way.

One of the problems faced by those environments is that
their solutions are isolated from each other, therefore it is
impossible to gather information from one system and use it
on another system so that it creates more valuable
information [2]-[6], [12]. To face that, research studies show
that is vital for cities, which want to have a smarter and
healthier growth, to open their system to make possible for
other entities to interact with as many system as possible to
provide to the citizens, public and private institutions with
more valuable information [3], [4], [6].

B. Platforms or Frameworks
Once it is understood that urban system face problems

related to their interconnection, a second approach lays on
the proposal or the creation of platforms or frameworks to
connect different units, to interact through this platform.
Those units are represented in the form of a set of specific
profiles that are directly related to citizens, buildings or
companies and Things [13]-[17].

In this option, there is a highly adopted concept of The
Internet of Things [18]-[21] which create situations where
sensors and different entities can and will interact with each
other. Furthermore we have the concept of social sensors,
which are presented by values provided directly by citizens
through social networks like, Twitter or Facebook. Even
though social networks are a well established concept
representing an important step to reduce distances and
connecting people, its importance to urban life lies upon the
messages, or posts, created by the user (citizen) itself [18],
[22], [23], which leads to a vision that one citizen, or its
information, is equally important as any other citizen. This
way, Platforms and Frameworks emerge as the infrastructure
in which the concept of sensor information, which could be
either physical or a social sensor, is used as input to
instantiate specific solutions for different urban environment.
For instance we have Cosm [19], former Pachube, a platform
for Energy connection that uses a physical sensor to monitor
energy consumption on Twitter profiles that tracks traffic
problems, working as a social sensor.

C. Applications
The important difference between those two topics

(Platform x Applications) is that a platform is built with the
assumption that the power to decide how it is going to be
used depends upon the choices made by the user that
instantiate it. For instance, it is possible to see the same
platform built to serve as a dynamic panel showing opinions
or as a medical solution showing the status of all systems in a
hospital [21]. Hence, we are dealing with an approach more
abstract, which usually comes combined with an application
as a solution.

On the other hand, solutions made for urban systems that
are represented by applications appear as more dedicated,
practical and less abstract. Some relevant examples are Waze

547Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 567 / 646

[24] and Catch the Bus [25] which are applications that show
problems related to traffic, Dwolla [26] that attacks scenarios
of economical behavior and Crime Reports [27] for security
measures, and even a Big Data based localization system
called SkyBox [28] that aims to, through satellite photos,
make easier and faster localization in different environments.

IV. SECURITY MODEL FOR SMART CITIES
To represent our security model, from a previous

analysis on several platforms, applications and interoperable
solutions focusing on smart city situations, we summarized
entities that somehow are presented in every one of the
analyzed subjects. Those entities are: System Type, Sensors,
Actuators, Sensitivity Level and Grouping Value.

The following sections will explain one by one the
selected entities and what they represent.

A. System Type
In a given system type we exhibit different types of

system that are involved in Smart City areas. They are:
Education, Public Safety, Transportation, Energy and Water,
Healthcare and Government Services.

Education Systems: Represent every system that is,
directly or indirectly, related to educational services.

Public Safety: Represent every system that aims to help
public areas and citizens to guarantee city safety such as, but
not only, vigilance systems or crime reports systems.

Transportation System: Represents every system that,
in different way, drives citizens into a better movement
around a city. The movement could be either with or without
using automotive transportations.

Energy and Water System: Defines as any system that
acts directly focusing on natural resources, more specifically
on Energy or Water.

Healthcare System: Every system that seeks to improve
the health and well-being of a patient.

Government Services: This term depicts every system
that works within government scenarios. It can vary from a
justice web system that expose legal issues of each citizen,
to a platform that opens governmental data to the city itself.
For example, we have the Open Government Data and
British Data.gov.uk, both under this same idea [29], [30].

Figure 1. Core Systems Relations.

Figure 1 illustrates an environment that contains all systems
mentioned above. Even though the image presents some
relations between some systems, it is important to state that
this is a common example and not the mandatory
communication.

B. Sensors
In Sections A and B, we presented different types of

sensors that are part of a Platform or Application. Both areas
work with the same concept. In those areas we find entities
responsible for gathering information. In our model, those
entities express themselves as Physical Sensors and/or Social
Sensors.

Sensors that generate an expected format of data and non-
personal information represent a Physical Sensor i.e.,
Thermal Sensors, Presence Sensors, Magnetic Sensors,
Radio Frequency Identification (RFID) tags and others.

A Social Sensor represents an entity whose data is
created from a person and contains personal information, for
example, a post on Twitter or any other social network.

C. Actuators
A sensor, Physical or Social, represents entities

responsible for gathering information from the environment.
Hence, an actuator represents the ways that the information
gathered by the Sensor layer, processed or not, is sent back to
the user. Take for example a system that collects information
about traffic, combining twitter with physical traffic sensors,
and sends back to the driver's Smartphone information about
which part of city present more or less traffic. This way, both
the application and the Smartphone are Actuators.

The actuators can be one of, Direct or Indirect; This
classification will depend on the access to the information.
The access can be direct, like on a Smartphone or indirect,
like through a smart panel.

548Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 568 / 646

D. Sensitivy Level
In this section, we present a situation on which

information is gathered from different types of sensors and
could be delivered back by different actuators. In this
particular scenario, the collected data is used as grouped
information. Grouping value will be the last entity we will
approach, mainly because it needs more than just one value
to represent a correct data. Once this requirement is fulfilled,
it is necessary to take under consideration that this one value
is a sensible value, and could not compromise the identity of
the citizen that, through the sensor, sent its location and
traffic info. Based on that, the information has to respect the
Sensitive Level that can be private or public.

Private information cannot be exposed, even further, it
cannot be associated with its creator. On the other hand,
Public information can be associated, expose and even stored
for future use.

E. Grouping value
The last aspect is grouping value and it represents one of

three possible states any information represents. Those three
states are, Information Grouped, Information Non-Grouped
and Reversible Information Grouped.

Information Grouped represent a group of information
that does not make sense if analyzed or stored individually,
e.g., numbers, values or medians.

Non-Grouped Information represents all kinds of
information that have value if analyzed or stored
individually, e.g, Dates, Coordinates or social posts.

All information that represents a value when presented in
a grouped fashion, but that can be traced back to its
individual values, are called Reversible Grouped
Information. An example of this concept would be List of
values or Map Areas.

V CONCLUSION
The presented entities that compose the model are
summarized in Table 1.

TABLE I: ENTITIES SUMMARIZED

This paper has proposed a first stage of a Security Model
that aims to add more Information Security to Smart Cities
solutions. The elements presented in Table I are entities
suggestion based on studies and analysis made on some of
the solutions listed in this work. Furthermore as future
works, we intend to develop the second stage of the
presented model. It will present, a relation between the
entities presented here with which aspect that is more
critical in terms of information security. As a final work we
suggest to present architectural solutions based on Security
Pattern, those will guide city administration towards more
secure urban systems.

REFERENCES

[1] R. J. Johnston and D. Gregory, The Dictionary of Human Geography.
Blackwell Reference, 1981.

[2] D. Susanne, G. Constantin, & K. Mary. Smarter Cities for Smarter
Growth: How Cities "Can Optimize Their Systems for the Talent-
Based Economy". Somers, 2010, NY: IBM Global Business Services.

[3] M. Naphade, G. Banavar, C. Harrison, J. Paraszczak and R. Morris,
"Smarter Cities and Their Innovation Challenges," Computer, vol.44,
no.6, pp.32,39, June 2011.

[4] Dirks, S., Keeling, M., and Dencik, J., " A Vision of Smarter Cities:
How Cities Can Lead the Way into a Prosperous and Sustainable
Future. Somers, NY: IBM Global Business Services, 2009.

[5] D. Washburn and U. Sindhu, “Helping CIOs Understand ‘ Smart City
’ Initiatives”, forrester, 2010.

[6] A. Caragliu, C. Del Bo, and P. Nijkamp, “Smart Cities in Europe”,
Journal of Urban Technology, vol. 18, no. 2, Apr. 2011, pp. 65–82.

[7] A. Bartoli, M. Soriano, J. Hernandez-Serrano, M. Dohler, A.
Kountouris, D. Barthel, Security and Privacy in your Smart City , in
Proceedings of Barcelona Smart Cities Congress 2011, 29-2
December 2011, Barcelona (Spain).

[8] W. Li, J. Chao, and Z. Ping, “Security Structure Study of City
Management Platform Based on Cloud Computing under the
Conception of Smart City,” 2012 Fourth International Conference on
Multimedia Information Networking and Security, Nov. 2012, pp.
91–94.

[9] W. R. Claycomb and A. Nicoll, "Insider Threats to Cloud Computing:
Directions for New Research Challenges," Computer Software and
Applications Conference (COMPSAC), 2012 IEEE 36th Annual ,
vol., no., pp.387,394, 16-20 July 2012.

[10] HM Government, “G-Cloud Information Assurance Requirements
and Guidance,” 2012, avaliable at
http://gcloud.civilservice.gov.uk/files/2012/05/G-Cloud-Services-IA-
Requirements-and-Guidance-version-1-0-_for-publication_1-2.pdf.

[11] M. Okuhara, “Security Architectures for Cloud Computing,” pp. 397–
402, fujitso (2010).

[12] Accenture, Cisco and the GSMA, Smart Mobile Cities: Opportunities
for Mobile Operators to Deliver Intelligent Cities Contents, 2011,
available at:
http://www.accenture.com/SiteCollectionDocuments/PDF/Accenture-
Smart-Mobile-Cities.pdf.

[13] A. Attwood, M. Merabti, P. Fergus, and O. Abuelmaatti, “SCCIR:
Smart Cities Critical Infrastructure Response Framework,” 2011
Developments in E-systems Engineering, Dec. 2011, pp. 460–464.

[14] L. Lugaric, G. S. Member, S. Krajcar, and Z. Simic, “Smart city —
Platform for emergent phenomena power system testbed simulator,"
Innovative Smart Grid Technologies Conference Europe (ISGT
Europe), 2010 IEEE PES , vol., no., pp.1,7, 11-13 Oct. 2010

[15] H. Chourabi, T. Nam, S. Walker, J. R. Gil-Garcia, S. Mellouli, K.
Nahon, T. a. Pardo, and H. J. Scholl, “Understanding Smart Cities:
An Integrative Framework,” 2012 45th Hawaii International
Conference on System Sciences, Jan. 2012, pp. 2289–2297.

[16] M. Al-Hader, A. Rodzi, A. R. Sharif, and N. Ahmad, “Smart City
Components Architicture,” 2009 International Conference on

549Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 569 / 646

Computational Intelligence, Modelling and Simulation, 2009, pp. 93–
97.

[17] F. Gil-Castineira, E. Costa-Montenegro, F. Gonzalez-Castano, C.
López-Bravo, T. Ojala, and R. Bose, “Experiences inside the
Ubiquitous Oulu Smart City,” Computer, vol. 44, no. 6, Jun. 2011, pp.
48–55.

[18] D. J. Skiba, “The Internet of Things (IoT).,” Nursing education
perspectives, vol. 34, no. 1, 2011, pp. 63–4.

[19] “Cosm.” [Online]. Available: https://cosm.com. [Accessed: 10-Aug-
2013].

[20] “Sensetecnic.” [Online]. Available: http://sensetecnic.com/.
[Accessed: 10-Aug -2013].

[21] M. Blackstock, N. Kaviani, R. Lea, and A. Friday, “MAGIC Broker
2: An open and extensible platform for the Internet of Things,” 2010
Internet of Things (IOT), Nov. 2010, pp. 1–8.

[22] E. Duravkin, "Using SOA for development of information system
“Smart city”," Modern Problems of Radio Engineering,
Telecommunications and Computer Science (TCSET), 2010
International Conference on , vol., no., pp.258,258, 23-27 Feb. 2010

[23] J. Guevara, E. Vargas, F. Barrero, S. Member, and S. Toral,
"Ubiquitous architecture for environmental sensor networks in road
traffic applications," Intelligent Transportation Systems (ITSC), 2010
13th International IEEE Conference on , vol., no., pp.1227,1232, 19-
22 Sept. 2010

[24] “Waze.” [Online]. Available: www.waze.com. [Accessed: 10-Aug -
2013].

[25] “Catch the bus.” [Online]. Available: http://catchthebusapp.com/.
[Accessed: 10-Aug -2013].

[26] “Dwolla.” [Online]. Available: www.dwolla.com. [Accessed: 10-
Aug-2013].

[27] “Crime Reports.” [Online]. Available:
https://www.crimereports.com/home/iphone_app. [Accessed: 10-Aug-
2013].

[28] “Skybox Imaging.” [Online]. Available:
http://www.skyboximaging.com/. [Accessed: 10-Aug-2013].

[29] “Open Government Data” [Online]. Available:
http://opengovernmentdata.org. [Accessed: 10-Aug -2013].

[30] “Data.gov.uk” [Online]. Available: http://data.gov.uk/. [Accessed: 10-
Aug-2013].

550Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 570 / 646

Camera Trajectory Evaluation in Computer Graphics
Based on Logarithmic Interpolation

Mikael Fridenfalk
Department of Game Design

Uppsala University Campus Gotland
Visby, Sweden

mikael.fridenfalk@speldesign.uu.se

Abstract—A new technique is presented within the field of
multimedia software applications, based on a logarithmic shape-
preserving piecewise cubic Hermite interpolant for evaluation
of camera trajectories in mathematically generated large-scale
geometries, such as 3D fractals, with the ability to eliminate the
oscillations that currently are associated with interpolation of
exponential zooms.

Keywords-fractal space; logarithmic; LPCHIP; PCHIP; spline

I. INTRODUCTION

Piecewise cubic Hermite splines are presently used for high-
end interpolation of the trajectories of cameras and 3D objects
in computer graphics [2,6,7], such as computer games, but
also for computer-controlled cameras in film production.

On an implementation level, the standard method to control
a camera in computer graphics is by an object called the target
camera [8], defined by camera position, a look-at position and
the orientation of the camera around the vector pointing from
the position of the camera to the look-at position (called roll).
To avoid causing the viewer disorientation or nausea, roll is
often set to a constant value.

Presently, the spline interpolation techniques that are used in
computer graphics are as a rule not based on shape-preserving
ones, here defined as interpolants that are both harmonic and
monotonic, such as the Piecewise Cubic Hermite Interpolating
Polynomial (PCHIP) in MATLAB [1,4,5], which could be
a better choice for camera trajectory control, since PCHIP
eliminates the overshooting effects that are associated with the
regular variant, see Figure 1 (left), thereby increasing the level
of control in camera trajectory design without any practical
downside, see Figure 1 (right). A reason for this could be that
MATLAB, which is the application that introduced PCHIP to
a wider audience, is presently not widely used in systems for
generation of motion picture, but rather applications such as
image processing.

In Figures 1-2 (left), the trajectories of two sets of break-
points are evaluated by a regular piecewise cubic Hermite
interpolant. While the implementation of the harmonic mean in
Figure 1 (middle), eliminates the overshooting effects of the
regular interpolant, Figure 2 shows that the harmonic mean
does not always work properly, unless the tangents (or slopes)
m1 and m2 are limited by locally monotonic constraints, see
Figures 1-2 (right).

The main difference between a regular and a shape-
preserving piecewise cubic Hermite interpolant is that here,
the tangents m1 and m2 in the regular interpolant are functions
of the mean values of the differences of adjacent breakpoints
(or keyframes), while the shape-preserving version is based
on locally monotonic functions of the harmonic mean of the
same, see LPCHIP (for Logarithmic Piecewise Cubic Hermite
Interpolation Polynomial) in Figure 12 for the example that
was used for the generation of the graphs in this paper.
LPCHIP in a non-logarithmic mode (i.e., with the argument
lg set to false), henceforth called the PCHIP equivalent, is not
identical to the MATLAB function PCHIP, but a simplified
version. The principal difference is that the PCHIP equivalent
is designed specifically for a constant step size between the
breakpoints. However, by the addition of separate interpolation
along the horizontal axis, as shown in Figures 1-2, the step
size between the breakpoints becomes automatically variable.

In Figure 3 (left), the effect of camera trajectory evaluation
is demonstrated using the regular mean value for the evaluation
of m1 and m2 in LPCHIP (with mode set to REGULAR) and
in Figure 3 (middle), with the adjustments of m1 and m2 by
multiplication with a factor of 0.25 instead of 0.5. As shown,
while in the latter figure the overshooting effect of the camera
position trajectory is reduced compared with the former, at the
same time the look-at position trajectory has become rougher.
This issue may be addressed by adaptive control, but is by
default solved by the application of the PCHIP equivalent, see
Figure 3 (right).

This paper consists of the presentation of a new technique
and a comparison with standard techniques presently used in
computer graphics, represented by the term regular interpo-
lation. In Section 2, the application of a logarithm is studied
in context with camera trajectory interpolation in exponential
zooms, to eliminate the oscillating effects that were discovered
using standard interpolation. In Section 3, a detailed solution
to the oscillation problem is offered, including the evaluation
of interpolation points as a function of arbitrary points in time.
This solution was further visually verified by implementation
in a computer graphics application primarily designed for
visualization of 3D fractals.

551Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 571 / 646

Figure 1: Regular (left), harmonic (middle), harmonic and monotonic (right). As shown in this example, the regular interpolant causes a
slight overshoot between the second and the third breakpoints.

Figure 2: Regular (left), harmonic (middle), harmonic and monotonic (right). While harmonic interpolation solves the overshooting problem
of the example in the previous figure, to work properly for all cases, it has to be monotonic.

Figure 3: Regular (left), regular with adjusted weights (middle) and the PCHIP equivalent (right).

(2, 9.9)

(12, 9.4 · 105)

lin

log

Figure 4: Regular interpolation (dotted) versus LPCHIP (solid) in an even exponential zoom.

II. LOGARITHMIC EXTENSION

We developed a camera trajectory control system using
Apple Xcode [9], based on a PCHIP equivalent during the
NASA International Space Apps Challenge 2013, for the
production of a video within the Ad Infinitum project on
the challenge Why We Explore. Although the control system
worked perfectly well within local room dimensions, yet the
exponential zoom from microcosm to macrocosm showed to

work less than satisfactory due to an uneven change of the
experienced zooming speed.

This effect is demonstrated in Figures 4-8 by the dotted
curves. In Figure 4, the effect is best shown using a regular
cubic Hermite interpolant with six breakpoints defined by
the function 3.146x, which was the largest base with three
decimals that could be used before the interpolant caused a
singularity. In this context, x represents the linear horizontal
axis in Figures 4-10. As shown in Figures 5-8 (dotted curves),

552Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 572 / 646

(2, 102)

(12, 1012)

lin

log

Figure 5: The PCHIP equivalent (dotted) versus LPCHIP (solid) in an even exponential zoom.

(2, 102)

(12, 1012)

lin

log

Figure 6: The PCHIP equivalent (dotted) versus LPCHIP (solid) in a dynamic exponential zoom.

(4, 104)

(16, 1016)

lin

log

Figure 7: The PCHIP equivalent (dotted) versus LPCHIP (solid) in a moderately scaled exponential zoom.

553Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 573 / 646

(4, 1064)

(16, 10256)

lin

log

Figure 8: The PCHIP equivalent (dotted) versus LPCHIP (solid) in a large-scale exponential zoom.

where Figure 8 displays a zoom using the function 1016x,
the PCHIP equivalent did not cause any singularities. In this
context, it is possible to increase the robustness of the regular
interpolant by weight adjustments, although as previously
demonstrated at a tangible cost. The conclusion from Figures
7-8 is that it is possible to minimize the oscillation effects
of PCHIP (and its equivalent) in exponential camera zooms,
if the breakpoints are placed closely enough. The problem is
however that the whole idea using interpolation is to eliminate
the manual generation of the finer details of a trajectory. Thus,
PCHIP (and its equivalent) fails to operate properly if the
distance between the breakpoints are exponentially increased.

III. RESULTS

The solution to this problem showed to be that the inter-
polant that was implemented in the Ad Infinitum project, had
to be redefined to be able to map the distance between the
look-at and the camera position into logarithmic space (and
back after the interpolation was performed), which is done by
setting the LPCHIP argument lg to true in Figure 12. Thus,
the solid lines in Figures 4-8 are obtained, which are identical
to the desired trajectory we initially wanted the regular and
the PCHIP equivalent interpolants to follow.

This new interpolant is called Logarithmic PCHIP
(LPCHIP), a name inspired by the MATLAB PCHIP function.
However, in order to work properly, the new interpolant has to
be implemented with some caution, since any position value
equal or less than zero exceeds the range of the function.

The solution is therefore not to apply LPCHIP (in logarith-
mic mode) directly on camera trajectory breakpoints, one for
each of the six dimensions (three degrees of freedom for the
camera position and three for the look-at position), but rather
only to interpolate the distance between the camera and the
look-at position, since by definition, this distance can never
be equal or less than zero. Thus, the arguments x0 to x3
of LPCHIP in Figure 12 do not have to be limited by any
safeguards.

Cam_LPCHIP in Figure 13 shows how the new technique is
implemented in practice. Briefly expressed, the interpolation
is performed the conventional way by separation of the men-
tioned six degrees of freedom. However, the difference here
is that using LPCHIP, the distance between the look-at point
and the camera is modified so that it follows a logarithmic
trajectory instead of a Euclidean.

In the sample code in C++ that is presented in Figures 12-
15 (which in this specific case was assessed to be as clear
and succinct as pseudocode for this level of detail, but more
straightforward to implement), mCamCoords is a matrix of
the type double of size mCamCoordsN × 7, where each row
consists of a breakpoint and the first column consists of the
time associated with each breakpoint followed by the camera
position (columns 2-4) and the look-at position (columns 5-7).

A question in this context is how LPCHIP affects inter-
polation where the distance between the breakpoints are rela-
tively constant (or more specifically non-exponential). Figure 9
shows that the deviation between the PCHIP equivalent and
LPCHIP is in this specific example too small to be visually
detectable in this graph. In Figure 10, the difference between
the PCHIP equivalent and LPCHIP (in Figure 9) has been
magnified, which for this example gives a peak and mean
deviation equal to 0.0043 versus 0.0011. This is relatively
insignificant and hardly even noticeable for camera trajectory
control applications, since the deviation is a smooth curve
without any discontinuities.

This example is however only a near best case and in
real applications the deviation should be usually quite visible.
As an example, in Figure 11, the corresponding average
deviation was estimated to 0.14 (or 2.4%), which is a more
realistic number. A large number, such as this, is however
not necessarily a disadvantage for LPCHIP compared with the
PCHIP equivalent but could rather be a measure of the discrep-
ancy of the latter compared with a well-designed interpolant
specifically developed for camera trajectory evaluation.

554Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 574 / 646

Regarding the evaluation of t in Cam_Auto in Figure 14,
to be accurate, a reverse interpolant has to be used. Although
such interpolant can be derived symbolically, the solution
showed to be relatively complex. This is why a more
pragmatic approach was adopted by the application of
Newton’s method [3], where h′k for any k denotes the
derivative of hk in:

ti+1 = ti −
h1x1 + h2x2 + h3m1 + h4m2 − y

h′1x1 + h′2x2 + h′3m1 + h′4m2
(1)

The InvPCHIP method in Cam_Auto in Figure 14, takes y
as an argument and returns t. This method is obtained by the
addition of (1) inside a loop after the evaluation of hk and
h′k in the PCHIP equivalent (with an iteration start value of
t0 = 0.5). Figure 11 shows an example of the application of
LPCHIP as a function of time, using inverse time interpolation
to obtain a smooth trajectory based on six breakpoints using
identical start and end-points with totally 500 interpolation
line segments. In the example in Figure 11, it took in average
4.08 versus 4.72 iterations to find a solution within an error
interval in Newton’s method of 10−6 versus 10−9. In this case,
when the time is measured in seconds, this is equal to accuracy
levels in the order of microseconds versus nanoseconds.

Note that for correct performance, the current implementa-
tion of this camera trajectory evaluation technique requires a
continuously increasing time value along the first column of
mCamCoords.

IV. CONCLUSION

The new camera control system suggested in this paper
showed to exceed current systems used in computer graphics.
This new system is categorized by (1) utilization of a local
monotonic function of the harmonic mean for the evaluation
of the tangents of the piecewise cubic Hermite interpolator (in
similarity with PCHIP), in combination with (2) operation in
logarithmic space instead of Euclidean regarding the evalua-
tion of the distance between the camera and the look-at point,
thereby eliminating trajectory oscillations associated with in-
terpolation of exponential zooms using present techniques.

ACKNOWLEDGMENTS

Many thanks to the NASA International Space Apps Chal-
lenge 2013, where the mathematical problem solved in this
paper was first identified. In addition, special thanks to Ellinor
Dahl at Almi Gotland and Mikael von Dorrien at Almi Väst
for the encouragement that led to this work.

REFERENCES

[1] C. de Boor, K. Höllig, and M. Sabin, “High accuracy geometric Hermite
interpolation”, Computer Aided Geometric Design, vol. 4 (1987), no. 4,
pp. 269-278.

[2] M. Christie, P. Olivier, and J. Normand, “Camera Control in Computer
Graphics”, Computer Graphics, vol. 27 (2008), no. 8, pp. 2197-2218.

[3] P. Deuflhard, Newton Methods for Nonlinear Problems: Affine Invariance
and Adaptive Algorithms, Springer, 2011.

[4] F. N. Fritch and R. E. Carlson, “Monotone Piecewise Cubic Interpola-
tion”, SIAM Journal on Numerical Analysis, vol. 17 (1980), no. 2, pp.
238-246.

(1, 1)

a

b

(6, 6)

Figure 9: In a non-exponential zoom, the PCHIP equivalent and
LPCHIP virtually coincide in this example.

a

ε̂

b

Figure 10: The difference between the PCHIP equivalent and LPCHIP
in previous figure, gives a peak value of ε̂ = 0.0043.

(0, 4)

(4, 6)

(5, 10)

(7, 4)

Figure 11: An example of LPCHIP interpolation as a function of
time during 7 seconds. To obtain the correct parameter value t in
Cam_Auto, an inverse version of the PCHIP equivalent is used.

[5] C. Moler, Numerical Computing with MATLAB, Society for Industrial
and Applied Mathematics, 2010.

[6] T. Mullen, Mastering Blender, John Wiley & Sons, 2010.
[7] T. Palamar and E. Keller, Mastering Autodesk Maya 2012, Sybex,

Hoboken, NJ, USA, 2011.
[8] H. Smith, Foundation 3ds Max 8: Architectural Visualization, Dreamtech

Press, 2007.
[9] Xcode, Apple Inc. <https://developer.apple.com/xcode/> [retrieved: Au-

gust 7, 2013].

555Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 575 / 646

double GFX::LPCHIP(double x0, double x1, double x2, double x3,
double t, int mode, bool lg){

if (lg){x0 = log(x0); x1 = log(x1); x2 = log(x2); x3 = log(x3);}

double epsilon = 1e-20;
double den, m1, m2, d0, d1, d2, t2, t3, h1, h2, h3, h4, y;
d0 = x1 - x0; d1 = x2 - x1; d2 = x3 - x2;
bool a0 = mode == SHAPE_PRES && (d0 * d1 < 0.);
bool a1 = mode == SHAPE_PRES && (d1 * d2 < 0.);
bool b = fabs(d1) < epsilon;

if (mode >= HARMONIC){
if (a0 || fabs(d0) < epsilon || b ||

fabs(den = 1./d0 + 1./d1) < epsilon) m1 = 0.;
else m1 = 2./den;
if (a1 || b || fabs(d2) < epsilon ||

fabs(den = 1./d1 + 1./d2) < epsilon) m2 = 0.;
else m2 = 2./den;

}
else {m1 = .5 * (d0 + d1); m2 = .5 * (d1 + d2);}

t2 = t * t; t3 = t2 * t;
h1 = 2. * t3 - 3. * t2 + 1.;
h2 = -2. * t3 + 3. * t2;
h3 = t3 - 2. * t2 + t;
h4 = t3 - t2;
y = h1 * x1 + h2 * x2 + h3 * m1 + h4 * m2;

if (lg) return exp(y); return y;
}

Figure 12: The LPCHIP interpolant (a pedagogic version), called by Cam_LPCHIP.

void GFX::Cam_LPCHIP(int idx, double t, bool lg){
double X[6];
For (i,6) X[i] = LPCHIP(mCamCoords[idx-1][i+1],

mCamCoords[idx][i+1],
mCamCoords[idx+1][i+1],
mCamCoords[idx+2][i+1],
t,SHAPE_PRES,false);

if (lg){
double dx[4],dy[4],dz[4],d[4],dist,eye[3],u[3],factor;
For (i,4){

dx[i] = mCamCoords[idx+i-1][1] - mCamCoords[idx+i-1][4];
dy[i] = mCamCoords[idx+i-1][2] - mCamCoords[idx+i-1][5];
dz[i] = mCamCoords[idx+i-1][3] - mCamCoords[idx+i-1][6];

}
For (i,4) d[i] = sqrt(dx[i]*dx[i]+dy[i]*dy[i]+dz[i]*dz[i]);
dist = LPCHIP(d[0],d[1],d[2],d[3],t,SHAPE_PRES,true);
For (i,3){eye[i] = X[i]; mLookAt[i] = X[i+3];}
For (i,3) u[i] = eye[i] - mLookAt[i];
factor = dist/sqrt(u[0]*u[0]+u[1]*u[1]+u[2]*u[2]);
For (i,3) u[i] *= factor;
For (i,3) mEye[i] = mLookAt[i] + u[i];

}
else For (i,3){mEye[i] = X[i]; mLookAt[i] = X[i+3];}

}

Figure 13: The LPCHIP camera control method, called by Cam_Auto.

556Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 576 / 646

void GFX::Cam_Auto(){
int idx = mCamera_CurrentInterpIdx;
if (mCamCoords[idx+1][0] < mTime && idx < mCamCoordsN-3)

mCamera_CurrentInterpIdx = ++idx;
double t = InvPCHIP(mCamCoords[idx-1][0],

mCamCoords[idx][0],
mCamCoords[idx+1][0],
mCamCoords[idx+2][0],
mTime,SHAPE_PRES);

Cam_LPCHIP(idx,t,true);
glLoadIdentity();
gluLookAt(mEye[0], mEye[1], mEye[2],

mLookAt[0], mLookAt[1], mLookAt[2], 0.0, 1.0, 0.0);
}

Figure 14: The main evaluation method, called once for each rendered frame.

#define For(i,N) for (int (i) = 0; (i) < (N); (i)++)
...
class GFX ... {

enum {REGULAR, HARMONIC, SHAPE_PRES};
...
double mTime;//Time in Seconds
double mLookAt[3], mEye[3];//Camera Position
static const int MAX_CAM_COORDS_N = 1024;
double mCamCoords[MAX_CAM_COORDS_N][7];//Breakpoints (Including Timestamps)
int mCamCoordsN;//The Total Number of Breakpoints
int mCamera_CurrentInterpIdx;//Current Breakpoint (Start Value = 1)

};

Figure 15: A selection of declarations.

557Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 577 / 646

Metaphors Applied to Interaction Design in Group Learning

Anderson Cavalcante Gonçalves, Deller James Ferreira
Informatics Institute

Federal University of Goiás

Goiânia, Brazil

andersongoncalves@inf.ufg.br, deller@inf.ufg.br

Abstract—The acquisition of the ability to use metaphors

effectively contributes in increasing students' capacity to

analyze and design interfaces. The use of metaphors in

interaction design offers consistent interfaces, simple and

intuitive. However, it is not easy for students to learn how to

use metaphors in interaction design. To teach students how to

develop interactive experiences through metaphors is not an

easy task. This paper proposes a method for teaching the use of

metaphors, while designing the website, desktop, mobile or

tablet interface and presents the results of a case study on the

successful teaching method proposed. The teaching method

developed is a collaborative learning model based on model of

King questioning and creative dimensions of Ferreira. It

consists of creative tasks coupled with structured

questionnaires with questions and are designed to encourage

interaction, group learning, and foster creativity of students.

Keywords-metaphors; interaction; design; teaching; learning

I. INTRODUCTION

Metaphors create connections between concepts that are
already familiar to people. Metaphors explore the existing
knowledge of each person to assimilate something new.
Thus, the person is able to learn new things, using their
previous knowledge of the world [1]. This means that the
person will be able to understand and experience one kind of
thing in terms of another [2]. Considering interaction design,
it is desirable to provide an interface familiar to the user,
easy to learn and use.

The use of metaphorical concepts is one of the resources
available for creating intuitive user interfaces, simpler to
learn and use. Entertainment websites, online stores, social
networks, and others require an interface easy to learn and
use. The interaction design should be well organized, easy to
be interpreted and used by the users. Metaphorical concepts
can be used in an expressive way to achieve this goal.
Metaphorical concepts are pervasive in the culture of a
society. Lakoff and Johnson [2] stated that metaphors are
concepts inherent to subconscious and govern our whole way
of thinking. Thus, the good use of metaphors in interface
design is a feature that will make the interaction much easier
to understand. Nielsen and Molich [3] established that we
should minimize the cognitive load of the user. In other
words, they stated that the designer should facilitate the
reasoning required to interpret an interface. Also, they state

that, in a user interface, there must be a match between the
system and the real world. The designer should use phrases
and concepts familiar to the user, rather than system-oriented
terms.

The use of metaphors is a powerful resource that can be
applied to achieve these heuristics. The appropriate
application of metaphorical concepts turns an interface into
a better interface. The interface design consists in defining
how content is organized and presented to the user [4].

The consistent use of metaphors in the context Human
Computer Interaction (HCI) helps to reduce the cognitive
load necessary for understanding the functionality of a
computational interface. Students´ understanding about a
good usage of metaphors in HCI improves their ability to
properly critique and design computer interfaces.

The use of metaphors is evident in many patterns and
interaction interface designs. Some examples of the use of
metahpors in HCI are evident at Apple's desktop, pattern
wizard, canvas plus pallet pattern, menus, buttons,
dashboards, carousel pattern, breadcrumbs pattern, and so
on. But, how to apply metaphors in interaction design is
nota easy to learn, the metaphors may have simple literal
comparisons and complex connections [1]. In addition, there
are misleading uses of metaphors. It is not simple for
students to learn how to use metaphors in interaction design.
To teach students to develop interactive experiences by
means of metaphors it is not an easy task. Students need to
understand user experiences, concerns, skills, interests and
expectations and must develop the ability to create good
designs based on user’s knowledge.

Constructing effective metaphors is to some extent a
complex skill because it depends on the creative ability of
designers to see new analogies, in order to choose the right
set of correspondences. These correspondences have to
enhance some aspects and hide others, because metaphorical
mediation carries elements of the concept that are
consistent, but also inconsistent when using metaphors to
comprehend one thing in terms of the other. For Schwartz
and Fischer [5], metaphors highlights levels of complexity
as well as the need for sufficient support to build complex
understandings, but they do not easily capture the diversity
of contexts that students might experience that could lead to
the same abstraction. One of the reasons why metaphors can
be difficult to learn and teach, it is because they have a high

558Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 578 / 646

level of complexity. Another reason is that students may
have different interpretations, which makes teaching
difficult.

According to Hodges [6], if we examine the metaphor
closely, their connotations are often the darkest when
applied to teaching. Having a problem in one’s research is
motivating; having a problem in one’s teaching is, well, a
problem. In order to overcome the difficulty to teach
metaphors in HCI, we suggest the teacher must apply a
teaching method that encourages creativity and also
criticism in interaction design.

In this work, we aim to awaken and stimulate the use of
metaphors in teaching and learning interaction design with
the aim to stimulate students' abilities to discern what is a
good or bad design, allowing students to differentiate an
interaction design that it is aesthetically good but possesses a
bad functional design, and to propose new ideas and
solutions.

In this work, we present an innovative teaching method
to teach metaphors in human computer interaction design
that fosters student's creativity and criticism. This method is
based on collaborative learning and creative dimensions
proposed by Ferreira [7] and the discussion method proposed
by King [8], as shown in Fig. 1.

Figure 1. The proposed teaching method.

The creative dimensions, proposed by Ferreira [7],
contain underlying dialogical processes that align dialogues
with mental processes linked to both adaptive and innovative
creativity. The creative dimensions constitute a pedagogical
framework for designing exercises when teaching human
computer interaction. They make it possible for teachers to
create significant collaborative learning experiences to
students, fostering them to activate mental processes
underlying creativity during discussions.

On the other hand, in the discussion method group
proposed by King [8], questions that trigger patterns of
discourse in learning groups are designed to facilitate the
construction of complex knowledge and problem solving.

Our teaching method proposes a combination Ferreira’s
framework [7] and King’s [8] types of questions to propose a
repertory of interaction design exercises exploring the use of
metaphors. In our teaching method, we also approach the
most common metaphorical concepts as structural, visual,
functional, and positional metaphors, and consider where,

when, why and how they are applied in the field of HCI.
This metaphorical knowledge is part of the teaching method
and is used during the tasks and questions created.

Their use can improve the computational interface and
provide substantial gains in user productivity.

For example, visual metaphors are widely used in comic
books. When a certain character is nervous, he is
represented by a rough facial expression and smoke coming
out of his ears, as shown in Fig. 2.

Figure 2. By means of prior knowledge acquired from the culture to

which we operate, we recognize immediately that the character is nervous.

The Pinterest [9] website contains a virtual panel that
makes possible to create image categories, including
descriptions and comments. In this website, we have a
visual metaphor that allows the user to act like in a real
picture panel.

An example of positional metaphors application in
interaction design is that the most important items must be
at the top of the screen. This rule is very important in mobile
applications.

In the LinuxMall [10] website, it is clear the use of
functional metaphors. In this site, there is a backpack in the
upper right corner, which suggests the user to place the
desired products inside it.

As an example of the application of structural
metaphors, commonly, an e-commerce website is
subdivided into sections like in a real store.

In this work, we present a case study comparing the
teaching method proposed in an undergraduate HCI class
(treatment group) and a method involving students’
discussions and informal teacher mediation in another
undergraduate HCI class (control group). The case study
conducted showed significant results.

In Section II, we show the importance of the application
of metaphorical concepts to human computer interaction and
show systematic aspects of metaphors. In Section III, we
describe the teaching method proposed in this article. In
Sections IV and V, we present a case study of the
application of the teaching method proposed and the results
obtained.

II. TEACHING METHOD FOR USE OF METAPHORS

The use of metaphors is essential for the user experience
to become simple and intuitive. It facilitates user
understanding and interactivity. According to Baumer [11],
metaphors can be powerful aids for understanding because
they can help the understanding of novel concepts.

However, learning to apply metaphors in computing
environments is a difficult task. Although metaphors abound
in human thinking, they can be surprisingly difficult to notice
simply due to their ubiquity.

559Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 579 / 646

In this work, we developed a teaching method based on
collaborative learning for teaching metaphors in interaction
design. Collaborative learning is a successful method to
awaken creativity. Creative solutions emerge from
interactions that encourage students to express and evolve
their ideas in specific problems.

According to Jonassen and Land [12], knowledge
originates from productive discourse among individuals, the
social relationships that bind them, and the physical artifacts,
theories, models and methods that they use and produce.
Productive discussions provide satisfactory results in
collaborative learning, providing students the opportunity to
share and co-construct knowledge.

Creative solutions are built during joint activities that
trigger productive discussions. Creative and collaborative
dimensions proposed by Ferreira [7] promote productive
discussions, where students are encouraged to widen and
deepen the design space. Students extend the design space
when a new idea emerges and deepen the space of the project
when an idea is developed.

Ferreira´s pedagogical framework allows the teacher to
elaborate tasks that nourish creative discussions during
collaborative problem solving in interaction design [7]. The
author considers that creative products occur as stimulation
of many different planes. The framework contains seven
collaborative and creative dimensions to be applied by the
teacher. According to Ferreira [7], the dimensions are:
immersion, unpacking opportunities, exploring
complementary ways, surpassing limits, expanding,
discovering and developing unpredictable places. The
dimensions contain dialogic processes that are dialogs
aligned with mental creative processes associated to both
adaptive and innovative creativity. Dialogic processes
facilitate students to elaborate ideas built on other ideas,
during their collaborations. The framework helps and
challenges teachers to be aware of how complex students´
activities can be elaborated during collaborative learning.
Considering students perspectives, during productive
discussions they are able to detect relevant and irrelevant
information, recognize the familiar, deal with new
information, adapt and reapply techniques, among other
creative important processes.

The use of provocative questions is another strategy that
encourages students to interact productively. The students
absorb and transcend knowledge when they engage
themselves in profitable interactions.

King´s model approaches provocative questioning to
induce relevant cognitive, meta-cognitive and socio-
cognitive processes in participants [8]. Effective learning
interactions induce complex cognitive processes including
the analytical thinking necessary to create metaphors.

According to King [8], learning is constructed during
interaction with others. During the interaction the students
engage in the exchange of ideas, opinions and perspectives.
The speech is composed of provocative questions,
explanations, justifications, assumptions and conclusions.
The construction of knowledge occurs when students explain
concepts to each other. The questioning is a procedure that
asks questions and answers. The interaction during the

discussion results in a high level of learning. The model
proposed by King consists of structured questions on issues
of entry [8]. For example:

 How much similar to?

 How does it relate to?

 What do you remember and why?
Comprehension questions, for example:

 What does it mean?

 What's important for?
Connection questions, for example:

 How is similar with?

 What is different between?

 How can it be used for?

 What are the strengths and weaknesses?

The method proposed in this paper involves the

development of group assignments focusing on the use of
metaphors in HCI. Using our method, the teacher is able to
elaborate group tasks and questions that encourage students
engage themselves in productive discussions.

The teacher is invited to approach the dimensions
proposed by Ferreira [7], questioning the model proposed by
King [8] and knowledge about metaphors when designing
exercises.

This way, the students have the opportunity to scrutinize
metaphors in different contexts and are urged to find
solutions and improvements in the application of
metaphorical concepts in interaction design.

III. THE CASE STUDY

The case study aims to examine the effectiveness of
teaching the use of metaphors in interaction design by means
the proposed teaching method.

In this preliminary case study, four tasks based on the
proposed method were analyzed. The preliminary results
indicated that the proposed teaching method has potential to
help teachers to mediate students' creativity when using
metaphors in interaction design.

The students investigated were engaged in two classes of
undergraduate Software Engineering at Federal University
of Goiás in 2011 and 2012. There were 44 students in the
class of 2011 and 42 students in the class of 2012. Each
class was divided into groups of 6 (six) students and each
group was evaluated by means of discourse analysis of
online discussions.

A. Students’ Profile and Communication Tools Used

Students are studying Software Engineering at the
Federal University of Goiás. Students have the profile of
software developers. They are learning about the concepts
related to interface design, such as metaphors, usability
guidelines and interaction patterns in the human computer
interaction design course.

The communication tool used was the Moodle platform,
which facilitates iterations among students. Each student
posts messages concerning their responses and opinions.
Moodle is a tool for course managing that can also be used

560Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 580 / 646

for distance learning. Using the forums, the student can post
a message at any time and place.

B. Description of Tasks (Treatment Group)

The tasks required are described following.

1) Discuss having in mind the questions related to the
website Taisho [13].

Express your opinions and inferences, and propose
appropriate solutions. In the following, we describe the
questions regarding the Taisho website:

Why is it important to use a visual metaphor on the
website? Are the elements observed on the website similar
to real objects? How does the geisha and the shamisen relate
to each other? Is the menu contained in the Website an
example of positional metaphor? Did the visual metaphors
facilitate user interaction in the website? Are the metaphors
used readily apparent to any user? Why the metaphors were
used? How each metaphor does interfere with the user's
perception? How are the used metaphors similar to elements
of everyday life? Are the metaphors used inherent in the
culture of the target audience? What are the strengths and
weaknesses of the use of visual metaphors in the website?
Is the user able to associate the elements present in the
metaphorical interface actions and objects represented?
Does the website have a stable context? Does the
positioning of the metaphors in the interface facilitate the
identification of the company name? Does the name have a
reasonable size and its location is noticeable? Are the
different metaphorical elements in harmony? Do these
elements contribute to the user understanding about the
information contained in the website? Does the interface
emphasize the services offered by the company? Are the
interface services clear from the user perspective?

2) Discuss having in mind the questions related to the

websites Sitotis [14] and Thedeepestsite [15].
During the discussions, you must engage critically and

constructively with the ideas of others. Express your
opinions, inferences, and propose appropriate solutions. In
the following, we describe the questions regarding the
websites:

The metaphor used in the logo of the company
contributes to the understanding of company activity? Is it
possible to satisfactorily answer the purpose of the website?
Is the website interface sufficiently self-explanatory? Do the
metaphors present in the website immediately contribute to
the understanding of its interface? Do you understand the
services offered by the website? Does he position of the
website menu help the user to find the desired options in a
simple and immediate manner? Can the user effortlessly
navigate in the website? Is it able to distinguish the options?
Is there a precise notion of what is in each option? Do the
graphics and animations present on website show the actual
content? Do the metaphors used emphasize a content or are
merely illustrative? Is the user able to associate the elements
present in the metaphorical interface actions and objects that
they represent? Are the functional metaphors clearly
perceived? Is the website interface sufficiently self-

explanatory? Do the metaphors present in the website
immediately contribute to the understanding of its interface?
Can the user effortlessly navigate the website? Is the user
able to distinguish the options?

3) Choose a Website to design your Mobile interface.
a) Take a look at the patterns shown in classes

concerning mobile and navigation patterns. Also, take a
look at the supplementary bibliography.

b) Use metaphors in the design of the website.
Discuss having in mind the usability guidelines, particularly
guidelines for mobile interfaces. Think outside the box
when designing the website. Consider the following
questions about metaphors:

 What types of metaphors are more suited to the
context of your mobile interface?

 Do the metaphors used help the user to concentrate
on the main service offered by the website?

 How visual metaphors can be used to enhance the
understanding and simplicity of the website in a mobile
environment without sacrificing your design?

 Is it possible to use metaphors to emphasize most
relevant content to users?

 How can we subtly integrate metaphors and the
graphic style of the website?

 Does the metaphors used provide users a logical
path to follow, minimizing the effort required for
understanding, making navigation easy and obvious?

 What functional metaphors can be used to facilitate
the execution of some tasks?

 Can he use of metaphors make navigation easier
and more intuitive for the user?

4) Each student must individually choose a context to

adapt the wizard pattern using metaphors.
Defend your choice in your group grounding your

arguments on the items "when" and "why" of the pattern.
Each student must design a wizard and defend his idea,
based on item "as" the wizard should be implemented.
Discuss, choose and refine the best idea considering the in
the following questions:

 Does the Wizard makes clear to the user what is
the goal to be achieved?

 Is the user notified if he tries to start a new job
before completing the current?

 Does he user have the option to go back and
change the data entered in the previous step?

 It is visible to the user what is missing to achieve
the goal?

 The Wizard is simple and intuitive and does not
require much effort from the user understand how to use it?

 Do the metaphors used help the Wizard to became
more simple and intuitive?

 Do the metaphors used help the user to concentrate
on the goal to be achieved?

 Why metaphors were used? Do the metaphors
significantly help the user reach success in every step and
fulfill the purpose of the Wizard?

561Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 581 / 646

C. Description of Tasks (Control Group)

The tasks were in accordance to the following
collaborative script:

Read a text about metaphors and evaluate the use of
metaphors in the Websites Taisho and Sitotis. Based on the
text and previous classes on this subject, express your
opinions regarding the use of metaphors in the Website.

D. Used in the Discourse Analysis

The model used in the discourse analysis was proposed
by Newman, Webb and Cochrane [16] and is described by
ten categories:

1) Relevance: Relevant states or diversions.
2) Importance: Important points and issues or

unimportant points and trivial issues.
3) Novelty, new info, ideas, and solutions: New

problem-related information or repeating what has been
said.

4) Bringing outside knowledge or experience to bear on
problem: Drawing on personal experience or sticking to
prejudice or assumptions.

5) Ambiguities: clarified or confused: Clear statements
or confused statements.

6) Linking ideas, interpretation: Linking facts, ideas
and notions or repeating information without making
inferences or offering an interpretation.

7) Justification: Providing proof or examples or
irrelevant or obscuring questions or examples.

8) Critical assessment: Critical assessment or evaluation
of own or others’ contribution or uncritical acceptance or
unreasoned rejection.

9) Practical utility (grounding): Relate possible
solutions to familiar situation or discuss in a vacuum.

10) Width of understanding (complete picture): Wide
discussion or narrow discussion.

Categories 1 to 9 were explored in this case study.

E. Model Used in the Creativity Analysis

The model used in the analysis of creativity was
proposed by Zeng, Salvendry and Zhang [17]. This model
was structured in a checklist for web site design. The
checklist comprises:

1) Aesthetically appealing design: artistic, colorful,
energetic, beautiful, fascinating, entertaining, engaging,
attractive, favorable, and desirable.

2) Interactive design: interactive, animated, available
multimedia, and dynamic.

3) Novel and flexible design: unique, appealing, and
flexible.

4) Affective design: stimulating, pleasing, delighting,
and exciting.

5) Important design: relevant, important, and crucial.
6) Common and simple design: infrequent, unique and

sophisticated.
7) Personalized design: personalized.

F. Model Used in the Questions Analysis

In the analysis of the questionnaire, were used
dimensions of User Experience (UX) involving [18]:

1) Immersion and Flow: While the user is using the
system he forgets everything around him.

2) Tension: The user feels tense while using the system.
3) Competence: The user thinks that he is good at using

the system.
4) Negative Affect: The user feels bored while using the

system.
5) Positive Affect: The user has fun while using the

system.
6) Challenge: The user makes effort while using the

system, but he takes pleasure in overcoming obstacles.
7) Fellowship: Good experiences are produced during

social interactions.
8) Discovery: The user is pleased to learn new things.
9) Expression: The user is pleased to express new things

and raises self-esteem.

G. Results

Each student was individually analyzed according to the
model of Newman, Webb and Cochrane [16].

The result obtained by all students in the group,
produced the group average. The average of all groups
produced the overall result of the class.

Statistics of the overall outcome of the class in 2011 are
shown in table I.

TABLE I. STATISTICS OF INTERACIONS IN 2011

Category Average

1.Relevance 19.5%

2.Importance 18.5%

3.Novely, new info, ideas, solutions 3.25%

4.Bringing outside knowledge or experience to

bear the problem

8.25%

5.Ambiguities 24.37%

6.Linking ideas, interpretation 9.37%

7.Justification 2%

8.Critical assessment 35.62%

9.Practical utility (grounding) 10.87%

Overall average considering all categories 14.63%

Each category was examined individually in each group

and the results were obtained by calculating the percentage
from 0 to 100 per category group. The percentage was
obtained by examining the student’s posts. Each student
message posted was analyzed according to each category.
The result was obtained by analyzing the positive factors of
each category.

During the course in 2011, the teaching method
proposed in this article was not used. The students were
asked to evaluate and discuss the use of metaphors in
websites considering no question.

Table II contains the general outcome of the interactions
analysis in 2012.

TABLE II. STATISTICS OF INTERACTIONS IN 2012

562Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 582 / 646

Category Average

1.Relevance 71.65%

2.Importance 58.73%

3.Novely, new info, ideas, solutions 32.86%

4.Bringing outside knowledge or experience to

bear the problem

10.68%

5.Ambiguities 5.48%

6.Linking ideas, interpretation 10.27%

7.Justification 19.48%

8.Critical assessment 49.71%

9.Practical utility (grounding) 10.06%

Overall average considering all categories 29.82%

In category 1, we obtained 71.65% of relevant

assertions. This result indicates that students had a
significant improvement in the ability to make relevant
statements. In category 2, it was obtained 58.73% of
important issues. The result obtained in the category two
indicates a significant improvement in addressing important
issues. In the category 3, it was obtained 32.86% of new
information, ideas and solutions. Students were able to
propose new ideas, solutions and information. In category 4,
we obtained 10.68%. Students were able to bring the
information out of knowledge. In category 5, it was obtained
5.48% of ambiguities. In category 6, we obtained 10.27% of
union ideas and new interpretations. In category 7, we
obtained 19.48% of justification. Students were able to
justify their ideas and affirmations. In category 8, we
obtained 49.71% of critical assessment. The students' ability
to make critical evaluations greatly improved. In category 9,
we obtained 10.06% of practical utility. The average in all
categories of the class of 2012 was 29.82%.

The results achieved were satisfactory. Compared with
the class in 2011, class in 2012 achieved an overall gain of
15.19 percent. There was a clear improvement in all
categories. In some categories there was a significant gain.
Gains related to category 3 were 29.61 percent and earnings
were related to category 8 of 14.09 percent. The category 1
and category 2 also greatly benefited. We note that the
category 3 was the most favored. The students have
acquired the ability to propose something new, new ideas
and solutions, which is essential for a software engineer and
interaction designer. Category 8, that is related to critical
thinking, also had a great improvement.

The presented statistics show that the use of our teaching
method in teaching the use of metaphors interaction design
instigates and encourages any student to infer criticism and
find more effective and creative solutions for the design of
computational interfaces.

In tasks two and three we analyzed the products
designed and presented by each group of students. In the
analysis, we used the creativity checklist for website design
of Zeng [12], analyzing important design factors, such as:
aesthetically appealing design, interactive design, novel, and
flexible design, affective design, design important, common
and simple design and personalized design.

TABLE III. CREATIVITY CHECKLIST FOR WEBSITE DESIGN

Creativity Checklist Classification

Aesthetically appealing design Excellent

Interactive design Good

Novel and flexible design Good

Affective design Good

Important design Excellent

Common and simple design Good

Personalized design Excellent

The results were classified in excellent, good, regular or
inappropriate. The analysis was based on the products
presented by the students. Analysis of the products was
successful. When making the checklist, we observed that
the products obtained excellent results regarding the
aesthetics. The interactive design achieved a good result.
The novel and flexible design also achieved good results.
The affective design which includes items such as
stimulating and exciting achieved good results. The featured
products have an important and relevant design; this result
was excellent. In common and simple design products
observed products with rare and sophisticated design. The
result was classified as good. In personalized design, the
result was excellent; all products owned a custom design.
The results obtained in speech analysis have been confirmed
in the analysis of the product. Students who possessed better
performance in the categories of speech produced and
presented the best products. The critics and creativity
promoted by collaboration and productive interactions
among students, trigged by the application of the teaching
method, contributed effectively to student learning. The
students applied the concepts discussed adequately. The
discussions resulted in products of high quality design.

A questionnaire was developed with twelve questions to
evaluate the experience gained by the students. Students
who were involved in the groups that performed all the tasks
proposed responded to the questionnaire. The analysis was
performed according to the dimensions of UX [13].

TABLE IV. QUESTIONS ANALYSIS

Category Average

1. Immersion and Flow 94.12%

2. Tension 85.3%

3. Competence 88.3%

4. Negative Affect 20.56%

5. Positive Affect 79.44%

6. Challenge 88.3%

7. Fellowship 50%

8. Discovery 85.3%

9. Expression 94.12%

According to the analysis 94.12% of the students forgot
everything around them as they discussed the tasks. For
85.3% of the students the tension and difficulty decreased
during task performance. 88.3% of students thought to be

563Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 583 / 646

consistent inferring opinions. 79.44% of students felt
excited. 88.3% of students felt challenged and encouraged
to discover new ideas and solutions. 50% of students shared
good experiences during social interactions. 85.3% of
students felt happy to learn new things. 94.12% felt pleasure
in expressing their ideas and had self-esteem by
implementing these ideas. The results obtained were very
satisfactory.

The results from Table II show that we have improved
the results obtained on the control group by implementing
our proposed method. The results obtained from Tables III
and IV corroborate the results obtained from Table II,
showing that the students pleasingly engaged in
collaborative tasks and successfully developed creative
products.

IV. CONCLUSION

It is not known in literature the existence of a teaching
method to apply metaphors in interaction design. In this
paper, we highlight the use of metaphors in interaction
design. The use of metaphors improves the interaction
design, providing more respect and importance to
computational interfaces. We addressed different types of
metaphors, such as visual, functional, structural, and
positional metaphor. The proper use of metaphors produces
a positive and significant impact on usability of user
interfaces.

However, students find it difficult to learn and apply
metaphorical concepts in interaction design. In order to
overcome this problem, we addressed a teaching method to
teach creativity and criticism in the context of interaction
design using metaphors. A case study was designed and
successfully applied. The preliminary results show that the
teaching method based on collaborative learning through the
development of questions that stimulate group discussion
achieved good results. There was a significant improvement
in the class where the method was applied compared to class
where there was no application of the method.

This work contributes to teachers to arouse students'
creativity, directing and encouraging them to infer creative
solutions and to properly criticize interaction design. This
contributes greatly to their learning. In this way, any student
aggregates the knowledge necessary to criticize and design a
more intuitive interface that is simpler to learn and use. All
students tasks were contextualized in the use of metaphors
in interaction design, as can be seen in the examples
previously provided. Thus, both the discourse analysis and
product analysis indicates that the use of metaphors was
successful.

The results show the relevance of the study and the
teaching method applied. However, more case studies are
being performed as well as the discourse and products
analysis are being done for more than one researcher to
reduce the degree of subjectivity of the research.

ACKNOWLEDGMENT

This work is supported by FAPEG and CNPq – Brazil.

REFERENCES

[1] Dijk V., Betsy, Lingnau, A., Landoni, M., and Ruthwen I.

Metaphorical Interaction Models/Interfaces. PuppyIR.
University of Twente, July 2011.

[2] Lakoff, George and Johnson, Mark. Metaphors We Live By.
Chicago: The University of Chicago Press, 2003.

[3] Nielsen, J. and Molich, R. Heuristic evaluation of user
interfaces. Empowering People - Chi’90 Conference
Proceedings. New York: ACMPress, 1990.

[4] Preece, J. Rogers, Y. and Sharp, H. Interaction Design:
Beyond Human- Computer Interaction. New York, NY: John
Wiley and Sons, 2007.

[5] Schwartz, M. S., and Fischer, K. W. Useful metaphors for
tackling problems in teaching and learning. On Campus,
11(1), 2006, pp. 2-9.

[6] Hodges, Linda C. 2004. "The Problem as Metaphor in
Teaching." The Nea Higher Education Journal, 2004, pp. 39-
48.

[7] Ferreira, D.J. Human Computer Interaction Teaching Method
to Encourage Creativity. Lisbon, Portugal: ICSEA, 2012,
pp.472-478.

[8] O'Donnel, Angela M., and King, Alison. Cognitive
Perspectives on Peer Learning. New Jersey: Lawrence
Erlbaum Associates, 1999.

[9] Pinterest Website, https://www.pinterest.com/ (current Sep.
30, 2013).

[10] LinuxMall Website, http://www.linuxmall.com.br/ (current
Sep.30, 2013).

[11] Baumer, S. P. E., Tomlinson, B, Richland E. L. and Hansen J.
Fostering metaphorical creativity using computational
metaphor identification. Proceedings of the seventh ACM
conference on Creativity and cognition, New York, NY:
ACM, 2009, pp. 315-324.

[12] Jonassen, D. H., Land, S. M. Theoretical foundations of
learning environments. Preface. In D. H. Jonassen and S. M.
Land (Eds.), New Jersey: Lawrence Erlbaum, 2000, pp. 3-9.

[13] Taisho Website, http://www.taishoflorianopolis.com.br/
(current Sep.30, 2013).

[14] Sitotis Website, http://www.sitotis.hr/ (current Sep.30, 2013).

[15] The Deepest Site, http://thedeepestsite.com/ (current Sep.30,
2013).

[16] Newman, D. R., Webb, B., and Cochrane, C. A content
analysis method to measure critical thinking in face-to-face
and computer supported group learning. St. Louis: University
of Missouri–St. Louis, 1996.

[17] Zeng, L., Salvendy G., and Zhang M. January 2009. “Fator
structure of web site creativity.” Computer in Human
Behavior. Vol. 25, pp. 568-577, January 2009.

[18] Poels, K., IJsselsteijn, W., and De Kort, Y. Development of
the Kids Game Experience Questionnaire. Poster presented at
the Meaningful Play Conference, East Lansing, USA, abstract
in proceedings, 2008.

564Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 584 / 646

ProDec: a Serious Game for Software Project Management Training

Alejandro Calderón, Mercedes Ruiz

Department of Computer Science and Engineering

University of Cádiz

Cádiz, SPAIN

e-mail: alejandro.calderonsanchez@alum.uca.es, mercedes.ruiz@uca.es

Abstract – Although there are some works related to the

application of serious games for software project management

training, there is a lack of tools that combine training and

assessment in a single tool and that provide an environment for

the learner where they can experiment decision making in real-

life like scenarios. Project Decision (ProDec) is a simulation-

based serious game created with the intention to train and

assess students in software project management. The main

objective is to take advantage of the engaging nature of games

to place the learners in a virtual organization where they can

manage software projects and solve real-life problems in a

risk-free environment. For the trainer, ProDec is a support

tool for training in matters such as leadership, task and team

management, project monitoring and control, and risk

management. It also helps the trainer assess the skills that the

learners develop by playing the game. After any game play,

ProDec offers a complete report including the logs

representing every decision the players made and the result of

applying the assessment criteria provided by the trainer at the

beginning of the game play.

Keywords - software project management; serious games;

simulation

I. INTRODUCTION

Nowadays, the importance of teaching project
management in computing curricula is out of discussion. In
fact, the joint curricula developed by IEEE and ACM for
Computer Science (CS), Computer Engineering (CE),
Information Technology (IT), Information Science (IS) and
Software Engineering (SE), currently under revision and
planned to be released during the summer of 2013,
acknowledge that computer professionals need training in
project management. And not any kind of training, but a
training that is beyond technical skills so that the future
professionals develop professional practice during their
studies.

Despite the importance that these curricula give to this
topic and the increasing demand of the software companies
seeking for professionals highly qualified in project
management, very often we find that software project
management syllabus are highly theoretical and quite
uninteresting for the future professionals [1].

Compared with other studies, such as medicine,
aeronautics, or engineering, computing future professionals
do not receive the same practical training regarding real-life
scenarios and rely on solving highly conceptual problems.
As a consequence, novel professionals develop their
experience working in real projects, where the effects of a

wrong plan or decision-making can lead to a failed project or
the loss of benefit for the companies they work for.

A serious game is a game designed for a primary purpose
other than pure entertainment. Although serious games can
be entertaining, their main purpose is to train or educate
users. Based on this feature, this paper introduces ProDec, a
serious game for software project management that helps:

a) Learners to develop and acquire practical

experience in software project management, by

allowing the players to plan a project, simulate its

execution, track its performance and make

decisions to keep the project on track.

b) Trainers to design real-world scenarios for

developing learners’ problem solving skills, and

assess their learning.

c) Overcome the problems of lack of motivation of

learners towards project management related

subjects.

The structure of the paper is as follows: Section II shows
the works related to our proposal; Section III describes the
developed serious game, and Section IV shows how this
game helps perform the learner’s assessment. Finally, our
conclusions and further work are given in Section V.

II. RELATED WORK

There exist numerous works related to the application of

serious games for software engineering education. Most of

these works have been retrieved and analyzed by Caulfield,

Xia, Veal, and Maj in their systematic review of the

literature [2]. However, if we focus on the field of software

project management, the works found are scarce and quite

specific. Within this area, the following tools are

outstanding: SIMSOFT [3], SimSE [4] and DELIVER! [5].

SIMSOFT [3] is a serious game materialized as a printed

game board, that shows the players the flow of the game,

and a Java-based board, where the players can see the

current and historical state of the project and adjust the

project’s settings. SIMSOFT mainly focuses on human

resource management, with an emphasis on how the ability

of the staff affects the outcomes of the project.

DELIVER! [5] is also based on a printed game board

designed to help students develop the skills needed to

measure and control project performance by applying the

Earned Value Management technique. As stated by its

authors, DELIVER! is mainly a game to motivate students

in their learning process.

565Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 585 / 646

On the other hand, SimSE [4] is a serious game

completely developed as a software tool that is based on

software project simulation. SimSE allows students to

practice a "virtual" software engineering process (or sub-

process) in a fully graphical, interactive, and fun setting in

which direct, graphical feedback enables them to learn the

complex cause and effect relationships underlying the

processes of software engineering. The game supports

several development methodologies and focuses on the

development of abilities for software process management.

Similar to SimSE, we can find SESAM [6], another

serious game that uses a software application and simulation

techniques to motivate learners in learning software project

management. SESAM has a natural language interface and,

during the game, records information about the game’s

progress with the goal of showing several statistics at the

end of the game.

If we focus on the educational objectives that can be

achieved by using these games and compare them with a

well-known taxonomy of learning objectives such as

Bloom’s taxonomy [7], [8], we can find out that only

SIMSOFT reaches the higher levels of the taxonomy, while

the other tools place their educational objectives at the basic

levels of the hierarchy, mainly the Knowledge level.

Regarding learners’ experience, the games already

mentioned have been assessed through surveys so that the

players provide some information regarding their experience

where playing the game. However, the assessment of the

learners’ new abilities developed by playing the games is

always made by traditional methods and does not have any

connection or feedback from the exercise of playing the

game itself.

Unlike the above tools, ProDec does provide support for

the learners’ assessment, by accepting and applying the

assessment criteria that the instructor provides to the game

tool.

III. DESCRIPTION OF PRODEC

ProDec is a serious game to teach software project

management. The game is intended to be used at the end of

an undergraduate course on software project management in

computer science, information technology, information

systems or software engineering programs. ProDec is

intended to be a collaborative game, that is, it is a game to

be played by teams of players. It is also possible to be

played by individuals, but in that case the richness and

benefits of the interaction with other players of your team

are lost. It is important to emphasize that ProDec is a

collaborative game, not a competitive one. This means that

the group of players works collaboratively to win the game

not to compete among them.

ProDec has also been developed to provide an automatic

assessment of the performance of the players after a game

play. This assessment is based on the assessment criteria set

by the instructor.

A. Objective

The aim of the game is to successfully manage a

software project. The game is over when the project

significantly overruns either the approved budget or the

allocated time. During the game, the players have to plan a

project, manage its execution and deal with the risks and

unplanned events that may occur. They will succeed in the

game if they are able to complete the project within the time

and costs limits.

B. Basic Play

ProDec can be used in two different modes, namely, Full

Play and Quick Play. When played in Full Play mode, the

game allows the players to manage a software project they

have previously planned. In this mode, the play is structured

in three steps:

1. Onset. In this step, the player follows a process that

guides them to make the project plan. The game

helps the players to provide the information

regarding the general data of the project, tasks

definition, time and cost estimation, project team

definition, personnel allocation to every task and

risk estimation. It is important to highlight that for

any member of the project team, the player has also

to provide information about their professional

experience and personality factors according to the

sixteen personality factors described by Cattell [9],

so that, during the play, it will be possible to

simulate and assess how good or bad was the

players’ decision during the team creation and task

allocation. Figure 1 shows a screenshot of this

process step focused on the personnel features.

Figure 1. Screenshot of making the project plan

2. Execution. The second step consists on executing

the project created in the first step. To do this,

ProDec uses the information provided by the

players to automatically generate the source code of

a simulation model of the planned project. Once

generated, the simulation model is run and the

players start managing the project. The progress of

the project depends on how well the project plan has

been made, that is, the accuracy of the estimates of

566Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 586 / 646

time and cost, the quality and suitability of the

project team, and the adequacy of the tasks

allocated to the members of the project team.

During the simulation of the project execution, the

game shows the players a Control Screen where the

progress of the project is shown as it can be seen in

Figure 2. The following elements are shown in real

time:

a. The time and budget spent and remaining.

b. The results of the earned value analysis of

the progress of the project.

c. The level of the motivation of the project

team.

Based on the progress of the project and their

analysis of the situation, the players can make the

following decisions:

a. Hire or fire a team member. In this case,

every change in the project team will have a

direct effect on the productivity because of

the communication and training overheads

derived from the team size, the contribution

of the experience of the new or lost member,

the overall team synergy, their motivation,

etc.

b. Reorganize the project tasks. In this case,

the players can reorganize the network of

tasks which are yet to start. ProDec will

check that the new network of activities is

still consistent with the restrictions

established to the tasks precedence in the

project plan.

c. Send a thanks/congrats e-mail. According to

the progress of the project, the player can

decide to send a thanks note or

congratulations e-mail to the project team

members to, for instance, congratulate them

for the consecution of a project phase on

time and within budget. This will have a

positive effect on the motivation of the team

and, therefore, on their productivity.

However, the game controls the

unreasonable use of this option.

d. Give an extra payment. According to the

available budget and the progress of the

project, the player can also decide to give an

extra payment to the project team. In this

case, this action seeks to increase the

external motivation of the team members

leading, in some cases, to an increase in

their productivity. Accordingly, this action

will also reduce the available budget.

e. Try your luck. This option simulates the

appearance of not planned risks. When

selected, a random event takes place in the

project. This event can have either a positive

consequence, such as your sponsor

increasing the budget, or a negative one,

such as losing one of your team members

because he decides to leave your company.

Figure 2. Project execute and control view

3. End. Once the simulation of the project execution

is over, the last phase consists on the assessment of

the players. By using the information that ProDec

has been recording during the game play and the

assessment criteria established by the instructor,

ProDec generates an assessment report of the

learners describing their level of achievement and

uploads the results in the qualification book of

Moodle, which is the Course Management System

used in our subject currently. This report is mainly

intended to be used by the instructor. In addition,

ProDec prepares also this information to be

provided in a very different format so that the

learners get informed about their performance in a

more engaging way. Basically, once a game play is

over, ProDec automatically tweets a message to the

Twitter account of the course telling about how the

graces and disgraces of the team of future project

managers. It also updates the Hall of Fame in the

Facebook account of the course and gives a badge

to those users who managed their project

significantly well.

On the other hand, when the game is played in the Quick

Play mode, the players go through a simplified onset phase,

since the information describing the project plan has been

provided by the instructor and they only need to select the

project they want to manage among the ones already

uploaded. The aim of this game mode is focused on the

phase of execution of the project and the assessment of the

management decisions. In this case, there is no need to

assess the correctness of the project plan since it is assumed

567Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 587 / 646

to be correct. Hence, the instructor, in this case, has also

more options to establish the assessment criteria.

C. Lifecycle

Once the basics of the game have been described, it can

be seen that the game helps the learner to see in action the

group of processes of project management defined by the

Project Management Institute (PMI) [10]. Figure 3

illustrates the relation between a game play’s lifecycle and a

project lifecycle. It can be seen that ProDec’s Onset phase is

related to the initiation and planning process groups, the

Executing phase of the game with the cycle of executing,

controlling and planning, and the End phase is related with

the Closing process group proposed by PMI.

Figure 3. Lifecycle

D. Architecture

In order to address the functionality described above,

ProDec has been developed using Java
TM

, Anylogic
TM

 and

MySQL
TM

 technologies. Figure 4 shows ProDec’s

architecture. As it can be seen, ProDec follows a three layer

architecture. Two Java applications and the simulation

model deal with the presentation and business layer, while

two databases managed by MySQL
TM

 deal with the data

layer.

Figure 4. Architecture of ProDec

A description of the software applications follows:

a) ProDecAdmin is the software application that allows

trainers to upload all the information required by the

game. The trainers use this application to set the

different game scenarios that can be played together with

the rubrics for the players’ assessment.

b) ProDecGame is the software application used by the

players. This application is really composed of three

applications:

• An initial application that starts the game and

dynamically generates the source file of the

simulation model required to simulate the project.

• A software application to simulate the execution of

the project and allow for project monitoring.

• A final application that finishes the game and

performs the learners’ evaluation by applying the

rubric set by the trainer for the scenario that has

been played.

IV. LEARNERS’ ASSESSMENT

The process of assessing the learners’ skills developed by

playing the game is a process involving several elements

belonging to different areas of ProDec. During the course of

the game, the system saves records of the decisions made by

the players during the simulation of the project, mainly as a

response to a problem. In addition, ProDec also saves

recurrently and autonomously records regarding the project

status during the simulation and the initial estimates and risk

analysis provided by the players at the beginning of the

game. As a result, there are three sources of information for

the application of the assessment criteria: a) the project plan

with the initial estimates, b) the project monitoring data, and

c) the kind and nature of the decisions the players made.

Having these three sources of information about the learner

performance, it allows the instructor to assess different types

of skills.

Figure 5. Elements of the assessment process

568Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 588 / 646

The assessment criteria are provided by the instructor in

the form of a rubric by using ProDecAdmin. A rubric is

structured in sections, each of which consists of an

assessment criterion. An assessment criterion effectively

links the information recorded in the rubric with the

information recorded during the game by using a labeling

system that matches the labels describing the skills that an

assessment criterion with the records of the game that

contain the information needed to assess such criterion.

As a consequence, ProDec is able to perform the learners’

assessment by analyzing the information stored during the

game and applying the assessment criteria set by the

instructor, concluding with the generation of a detailed

report, which describes the skills acquired by the players.

This report allows learners and instructors to study the

course of the played game, making it easier to analyze the

decisions taken during the game and their results. Figure 5

shows the elements involved in the assessment process.

V. CONCLUSIONS AND FURTHER WORK

In this paper, we presented a serious game for software

project management. The main objective is to take

advantage of the engaging nature of games to place the

learners in a virtual organization where they can manage

software projects and solve real-life problems in a risk-free

environment. The game accepts the information describing a

software project plan and generates automatically a source

code file with the equations of a simulation model to

simulate the planned project. By running the simulation

model, the game provides the players with the experience of

seeing the effect of their planning and the decisions they are

taking during the project execution. When the simulation of

the project ends, the game performs an assessment of the

learners according with the assessment criteria that the

instructor has previously set.

The main contributions that make this game unique are

the following:

1. The range of management options available for the

instructor and learners to play with is larger than

those of other similar tools. In fact, while other

similar initiatives focus on practicing only certain

aspects or techniques of project management,

ProDec provides a training environment for learning

the following:

a. Project planning: Task identification, task

time and cost estimates, among others.

b. Project control and monitoring: Earned

Value System and control scoreboards.

c. Risk management: Quantitative risk

analysis, incidence monitoring, unpredicted

events and decision-making.

d. Team management: Task allocation based

on the experience of the team and the

nature of the task, team motivation, team

synergy, Brook’s law [11], among others.

2. Dynamic and automatic generation of an ad-hoc

simulation model. The information of the project

plan is transformed into a set of equations of a

discrete-event simulation model together with the

source instructions that generate the user interface

of the second phase of the game. Although using

simulation at the core of a project management

game is not an original feature, the available similar

tools based on simulation models have a prebuilt

simulation one. Hence, this kind of games provides

only one scenario for simulation. ProDec, on the

contrary, surpasses this limitation by creating an ad-

hoc simulation model for every project plan the

player can think of. Moreover, during the

simulation, some of the decisions the player can

make, can even change the equations of the

simulation model in runtime.

3. There have been also other initiatives to apply

serious games in software project management and

in learning in general. However, most of these

initiatives apply the benefits of game during the

learning process only, forgetting the assessment part

of every teaching and learning process. Very often,

these experiences make use of the game to help

learners learn, but they do not help instructors with

the assessment, using the instructors more

traditional assessment techniques for that phase.

However, ProDec is intended to help also

instructors with their assessment task by providing

them with an environment where they can upload

the assessment criteria for a project scenario that

will be applied at the end of the game play to the

data collected by ProDec during the play. The

results of the assessment are also offered in several

formats: as a report, as an update of the qualification

book of Moodle and by different actions in the

social networks used in the subject such as Twitter

and Facebook.

4. The use of gamification elements. As a game,

ProDec has been designed paying special attention

to the user interface elements and the interactivity

that can be expected in a game. In addition, some

features coming from the gamification approach

have also been added. These features, such as a Hall

of Fame or a system of badges help to keep the

learners engaged and motivated.

We can say that the game supports the three domains of

Bloom’s taxonomy: knowing, feeling and doing. Obviously,

before playing the game the learners need to have studied

the principles of the body of knowledge of software project

management. This knowledge is put into practice by playing

the game and having to evaluate the progress of the project

and make decisions to achieve the initial objectives. Hence

playing the game also helps to learn by doing. Finally,

playing the game is also a social experience, since: a) the

game is to be played in teams, and b) it also helps to share

569Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 589 / 646

the results through social networks. These features, together

with the engagement nature of games, transform the

learning process into a social one where the feelings and

emotions are naturally linked to the learning experience. We

consider that the game also covers the six levels of Bloom’s

taxonomy. For example, at the lowest order process, ProDec

helps the learners to remember what they have studied in

their lectures about the software project management body

of knowledge. To play the game, players also need to

demonstrate they understand the facts they have studied, and

they have to solve problems in new situations, such as

estimating the budget of a new project, allocating tasks and

making software teams with different treats of personality,

or reacting to a risk they had never suffered before. The

level of analysis is worked every time the player has to

make a decision to improve the project results, since they

need to carefully analyze the elements of the project, their

relationships and the organizational principles that rule the

progress of the project they are managing. After the

analysis, players have to synthesize all the information into

the decision they are going to make. Finally, the level of

evaluation is achieved given the social nature of the game,

where the players need to discuss, present their judgments

and evidences that support the decision they would make,

and then, negotiate with the rest of the members of their

team about the decision to finally make.

Our aim is to build a tool for software project

management learning as complete as possible. For this

reason, our future works are aimed at two main objectives:

1. To perform evaluations of the current version of

ProDec so that we can get the necessary feedback

to design our following steps. We are currently

working on this step with some evaluation sessions

planned in different universities. So far, some

evaluations have been made with one group of

professors. During this academic course, we will

conduct evaluation sessions with the students. In

order to do this, we have based our evaluation

process on the evaluation method developed at the

Federal University of Santa Catarina [12].

2. To add new features to the game regarding

software project management such as configuration

management, change management, different

methodologies of software development, among

others.

ACKNOWLEDGMENTS

This work has been partially supported by the Spanish
Ministry of Science and Technology with ERDF funds under
grant TIN2010-20057-C03-03.

REFERENCES

[1] I. Ibrahim, “Teaching Project Management to IT Students:

Methods and Approach,” 2nd International Conference on
Education and Management Technology, IPEDR, Vol. 13,
2011, pp. 185 – 191. IACSIT Press, Singapore.

[2] C. Caulfield, J.C. Xia, D. Veal, and S.P. Maj, “A systematic
survey of games used for software engineering education,”
Modern Applied Science, Vol. 5, No. 6, Dec. 2011, pp. 28-43.

[3] C. Caulfield, D. Veal, and S.P. Maj, “Teaching software
engineering project management-A novel approach for
software engineering programs,” Modern Applied Science,
Vol. 5, No. 5, Oct. 2011, pp. 87-104.

[4] E.O. Navarro and A. Van Der Hoek, “SimSE: An interactive
simulation game for software engineering education,”
Proceedings of the Seventh IASTED International Conference
on Computers and Advanced Technology in Education, 2004,
pp. 12-17.

[5] C.G. Von Wangenheim, R. Savi, and A.F. Borgatto,
“DELIVER! – An educational game for teaching earned value
management in computing courses,” Information and
Software Tecnhnology, Vol. 54, No. 3, Nov. 2012, pp. 286-
298.

[6] A. Drappa and J. Ludewig, "Simulation in software
engineering training," Proceedings of the 22nd international
conference on Software engineering, ACM, 2000, pp. 199-
208.

[7] L.W. Anderson and D.R. Krathwohl (Eds.), “A Taxonomy for
Learning, Teaching, and Assessing: a Revision of Bloom’s
Taxonomy of Educational Objectives,” Longman, New York,
2001.

[8] D.R. Krathwohl, “A revision of Bloom's taxonomy: An
overview,” Theory into Practice, 41 (4), 2002, pp. 212-218.

[9] R.B. Cattell, H.W. Eber, and M.M. Tatsuoka, “Handbook for
the sixteen personality factor questionnaire (16 PF),” 1988.
http://www.getcited.org/pub/102817845 [rerieved: August,
2013].

[10] Project Management Institute, “A Guide to the Project
Management Body of Knowledge (PMBOK® Guide)”, Fifth
Edition, Project Management Institute, 2013.

[11] F.P. Brooks, “The Mythical Man-Month,” Addison-Wesley
Longman Publishing Co. Inc., Boston, MA, USA, anniversary
ed. edition, 1995.

[12] R. Savi, C.G. Von Wangenheim, and A.F. Borgatto, “A
Model for the Evaluation of Educational Games for teaching
Software Engineering,” 25th Brazilian Symposium on
Software Engineering, 2011, pp. 194-203.

[13] XJ Technologies. AnylogicTM. http://www.anylogic.com/
[retrieved: August, 2013].

570Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 590 / 646

Open Source Legality Compliance of Software Architecture
A Licensing Profile Approach

Alexander Lokhman, Antti Luoto, Imed Hammouda, and Tommi Mikkonen
Tampere University of Technology, Department of Pervasive Computing

Tampere, Finland
firstname.lastname@tut.fi

Abstract — The architecture of a software system is typically
described from multiple viewpoints, such as logical, process,
and development views. With the increasing use of open source
components, there is a new emerging view that should be taken
into account: the legality view. The legality view makes explicit
the legality concerns of software architecture such as
Intellectual Property Rights (IPR) issues and use/distribution
terms of the components. These issues are particularly
important, when they impose architecturally significant
requirements that may influence the architecture. In this
paper, we discuss the compliance of software architecture with
respect to the legality aspects of open source licenses, and
address the various facets of open source legality compliance.
We then propose a Unified Modeling Language (UML) profile-
based approach and tool to address the legality concerns of
open source at the level of software architecture. The technique
has been applied to express and analyze the legality view of an
industrial case study.

Keywords-UML profiles; open source software; licensing;
software architecture

I. INTRODUCTION

Software architecture has been standardized as the
fundamental organization of a system embodied in its
components, their relationships to each other and to the
environment, and the principles guiding its design and
evolution [26]. Commonly identified stakeholders of
software architecture include testers, product managers,
users, designers, marketing personnel, and so forth.
Architecturally significant requirements resulting from these
perspectives commonly include quality attributes such as
testability, scalability, understandability, modularity,
flexibility, and so on. Thus, the architecture of a software
system is represented by multiple views [11]. These views
vary in nature and are complementary to each other. Some
views show the organization of the code units (e.g., packages
and classes). Others show the runtime view of the system
(e.g., processes and threads). A third view is to explain how
the system is deployed on physical hardware (the
deployment view). Each architecture view defines the types
of elements and relations that can be represented in that
view, and provides means for reasoning about their
properties.

We claim that there is a new emerging view to any
software system that should be taken into account
increasingly often: the legality view. The goal of the legality

view is to make explicit the legality concerns of software
architecture – such as Intellectual Property Rights (IPR)
issues and use/distribution terms of the individual
components – in particular when legal aspects are
architecturally significant and should therefore influence the
architecture. In this spirit, the legality view should clearly
state how the legality constraints of the individual
architectural elements are satisfied by the overall
architecture.

So far, the legality view has been considered in designs
to some extent, for instance in terms of encryption and safety
requirements (as part of the non-functional view) or data
privacy issues (as part of the data view), just to list a few
examples. However, due to the increasing use of
Free/Libre/Open Source Software (FLOSS) systems freely
available on the Internet (e.g., [20]), where licensing issues
differ from the conventional proprietary setting and concern
the very core of software design, a more holistic view of
legality issues associated with open source components is
needed [1, 10, 23].

Within the wide spectrum of legality issues of software
architecture, the main focus of this paper is to examine open
source licenses as primary source for legality concerns in
software solutions that involve both proprietary and open
source components. We argue that the terms dictated by
open source licenses may constrain the architecture of a
software system and even act as an architectural driver
during design. For software architects, being aware of the
rights and duties of the licenses is crucial in producing an
acceptable system from the legality perspective. This is an
important yet often overlooked piece of the architecture
puzzle, which explicitly communicates the architecture’s
legality fitness for the purpose of providing all the
stakeholders with the confidence that the software system
does not suffer from licensing violations and shortcomings.

The contribution of the paper is threefold: First, we
review the main factors that shall be taken into consideration
when addressing the legality compliance issue of FLOSS
intensive systems. Second, we introduce the concept of a
licensing profile, which is a Unified Modeling Language
(UML) profile [13] used to capture the licensing rules and
constraints dictated by FLOSS licenses and expressed in
architectural design expressed in UML. Third, we present a
generic tool named Open Source Software Licensing
(OSSLI) [21] that allows for working with licensing profiles.

The rest of the paper is structured as follows. In Section
2, we give a discussion on the legality tensions that arise in

571Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 591 / 646

FLOSS intensive systems and discuss the significance of
representing legality concerns in architectural designs. In
Section 3, we discuss in detail the concept of licensing
profiles. A concrete tool environment for licensing profiles is
then presented in Section 4. In Section 5, we introduce a
real-life design, where the legality view has been
incorporated in development from the very beginning to
demonstrate the feasibility of the approach. In Section 6, we
discuss our approach related to existing works. Finally, in
Section 7, we conclude and point out directions for future
work.

II. MANAGING OPEN SOURCE LICENSE IN
ARCHITECTURAL DESIGN MODELS

In this section, we review licensing constraints dictated
by open source licenses and their significance to
architectural design.

A. Legality Tension of FLOSS Intensive Systems
When addressing the legality compliance issue of FLOSS

intensive systems, there are a number of factors that must be
taken into account. These factors not only stem from the
nature and terms of the licenses themselves, but also are
related to the way the subject software is implemented,
packaged, and deployed.

There are plenty of licenses and license models. A
straightforward observation when working with open source
licenses is that there are many of them – the Open Source
Initiative (OSI) [18] lists about 70 licenses. Popular licenses
include the GNU General Public License (GPL), the Lesser
GNU General Public License (LGPL), the Apache license,
the Massachusetts Institute of Technology license (MIT),
and the Berkeley Software Distribution license (BSD). The
terms of different licenses vary considerably. To give an
example, some licenses such as MIT are classified as
permissive, granting very broad rights to licensees and
allowing almost unlimited use of the licensed code. Other
licenses such as GPL are classified as strong copyleft,
requiring that works based on the licensed code be published
and relicensed to others on the same terms of the initial
license. In the middle are weak copyleft licenses such as
LGPL, which is a compromise between permissive licenses
and strong copyleft. The LGPL grants flexibility to users
when linking to licensed software libraries. However, any
modifications to the original library should be contributed
back on the same terms of the license. Moreover, some
licenses have several versions, and there are subtle changes
between different versions. A good example is the case of
GPL v2 and GPL v3, which are not fully compatible with
each other. In addition, the list is by no means complete, and
new licenses can be introduced if so desired. For example, a
new license can add some minor differences to an earlier
one, thus generating a discrepancy between the licenses, or a
completely new license can be introduced.

Licenses can be conflicting [5, 8]. To give an example of
possible legal incompatibilities between software
components, Table I presents a number of open source
licenses and their compatibility properties (across open
source components themselves) categorized into three cases:

mixing and linking is permissible, only dynamic linking is
permissible, and completely incompatible.

As an example, a software component under the terms of
GPL cannot be directly linked with another under the terms
of the Apache license. In this case, the main reason is that
GPL’ed software cannot be mixed with software that is
licensed under the terms of a license that imposes stronger or
additional terms, in this case the Apache license. The Apache
2.0 license allows users to modify the source code without
sharing modifications, but they must sign a compatibility
pledge promising not to break interoperability, which
fundamentally contradicts GPL terms.

TABLE I. EXAMPLE OPEN SOURCE LICENSES AND THEIR
COMPATIBILITY

PHP Apache IPL SSPL Artistic
GPL 3 3 3 1 3

LGPL 2 2 2 1 2
BSD 1 1 1 1 1

1- Mixing and linking permissible
2- Only dynamic linking is permissible
3- Completely incompatible

Is it derived or combined work? When integrating third
party open source components, possibly together with own
work, the restrictions and obligations, which the used
licenses impose, may depend on whether the work is
considered as derived (derivative) or combined (collective)
[6]. A simple example of derived work is a modified version
of the original software. However, the distinction between
derived and combined works becomes trickier when
producing new work by combining or linking multiple
software components, possibly distributed under the terms of
different licenses. Take the example of a software system S,
which is the result of linking together an open source
component C1 and an own developed component C2. A
common interpretation is that system S is considered to be
derived work if C1 and C2 link statically (linked during
compile or build time) and that S is considered to be
combined work if C1 and C2 link dynamically (the two
libraries are loaded into a client program at runtime). In a
typical case, however, the judge in a court of law makes the
final decision. As a matter of fact, the court decision might
depend on the specific legal framework of the jurisdiction, in
which the case arises, resulting in even more complex
legality issues for software developers.

There are thousands of open source components with
different risk levels depending on their usage scenario. The
number of open source components has grown at an
exponential rate during the last decade. This has given
software developers a jump on creating software based on
existing code. However, many companies are reluctant to use
open source software due to the legal risks associated with
the use of those components. There have been attempts to
classify open source components according to their risk level
[7, 28]. Table II gives an example categorization. Four usage
scenarios are identified: using the component as a
redistributable product, as part of service offering, as a
development tool, and for internal use. Three levels of risks
have been proposed, as described in the following.

572Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 592 / 646

According to von Willebrand and Partanen, [28], valid
means that the package can be used as instructed and that no
risk has been identified. Possible risk means an interpretation
question has been found. This type of issues can be solved
by either 1) removing/replacing the problematic files or 2)
acquiring additional permissions from the respective right
holder or 3) not using the package at all or 4) based on the
particular company’s risk preferences in such project, a
company could accept the risk. Legally, an interpretation
question means that an eventual realizing risk would be civil
law risk, e.g., monetary (not criminal). Clear risk means that
a risk that cannot be interpreted in a way that would not
include the risk has been found. This type of issues can be
solved only by 1) removing/replacing the problematic files or
2) acquiring additional permissions from the respective right
holder or 3) not using the package at all. A company
normally cannot accept this type of risk, since it means the
possibility of not only civil law risks, but criminal risks. As
an example, component Agent++ can be used internally with
no risk, has a possible risk when used as a development tool,
but exhibits a clear risk when used as part of service offering
or a redistributable product.

TABLE II. EXAMPLE SOFTWARE COMPONENTS AND THEIR RISK
LEVELS

Comp. License Redistri
bution

Service
offering

Develo
pment

tool

Intern
al use

Agent++ Agent++
license

3 3 2 1

SwingX LGPL 3 3 3 3
Libxml2 MIT 1 1 1 1

Cglib Apache 2 1 1 1

(1) Valid (2) Possible risk (3) Clear risk

Open Source legality interpretations are subject to the
way software is implemented, packaged, and deployed [8,
16]. The legality requirements imposed by FLOSS licenses,
such as the requirement to publish source code (i.e. the
copyleft rule of GPL), may depend for instance on the
interaction type of the components (data-driven versus
control-driven communication). In the case of mere data
exchange between components, there is no copyleft
obligation as the two components are considered as separate
programs. Also, the copyleft obligation of GPL does not hold
if the FLOSS component (or a modified version of it) is
deployed as a hosted service. However, if the hosted code is
licensed under the terms of AGPL (Affero General Public
License) [29], the copyleft requirement does hold, but only
in the case of user interaction with the hosted service (in
contrast to service to service interaction). In addition, the
copyleft requirement of GPL may not hold in case of
interactions through standardized interfaces such as the use
of operating system public Application Programming
Interface (API), in contrast to system hacks that make the
two communication components strongly coupled. Finally,
compatibility concerns among different licenses may be
circumvented if the packaging of components is done by the
user instead of building the entire system at the vendor site.

B. Significance of Legality Concerns in Architectural
Design
This work advocates for the usefulness of representing

open source legality concerns in architectural design. This
would allow addressing the licensing issues early in the
development process. Accordingly, we foresee the
following benefits of the approach:

Raising the awareness of licensing issues for software
architects. This could be achieved by offering a
communication medium for software architects with
respect to legality matters.
Using architectural models as an early simulation
medium with respect to license integrity and validity,
which allows the possibility to detect possible violations.
Aligning and keeping source code and architectural
design in sync from the viewpoint of software licenses.
This prevents architectural erosion with respect to
licensing decisions.
Legality constraints can be exploited in a forward
engineering scenario, for instance to suggest possible
architectural solutions to overcome detected license
violations. In addition, the constraints can be used to
provide guidelines for component selection with respect
to possible licenses that can be used.
Allowing the ability to organize architectural design into
license independent models and license specific models
to better analyze the effect of licensing decisions.
Providing a better way of visualizing license violations
and their context. It is beneficial to view the violations in
graphical models rather than textual source code.
Studying how the terms of software licenses can
influence quality attributes like scalability (e.g., number
of users), which are often considered at the architectural
level.

According to these points, we propose a visual modeling
based approach that enables analyzing license related
problems in early development phases while reusing
existing models. The approach is designed to work with and
support architectural design made in UML.

III. A PROFILE BASED APPROACH

In this section, we present our approach for documenting
the legality view of software architecture, assuming that the
design model is expressed in UML. Accordingly, we
introduce the concept of licensing profiles in detail and
illustrate the concept with two example profiles. We start
with a brief introduction to UML profiles.

A. UML Profiles
The generality of UML constrains its applicability for

modeling narrow-scaled domains or problem fields.
However, UML offers mechanisms for extending the
language. With the help of these mechanisms, it is possible
to create an extension that adds more expression power to
UML on a certain field or environment. In addition,

573Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 593 / 646

traditional UML can be hidden on a lower level so that only
relevant properties are displayed.

One of the extension mechanisms in UML is the light-
weight profile mechanism, which is based on meta-modeling
[13]. Profiles are packages that contain stereotypes, tagged
values, and constraints. Stereotypes are a special kind of
meta-classes while tagged values are meta-attributes of those
classes. Meta-class is a type defined by UML specification.
Based on these features, it is possible to define a Domain
Specific Modeling Language (DSML) for a certain
application field. Profiling is a mechanism of UML, and thus
the definitions do not necessarily reflect the actual
implementation of the problem but provide a way to express
issues conveniently. For example, it is difficult to say how a
stereotyped class is implemented in real life, but as a
modeling tool it is a convenient way to visualize information.

B. Licensing Profiles
A licensing profile is a UML profile used to attach IPR

related information to UML models. Licensing profiles
introduce concepts related to the properties of open source
licenses in the form of stereotypes and meta-attributes. This
allows the user to create a UML model that takes into
account what licenses each component is associated with.
For example, a software package could be annotated with
information such as copyright holder, license type, and the
risks associated with its use in different usage scenarios.

Figure 1. CC REL profile

Figure 1 depicts a licensing profile that is partly based
on the specification of the Creative Commons Rights
Expression Language (CC REL), a semantic ontology for
modeling licenses [2]. The profile makes use of Resource
Description Framework (RDF) descriptions for modeling
licenses. In addition, the profile introduces concepts,
attributes and stereotypes not found in the original CC REL.
This is reflected in the naming strategy of the profile – ”cc:”
refers to CC REL concepts whereas “ossli” refers to other
concepts developed in this work.

For example, the profile defines a stereotype named
cc:work that corresponds to CC REL class Work. The class
is defined as “a potentially copyrightable work” in CC REL

description. Table III shows the tagged values of cc:work.
As an example of concepts outside CC REL, the profile
defines one stereotype for dependencies. The stereotype is
named ossli:linksTo and contains one tagged value called
ossli:LinkType. The tagged value's range is defined in
enumeration ossli:LinkType. With this tagged value, it is
possible to choose a linking type from multiple common
types such as static, dynamic, remote procedure call, etc.
With the help of CC REL profile, it is possible for example
to tell why two open source licenses are conflicting by
examining the RDF definition of the license.

TABLE III. TAGGED VALUES OF CC:WORK

Tagged value Type Description

rdf:about String A standard way in RDF for defining the
resource being described. (Uniform
Resource Identifier) URI.

cc:license String URI to RDF definition of the license.
cc:attributionName String The name the creator of a Work would

prefer when attributing re-use.
cc:attributionURL String The Uniform Resource Locator (URL)

the creator of a Work would prefer
when attributing re-use.

ossli:copyright ossli:co
pyright

Copyright status of the package defined
by enumeration ossli:copyright.

A more advanced licensing profile, named OSSLI
profile, is depicted in Figure 2. The profile is based on the
specification of Software Package Data Exchange (SPDX)
[25], recommendations by OSI and other de facto rules for
package compliance review [28].

TABLE IV. TAGGED VALUES OF LICENSEDPACKAGE

Tagged value Type Description

Copyright String Copyright information in free text
format.

Description String Description of the package in free
text format.

License LicenseType One or more licenses.
Redistribution Validity Validity for redistributing the

package.
Development

Tool
Validity Validity for using the package as a

development tool.
Service Validity Validity for offering functionality

as a service.
Internal Use Validity Validity for using the package

internally.
ID Integer Identification for the package.

Ownership OwnershipType Ownership of the package.

A fundamental concept in the profile is the stereotype
LicensedPackage, which extends the standard UML
package. LicensedPackage has multiple tagged values that
are introduced in Table IV. The Tagged values with the type
Validity are based on package compliance review [28].
Enumeration Validity is defined using four values: Valid,
Possible Risk, Clear Risk and Unknown. The supported
licenses are listed in LicenseType enumeration, which

574Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 594 / 646

includes Unknown for packages with unknown license or
unexpressed license information. OwnershipType is defined
in the profile as an enumeration with three values: Own,
ThirdParty, PublicDomain and Unknown.

Figure 2. OSSLI profile

The profile shows that LicensedPackage is composed of
classes that are stereotyped as File, which have own tagged
values. In addition, the profile defines three dependency
stereotypes. Linking stereotype consists of one tagged value
named Type, which tells whether the linking between
packages is static or dynamic. Thus, Type is defined by
enumeration LinkingType with values Static or Dynamic.
Control stereotype describes control type between packages,
such as if the packages communicate with each other using
API or remote procedure calls. Compatibility is a stereotype
designed to mark the compatibility mode of licenses as
described previously in Table I.

Figure 3. Illustrative example model using OSSLI profile

An illustrative example model using the OSSLI
licensing profile is shown in Figure 3. The example consists
of four software packages, of which two are owned
packages (Package0, Package1) and two are third party
packages (Apache Xalan C++, Apache Xalan Java).
Package0 is linked to all the other packages. The profiled
model exhibits licensing information such as license used
and linking type information between packages.

IV. OSSLI TOOL ENVIRONMENT
In order to illustrate the use of licensing profiles, a tool

named OSSLI [21] has been developed on top of Papyrus
modeling environment [22]. The tool is capable of
documenting licensing information and managing open
source legality concerns in architectural design. In OSSLI,
design models are expressed as profiled UML package
diagram. Figure 4 depicts the user interface of OSSLI
showing the example design model introduced in Figure 3
(middle part of the figure). The left part of Figure 4 shows
the selection of the OSSLI licensing profile selected for
application.

Figure 4. OSSLI user interface

In addition, the bottom part of Figure 4 shows a scenario
of running a risk evaluator for product redistribution on the
example model. Figure 5 shows the results of the risk
evaluation. Package0 has been reported as risky (marked
with red color) while all other packages are without risks
(marked with green color). Alternatively, the user could run
risk evaluation with respect to service offering, development
tool or internal use. The analysis is based on the information
of LicensedPackage's tagged values included in the OSSLI
profile and introduced in Table II.

575Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 595 / 646

Figure 5. Example risk evaluation of packages

Figure 6. Example of conflict detection

The user could also perform license conflict detection on
the profile model. A license conflict occurs when
connecting components to each other. This is illustrated in
Figure 6. Detected conflicts are presented to the user and are
highlighted in the UML diagram in red color. In the figure,
Package0 is reported as conflicting with packages Apache
Xalan C++ and Apache Xalan Java. The conflict is reported
based on the compatibility values shown in Table 1 and
represented using the Compatibility stereotype in the OSSLI
profile.

V. CASE STUDY: SOLA
The proposed legality view to software architecture has

been incorporated in the development of a real-life open
source system known as Solutions for Open Land
Administration (SOLA) [3]. The project, which is supported
by Food and Agriculture Organization (FAO), aims to
implement an open source land registration and
administration system that will be deployed in at least three
developing pilot countries – Nepal, Ghana, and Samoa. The
role of the authors of this paper is to provide open source
consulting support related to the development of the system,
software review, and community building.

The development of the system has been organized in
two main phases, a generic phase where the core components
of the system are developed by a closed team, and an
application phase where the system is adapted to the contexts
of the three countries and released to the open source
community for further development. A basic project
requirement was to reuse the maximum number of existing
open source components. This has led to the adoption of tens
of open source components with different open source
licenses. In addition, a number of other components have

been developed by the project team. Figure 7 depicts a
fragment of the SOLA system architecture.

As part of the software review task, we have assessed the
system architecture from a legality perspective. Example
questions we had to address include:
1. Could a GPL'ed icons library be used in the presentation

layer?
2. How should the components developed by FAO be

licensed? Both individually and as the whole SOLA
package?

3. Are there any compliance violations among component
interactions?

4. Could the SOLA components be used in proprietary
products? If not, how to circumvent this issue?

5. Are there any legality problems related to software
compliance with the national e-gov strategies of the pilot
countries?

 As example answers to the above questions, it was
deemed risky to use a GPL’ed icons library as this would
trigger the copyleft obligations of GPL, which would be a
problem in case the software is used in proprietary systems.
Therefore, the library has been discarded.
 Figure 8 shows a compliance exercise session for SOLA
design model in the OSSLI tool. Analyzing the components
interactions and their licenses, several important findings
have been observed. First, we identified all possible legality
incompatibilities. In Figure 7, a possible risk is mixing
LGPL’ed JasperReports library and Apache Licensed
Barcode4J. According to the terms of the licenses developers
should use dynamic linking in order to achieve more
independence among these components. Other conflict
detection risks are highlighted in Figure 8.
 As for the components written by the FAO team, we
proposed the use of the modified BSD license because it is
compatible with all other internally used licenses. Another
option we have discussed is to use to use GPL v2. However,
the latter option would bring clear risks when combining
GPL’ed packages with Apache Licensed libraries (e.g.,
Dozer, MyBatis). This is because Apache License and GPL
are completely incompatible.
 Finally BSD license was also proposed as the main
license of the entire SOLA system. This minimizes the
legality risks when adopting the software in the pilot
countries, and allows commercial companies to develop
proprietary software on top of the SOLA system and its
components. Furthermore, no conflicts were found between
the proposed license scheme and the guidelines of the
national strategies of the pilot countries.

VI. RELATED WORK

The fashion FLOSS components are allowed to interact
with each other and proprietary software has become an
important architectural concern. Present design approaches
optimized for the technical aspects of software architecting,
such as scalability, reusability, and testability and tend to
diminish or even completely overlook the legality dimension

576Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 596 / 646

Figure 7. The SOLA Project Legality View

Figure 8. Risk evaluation and conflict detection in SOLA model

that is becoming increasingly important to manage legal
dependencies of open source components.

The legality challenge of FLOSS has been partly
addressed using so-called license analysis techniques and
tools (Table V). Some of the tools provide functionality to
identify the licenses through source code analysis. Examples
of these tools are Fossology [4], Automated Software
License Analysis (ASLA) [27], and Ninka [17]. LChecker
[12] provides a similar functionality but takes a slightly
different approach. It utilizes Google Code Search service to
check if a local file exists in a FLOSS project and if the
licenses are compatible. In addition to license identification,

Open Source License Checker (OSLC) [19] also provides
support for license conflict detection in source code.
Dependency Checker Tool (DCT) [14] focuses on detecting
compliance problems at static and dynamic linking level on
binaries, based on predefined linking and license policies.

TABLE V. A COMPARISON OF OPEN SOURCE LICENSE
MANAGEMENT TOOLS

. Source
analysis

License
identification

Design
analysis

Conflict
detection

Ninka Yes Yes No No
ASLA Yes Yes No No

Fossology Yes Yes No No
LChecker Yes Yes No No

OSLC Yes Yes No Yes
DCT No No No Yes

Qualipso No No OWL Yes
ArchStudio4 No No Custom Yes

OSSLI No No UML Yes

Compared to the OSSLI tool, the above technique are
mostly useful in analyzing ready packaged software systems
but give little guidance, with respect to licensing issues, for
software developers during the development activity itself. A
number of other tools, such as [23] and [1] do provide
support for analyzing license conflicts at the architectural
level. However, these tools generate own architectural views
and have limited integration with the artifacts that software
architects work with. The former uses Web Ontology
Language (OWL) for modeling open source licenses and the
latter uses a custom formal approach. Furthermore, these
tools fall short in their ability to support a number of
important practices related to license compliance checking.
For example, decisions made during the process of fixing the
legality compliance problems in the software architecture
could also be recorded for future recommendations [15].

577Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 597 / 646

There are a number of ontologies and standards proposed
for documenting the legal rules and constraints of software
systems. Examples include Legal Knowledge Interchange
Format (LKIF) [9], Software Package Data Exchange
(SPDX) [25], and QualiPSo Intellectual Property Rights
Tracking (IPRT) [23]. These works could contribute to the
foundation of the proposed legality view, but nevertheless
should be enhanced for better ties with the work processes
and methods of software architects.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a new perspective to the
software architecture, the legality view. The goal of the view
is to make explicit the legality concerns of software
architecture such as IPR issues and use/distribution terms of
the components, which are often important concerns in all
software, but need to be further emphasized in open source
development due to the different licensing schemes. The
view is particularly important in cases where the legality
view introduces architecturally significant requirements. In
the paper, the benefits of the view were first demonstrated by
a small illustrative example and a real-life design, where the
different FLOSS related concerns play an important role in
the design of architecture.

The consequences of the introduction of a new view to
software architecture are many. To begin with, the
complexity of legal issues and their effect in software design
becomes visible. While making such issues explicit on one
hand helps designers to take them into account, on the other
hand the design methods and practices must be revised to
precisely reflect the new view in an integrated fashion.

In order to express the discussed legality view in a
practical fashion, we have proposed the concept of licensing
profile, an adaptation of the UML profile concept for the
modeling of open source licensing rules and constraints. We
then presented tool support for working with licensing
profiles.

As future work, we plan to use licensing profiles as a
basis for building novel techniques to devise optimal
architectural solutions taking into consideration the legality
constraints. This could be achieved, for instance, through the
use of genetic algorithms [24].

REFERENCES

[1] T. A. Alspaugh, H. U. Asuncion, and W. Scacchi, “Analyzing
Software Licenses in Open Architecture Software Systems,” Proc.
FLOSS 2009, 2009, pp. 54–57.

[2] Creative Commons. Describing Copyright in RDF.
http://creativecommons.org/ns. Last accessed June 2013.

[3] FAO. Solutions for Open Land Administration. http://flossola.org/.
Last accessed June 2013.

[4] FOSSology. http://fossology.org/. Last accessed June 2013.
[5] D. M. German, M. Di Penta, and J. Davies, “Understanding and

Auditing the Licensing of Open Source Software Distributions,” Proc.
ICPC 2010, 2010, pp. 84–93.

[6] D. M. German and A. E. Hassan, “License Integration Patterns:
Addressing License Mismatches in Component-based Development,
“ Proc. ICSE 2009, May. 2009, pp. 188–198.

[7] F. P. Gomez and K. S. Quiñones, “Legal Issues Concerning
Composite Software, “ Proc. ICCBSS 2008, 2008, pp. 204–214.

[8] I. Hammouda, T. Mikkonen, V. Oksanen, and A. Jaaksi, “Open
Source Legality Patterns: Architectural Design Decisions Motivated
by Legal Concerns”, Proc. AMT 2010, Tampere, Finland, ACM
Press, October. 2010, pp. 207–214.

[9] R. Hoekstra, J. Breuker, M. Di Bello, and A. Boer, “The LKIF Core
Ontology of Basic Legal Concepts, “ Proc. LOAIT 2007, 2007, pp.
43–63.

[10] International Free and Open Source Software Law Review.
http://www.ifosslr.org. Last accessed June 2013.

[11] P. Kruchten, “Architectural Blueprints — The “4+1” View Model of
Software Architecture, “ IEEE Software 12 (6), November. 1995, pp.
42–50.

[12] lchecker A License Compliance Checker.
http://code.google.com/p/lchecker/. Last accessed June 2013.

[13] F-F. Lidia and A. Vallecillo-Moreno, “An introduction to UML
profiles”, UML and Model Engineering, vol. V, no. 2, April. 2004,
pp. 6–13.

[14] Linux Foundation. Dependency Checker Tool
http://www.linuxfoundation.org/sites/main/files/publications/lf_foss_
compliance_dct.pdf. Last accessed June 2013.

[15] A. Lokhman, A. Luoto, S. Abdul-Rahman, and I. Hammouda,
“OSSLI: Architecture Level Management of Open Source Software
Legality Concerns, “ Proc. OSS 2012, 2012, pp. 356–361.

[16] B. Malcolm, “Software Interactions and the GNU General Public
License, “ IFOSS L. Rev, 2(2), 2010, pp. 165–180.

[17] Ninka, a License Identification Tool for Source Code.
http://ninka.turingmachine.org/. Last accessed June 2013.

[18] Open Source Initiative. http://www.opensource.org. Last accessed
June 2013.

[19] OSLC, Open Source License Checker.
http://sourceforge.net/projects/oslc. Last accessed June 2013.

[20] Sourceforge.net. http://sourceforge.net/. Last accessed June 2013.
[21] OSSLI project. http://ossli.cs.tut.fi/. Last accsedd June 2013.
[22] Papyrus. http://www.eclipse.org/modeling/mdt/papyrus/. Last

accessed June 2013.
[23] Qualipso project. http://www.qualipso.org/licenses-champion. Last

accessed June 2013.
[24] O. Räihä, Hadaytullah, K. Koskimies, and E. Mäkinen, “Synthesizing

Architecture from Requirements: A Genetic Approach, ” Relating
Software Requirements and Architecture (eds. P. Avgeriou, J.
Grundy, J. G. Hall, P. Lago, and I. Mistrik), Chapter 18, Springer,
2011, pp. 307–331.

[25] Software Package Data Exchange (SPDX). http://spdx.org/. Last
accessed June 2013.

[26] Systems and Software Engineering – Architecture Description.
ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC 42010:2007 and
IEEE Std 1471-2000), 2011, pp. 1–46.

[27] T. Tuunanen, J. Koskinen, and T. Kärkkäinen, “Automated Software
License Analysis, “ Automated Software Engineering 16 (3-4),
December. 2009, pp. 455–490.

[28] M. von Willebrand and M. P. Partanen, “Package Review as a Part of
Free and Open Source Software Compliance, ” IFOSS L. Rev, 2(2),
2010, pp. 39–60.

[29] AGPL, Gnu Affero General Public License.
http://www.gnu.org/licenses/agpl-3.0.html. Last accessed September
2013.

578Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 598 / 646

Can Business Process Management Benefit from Service Journey Modelling

Language?

Eunji Lee, Amela Karahasanović

SINTEF ICT

Oslo, Norway

eunji.lee@sintef.no, amela@sintef.no

Abstract—Business process management aims to align the

business processes of an organisation with customers' needs.

Doing this is of particular importance for services and requires

a good understanding of interactions among the stakeholders

involved in service provision and consumption. Several

business modelling languages have been proposed, such as

Business Process Modelling Notation (BPMN), Business

Process Executable Language (BPEL) and Web Services

Choreography Description Language (WS-CDL). Although

these languages provide good support for process modelling,

their consideration of the customer’s point of view seems to be

insufficient. On the other hand, visualisations of customer

journeys for the purpose of conceptualisation of new services

have been successfully used in the area of service design. Our

hypothesis is that a visual language presenting the customer

journey through a service might be useful for aligning business

processes of service providers with customers' needs and, in

turn, contribute to the delivery of better services. We propose

Service Journey Modelling Language (SJML) and report our

first experience with it.

Keywords-software engineering; business process

management; services; visual languages

I. INTRODUCTION

Services play an important role in the global economy
[1]. This heightens the need to understand business process
management (BPM) in the context of services. BPM is used
to improve the outcomes and operational agility of business
performance by linking people, information flows, system
and other assets in order to create and deliver value to
customers [2].

Several standard languages have been used for business
process management. However, the concept of the
customer’s perspective is not sufficiently considered enough
in most of the languages.

Service providers need appropriate methods and
languages to describe the entire service process from the
customer’s point of view. This employs knowledge from the
areas of information visualisation, business process
modelling languages, and service design.

The rest of the paper is organised as follows: Section II

describes related work. Section III describes visual language

for modelling service journey. Section IV concludes the

paper and proposes future work.

II. RELATED WORK

Information visualisation increases human cognition [3].
It helps people to more easily understand complex
information [4], and changes over time that could otherwise
be difficult to comprehend [5].

Moody drew visual information transmission with two
processes: encoding and decoding [6]. We aim to develop a
visual language for presenting customer journey through
services (we call it Service Journey Modelling Language, or
SJML) that includes graphical syntax and information about
encoder, decoder and channels for effective communication,
as presented in Figure 1.

Figure 1. Communication by SJML

Several languages have been used for BPM, such as:

 Business Process Modelling Notation (BPMN).
BPMN is a graphical notation that shows the steps
in a business process and depicts a flow chart that
defines business process workflows [7].

 Business Process Execution Language (BPEL).

BPEL indicates a language that is used to define

and execute business processes by using the

interfaces via web services in order to export and

import business information [8].

 Web Services Choreography Description

Language (WS-CDL). WS-CDL is a non-

executable language based on XML that enables

global business processes to be shown [9].

 ServiceML. ServiceML includes three packages;

Business-SoaML, Light-USDL and Service

Journey Map, which consists of touchpoints.

Touchpoint means a contact point or interaction

SJML

SJML

Encoder

Decoder Encoder

Decoder

Channel

Channel

Graphical syntax

Graphical syntax

579Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 599 / 646

between a customer and a service provider during

service delivery. The colours of the touchpoints

stand for the type of behaviours (normal, ad-hoc

and unexpected) and customer emotional stage

(unhappy, neutral and happy).

Customer Journey Map (CJM) is a tool used in service

design to visualise users' experience. A map is constructed

with touchpoints. The details of service interactions and the

associated emotions can be described in a highly accessible

manner by using a CJM [10]. People use the map to see the

service delivery process from the user's perspective. The

CJM overview shows problem areas and opportunities for

innovation, and the touchpoints assist in further analysis

[10]. By using CJM, people can easily and quickly compare

a service with its competitors [10].

Service blueprint is a technique that was introduced by

Shostack and has been used in business and marketing [11].

It shows the series of service actions and the time flows

related to the roles of stakeholders during service delivery

by dividing them into front tasks and back tasks. Service

blueprints enable managers to understand the entire process

properly and provide useful information for new service

development and its evaluation.

Above described languages and tools support modelling

business processes. However there is a lack of methods for

precise specification of concepts where the customer has a

role as a co-producer [12]. While partly addressing this,

CJM and service blueprints are mainly focusing on the

conceptualisation and evaluation phases [13, 14]

III. VISUAL LANGUAGE FOR MODELLING SERVICE

JOURNEY

The main goal of this research is to introduce a generic

visual language which enhances the service design

development/improvement process. We propose a visual

language, called Service Journey Modelling Language

(SJML) that supports aligning business processes of service

providers with customers' needs. The language will be

developed and evaluated in an iterative manner. Information

visualisation theory [15] and communication theory [6] will

form a theoretical basis for language design and evaluation.

Information visualisation involves users, tasks and

visualisation forms [15]. We aim to investigate which

visualisation forms might improve communication between

stakeholders when performing different tasks within service

design and development.

As the first phase of our research, we wanted to

investigate the needs of practitioners when designing new or

improving existing services. How do different stakeholders

such as designers, service developers and managers

communicate with each other? Which information about

customers and their interaction with services is essential

when aligning business process with customers' needs? We

developed the first version of the language and evaluated it

in a half-day workshop with twenty-six employees of a

university library.

A. Scope

Services can be divided into the following four areas

according to the nature of the service act and the recipient of

the service: services directed at peoples' bodies, services

directed at physical possessions, services directed at

peoples' minds and services directed at intangible assets

[16]. Figure 2 gives examples of these services. We intend

to use SJML within all four service areas.

Figure 2. Service areas covered by SJML

Table I compares SJML with other similar languages.

The second column gives the application domain of the

language. BPMN, BPEL, WS-CDL and ServiceML are used

in business process management, whereas SJML is used in

service design and development. The second column

indicates whether the language considers service providers'

and/or customers' point of view. The third column indicates

communication coverage. Front-communication means that

the languages cover only communication between

employees inside organisations. Front-end communication

means that the language covers also communication

between service providers and customers. ServiceML

describes service experience from both customer's and

service provider's view and cover communication between

service providers and customers. However, ServiceML

cannot display third party stakeholder. SJML aims to be

customer-oriented, cover front-end communication and

enables to illustrate existing and newly designed services.

TABLE I. COMPARISON OF THE LANGUAGES

Language Domain Perspective Communication

coverage

BPMN,
BPEL,

WS-CDL

Business Service provider–
oriented

Front
communication

ServiceML Business Service provider
/customer-oriented

Front-end
communication

SJML Service design Customer-oriented Front-end

communication

 Services directed at
people's bodies

 Services directed at

Physical possessions

Services directed at
people's minds

Services directed at
intangible assets

Service Journey
Modelling

Language (SJML)

- Passenger transportation
- Health care
- …

- Entertainment
- Education
- …

- Banking
- Electricity
- …

- Freight transportation
- Janitorial services
 - …

People Things

Tangible
Actions

Intangible
Actions

580Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 600 / 646

Service design includes the following phases: ideation,

conceptualisation, design, prototyping, development,

implementation, evaluation, maintenance and improvement.

Whereas CJM and Service blueprints support ideation and

conceptualisation phase, SJML is expected to be used in the

whole service design process from conceptualisation to

improvement aiming to enhance service quality.

SJML aims to improve:

 communication to strengthen customer orientation

and facilitate collaboration between all involved

stakeholders through a common vocabulary and

extensive use of visualisation;

 support for design and development, where

language serves as a tool for managing the

development and implementation of innovative

service concepts; and

 support for the analysis of existing and new

services to ensure consistency and overall customer

experience across touchpoints and throughout the

service life cycle.

B. Specification of SJML

Meetings, seminars, e-mail and telephone conversations,

were used to specify requirements and to collect relevant

data. From this requirement and data, functional

requirement are specified like below.

 Source of requirement: internal, external meetings,

seminars, e-mail and telephone conversation.

 Functional requirement:

Touchpoint. SJML consists of a sequence of

touchpoints. Each touchpoint include symbols which

show channels and devices that are used for the

touchpoint.

Actor. The colour of the boundary indicates the actor

initiating the touchpoint.

Status. The boundary style indicates the status of the

touchpoint (solid boundary: completed, dashed

boundary: missing and crossed touchpoint: failed).

The first version of SJML (SJML v1.0.) consists of

terminology, symbols and model journey. Customer journey

relevant terminology such as service and stakeholders was

studied and summarized for better understanding. Symbols

and visual elements were developed together with syntax

and context. Visual symbols represent actions, devices and

mediums that are used during service delivery process. We

used SJML v1.0. for model service analysis of four different

services (Going to the movies, Tax reporting, Retail

purchase and Air travel). Both expected and actual journeys

were mapped.

C. Evaluation and Results

A service design seminar was held at the science library

at the University of Oslo in June 2013. The seminar

consisted of a lecture about service design and two practical

sessions. SJML was introduced and tested during one of

these sessions. The session included a short introduction of

SJML, eight tasks and discussion. Twenty-six librarians

participated, and the entire session took about 30 minutes.

Participants were divided into four working groups and

asked to make customer journey maps of the service process

of borrowing paper and electronic books at the library using

SJML. One blank icon plus seventeen book loan service

relevant icons which were selected among 32 SJML icons

were given to each group as a set (Figure 3). In this

workshop, the actor and status concepts were not adapted.

Figure 3. SJML icons given at the workshop

First task was to present customer journey for a

customer borrowing a paper/electronic book (Figure 4.). The

process includes extension of the loan and finishes with

when the book is returned. Second task was to present

customer journey for a customer ordering a paper/electronic

book which the library does not have. The process includes

extension of the loan and finishes when the book is returned.

Participants were asked to make customer journey maps for

the both existing (Figure 4.) and desired book loan service.

Figure 4. Customer journey maps for a customer borrowing a paper book

(up) /electronic book (down) in existing book loan service at the library

The participants had no problems in understanding of

SJML and using its symbols. Participants were able to

describe and explain the service journey using the given

SJML icons. However some of the participants were

confused about using the symbols that look similar such as

the icon of PC and the icon of web service via PC.

581Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 601 / 646

Participants also wanted to draw loops that happen

repeatedly. However they did not know how to present this.

It was also found that more icons were needed to illustrate

library service specific touchpoints. These challenges will

be addressed in the next version of SJML.

IV. CONCLUSION AND FUTURE WORK

Services usually have a complex structure with several
stakeholders, and their interests are intertwined. Aligning the
business processes of an organisation with customers' needs
is important for business process management, especially in
service field. A good understanding of interactions among
the stakeholders involved in service provision and
consumption is need for this. Several modelling languages
were introduced for business process management and
several methods were suggested to support service design
process. However, there is a lack of support for describing,
communicating and analysing service concepts for
stakeholders in a detailed way in order to develop and
implement new services and improve existing services.

SJMLv1.0. was developed and tested by adapting
information visualisation and visual communication theories
together with requirements. We expect that SJML and
associated methods can improve business process modelling
by alleviating communication problems among different
stakeholders.

We are going to develop and evaluate several versions of

SJML in an iterative manner. They will be evaluated in

collaboration with our industrial partners on real-life

services they are providing. A literature review, interviews,

prototyping, usability testing, post-mortem analysis and a

living lab would be used in further research.

ACKNOWLEDGMENT

This study is part of the VISUAL project (2012–2016,
project number 219606) funded by the Research Council of
Norway and industrial partner companies, and involving
Sintef ICT and the University of Linköping.

Thanks to Ragnhild Halvorsrud and Ida Maria Haugstveit
for the fruitful collaboration in developing the first version of
SJML, to Alma Culén and Andrea Gasparini for organising
the workshop and to all participants who took part in the
workshop.

REFERENCES

[1] T. P. Soubbotina and K. Sheram, Beyond economic growth:

Meeting the challenges of global development. World Bank

Publications, 2000.

[2] Gartner, Inc., “Gartner IT Glossary - Business process

management (BPM),” 2013. [Online]. Available:

http://blogs.gartner.com/it-glossary/business-process-

management-bpm-2/. [Accessed: 22-Aug-2013].

[3] S. K. Card, J. D. Mackinlay, and B. Shneiderman, Readings

in information visualization: using vision to think. Morgan

Kaufmann, 1999.

[4] Y. Rogers, H. Sharp, and J. Preece, Interaction Design:

Beyond Human Computer Interaction (3rd edition). Wiley,

2011.

[5] C. Ware, Information visualization, vol. 2. Morgan

Kaufmann, 2000.

[6] D. Moody, “The ‘physics’ of notations: toward a scientific

basis for constructing visual notations in software

engineering,” Softw. Eng. IEEE Trans., vol. 35, no. 6, 2009,

pp. 756–779.

[7] The Object Management Group, “Business Process

Management Initiative,” 2013. [Online]. Available:

http://www.omg.org/bpmn/Documents/FAQ.htm.

[Accessed: 12-Jun-2013].

[8] M. B. Juric, “A Hands-on Introduction to BPEL.” [Online].

Available:

http://www.oracle.com/technetwork/articles/matjaz-bpel1-

090575.html. [Accessed: 22-Aug-2013].

[9] Business Process Modeling Forum, “Business Process

Modeling FAQ | BPM Forum,” 2013. [Online]. Available:

http://www.bpmodeling.com/faq/. [Accessed: 12-Jun-2013].

[10] M. Stickdorn and J. Schneider, This is service design

thinking. Wiley, 2010.

[11] G. L. Shostack, “Designing services that deliver,” Harv.

Bus. Rev., vol. 62, no. 1, 1984, pp. 133–139.

[12] L. Witell, P. Kristensson, A. Gustafsson, and M. Löfgren,

“Idea generation: customer co-creation versus traditional

market research techniques,” J. Serv. Manag., vol. 22, no. 2,

2011, pp. 140–159.

[13] C. Tollestrup, “Conceptualising services: developing

service concepts through AT-ONE,” Nord. Conf. Serv. Des.

Serv. Innov., 2009, pp. 187–199.

[14] G. L. Shostack, “Service positioning through structural

change,” J. Mark., 1987, pp. 34–43.

[15] C. Chen and Y. Yu, “Empirical studies of information

visualization: a meta-analysis,” Int. J. Hum.-Comput. Stud.,

vol. 53, no. 5, 2000, pp. 851–866.

[16] C. H. Lovelock, “Classifying services to gain strategic

marketing insights,” J. Mark., 1983, pp. 9–20.

582Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 602 / 646

A Method of Generation of Scenarios using Differential Scenario

Eiji Shiota
Graduate School of Science and Engineering

Ritsumeikan University
Kusatsu, Shiga, Japan

e-mail: shiota@cs.ritsumei.ac.jp

Atsushi Ohnishi
Department of Computer Science

Ritsumeikan University
Kusatsu, Shiga, Japan

e-mail: ohnishi@cs.ritsumei.ac.jp

Abstract—In scenario-based requirements engineering, system
behaviours can be given by scenarios. First, we give a nor-
mal scenario of a system to be developed. Secondly, we can
retrieve scenarios of similar behavior with the given scenario
using differential information between the given scenario and a
retrieved scenario. Thirdly, we retrieve alternative scenarios and
exceptional scenarios of the retrieved scenario. Lastly, we can
generate alternative scenarios and exceptional scenarios of the
given scenario using the differential information. Our method will
be illustrated with examples. This paper describes (1) a language
for describing scenarios based on a simple case grammar of
actions, (2) introduction of the differential scenario, (3) method
and examples of scenario retrieval using the differential scenario
and (4) method and example of scenario generation using the
differential scenario. The effectiveness of the method is shown
through an experiment.

Keywords—scenario generation; scenario retrieval; differential
scnenario; scenario-based requirements engineering

I. INTRODUCTION

Scenarios are important in software development [6], par-
ticularly in requirements engineering by providing concrete
system description [16], [18]. Especially, scenarios are useful
in defining system behaviors by system developers and validat-
ing the requirements by customers. In scenario-based software
development, incorrect scenarios will have a negative impact
on the overall system development process. However, scenarios
are usually informal and it is difficult to verify the correctness
of them. Errors in incorrect scenarios may include (1) vague
representations, (2) lack of necessary events, (3) extra events,
and (4) wrong sequence among events.

The authors have developed a scenario language named
SCEL (SCEnario Language) for describing scenarios in which
simple action traces are embellished to include typed frames
based on a simple case grammar of actions and for describing
the sequence among events[17], [19]. Since this language is
a controlled language, the vagueness of the scenario written
with SCEL language can be reduced. Furthermore, a scenario
with SCEL can be transformed into internal representation.
In the transformation, both the lack of cases and the illegal
usage of noun types can be detected, and concrete words will
be assigned to pronouns and omitted indispensable cases [14].
As a result, the scenario with SCEL can avoid the errors typed
1 previously mentioned.

Scenarios can be classified into (1) normal scenarios,
(2) alternative scenarios, and (3) exceptional scenarios. A
normal one represents the normal and typical behavior of
the target system, while an alternative one represents normal
but alternative behavior of the system and an exceptional

one represents abnormal behavior of the system. There are
many normal scenarios for a certain system. For example, a
normal scenario represents withdrawal of a banking system,
another normal scenario represents money deposit, another one
represents wire transfer, and so on. Each normal scenario has
several alternative scenarios and exceptional scenarios. In order
to grasp all behaviors of the system, not only normal scenarios,
but also alternative/ exceptional scenarios should be specified.
However, it is difficult to hit upon alternative scenarios and
exceptional scenarios, whereas it is easy to think of normal
scenarios.

This paper focuses on automatic generation of alterna-
tive/exceptional scenarios from normal scenarios of a new soft-
ware system to be developed. We adopt the SCEL language for
writing scenarios, because the SCEL is a controlled language
and it is easy to analyze scenarios written with the SCEL.

The paper is organized as follows. The SEL language is
described in Section II. After that, differential scnario infor-
mation is presented in Section III. Section IV and V describes
scenario retrieval and scenario generation, respectively. Then
Section VI provides an experiment for evaluation our method.
Section VII discusses related researches and compares with
our work. Lastly, Section VIII arrives at a conclusion.

II. SCENARIO LANGUAGE
A. Outline

The SCEL language has already been introduced [19]. In
this paper, a brief description of this language will be given
for convenience. A scenario can be regarded as a sequence
of events. Events are behaviors employed by users or the
system for accomplishing their goals. We assume that each
event has just one verb, and that each verb has its own case
structure [9]. The scenario language has been developed based
on this concept. Verbs and their own case structures depend
on problem domains, but the roles of cases are independent
of problem domains. The roles include agent, object, recip-
ient, instrument, source, etc. [9], [14]. Verbs and their case
structures are provided in a dictionary of verbs. If a scenario
describer needs to use a new verb, he can use it by adding the
verb and its case structure in the dictionary.

We adopt a requirements frame in which verbs and their
own case structures are specified. The requirements frame de-
pends on problem domains. Each action has its case structure,
and each event can be automatically transformed into internal
representation based on the frame. In the transformation,
concrete words will be assigned to pronouns and omitted
indispensable cases. With Requirements Frame, we can detect
both the lack of cases and the illegal usage of noun types [14].

We assume four kinds of time sequences among events: 1)

583Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 603 / 646

sequential, 2) selective, 3) iterative, and 4) parallel. Actually
most events are sequential events. Our scenario language
defines the semantic of verbs with their case structure. For
example, data flow verb has source, goal, agent, and instrument
cases.

Suppose a scenario of purchasing a train ticket. One
scenario may consist of just one event of buying a train ticket.
Another scenario may consists of several events, such as 1)
informing date, destination, and the number of passengers,
class of cars, 2) retrieving train data base, 3) issuing a ticket,
4) charging ticket fee to a credit card, and so on. If the
abstract levels of scenarios are different, it is quite difficult
to correctly compare and analyze events of scenarios. SCEL
language for writing scenarios solves this problem, because
SCEL provides a limited actions and their case structure as
described in Section 2-C, and scenarios with SCEL keep a
certain abstract level of actions.

[Title: Reservation of a hotel room]
[Viewpoints: user, reservation system]
1.A user enters his membership number and his name to the
reservation system.
2.The system validates the user with the membership number
and the name.
3.The user enters retrieval information to the system.
4.The system retrieves available hotels from the database using
the information.
5.The system shows available hotels to the user.
6.The user selects a hotel from the available hotels.
7. The system shows the room rate to the user.
8.The user enters the credit card number to the system.
9.The system asks the status of the card to a credit card
company using the card number.
10.The system shows the reservation number to the user.

Fig. 1. Scenario example.

B. Scenario example
Fig. 1 shows a scenario of reservation of a hotel room

written with our scenario language, SCEL. A title of the
scenario is given at the first line of the scenario in Fig. 1.
Viewpoints of the scenario are specified at the second line.
In this paper, viewpoints mean active objects such as human,
system appearing in the scenario. There exist two viewpoints,
namely “user” and “reservation system.” The order of the
specified viewpoints means the priority of the viewpoints. In
this example, the first prior object is “user,” and the second is
“reservation system.” In such a case, the prior object becomes
a subject of an event.

In this scenario, all of the events are sequential. Actually,
event number is for reader’s convenience and not necessary.

C. Analysis of events
Each event is automatically transformed into internal rep-

resentation. For example, the 1st event “A user enters his
membership number and his name to the reservation system”
can be transformed into internal representation shown in Table
I. In this event, the verb “enter” corresponds to the concept
“data flow.” The data flow concept has its own case structure
with four cases, namely to say, source case, goal case, object
case and instrument case. Sender corresponds to the source

TABLE I. INTERNAL REPRESENTATION OF THE 1ST EVENT.

Concept: Data Flow

source goal object instrument
user reservation membership *NOT

system number and name specified*

case and receiver corresponds to the goal case. Data transferred
from source case to goal case corresponds to the object case.
Device for sending data corresponds to the instrument case. In
this event, “membership number and name” correspond to the
object case and “user” corresponds to the source case.

The internal representation is independent of surface rep-
resentation of the event. Suppose other representations of the
event, “the reservation system receives user’s membership
number and his name from a user” and “User’s membership
number and his name are sent to the reservation system by a
user.” These events are syntactically different but semantically
same as the 1st event. These two events can be automatically
transformed into the same internal representations as shown in
Table I.

III. DIFFERENTIAL SCENARIOS

Systems that are designed for a similar purpose (e.g.
reservation, shopping, authentication, etc) often have similar
behaviors. Besides, if such systems belong to the same domain,
actors and data resemble each other. In other words, normal
scenarios of a similar purpose belonging to the same domain
resemble each other. Since our scenario language provides
limited vocabulary and limited grammar, the abstraction level
of any scenarios becomes almost the same.

For one system, there exist several normal scenarios. In
the case of ticket reservation, reservation can be written as a
normal scenario and cancellation can be written as another
normal scenario. For a certain normal scenario, there are
several exceptional scenarios and alternative scenarios. To
make a differential scenario, we select two normal scenarios
of two different systems. Each of the two scenarios should
represent almost the same purpose, such as reservation of some
item.

The differential scenario consists of (1) a list of not
corresponding words, (2) a list of not corresponding events,
that is, deleted events which appear in one scenario (say,
scenario A) and do not appear in the other (say, scenario B) and
added events which do not appear in scenario A and appear in
scenario B. We also provide (3) a list of corresponding words
and (4) a list of corresponding events, and (5) a script to apply
the above differential information for generating scenarios.

We generally assume that one to one correspondence
between two nouns and one to one correspondence between
two events. Fig. 2 shows a scenario of reservation of meeting
room for residents in a city.

We compare the scenario of Fig. 1 with the scenario of
Fig. 2 from top to bottom. First, we check the actors specified
as viewpoints of the two scenarios. In the case of scenarios of
Fig. 1 and 2, “user” in Fig. 1 corresponds to “citizen” in Fig.
2 and “reservation system” in Fig. 1 corresponds to “system”
in Fig. 2. The correspondence should be confirmed by user.

Second, we check the action concepts of events. If there
exist events whose action concept appears once in scenario
A and B, respectively, we assume that these two events are

584Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 604 / 646

[Title: Reservation of a meeting room]
[Viewpoints: citizen, system]
1.A citizen enters reservation information to the system.
2. The system retrieves available room from the database using
the information.
3.The system shows an available room to the citizen.
4. The citizen enters his name and telephone number to the
system.
5.The system validates the citizen with the name and the
telephone number.
6.The system shows the room rate to the citizen.
7.The citizen pays the rate to the system.
8.The system issues a receipt to the citizen.
9.The system shows the room number to the citizen.

Fig. 2. Normal scenario of reservation of a meeting room

TABLE II. THE INTERNAL REPRESENTATION OF THE FIRST FOUR
EVENTS OF THE SCENARIO IN FIG. 1.

concept agent/ goal object
source

data flow user reservation membership
system number and name

validate system user membership
number and name

data flow user reservation retrieval
system information

retrieve system available hotels database

probably corresponding to each other. For example, the concept
of the 2nd event in Fig. 1 and the concept of the 5th event
in Fig. 2 are “validate” and there are no more events whose
concepts are “validate,” so we regard these two events are
probably corresponding to each other. Then we provide these
two events to a user and the user will confirm that these two
events are corresponding to each other by checking whether
nouns of the same cases are corresponding or not.

If there exists an event whose action concept appears once
in scenario A, but there exists two or more events of the action
concept in scenario B, then we regard that one of the events of
the concept in scenario B corresponds to the event in scenario
A. So, we provide these events to system user and the user
will check the corresponding events.

If there are two or more events whose concepts are same
in two scenarios respectively, these events are candidates of
corresponding events. Then we check that nouns of the same
cases are corresponding to. Next we provide candidates to the
user and he will select the corresponding event.

The first four events of the scenario in Fig. 1 can be
transformed as shown in Table II. The internal representations
of the first five events of the scenario in Fig. 2 are shown in
Table III. In fact, the data flow concept has four cases, that is,
source, goal, object, and instrument cases as shown in Table
I, but the instrument cases are omitted in Table II and III for
the space limitation.

For the 2nd event in Table II and the 5th event in Table
III as shown with italic font, since the nouns of the cases of
the two events are same or corresponding to each other, these
two events are corresponding to each other. At this time we
get “membership number and name” correspond to “name and
telephone number.” So, the 1st event in Fig. 1 corresponds to
the 4th event in Fig. 2, because concepts are same and all of

TABLE III. THE INTERNAL REPRESENTATION OF THE FIRST FIVE
EVENTS OF THE SCENARIO IN FIG. 2.

concept agent/ goal object
source

data flow citizen system reservation
information

retrieve system available room database
data flow system citizen available rooms
data flow citizen system name and

telephone number
validate system citizen name and

telephone number

TABLE IV. A LIST OF CORRESPONDING WORDS BETWEEN SCENARIO
A AND SCENARIO B.

Nouns in scenario A Nouns in scenario B
user citizen
reservation system system
membership number and name name and telephone number
available hotels available room
retrieval information reservation information
reservation number room number
hotel room meeting room
hotels room

the nouns of corresponding cases are corresponding to each
other.

Similarly we detect corresponding events and correspond-
ing nouns. Table IV shows a list of corresponding nouns. Fig.
3 shows corresponding events of the two scenarios. In Fig. 3,
two events connected by an arrow are corresponding to each
other. Events without an arrow have no corresponding events.
The successive corresponding events are grouped into an event
block. The first two events in Fig. 1 are grouped into a block
named a1. The block a1 corresponds to a block named b2
consisting of the 4th and the 5th events in Fig. 2.

Finally, we can get the differential scenario between hotel
reservation and meeting room reservation shown in Table IV,
V, and VI and Fig. 3.

TABLE V. DELETED EVENTS FROM PERSPECTIVE SCENARIO A/
ADDED EVENTS FROM PERSPECT IVE SCENARIO B.

concept agent/ goal object
source

select user hotel available hotels
data flow user system credit card number
data flow system credit card credit card number

company

Fig. 3. Corresponding events.

585Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 605 / 646

TABLE VI. ADDED EVENTS FROM PERSPECTIVE SCENARIO A/
DELETED EVENTS FROM PERSPECTIVE SCENARIO B.

concept agent/ goal object
source

pay citizen system room rate
data flow system citizen receipt

1) change positions of block a1 and a2
2) delete events in Table V
3) insert events in Table VI followed by a4
4) change the corresponding nouns in Table IV

Fig. 4. Script applied to alternative/exceptional scenarios of scenario A.

IV. SCENARIO RETRIEVAL USING DIFFERENTIAL
SCENARIO

In scenario-based software development, several scenarios
should be specified. Since such scenarios may be revised, there
exist a lot of scenarios of different revisions. When a scenario
is given, it may be difficult to find similar scenarios or related
scenarios to the given scenario by hand. We propose a retrieval
method in order to get similar scenarios or related scenarios
using the similar information of scenarios.

We assume that scenarios are analyzed based on the
requirements frame in advance. As previously mentioned in
Section 2, the requirements frame strongly depends on the
problem domain. So, if case structures of verbs are different
between two scenarios, we consider that these two scenarios
are belonging to different domains each other. If all of the case
structures are same, these scenarios can be classified into the
same domain.

We propose two factors of the similarity between scenarios.
One is related to same system. For example, a banking system
provides several functions, withdrawal, deposit, loan, opening
account, and so on. These functions are different each other,
but both active objects, such as customer, bank clerk, ATM,
banking system and inactive objects, such as bank card, cash,
account in common appear in scenarios specifying behaviors
of these functions of the banking system. The other factor is
related to same or similar behavior. For example, behavior of
train seat reservation and that of flight reservation are similar
each other, although these systems are different.

A. Similarity of scenarios by system
If same nouns are used in scenarios, these scenarios prob-

ably specify behaviors of the same system. For example, “cus-
tomer,” “e-library system,” and “librarian” appear in different
scenarios, these scenarios can be regarded as scenarios of the
same system. On the basis of the above discussion, we give
an equation in order to measure the similarity of system of
scenarios as below.

Similarity of system between two scenarios =

the number of same nouns in events of the two scenarios

the total number of nouns in events of the two scenarios
(1)

As for scenarions in Fig.1 and 2, nouns in the events of
these scenarios are shown in Table VII.

The total number of the nouns is 19 and the same nouns
are “database”, “name” and “room rate.” So the similarity of

TABLE VII. NOUNS IN THE EVENTS OF FIG.1 AND FIG.2

Scenario nouns
Fig.1 available hotels(hotel), credit card company, credit card number

(card number), database, membership number, name, retrieval
information(information), reservation number, reservation system

(system), room rate, status of the card, user
Fig2 available room, citizen, database, name, receipt, reservation information

(information), room number, room rate(rate), system, telephone number

system between these two scenarios becomes 3
19 .

B. Similarity of scenarios by behavior
If scenario titles have a same verb, these scenario probably

specify similar behaviors. For example, a scenario whose title
is “a customer reserves a train seat” and another scenario
whose title is “a user reserves a flight ticket” can be classified
into similar scenarios from a behavioral viewpoint. However,
a scenario whose title is “a customer purchases a train ticket”
can be classified into similar scenarios with above ones. So,
we think that scenarios are similar if titles of the scenarios
have same verb, but this is not necessary.

Sequence of events in a scenario represents behaviors of
users and system. If systems are different each other, nouns
in events become different, even if events specify similar
behaviors. So, we use corresponding events in the differential
scenario. If two scenarios are similar each other from the view-
point of behavior, the ratio of corresponding events becomes
high.

On the basis of the above discussions, we give the second
equation in order to measure the similarity of behaviors of
scenarios as shown in below.

Similarity of behavior between the two scenarios =

the number of corresponding events

the total number of events of the two scenarios
(2)

As shown in Fig.3, the total number of events is 10+9−7 =
12 and the number of the same events is 7. So, the similarity
of behavior between scenariosn of Fig.1 and 2 is 7

12 = 0.58

We consider that two scenarios whose similarity of behavior
is greater than 0.5 are scenarios of similar behaviors.

In order to apply the differential information to another
scenario of reservation of a hotel room, we also provide a
script for application script shown in Fig. 4. Even if there
exists a delete command in a script, event blocks will not be
deleted when any event blocks in an applied scenario do not
match with event blocks in the script. Even if there exists
an insertion command in the script, event blocks will not be
inserted when the following event block and the followed event
block are missing in the applied scenario.

Fig. 5 shows the outline of the retrieval method of scenarios
using the similar information of scenarios. We have been
developing a prototype system based on the proposed method
with C#.

C. Experiment
To evaluate our method, we compare the classification of

scenarios by hands with the retrieval result by the method.
Thirteen graduate students of CS department who well know
both the scenario language and the problem domain classify
nine scenarios for a standard scenario, while the same sce-
narios are also retrieved and classified based on the proposed

586Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 606 / 646

1

Scenario
Database

Generator of

Differential Scenario

user

Scenario
Retriever

Scenario A

Retrieval result of similar
Scenarios

Differential scenarios between

Scenario A and scenarios in DB

(Not/) corresponding
words, corresponding
events, added/deleted
events, script

Fig. 5. Outline of Scenario Retrieval.

TABLE VIII. SCENARIO CLASSIFICATION BY THE PROPOSED METHOD
AND BY STUDENTS.

Scenario Classification by method Ratio of
same result

Train ticket reservation Different system, similar behavior 11/13
Flight ticket changing 1 Same system, different behavior 11/13
Flight ticket changing 2 Same system, different behavior 11/13
Train ticket reservation Different system, similar behavior 11/13
Flight ticket reservation Same system, similar behavior 13/13
(Alternative scenario)
Bus ticket reservation Different system, similar behavior 10/13
Claim for the loss Different system, different behavior 13/13
on insurance
Purchasing something Different system, different behavior 12/13

method. A normal scenario of reservation of flight ticket was
adopted as a standard scenario in this experiment. Table VIII
shows the comparison of the scenario classifications.

In this experiment, nine scenarios are classified. The values
of the column “Ratio of same result” mean the ratio of same
classification between by our proposed method and by stu-
dents. We investigated the reason why some students wrongly
classified and found that they did not recognize the difference
of systems correctly. After giving additional explanation of
systems, the students adopted same classification of scenarios
as classified by the proposed method. Through the experiment
we confirm that our method can correctly classify scenarios
for a given scenario and can retrieve similar scenarios with
system/behavior.

V. SCENARIO GENERATION USING DIFFERENTIAL
SCENARIO

Once the differential scenario between system A and B is
given, we can apply it to another scenario of system A and
get a new scenario of system B by changing corresponding
words and by deleting or adding not-corresponding events. In
this section, we apply the differential scenario described in the
previous chapter to an alternative scenario of hotel reservation
and get an alternative scenario of meeting room reservation
[12].

A. Examples of generation
Fig. 6 shows an alternative scenario of hotel reservation.

In this scenario, an aged user reserves a hotel room with a
discount rate. By applying the differential scenario in Table
IV, V, VI and Fig. 3 using the application script in Fig. 4,
we can get a new alternative scenario of reservation of a

[Title: Reservation of a hotel room for aged users]
[Viewpoints: user, system]
1.A user enters his membership number and his name to the system.
2.The system validates the user with the membership number and the
name.
3.The user enters retrieval information to the system.
4.The system retrieves available hotels from the database using the
information.
5.The system shows available hotels to the user.
6.The user selects a hotel from the available hotels.
7.The system retrieves the date of birth of the user from the database
using the membership number and the name.
8.The system checks the age of the user.
9.The system calculates the discount rate of the room for aged users.
10.The system shows the room rate to the user.
11.The user enters the credit card number to the system.
12.The system asks the status of the card to a credit card company
using the card number.
13. The system shows the reservation number to the user.

Fig. 6. An alternative scenario.

[Title: Reservation of a meeting room for aged citizen]
[Viewpoints: citizen, reservation system]
1.The citizen enters reservation information to the system.
2.The system retrieves available room from the database using the
information.
3.The system shows available room to the citizen.
4. The citizen enters his name and telephone number to the system.
5.The system validates the citizen with the name and the telephone
number.
6.The system retrieves the date of birth of the citizen from the database
using the name and the phone number.
7.The system checks the age of the citizen.
8.The system calculates the discount rate of the room for aged citizen.
9.The system shows the room rate to the citizen.
10.The citizen pays the rate to the system.
11.The system issues a receipt to the citizen.
12.The system shows the room number to the citizen.

Fig. 7. A generated new alternative scenario.

meeting room for aged citizen as shown in Fig. 7. Lastly, the
generated scenario is investigated by the user. He can modify
the generated scenario to eliminate errors.

B. Scenario generator using differential scenarios
Fig. 8 shows the outline of the generation of scenarios using

differential scenarios. We have been developing a prototype
system based on the method. This system has been developed
with C# on a Windows XP PC. The line of source code of
the system is about 6,000. This system is a 4.5 man-month
product.

This system mainly provides two functions. One is the
derivation of the differential scenario between given two sce-
narios. The other is the application of the differential scenario
to a specified scenario and the generation of a new scenario.
If a user selects the former function and he specifies two
scenarios, such as a scenario of the reservation of a hotel
room and a scenario of the reservation of a meeting room,
then differential scenario between them is derived.

587Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 607 / 646

Fig. 8. Outline of scenario generation.

Fig. 9. Candidates of corresponding events.

Fig. 10. Derivation of a differential scenario.

Fig. 11. Blocked events of the left scenario.

Fig. 12. Generated script.

Fig. 13. Generated alternative scenario.

588Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 608 / 646

TABLE IX. SUBJECTS’ ABILITIES OF SCENARIO ANALYSIS.

Time(min.) # of errors # of events
A1 17 3 16
A2 17 0 19
A3 15 3 19
A4 13 2 17
B1 20 1 19
B2 19 0 19
B3 20 0 19
B4 20 0 19

TABLE X. SCENARIOS OF CD RENTAL SYSTEM.

id title the number of events
1 CD rental 19
2 CD rental failure by upper limitation 7
3 Return of CD 6
4 Retrun of CD with penalty 9
5 Retrieval of CDs 7
6 Registration of CDs 8
7 Registraion of a new member 16
8 Cancelation of a member 10

In Fig. 9, the user selects the corresponding event for the
1st event of the left-hand scenario. Two events are provided as
candidates of corresponding events (the 4th event and the 7th
event of the right-hand scenario). Since nouns with boldface
font of the events are not registered in the list of corresponding
words at that time, the user selects a corresponding event by
specifying the id number of the event.

In this case, the user specifies the 4th event of the right-
hand scenario as a corresponding event of the 1st event of
the left-hand scenario by specifying the id number 3 in the
bottom and right-side of the window in Fig. 9. The system
automatically registers the correspondence between “member-
ship number and name” of the left-hand scenario and “name
and telephone number” of the right-hand scenario in the list
of corresponding words. Likewise corresponding words and
corresponding events will be determined and registered in the
lists, respectively.

In Fig. 10, a list of corresponding words and a list of
corresponding events are displayed in the right-hand side of
the window.

In Fig. 11, events of the left-hand scenario in Fig. 9
are blocked. There are 4 blocks numbered 0, 1, 2 and 3
respectively. Three events are not blocked and they do not
have any corresponding events.

In Fig. 12, an application script is displayed. By applying
this script to an exceptional/alternative scenario of the reser-
vation of a hotel room, an exceptional/alternative scenario of
the reservation of a meeting room will be derived as shown in
Fig. 13.

VI. EXPERIMENT

In order to evaluate our method and system, we performed
an experiment. The purposes of the experiment are to confirm
the following benefits.

1) to lessen elaboration of writing scenarios
2) to make a scenario of high quality

A. Outline of the experiment
Eight students who are graduate students belonging to

software engineering laboratory, Ritsumeikan university are
divided into two groups of four subjects that named group

TABLE XI. RESULT OF THE EXPERIMENT.

Scenario id Group A Group B
Time(min.) errors Time(min.) errors

1 - - - -
2 4 0 10 0
3 1 0 7 0
4 2 0 15 1
5 3 0 10 0
6 8 0 7 0
7 2 0 14 6
8 1 0 5 0

average except 3.0 0 9.7 1.0
for the scenario 1

A and B. Prior to the experiment, we explained scenario
language and the way of scenario writing for two hours. We
chose a rental system as problem domain. We also gave a job
description of a rental system to provide domain knowledge
to subjects.

Since the quality of generated scenarios depends on the
ability of scenario writing and scenario analysis of subjects,
we checked the ability of subjects prior to the experiment. We
gave a normal scenario of borrowing a book at a library and
asked to subjects to write a normal scenario of borrowing a CD
at a CD rental shop. The result is shown in Table IX. A1, A2,
A3, and A4 are members of group A, while B1, B2, B3, and
B4 are members of group B. It took 17.6 minutes on average
to write the scenario. The number of errors in a scenario of
Group A is 2 on average, while the number of errors in a
scenario of Group B is 0.5 on average. We confirmed that
subjects’ abilities of scenario writing and scenario analysis are
different. The ability of Group A is less than that of Group
B. This fact means that the quality of scenarios of Group A is
usually less than that of Group B. We gave a correct scenario
of borrowing a CD to all the members and pointed out the
mistakes.

B. Generation vs. description of scenarios
We provided scenarios of a library system to the members

of the two groups. These scenarios consist of 5 normal
scenarios, and 2 exceptional scenarios. The member of group
A wrote a normal scenario of borrowing a book and gets a
differential scenario between scenario of borrowing a book and
a scenario of borrowing a CD. Then they get the scenarios of
CD rental system automatically generated using our proposed
method and system, while the members of group B wrote one
or two scenarios of the CD rental system by themselves using
corresponding scenarios of the library system. We checked
generated scenarios of group A and written scenarios of group
B by comparing correct scenarios with them.

Table X shows a list of scenarios of the CD rental system
prepared as correct scenarios by the authors. Scenario id
number 3, 5, 6, 7 and 8 are normal scenarios of the CD
rental system, while a scenario of no.2 and 4 are exceptional
scenarios.

Table XI shows the result of experiment. It took extra
3.0 minutes on average to generate differential scenario for
Group A. In using our method and system, scenarios are
automatically generated, but the subjects need to check the
generated scenarios. It took 3.0 minutes on average to check
the scenarios. In checking none of the subjects found any errors
in the generated scenarios. This means that our method and
system generates exactly correct scenarios. In order to write

589Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 609 / 646

scenarios by Group B, it took 9.7 minutes on average.
Actually, the ability of writing scenario of Group A is less

than that of Group B, but the quality of generated scenarios
by Group A is better than the quality of written scenarios by
Group B as shown in Table XI. Through the experiment, we
found that our method and system improve the correctness of
the scenario and lessen the writing time.

VII. RELATED WORK

There is an obvious trend to define scenarios as textual
description of the designed system behaviors. The growing
number of practitioners demanding for more “informality” in
the requirements engineering process seems to confirm this
trend. Most of these papers describe how to use scenarios for
the elicitation [15] or exploration [10] of requirements. The
authors believe that it is also important to support both the
generation and the classification of scenarios.

Ben Achour proposed guidance for correcting scenarios,
based on a set of rules [1]. These rules aim at the clarification,
completion and conceptualization of scenarios, and help the
scenario author to improve the scenarios until an acceptable
level in terms of the scenario models. Ben Achour’s rules can
only check whether the scenarios are well written according
to the scenario models. We propose a method of generating
exceptional scenarios and alternative scenarios from a normal
scenario.

Neil Maiden et al. proposed classes of exceptions for use
cases [11]. These classes are generic exceptions, permutations
exceptions, permutation options, and problem exceptions. With
these classes, alternative courses are generated. For commu-
nication actions, 5 problem exceptions are prepared, that is,
human agents, machine agents, human-machine interactions,
human-human communication, and machine-machine commu-
nication. They proposed a method of generating alternative
paths for each normal sequence from exception types for
events and generic requirements with abnormal patterns [3],
[13], [15], [16]. Our approach for generating scenarios with a
differential scenario is independent of problem domains.

Daniel Amyot et al. derive a scenario from use case map
[2]. In order to generate several scenarios, they have to prepare
several use case maps, while we have to prepare just one
normal scenario with our approaches.

Christophe Damas et al. synthesize annotated behavior
models from scenarios. They generate a state transition model
from several scenarios and this model covers all scenario
examples [7], [8]. However, they cannot generate scenarios
of different systems, while our approach enables to generate
scenarios of different systems.

Yu-Chin Cheng et al. proposes a generation method of
attack scenarios [4]. Using attack patterns, attack state transi-
tion model, attack scenarios can be generated. Their approach
focuses on just attack scenarios via network, but we provide
a generation method of exceptional scenarios and alternative
scenarios.

Dave Clarke et al. propose abstract delta modeling method
to facilitate automated product derivation for software product
lines. However, it seems difficult to give a correct delta model,
while our approach enables to produce a correct differential
scenario by giving two different scnarios.

VIII. CONCLUSION AND FUTURE WORK

We have developed a frame base scenario language and
a method of generating differential scenario between two
scenarios. We have also developed a retrieval method of
similar scenarios with system/behavior for a given scenario
using the differential scenario and a generation method of
alternative/exceptional scenarios for a given scenario using the
differential scenario. The effectiveness of these two methods
are validated through an experiment.

In order to retrieve more efficiently similar scenarios with
differential scenario, using pre-conditions and post-conditions
just like the selection of rules applicable to verify the correct-
ness of scenarios [17] is left as our future work.

REFERENCES
[1] C. B. Achour, “Guiding Scenario Authoring,” Proc. 8th European-

Japanese Conference on Information Modeling and Knowledge Bases,
1998, pp.181-200.

[2] D. Amyot, D. Y. Cho, X. He, and Y. He, “Generating Scenarios from
Use Case Map Specifications,” Proc. 3rd QSIC, Dallas, USA, 2003,
pp.108-115.

[3] I. Alexander and N. A. M. Maiden, Scenarios, Stories, Use Cases,
Through the Systems Development Life-Cycle, John Wiley & Sons,
Ltd., 2004, pp.161-177.

[4] Y. C. Cheng, et al., “Generating Attack Scenarios with Causal Relation-
ship,” Proc. of IEEE International Conference on Granular Computing
(GRC2007), 2007, pp.368-373.

[5] D. Clarke, M. Helvensteijn, and I. Schaefer, “Abstract delta modeling,”
Proc. 9th GPCE’10, 2010, pp.13-22.

[6] A. Cockburn, Writing Effective Use Cases, Addison-Wesley, USA, 2001
[7] C. Damas, B. Lambeau, P. Dupont, and A. Lamsweerde, “Generating

Annotated Behavior Models from End-User Scenarios,” IEEE Transac-
tions on SE, Volume 31, Issue 12, 2005, pp.1056-1073.

[8] C. Damas, B. Lambeau, and A. Lamsweerde, “Scenarios, goals, and
state machines, a win-win partnership for model synthesis,” Foundations
of Software Engineering, Proc. 14th ACM SIGSOFT international
symposium on Foundations of Software Engineering, 2006, pp.197-207.

[9] C. J. Fillmore, The Case for Case, in Universals in Linguistic Theory,
Holt, Rinehart and Winston, 1968.

[10] J. C. S. P. Leite, et.al., “Enhancing a Requirements Baseline with
Scenarios,” Proc. 3rd RE, 1997, pp.44-53.

[11] N. A. M. Maiden and M. Hare, “Problem Domain Categories in
Requirements Engineering,” International Journal of Human-Computer
Studies, 49, 1998, pp.281-304.

[12] M. Makino and A. Ohnishi, “Scenario Generation Using Dif-
ferentail Acenario Information,” IEICE Trans. Information ans Systems,
Vol.E95-D, No.4, pp.1044-1051.

[13] A. Mavin and N. A. M. Maiden, “Determining socio-technical systems
requirements, experiences with generating and walking through scenar-
ios,” Proc. 11th IEEE RE, 2003, pp.213-222.

[14] A. Ohnishi, “Software Requirements Specification Database on Re-
quirements Frame Model,” Proc. IEEE 2nd ICRE, 1996, pp.221-228.

[15] A. G. Sutcliffe and M. Ryan, “Experience with SCRAM, a SCenario
Requirements Analysis Method,” Proc. 3rd ICRE, 1998, pp.164-171.

[16] A. G. Sutcliffe, N. A. M. Maiden, S. Minocha, and D. Manuel,
“Supporting Scenario-Based Requirements Engineering,” IEEE Trans.
SE, Vol.24, No.12, 1998, pp.1072-1088.

[17] T. Toyama and A. Ohnishi, “Rule-based Verification of Scenarios with
Pre-conditions and Post-conditions,” Proc. 13th IEEE RE2005, 2005,
pp.319-328.

[18] K. Weidenhaupt, K. Pohl, M. Jarke, and P. Haumer, “Scenarios in
System Development, Current Practice,” IEEE Software, March, 1998,
pp.34-45.

[19] H. Zhang, A. Ohnishi, “Transformation between Scenarios from Dif-
ferent Viewpoints,” IEICE Trans. Information and Systems, Vol.E87-D,
No.4, 2004, pp.801-810.

590Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 610 / 646

Towards a UML Meta Model Extension for Aspect-Oriented Modeling

Meriem Chibani

Department of Mathematics and

Computer Science

University of Oum El Bouaghi

Oum El Bouaghi, Algeria

e-mail: c.meriem@univ-oeb.dz

Brahim Belattar

Department of Computer Science

University of Batna

Batna, Algeria

e-mail: brahim.belattar@univ-

batna.dz

Abdelhabib Bourouis

Department of Mathematics and

Computer Science

University of Oum El Bouaghi

Oum El Bouaghi, Algeria

e-mail: a.bourouis@univ-oeb.dz

Abstract— The aspect-oriented programming paradigm (AOP)

as a way of improving the separation of concerns principle has

emerged initially at the programming level using strong

languages like AspectJ. Currently, it becomes mature to

stretch at premature stages of the software development

process namely, the Aspect-Oriented Software Development

(AOSD) which is a popular topic of software engineering

research that leads to more dependable, reusable and

maintainable artifacts. In this paper, we propose a UML

profile for modeling crosscutting concerns where the

separation of concerns is maintained to the level of code and
the weaving is done by an AspectJ compiler.

Keywords-Aspect-Oriented Programming (AOP); UML

profile; AspectJ; Aspect-Oriented Software Development.

I. INTRODUCTION

Besides functional concerns, software system
development requires other concerns, namely crosscutting
concerns as logging, distribution, error handling and security.
These concerns cross cut the system functional modules,
which produces a scattered and tangled design and decreases
software’s maintainability and modularity. The object-
oriented paradigm does not satisfy the separation of concerns
principle. It provides a powerful way to separate core
concerns but it could not modularize crosscutting concerns in
separate units. The aspect-orientation has originally emerged
at the programming level with the well-known AspectJ
language [1], in the late 1990s. Its use is no longer restricted
to the programming level but more and more stretches over
early phases of the software development life cycle such as
requirements engineering, analysis and design. This new
field is called the Aspect-Oriented Software Development
(AOSD).

Aspect-oriented programming has emerged as a solution
paradigm to overcome modularization problem. It
distinguishes between the different categories of concerns,
decreases coupling between concerns and more generally, it
increases reuse. An AOP system may include many
constructs where the central one is the aspect unit, which
consists of two parts: dynamic crosscutting constructs and
static ones. Dynamic crosscutting constructs provide a way
to affect the behavior of a system. Join points are the points
in the execution flow of an application; and pointcuts, a

mechanism for selecting join points. The aspects have
advices that are attached to one or more join points. When an
advice is attached to join points, it will be executed, guided
by its modifier which may specify the execution time relative
to the join points: before, after, around, after exception or
even after return value. These advices have an additional
instance variable named thisJoinPoint that encapsulates the
contextual information captured from the current junction.
On the other hand, static crosscutting constructs alter static
structure of the system. For example, when implementing
tracing crosscutting concern, the introduction of a logger
field into each traced class could be needed and inter-type
declaration constructs make such modifications possible. In
some situations, the need to detect certain conditions could
arise, typically the existence of particular join points, before
the execution of the system for which weave-time
declaration constructs are suitable [2]. Furthermore, one of
the main elements of AOP is the “weaving” mechanism
which composes classes and aspects to produce a system
with a new semantics. It could be performed before or after
compilation and is known as static weaving. On the other
hand, dynamic weaving is performed at load-time or run-
time [3].

For an Aspect-Oriented Modeling (AOM) notation that
provides a foundation for achieving better concern separation
and integration, there is a need for several requirements. A
general purpose, UML-based visual modeling language has
several advantages over textual and domain specific
alternatives. The notation should be complete, which means
having a supporting abstraction for each of the commonly
accepted AOSD concepts (aspect, component, pointcut,
advice, static and dynamic crosscutting, Aspect-component
relation and aspect-aspect relation). Furthermore, different
concepts should be implicitly or explicitly mapped to
different existing or new first-class UML elements. The
notation should be independent from implementation
language until the lowest level of detail is provided. In this
way, the resulting aspect-oriented architectural models could
be easily translated into elements of distinct aspect-oriented
programming languages/frameworks and detailed design
notations. Finally, the integrated UML-based notation should
promote simplicity and avoid unnecessary extensions [4].

The Unified Modeling Language (UML) is a standard
object oriented modeling language for specifying,

591Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 611 / 646

visualizing, constructing, and documenting the artifacts of a
system process. To enable it to represent the AOSD concepts
at the design level, two alternatives are available. The
general extension alternative aims at modifying the meta
model of UML to include concepts related to the paradigm
and is currently impractical due to a lack of tools support.
The second alternative aims at building a UML profile which
provides extension mechanisms [5]. UML extension
mechanisms are based on “Stereotypes”, “Tagged Values”,
and “Constraints” concepts. Briefly said, stereotypes are
means of extending the UML metamodel classes, while
tagged values are properties for stereotypes and constraints
are used to restrict the stereotype vocabulary.

In this paper, we propose a UML v2.4 profile for
modeling crosscutting concerns at the design level. The
separation of concerns is maintained to the level of code and
the weaving is done by an AspectJ compiler. We have used
only UML class diagrams where the system behavior is not
specified in UML behavioral diagrams.

The rest of the paper is organized as follows. Section 2
describes briefly the related work. Section 3 presents the
proposed profile, while Section 4 discusses an application
example. Finally, a conclusion is given in Section 5.

II. RELATED WORK

An aspect-oriented UML profile is one of the most
challenges in closing the gap between AOP and aspect-
oriented modeling phases. Initial discussion on UML profile
was presented in [6], which proposed the specification of
aspects as stereotypes on classes and aspects behavior as
association relationship using collaboration diagram. The
profile was specific for synchronization aspect and without
addressing joinpoints, advice and pointcut concepts. It was
later extended to include advice and pointcut specification in
[7]. Similarly, in [8][9], initial aspect-oriented extensions
using UML metamodels were described with a lack in
graphical representation of most aspect-oriented constructs
such as static crosscutting, join point and pointcuts.

In contrast to previous works, a complete AspectJ profile
without textual specification was discussed by Evermann
[10]. It was developed using the commercial tool
MagicDraw with XMI (XML Metadata Interchange) format
which allows easy code generation. However, it has
inconsistencies compared to what is required by the
paradigm and the proof was provided by a process for
aspect-oriented profile checking in [11]. In [12], Evermann
profile was extended to support aspect-oriented frameworks
taking into consideration some AspectJ idioms, patterns and
also stereotypes from a profile for object-oriented
frameworks called UML-F.

In the terminology of Model Driven Architecture
(MDA), unlike the previous works, which allow modeling
only of Platform Specific Models (PSM), a Platform
Independent Modeling (PIM) profile was developed in [13],
after the identification of commonalities and differences
between two representative AOSD implementations. As
shown in Table 1, the significant differences between the
implementation languages, i.e., AspectJ and AspectS, make
the resulting profile complex to apply to models. Thus, a

profile dedicated to a platform-specific technology is the
candidate solution for reducing complexity [14].

TABLE I COMPARAISON OF AOP APPROACHES [14]

Recently, Gowri [15] modeled joinpoint as sequence
diagrams and it adopted XMI to deploy the profile in
available CASE tools. It is a generic profile that captures
only few of the AspectJ extensions.

The present proposal is an extension of the Evermann
profile with several improvements. It represents a complete
AspectJ imitation with two main contributions:

 Extending Evermann profile to comprise static
crosscutting representation as shown in Figure
1, with highlighted stereotypes, e.g., the weave-
time error and warning declarations constructs.

 Doing a considerable number of changes, for
instance at the level of the used metaclasses and
relations between stereotyped profile elements
in order to eliminate Evermann profile
complexity and improving efficiency, e.g., the
metaclass Property is sufficient to represent the
pointcut instead of the metaclass
StructuralFeature, add the conditionalPointcut
stereotype, etc.

III. THE PROPOSED PROFILE

Our profile is developed using the UML commercial tool
MagicDraw [16]. It provides an efficient graphical UML2
editor for modeling and profiling with OCL verification
engine for constraints checking.

A. Aspect

Aspect represents the modular unit in AOP paradigm that
includes all crosscutting constructs such as advice and
pointcut. The aspect is like a class, which may have both
attributes and operations, access modifiers (public, private,
protected or package), the ability to extend other classes,
realize interfaces in addition to the fact that they may be
abstract. Thereby, aspects are modeled by means of a
stereotype <<aspect>> of Class, as shown in the Figure 1.
Despite their similarities, aspects are different from classes
and in order to overcome this, additional attributes and

592Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 612 / 646

Figure 1. AspectJ profile.

593Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 613 / 646

constraints on the metaclass Aspect are used.

1) Attributes

 isPriviliged: a Boolean which indicates if the
aspect has a special privileged access specifier.
If true, the aspect may access to private
members of the classes which are crosscutting.

 aspectInstance: specifies the aspect
instantiation model. Its possible values are:
perthis, pertarget, percflow, singleton, or
percflowb. Its default value is singleton, which
means that the aspect has a unique instance.

 Precedence: it is modeled using a recursive
(reflexive) association and determines the
execution order of aspects with the same join
point.

2) Constraints
 In contrast to the class, concrete aspect could not declare

generic parameters. Further, concrete aspect is not available

for inheritance.

B. Advice

 Advice is a dynamic construct in AspectJ, whereby it
alters the behavior of the system at joinpoints selected by
pointcuts. Because both advice and method express the
behavior, have name, have arguments, could throw
exceptions and have a body, we model advices using the
metaclass Advice which extends the metaclass Operation.

1) Attributes
AdviceExecutionType: enumeration attribute that

determines the type of the advice, i.e., before, after or
around.

2) Constraints
In contrast to the method, which applies through an

explicit call, the advice applies automatically in crosscutting
manner. This is why an advice doesn’t have an access
specifier and only the “around” advice includes return type.

C. Pointcut

Pointcut selects the joinpoints with a structural
description and has no relation with the dynamic behavior.
This is why we model it using the metaclass Property and we
add the constraint that the pointcut stereotype may be only
applied to classes that are stereotyped Aspect. Furthermore,
the metaclass Pointcut has additional attributes as follows:

 pointcutType: determines if the pointcut has a
name or is anonymous.

 A pointcut may be composite, including other
pointcuts using the OperatorPointcut
enumeration. This mechanism is specified using
a recursive association.

D. Static Crosscutting

Although advice alters the behavior of the system, static
crosscutting alters its static structure in a crosscutting manner
with structural specification. It is modeled using the
metaclass feature. It may be of different types, exception
softening, weave-time and warning declaration, or member
introduction. A constraint is added to ensure that the static

crosscutting stereotype is applied only to classes that are
stereotyped Aspect.

IV. CASE STUDY

In order to validate the applicability and efficiency of the
proposed profile, we have chosen a simple application that is
used frequently in the literature as a motivation example
[17]. The Line, Point and FigureElement classes as shown in
Figure 2, include the display.update() method as a
crosscutting behavior. AspectJ proposes a solution to localize
and separate this crosscutting concern by means of an
anonymous pointcut and an “after” execution advice as
follows:

after(): call(void FigureElement+.set* (..))
|| call(void FigureElement.moveBy(int, int)) {
Display.update();

Figure 2. The AspectJ solution for the crosscutting

Display.update()method.

In order to use the aspect-oriented paradigm at the design
level, we apply our profile to the model. The profile
metaclasses became stereotypes and their attributes became
tags values with the DisplayUpdating aspect, as shown in
Figure 3.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a UML profile as an
aspect-oriented modeling contribution based on AspectJ
language. Our proposal has several strength points:

 It is a complete specification of the AspectJ
language (aspect, advice, pointcut, static
crosscutting constructs) in terms of the UML
metamodel.

 Compliant with the XMI format, which means
that it is possible to manipulate and exchange
the profile between UML case tools.

Nevertheless, it remains open to future improvements,
namely:

594Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 614 / 646

 Generating AspectJ code automatically from the
UML model, which is compliant with the XMI
standard and fully specified in terms of the
metamodel. This could be accomplished by
applying MDE/MDA tools and languages,

which are already available and mature.

 Demonstrate the applicability and benefits of
this profile in various areas. We intend to apply
it shortly in the Modeling and Simulation
domain.

Figure 3. The UML model after the application of the AspectJ profile.

REFERENCES

[1] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J.
Palm, and G. W. Griswold, “An Overview of AspectJ,”
Proc. Of ECOOP'01 the 15th European Conference on
Object-Oriented Programming, Springer-Verlag
London, UK, pp. 327-353.

[2] R. Laddad, “AspectJ in Action”, Enterprise AOP with
Spring Applications. Manning Publications, Second
Edition, 2009.

[3] M. Forgáč and J. Kollár, “Static and Dynamic
Approaches to Weaving,” Proc. Of the 5th Slovakian-
Hungarian Joint Symposium on Applied Machine
Intelligence and Informatics, Poprad, Slovakia, January
25-26, 2007, pp. 201-210.

[4] Unified Modeling Language (UML), V2.4.
http://www.omg.org/spec/UML/2.4/. [retrieved:
September, 2013].

[5] I. Groher and T. Baumgarth, “Aspect-Orientation from
Design to Code,” Proc. Of the Early Aspects: Aspect-
Oriented Requirements Engineering and Architecture
Design Workshop In conjunction with 3rd International
Conference on Aspect-Oriented Software Development,
Lancaster, UK, March 22-26, 2004, pp. 63-68.

[6] O. Aldawud, T. Elrad, and A. Bader, “A UML profile
for aspect oriented modeling,” Workshop on Advanced
Separation of Concerns in Object-Oriented Systems at
OOPSLA2001, 2001, available at
http://www.cs.ubc.ca/~kdvolder/Workshops/OOPSLA2
001/submissions/26-aldawud.pdf.

[7] O. Aldawud, T. Elrad, and A. Bader, “UML Profile for
Aspect-Oriented Software Development,” 3rd
International Workshop on Aspect Oriented Modeling
at AOSD 2003, Boston, Massachusetts, March 2003.

[8] S. Dominik, S. Hanenberg, and R. Unland, “A UML-
based aspect-oriented design notation for AspectJ,”
Proc. Of the 1st International Conference on Aspect-
Oriented Software Development, AOSD 2002,
University of Twente, Enschede, The Netherlands.
ACM, April 22-26, 2002, pp. 106-112.

[9] M. A. Basch, “Incorporating Aspects into the Software
Development Process in Context of Aspect-Oriented
Programming”. UNF Theses and Dissertations, paper
112. University of North Florida, December 2012.
Available at: http://digitalcommons.unf.edu/etd/112.
[retrieved: September, 2013].

[10] J. Evermann, “A Meta-Level Specification and Profile
for AspectJ in UML,” Journal of Object Technology,

595Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 615 / 646

Volume 6, no. 7, 2007, pp. 27-49, doi:
10.5381/jot.2007.6.7.a2.

[11] T. Gottardi, R. Aparecida, and V. V. Camargo, “A
Process for Aspect-Oriented Platform-Specific Profile
Checking,” Proc. Of the 2011 international workshop
on Early aspects (EA’11), Porto de Galinhas, Brazil,
March 21-25, 2011, pp. 1-5, doi:
10.1145/1960502.1960504.

[12] J. U. Júnior, V. V. Camargo, and C. V. Flach, “UML-
AOF, A Profile for Modeling Aspect-Oriented
Frameworks,” Proc. Of the 13th workshop on Aspect-
Oriented Modeling (AOM'09), Charlottesville, Virginia,
USA, 2009, pp. 1-6, doi: 10.1145/1509297.1509299.

[13] J. Evermann, A. Fiech, and F. E. Alam, “A Platform-
Independent UML Profile for Aspect-Oriented
Development,” Proc. Of the Fourth International
Conference on Computer Science and Software
Engineering (C3S2E’11), Montreal, Canada, May 16-
18, 2011, pp. 25-34.

[14] F. E. Alam, J. Evermann, and A. Fiech, “Modeling for
Dynamic Aspect-Oriented Development,” Proc. Of the
2nd Canadian Conference on Computer Science and
Software Engineering (C3S2E-09), Montreal, Canada,
May 19-21, 2009, pp. 109-113.

[15] V. Gowri, “Extending the UML metamodel to grant
prop up for crosscutting concerns”, International Journal
of Advanced Research in Computer Engineering &
Technology (IJARCET), Vol. 1, Issue 7, September
2012, pp. 193-198.

[16] MagicDraw Software:
http://www.nomagic.com/products/magicdraw.html.
[retrieved: September, 2013].

[17] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J.
Palm, and W. G. Griswold, “Getting started with
ASPECTJ,” Communications of the ACM 44 (10), New
York, NY, USA, 2001, pp. 59-65.

596Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 616 / 646

A Case Study of Requirements Management: Toward Transparency in
Requirements Management Tools

Markus Kelanti, Jarkko Hyysalo, Pasi Kuvaja, Markku
Oivo

Department of Information Processing Science
University of Oulu

Oulu, Finland
{markus.kelanti, jarkko.hyysalo, pasi.kuvaja,

markku.oivo}@oulu.fi

Antti Välimäki
Metso Automation Inc

Tampere, Finland
antti.valimaki@metso.com

Abstract—Requirements Management (RM) is a continuous
activity that provides an interface between the requirements of
engineering and other system development activities. Current
literature offers an extensive set of general requirements for RM
tools, and several RM tools are available that utilize these
requirements. Interviews as a part of a case study to enhance the
tool support reveal that the current RM tools do not provide
enough transparency to the development process and its
activities. The results from these interviews show problems (even
with the basic features of RM tools) in decision-making support,
reporting, and follow-up of development activities. This paper
discusses the problems revealed in the interviews, and suggests
further requirements for RM tools to address the problems with
transparency.

Keywords-requirements management; requirements
management tools; transparency

I. INTRODUCTION
Requirements Management (RM) is one of the areas

perceived as critical in collaborative product development [1],
since RM ties together Requirements Engineering (RE) and
other product development activities. Therefore, RM has an
important role, and it needs adequate tool support for managing
the requirements and sharing the information. These tools will
ensure the success of product development.

Even though the fundamental activities of RM could be
done manually with pen and paper, tools are necessary for
practical reasons [2]. The RM tools may offer many features
such as a general repository, the ability to import from other
tools, communication capabilities, traceability links, change
control mechanisms, and information sharing [3]. However,
our findings from the interviews with industrial experts show
that transparency is not fully taken into account in RM tools.
Therefore, we focus the study on identifying transparency
requirements that allow the RM tools to provide information
about the ongoing status of the development process, enable
easy access to relevant information, and make the process more
visible and transparent. Thus, our research problem is: What
transparency requirements should be set for RM tools?

We propose that transparency requirements should be
added to the list of requirements for RM tools. Transparency is
required in both RM itself and RM tools that will support the

developers, help them become aware of the status of
development activities and items, and achieve a common,
shared understanding about the development goals. All these
are necessities in decision making, and help achieve effective
and open communication, among other positive impacts, which
are all essential for successful, productive development. In
short, transparency is the awareness and visibility of what is
going on.

The importance of different aspects of transparency and
awareness enabling transparency is also recognized in literature
[4, 5, 6, 7, 8, 9]. For example, Herbsleb [4] states that if
developers have no knowledge what the others are doing, it
often leads to misunderstandings in communication content
and of motivation. This lack of awareness also makes it
difficult to track the effects of changes in distributed
collaboration spaces. Transparency in RE in distributed
development is especially critical as requirements often emerge
from different organizations that challenge the process
transparency [9].

Requirements for RM tools already exist in the literature
[10, 11, 12]; however, literature about transparency in RM and
RM tools is quite scarce. Our contribution focuses on this gap,
and we complement the existing knowledge with a new
viewpoint—transparency. An industrial case study was
conducted in a large global company that develops process
automation systems for industrial users. The case study was
executed as part of the AMALTHEA project, and it consisted
of 11 expert and manager interviews to cover the development
process and tools used. The case company uses traditional and
agile development methods simultaneously in the same product
development project. This kind of setting emphasizes the need
for transparency, as the findings of our case study show. The
results of the focused interviews with the case company’s
personnel provided several requirements for transparency-
related features and properties for RM tools.

The rest of the paper is organized as follows: Section 2
examines related work; Section 3 outlines the research process;
Section 4 presents the empirical study and discusses its results
and implications; and Section 5 concludes the study and
summarizes the key findings.

597Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 617 / 646

II. RELATED WORK

A. RM Tools
RM is a process supporting other RE processes (elicitation,

analysis, specification, and verification); it ensures that
requirements are documented and traceable, and that changes
are properly handled [11, 13, 14]. While requirements form the
basis for other development activities, RM provides an
interface between RE and the other processes, continuing
through the whole product development cycle. Literature
defines RM as “the structuring and administration of
information from elicitation, derivation, analysis, coordination,
versioning, and tracking of requirements during the complete
product lifecycle [14].” Several tools are available for
managing the RM process [15].

The RM process is generally supported by an RM tool
comprised of people assuming roles and responsibilities,
processes, and tooling. It also manages the artifacts of the
software and systems development process [2]. The tool
support should not force specific processes, but should support
the developers’ tasks and provide the functionalities needed in
their work. Current RM tools need to be configured for specific
RE and development processes [16].

Literature on the subject provides a comprehensive set of
requirements for RM tools and their features [10, 11, 12, 17,
18]. There are also efforts that summarize the available
requirements. For example, [14, 17] analyze the literature and
classify the RM tool requirements into three categories from
the viewpoints of users, project administrators, and IT system
administrators. A summary of requirement topics for each
category, according to [17], is presented next.

Requirements from the tool users' points of view cover the
core functions of an RM tool:
• Information model, views, formatting, multimedia and

external files, documentation of history, baselining,
traceability, analysis functions, tool integration, import,
change management and comments, document
generation, collaborative work, checking for offline use,
and web access.

Requirements from the project administrators’ points of
view cover the issues that are not core functionalities but are
needed for managing large-scale projects:
• Users' roles and rights, size restrictions, workflow

management, and extensibility.
The third category proposes requirements from the tool and

the IT system administrators’ points of view, which cover the
issues related to availability, reliability, and data security:
• Database and encryption.
In addition to dedicated RM tools, most RE tools also

support RM; however, their RM capabilities are often
inadequate due to a lack of open data model mechanisms,
which relate to the recording of user actions, modification of
data structures, and standard format of data [18]. Although a
wide array of dedicated RM tools is available, and the needs
and requirements for RM tools have been recognized in the
literature, problems remain with even the basic features of RM
tools. For example, requirements for traceability and change
management still seem to be difficult issues [19], and both
relate strongly to transparency. Most RM tools do not provide
adequate support for large distributed projects, nor support the
management of large numbers of requests, nor facilitate

collaborative RE [16, 20]. There are also usability issues [12,
14] and a lack of support for collaborative work [12].

B. Transparency
Besides these reported problems, we found that the aspects

of transparency in RM tools are only partly discussed in the
literature. Requirements concerning the awareness of the states
of the process and work items are only briefly mentioned under
different topics [21, 22]:
• Openness of communication and information sharing;
• Visibility of and access to data, documents, and work

items;
• Visibility of decision-making processes and decisions;
• Visibility of processes;
• Transparency of collaboration; and
• Transparency of tools.
Awareness can be defined as the understanding of others’

activities, which also provides the context for one's own
activities [23]. It is suggested that awareness is the key to
transparency [5], and awareness is particularly important in
RM [21].

Relevant literature was studied to understand transparency
and awareness in an RM context. The following synthesis is
based on the literature study and the transparency-related topics
that emerged. In the context of RM, transparency can be
regarded as the awareness of the following topics:
• Process support [11, 12, 14, 17]: It is important to be

aware of the states and the histories of software project
tasks and the characteristic work activities that describe
the environment within which they are performed [24].
Transparent RM tools enable workers to understand the
context of their work, which helps them understand
their own goals and relate them to others’ goals and
work. The main concerns are process states, progress,
histories, and context.

• Tooling and work items [14, 17, 24, 25]: Awareness
support is needed to provide information about
development artifacts involved in RM in order to have a
successful, distributed RM environment [21]. The main
concerns are work artifacts, their states and changes,
results, documents, data, and context.

• Decision making [21, 26, 27]: Awareness about the
decision-making process is needed, and forums allow
tracking the progress of the states of the requirements.
This allows workers to be aware of the person who is
working on a particular decision [21]. Forums can also
keep track of RE decisions, their rationale, and their
effects on software products [28]. The main concerns
are decision-making forums, rationale, reasoning
process, visibility, and documentation.

• Collaboration and communication [6, 22, 24, 25]: RM
is often physically distributed work among stakeholders
from various organizations [21]. It is important to know
what others’ roles and responsibilities are, and what
they are doing, as it helps to coordinate the
collaborative work and diminishes the problem of
overlapping work. It is important in RM to understand
dependencies, that is, to have the awareness of the other
entities that are connected with the one that is being
manipulated. This enables an individual to see the
impact of one's work on those of others [22]. The main

598Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 618 / 646

concerns are visibility of others' actions, skills and
competencies, and information access and exchange.

• Organization and strategy [6, 29]: Requirements to be
implemented need to be synchronized with portfolios
and roadmaps that are based on organizational strategy
and goals. The RM tools must have the transparency
towards organizations' strategies, visions, and goals. For
example, Berggren and Bernshteyn [6] suggest
“breaking down the strategy into definitive and
meaningful components upon which individual
employees can act.” The main concerns are visions,
goals, motives, portfolios, and roadmaps.

The areas of decision making, collaboration and
communication, and organization and strategy are often
omitted or not addressed extensively in RM tool literature.

III. RESEARCH PROCESS AND CASE CONTEXT
The case company uses a project-based approach to

develop automation platforms for industrial automation
purposes. Interviewees work in the development process, with
the aim to improve and implement new functions in those
platforms. The development process roughly follows this
pattern: requirements elicitation, requirements feasibility
analysis, project planning, product design, implementation and
testing, and maintenance. In this development process, the
purpose of requirements elicitation and feasibility analysis is to
gather requirements from different stakeholders, evaluate their
technical feasibility and business potential, and generate
potential features for an automation platform. One or more
features are selected in the project planning phase, where a
project is created to implement the selected features. Product
design, and implementation and testing are then done for that
project. When the feature is released to the customer, it enters
the maintenance phase.

A case study was initiated in the company to examine its
current RE and RM practices and tools in order to improve
them so they would better suit the developers' and managers'
needs. The research process used in this case study is shown in
Fig. 1.

Figure 1. Research Process

At first, relevant research topics were identified with
company representatives and researchers, and rough analyses
were done on literature, company materials, company
presentations, and other sources. Based on this information, the
interview was designed to include 12 main questions, each with
several sub-questions, to cover current development processes,
practices, tools, pros and cons, and possible improvement
proposals. A questionnaire template was created and improved
in an iterative manner between researchers and the company
representative. After a version that satisfied all parties was
created, the actual interviews were conducted. The final
questionnaire comprised 11 main questions covering the
following topics: terminology, currently used methods and
processes, tools, information needs and uses, responsibilities,
and pros and cons perceived by the interviewees.

In total, 11 interviews were planned and performed in the
case company. Seven of the interviewees were designers and
engineers working in the development process, and four were
managers from different levels in the organization.

The interviews were executed over a period of nine months.
Seven interviews were conducted during the autumn of 2012,
and four during the winter of 2012-2013. The duration of each
interview was approximately 1.5 hours. The questionnaires
were delivered to the interviewees in advance, so they could
prepare themselves for the interview. Two researchers
conducted the interviews, mostly face-to-face. All of the
interviews were recorded and transcribed, and the researchers
wrote a short summary of each transcription. The summaries
and transcriptions were sent to the respective interviewees
within two weeks, and they were given one week to validate
the information. The feedback and change requests were taken
into account during analysis, but only a few interviewees made
any (minor) corrections or added anything to the summaries.

In the next step, the validated information was analyzed to
find themes in the content. Nvivo 10 was used to store the
interview data and to help facilitate the analysis process. Nvivo
10 was selected mainly due to the researchers’ familiarity with
the tool, its support for the different coding techniques applied
for the data analysis, and theme identification. The interview
data was auto-coded first based on the questions on the
interview template. The next step was to analyze and code the
data to find major themes from the interviews. The
interviewees also reviewed these analyses individually, and a
workshop was arranged with them to discuss the results further.
Based on the interviews, analyses, reviews, and the workshop,
we identified one major theme—transparency in RM tools.
After this, the data was analyzed to find the transparency
requirements. The researchers also analyzed and coded the data
to identify other possible themes related to transparency, based
on the literature review.

IV. FINDINGS AND ANALYSIS
The case company uses three main tools to manage its

requirements: Jira, Polarion, and a proprietary application
developed in-house. The case company uses different
development methods, depending on the system under
development and the technology involved. Jira is mainly
employed to manage agile projects, while Polarion is used only
for safety-critical systems. The proprietary application is used
to store information about requirements and features, and it
supports other development methods applied in the case
company (ranging from adapted waterfall methods to agile
approaches). It offers basic information fields and the
functionality to record, link, and store the data into a database
accessible by users. The proprietary tool is currently used to
manage all requirements and features. Other tools used in the
process are mainly Microsoft Office products like Word, Excel,
Visio, and PowerPoint, as well as some tools developed in-
house for testing and demonstration purposes.

Based on the interviews, it became obvious that the current
tools used in RE are unable to provide visibility, easy access to
information, or knowledge about what is happening in the
development process at any given time. Throughout the
interviews, the respondents constantly raised the issue of their
inability to access information relevant to their work. This
problem causes unnecessary resource consumption in the

599Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 619 / 646

decision-making, reporting, and follow-up areas of the
development activities. These issues concentrate on the RM
aspect of these tools, and after comparing them with the
literature about RM tools [12, 14, 17, 21], we concluded that
there is a gap within the transparency aspect of these particular
tools used in the case company’s RE process.

The following sections present the identified transparency
requirements and the requirements that affect transparency,
with references to existing literature, if the latter backs up the
requirements. The sections are divided according to the
transparency categorization presented in the related work
section. The identified requirements are summarized in Table I.

A. Process Support
R1) RM tool shall provide information about the states of

the process and tasks
Literature suggests that an integral part of the development

process is the awareness of the states and histories of software
project tasks and work activities [24].

Understanding the current state is needed to enable the
developers to react to changes and unexpected events. It also
builds a shared understanding, which is an integral part of
cooperative development [24].

Both managers and engineers voiced the need to know the
status of a task or a process. The most commonly mentioned
situation for this is when customers request information about
the development status, especially estimations for when a
product will be ready for delivery or piloting. Currently, this
information is not easily available, and sometimes months can
pass before any information reaches the customer. On the
other hand, management may need information about the
status of a project to make estimations and check whether the
schedule and resources are up to date. This information needs
to be collected manually, since current tools are inadequate.

R2) RM tool shall only show the task-relevant information
Interviewees commented that some of the tools they use

tend to display a lot of information: status, historical data,

design documents, comments, and so on. This helps improve
transparency, but if the information is irrelevant to the current
task, it overwhelms the users. Another danger is when the
information is not updated regularly in the RM tool, but kept in
separate documents in other databases, on developers’ PCs, or
in emails. This problem was also revealed by interviewees.
Therefore, to support transparency, task-relevant information
must be available and easily accessible, without any additional
effort.

R3) RM tool shall support the actual development tasks
Related to the relevant information for tasks, the RM tool

should obviously support the actual development tasks. Some
of the interviewees are more engaged with agile development
methods, and they commented that both Jira and Polarion are
more suitable for their work. According to them, both tools are
better designed for the development tasks used in either agile
processes or safety-critical applications. Only necessary
information for a development task should be visible in the
tools used by the developers.

R4) RM tool shall provide task guidance
Heuristic knowledge and providing ways-of-working to

guide developers while performing systems development are
needed. They are useful, for example, for decision-making
purposes or activities needed to create the conceptual
specifications of the system [30]. A transparent RM tool
should not only help workers understand the work context and
its goals, and relate them to others’ goals and work, but also
provide guidance about what kinds of information workers
need to produce in the development tasks.

For example, the developers reported in the interviews that
financial estimations are especially essential in several tasks,
but it is very hard to estimate with the current tools and
available information. These estimations are used in different
parts of the process to make decisions, and it is important to
know how to do those estimations, and in what format the
information should be documented.

TABLE I. TRANSPARENCY REQUIREMENTS FOR RM TOOLS

Topic # Requirement for RM tool Related work
Process support R1 Provide information about the state of the process and tasks [14, 17, 24]
Process support R2 Show only the task-relevant information
Process support R3 Have task views that match the actual development tasks [14, 17]
Process support R4 Provide task guidance
Process support R5 Provide process guidance
Tooling and work items R6 Provide information about development artifacts [24]
Tooling and work items R7 Provide standard information templates for RE items
Tooling and work items R8 Support linking [17, 23, 24]
Tooling and work items R9 Maintain link validity
Tooling and work items R10 Enforce linking rules among items
Tooling and work items R11 Support traceability [1, 11, 12, 14]
Tooling and work items R12 Support version control [11, 12, 14, 17, 24, 25]
Decision makinga R13 Provide the rationale and reasoning process for decisions [24]
Decision makinga R14 Provide visibility of decisions and their documentation [28, 29]
Decision making R15 Be able to generate status reports from processes [12, 14, 17, 21, 24, 25]
Collaboration and communicationa R16 Provide awareness of others' actions [24, 25]
Collaboration and communication R17 Provide support for information sharing between management and developers
Collaboration and communication R18 Enforce a coherent terminology for RE items [24, 29]
Organization and strategy R19 Support breaking down the strategy, vision, goals, and motives into work

tasks
[6, 24, 25]

Organization and strategy R20 Provide information about available resources, skills, and competencies [21, 26, 27, 28]
a These requirements are suggested by the literature, but not specifically mentioned in the interviews.

600Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 620 / 646

R5) RM tool shall provide process guidance
Furthermore, when this information is produced, it is not

clear where and how it is utilized. Management needs
information about the current state, and to get it in the form
they need, it has to be inserted in a certain format and from
a certain viewpoint. If users are not presented with proper
guidance to create information, including where and how it
will be used, it will not be as reliable as it should be. This is
especially true in RM tools, where accurate information is
crucial. While these requirements do not directly support
transparency itself, without them, the information will not
serve its purpose and can even cause negative outcomes.

B. Tooling & Work Items
R6) RM tool shall provide information about

development artifacts
In software development, the artifacts are mostly

documents and code. Literature suggests that awareness
support is needed to provide information about development
artifacts involved in RM in order to have a successful,
distributed RM environment [21]. This awareness provides
up-to-date information to stakeholders for better decision
making.

Generally, the results from the interviews indicate a clear
need to access information regarding any item in the
development. These items include a single requirement,
project status, use case, original request, and so on. The main
reason is quite clear—interviewees need more information in
order to perform their tasks. They often also need old
documentation, previous work items, or other items linked to
the item they are working on. This is true for both engineers
and managers, and both commented that it is important to
access information about a single item in order to learn its
status, who is working on it, and generally understand its
status.

R7) RM tool shall provide standard information
templates for RE items

In the process, standard templates are used for
documenting needs and requirements that contain basic
information necessary for determining business potential,
technical feasibility, and other relevant information for
decision making. This is considered a good practice in
general, but interviewees pointed out that these templates
need to match the information needs of the tasks or
activities at hand.

R8) RM tool shall support linking
The literature also discusses how one's work may impact

those of others [22]. This includes artifacts and associated
tasks, collaborators, and the concurrent work context of
collaborators and resources [24]. Awareness of the context
and others’ actions makes it possible for developers to
structure their interactions and cooperative processes, and to
provide a context for one’s own activities [23, 24].

Interviewees generally agreed that one of the main
functions in the tools they use is the ability to link different
items. This functionality is considered necessary to show
dependencies and relationships among different

requirements, features, and products. The ability to link
different items is essential to the developers, particularly,
how changes they introduce will affect different parts of the
platform they develop. Since many developers work on a
single platform or product, it is important to know the
relevant items others are working on.

R9) RM tool shall maintain link validity
Another challenge related to linking different items in a

tool is that the links sometimes connect to the wrong
versions of the development artifacts. This can cause wrong
versions to be implemented and tested. It also becomes
increasingly difficult to search for information. This is
especially true when data are searched after some time, and
the item is not in the fresh memory. Developers clearly need
to access valid information that points to the correct, updated
version. If the validity is ignored, the link itself becomes
useless. If this functionality is ignored, it can lead to
situations where wrong versions are used in the work, and
conflicts will arise.

R10) RM tool shall enforce linking rules among items
However, just enabling functionality to link and keep the

links up to date is not enough. Interviewees also commented
that linking practices should be enforced to keep the links
coherent and understandable. Current tools in the case
company allow anything to be linked in several different
ways, with no generally accepted conventions for their use.
This has led to unnecessary complexity with the database
and tool, as individuals follow their own preferences. It was
suggested that there should be rules and restrictions on the
kinds of links to be used and the ways they should be
described. The RM tool should enforce these rules to
maintain cohesion, which will enable better transparency.

R11) RM tool shall support traceability
Traceability is one of the basic functions and

requirements for RM tools. Traceability is needed to
maintain and follow the relationships among requirements
and design, implementation, and test artifacts [10]. With
good tool support, traceability could enable analysis that
would otherwise require more effort [17].

This is also one of the key functionalities, according to
interviewees. On several occasions, interviewees mentioned
that lack of traceability is troublesome because it hides what
has already been done for a requirement. When this happens,
they have to investigate what has been done in order to
understand how the item has been developed in the past and
where it originated. Testing would benefit if they could trace
the requirements back to their original sources to see how
things should work in the system.

R12) RM tool shall support version control
Enabling traceability has also led to a demand for proper

version control, since this is lacking in most of the current
tools. Without version control, it would be hard to know
what has been done for any given item in the process.

C. Decision-making
R13) RM tool shall provide the rationale and reasoning

process for decisions

601Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 621 / 646

To support decision making, the RM tool should provide
identified criteria for evaluating the achievements.
Moreover, decisions need to be explained and transparent
for all relevant stakeholders. This improves the overall
effectiveness of the RE process and provides understanding
about the nature of the decisions made. It is necessary to
keep track of RE decisions, including their rationale and
effects on the product [28].

For managers and developers, the decisions are made
mostly among the relevant parties, and the rationale is
generally available for the interested stakeholders. Even in
this case, knowing the rationale for a decision is still
important, and the interviewees mentioned the times when
they might need to communicate results to a customer.

R14) RM tool shall provide visibility of decisions and
their documentation

The literature suggests ways to provide visibility of
decisions. Decisions need to be documented and fed back
into the system, so the workers can benefit from the
experience [21]. Decisions also need to be integrated into
organizational information systems; this allows them to be
better understood by relevant stakeholders [26].

Customers often present their needs and wait for the
company to react to them; all of the interviewees pointed
out that customers should be told the reasoning for the
decision when it finally comes. Interviewees expressed that
this information should be available in the RM tool, either
directly visible for the customer or for the developers to
inform the customer.

R15) RM tool shall be able to generate status reports
from process

One of the main concerns for managers is that the current
company tools do not allow them to generate status reports
such as project status, feature status, portfolio, and overall
status reports from several projects. They commented that
they can access some of the necessary information in the
existing tools, but the tools should only provide the
information they need and not just everything that is
available. Due to the lack of this kind of functionality, the
management has to collect the information by asking each
project manager individually in order to generate the reports
themselves.

Managers also expressed a clear need for constant
reporting support from the tool. They especially need up-to-
date reports on the various projects they are managing in
order to track problems, delays, and progress in general.
Project managers need to communicate information to upper
management and customers about the schedule and
progress. Portfolio reports, project reports, or feature status
reports were all mentioned as important. The RM tool
would therefore need to synthesize reports on the basis of
need.

”I think that this kind of upper-level project management
is not possible with the current tool. And this kind of
overview to all projects is missing. One has to pick up the
pieces of information to create the overview. That is the

biggest shortcoming in the tool, in my opinion.”
(Interviewee)

D. Collaboration & Communication
R16) RM tool shall provide awareness of others’ actions
The RE is inherently distributed [21]; thus, there are

awareness needs in RE and RM. In collaborative work, it is
important to know what others’ roles and responsibilities are,
and what they are doing, because it helps diminish the
problem of overlapping work. It is also highly relevant to
have knowledge of others' interactions with the space and its
artifacts. This helps with understanding who is working with
what artifact and the artifacts of interest [7, 24].

While it is not necessary to know what a single developer
or manager is doing at a certain moment, interviewees
mentioned the need to generally know what is happening.
This information is considered useful for making plans for
future projects and for usage of resources, from
management’s perspective.

R17) RM tool shall provide support for information
sharing between management and developers

Interviewees also said that transparency among different
units, developers, and management would result in better
understanding about the business and the real-world use
potential of the products. This is not only tied to RM tools;
often they are the tools used by management, while
developers are the most important source of information in
this area. Therefore, to establish proper transparency through
information sharing, the RM tool needs to enable
information flow from developers to management.

R18) RM tool shall enforce a coherent terminology for
RE items

The relevance of information changes across different
contexts; thus, the context should always be understood. As
previously mentioned, understanding their work context
enables workers to understand their own goals and relate
them to others’ goals as well. For example, Basili et al.
(2007) suggest that “context specification is an important
part of defining goals and deriving measures, since it
prevents drawing wrong conclusions from the analysis” [29].
The evolving internal and external state of information
characterizes the situation of entities in a shared environment
[24].

During the interviews, the understanding of RE concepts
(such as requirements, features, RE, and RM) varied from
one interviewee to another; they often had different terms for
similar concepts. Between the engineers and managers, this
does not cause too much trouble because they are able to
communicate face-to-face, but when they communicate with
someone in another location, these differences are a potential
source of misunderstanding.

E. Organization & Strategy
R19) RM tool shall support breaking down the strategy,

vision, goals, and motives into work tasks
Transparent goals help the collaborative work and

improve efficiency by reducing redundant work. Strategy
transparency can be stated as “breaking down the strategy

602Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 622 / 646

into definitive and meaningful components upon which
individual employees can act” [6]. Strategies, visions, goals,
and motives should be transparent and understood at all
levels of work, and defining the portfolios and roadmaps
based on organizational strategy and goals is suggested.

Interviewees expressed a need to see the plans and short-
term roadmap for any automation platform they develop.
They commented that it helps them decide what is needed
and what areas they should prioritize. If this functionality
would be available in the RM tool itself, it would remove
the need to use time and other tools to find the information
they need in their work.

R20) RM tool shall provide information about available
resources, skills, and competencies

An integral part of the process is the awareness of the
expertise of the developers working on the project [24]. A
clear understanding about the availability of the talent pool
in the organization enables the alignment of talents with the
organizational strategy and development tasks.

During the interviews, both managers and developers
expressed the need to access information regarding the
available resources and competencies within the company.
Managers need better information about the resources
available for project planning, so they can satisfy the
customers' needs and schedule the releases. Developers need
to know about persons who can provide further information
or clarification for requirements, in case the existing
information is not sufficient.

V. CONCLUSION AND FUTURE WORK
In this paper, we studied RM and RM tools in a large

global organization that develops process automation
systems. In a collaborative setting, different organizations, or
even teams within an organization, may use various
development methodologies and tools, causing challenges
for RM; thus, support for transparency is required.

Based on our findings from the interviews and literature,
RM tools should support transparency and provide the
features needed for awareness creation. This paper has
presented a set of necessary requirements for RM tools to
support transparency. We have categorized these
requirements under the following topics: process support,
tooling and work items, decision making, collaboration and
communication, and organization and strategy. We have also
emphasized those transparency requirements that are already
included in the requirements list for RM tools, but are still
regarded as inadequately addressed.

A. Case Validity and Limitations
Study validity was addressed in several ways. Construct

validity was dealt with through an extensive literature
review, comparison of previous findings with current
research using multiple sources of evidence, and utilization
of key sources as reviewers. Internal validity regarding
cause-effect relations was handled via multiple sources of
evidence and iterative research, which gradually built the

outcome. External validity involving the generalization of
the results was tackled by having different organizational
units as evaluation platforms. While the interviews were
conducted only in one company in the automation domain,
the literature supports the findings in different domains.
However, a study in other organizations may introduce new
requirements for transparency. The purpose of this study is
not to suggest statistical generalizations but to enable
generalization of the results to cases that have common
characteristics. For further generalization, more studies are
required. Finally, reliability was managed with rigorous
research protocol, documentation, data collection procedures,
and peer reviews.

B. Implications for Research and Practice
These results should interest both researchers and

practitioners, since transparency requirements for RM tools
are not extensively discussed in the literature. This study
provides insights for academic research and lays the
groundwork for further scholarly inquiry, for example, in
validating the results in other domains and development
phases.

Practitioners could learn to understand the importance of
transparency in RM and RM tools, and thus have those
requirements implemented in the tools. If transparency is
addressed adequately, it can also benefit the practitioners by
enabling better decision making and information flow in the
development processes. Transparency will also help the
development process and improve product quality, as well as
the efficiency of the development.

C. Areas for Future Work
There is still a place for further work, and our intention is

to validate the findings in the telecommunication and
automotive industries. We also aim to have transparency
requirements taken into account in applications other than
RM tools. Additionally, RM tools should still be able to
monitor and provide support for users, even if different
development methods are used to build the systems. The
needs of different development methods are another area for
future work. Finally, we intend to implement the
requirements in a prototype tool for practical validation and
evaluation purposes in a follow-up study, where we will also
examine how currently available RM tools conform to the
transparency requirements presented in this paper.

ACKNOWLEDGMENT
This research is supported by the European ITEA2

program with national funding from Tekes (the Finnish
Funding Agency for Technology and Innovation). The
authors would like to thank AMALTHEA project partners
for their assistance and cooperation.

REFERENCES
[1] J. Hyysalo, P. Parviainen, and M. Tihinen, “Collaborative

Embedded Systems Development: Survey of State of the
Practice,” Proc. IEEE Symp. Engineering of Computer-Based
Systems, (IEEE 13), 2006, pp. 130–138.

603Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 623 / 646

[2] O. Gotel and P. Mäder, “Acquiring tool support for
traceability,” in Software and Systems Traceability. Springer
London, 2012, pp. 43–68.

[3] K. E. Wiegers, “Automating requirements management,” in
Software Development, 7.7, 1999, pp. 1–5.

[4] J. D. Herbsleb, “Global software engineering: The future of
socio-technical coordination,” in Future of Software
Engineering, IEEE Computer Society, 2007, pp. 188–198.

[5] M. Beaudouin-Lafon and A. Karsenty, “Transparency and
Awareness in a Real-time Groupware System,” Proc. ACM
Symposium on User Interface Software and Technology,
(ACM 05), 1992, pp. 171–181.

[6] E. Berggren and R. Bernshteyn, “Organizational
Transparency Drives Company Performance,” Journal of
Management Development, 26.5, 2007, pp. 411–417.

[7] C. Gutwin, S. Greenberg, and M. Roseman, “Workspace
Awareness in Real-time Distributed Groupware: Framework,
Widgets, and Evaluation,” Proc. International Conference on
Human–Computer Interaction: People and Computers (11),
Springer London, 1996, pp. 281–298.

[8] R. E. Grinter, “Using a Configuration Management Tool to
Coordinate Software Development,” Proc. Conference on
Organizational Computing Systems, (ACM), 1995, pp. 168–
177.

[9] D. C. Gumm, “Distribution dimensions in software
development projects: a taxonomy,” in Software, 23.5, IEEE,
2006, pp. 45–51.

[10] I. Sommerville and P. Sawyer, Requirements Engineering: A
Good Practice Guide. John Wiley & Sons, 1997

[11] G. Kotonya and I. Sommerville, Requirements Engineering:
Process and Techniques. John Wiley & Sons, 1998

[12] M. Lang and J. Duggan, “A tool to support collaborative
software requirements management,” in Requirements
Engineering, vol. 6, no. 3, 2001, pp. 161–172.

[13] K. E. Wiegers, Software Requirements. Microsoft Press,
2000.

[14] M. Hoffmann, N. Kuhn, M. Weber, and M. Bittner,
“Requirements for Requirements Management Tools,” Proc.
IEEE International Requirements Engineering Conference,
(IEEE 12), 2004, pp. 301–308.

[15] INCOSE The International Council on Systems Engineering,
“Tools survey: RM tools,”
http://www.incose.org/ProductsPubs/products/rmsurvey.aspx
(referenced February 8, 2013.)

[16] A. Finkelstein and W. Emmerich, “The Future of
Requirements Management Tools,” Information Systems in
Public Administration and Law. Austrian Computer Society,
2000.

[17] D. Beuche, A. Birk, H. Dreier, A. Fleischmann, H. Galle, G.
Heller, D. Janzen, I. John, R.T. Kolagari, T. von der Maßen,
and A. Wolfram, “Using Requirements Management Tools in
Software Product Line Engineering: The State of the
Practice,” Proc. Conference on Software Product Line
Engineering, (IEEE 11), 2007, pp. 84–96.

[18] J. M. Carrillo de Gea, J. Nicolás, J. L. Fernández Alemán, A.
Toval, C. Ebert, and A. Vizcaíno, “Requirements Engineering

Tools: Capabilities, Survey and Assessment,” Information and
Software Technology, vol. 54, no. 10, 2012, pp. 1142–1157.

[19] G. Sabaliauskaite, A. Loconsole, E. Engström, M.
Unterkalmsteiner, B. Regnell, P. Runeson, T. Gorschek, and
R. Feldt, “Challenges in aligning requirements engineering
and verification in a large-scale industrial context,” in
Requirements Engineering: Foundation for Software Quality,
Springer Berlin Heidelberg, 2010, pp. 128–142.

[20] P. Laurent and J. Cleland-Huang, “Lessons learned from open
source projects for facilitating online requirements
processes,” in Requirements Engineering: Foundations for
Software Quality, Springer Berlin Heidelberg, 2009, pp. 240–
255.

[21] D. Damian, J. Chisan, P. Allen, and B. Corrie, “Awareness
Meets Requirements Management: Awareness Needs in
Global Software Development,” Proc. International
Workshop on Global Software Development, International
Conference on Software Engineering, 2003, pp. 7–11.

[22] M. A-D. Storey, D. Cubranic, and D.M. German, “On the Use
of Visualization to Support Awareness of Human Activities in
Software Development: A Survey and a Framework,” Proc.
ACM Symposium on Software Visualization, (ACM), 2005,
pp. 193–202.

[23] P. Dourish and V. Bellotti, “Awareness and Coordination in
Shared Workspaces,” Proc. ACM Conference on Computer
Supported Cooperative Work, (ACM), 1992, pp. 107–114.

[24] I. Omoronyia, J. Ferguson, M. Roper, and M. Wood, “A
review of awareness in distributed collaborative software
engineering,” Software: Practice and Experience 40.12, 2010,
pp. 1107–1133.

[25] W. Prinz, H. Löh, M. Pallot, H. Schaffers, A. Skarmeta, and
S. Decker, “ECOSPACE – Towards an Integrated
Collaboration Space for eProfessionals,” Collaborative
Computing: Networking, Applications and Worksharing,
IEEE, 2006, pp. 1–7.

[26] G. Ruhe, “Software engineering decision support–a new
paradigm for learning software organizations,” Advances in
Learning Software Organizations, vol. 2640, Springer Berlin
Heidelberg, 2003, pp. 104–113.

[27] C. Jensen and W. Scacchi, “Collaboration, Leadership,
Control, and Conflict Negotiation and the netbeans.org Open
Source Software Development Community,” Proc. Hawaii
International Conference on Systems Sciences, (IEEE 38),
2005, p. 196b.

[28] A. Aurum and C. Wohlin, “The fundamental nature of
requirements engineering activities as a decision-making
process,” Information and Software Technology 45.14, 2003,
pp. 945–954.

[29] V. Basili, M. Lindvall, M. Regardie, C. Seaman, J. Heidrich,
J. Münch, D. Rombach, and A. Trendowicz, “Bridging the
gap between business strategy and software development,”
Proc. International Conference on Information Systems, (ICIS
28), 2007, pp. 1–16.

[30] C. Rolland, C. Souveyet, and M. Moreno, “An approach for
defining ways-of-working,” Information Systems 20.4, 1995,
pp. 337–359.

604Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 624 / 646

Two-Hemisphere Model Based Approach to Modelling of Object Interaction

Oksana Nikiforova, Ludmila Kozacenko, and Dace Ahilcenoka

Faculty of Computer Science and Information Technology

Riga Technical University

Riga, Latvia

oksana.nikiforova@rtu.lv,ludmila.kozacenko @rtu.lv, dace.ahilcenoka@rtu.lv

Abstract — It is a modern trend to use automatic

transformations of different type of models to develop a

software system. Software engineers have quite enough

notations to present models at different levels of abstraction

and at different stages of software development project. UML

is an industrial standard for system modeling and specification

and offers notational conventions for presentation of both

aspects of the system – dynamic as well as static one.

Currently, the research focuses in the area of software system

modeling and model transformation is turned exactly to the

dynamic aspect of the system. We propose to use the so called

two-hemisphere model for receiving a set of elements, which

are used for modeling an object interaction as a central part of

the system dynamic presentation. The paper describes the

main principles of the two-hemisphere model transformation

into the UML sequence diagrams, as well as compares it to

other transformation approaches.

Keywords - UML sequence diagram; two-hemisphere model;

layouting algorithm; model transformation; BrainTool.

I. INTRODUCTION

As we had stated in a previous paper devoted to the two-
hemisphere model-driven approach [1], tools to support
models and modeling at the initial stage of software
development is the modern trend in business process
modeling and analysis. Therefore, the focus of the
automation of software development is shifted from
automatic code generation from the system model to the
automatic modeling of the problem domain and further code
generation from them. Here, the valuable notation became
the Unified Modeling Language (UML) [2] and its class
diagram, which specifies the structure of the developed
system and static information about system behavior. An
ability to generate elements of the UML class diagram from
the two-hemisphere model by BrainTool is demonstrated in
[1]. Currently, we consider the dynamic aspect of the system
and are investigating an ability to generate elements to
present an object interaction according to the UML notation
[2].

In general, there are two ways of looking at any software
system. One way is to consider just data, including variables,
arguments, data structures and files where the operations are
examined only within the framework of the data. And the
other way of viewing the software system is to consider just
the operations performed on the data where data are of the
secondary importance. According to the object-oriented
software development, data and operations are viewed at

equal importance, in spite of the fact that sometimes data
have to be stressed and other times operations are more
critical.

The main attention during object-oriented software
development is devoted to the definition of system objects
which are the primary artifacts of the developed system and
include the information about data and operations together.
Therefore, one of the fundamental tasks during object-
oriented software development is to define an object
structure and to share the responsibilities of an object, i.e., to
determine the operations for objects to perform.

The paper presents the way to solve the problem of
sharing responsibilities between objects by using the two-
hemisphere model supported by BrainTool. We illustrate the
process creating a two-hemisphere model [4] for a business
domain and then investigate construction of the UML
sequence and communication diagrams. In order to solve this
task we defined a set of transformation rules and also
focused on the problem of automatic layout of the UML
diagrams after their derivation from the two-hemisphere
model. Since it is very important to ensure that the diagrams
are well built not only in terms of their content, but also how
they visually represent the information.

The paper is structured as follows. Section 2 explains the
essence of the object-oriented software development and
discusses the importance of the object definition and
responsibilities shared between them during the object
oriented system analysis and modeling. Section 3 defines the
essence of the two-hemisphere model transformation to share
responsibilities to perform operations by system objects.
Section 4 demonstrates BrainTool supporting the proposed
approach and discusses the problem of the UML sequence
diagram layout and its solution. Section 5 compares
BrainTool with other tools giving an ability to create the
UML diagrams. In conclusion, we stress the main
contribution of the paper and state the directions for the
further research.

II. THE ROLE OF THE OBJECT INTERACTION MODELING

IN THE SOFTWARE DEVELOPMENT

The object-oriented software development assumes that
the main attention is to be devoted to identification of objects
from the problem domain and to sharing responsibilities of
operation execution between these objects. Therefore, the
role of the system modeling becomes very important. In the
object-oriented software development, the standard notation
for the system modeling is the Unified Modeling Language

605Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 625 / 646

(UML) [2]. The UML diagrams give a possibility to present
different aspects of software system, but UML is just a
notation and does not contain methodological instructions on
how to model the system. The developer needs the
information about the system to be developed in the form,
which gives an ability to transform this information into
UML diagrams.

Basically, the software system development starts with
the business information gathering and presenting it in the
form suitable for further software system modeling. In
classical approach, this information is presented as the
processes to be performed and the information flows
required for the process execution. Then, this presentation of
business information has to be transformed into the model,
which in object-oriented manner for software development
requires to present objects to interact in the form of UML
sequence diagram [2]. It shows the objects, their lifelines and
messages to be sent by objects-senders and performed by
object-receivers and is used to present dynamic aspect of the
system, which in object-oriented approach is expressed in
terms of message sending among objects. The dynamic of
interactions is defined by an ordering of the messages. It
serves as a basis for definition of operations performed by
objects to be grouped into classes, as well as to present and
to verify a dynamic aspect of class state transition. The
problem, which is recently widely researched in the area of
the object interaction analysis, is formal transitions among
the models presented at the level of problem domain and
system presentation expressed in terms of the object
interaction, if we are dealing with the object-oriented
software development and using a set of model
transformation rules. For now, this transition is defined and
is partly supported by UML modeling tools and some
guidelines exist on how these transformations should be
performed.

Loniewski et al. [3] show the result of analysis of
different approaches to transformation of the problem
domain description into the UML class diagram during the
last 10 years, published in four digital libraries (IEEEXplore,
ACM, Science Direct, Springerlink). The survey states that
there exist enough approaches with different types of
solutions for the generation of a UML class diagram and half
of them are automated and supported by tools. However, the
authors of [3] stress that these tools are not widely used
practically and are created to approve the automation level of
the approach offered by their vendors. Other researchers
who are investigating the functionality of the UML
modelling tools and model transformation tools raise the
question about the ability to define the tool chain to cover all
the necessary activities for software system development.
For example, the lack of a conceptual view on the integration
problem and appropriate reuse mechanisms for already
existing integration knowledge, which forces the developer
to define model transformation code again and again for
certain recurring integration problems in an implementation-
oriented manner, resulting in low productivity and
maintainability of integration solutions. We consider that the
maturity level of advanced modelling and model
transformation tools is not enough to support the full chain of

software system development. Thereby, despite the number
of approaches to automatic creation of the system model and
further code generation from it, the variety of tools
supporting the system modelling at the initial stage of
software development are reduced to UML editors and
“tight” code generators.

The core of this paper is a hypothesis that our proposed
notation of the two-hemisphere model supported by
BrainTool contains enough information for sharing
responsibilities among objects and can serve for automatic
generation of the elements to present the UML sequence
diagram. Whereas UML sequence is stated as an one of
ambiguous UML diagrams [5], with the implicit and
informal semantic that designers can give to basic sequence
diagram as a result of this conflict [6], [7], [8]. The two-
hemisphere model [4] contains information about business
processes and concepts and has already been used for
representation of object interaction with UML
communication diagram [9], where only static view of the
system is investigated and an ordering of message sending
and receiving is missed. Currently, we define the mapping
between elements of two-hemisphere model and elements of
UML sequence diagram, especially in its timing aspect,
solve the problem of sequence diagram layout and offer to
use BrainTool for receiving of the UML sequence diagram.

III. DEFINITION OF TRANSFORMATION FROM THE TWO-

HEMISPHERE MODEL INTO THE UML SEQUENCE DIAGRAM

A nature of transition from business information into the
object interaction is found in the definition of which
processes have to be performed in the system and which
performer will execute exact process at the software level of
system modeling. In order to identify a performer of the
process at the software level of system presentation the
process has to be analyzed with the aim to define a software
operation to execute the process and to notice the object to
perform this operation. So far two general steps can be
defined for the object-oriented system analysis. The first one
is to identify objects themselves. This task is solved by [10],
[11]. In general, the analysis of entity relationship [12] can
serve as a base for the object identification of the software
system. Further, the second activity of object-oriented
system analysis is so called “sharing of responsibilities”
among the objects, which is not so trivial and is stated for
solving by the author of the paper. The main task to be
defined is which operation will be executed by which object
and in which time sequence.

In UML models, objects interact to implement behavior.
UML has two kinds of diagrams to reflect object interaction
– communication and sequence diagrams. Communication
diagram allows observing the common interaction of objects
in the system mainly focused on associations between
objects and time aspect is not stressed in the communication
diagram. The UML sequence diagram shows interaction of
objects for execution of concrete use case or business
function expressing time aspect as a main focus of the
modeling. We analyze the possibility to generate all the
necessary information for object interaction (especially time
component of that) in terms of the UML sequence diagram.

606Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 626 / 646

Figure 1. Elements of the two-hemisphere model used in transformation rules to generate elements of the UML sequence diagram.

The definition of elements of the sequence diagram needs
an examination of elements of two-hemisphere model, which
is presented as a business process model related with concept
model. The sequence diagram consists of objects, their
lifelines and messages which they have to send to other
objects.

A simplified sequence diagram metamodel [13]
presented at the right side of Fig. 1 shows only those
elements of the diagram and their dependences, which are
being used in the transformation process, in other words,
only those sequence diagram elements, which can be
acquired from a two-hemisphere model. The left side of Fig.
1 shows the metamodel of the two-hemisphere model [13].

Object identification is based on the analysis of noun
phrases in the problem domain description [10], where it is
presented in the form of two-hemisphere model and contains
the information about the problem domain, where the noun
phrases are defined for the events (arcs) of business process
model and concepts of the concept model (see Fig. 2).

Therefore, it is possible to suggest that description of an
event in business process with its defined data structure in
concept model can serve as a basis for identification of an
object in the sequence diagram.

The transformation of the two-hemisphere model into the
UML communication diagram is performed in a direct way
of graph transformation, where arcs (i.e., information flows
in Fig. 2) of graph of business processes are transformed into
the nodes of graph of object communication. E.g.,
“Applicant data” as an information flow in process model
becomes a class “Applicant data” in communication and
sequence diagrams. Process “add applicant to group” in
process model becomes a method “add_applicant_to_grop()”
sent by object “Applicant data” to object “Group blank”
presented on the interaction diagrams. As for UML sequence
diagram, the description of an event in business process with
its defined data structure in concept model can serve as basis
for definition of the object, which is a node of its lifeline.

Process

Model Concept Model

: Applicant_data : Group_blank

add_applicant_to_group ()

Communication

Diagram

: Applicant_data : Group_blank

add_applicant_to_group ()

Sequence Diagram

verb

phrase

noun

phrase

add applicant to group

applicant data

group blank

with applicant data

Applicant data Group blank

name

ID

address

time

address

process

information flow
concept or type of information flow

Concept in concept model

defines a data structure for

information flow in process

model. Here concept „Applicant

data” is a type of information flow

„applicant data” in process model

and concept „Group blank” is a

type of information flow „group

blank with applicant data” in

process model.

Figure 2. Analysis of verb and noun phrases in two-hemisphere model and related object interaction.

607Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 627 / 646

The analysis of a verb phrase (see Fig. 2 [14]) makes it
possible to suggest that the name of a business process has to
be the base for the definition of a message of a sequence
diagram to be performed by the object-receiver of this
message. And if the name of the business process is defined
in the form, where the first word is a verb, we can assume
that the name of the exact message will be the same as the
name of business process. According to the notation of the
sequence diagram in [2], a message has the object-sender
and the object-receiver of the message, which has to perform
the action defined in the message. Direct transformation of
graph of business processes into the graph of object
communication defined in [9] solves the problem of
identification of the object-sender and the object-receiver of
the exact message by the application of several outlines of
graph theory [15], where nodes of the graph of business
processes have to be transformed into the arcs of the object
communication and the arcs of the graph of the business
processes have to be transformed into the nodes of object
communication. The same assumption can be applied for the
definition of objects in the sequence diagram – the object
sender will be defined by an incoming arc of exact process in
the model of business processes and the object-receiver will
be defined by an outgoing arc of exact process in the model
of business processes (see an example in Fig. 2 [14]).
Therefore, the message defined to execute an exact process
in the business process diagram will be sent by the object
defined in the incoming arc of exact business process and
received by the object in the outgoing arc of exact business
process.

IV. THE TWO-HEMISPHERE MODEL DRIVEN APPROACH

SUPPORT BY BRAINTOOL

BrainTool [16], developed by the researchers of the Riga
Technical University, is a step forward in the area of
automation of the modeling process. There exist a number of
tools, which generate different UML diagrams. Some of
them enable to define several elements of class structure
based on a data presentation of the problem domain, e.g.
Sparx Enterprise Architect or Rational Software Architect.
Others generate the system model from the existing source
code, to display the structure or the dynamic of the
developed system, e.g. MS Visual Studio 2010. However,
the problem of automatic generation of the UML diagrams
from the formal and still customer-friendly presentation of
the problem domain is not solved yet. Nikiforova et al.
proposed to use BrainTool to generate UML class diagram
from the two-hemisphere model [1]. Currently, the research
group is working on a set of transformation rules for the
generation of the UML interaction diagrams to built-in them
into BrainTool and to expand a spectrum of the diagram
supported by the tool. The essence of the transformations is
described in the previous section. But the transformation
provides only mapping of elements from a source to a target
model. Layout of the model elements is another potential
research problem to be solved to complete the task of
supporting the automatic generation of the diagrams by
BrainTool.

Diagram is a convenient way to represent information
and is much more comprehensible than textual information.
Although diagrams can be used to present complex and
difficult problems, they must be semantically and
syntactically correct and well layouted to give a desirable
result. A good diagram needs to satisfy different criteria,
among them aesthetic and layout criteria. General diagram
criteria and specific UML diagram layout criteria have been
studied by [17], [18], [19], [20] and others. All diagrams
should comply with general graph layout criteria as a result
from the theory of perception [17].

The UML communication diagram in the task of its
layout can be accessed as usual graph, containing nodes
connected by edges. Therefore, it is possible to use layout
principles for usual graph layout. The UML sequence
diagram, otherwise, is very specific in its visual presentation.
All the objects are allocated horizontally at the top of the
diagram and the lifelines are drawn vertically top-down.
Therefore, the criteria for the UML sequence diagram should
be carefully selected or even modified, so that they could be
applied. E.g., one specific criterion for sequence diagram is
correct sequence of messages, which is the meaning of this
diagram. Poranen et al. [20] and Wong et al. [17] have
identified the criteria specific for sequence diagrams, which
are taking into consideration implementing the layout
algorithm for the UML sequence diagram in BrainTool.

The layout algorithm tries to satisfy as many criteria as
possible. It calculates the distance between the elements
considering lengths of messages and class object names.
Algorithm places elements as close as possible by taking into
account the diagram flow (e.g., interacting objects are being
placed beside if possible). The pseudo code of the layout
algorithm implemented is presented in Fig. 3. The possible
result of the transformation of the two-hemisphere model
into the elements of the UML sequence diagram is shown in
Fig. 4.

Figure 3. Pseudo code of the layout algorithm.

608Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 628 / 646

Figure 4. General view of BrainTool.

V. COMPARISON OF THE BRAINTOOL WITH OTHER UML

COMPATIBLE TOOLS

We have listed several tools offering creation of the
UML interaction diagrams in Table 1, but they are mainly
UML editors, where a developer creates all the diagrams
manually with limited ability to generate new elements.
Tools, like Sparx Enterprise Architect [21], Visual Paradigm
[22] or Rational Software Architect [23] gives the ability to
reflect to the existing UML diagram elements, if they are
already created in other UML diagrams, but still, initially,
these elements are identified manually.

Attempts to receive UML interaction diagrams from the
requirements in natural language are one of the popular lines
of research. For example, ReDSeeDS [24] supporting tool
proposes linguistic analysis of system requirements and
generates several elements of the UML sequence diagram,
based on predefined format of requirements specification.
But the tool has no graphical presentation of the resulting
diagram and exports the result to Sparx Enterprise Architect.

On the other hand, Visual Studio supports the ability to
generate the UML sequence diagram from the source
program code. This is different direction from the approach
offered in this paper and the tool can be interesting for
comparison only in diagram presentation aspect, like as the
diagram layout implementation, or export to other UML
compatible tools.

There are several tools that provide automatic diagram
layout, e.g., Borland Together [25] (not listed in Table 1)
supports automatic UML sequence diagram layout, but uses
lawless set of layout criteria). Sparx Enterprise Architect
[21] is the tool that also provides automatic UML sequence
diagram layout, however, it does not satisfy all the
mentioned criteria of layout.

Thereby, we appreciate that currently abilities for the
generation of the UML interaction diagram offered by the
two-hemisphere model driven approach and supported by
BrainTool are the most expansive, but we still have to refine
the tool with additional functionality expected by users in
popular UML editors.

609Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 629 / 646

TABLE I. COMPARISON OF BRAINTOOL TO OTHER TOOLS PROVIDING THE POSSIBILITY TO GENERATE THE UML INTERACTION DIAGRAM

Tool

Criteria

Visual

Paradigm

Sparx EA IBM RSA Visual Studio ReDSeeDS BrainTool

Initial information for
generation of the

UML interaction

diagrams

System req-ts &
use-case

diagram

System req-ts &
use-case diagram

System req-ts
& use-case

diagram

Program code System req-ts Two-hemisphere
model

Actors Borrowed from

use-cases

Borrowed from

use-cases

Borrowed

from use-

cases

No Automatically Automatically

Objects Manually Manually Manually Automatically Automatically Automatically
Lifelines Manually Manually Manually Automatically Automatically Automatically
Operations Manually Manually Manually Automatically Automatically Automatically
Operation ordering Manually Manually Manually Automatically Automatically Automatically
Interaction frames Manually Manually Manually Automatically Automatically Automatically
Operation parameters Manually Manually Manually Automatically Automatically No

Links between objects
(in communication

diagram)

Manually Manually Manually No Automatically Automatically

Transformation base Linguistic
analysis

Linguistic
analysis

Linguistic
analysis

Formal transformation
text-to-model

Linguistic
analysis

Formal transformation
model-to-model

Model editor for

initial information

Text editor Text editor Text editor Text editor Text editor Graphical editor

Graphical
representation of the

UML sequence

diagram

Yes Yes Yes Yes No Yes

Graphical

representation of the

UML communication
diagram

Yes Yes Yes No No Not yet

Automatic layout Not for UML

sequence

diagram

Lawless ordering

of objects in the

top of diagram

Not for UML

sequence

diagram

Yes No Yes

Export abilities to

UML compatible

tools

Has special

export format

Has special export

format

Has special

export format

No Yes (at least to

Sparx EA

Defined by XMI and

importable in the tools

supporting the
standard specification

VI. CONCLUSION

In comparison with the traditional software engineering
development methods the model-driven approaches provide
software development based on models. Models are system
abstraction; they are the main artifacts, which are used on
each development step. Automatic model transformations are
used to design and develop software systems in a more
comfortable and faster way. A transformation takes the model
created on one level of abstraction and converts it to the
model on another level of abstraction. Numerous languages
and tools exist, which support this kind of development
process. However, it is still not possible to automate software
implementation, because there are several problems, which do
not allow completing the model transformation.

The research object of this paper was the generation of the
UML interaction diagrams, based on the two-hemisphere
model. Both activities for that are being investigated: they are
element identification from the problem domain and the
visual representation (i.e., layout).

Thus, the contribution of the paper can be summarized as
follows:

• A set of transformation rules for derivation of elements to
present object interaction in terms of the UML diagrams are
defined and implemented in BrainTool;
• A set of elements, which still are not transformable from
the two-hemisphere model, is defined and allows the author
to state the directions for the future research;
• An algorithm for the layout of the UML sequence diagram
is developed and implemented, which pass the core
requirements put forward to the object lifelines, messages and
interaction frames.
• The tool supporting the transformations presented in this
paper is compared to other tools giving an ability to create
UML diagrams.

The main conclusions of the research are the following:
• The two-hemisphere model contains sufficient amount of
information about the problem domain to identify a variety of
the elements for object interaction presentation.
• It is possible to define all the required transformations in
the formal way; moreover, they can be implemented by
general purpose programming language.
• The layout of the diagram is a complicated task due to a
large amount and diversity of the criteria that should be taken
into consideration when placing elements in the diagram.

610Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 630 / 646

• A modeler cannot use convenient algorithms for graph
presentation to layout the UML sequence diagram due to its
specific structure; therefore, some unique method should be
applied.
• The quality of the layout algorithm strongly depends on
the complexity of the diagram itself.

 The transformations and layout algorithm offered in this
paper are implemented in BrainTool [16] in order to expand
the functionality of its first version presented in [1] with
respect to the modeling of the UML sequence diagram.
Analysis of mapping abilities of the two-hemisphere model
with the UML sequence diagram indicates an ability to refine
notational conventions of the two-hemisphere model in order
to increase a variety of the elements of the UML sequence
diagram. This can be stated as a direction for a further
research. Additionally, further research directions can include
potential transformations from the two-hemisphere model to
other types of UML diagrams, e.g., state charts, activity, etc.

ACKNOWLEDGMENT

The research presented in the paper is supported by
Accenture Latvian Branch, project No. L7950 “Development
of Model Transformation Tool Prototype”, and by Latvian
Council of Science, No. 342/2012 "Development of Models
and Methods Based on Distributed Artificial Intelligence,
Knowledge Management and Advanced Web Technologies".

REFERENCES

[1] O. Nikiforova, K. Gusarovs, O. Gorbiks, and N. Pavlova
“BrainTool. A Tool for Generation of the UML Class
Diagrams”, Proc.: The Seventh International Conference on
Software Engineering Advances, 2012, pp. 60-69.

[2] Unified modeling language: superstructure v.2.2, OMG.
Available: http://www.omg.org/spec/UML/2.2/Superstructure.
[retrieved 09/ 2013]

[3] G. Loniewski, E. Insfran, and Abrahao S. “A Systematic
Review of the Use of Requirements Techniques in Model-
Driven Development”. In: 13th Conference, MODELS 2010,
Model Driven Engineering Languages and Systems, Part II,
Oslo, Norway, pp. 213—227.

[4] O. Nikiforova and M. Kirikova, “Two-hemisphere model
drivenapproach: engineering based software development,” in
The 16th International Conference Advanced Information
Systems Engineering, A. Persson and J. Stirna, Eds.
BerlinHeidelberg: Springer-Verlag, LNCS 3084, 09.2004, pp.
219-233.

[5] C. Sibertin-Blanc, O. Tahir, and J. Cardoso, “Interpretation of
UMLsequence diagrams as causality flows,” in Advanced
DistributedSystems, 5th International School and Symposium.
Heidelberg:Springer, LNCS, vol 3563, 2005, pp. 126-140.

[6] R. Alur, K. Etessami, and M. Yannakakis, “Inference of
messagesequence charts,” in Proceedings of the 22nd
International Conferenceon Software Engineering (ICSE).
New York: ACM Press, 2000, pp. 304-313.

[7] S. Uchitel, J. Kramer, and J. Magee, “Detecting implied
scenarios inmessage sequence chart specifications,” in
Proceedings of the 9thEuropean Software Engineering
Conference and 9th ACM SIGSOFTInternational Symposium
on the Foundations of Software Engineering(ESEC/FSE’01).
New York: ACM, 2001, pp. 74-82.

[8] B. D. Aredo, “A framework for semantics of UML sequence
diagrams inPVS,” JUCS, vol. 8, no. 7, 2002, pp. 674-697.

[9] O. Nikiforova, Object Interaction as a Central Component of
Object-Oriented System Analysis, (ENASE 2010), Proc.
International Conference Evaluation of Novel Approaches to
Software Engineering, WS Model Driven Architecture and
Modeling Theory Driven Development, Osis J., Nikiforova O.
(Eds.), SciTePress, Portugal, 2010, pp. 3-12.

[10] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W.
Lorensen, Object Oriented Modeling and Design. New Jersey,
Englewood Cliffs:Prentice-Hall, Inc, 1991.

[11] C. Larman, Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design, 3rd ed. New Jersey:
Prentice Hall, 2005.

[12] P. Chen, “The entity relationship model – towards a unified
view of data,” ACM Trans. Database Systems, vol. 1, 1976,
pp. 9-36.

[13] O. Nikiforova, L. Kozacenko, and D. Ahilcenoka “UML
Sequence Diagram: Transformation from the Two-Hemisphere
Model and Layout”, Applied Computer Systems. Vol.14, 2013,
pp. 31-41, doi: 10.2478/acss-2013-0004

[14] O.Nikiforova, "System Modeling in UML with Two-
Hemisphere Model Driven Approach," Scientific Journal of
Riga Technical University. Computer Sciences, vol. 21., 2010,
pp. 37-44

[15] J. Grundspenkis, “Causal domain model driven knowledge
acquisitionfor expert diagnosis system development,” in
Lecture Notes of theNordic-Baltic Summer School on
Applications of AI to ProductionEngineering, Kaunas,
Lithuania, K. Wang and H.Pranevicius, Eds. Kaunas: Kaunas
University of Technology Press, 1997.

[16] BrainTool. Availablet http://braintool.rtu.lv/ [retrieved 09/
2013]

[17] K. Wong and D. Sun, On evaluating the layout of UML
diagrams for program comprehension: IWPC 2005, 13th
International Workshop on Program Comprehension, St.
Louis, Missouri, USA. IEEE Computer Society, 05.2005.

[18] H. Eichelberger and K. Schmid, "Guidelines on the aesthetic
quality of UML class diagrams," Information and Software
Technology, vol. 51, no. 12, pp. 1686-1698, 2009.

[19] A. Galapovs and O. Nikiforova, Several Issues on the
Definition of Algorithm for the Layout of the UML Class
Diagram: 3rd International Workshop on Model Driven
Architecture and Modeling Driven Software Development In
conjinction with the 6th International Conference on
Evaluation of Novel Approaches to Software Engineering,
Beijing, China. SciTePress Digital Library, 06.2011.

[20] T. Poranen, E. Makinen, and J. Nummenmaa, How to Draw a
Sequence Diagram: SPLST'03 Proceedings of the Eighth
Symposium on Programming Languages and Software Tools,
Kuopio, Finland. University of Kuopio, Department of
Computer Science, 06.2003.

[21] Sparx systems, "Enterprise Architect". Available:
http://www.sparxsystems.com.au/ [retrieved 09/ 2013]

[22] Visual Paradigm, "Generate Sequence Diagram from Use Case
Flow of Events", May 2011. Available: http://www.visual-
paradigm.com/product/vpuml/tutorials/gensdfromfoe.jsp
[retrieved 09/ 2013]

[23] IBM, Rational Software Architect. Available:
http://www.ibm.com/developerworks/rational/products/rsa/
[retrieved 09/ 2013]

[24] ReDSeeDS. Available: http://www.redseeds.eu/ [retrieved 09/
2013]

[25] Borland a micro focus company, Borland Together, Available:
http://www.borland.com/products/Together/ [retrieved 09/
2013]

611Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 631 / 646

A Device For Electromechanical Braille Reading Digital Texts

Cicília Raquel Maia Leite, Davi Alves Magalhães, Pedro Fernandes Ribeiro Neto, Suellem Stephanne Fernandes

Queiroz, Yáskara Ygara Menescal Pinto Fernandes

Department of Informatics

UERN (University of Rio Grande do Norte)

Mossoró, Brazil

ciciliamaia@gmail.com, davialvesmagalhaes@outlook.com, pedrofernandes@uern.br, suellem_stephanne@hotmail.com,

yaskaramenescal@gmail.com

Abstract— The social and professional inclusion of people with

visual impairment is currently being sought enough. With

accessibility is possible to integrate these people in order to provide

equal conditions to them and thus make them an active part of

society. Based in this theme, this paper proposes a prototype of an

eletromechanical braille cell, which, with the use of an Arduino

board, servomotors and software responsible for handling data, it

is possible to represent in Braille information collected in the

System Management Information Transit accessibility to Visually

Impaired - TRANSITUS -V, making it behave like a human-

machine interface for reading digital texts in braille.

Keywords—accessibility; braille; technology; arduino;

servomotors.

I. INTRODUCTION

In accordance with World Health Organization (WHO),
there are approximately 160 million visually impaired people
around the world, and at least 45 million of these individuals are
completely blind [9]. Due to disability, these people have limited
their basic rights as citizens. The situation is aggravated in
digital media, where most of the visually impaired do not have
access to special devices, or even help from trained professionals
to help them in the usage of computers and other electronic
equipments. Without the necessary resources, the person with a
disability do not have the opportunity to fully utilize the
phenomena that society experiences, such as social networks, in
addition to competing at a major disadvantage to the jobs
available that use of such technologies.

 Organizations, states and society have turned their focus in
ways to enable social and professional inclusion of people with
visual impairment. Several devices have been and are being
developed to allow the interaction of blind people with the
computer. There are many prototypes in the literature with
different proposals for cheapening and popularizing assistive
technologies to blind people [1][5][7].

Grounded in this theme of accessibility and social inclusion
of visually impaired, was designed a prototype that focuses
primarily on the creation of a electromechanical Braille cell and
implementation of a system composed of hardware and software
that has the ability to interact with people totally blind,
displaying in Braille informations obtained in TRANSITUS - V
(Management of Information Transit Accessibility for the

Visually Impaired), which has encouraged the development of
new methodologies for the implementation of accessibility. This
is an innovation if compared with other prototypes, once besides
enabling the blind interaction with digital media, also enables
their integration into the labor market and create conditions that
these people become an active part of society.

Section II will describe the two main technologies involved
in this project: Arduino and Transitus-V. Section III is a brief
account of the Braille system and the use of servomotors in the
construction of the prototype. In Section IV, the construction of
the prototype is shown. In Section V the integration with
Transitus-V is presented. Finally, Section VI provides a brief
discussion about the obtained results.

II. ARDUINO PLATAFORM AND SYSTEM TRANSITUS-V

For being accessible, low cost and comprising hardware and
software, the Arduino platform was used to preparation of this
project due to its versatility and open source, ie it possible to
reuse the hardware and the software libraries freely accordingly
to the developer’s needs. Also, Arduino allows rapid prototyping
of projects, which simplifies the manufacturing process by
reducing the complexities inherent to the programming of the
microcontroller and electronics prototyping.

The Arduino is already being widely used for the
development of many projects focused on themes of social
inclusion, which has encouraged the development of new
methodologies for the implementation of accessibility. The
TRANSITUS-V is a computer system with digital assistive
technology that manages traffic information, developed in
accordance with the W3C accessibility guidelines to facilitate
the use and management of transit through people with visual
impairments, with the use of shortcut keys, as well as special
support for screen readers and voice synthesizers that increase
the possibilities for use by persons with disabilities.

The system TRANSITUS-V, for having been done on a Web
platform, requires no installation on the machines of those who
use, each machine should only have access to the internet, and
it’s compatible with most web browsers available in the market.
However, the TRANSITUS-V needs to be hosted on a server
that supports PHP and the MySQL database [6].

612Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 632 / 646

III. BRAILLE SYSTEM AND SERVOMOTORS

The Braille system of reading and writing for the blind, was
invented by Frenchman Louis Braille, influenced the society in
the processes that led to the inclusion of these individuals. The
Braille for its simplicity of reading and writing, was the bridge
created between the blind and literature. Given the ease of use,
the production of Braille content was encouraged, well as your
teaching, spreading the method for worldwide.

 With technological advancements, the Braille has been
integrated into electronic devices allowing the interaction of the
visually impaired with computers, text editors, internet, digital
books, among other services. The example used in this project
and has the servomotors, which are electromechanical devices
that perform movements, in relation to its axis, in accordance
with commands (control signals) determined. The device was a
solution adopted for the project and is responsible for moving
pins that make up a cell. Besides showing a cheap and easy to
implement, since it easy to handle and has a library of software
written specifically for use in conjunction with the the Arduino
platform.

IV. OBJECTIVE AND CASE STUDY

Through past difficulties for the visually impaired, the main
objective of this work is the implementation and deployment of
a system composed of hardware and software that displays
Braille information extracted from a digital medium. The
creation of the Braille cell electromechanical system adds the
ability to interact with people who are totally blind, which is
possible only through the web interface.

 The prototype consists of parts of hardware and software to
work together in translation and display of information acquired
in TRANSITUS-V. The hardware part is formed by a plate
Arduino BT, six servomotors, a button and secondary electronic
parts, such as resistors and wires. Together, the six servomotors
represent one braille character, the user can read a character
string by advancing the read pointer by means of the button, as
seen in Figure 1.

Each servo motor is responsible for moving one of the six
pins that make up a braille cell. The position of the mechanical
arm of each servomotor is determined by the micro controller to
which it is connected, controlled angle values ranging between
0 º and 179 º. The characteristics of each servomotor Mystery
Mini are shown in Table 1.

TABLE I. CHARACTERISTICS OF THE SERVOMOTOR MINI MYSTERY

Characteristics Values

Quickness 60º at 0.12 seconds

Torque 0.7kg

Voltage 4.5v – 6v

Dimensions 1.98cm x 1.93cm x 8.4cm

Each servomotor has three wires: first, generally black or
dark brown, which is the negative land should be connected to
the circuit, the second, usually red, is positive, the third generally
yellow in color, is attached to a PWM (Pulse Widht Modulation)
port of the Arduino.

The hardware model of the Arduino platform used in the
paper was the Arduino BT, chosen for having an integrated
Bluetooth module to your hardware, which facilitates
implementation. Another advantage of the model is to have six
PWM digital ports, which allows the use of six servomotors,
suitably representing a braille character. The features of the
Arduino BT, is identical to the model Arduino UNO, with the
exception of having an integrated Bluetooth module. The
Arduino BT used has digital PWM ports 3, 5, 6, 9, 10 and 11 [8],
and these ports are connected to the six servomotors.

Although the hardware platform Arduino usually have a
power outlet dedicated to connecting other devices, a source of
external power supply was used for the consumption of the
servomotors, given its energy needs to be higher than what is
offered at the output of the Arduino board. The diagram in
Figure 2 describes the connection between the servo, Arduino
BT and external power source.

To accommodate the servo motors and the Arduino board, a
small box was built. In its lid six small holes, so that the
servomotors to move small iron rods coupled to the blades make
its surface appear in a character in Braille. The button used to
move the cursor reading is powered by a 5V voltage obtained at
one of the power ports Arduino board. The time between
pressing the button and changing the character is about 0.1
seconds, according to the specifications of the servomotors seen
in Table 1, making it very agile character exchange and enabling
quick reading of the text displayed in the prototype.

 The software part of the prototype is composed of the sketch
that will run on the Arduino board, as well as a middleware
responsible for brokering the acquisition of information. This
middleware acquires the information from the database
TRANSITUS-V and translates it into Braille to, finally, send
them to skecth in the Arduino BT board. The sketch function is
to coordinate the motion of the servomotors in accordance with
the received information so that each character is represented
correctly.

Figure 1. Braille representation of the data in the prototype

613Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 633 / 646

Figure 3. Diagram showing the exchange of messages between the Arduino,

middleware and Database TRANSITUS-V.

 We opted for an application that communicates directly with
the database because it simplifies its use by blind people. Even
if the prototype can be adapted for use through the site, there are
several steps prior to use which would be compromised. For
example, it would be necessary that the blind user initiate the
program from accessing internet browsing and the
administrative area for, only then, have access to the information
TRANSITUS-V. Direct access to the database reduces the steps
required to use and consequently reduces the barriers that hinder
the use of the system. So, all information is obtained by SQL
queries.

 After acquiring the specific data in TRANSITUS-V, the
middleware sends character by character to the the Arduino
board, previously converted to Braille system, and according to
user demand. At first, only the first character is sent and
immediately represented in the prototype. The user has the task
of requesting the following characters one at a time, to
middleware by pressing the button. Pressing the button causes
the Arduino board send a request to the middleware, which is

done by sending the phrase “new” to the middleware. Upon
receiving the request, the middleware sends the next character to
the plate, and so on until they enclose the characters
representative of the data obtained. Figure 3 describes how is
this communication performed.

V. USABILITY AND PRACTICE

 Figure 4 shows the names of customers registered in the
system viewable on the web, with one highlighted in blue. The
information is represented on the prototype, as seen in Figure 5.
It is observed that the prototype represented correctly the desired
information.

 This work contributes not only with the realization of
accessibility, but with the inclusion of visually impaired since
the use of the prototype also allows the inclusion of these people
in the labor market.

VI. FINAL CONSIDERATIONS

The prototype represented correctly in Braille information
obtained in Transitus-V system. Further information can be
obtained by simply writing functions and SQL queries to access
them. However, the prototype does not have a navigation menu
for the functions to access information, which is a barrier created
by the low capacity of the displayed text. Because you can only
represent one character at a time, creating a navigation menu is
infeasible.

 One difficulty encountered during the development of the
prototype is that, given the angular movement of the blades

Figure 2. Diagram of connection between the servo and Arduino.

Figure 4. Information obtained by persons web interface Transitus-V.

Figure 5. Braille representation of the data in Figure 4 prototype.

614Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 634 / 646

of the servomotors, the pins do not rise or debase totally
straight, which makes difficult the construction of smaller
prototypes. Reducing the size of the blades was required.

This work is the result of a research project called
Management of traffic information for the visually impaired,
developed by the Software Engineering Group of the
University of Rio Grande do Norte, which, since 2010,
develops the web system TRANSITUS-V.

For future work, flip-flops can be used to build the braille
cells, as seen in [1], giving to the system the capacity of
representate a large number of characters. It is also suggested
to create a shield for the Arduino platform representing
Braille characters. This shield could pave the way for a
family of accessibility projects, making it easier for the
visually impaired and driving new research.

REFERENCES

[1] Braga, D. S. “Uma interface humano-máquina para leitura de

documentos digitais por deficientes visuais”. Escola
politécnica de Pernambuco - Universidade de Pernambuco,
2010.

[2] Banzi, M. “Getting started with Arduino”.
http://goo.gl/Ue2Hr, First edition, 2009.

[3] Freedman, R. “Out of Darkness: The Story of Louis Braille”,
First edition, 1997.

[4] Godse, A. P., Mulani, A. O. “Embedded systems”, First
edition, 2009.

[5] Smithmaitrie, P. “Rehabilitation engineering – chapter 4:
Analysis and design of Piezoeletric braille display”. pp. 49-
52. ISBN: 978-1-4302-3882-9. Apress, 2011.

[6] TRANSITUS-V. Official website of the TRANSITUS-V,
http://les.di.uern.br/transitusportal/index.php/transitus-v.

[7] Wang, M; Roy, R. “Portable refreshable Braille display”.
Final Report for ECE 445, Senior Design, 2012.

[8] Wheat, D. “Arduino internals”. ISBN: 978-1-4302-3882-9.
Apress, 2011.

[9] World Health Organization. “World report on disabilities
2011”. ISBN: 978 92 4 068521 5

615Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 635 / 646

Australia’s National Transition Strategy: first stage implementation report

Justin Brown
School of Computer & Security

Science
Edith Cowan University
Perth, Western Australia

j.brown@ecu.edu.au

Scott hollier
School of Computer & Security

Science
Edith Cowan University
Perth, Western Australia

j.hollier@ecu.edu.au

Vivienne Conway

School of Computer & Security
Science

Edith Cowan University
Perth, Western Australia
v.conway@ecu.edu.au

Abstract—In June 2010 the Australian government introduced
the National Transition Strategy (NTS), a mandatory
requirement that all government websites in Australia would
adhere to WCAG 2.0 Level A by the end of 2012 and AA by
the end of 2014[1]. With the first deadline now past and many
government websites remaining inaccessible, the failure of the
NTS to date has raised questions in regards to its interagency
support, community support and appropriateness of the NTS
model. This paper explores the issues around the lack of NTS
uptake to date: the choice of model, its implementation, and
the lessons learnt and the likelihood of ultimate success as the
2014 deadline approaches

Keywords- Australia, government policy, web accessibility,
WCAG 2.0, conformance

I. INTRODUCTION

The introduction of the World Wide Web Consortium
(W3C) Web Content Accessibility Guidelines (WCAG) 1.0
in 1999 was widely acknowledged as a significant step
forward in the provision of online information to people with
disabilities. While many countries adopted the guidelines
into their policy and legislative frameworks, Australia took a
more ad-hoc approach. With the release of WCAG 2.0 in
December 2008 [2], Australia initially appeared to miss the
importance of the web standard, with no significant changes
to its web accessibility processes. However this changed
significantly in 2010 when the Australian Government
Information Management Office (AGIMO) released its
National Transition Strategy, promising to make all Federal
government websites WCAG 2.0 Level A compliant by the
end of 2012, and Level AA by the end of 2014. State
governments and territories within Australia also made
similar commitments.

While the announcement was met with praise for the
government’s approach to establishing a mandatory
requirement on accessibility, the shift towards a uniform
availability of accessible government information remained
elusive. With the first deadline now past, it is important to
reflect on the true impact of the NTS. In order to do so, it is
first necessary to address the historical context of
accessibility in Australia, the promise of the NTS, it’s

approach compared with that of other countries and evaluate
high usage government websites to determine the likelihood
of the second NTS milestone being achieved.

This paper reports in part on an ongoing research project
which is following the NTS through its implementation
phase, the issues that led to the perception of failure thus far,
the methods used in testing various websites to confirm
WCAG compliance and key insights as to how web
accessibility in Australia can be progressed despite the
concerns over the current approach..

II. THE PATH TO A NATIONAL APPROACH

The primary catalyst for web accessibility being viewed
as an important issue was the applicability of the Australian
Disability Discrimination Act (DDA) [3] of 1992 as
highlighted in the Maguire v Sydney Organising Committee
for the Olympic Games (SOCOG) case. The case revolved
around a legally blind man named Bruce Maguire who
required ticketing and race information for the Sydney 2000
Olympic Games. Part of his complaint was that the
information available on the official Olympic Games website
was inaccessible, primarily due to the use of images without
text descriptions. After taking all the arguments into
consideration, the Australian Human Rights Commission
(HREOC) came to the conclusion that SOCOG had
“…engaged in conduct that is unlawful under section 24 of
the DDA…”. [4].

As a result of the Maguire v SOCOG ruling, government
policy began to acknowledge and incorporate the WCAG
standard with brief references to the accessibility of online
information requirements in the Federal Government
Commonwealth Disability Strategy [5], but with most web
accessibility policies being state-based, ad-hoc and largely
implemented in a reactionary manner when issues in a
particular website were raised [6]. However, the
incremental acknowledgement of the importance around web
accessibility and the release of WCAG 2.0 raised the
possibility a specific strategy may be launched, with a
number of speakers discussing the merits of a WCAG 2.0
strategy at the 2009 Gov 2.0 Roundtable on Accessibility for
People with Disabilities [7]. The strategy was foreshadowed

616Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 636 / 646

in an announcement in a media release by the Hon Lindsay
Tanner MP in February 2010 that “Australians with
disabilities will soon find it easier to access government
information online” [8] with WCAG 2.0 selected as the
policy requirements and that all government websites would
be completed by 2015 [8].

III. THE NATIONAL TRANSITION STRATEGY (NTS)

The NTS was formally released on 30 June 2010 and
declared to be a mandatory requirement and a formal
endorsement of the Web Content Accessibility Guidelines
(WCAG) version 2.0 for all government websites,
superseding any policy that was previously based on WCAG
1.0. The formal release clarified the target dates by stating
that all government websites must "…meet WCAG 2.0
Level A by December 2012…" and that all agencies were
required to "…conform to WCAG 2.0 Level AA standard by
December 2014" [9].

The introduction of the NTS heralded a significant shift
in the implementation of web accessibility in Australia. The
Government's Chief Information Officer, Ann Steward stated
that the NTS "…sets a course for improved web services,
paving the way for a more accessible and usable web
environment that will more fully engage with, and allow
participation from, all people within our society" [10]. The
primary reasons as to why it was believed the NTS would
make such a significant improvement to participation for
people with disabilities was due to the NTS being the first
time in Australia that a specific deadline had been set to
implement web accessibility at a national level, that a formal
strategy had been created and that WCAG 2.0 was
acknowledged as the official Australian web accessibility
standard.

The work plan for the NTS implementation was based on
a three-phased approach:

Phase 1: Preparation - July 2010 to December 2010
Phase 2: Transition - January 2011 to December 2011
Phase 3: Implementation - Complete by December 2012

 and December 2014
The first phase was for government agencies to take

stock of their own websites, perform a conformance check,
assess the website infrastructure, and assess their ability and
risk in creating an accessible website. Phase 2 was designed
to focus on accessibility training, procurement reviews and
infrastructure upgrades, while Phase 3 was the
implementation phase for accessible websites. The
effectiveness of this approach hinged largely on the federal
government agencies being subject to the Financial
Management and Accountability Act [11], AGIMO will
provide a reporting system, while agencies (those subject to
Commonwealth Authorities and Companies Act) opting-in to
the strategy are encouraged to report. The primary resource
commitment given under the NTS is through the Web Guide
[12] website with other resources to be created over time
with the support of states and territories [1].

IV. IMPLEMENTATION PHASE OUTCOMES THUS FAR

Phase three of the NTS required implementation of the
strategy in two parts, the first being the attainment of WCAG
2.0 Level A by the end of 2012 and then Level AA by the
end of 2014. The initial research detailed in this paper
indicates that the first stage of Phase three has not seen the
NTS meet all of its accessibility goals.

The testing methodology included manual expert
evaluation together with the use of three automated
assessment tools, SortSite by PowerMapper [13], the Web
Accessibility Toolbar (WAT) by the Paciello Group [14],
and the WAVE extension for Mozilla Firefox by WebAIM
[7]. SortSite was used to sample 2000 pages per site, while
both the WAT and WAVE tools were used in conjunction
with the manual expert assessments. The manual evaluation
included 5 pages per site, typically being the homepage,
contact us page, media pages and any pages featuring
primary site information. It should be noted that there is
some discrepancy between the manual testing and the
automated testing results. The manual testing involved the 5
pages as stated and evaluated these pages against all WCAG
2.0 criteria. The automated testing while scheduled to check
2000 pages is unable, due to the nature and limitations of
automated testing, to test more than about 35% of the
guidelines effectively [5]. The automated tools were also
used to test the 5 pages tested manually to verify and cross-
check results.

Table 1 lists the largest of Australia’s federal government
websites and their level of conformance to the first stage of
the NTS implementation phase (as of end 2012).

TABLE 1: WCAG 2 LEVEL A CONFORMANCE FOR AUSTRALIAN FEDERAL
GOVERNMENT AGENCY WEBSITES

Organization WCAG 2.0 Level A
Pass

Prime Minister's home page No

Australian Government entry page No

Department of Health & Aging No

Australian Government Information
Management Office (AGIMO)

Yes

Centrelink (now in Human Services) No

Department of Education, Employment
and Workplace Relations

yes (borderline)

Department of Immigration and
Citizenship

no

Department of Infrastructure and
Transport

Yes (borderline)

Australian Human Rights Commission No

Australian Taxation Office No

Employment services No

Australian Job Search No (borderline)

ABC Television (principally funded by
federal government)

No

SBS Television (principally funded by
federal government)

No

617Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 637 / 646

Medicare (now in Human Services) No

Department of Finance (replacing
AGIMO)

Yes

Department of Human Services (new site
encompassing Centrelink, Medicare &

Child Support)

No

Department of the Attorney-General No

Department of Families, Housing,
Community Services and Indigenous

Affairs

Yes

Department of Broadband,
Communications and the Digital

Economy

No

Table 1 shows that only three sites actually passed the

manual testing unequivocally, which is to be expected given
that two of those websites belonged to the Australian
Government Information Management Office, the owner of
the NTS. The Department of Finance site is directly linked
to AGIMO so is essentially run under the same structure.
The third site which met WCAG 2.0 in the manual testing is
that of the Department of Families, Housing Community
Services and Indigenous Affairs which is one of the agencies
in the reference group which was established to monitor
progress. It is interesting to note that the Attorney-General’s
Department, and Department of Broadband are also in that
reference group but whose websites did not pass WCAG 2.0
according to our testing. Two other departments have been
defined as passing (with a borderline qualifier) as they had
one or two issues which while a breach of the Level A
guidelines, did not impact on site usability. One other site
was a borderline fail, with some small issues that did impact
on usability but would require minimal adjustments to
achieve Level A. The organizations in Table 1 represent
only a small selection of all the organizations which come
under the mandate of the NTS on a national scale, however
these are the mainline federal organizations and those which
provide the most relevant test case for the NTS thus far.
Mostly, they have the biggest budgets, the most staff and are
the organizations that provide services and oversight to other
federal and state entities.

While Table 1 provides a pass/fail evaluation for the
websites examined according to WCAG 2.0, it should be
kept in mind that this does not take into account the severity
of the issues located, their frequency, or an analysis of the
impact barrier upon people with disabilities. However, the
NTS requires compliance with WCAG 2.0 to Level A by this
time and does not allow for these additional criteria. Space
restrictions within this paper mean the presentation of deeper
analysis of automated and manual assessments is not
possible here, though future publications of this research
project will present such detail

V. DRIVERS FOR LEVEL A FAILURE

Looking at these representative Australian government
agencies, what are some of the issues that have impacted on
the lack of success of the NTS in the first part of it’s
implementation phase? Whilst this paper is not looking to
cast a final judgment on the evolving NTS implementation, it

does appear that whilst the NTS has lofty goals, it is lacking
in specific details in terms of how to actually put web
accessibility into practice, and how to assess it afterwards.

A. ASSIGNMENT OF RESPONSIBILITY

Perhaps one of the most glaring omissions in the NTS
mandate is that of assignment of responsibility for
implementation of each of the phases. The NTS
documentation only ever refers to ‘the Agency’ or ‘an
Agency’ but never to a specific role within these agencies,
such as Chief Information Officer (CIO) or Chief Executive
Officer (CEO). In comparison, the Canadian government’s
Standard on Web Accessibility names Senior Department
Officials (SDO’s) and CIO’s [15] as being responsible for
the implementation of their accessibility implementation.
Under the U.S. Section 508, which links accessibility to
government procurement, Chief Acquisition Officers and
Chief Information Officers [16] are amongst those named as
roles responsible for applying the requirements of the
policy.

Information obtained from Australian federal
government agencies in September 2011 as part of this
research indicates that all of the agencies in this group have
an individual who has responsibility for the accessibility of
the website. However this does not explain the actual
portion of a person’s workload directly related to website
accessibility. Survey data infers that the responsibility is
often a small part of an incumbent’s overall employment
duties. Further information obtained in November 2012
shows that the number of agencies which have staff
dedicated to the accessibility function has declined to the
extent that one of the agencies identifies as not having
anyone in the role and another is unsure. Whilst it might be
'everyone’s' task to see that accessibility is applied at all
levels of an organization, surely a senior role (ie CIO) needs
to be named as being ultimately responsible [17].

One agency expressed the opinion that the website
accessibility compliance is not the responsibility of just one
individual but is built into the requirements, development
and review process. As stated above when discussing roles,
this may account for some confusion as to responsibility. If
everyone is jointly responsible, then who is accountable
when a website fails compliance?

While it would appear that Federal government agencies
are working on improving the accessibility of their websites,
it is apparent that there is much work still remaining. Some
agencies have commented that they are aware they have not
met the WCAG 2.0 A compliance deadline of December 31,
2012 deadline, but have decided just to continue to work
toward WCAG 2.0 AA by December 2014. Due to the
proximity of that deadline, it leads to the question of what,
if anything will happen if they also fail to meet that
timeline.

Some agencies state they are planning re-development of
their website and that this re-development will address
accessibility concerns. This would reinforce the common

618Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 638 / 646

feeling in web development circles that it is easier and more
cost-effective to re-design a website keeping accessibility in
mind than to retrofit an existing site.

B. AUDITING METHODS AND TOOLS

The NTS documentation seems unclear in Phase three,
Implementation, as to whether all sites need to be assessed
upon reaching the 2012 deadline for single A compliance
and then again in 2014 for double A compliance. The NTS
Work Plan site [18] would seem to indicate that final
compliance reports are to be completed at the end of the
2014 period. It seems that a compliance report at the end of
2012 would have provided agencies and the government as
a whole with a useful 'dry run' of the final report due in
2014, perhaps highlighting issues in audit processes,
methods and tools. The issue of auditing methods and tools
is also a critical one, in that the NTS does not specify any
particular method or tool beyond stating that "AGIMO will
investigate whole-of-government automated conformance
testing tools. It must be borne in mind, however, that
automated testing tools can only interpret a limited range of
criteria [5], which means that human judgment will also be
needed in carrying out the tests. This will require staff
skilled in web accessibility who can understand and apply
the guidelines" [18].The Australian government's Web
Guide is a little more specific in that it specifies that it is
acceptable for most sites to test approximately 10% of their
site (in terms of pages) and the sorts of items which should
be tested, including home pages, contact details, feedback
forms, search forms, online media and complete end-to-end
process [19]. The Web Accessibility National Transition
Strategy: Work Plan site appears to contradict this figure,
stating that agencies "must ensure each web page meets
WCAG 2.0 conformance requirements" [18]. Does this
imply each page of those selected for assessment (say 10%
of the site) or all pages in the site? It is this type of
ambiguity, along with the somewhat loose language of the
NTS and Web Guide documentation that allows for liberal
interpretations of how agencies may perform their
conformance reports. Terms such as 'At the very least', 'It is
generally acceptable', 'Agencies may like to consider' and
'agencies are encouraged to complete' provide wriggle room
for those agencies looking to take a minimalist approach to
their accessibility commitments, at least in the short term.
Whilst it may be expected that most agencies will do their
best to implement the tenets of the NTS, the language of the
documentation does not commit them to achieving the
outcome but rather attempting to do so.

Survey results obtained from agencies about how they
evaluate their websites provides further evidence about the
confusion in evaluation and reporting. Some agencies have
daily conformance checks for all new material, others state
that they do not do any internal or external evaluation of the
bnwebsite, with the rest falling somewhere in between.

C. INABILITY TO ENFORCE COMPLIANCE

Perhaps the most obvious issue with the NTS as it
currently stands is its lack of enforceability. None of the
NTS related documentation suggests any kind of penalty or
censure for government web sites that do not achieve
WCAG 2.0 AA compliance by the end of 2014. The
Australia government's Web Guide indicates that once a
federal site passes all the WCAG 2.0 AA success criteria it
may use statements of conformance indicating they have
met the 'five conformance statements of the WCAG 2.0'.
Sites may also apply statements of 'partial conformance',
such as where the site is heavily dependent on 3rd party
providers who are not controlled by the agency or who do
not come under the remit of the NTS. The final statement of
the Web Guide in terms of conformance is that "where
possible, agencies should aim to address accessibility issues
as they occur" [19].

As far as available NTS documentation stands as of
early 2013, the reward for an organization meeting NTS
requirements is the ability to make statements of full or
partial conformance against the NTS on their website. The
apparent penalty for non-conformance is NOT being able to
make such public statements. Whilst most federal agencies
would relish the social capital and sense of achievement that
would come from attaining NTS compliance, how this
would be weighed against the time, money and ongoing
effort such compliance would take remains to be seen [20].

VI. CONCLUSION

This paper has demonstrated that there are some key
issues relating to Australia's National Transition Strategy
that need to be addressed in order for people with
disabilities to effectively use government websites. While
the NTS has completed the first of two stages in its
Implementation phase, an evaluation of essential federal
sites within Australia has shown that, while the NTS has
had a positive impact in progressing some accessibility
awareness, it has yet to gain widespread traction within the
government's web space. While it is commendable that
Australia has taken a national approach in making
government websites accessible and set specific
accessibility targets unlike some other comparable countries
[21]. However, the poor results of the first stage of the NTS
implementation is largely attributable to a lack of resourcing
and the need for a greater focus on consistent methods and
toolsets [22].

The NTS provides the Australian government and the
Australian population with the opportunity to proactively
deal with the issue of equality of access for all things web.
If this opportunity is squandered, digital citizens will
continue to pursue their right to access online content and
services through litigation and human rights avenues.
Hopefully, the NTS and more than a decade of technical and
policy development will obviate the need for further
Maguire like cases to achieve web accessibility in Australia

619Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 639 / 646

REFERENCES

[1] [1] Australian Government Information Management Office

(AGIMO) Australian Government web accessibility national
transition strategy. City, 2010.

[2] [2] W3C Web Content Advisory Guidelines (WCAG) 2.0.
W3C, City, 2008.

[3] [3] Australian Human Rights Commission D.D.A. guide: who
does the D.D.A. protect? Australian Human Rights
Commission, City.

[4] [4] W3C Web content accessibility guidelines (WCAG) 2.0.
City, 2008.

[5] [5] Vigo, M., Brown, J. and Conway, V. Benchmarkng web
accessibility evaluation tools: measuring the harm of sole
reliance on automated tests. In Proceedings of the W4A 2013
colocated with 22nd International World Wide Web
Conference (Rio de Janeiro, Brazil, May 13-15, 2013, 2013).
ACM, [insert City of Publication],[insert 2013 of
Publication].

[6] [6] Australian Government Web Guide: Accessibility. City,
2011.

[7] [7] WebAIM WAVE Toolbar 1.1.6. City.
[8] [8] Tanner, L. H. M. and Shorten, B. H. M. Dealing with

government online to become easier for Australians with
disabilities. Minister for Finance and Deregulation and
Parliamentary Secretary for Disabilities, Australian
Government, City, 2010.

[9] [9] Government, A. Web Guide : Accessibility. City, 2011.
[10] [10] Australia, M. A. Top 12 of 2012 #3 - The National

Transition Strategy. Media Access Australia, City, 2012.
[11] [11] Deregulation, D. o. F. a. Financial Management and

Accountability Act 1997 (FMA Act) Agencies. Department of
Finance and Deregulation, City, 2012.

[12] [12] Government, A. Web Guide. City, 2013.
[13] [13] Powermapper software SortSite-Professional Edition.

City, 2010.
[14] [14] Paciello Group Web Accessibility Toolbar for IE, 2012.

Paciello Group, City, 2012.
[15] [15] Secretariat, T. B. o. C. Standard on Web Accessibility.

City, 2011.
[16] [16] Administration, U. S. G. S. GSA Agency Roles and

Responsibilities. City, 2012.
[17] [17] Bakhsh, M. and Mehmood, A. Web Accessibility for

Disabled: A Case Study of Government Websites in Pakistan.
In Proceedings of the Frontiers of Information Technology
(FIT), 2012 10th International Conference on (17-19 Dec,
2012), [insert City of Publication],[insert 2012 of
Publication].

[18] [18] Deregulation, D. o. F. a. Web Accessibility National
Transition Strategy : Work Plan. City, 2010.

[19] [19] Government, A. Accessibility Conformance Testing.
City, 2010.

[20] [20] Leitner, M. L., Hartjes, R. and Strauss, C. Web
Accessibility Issues for the Distributed and Interworked
Enterprise Portals. In Proceedings of the Parallel Processing
Workshops, 2009. ICPPW '09. International Conference on.
(Sept, 2009, 2009), [insert City of Publication],[insert 2009 of
Publication].

[21] [21] Independent Hospital Pricing Authority. City, 2012.
[22] [22] Perrenoud, C. and Phan, K. Emergence of web

technology: An implementation of web accessibility design in
organizations. In Proceedings of the Technology Management
for Emerging Technologies (PICMET), 2012 Proceedings of
PICMET '12 (July 29 - Aug 2., 2012), [insert City of
Publication],[insert 2012 of Publication].

620Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 640 / 646

Web Accessibility for Older Users: A Southern Argentinean View

Viviana Saldaño, Adriana Martin, Gabriela Gaetán, Diego Vilte

Department of Exact Sciences, Caleta Olivia

University of Patagonia Austral (UNPA-UACO)

Santa Cruz, Argentina

e-mail: vivianas@uaco.unpa.edu.ar, adrianaelba.martin@gmail.com,

 ggaetan@uaco.unpa.edu.ar, dvilte773@yahoo.com.ar

Abstract—Older Web users are now facing one of the most

difficult challenges of their lives. The Web changes every day

and they cannot keep up with it. As older age comes,

individuals experience gradual and fluctuating decline in

capabilities. These physical impairments make usage of the

Web even more difficult. Web accessibility is an area devoted

to solve accessibility problems of disabled people. However, as

older people suffer disabilities, although less severe ones, they

can profit from Web accessibility solutions. In this article, we

review some of the most common impairments that affect older

Web users, we analyze how these impairments are considered

by Web Accessibility standards, and explore different

approaches that improve Web user interface. Finally, we

introduce our ideas to overcome unsolved Web accessibility

barriers for older users describing an experience carried out at

our University in Argentinean Patagonia.

Keywords - Web Accessibility; Older Web users; User

Interface (UI);

I. INTRODUCTION

Most older adults experience age-related changes to their
functional abilities (vision, hearing, cognition and mobility).
These changes may complicate Web use [7], particularly for
poorly designed sites. In Table I, we show some common
functional impairments affecting older Web users, which we
extracted from the literature review published by the W3C
[21].

TABLE I. FUNCTIONAL IMPAIRMENTS AFFECTING OLDER WEB USERS

Ability Impact Difficulties

Vision

Screen
Keyboard

1. Decreasing ability to focus on near
tasks

2. Changing color perception and
sensitivity

3. Pupil shrinkage and decreasing
contrast sensitivity

Hearing

Audio
Multimedia

4. Increasing inability to hear higher-
pitched sounds

Motor skill

Mouse
Keyboard

5. Slowness of movement, trembling

Cognitive

Overall Web
use

6. Short term memory problems,
concentration difficulties,
distraction, change blindness

The study presented by Sayago and Blat [2] revealed that

the accessibility barriers that had a more negative effect on
the daily interactions of older people with the Web were

remembering steps, understanding computer jargon and
using the mouse.

Besides, from this study, we acknowledge that older Web
users desire two conditions: independency and inclusiveness.
Independency is the ability to use the Web on their own and
inclusiveness is the need to interact with the Web using
ordinary technology, as they do not intend to be different
from the rest of users.

Another problem that older people have to face is social
isolation [12]. Factors like diminished personal social
networks, bereavement and health problems contribute to
social isolation. Using the internet has significant value for
elderly people, since it helps avoiding loneliness, boredom,
helplessness, and decline of mental skills and it may increase
the self-confidence, ability to learn, and memory retention.

Traditional communication technologies, such as the
telephone, have played an important role in mitigating social
isolation and supporting group gatherings. Also, the World
Wide Web offers potential benefits for older adults, but its
uptake is yet extremely limited.

There are many reasons why older adults do not use the
Web [11]. Firstly, they tend to see the Internet as a tool to
achieve functional goals such as bill payment, and not as a
social or entertainment source [3]. Besides, they need an
incentive to get and stay online [4]. It is often younger
people who encourage technology use by older adults.
Staying connected with geographically remote grandchildren
is a major motivation for older adults in using technology
(such as email, Web cams and Skype). An interesting finding
was reported in [25], in which it is suggested that given the
right trigger many older people (even those previously
uninterested) will make tentative steps towards some
technology. In this case, the trigger was a disaster, the “ash
cloud”, which caused large scale disruption for air travel
across Europe in 2010, and it motivated the need for
computer usage.

Once older people are online they discover the
advantages, such as being able to maintain existing social
relationships and perhaps renew old ones that distance had
precluded. Over two thirds of “silver surfers” say that using
the Internet has improved their lives [5].

Other reasons for non-use of the Web include those
involved with age-related impairments, such as the ones
presented before in Table I.

In this paper, we explore different initiatives aimed at
providing Web accessibility and usability properties for older
users and some approaches to improve their Web interface

621Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 641 / 646

experience [13]. Taking into account the state-of-the-art and
the experience gained by our group while teaching
computing to older people, we describe our ideas and show
the improvements achieved during the delivery of the
courses for elderly Web users. Since many fields are
concerned on improving human-technology interaction, such
as information retrieval and data mining, Human-Computer
Interaction (HCI) and GUI, at this point, we have to clarify
how we decided to face this work. We have been working for
a while on accessible UI design to conform the W3C
accessibility recommendations [26] [27]. Our knowledge
gathered about UI design and Web Accessibility standards,
permitted us to explore practical techniques to reinforce
accessibility and usability and focus on the interaction
between our seniors and the Web, using a real experience on
Yahoo mail.

 The rest of the paper is structured as follows: in Section
II, we review Web accessibility standards and their relation
with age related disabilities. Then, in Section III, we
overview different useful approaches to improve older users’
Web interface. After that, in Section IV, we describe an
experience performed at our University and explain our ideas
for improvement. In Section V, we introduce some
discussion based on our experiences. Finally, in Section VI,
we conclude and present some further work.

II. WEB ACCESSIBILITY INITIATIVE GUIDELINES AND

AGING

The next few decades will see an unparalleled growth in
the number of people becoming elderly compared with any
other period in human history. The United Nations estimates
that by 2050 one out of every five people will be over 60
years of age, and in some countries the proportion will be
much higher than this [1].

There are some initiatives that provide advice addressing
Web accessibility and usability for all people. As regards
older users, many requirements are already considered by
these initiatives.

The World Wide Web Consortium (W3C) Web
Accessibility Initiative (WAI) [16] brings together people
from industry, disability organizations, government, and
research labs from around the world to develop guidelines
and resources to help make the Web accessible to people
with disabilities including auditory, cognitive, neurological,
physical, speech, and visual disabilities.

Among these series of guidelines developed by WAI,
widely regarded as the international standard for Web
accessibility, are: Authoring Tool Accessibility Guidelines
(ATAG), User Agent Accessibility Guidelines (UAAG) and
Web Content Accessibility Guidelines (WCAG).

 The Authoring Tool Accessibility Guidelines
(ATAG) documents define how authoring tools
should help Web developers produce Web content
that is accessible and complies with Web Content
Accessibility Guidelines.

 The User Agent Accessibility Guidelines (UAAG)
documents explain how to make user agents (Web
browsers, media players, and assistive technologies)

accessible to people with disabilities, particularly to
increase accessibility to Web content.

 The WCAG documents explain how Web content
can be made accessible for people with disabilities.
The WCAG 2.0 [19] has twelve guidelines, grouped
in four fundamental principles of accessibility:
perceivable, operable, understandable, and robust.
Each guideline is in turn decomposed in a set of
success criteria, which are classified within three
levels of conformance: A (lowest), AA, and AAA
(highest).

Another WAI project, Web Accessibility Initiative:
Ageing Education and Harmonization (WAI-AGE) project
[17] analyzed the Web accessibility requirements of older
Web users based on the research and investigation of many
people.

WAI-AGE has identified that the existing WAI
accessibility guidelines address the majority of requirements
of older people for Web use [10]. It also identified that many
Web designers and researchers are not considering the WAI
guidelines when making recommendations about Website
design for older people.

Although the guidelines developed by WAI were not
written with older users’ problems in mind, they provide
solution to many of them. In Table II, we show the results of
performing a matching analysis between most common older
people accessibility barriers, presented before in Table I, and
the corresponding guideline in WCAG 2.0.

TABLE II. OLDER WEB USERS DIFFICULTIES AND CORRESPONDING

WCAG 2.0 GUIDELINES

Difficulty WCAG 2.0

Guideline

1. Decreasing ability to focus on near tasks 1.4

2. Changing color perception and sensitivity 1.4

3. Pupil shrinkage and decreasing contrast

sensitivity

1.4

4. Increasing inability to hear higher-pitched sounds 1.2 – 1.4

5. Slowness of movement, trembling 2.1 – 2.2

6. Short term memory problems, concentration

difficulties, distraction, change blindness

2.2 – 2.4 – 3.2

– 3.3

We can see that the first three difficulties, which are

visual impairments, are addressed by WCAG 2.0 in
guideline 1.4. The fourth barrier, a hearing disability, is
tackled by guidelines 1.2 and 1.4. The fifth difficulties,
motor impairments, are addressed by guidelines 2.1 and 2.2.
Finally, the sixth barriers, cognitive difficulties, are
considered by guidelines 2.2, 2.4, 3.2, and 3.3.

This way, we could see that WCAG 2.0 guidelines meet
all older Web users’ requirements. The problem is that few
Websites have been designed with these guidelines in mind.

622Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 642 / 646

III. DIFFERENT WEB SOLUTIONS THAT IMPROVE SILVER

SURFERS' EXPERIENCE

Older people’s functional impairments are very different
in type (vision, hearing, mobility, cognitive) and severity,
and usually change over time. Thus, it is very difficult to
specify a unique Web interface that meets the requirements
for all of them [6]. So, the solution could be that each
individual older user would be able to select the appropriate
configuration by themselves.

There are some very interesting works related with this
idea such as the IBM’s Web Adaptation Technology [9],
which develops a browser extension that allows
manipulating Web content by combining and applying a
number of page transforms and adaptations according to user
preferences without requiring Web designers and developers
to rewrite their Web content.

Another tool is the Senior Citizen on the Web 2.0
(SCWeb2) Assistance tool [8], which is designed to assist
older users as they use Web 2.0 content. For some users,
dynamic content can be problematic due to the many
updating components throughout the page, causing them
hesitancy, stress, and frustration about unexpected situations.
This tool provides help only when users require it, avoiding
assistance and browsing the page in the usual manner when
support is not needed.

There are many other solutions which provide Web
accessibility not specifically oriented to older people. For
example, Garrido et al. [24] propose improving Web
accessibility in client browsers through interface
refactorings. This approach is called Client-Side Web
Refactoring (CSWR), it allows to automatically create
different, personalized views of the same application. The
refactorings proposed are compliant with W3C guidelines.

Besides, there are tools that allow users to change the
way Web content is presented. GreaseMonkey [20] is a
Firefox extension that allows writing scripts to alter visited
Web pages. It can be used to make a Website more readable
or more usable, Web applications can be modified by adding
content and/or controls to them. For instance, Mirri et al. [23]
describe GAPforAPE (GreaseMonkey And Profiling for
Accessible Pages Enhancement), an augment browsing
system based on GreaseMonkey, which allows Web users to
set up their preferences at client side and thus modifying
content on the browser interface. This application includes a
profiling system and a client side content transcoding
system, based on a collection of scripts. In order to enhance
the accessibility of Web content and to provide the best
adaptation to each user by meeting their needs and
preferences, scripts allow the transcoding of Web pages, by
modifying the CSS rules, the HTML DOM, and also other
scripts which are used by them.

IV. EVALUATION OF OLDER USERS’ EXPERIENCE IN

PATAGONIA

Since 2009, the National University of Patagonia Austral
and the National Institute of Social Services for Pensioners
(PAMI) have signed an agreement [18] for teaching
computing, music, and theatre courses to older people.

These courses are taught twice a week and last three
months. Computing courses are the most crowded, having
about 20 pupils each.

Older people who assist to computing courses have
expressed that they come to learn computing because they
want to keep in touch with their families, with their
grandchildren who live in other country regions.

Here, in Patagonia, distances between cities or towns are
extremely long; besides, we are 1242 miles away from the
capital city, Buenos Aires. Moreover, the weather is a critical
factor, too. Winters are very long and cold, and strong winds
blow. As a result, older people spend most of their time
inside their houses, and they often feel lonely. Thus, getting
online can have positive benefits for them. Tools like Email,
FaceBook and Skype can empower older adults to stay
connected with their friends and family.

In this study, the purpose is to find out which are the
accessibility failures that the email’s Web interface has got
and evaluate if a more accessible interface would allow older
people to utilize it more frequently and without suffering
frustration for not remembering how to use the application.

A. Experiment 1

During the second half of 2012, teachers taught email
classes. At the beginning of 2013, when computing classes
started again, teachers noticed that most pupils did not use
this communication tool. When asked for the reason of not
using it, most pupils said that they did not remember how to
use it, a few said that they were not interested in sending or
receiving mails, and the rest, only some of them, said that
they still used it. So, the purpose of this experiment is to
investigate what accessibility difficulties has got the email’s
Web interface design.

1) Participants:
Eighteen older adults ranging in age from 64 to 73 years

old (eleven women and seven men) were recruited for this
activity. All of them took computing courses between April
and June of 2013 and also during the second half of 2012.

2) Materials:
For this experiment, we used Yahoo mail application

(Figure 1) which was also used during email classes.

Figure 1. Yahoo mail inbox.

It is important to highlight that the courses are taught in a

25 desktops Lab equipped with 15 LCD monitors of 19-inch

623Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 643 / 646

and 10 LCD monitors of 17-inch, whose resolutions are
WXGA 1366 x 768 and XGA 1024x768, respectively.
Although changing terminals settings (font sizes and colors)
is posible, the Lab is used intensively every day to adopt this
practice as usual.

3) Procedure:
Usability testing with the think-aloud method was

conducted [14]. The evaluations were pair-based because
older people feel more relaxed and confident about their
work. Each evaluation was recorded, in order to analyze
participants behavior and comments.

4) Tasks:
Five tasks were proposed to explore the interface

usability:
a) Read an email
b) Reply an email
c) Write a new email
d) Delete an email
e) Close user session

5) Results:
Of the 9 couples of participants, all could finish Tasks a)

and c), 6 could not complete Task b), 2 could not conclude
Task d) and 8 could not end Task e). These results are
detailed in Table III.

TABLE III. RESULTS ACHIEVED BY OLDER USERS IN EMAIL USAGE

EXPERIMENT 1

Task Couples Error Ratio

a) Read an email 0/9

b) Reply an email 6/9

c) Write a new email 0/9

d) Delete an email 2/9

e) Close user session 8/9

From these results, we have found three problems

throughout Tasks a)-e):

a) Problem 1: Advertisements
All participants complained about being distracted or

even confused with the advertisements that appeared on the
right side of the screen. They were afraid of clicking by error
on these ads and causing an unexpected behavior of the
email application, like closing, or losing the work being
done.

b) Problem 2: Visual presentation difficulties
Besides, participants experienced other difficulties

involving visual presentation of pages. Three couples of
participants in Tasks a) and b) could not differentiate
selected emails, because of light color contrast. Three
couples of participants in Task a), three in Task b), and five
in Task c) had difficulties in visualizing text because of font
size, style, and inter-letter spacing. Also, 6 couples of
participants in Task d) and 9 in Task e) made a great effort to
distinguish available commands in menu bar.

c) Problem 3: Not understandable buttons
Participants also had trouble identifying buttons that

represented email actions like “Reply” or “Forward”. Eight

couples of participants had difficulties identifying the button
to conclude Task b), and 6 couples could not complete the
task because of this problem. All participants had difficulties
in Task e), remembering how to leave the application or
“Sign Out”, and only one couple could complete this task.

All the difficulties suffered by older users, are age-related
issues like cognitive and visual impairment. Another factor
involved is the lack of knowledge of technology and Web
applications. Evaluating the WCAG 2.0 guidelines, we found
that all these problems are considered within WCAG
guidelines as we demonstrated before in Table II. Problems 1
and 3 correspond to difficulty number 6 detailed in Table II,
which involves short term memory problems, concentration
difficulties, distraction, and Problem 2 involves visual
accessibility barriers shown as difficulties 1, 2, and 3 in
Table II.

Hence, Yahoo email application is not compliant with
this standard. However, this application provides solution to
some of them, by setting appropriate configurations. But this
is a very complex task to be performed by older users.

B. Experiment 2

The purpose of Experiment 2 is to evaluate an
improvement to the email Website interface, which we
developed to solve the problems found in Experiment 1.

 In this improved interface, vertical banner ads have
been deleted, and labels have been added for “Reply” and
“Forward” buttons. Also, a button was added at the top of the
form to allow users closing their sessions.

Figure 2 shows the modified interface of Yahoo mail
inbox, including both adaptations: for Problem 1 vertical ads
banner removement and for Problem 3 a button (“2” in
Figure 2) labeled “Cerrar Sesión” to close user session, and
the two labels “Responder” y ”Reenviar” (“1” in Figure 2)
for replying and forwarding respectively.

Figure 2. Yahoo mail inbox after interface improvement.

1) Participants:
Fourteen older adults ranging in age from 66 to 74 years

old (eight women and six men) were recruited for this
activity. All of them took computing courses during the first
half of 2012, and now they are taking theatre but not
computing classes. However, they were willing to participate
in this experiment.

624Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 644 / 646

2) Materials:
We modified Yahoo interface by applying two

adaptations [15]. One of them is a script for deleting vertical
ad banners that we downloaded from a scripts repository and
the other one is a script developed for us in JavaScript to
solve problems with buttons.

a) Problem 1: Advertisements
Although this vertical banner ad can be removed, this

was not a permanent solution and became an annoyance to
older pupils. In order to give solution to this problem, we
chose GreaseMonkey. There are many add-ins that provide a
number of features for visual and navigational enhancements
to Web pages, which may fill usability gaps for older users.

Figure 2 shows the modified interface of Yahoo mail
inbox where the vertical banner has been deleted. This
modification was achieved by the installation of a
GreaseMonkey script, CleanUp 1.1 that we downloaded
from the scripts repository [22].

b) Problem 2: Visual presentation difficulties
Here, there are solutions provided by the browser and

also by the operating system. The browser (Mozilla Firefox)
allows modifying default settings for font size and style, and
the operating system (Windows 7) provides an Accessibility
Center that allows improving visual presentation, mouse
setting and color contrast.

c) Problem 3: Not understandable buttons
At this point, we did not find any GreaseMonkey script,

which solves difficulties with buttons’ understanding or
‘Sign Out’ explicit inclusion in the application interface. So,
we developed a script named “Oldie 1.0” that added labels to
“Reply” and “Forward” buttons and a button to allow users
closing their sessions.

3) Procedure and Tasks:
The same as for Experiment 1, detailed in Sections

IV.A.3) and IV.A.4) respectively.

4) Results:
Of the 7 couples of participants, all could finish Tasks a),

c) and e), 1 could not complete Task b), and 1 could not
complete Task d). These results are detailed in Table IV. In
this experiment, Problems 1, 2 and 3 detected previously
have been eliminated. A couple of participants could not
finish tasks b) and d) because they did not remember how to
perform those tasks.

TABLE IV. RESULTS ACHIEVED BY OLDER USERS IN EMAIL USAGE

EXPERIMENT 2

Task Id Task Description Couples Error Ratio

a) Read an email 0/7

b) Reply an email 1/7

c) Write a new email 0/7

d) Delete an email 1/7

e) Close user session 0/7

So, we conclude that this improved interface contributed

to obtaining a better performance of older users and this will
pay off in more confident users, who use email application

more frequently and who are willing to go on learning new
Web applications.

V. DISCUSSION

Many of the difficulties suffered by older Web users are
already solved. However, as older people do not recognize
their disabilities, they miss the opportunity to use the Web in
a more comfortable way.

There are many accessibility tools provided by the
operating systems and also by the Web browsers. But as they
are classified as ‘Accessibility Tools’, most users believe that
they are targeted to help people with severe disabilities that
do not include the elderly.

Besides, there are some useful accessibility tools
developed and available in Web repositories.

We have worked with some email accessibility
requirements detected while teaching computing courses to
older adults. Experiment 1 allowed for gaining a significant
experience to develop our ideas, while Experiment 2 applied
for testing these ideas on the field.

We found that some of the detected requirements could
be solved by modifying the Web browser or the operating
system configuration. Other requirements were accomplished
by installing some scripts that provide the desired
accessibility adaptations, like the scripts (CleanUp 1.1 and
Oldie 1.0) we proposed and developed to solve Problems 1
and 3, respectively.

However, all these solutions require assistance from a
computing specialist, or at least, from someone with the
required skills, who must configure or install the appropriate
add-ins.

Thus, we are working on a pragmatic research approach
and applying an iterative incremental process to develop a
tool that includes all the accessibility adaptations and allows
older people select the appropriate configuration by
themselves. Besides, this tool must be able to provide help to
older users, who are not familiar with application concepts
and hence avoiding hesitation and frustration. All this will
contribute to increasing quality of life of our Patagonian
older Web users.

VI. CONCLUSION

Older adults represent the fastest growing portion of the
world’s population. Most older adults have got some
declines that affect computer use, as difficulties with vision,
hearing, mobility or cognition.

The World Wide Web Consortium (W3C) has got some
initiatives like Web Accessibility Initiative (WAI) and Web
Accessibility Initiative: Ageing Education and
Harmonisation (WAI-AGE), which provide solutions to
many of the problems of older people. However, many Web
designers do not consider WAI recommendations when
designing Websites.

So, there are some approaches focused on improving
Websites’ accessibility. Some of them consist on Web
adaptations that provide solution to a varying amount of
accessibility issues.

In this article, we showed different solutions provided to
solve distinct older pupils’ requirements. However, from our

625Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

 645 / 646

experience, we must highlight two issues about these
solutions: (i) they do not cover all needs and, (ii) they are not
usable enough for elderly citizens. Due to these reasons, new
solutions should be developed and these solutions must
prevent older people having to get help from someone else
who can configure or install suitable accessibility settings to
grant our seniors one of their main wishes: “independence”.

As regards social requirements of our older students, our
next goal is exploring difficulties experienced by them with
social networks and finding appropriate solutions. This is a
high priority requirement of our older citizens since our
distant geographical situation and extreme weather
conditions deprive them of enjoying many current activities
that older people in other geographies can perform.

ACKNOWLEDGMENT

This work is supported by the UNPA project 29/B144
(Diseño y Evaluación de Portales Web).

REFERENCES

[1] United Nations Department of Economic and Social Affairs
Population Division, “World population ageing, 1950-2050,”
UN, 2002, accessed 15th May 2013.

http://www.un.org/esa/population/publications/worldageing19
502050/index.htm

[2] S. Sayago and J. Blat, “About the relevance of accessibility
barriers in the everyday interactions of older people with the
Web,” Proceedings of the 2009 International Cross-
Disciplinary Conference on Web Accessibililty (W4A '09),
ACM, USA, April 2009, pp. 104-113.

[3] N. Selwyn, “The information aged: A qualitative study of
older adults’ use of information and communications
technology,” Journal of Aging Studies, 18(4), November
2004, pp. 369-384.

[4] E. Hartnett, S. Minocha, J. Palmer, M. Petre, S. Evans, C.
Middup, K. Dunn, B. Murphy, T. Heap, and D. Roberts,
“Older people and online social interactions: an empirical
investigation,” The UKAIS International Conference on
Information Systems (UKAIS), Worcester College, University
of Oxford, March 2013.

[5] L. Gibson, W. Moncur, P. Forbes, J. Arnott, C. Martin, and A.
Bachu, “Designing social networking sites for older adults,”
Proceedings of the 24th BCS Interaction Specialist Group
Conference (BCS '10), British Computer Society, Swinton,
UK, September 2010, pp. 186-194.

[6] D. Sloan, M. Atkinson, C. Machin, and Y. Li, “The potential
of adaptive interfaces as an accessibility aid for older Web
users,” Proceedings of the 2010 International Cross
Disciplinary Conference on Web Accessibility (W4A '10),
ACM, New York, NY, USA, April 2010, Article 35.

[7] V. Hanson, “Age and web access: the next generation,”
Proceedings of the 2009 International Cross-Disciplinary
Conference on Web Accessibililty (W4A '09), ACM, USA,
April 2009, pp. 7-15.

[8] D. Lunn and S. Harper, “Improving the accessibility of
dynamic web content for older users,” Proceedings of the
2011 International Cross-Disciplinary Conference on Web
Accessibility (W4A '11), ACM, New York, NY, USA, March
2011, Article 16.

[9] J. Richards and V. Hanson, “Web accessibility: a broader
view,” Proceedings of the 13th international conference on
World Wide Web (WWW'04), ACM, USA, May 2004, pp.
72-79.

[10] A. Arch, “Web accessibility for older users: successes and
opportunities,” (keynote) Proceedings of the 2009
International Cross-Disciplinary Conference on Web
Accessibililty (W4A '09), ACM, USA, April 2009, pp. 1-6.

[11] A. Dickinson, M. Smith, J. Arnott, A. Newell, and R. Hill,
“Approaches to web search and navigation for older computer
novices,” Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI '07), ACM, New York,
NY, USA, May 2007, pp. 281-290.

[12] S. Pedell, F. Vetere, L. Kulik, E. Ozanne, and A. Gruner,
“Social isolation of older people: the role of domestic
technologies,” Proceedings of the 22nd Conference of the
Computer-Human Interaction Special Interest Group of
Australia on Computer-Human Interaction (OZCHI '10),
ACM, New York, NY, USA, November 2010, pp. 164-167.

[13] S. Sayago, L. Camacho, and J. Blat, “Evaluation of
techniques defined in WCAG 2.0 with older people,”
Proceedings of the 2009 International Cross-Disciplinary
Conference on Web Accessibililty (W4A '09), ACM, New
York, NY, USA, April 2009, pp. 79-82.

[14] J. Dumas and J. C. Redish, “A Practical Guide to Usability
Testing,” (1st ed.), Intellect Books, Exeter, UK, 1999.

[15] P. Brusilovsky, A. Kobsa, and W. Nejdl, “The Adative Web:
Methods and Strategies of Web Personalization,” Springer,
2007.

[16] Web Accessibility Initiative, accessed 15th May 2013.

 http://www.w3.org/WAI/

[17] Web Accessibility Initiative: Ageing Education and
Harmonisation (WAI-AGE), accessed 15th May 2013.

 http://www.w3.org/WAI/WAI-AGE/

[18] http://www.unpa.edu.ar/noticia/la-unpa-y-el-inssjp-firmaron-
convenios-por-capacitacion-y-continuidad-del-programa-
upami, accessed 10th June 2013.

[19] Web Content Accessibility Guidelines (WCAG) 2.0, accessed
15th May 2013. http://www.w3.org/TR/WCAG/

[20] Greasemonkey, accessed 15th June 2013.

http://www.greasespot.net/

[21] A. Arch, “Web accessibility for older users: a literature
review,” W3C Working Draft, World Wide Web Consortium
(W3C), May 2008, accessed 15th June 2013.

http://www.w3.org/TR/wai-age-literature/

[22] http://userscripts.org/, accessed 15th June 2013.

[23] S. Mirri, P. Salomoni, and C. Prandi, “Augment browsing and
standard profiling for enhancing Web accessibility,”
Proceedings of the 2011 International Cross-Disciplinary
Conference on Web Accessibililty (W4A '11), ACM, New
York, NY, USA, March 2011, Article 5.

[24] A. Garrido, S. Firmenich, G. Rossi, J. Grigera, N. Medina-
Medina, and I. Harari, “Personalized Web accessibility using
client-side refactoring,” Internet Computing, IEEE, 17(4),
July-August 2013, pp. 58-66.

[25] L. Gibson, P. Forbes, and V. Hanson, “What can the ash
cloud tell us about older adults’s technology adoption?,”
Proceedings of the 12th international ACM SIGACCESS
conference on Computers and accessibility (ASSETS '10),
ACM, New York, NY, USA, October 2010, pp. 301-302.

[26] A. Martin, V. Saldaño, G. Miranda, and G. Gaetan, “AO-
WAD: A Generalized Approach for Accessible Design within
the Development of Web-based Systems,” Proceedings of The
7th International Conference on Software Engineering
Advances, ICSEA 2012, IARIA, Portugal, November 2012,
pp. 581-587.

[27] A. Martín, G. Rossi, A. Cechich, and S. Gordillo,
“Engineering Accessible Web Applications. An Aspect-
Oriented Approach,” World Wide Web Journal, 13(4), 2010,
pp. 419-440.

626Copyright (c) IARIA, 2013. ISBN: 978-1-61208-304-9

ICSEA 2013 : The Eighth International Conference on Software Engineering Advances

Powered by TCPDF (www.tcpdf.org)

 646 / 646

http://www.tcpdf.org

